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MARGINALLY TRAPPED SUBMANIFOLDS
IN SPACE FORMS WITH ARBITRARY SIGNATURE

HENRI ANCIAUX

Dedicated to the memory of Franki Dillen (1963-2013).

We give explicit representation formulas for marginally trapped submani-
folds of codimension two in pseudo-Riemannian spaces with arbitrary sig-
nature and constant sectional curvature.

Introduction

Let (N, g) be a pseudo-Riemannian manifold and & a submanifold of (N, g) with
nondegenerate induced metric. We shall say that & is marginally trapped if its mean
curvature vector is null, that is, g(IjI , H ) vanishes. When (N, g) is a Lorentzian four-
manifold and & is spacelike, the marginally trapped condition has an interpretation
in terms of general relativity: it describes the horizon of a black hole [Penrose
1965; Chrusciel et al. 2010]. The equation g(fl , H ) = 0 is nevertheless interesting
in whole generality from the geometric viewpoint, being actually the simplest
curvature equation which is purely pseudo-Riemannian: in the Riemannian case
this equation implies minimality.

In [Anciaux and Godoy 2012], marginally trapped submanifolds with codimen-
sion two have been locally characterized in several simple Lorentzian spaces: the
Minkowski space R"*2, the Lorentzian space forms dS"*2 and Ad S"*2, and the
Lorentzian products S"*! x R and H"*! x R. Little has been done about marginally
trapped surfaces in the case of a manifold with a non Lorentzian metric. In [Chen
2009], flat marginally trapped surfaces of R* endowed with the neutral metric
dxl2 + dx22 — dx32 — a’xf have been studied, while Lagrangian marginally trapped
surfaces of complex space forms of complex dimension two were characterized in
[Chen and Dillen 2007]. Recently marginally trapped surfaces of certain spaces of
oriented geodesics have been investigated [Georgiou and Guilfoyle 2014].

The purpose of the present paper is to extend the results of [Anciaux and Godoy
2012] to the case of codimension-two submanifolds in constant curvature spaces
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with arbitrary signature, that is, (i) in the pseudo-Euclidean space [R{Zizl equipped
with the inner product of signature (p + 1, g + 1), and (ii) in the space form S’;ﬁ
of signature (p + 1, ¢ + 1) and sectional curvature 1 (see next section for more
precise definition and notation). As in [Anciaux and Godoy 2012], we rely on the
use of the contact structure of the set of null geodesics of the ambient space. The
congruence of null lines which are normal to a submanifold of codimension two is
a Legendrian submanifold with respect to this contact structure. Conversely, given
a null line congruence & which is Legendrian, there exists an infinite-dimensional
family of submanifolds, parametrized by the set of real maps T € C*(¥), such
that the congruence is normal to them. In order to obtain our characterization
results, we prove that, given a Legendrian, null line congruence &, the submanifold
parametrized by 7 is marginally trapped if and only if the real map t € C*(%) is a
root of certain polynomial map with coefficients valued in C?(<£).

The paper is organized as follows: Section 1 introduces some notation and gives
the precise statements of the results; Section 2 gives a characterization of those
submanifolds whose second fundamental tensor is null (Theorem 1), while Section 3
provides a local representation formula which is similar to that of [Anciaux and
Godoy 2012] (Theorem 2). In Section 4, an alternative, more global representation
formula is given, under certain maximal rank assumption (Theorems 3 and 4).
Finally Section 5 attempts to shed light on the ideas in this paper by providing an
interpretation of the general construction in terms of contact geometry and explains
also the relation between Theorems 2 and 3 in the Lorentzian case.

1. Statement of results

We fix throughout three integers p, ¢ and n such that p + ¢ =n > 1. We shall
denote by R'I’,ﬁ the (n + 2)-dimensional real vector space equipped with the inner
product of signature (p + 1, g 4+ 1) given by

p+1 n+2
(-,-):deiz— Z dxl-Z.
i=1 i=p+2

A nonvanishing vector v of RZﬁ is said to be null if (v, v) = 0. We furthermore

introduce the hyperquadric

Sn+2 .

a1 =1{x € R*3 (x, x) =1}

p+2

The induced metric of S’;ﬁ, still denoted by (-, - ), has signature (p+ 1,9+ 1)
and constant sectional curvature 1. Conversely it is well known (see [Kriele 1999])
that a simply connected (n + 2)-dimensional manifold endowed with a pseudo-

Riemannian metric with signature (p 4+ 1, g 4+ 1) and constant sectional curvature



MARGINALLY TRAPPED SUBMANIFOLDS IN SPACE FORMS 259

is, up to isometries and scaling, [R’;“_T_Zl or §’;121 We shall call these spaces pseudo-
Riemannian space forms.

We shall be concerned with submanifolds X of [RR’;J;Z] and S;’:j with nondegener-
ate induced metric g and whose normal bundle N X (i) is two-dimensional (so that X
has dimension n), and (ii) has indefinite (Lorentzian) metric (so that the induced
metric on X has signature (p, g)). We recall that the second fundamental form h
of ¥ is the symmetric tensor 1 : TX x TYX — NX defined by h(X, Y) := (DxY)",
where (- )+ denotes the projection onto the normal space NX and D is the Levi-
Civita connection of ambient space. If v is a normal vector field along %, we define
the shape operator of ¥ with respect to v to be the endomorphism of 7% defined
by A, X = —(Dx v) T, where (-)T denotes the projection onto 7'X. The relation
(h(X,Y),v) =(A,X,Y) shows that the second fundamental form and the shape
operator carry the same information.

The mean curvature vector H of the immersion is the trace of i with respect
to the induced metric of ¥ divided by n. Our first result is the characterization of
n-dimensional submanifolds of space forms with null second fundamental form,
that is, such that 2(X, Y) isnull forall X, Y e TX:

Theorem 1. Let v be a constant, null vector of [R';)‘_:z]

submanifold with nondegenerate induced metric which is contained in the hyper-
plane v*. Then ¥ has null second fundamental form and is therefore marginally
trapped. Moreover both the tangent and the normal bundles of X are flat.

Analogously let v be a constant, null vector of [R';fz and ¥ an n-dimensional
submanifold of S’l’,fl with nondegenerate induced metric which is contained in the
hypersurface v+ S';ﬁ. Then X has null second fundamental form and is therefore
marginally trapped. Moreover ¥ has constant scalar curvature and flat normal
bundle.

Conversely any submanifold of R

and X an n-dimensional

2

e S’;i | with null second fundamental

p+l1
form is locally described in this way.
Quite surprisingly, the method introduced in [Anciaux and Godoy 2012] in the
Lorentzian case can be used here, in the case of marginally trapped submanifolds
whose second fundamental form is not null, providing local parametrizations:

Theorem 2. Let o be an immersion of class C* of an n-dimensional manifold M
into R';j;ll (respectively, S';ill) whose induced metric is nondegenerate and has
signature (p, q). Denote by v the Gauss map of o, which is therefore §'1',—valued
(respectively, S’;ill-valued), by A = —dv the corresponding shape operator, and
by t; the roots of the polynomial of degree n — 1

P(t):=tr(ld—7A)~".

Then the immersions ¢; : M — [R{’;)iz] = [R{';ill X R (respectively, 5’;121 - R;fz x R)
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defined by
¢i = (0 +1v, 7))

are marginally trapped.

Conversely any n-dimensional marginally trapped submanifold of RZﬁ (respec-
tively, S’;ill) whose second fundamental form is not null is locally congruent to the
image of such an immersion.

Remark 1. If the shape operator A of o is diagonalizable (which is not always the

case since the induced metric on o is not definite) the polynomial P takes the form

p p
P(7):= Zmi ]_[(Kjfl —1),

i=1  j#i
where k1, ..., K, p > 2 are the p distinct, nonvanishing principal curvatures of o
with multiplicity m;.

In order to state the next theorem, we introduce some more notation: writing
x =, x") e R"T2 =RPH! x Rt where x’ € RPH! and x” € R?T!, we introduce
the conjugation map (x’, x”/) := (x’, —x”), as well as the n x n diagonal matrix Id,,
whose (p, g)-block decomposition is Id, = (I?)” _(I) 4, )

Since the normal spaces N X are assumed to be two-dimensional and Lorentzian,
the marginally trapped assumption (IEI JH ) = 0 is equivalent to the fact that H is
contained in one of the two null lines of N X. We shall call mean Gauss map, and
denote by v = (v/, v”), the null vector which is collinear to H and normalized by
the condition v € S” x S? C RP*! x R9+!. The next two theorems give a global
description of those marginally trapped submanifolds whose mean Gauss map has
maximal rank. We observe that this is a generic property and that it is a stronger
assumption than requiring the mean curvature vector H to have itself maximal rank.

Theorem 3. Let Q be an open subset of the universal covering of S” x S and
o € C*(). Denote by t; the roots of the polynomial of degree n — 1

P(r) =tr((r1d, + o Id, + 2 Hess(0))™").
Then the immersions

i Q— [R{’;fl, Vi v +ov+2Vo,

are marginally trapped.
Conversely any connected, marginally trapped n-dimensional submanifold of
R;fl whose mean Gauss map v has maximal rank is the image of such an immersion.

When n = 2, the condition of maximal rank on v is equivalent to the fact that the
second fundamental form is not null. Hence Theorems 1 and 3 provide a complete
characterization of marginally trapped surfaces of R* with arbitrary signature. Since
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the Minkowski case has already been discussed in [Anciaux and Godoy 2012], we
detail the case (p, g) = (1, 1), that is, of a Lorentzian surface in [R?‘z‘. Observe first
that IR‘Z‘ is endowed with

(i) a natural pseudo-Kéhler structure, with complex structure J (x;, x2, X3, X4) :=
(—x2, x1, —x4, x3) and symplectic form w = (J -, - ) =dx| Adxy —dx3 Ndxa;
this corresponds to the identification of [R{g with C? through the formula
(21, 22) = (X1 +ix2, X3+ ixy);

(i) a natural para-Kihler structure, with paracomplex! structure
K (x1, x2, X3, x4) := (x3, X4, X1, X2)

and symplectic form o' = (K -, -} = dx; Adx3 + dxy A dxy; this corresponds
to the identification of R} with D?, where D = {a +eb | (a, b) € R?} is the ring
of paracomplex numbers, through the formula (wy, wy) = (x1 +ex3, x2+ex4);

Corollary 1. Let Q be an open subset of R? endowed with the Lorentzian metric
du® — dv?* and o € C*(Q). Denote by subscript u or v the partial derivative with
respect to the corresponding variable. Then the immersion

Qo RI~C?, (u,v)— ((a—auu+avv+2iau)ei”, (—cf—auu+aw—2iav)e“”),

is weakly conformal and its null points are characterized by o 4 0, + 0yy = £20,4.
Moreover, away from its null points, ¢ is marginally trapped.

Conversely any connected, marginally trapped surface of R‘z‘ whose second
fundamental form is not null is the image of such an immersion.

In [Chen 2009] and [Chen and Dillen 2007], marginally trapped surfaces of [F%i‘zl
which are in addition, respectively, flat and Lagrangian with respect to w have been
characterized. These additional conditions may be readily seen in terms of the
formula given above:

Corollary 2. The marginally trapped immersion ¢ of Corollary 1 is in addition
(1) flat if and only if (3 — avv)((o + ouu + va)z - 40},21)) =0;
(i) Lagrangian with respect to the symplectic form w if and only if
0y + 0y + Oy — Ouuv — Ouvy + Ouuu = 0.

Moreover there is no marginally trapped surface which is in addition Lagrangian
with respect to the symplectic form o'.

In the next theorem we give a characterization of marginally trapped submanifolds

whose mean Gauss map has maximal rank in S’;ﬁ.

IWe refer the reader to [Alekseevsky et al. 2009] or [Cruceanu et al. 1996] for material about
paracomplex geometry, also called split geometry.
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Theorem 4. Let o : M — SPT! x S9 be an immersed, oriented hypersurface of
class C* whose induced metric has signature (p, q). Denote by v its Gauss map
(hence a S'l’)ﬁ-valued map) and by A = —dv the corresponding shape operator.
Denote by t; the roots of the polynomial of degree n — 1

P(r)=tr(rld—A)"".

Then the immersions ¢; : M — 8';121 defined by ¢; :== v + 1,0 are marginally

trapped.

Conversely any connected, marginally trapped n-dimensional submanifold of
§n+2
p+1

whose mean Gauss map has maximal rank is the image of such an immersion.

Like in the flat case [R‘Z‘, a marginally trapped surface of S‘z‘ has either null second
fundamental form, or a mean Gauss map with maximal rank. Therefore Theorems 1
and 4 provide a complete characterization in this case. It enjoys, moreover, a more

explicit description:

Corollary 3. Let o be an immersion of class C* of a surface M into S* x S with
Lorentzian induced metric. Denote by v the Gauss map of o (hence a Sg-valued
map) and by H the (scalar) mean curvature of o with respect to v. Then the
immersion ¢ : M — Sé defined by

¢=v+Ho

is marginally trapped.
Conversely any connected marginally trapped surface of Sg whose second
Sfundamental form is not null is the image of such an immersion.

2. Submanifolds with null second fundamental form: proof of Theorem 1

Let X be an n-dimensional submanifold of R’;fl such that the induced metric on the
normal bundle N X is Lorentzian. Since the intersection of the light cone of R'I’:j
with N X is made of two null lines, there exists a null normal frame, that is, a pair
of normal, null vector fields along ¥ such that (v, v) = (£,&) =0and (v, &) =2.

So, given a normal vector N, we have
N =3(N,E)v+ (N, v)é).

Lemma 1. The second fundamental form h is collinear to v (so in particular it is
null) if and only if the mean curvature vector H is collinear to v and v has rank at
most 1.

Proof. We denote by (eq, ..., e,;) alocal, orthonormal, tangent frame along ¥ and
we set
hij = (h(ei, j), v) = —(dv(e:). e;).
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Then we have, taking into account that (dv, v) =0,
n
dv(e))=—> hle;+3(dv(e). &)v.
i=1

Assume first that / is collinear to v. Then clearly its trace nH is collinear to v as
well. Moreover all the coefficients hilj vanish, so by the equation above, for all i,
1 <i < n, the vector dv(e;) is collinear to v, and hence dv has rank at most 1.
Conversely, if dv has rank 1, then dv(e;) and dv(e;) are proportional for any
pair (i, j), i # j. Taking into account the symmetry of the tensor hilj, an ele-
mentary calculation implies that there exist n + 1 real constants ¢, A1, A2, ..., A,
such that hl.lj = cA;Aj. If in addition ¥ is marginally trapped, that is, (nFI , V) =
tr [h);]1<i j<n =€ Y_j—; A} =0, then either ¢ =0 or (A1, ..., ;) = (0, ..., 0) and
in both cases the whole tensor h} ; vanishes, that is, 4 is collinear to v. (I

We come back to the proof of Theorem 1, observing that under the assumption

of the lemma above, dv is collinear to v. This implies the existence of a map

+2 or Rn+3

A € C'(Z) such that v = e* vy, where vy is a constant, null vector of [R{'I; 1 o

We conclude that ¥ C vol.
We now write the Gauss and the Ricci equations in the flat case:

(RIX,Y)Z, W)+ (h(X, Z),h(Y, W)) — (h(X, W), h(Y, Z)) =0,
(RL(X, Y)v, &) —([Ay, A:]1X,Y) =0,
If A is collinear to v, both terms (h (X, Z), h(Y, W)) and (h(X, W), h(Y, Z)) vanish,
hence the curvature of the tangent bundle vanishes. Moreover, if % is collinear to v,

then A, vanishes as well and the normal bundle is flat.

In the case of S;ﬁ, the Gauss and the Ricci equations become

(RX,YZ, W)+ (h(X, Z),h(Y,W))— (h(X, W), h(Y, Z))
= (X, Z)(Y, W) — (X, W)(Y, Z),
(R(X, Y)v, £) — ([Ay, A¢]X, Y) =0.
Again, if A is collinear to v, the terms (h(X, Z), h(Y, W)) and (h(X, W), h(Y, Z))
vanish. It follows that the scalar curvature of the induced metric is constant and

equal to 1. Analogously, the fact that % is collinear to v implies the vanishing of A,
and therefore the flatness of the normal bundle.

3. Parametrizations by hypersurfaces: proof of Theorem 2

3.1. Theflat case. Let p=({, T) be an immersion of an n-dimensional manifold .Jit

into R’;ﬁ whose induced metric g := ¢*( -, - ) has signature (p, ¢). In particular

the induced metric on the normal space of ¢ is Lorentzian. Let b be one of the two
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normalized, null normal fields along ¢. Since the discussion is local, there is no
loss of generality in assuming that, modulo congruence, its last component v, 3
does not vanish, so that we may normalize v = (v, 1).

n+1

Lemma 2. We set 0 := v — tv. Then the map (o, v) : M — Rp+l

immersion.

X S’I’j is an

Proof. Suppose (¢, v) is not an immersion, so that there exists a nonvanishing
vector v € Tl such that (de(v), dv(v)) = (0, 0). Since dr =do + tdv +dtv, it
follows that

de() = (dy¥(v),dt(v)) = (dt(V)v,dT(V)) =dT(V)D,

which is a normal to ¢. However the immersion ¢ is pseudo-Riemannian and
therefore a vector cannot be tangent and normal at the same time, so we get the
required contradiction. (]

Lemma 3. (do,v) =0.

Proof. Using again that d{y = do + tdv + dtv and observing that (v, dv) =0, we
have
0 = <d(p’ ﬁ) - ((dl//’ dT)a (V, 1)) == <dl/fv V) —df - <dU, V). D

Lemma 4. Given € > 0, there exists to € (—e€, €) such that o + tov is an immersion,
and v is its Gauss map.

Proof. This follows from the fact that the set {r € R| o + tv is not an immersion}
contains at most n elements. To see this, observe that given a pair of distinct real
numbers (¢, t'), we have

Ker(do + tdv) NKer(do +t'dv) = {0}

(otherwise we would have a contradiction with the fact that (o, v) is an immersion).
Hence there cannot be more than » distinct values ¢ such that Ker(do +tdv) # {0}.
The fact that v is the Gauss map of o + fov comes from Lemma 3:

(d(o +1tyv), v) = (do, v) + to{dv, v) = 0. U

Lemma 4 shows that there is no loss of generality in assuming that o is an
immersion: if it is not the case, we may translate the immersion ¢ along the vertical
direction, setting ¢y, := ¢ — (0, tp). Of course ¢ is marginally trapped if and only
if ¢y, is so, and moreover the vector field v is still normal to ¢,,. Finally observe

that the map oy, : M — [R{Zill associated to ¢y, is

O =V —(T—1)v="9 —TVv+1tov =0 + 1oV,

hence an immersion.
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We now describe the first fundamental form of ¢ and its second fundamental
form with respect to ¥, both in terms of the geometry of the immersion o':

Lemma 5. Denote by g :=o*(-, - ) the metric induced on M by o and A the shape
operator associated to v.
Then the metric g := ¢*(-, - ) induced on M by @ is given by the formula

g=g(,-)—2tg(A-, ) +1g(A-, A-).

In particular, the nondegeneracy assumption on g implies that T~ is not equal to
any principal curvature of ¢. Moreover the second fundamental form of ¢ with
respect to V is given by

hy:=(h(-,-).D)=g(-,A-)—Tg(A-, A").
Proof. Since (do, v) = (dv, v) =0, given vy, v, € T.M, we have
g(v1, v2) = (do(v1), do(v2))
= (do(v1),do(v2)) + t{do (v1), dv(v2)) + T(dVv(v1), do (v2))
+ 7Hdv(v1), dv(v2)) +dT(v1)dT (1) (v, V) —dT(V1)dT (V)

= g(v1, v2) — T(g(v1, Av2) + g(Avy, 12)) + T2g(Avy, Ava)
= g(v1, v2) — 21g(Avy, 1) + T7g(Avy, Av)).

We calculate the second fundamental form of ¢ with respect to v = (v, 1):

hy = —(dg. db)
=—{do +tdv+drtv,dv) = —(do,dv) — t{dv, dv)
=g(-,A-)—18(A-,A"). O

The proof of Theorem 2 follows easily: denoting by Aj the shape operator of ¢
with respect to v, we have from Lemma 5
g(As(d—7A) -, (ld—1A)-) =g(-, (d~TA) ).
It follows that
Ay i=1d—tA)"!

and that H is collinear to ¥ if and only if Af; is trace-free, that is, t is the root of
the polynomial P(t) =tr(Id —tA)~..

Remark 2. If ¢ is minimal, 7 = 0 is a root of P (7). The corresponding immersion
¢ = (0, 0) is not only marginally trapped but minimal.
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3.2. The S'I’,j'_zl case. Let o = (Y, 7) : M — S’;fl an immersion such that the
induced metric g := ¢*(-, - ) has signature (p, ¢). Let U be one of the two normal-
ized, null normal fields along ¢. Since the discussion is local, there is no loss of
generality to assume that, modulo congruence, its last component v, 3 does not
vanish, so that we may normalize ¥ = (v, 1).

We define the null projection of ¢ to be o :=y —tv. The fact that (v, 1) € ng’p’ﬁ ,
that is, 0 = ((¢, ), (v, 1)) = (¥, v) — T, implies that (¥, v) = t. Hence

(0,0) = (¥, ¥) =2t (¢, v) + T2(v, V)
= (y, ) —1*
= (g, ¢)
=1,

which shows that o is S’;,Jrl—valued. The proofs of the next two lemmas are omitted,
since they are similar to the flat case:

Lemma 6. The map (o,v) : M — S’;jrl] X S’;ill is an immersion.
Lemma 7. (o,v) =0 and (do,v)=0.

Unlike the flat case, there is no vertical translation in S’;ﬁ. We may however,

up to an arbitrarily small perturbation, assume that o is an immersion.

Lemma 8. Given € > 0, there exists a € (—¢, €) and a hyperbolic rotation R* of
angle o such that the null projection o* of ¢* := R%@ is an immersion.

cosh o sinh o
R“:( Id )eSO(p+2,q+l)

sinh o cosh o

Proof. Set

and ¢ ;= R%p, v := R%V. Observe that v* := (v*, v/, 5) is no longer normalized
a priori, since its last component v’ 43 1s equal to cosh(e) + sinh(«) vy, where vy is
the first component of the vector .

Nevertheless the null geodesic passing through the point ¢* and directed by the
vector V“ crosses the slice d S;’sz N {x,4+3 = 0} at the point

.[Ol
(O'a, O) = (Iﬁa — a—Ua, 0)

vn+3

Clearly o is an immersion if and only if

R0 =4 —t%v/v i3 =0+ T —1%/v 3V
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1s so. Observe that

¢ cosh(a)t + sinh(a) Yy
e fo+3 -t cosh(a) + sinh(o) vy
= tanh(a) (Y1 — Tv1) +0()
=o01a+o(a).

Now assume that R~%c* is not an immersion for @ € (—¢, €). Hence there exists a
one-parameter family of unit tangent vectors v* such that

0=d(R %Y (W*) =do () + (doy(vV*)v +o1dv(v*))a + o()
for all @ € (—¢, €). Thus

{do(vo‘) =0,
doy(vV*)v +o1dv(v®) = o1dv(v®) =0.

By Lemma 6, dv(v*) and do (v*) cannot vanish simultaneously, therefore o
vanishes. Repeating the argument with suitable rotations yields that all the other

coordinates of o vanish, a contradiction since o € S';ill. |

By the previous lemma we may assume that o is an immersion. The remainder of
the proof follows the lines of that of the flat case; in particular, Lemma 5 still holds.

4. Parametrization by the mean Gauss map

4.1. The flat case: proof of Theorem 3. In this section X denotes an n-dimensional
submanifold of [R{’;izl whose induced metric has signature (p, ¢) and such that the
normalized vector v € S” x S? C R"*? has rank n. We may therefore parametrize %
locally by v, that is, by a map ¢ : Q — R;ﬁ’ where Q2 is an open subset of the
universal covering of S” x S9. We set o (v) := %((p(v), v)yand T(v) := %((p(v), ).2
Lemma 9. We have

p=tv+0ov+2Vo,

where V is the gradient with respect to the induced metric on S? x S9 (that is,
Vo =(V'a, —V"0), where V' and V" are respectively the gradients on S and S?).

Proof. Since v and v are null and (v, V) = 2, we clearly have p = tv +o0ov + V,
where V € T,(S” x S9) = T5(S? x S?) = T,,S? x T,,»S. In order to determine V,
we use the assumption (d¢, v) = 0. Taking into account that

dp=dtv+tdv+dov+odv+dV

2The pair (o, T) may be regarded as a generalization of the support function of a hypersurface.
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and that (v, v), (dv, v) and (dV, v) vanish, we have
(do,v)y=do(v,v)+{dV,v)=2do + (dV, v).

On the other hand, from 0=d((V, v)) =(dV, v)+(V, dv), we conclude, observing
that dv =1d,

(V,W)y=(V,dv(W)) = —(dV(W),v) =2do (W) forall WeT,(S? xS9),
which, by the very definition of the gradient, proves that V = 2Vo. U

We now complete the proof of Theorem 3: define the endomorphism A, on
T,(S? x S?) by
(Ay-, ) =hy.

Hence, using that dv is the identity map of T,,(§” x §7), we have

{dpoAy-,dp-)=—{dv-,dp-)=—(I1-,dg-),

n+2

where IT is the restriction to 7, (S?” x S) of the normal projection R il

It follows that

—> T(D(,,)y.

dpoA, =—1I1,
and therefore
Al=-TT""odg

(the maximal rank assumption on v implies that IT is one-to-one). In order to calcu-
late the trace of A, we introduce an orthonormal basis (ey, ..., e,) of T,(§” x §9),
such that (e;,e;) =1if 1 <i < p and (e;, ¢;) = —1if p+1 <i <n. We define the

coefficients a;; by
n

dga(ei) = Za,-jl'[ej.
j=1
Clearly
A =Taiili<ij<n-

To determine the coefficients a;; explicitly, we calculate
(1) dp=dtv+tdv+dov+odv+2dVo.

Then we introduce a null, normal vector field & along & such that (v, §) is a null
frame of NX = T+, which is in addition normalized, that is, (v, &) =2. Then
the projection of a vector V of [F\R';izl onto N X is given by the formula

TUV EW + (V, 1)6).
It follows that

) NV =V -1V, &v+(V,0)8).
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For 1 <i < p, using (1) and observing that dv(e;) = dv(e;) = e;, we have
do(e;)) =(t+0)e; +dt(e;)v+do(e)v+2d(Vo)(e;)
Using (2) and the fact that (d(Vo)(e;), e;) = Hess(o)(e;, e;), we conclude that,

for1 <i <p,
a;j =36;j(t +0)+2Hess(o)(e;, €).

Analogously we get, if p+1 <i <n,
ajj = 5,‘]'(‘[ — o)+ 2Hess(o)(e;, ej).
The conclusion of the proof of Theorem 3 follows easily.

4.2. The case (p, q) = (1, 1): proof of Corollaries 1 and 2. We use the natural
identification R‘z‘ ~ C2 and denote by (u, v) the natural coordinates on s!' xS, so
that v := (¢'“, ¢'V). In particular, the metric on S' x S is du? — dv?. Hence

A —_ T4+0 + 20, 200 -
v —20,0 T—0 — 20y ’

whose trace is 2/det A, (t + o, — 0yy). Hence @ is marginally trapped if and only
ift =0y —ouu.
We now study the induced metric ¢*( -, -). Since
0= T(eiu’ eiv) —|—O’(€iu, _eiv) +2(i(fu€iL‘, —ioveiv),
we have
00 = (T =0)u +iQoy +T+0)e", (T =)y —2ion)e”),
9o = ((t +0)y +2i0m)e™, (T +0), +i(=200 +T—0))e").
By a straightforward calculation the coefficients of the first fundamental form
*(-,-) are
E:=Qoy +1+ 0)2 — 4031),
F :=40,y(0yy — 0y +27),
G:=—QRoyp—1+ 0)2 + 4auzv.

The marginally trapped assumption t = oy, — 0, implies

E=-G=Q0u+140)> =402 = (0 + 0wy + o)’ — 40>

uv

and the vanishing of F, so that ¢ is weakly conformal (and conformal whenever E
does not vanish).

It is well known that the induced metric of a surface with isothermic coordinates
is flat if and only if its conformal factor is harmonic. Here we are dealing with the
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Lorentzian metric du®> — dv?, whose Laplacian operator is 9,,, — d,,. Hence the
induced metric is flat if and only if

B = 9) E = B — 300) (0 + 0 +000)> — 4o, ).
Marginally trapped Lagrangian surfaces. We recall that J (z1, z2) = (iz1,i22), SO
Jou = (—Qow+ 140 +i(t —0))e", 2oy +i(r —0))e’).
Hence, using the usual formula w = (J -, -),

@ (@Qus v) = (J@u, Pv)

=—Qouu+T+0)(T+0)y+20up(T — fu —20u(T +0)y

— (T =0)u(-20pn+17-0)

= —(T+0)y(0 +0uy + opy +204) + (T — 0)u (0 + Ouu + oy + 204y)

= (0 + Ouy + Oyy + 20) (—0y — 04 — Oyyy + Tuuw + Ouvy — Tuuu)-
The first factor does not vanish except at degenerate points, so ¢ is Lagrangian with
respect to w if and only if oy 4+ 0, + opvy — Cuuy — Tuvy + Ouuu = 0.

Recalling that the paracomplex structure is given by
K (x1, x2, X3, X4) 1= (X3, X4, X1, X2),
we have
Koy = ((T = 0)u = 2i0w)e"”, (v = 0)y +i Q20w + T +0))e™),

and so

@' (@us 9v) = (Kpu, ov)
= cos(u —v)(—4do,, — (T — 0 —204,) 204y + T +0))
=cos(u — v)((—4o*uzv + (0 +0ouu + va))2
=cos(u —v)E.

Hence ¢ is Lagrangian with respect to o’ if and only if the induced metric is totally
null, which is incompatible with the marginally trapped assumption.

4.3. The case of §"+1 proof of Theorem 4. Let ¢ : M — §"+2 be an immersed
submanifold of cod1mens10n two of S';izl Let o be a normal null vector field
along ¢ which is normalized in such way that o € S”*! x S¢. We moreover assume

that o has maximal rank, that is, o : Ml — SP*! x S is an immersed hypersurface.

Lemma 10 [Godoy and Salvai 2013]. There exists a unique pair (v, T), where
vl — 5;1% and t € C?>(M) are such that

Q¢ =v+710.
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Moreover the map v : M. — S';ﬁ is the Gauss map of o; that is, v € T, (SPT! x S9)
and (do, v) =0.

Proof. For an arbitrary T € C>(L), we have v:i=¢ —10 € S;‘,ﬁ Hence we shall de-
termine 7 € C2 (M) by the condition v € T}, (§” iy S§7). Recalling the decomposition
R™3 =RP2x R?*!, and writing v = (v', V"), o = (¢”, ") accordingly, this condi-
tion amounts to (', ') 4o =0and (v", 0"),41 =0, where (-, -) 40 and (-, - )41
denote the Euclidean inner products of RP*? and RY*!, respectively. These two
equations yield = (v', ') 41 and T = (", 6”) 441, which are actually two equiv-
alent requirements since (¢, o) = (¢’, 0”) p42 — (¢”, 0" )¢+1 vanishes. Therefore 7
is uniquely determined by the condition v € T, (S”*! x §%) = T, SP x T,»S4.

It remains to check that v is the Gauss map of o. For this purpose we differentiate
¢ = v+ to and remember that ¢ is normal to ¢, so that

0={dp,0)={dv,0)+dt{o,0)+1t{do,o)={(dv, o).
Hence (dv, o) vanishes. Since 0 =d({v, o)) = (dv, o) + (v, do), we deduce that
(do, v) vanishes as well. U

Observe that the lemma above implies furthermore that the induced metric
g :=o*(-,-) is nondegenerate, since o (M) is a hypersurface and admits a unit
normal vector field.

Lemma 11. Denote by g := o *(-, - ) the metric induced on M by o, and by A the

shape operator associated to v, so A(v) := —dv(v) for all v € TM. Then the metric

g :=¢*(-, ) induced on M by ¢ is given by the formula
g=1°g(-, ) —21g(A-, ) +g(A- A").

In particular, the nondegeneracy assumption on g implies that t is not equal to any
principal curvature of v. Moreover the second fundamental form of ¢ with respect
to o is given by

he :=(h(-,-),0)=g(A-,-)—18(,").
Proof. Taking into account that dp = dv +dt o + tdo, we have
g = (do, dg) = (dv,dv) +2t(dv,do) + t*(do, do)
=g(A-, A)=2tg(A-, ) +1%(-. )
and
he = —(dyp,do) =—(dv,do) —1t{do,do)=g(A-,-)—1g(-,"). O

The proof of Theorem 4 is now straightforward: if ¢ is marginally trapped, we
may assume without loss of generality that its mean curvature vector H is collinear
to o. By the maximal rank assumption on o we may use Lemmas 10 and 11.
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Denote by A, the shape operator of ¢ with respect to o. Then, from Lemma 11
above, we have

g(Ay(tId—A) -, (tId—A)-) =g(-, (tId—A)-).

It follows that A, := (tId —A)~! and that H is collinear to v if and only if A, is
trace-free, that is, 7 is the root of the polynomial P(7) =tr(z Id —A)~ L

4.4. The case (p, q) = (1, 1): proof of Corollary 3. 1t is straightforward that if
M is a 2 x 2 matrix, then tr M~! = (det M)~ tr M. Hence tr(t Id —A)~! vanishes
if and only if tr(r Id —A) = 27 — tr A does. Hence ¢ is marginally trapped if and
only if Tt =tr A/2 := H, the (scalar) mean curvature of the immersion o. This
proves Corollary 3.

5. Further remarks

5.1. Interpretation of the result in terms of contact geometry. The constructions
in the previous sections come from the natural contact structure enjoyed by the
spaces of null geodesics of the ambient spaces and from the fact that the set of null
geodesics which are normal to a submanifold of codimension two is Legendrian
with respect to this contact structure.

The proof of Theorem 2 is based on the following fact: Let AU be the dense, open
subset of null geodesics of [R{’;,ﬁ that cross the horizontal hyperplane {x,1, = 0}
(in the Minkowski case (p, g) = (n, 0), all null geodesics cross the horizontal
hyperplane). Then the correspondence {(c, 0) + (v, 1) |t € R} — (o, v) defines a
contactomorphism between A and the unit tangent bundle T'! [R{’;“. The canonical
contact structure o of the unit tangent of a pseudo-Riemannian manifold (Jt, g)
is given by the expression o = g(do, v), where v is a unit vector tangent to .l at
the point . Hence, given an immersion x — (o (x), v(x)) of an n-dimensional
manifold such that x — o (x) is an immersion as well (a generic assumption), the
Legendre condition g(doy, v(x)) = 0 simply means that v is the Gauss map of o
or, equivalently, v is a unit vector field normal to the immersed hypersurface o

The interpretation of the proof of Theorem 3 in terms of contact geometry is
as follows: The space of null geodesics of R'I’)ﬁ may be identified with space of
one-jets on S? x §7, that is, the space T(S? x S) x R such that to the triple
(v, V,2) e T(S? xS?) x R, we associate the null line {V +zv+tv |7 € R} C [R{'l’)fl.
The natural contact structure on the space of one-jets Tl x R, where (M, g) is a
pseudo-Riemannian manifold, is given by « := v — dz, where ¥ is the Liouville
form? or tautological form on TM. Moreover a generic Legendrian immersion

3To be more precise, the Liouville form is canonically defined on the cotangent bundle 7% of a
differentiable manifold J(. If Al is moreover equipped with a pseudo-Riemannian metric (as it is the
case of S? x S9), we may identify 7% and T/t and therefore speak of a Liouville form on 7.
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in TM x R is locally a section and takes the form v — (v, Vo (v), o (v)), where
o € C?(M) and V denotes the gradient of the metric g. It follows, in the case
M =S? x S7, that a generic Legendrian congruence of null lines of [Ri’l’)fl takes
the form

vi> {Vo(w)4+oW)v+1tv|t e R},

where o € C2(S” x S?). The choice of real function T € C*(S” x S) determines
an n-dimensional submanifold parametrized by v — Vo (v) + o (v)V + t(v)v, one
of whose null normals is v. These observations inspired the proof of Theorem 3.
Finally the proof of Theorem 4 comes from the fact, proved in [Godoy and Salvai
2013], that the space of null geodesics of §Zﬁ can be identified with 71 (S” x S7),
the unit tangent bundle of S” x SY, as follows: to the pair (v, ¥) € T'(S? x S§7),

: ; +2
we associate the null line {yy +tv |t € R} C SZH'

5.2. Relation between Theorems 2 and 3 in the case (p,q) = (n,0). In the
Lorentzian case (p, g) = (n, 0), it is easy to relate the formulas of Theorems 2
and 3. To avoid confusion, all mathematical quantities from Theorem 2 will be
written with subscript 2, and those from Theorem 3 with subscript 3. We start by
writing v3 = (12, 1) € S" x S ~ S" x {1, —1}, so that U3 = (12, —1). Hence the
main formula of Theorem 3 becomes

¢ = ((13 4+ 03)12+2V03, 13 — 03),

where o3 € C*(S" x S°) ~ C*(S") and 73 depends on the second derivatives of o3.
Introducing oy := 203 v, +2Vo3 and 15 := 173 — 03, We obtain

¢ = (02 + 112, T2),

which is exactly the main formula of Theorem 2. Observe that (do,, v,) vanishes,
that is, v, is normal to the immersion o3, which is therefore parametrized by its
Gauss map. Moreover (o2, V) = 203, that is, 203 is the support function of the
immersion o».
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ONE LINE COMPLEX KLEINIAN GROUPS

WALDEMAR BARRERA, ANGEL CANO AND JUAN PABLO NAVARRETE

We give an algebraic description of those subgroups of PGL(3, C) acting
on [P’é with Kulkarni limit set equal to one complex projective line. Con-
versely, we prove that the Kulkarni limit set of a group G < PGL(3, C)
acting properly and discontinuously on the complement of one line in Pé is
equal to one or two lines.

1. Introduction

The Kleinian groups are discrete subgroups of PSL(2, C) acting on S? = [P’ql3 in
such way that its limit set is not all of S. They are classified in elementary and
nonelementary groups. The elementary groups are those Kleinian groups whose
limit set is equal to zero, one or two points, and they are classified (see [Maskit
1988]). The nonelementary groups are those Kleinian groups whose limit set
contains more than two points and in this case its limit set is a perfect set.

Our interest relies on the study of complex Kleinian groups. These are discrete
subgroups of PGL(3, C) acting properly and discontinuously on some open subset
of P%. In this setting, there is no standard definition of limit set, however, in
[Barrera Vargas et al. 2011] it is proved that under some mild hypothesis on the
dynamics of the group, Kulkarni’s definition of limit set is an appropriate definition
(see Definition 2.1).

In [Cano and Seade 2014] it is proved that the Kulkarni limit set of a complex
Kleinian group contains a complex projective line whenever the group is infinite.
Moreover, in [Barrera Vargas et al. 2011] it is proved that under some mild hypoth-
esis on the group, the Kulkarni limit set is a union of complex projective lines. The
definition of elementary group in this case is that the Kulkarni limit set consists of
a finite union of complex projective subspaces (see [Cano et al. 2013]).

An interesting problem consists of classifying all elementary complex Kleinian
groups, and one natural step consists of classifying those discrete subgroups of
PGL(3, C) whose Kulkarni limit set consists of one complex projective line. In

Research supported by CONACYT Project Number 176680 and SEP grant P/PIFI-2011-31MSU0098]J-
15.
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this paper we prove that the complex Kleinian group G < PGL(3, C) is virtually
nilpotent whenever its Kulkarni limit set is equal to one complex projective line. In
fact we prove the following:

Theorem 1.1. If G is a subgroup of PGL(3, C) such that its Kulkarni limit set A(G)
consists of precisely one complex projective line £, then:

(1) If G contains a loxoparabolic element then G is a finite cyclic extension of
order 1,2,3,40r60f Z® 7 ® Z,,, where ng € N is arbitrary. The Z ® 7 is a
group of rank two generated by a loxoparabolic element and another element
which can be loxoparabolic or parabolic. Also, the 7, is a group of complex
reflections.

(1) If G does not contain any loxoparabolic elements and the group G does not
contain any element which acts as a parabolic element on the complex line
A(G) = ¢, then G is a group of isometries of C* and it contains a free abelian
normal subgroup of finite index and of rank less than or equal to four.

(ii1) If G does not contain any loxoparabolic elements but it does contain an element
which acts as a parabolic element on the complex line A(G) = £, then G does
not contain any irrational ellipto-parabolic elements and it is a finite extension
of a unipotent subgroup (this subgroup consists of unipotent parabolic maps).
Hence it is a finite extension of a group of the form Z, 7%, 73, 7*, Ay or T,
where

Ax=(A,B,C,D : C, D are central and [A, Bl = C*), keN,

and
I« =(A,B,C : Ciscentraland [A, B] = C*), keN.

The outline of the proof of Theorem 1.1 is as follows: Since the group acts
properly and discontinuously on the complement of one complex projective line
in IP’%, the dynamics of each element in the group are restricted in some way; see
Remark 2.4. In fact, the elements in the group are elliptic, parabolic or loxoparabolic
according to the classification given in [Navarrete 2008].

If the group contains a loxoparabolic element, then there are restrictions on the
group G, as shown in Lemma 3.1. The proof of Theorem 1.1(i) follows from the
fact that there exists an invariant complex projective line where the action of the
group is properly discontinuous except in one point. Hence the group acts as a
Euclidean group on this line.

If the group does not contain any loxoparabolic elements, then we consider the
following two cases:

If G acts on the limit set £ = € = S? without parabolic elements then G can be
considered as a group of Euclidean isometries of R*.
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If some element in G acts on the limit set £ as parabolic element then the
group can be identified with a group of triangular matrices (see Proposition 5.2).
The existence of irrational ellipto-parabolic elements in the group is ruled out by
Propositions 5.6 and 5.7. Finally, there exists a unipotent subgroup of finite index
(see Proposition 5.8.)

We remark that not every finite extension of those nilpotent groups given in
Theorem 1.1(ii) and (iii) can occur as a group with Kulkarni limit set equal to one
line. Which of them can occur is a more delicate question. However, Theorem 1.1
gives a qualitative description according to the dynamics of the kind of elements
contained in the group.

We are not restricting here to the case where the quotient space IP% \ £ by the
group G is compact. The case where the action of G < PGL(3, C) on [P’% \ £ is
free, properly discontinuous and the quotient is compact is handled in [Fillmore
and Scheuneman 1973; Scheuneman 1974; Suwa 1975].

Finally, if G <PGL(3, C) satisfies A(G) is equal to one line, then G acts properly
and discontinuously on the complement of one line in qu:, so G can be considered
as a discrete subgroup of Aff(C?) acting properly and discontinuously on C2. The
converse statement is not true as we show in the following:

Theorem 1.2. Let G < PGL(3, C) be an infinite group which acts properly and
discontinuously on the complement of the line £ C I]:quj.

(1) If G contains a loxoparabolic element then,

o the Kulkarni limit set A(G) is equal to the union of £ and another line
whenever G contains a cyclic subgroup of finite index generated by a
loxoparabolic element, or

o the Kulkarni limit set A(G) is equal to £ whenever G contains a finite-index
free abelian subgroup of rank two generated by a loxoparabolic element
and another element, which can be either loxoparabolic or parabolic.

(ii) If G does not contain any loxoparabolic elements then A(G) = L.

2. Preliminaries
2.1. Projective geometry. Recall that the complex projective plane [P’% is defined as
PE = (C*\ {0})/C",

where C* = C \ {0} acts on C? \ {0} by the usual scalar multiplication. This is a
compact connected complex 2-dimensional manifold. Let [ -]: C3\ {0} — [P% be the
quotient map. If 8 = {ey, es, e3} is the standard basis of C3, we write [e jl=e; and
if z= (21, 22, z3) € C*\ {0} then we write [z] = [z1 : 22 : z3]. Also, £ C [P% is said
to be a complex line if [£]~! U {0} is a complex linear subspace of dimension two.
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Given distinct points [z], [w] € P2, there is a unique complex projective line passing
through [z] and [w]. Such a complex projective line is called a line, for short, and
it is denoted by [z], [w]. Consider the action of C* on GL(3, C) given by the usual
scalar multiplication. Then

PGL(3,C) =GL(3,C)/C*

is a Lie group. The elements of this Lie group are called projective transforma-
tions. Let [[-]] : GL(3, C) — PGL(3, C) be the quotient map, g € PGL(3, C) and
g € GL(3, C). We say that g is a lift of g if [[g]] = g. One can show that PGL(3, C)
is a Lie group that acts transitively, effectively and by biholomorphisms on IP’% by
[[gl]([w]) = [g(W)], where w € C \ {0} and g € GL(3, C).

The Fubini—Study metric on [P% is a useful tool in the computation of the Kulkarni
limit set of cyclic subgroups of PGL(3, C) acting on [P% (see [Navarrete 2008]).
The Fubini-Study distance d([z], [w]) between [z], [w] € [P’qz: satisfies the equation

. |z1W1 + 222 + z3Ws |
(212 + 122 + 123 (w12 + w2 | + w3 %)

(1) cos*(d([z], [w]))

We denote by M343(C) the space of all 3 x 3 matrices with entries in C equipped
with the standard topology. The quotient space

(M3,3(0) \ {0})/C*

is called the space of pseudo-projective maps of [p% and it is naturally identified
with the projective space I]I’f:. Since GL(3, C) is an open, dense, C*-invariant set
of M3,3(C) \ {0}, we obtain that the space of pseudo-projective maps of [P’% isa
compactification of PGL(3, C). As in the case of projective maps, if s is an element
in M3,3(C)\ {0}, then [s] denotes the equivalence class of the matrix s in the space
of pseudo-projective maps of P%. Also, we say that s € M3,3(C) \ {0} is a lift of
the pseudo-projective map S whenever [s] = S.

Let S be an element in (M343(C) \ {0})/C* and s a lift to M343(C) \ {0} of S.
The matrix s induces a nonzero linear transformation s : C3 — C3, which is
not necessarily invertible. Let Kers C C? be its kernel and let Ker S denote its
projectivization to P2, taking into account that Ker S := & whenever Kers =
{(0, 0, 0)}. We refer to [Cano and Seade 2010] for more details about this subject.

2.2. Complex Kleinian groups. We recall that a point z € Cxstx [P’(}: is a limit
point of the discrete subgroup G of PSL(2, C) if it is a cluster point of some orbit
{gx : g € G}, where x € C. The set AG)={z € C: zis a limit point of G} is
called the limit set of G (see [Marden 2007]).
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It is a known fact that the action of G on the complement of the limit set @\A (G)
is properly discontinuous. However, when working on higher dimensions, this is
no longer valid. See Example 2.3 below.

Kulkarni considers a very general setting of discrete group actions on a topolog-
ical space X, and the Kulkarni limit set provides a canonical choice of a closed
G-invariant set in X such that the G-action on its complement is properly discon-
tinuous.

Definition 2.1. Let G C PGL(n + 1, C) be a subgroup. The set Ly(G) is defined
as the closure of the points in P¢ with infinite isotropy group. In other words,
Lo(G) = {x € P¢. : Stabg (x) is an infinite group} (see [Kulkarni 1978]). The set
L1(G) is the closure of the set of cluster points of the G-orbit of z, where z runs
over P¢ \ Lo(G). Recall that ¢ is a cluster point of the family of sets {g(K) : g € G},
where K C P is a nonempty set, if there is a sequence (k) men C K and a sequence
of distinct elements (g,,)men C G such that g, (k) ;7=z5> ¢. The set Ly(G) is
defined as the closure of the union of cluster points of {g(K) : g € G}, where K
runs over all the compact sets in P{. \ (Lo(G) U L1(G)). The Kulkarni limit set
for G is defined as the G-invariant closed set

A(G)=Lo(G)UL1(G)U Ly(G).
The discontinuity region in the sense of Kulkarni of G is defined as
Q(G) =Pg\ AG).
If Q(G) # o then we say that G is a complex Kleinian group.

In the case of a cyclic group (g), we write Lo(g), L1(g), etc. instead of Ly({g)),

Ly({g)), etc.
The following lemma is a useful tool for the computation of Kulkarni limit sets,

and we include it here for reader’s convenience. See [Navarrete 2008] for a proof.

Lemma 2.2. Let G be a subgroup of PGL(3, C). If C is a closed set such that for
every compact set K C [F"qz: \ C, the cluster points of the family of compact sets
{g(K)}geG are contained in Lo(G) U L1(G), then Lr(G) C C.

Example 2.3. If g € PGL(3, C) is induced by the matrix

101
g=|oxr0]|, reCH |r<l,
00 1

then:
(1) Lo(g) ={e1, e2}.

(i1)) g7"(+) 5==> e2 uniformly on compact subsets of [P’é \ (e1, & Uer, €3).
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(iii) g"(-) 555> e1 uniformly on compact subsets of [P’% \ (e1,aUeq, €3).
(iv) Li(g) ={e1, e2}.
(V) La(g) = ey, 2Uey, €5.

(vi) The action of the cyclic group generated by g on IP% \ {e1, ez} is not properly
discontinuous.

(vii) The cyclic group generated by g acts properly and discontinuously on [F%\el , €).
Proof.

(i) The proof follows straightforwardly from the fact that {(z;, 0, 0) : z; € C} and
{(0, z2, 0) : zo € C} are the only possible eigenspaces for each matrix of the form

10 n
g'"=10 1" 0], nezZ\{0}.
00 1

(ii) If K is a compact subset of [P’([Z: \ (e1,<—eE U el,(—eé), then every point in K can be
written as [z] = [z1 : 22 : z3], where |z1]? + |22 + |z31> =1, |z2] > € and |z3] > €
for some fixed € > 0. If d(g"[z], e2) denotes the Fubini—Study distance between
g7 "[z] and e,, then

cos?(d(g"([z]), e2)) = Loz e
lz1 —nz3|? + A 7"221% + |z3/?
- A"z
T (ne+ 12+ Az012 41
|)»|_2n62

>
T (ne+ 124 |A" e+ 17

and the last expression goes to 1 as n — oo. Therefore, g7" (- ) 355> €2 uniformly
2 <> >
on compact subsets of P¢ \ (€1, &2 Uey, €3).

(iii) The proof is analogous to (ii)

(iv) Since g acts on the invariant line €}, ¢> as a loxodromic element of PGL(2, C)
with fixed points e; and e, the orbits of the points in €1, €3 \ {e1, e} accumulate
at e; and e.
Also, g acts on the invariant line €1, €3 as a parabolic element of PGL(2, C) with
fixed point at e}, so the orbits of the points in ey, €3 \ {e]} accumulate at e;.
Finally, by (ii) and (iii), the set of cluster points of the orbits of points in
P2\ (&1, €, U &y, €3) is equal to {ey, e2}.
(v) By (i1) and (iii), for every compact set K C IP% \ (e1, €2 Uey, €3), the cluster

points of the family of compact sets {g" (K)},cz is equal to {e1, ex} C Lo(g) UL (g).
It follows, by Lemma 2.2, that L,(g) C €1, €2 Uey, €3.
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Conversely, for every z € C*, the compact set

Ko={[e+2 =Lt = Z][nenfufie:1:01)

n

is contained in PZ \ {ey, e2} = PZ \ (Lo(g) UL1(G)). Since

g"([z—kk”—l:l: —g])=[kn—1:k”: —5]
n n n n

=[nA"—1:nA": —z] 55> [1:0: 2],

it follows that €1, €5 C Ly(g).
Similarly, for every z € C*, consider the compact set

{[n:nz: =271 |neN}U{es} C PE\ (Lo(g) UL1(G)).
Since g7 ([n:nz: —A7")=[A"+1:2: —1/n] 555> [1:2:0], it follows that
<«
€1, € C La(g).

(vi) If K, is as in the proof of (v), then g" (K ) intersects any compact neighborhood
of [1:0: z] for infinitely many values of n € Z.

(vii) The set [P% \ €1, €3 is naturally identified with C? by the map [z1:z2: 1] —
(z1, 22), and the action is now g(z1, z2) = (z1 + 1, Az2).
If for some fixed R > 0, (z1, z2) € C? satisfies

@) Il(z1, z2)lI1 = |z1] + |z2] < R,
and
3) 18" (z1, z2)l1 = |z1 +n|+|A"z2| <R,

then |n| < |z +n| 4+ |z1] < 2R. Hence (2) and (3) are satisfied for finitely many
values of n € Z. Therefore the cyclic group (g) acts properly discontinuously on
I]j’é \ €1, €. O

By conformal properties, we have that the Kulkarni limit set of a discrete subgroup
of PGL(2, C) acting on c agrees with its classical limit set. Infact, Lo=L;=L,=A
in that case. However, when working in higher dimensional projective geometry,
the sets Lo, L1 and L, can be quite different amongst themselves. Moreover, the set
Q(G) is not always the maximal open subset where the action is properly discontin-
uous, as illustrated in Example 2.3(vii). Nevertheless, when G acts on [P’é without
fixed points nor invariant lines, it is possible to show that 2 (G) is the maximal open
set where the action is properly discontinuous (see [Barrera Vargas et al. 2011]).

2.3. Classification of automorphisms of [P% . The nontrivial elements of PGL(3, C)
can be classified as elliptic, parabolic or loxodromic (see [Navarrete 2008]).
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The elliptic elements in PGL(3, C) are those elements g that have a lift to
GL(3, C) whose Jordan canonical form is

82771'91 0 0
0 e o ,  where 6y, 6,,0; € R.
0 0 eZm’@g

The limit set A(g) for an elliptic element g is & or all of [P% according to whether
the order of g is finite or infinite. Those subgroups of PGL(3, C) containing an
elliptic element of infinite order cannot be discrete.

The parabolic elements in PGL(3, C) are those elements g such that the limit
set A(g) is equal to a single complex line. If g is parabolic then it has a lift to
GL(3, C) whose Jordan canonical form is one of the following matrices:

110 110 it 0
010}, 011], 0 e 0o |, feR\Z
001 001 0 0 e 4mif

In the first case, A(g) is the complex line consisting of all the fixed points of g. In
the second case, A(g) is the unique g-invariant complex line. In the last case, A(g)
is the complex line determined by the two fixed points of g.

There are four kinds of loxodromic elements in PGL(3, C):

o The complex homotheties are those elements g € PGL(3, C) that have a lift to
GL(3, C) whose Jordan canonical form is

A0 0
ox 0 |, reC, Al #1,
0 0 A2

and its limit set A(g) is the set of fixed points of g, consisting of one line £
and a point not lying in £. Moreover, in this case, Lo(g) UL{(g) = A(g) is
not contained in one line.

o The screws are those elements g € PGL(3, C) that have a lift to GL(3, C)
whose Jordan canonical form is

A0 0
O uw O , AuneC, r#Fu, [A=|ul#1,
00 (aw!

and its limit set A(g) consists of the line £ on which g acts as an elliptic
transformation of PSL(2, C) and the fixed point of g not lying in £. In this
case, Lo(g)U L1(g) = A(g) is not contained in one line.
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e The loxoparabolic elements g € PGL(3, C) have a lift to GL(3, C) whose
Jordan canonical form is

101
0A0], reC, [Al#1,
001

and the limit set A (g) consists of two g-invariant complex lines. The element g
acts on one of these complex lines as a parabolic element of PSL(2, C) and on
the other as a loxodromic element of PSL(2, C). In this case Ly(g) UL (g) is
contained in one line.

o The strongly loxodromic elements g € PGL(3, C) have a lift to GL(3, C) whose
Jordan canonical form is

A 0 0
0 A& 0], A, A2, A3 €C, A < A2l < |A3].
0 0 X3

This kind of transformation has three fixed points: one of them is attracting,
another is repelling and the last one is a saddle. The limit set A(g) is equal to
the union of the complex line determined by the attracting and saddle points
and the complex line determined by the saddle and repelling points. In this case
Lo(g)U L(g) consists of three points in general position, so Lg(g) U L1(g)
is not contained in one line.

Remark 2.4. If g € PGL(3, C) satisfies that Lo(g) U L(g) is contained in one line
then g is elliptic, parabolic or loxoparabolic.

2.4. Groups acting properly and discontinuously on IP% \ £ If G is a subgroup
of PGL(3, C) acting properly and discontinuously on IP% \ £, where £ C IP’% isa
line, then we can assume, from now on, that £ = e1,<__e_)2. So every element g € G
can be induced by a matrix of the form

4

S o Q
(BRSNS
»—ASQ}

When convenient, we shall write a(g), b(g), c(g), ... instead of a, b, c, . . ..
We can regard IP’% \ £ as C?, and (4) means that g can be considered as the affine
automorphism
Z+— AZ+V,

where

ab v
=2 ()
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The projection onto the linear part of the affine map above is denoted by

(6) ¢ : G — PGL(2, C),
P(g) =A,

and it is a group homomorphism.
On the other hand, the map

@) ¥ : G — PGL(2, C)

a v
V(g = (0 1)

is not necessarily a group homomorphism. However, it will be useful in Section 3.

Given that G acts properly discontinuously on [P’é \ ¢, then for every g € G,
the cyclic group (g) acts properly and discontinuously on I]:"QZ: \ £. So one has
Lo(g)ULi(g) C £. By Remark 2.4, G contains only elliptic, parabolic or lox-
oparabolic elements.

In Section 3, we assume that G contains a loxoparabolic element and we prove
Theorem 1.1(i) together with some other results that will be useful for the proof of
Theorem 1.2 in Section 4.

When G does not contain any loxoparabolic elements, the group ¢ (G) contains
only elliptic or parabolic elements. In the first part of Section 5, we consider the
case when G acts on ¢ without parabolic elements. In other words, ¢ (G) does not
contain any parabolic element, and we prove Theorem 1.1(ii). Finally, in the last
part of the same section, we consider the case when ¢ (G) contains a parabolic
element, and we finish the proof of Theorem 1.1.

3. G contains a loxoparabolic element

Lemma 3.1. Let £ be a line in IP’%. If G is a discrete subgroup of PGL(3, C) acting
properly and discontinuously on IP% \ £ and G contains a loxoparabolic element,
then there exists a conjugate of G such that every element in this conjugate group
has a representative in GL(3, C) of the form

®)

S O _

0
d
0

— o <

where a is a root of unity of order 1,2, 3,4 or 6. Moreover, this conjugate group
. . 2\ >
acts properly and discontinuously on P¢ \ ey, é5.
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Proof. Every element g € G has a representative matrix of the form (4) and we can
assume that the matrix that induces a loxoparabolic element /g in G has the form

1
0 , O0<|)] <.
0

S > O
—_— O =

The commutator g, = [y, g] and its inverse are induced by matrices of determi-
nant one and their traces are equal to
—3ad 4+ bc(1+ 17"+ A7)
T, = .
" (bc — ad)

If bc # 0 then, by Theorem 6.3 in [Navarrete 2008], g, € G is a strongly loxodromic
element for all sufficiently large n. Hence, for every g € G, b(g) =0 or ¢(g) = 0.
It is not hard to check that b(g) = 0 for every g € G or c¢(g) =0 for every g € G.
Therefore we can assume, conjugating if necessary, that c(g) = 0 for every g € G.

If g € G satisfies that a(g) = 1 then, by Lemma 3.3 in [Fillmore and Scheuneman
1973], g commutes with /. It follows that for every A in the normal subgroup
H={geG:a(g)=1},onehas b(h) =w(h) =0.

Let g be an arbitrary element in G. Then

| bl dtbw(=14A)
| ax a d
ghog™ =10 d w— wi € H.
0 0 1

It follows that b(—1+4+X1)/(dX) = 0= w — wA. Hence b =0 = w.

The line e1,<__e_>3 is G-invariant because b(g) = c(g) = w(g) = 0. Moreover, G
acts on it as a classic elementary group with limit point e;. In fact, the action of G
on this line is the action on I]j’(lD of the group

¥(G) = {(“f}g) ”(lg)) . ge G},

where 1 is defined as in (7). It follows, by well-known facts on Euclidean groups
(see [Maskit 1988]), that a(g) is a root of unity of order 1, 2, 3, 4 or 6. O

Lemma 3.2. If G < PGL(3, C) acts properly and discontinuously on the comple-
ment of the line £ C P% and G contains a loxoparabolic element then G contains
a normal abelian subgroup H isomorphic to Z & Z,, or to Z & Z ® Z,, for some
ng € N. Moreover, the index of H in G is equal to 1,2,3,4 or6.

Proof. We can assume that every element of G is induced by a matrix of the form (8).
In this case, the map ¥ : G — PGL(2, C), defined as in (7), is a homomorphism and
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its image is a Euclidean group of PGL(2, C). The kernel of this homomorphism
consists of all those transformations in G induced by a matrix of the form

100
0dO0],
001

but these transformations are necessarily elliptic or the identity. Hence Ker ¢ is
a finite group (because it is discrete and every element has finite order). Moreover,
it is a cyclic group of some order ng. Let us denote by

100
0dy O
001

the generator of Ker .
Let H be the normal abelian subgroup of G consisting of those elements g € G
induced by a matrix of the form

10w
) 0dO
001

We notice that H/ Ker v is a free abelian subgroup of the Euclidean group G/ Ker ¥,
consisting of all parabolic elements. Furthermore, H/ Ker ¢ has rank equal to one

or two.
Since H/ Ker i has index equal to 1, 2, 3, 4 or 6 in G/ Ker ¢, it follows that H
has index equal to 1,2,3,4 or 6 in G. (]

Lemma 3.3. Let G < PGL(3, C) be a group that acts properly and discontinuously
on [P’é\@. If G contains a loxoparabolic element and the abelian normal subgroup H
has rank equal to one (where H is as in Lemma 3.2), then Lo(G) = L{(G) consists
of two points in £ and L,(G) is equal to the union of £ and one other line. In
particular, the Kulkarni limit set of G is equal to the union of two lines.

Proof. Let  be as in (7) and H be defined as the subgroup of G induced by
matrices of the form (9). There are two possible cases:

o If H/ Keryr = G/ Ker v, then we can assume that G is generated by the two
elements induced by the matrices

101 100
0r0], 0dy O],
001 001

where 0 < |A| < 1 and dj is an ng-th root of unity.
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o If H/Kery C G/ Ker ¥, then we can assume that G is generated by three
elements induced by the matrices

101 100 -1 00
0xr0], 0dy O], 0dy 0],
001 001 0 0 1

where 0 < |A] < 1, dj is an ng-th root of unity and m is an integer. (If the
parabolic subgroup of a Euclidean group E has rank one and it is not equal E,
then E is the dihedral infinite group {z — *z +n, n € Z}.)

In any case, the subgroup N of G generated by

101
0A0], O<|rl <1,
001

is normal and it has finite index in G. Moreover, Lo(N) = Lo(G) = {e1, e3} and

Li(G)= Ulm:1 gi(L1(N)), where {g|N, ..., gnN} are all the cosets of N in G, but

Li(N)={ei,ex}andeach g;,i =1, ..., mfixes e; and e;. Hence, L{(G) ={ey, e2}.
Since Lo(G) = Lo(N) ={ey, e2} = L1 (N) = L(G), it follows that

Ly(G) =& (La(N) = Jgiér, U é1,63).
i=1 i=1

We conclude that L,(G) = €1, € U ey, €3 because ¢e;, e> U €1, €3 is G-invariant. []

The proof of Theorem 1.1(i) follows immediately from Lemmas 3.2 and 3.3.
Now we prove the converse.

Lemma 3.4. Let G <PGL(3, C) be a group that acts properly and discontinuously
on P%\E. If G contains a loxoparabolic element and the abelian normal subgroup H
has rank equal to two (where H is as in Lemma 3.2), then Lo(G)U L{(G) = £ and
L>(G) CX. In particular, the Kulkarni limit set of G is equal to ¢.

Proof. We can assume that the two transformations induced by

101 10v
vi=|0Ax 0], O<rl <], and »=108 0], veC\R, s§eC*,
001 001

generate a subgroup N of finite index in the abelian group H. Hence, Lo(N) =
Lo(H) = Lo(G) and L;(G) = /L, &Li(N), where {g|N, ..., g,N} are all
distinct left cosets of N in G. It follows that Ly(G) U L{(G) = £ whenever
Lo(N)U L{(N) = ¢ because ¢ is G-invariant.

Now we consider all possible cases:
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If |8 = 1, let us say 8 = %™ 0 e R, then Ly(y») = £ whenever 6 € Q or
L1(y2) = € whenever 6 ¢ Q. In any case, Lo(N)U L (N) =£.

If |5| # 1 then there are two cases depending on whether log |A| and log |§| are
rationally independent or not. In the first case, the action of N on ¢ is not discrete.
Hence Lo(N)U L(N) = £. In the second case, there exists an element y € N such
that Lo(y)U L {(y) =£. Thus Lo(N)UL{(N) =¢.

Since G acts properly and discontinuously on [P’qz: \€and Lo(G)UL(G)=¢, it
follows (by Lemma 2.2) that L,(G) C £. U

We notice that the proof of Theorem 1.2(i) follows from Lemmas 3.3 and 3.4.
Examples. In these examples, X is a fixed complex number such that 0 < |A| < 1.

(i) The abelian group G, generated by the projective transformations

101 101
0ArA0], 010],
001 001

acts properly and discontinuously on C? = IP% \ €1, €2, and, by Lemma 3.4,
A(Gy) = ey, €.
(i1) Let 6 be a fixed real number. The abelian group G, generated by the projective

transformations
101 1 0
0xr0], 0 &% 0],
001 0 0 1

acts properly and discontinuously on C? = IP’% \ €1, ¢> and, by Lemma 3.4,
A(Gr) =ey, €.

(iii) Let 0 be a fixed real number and ng € N a fixed natural number. Denote by G3
the abelian group G3 generated by the projective transformations

101 1 0 1 0 0
0Ar0], [0 0], [0e&/m0
001 0 0 1 0 0 1

Since G, is a finite-index subgroup of G, it follows that G5 acts properly and
discontinuously on Cr= [P’qz: \e1,<_eE. By Lemma 3.4, A(G3) = el,<_ez.
(iv) In an analogous way, the group generated by G3 and the projective transfor-
mation
i 00
010
001

is a group whose Kulkarni limit set is equal to the line ey, €.
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(v) If 8 € R and ng € N are fixed numbers, the reader can check that the group
generated by the projective transformations

emiB 00 101 1 0 emi/3 1 0 O
0 10], or0], 0¥ o |, 0 e¥ri/m
0 01 001 0 0 1 0 0 1

is a group whose Kulkarni limit set is equal to the line ey, €.

4. Proof of Theorem 1.2

The main purpose of this section is to prove Theorem 1.2. First, we prove some
technical results in order to achieve our goal. In what follows we assume that G
does not contain any loxoparabolic elements.

Lemma 4.1. Let G be a subgroup of PGL(3, C) acting properly and discon-
tinuously on IP% \ €. If G does not contain any loxoparabolic elements and
Lo(GYUL(G) C ¢, then Ly(G) = L.

Proof. Since Lo(G)UL(G) C ¢, it follows that the group ¢ (G), where ¢ is defined
as in (6), is a classical Kleinian group containing only parabolic or elliptic elements.
Hence it acts as an elementary group on £. It follows that this group has a fixed
point in £, so we can assume this fixed point is e, and it implies that every element
in G can be represented by a matrix of the form

S O Q
(RSN

v
w
1

The kernel of the homomorphism ¢ : G — PGL(2, C) consists of all the trans-
formations in G induced by matrices of the form

S O

0w
a w
01

Since Lo(G)U L{(G) C ¢, every infinite order element in G has canonical form

S O =
O = =

0
1
1

It follows that every element in Ker ¢ is elliptic, and so Ker ¢ is finite. Moreover,
it is cyclic because it is isomorphic to a finite subgroup of S'. This isomorphism is
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given by
a0 v

0Oa w]ra.
001

Lemma 4.2. Let G be a subgroup of PGL(3, C) acting properly and discon-
tinuously on [P’% \ L. If G does not contain any loxoparabolic elements and
Lo(G)U L(G) C £, then the matrix

001
0=1000
000

induces the only pseudo-projective limit of the group G, also denoted by Q. In
consequence, by Lemma 2.2, L,(G) C £.

Proof. Let g, be a sequence of distinct elements in G such that g, — R when
n — oo ( where R is a pseudo-projective transformation)

Case 1. The sequence contains a subsequence which consists only of parabolic
elements.

In this case, we can assume that the elements are induced by matrices of the
form
1 b, v,
01 w,]|,
00 1
but the set of all these transformations lying in G form a subgroup of G which is
abelian because the commutator of two such elements is equal to the identity or to
a parabolic element having a line of fixed points (and the group G does not contain
this kind of parabolic elements). Moreover, the restriction of the homomorphism ¢
to this abelian subgroup is an isomorphism onto the “parabolic subgroup” of the
Euclidean group {A(g) : g € G}. Hence, this free abelian subgroup has rank at
most two. If the group has rank one, then we can assume (conjugating by an upper
triangular matrix) that this group is generated by an element induced by a matrix of
the form

110
011],
001

and it is not hard to check that the pseudo-projective limit R is induced by the
matrix Q.
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If the rank is equal to two, then we can assume (conjugating by an upper triangular
matrix) that the parabolic group is generated by

110 1B v
A=|lo11], B=|018], peC\R
001 001

It is not hard to check, by means of an analysis of the general element A™ B"
that any pseudo-projective limit must be induced by the matrix Q.

Case 2. The sequence (g,) consists (except for finitely many values of n) of elliptic
elements.

Since G/ Ker ¢ is a Euclidean group and Ker ¢ is finite, there is an ng € N such
that for every elliptic element in G, g""° = Id. Therefore, there exists a subsequence
of (g,), still denoted (g, ), and a diagonal matrix / such that (2 ~'g,) is a sequence of
distinct parabolic elements (because these transformations are represented by upper
triangular matrices with ones in the diagonal entries). By Case 1 above, it follows
that the pseudo-projective limit of 1~'g, is induced by the matrix Q. Therefore,
the pseudo-projective limit of the sequence g, is induced by the same matrix. [J

Finally, if £y is a line not intersecting Lo(G) U L{(G) and g € G is a parabolic
element, then the family of compact sets {g”(£9)} accumulates in £. Therefore,
£ C Ly(G). O

Proof of Theorem 1.2. The proof of (i) follows from Lemmas 3.3 and 3.4.
Now, for (ii), the group G contains a parabolic element of infinite order. Since G
acts properly and discontinuously on I]j’qzj \ £, it follows that Lo(G) U L1(G) C ¢.
Then, we consider two cases according to whether Lo(G) U L{(G) = £ or
Lo(G)UL(G) C L.
If Lo(G)U L{(G) = ¢, then, by Lemma 2.2, L,(G) C £. Therefore, £ = A(G).
If Lo(G)U L1(G) C ¢, then by Lemma 4.1, L,(G) = £. Il

The next corollary follows from Lemma 4.2.

Corollary 4.3. If G C PGL(3, C) acts properly and discontinuously on IP% \ £
and G does not contain any loxoparabolic elements, then one and only one of the
following statements is verified:

e Lo(G)UL{(G)={Land L,(G) C¥,or
e Lo(G) = L(G) is apointin £ and L,(G) = ¢.

Proposition 4.4. If G C PGL(3, C) is a discrete subgroup such that A(G) is equal
to a line € and G does not contain loxoparabolic elements, then for any finite

extension G of G (i.e., G is a finite-index normal subgroup of G; < PGL(3, C)),
A(G)) =AG) =L
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Proof. (a) Since G is a finite-index normal subgroup of G, we have Ly(G) =
Lo(Gy) and L1(G1) = g1(L1(G)) U---Ugr(L1(G)), where [g1], ..., [g] are all
the distinct cosets in G1/G.

(b) If Ly(G1) = Lo(G) and L1(G1) = L1(G) then
Ly(Gy) = g1(L2(G)) U--- U gk (L2(G)),

where [g1], ..., [gx] are all the distinct cosets in G;/G.
(c) If Lo(G) U L{(G) = £ then we consider two cases.

Case 1. The set Ly(G) consists of a single point, called p. In this case, Lo(G1) U
L1(Gy) is a G-invariant set and it is a finite union of lines passing through p (the
line £ is one of such lines). Let g € G be a parabolic element with p as its only
fixed point. Then there exists ng € N such that every line in Lo(G1) U L(G)
is g"%-invariant. Since g"*° is parabolic with a single fixed point, it has a single
invariant line. Hence Lo(G) U L{(G) =£.

Case 2. The set Ly(G) contains more than one point. In this case, the set Lo(G) =
Lo(G) determines the line £ and is G-invariant. Then £ is G-invariant and

Lo(G)UL(G1) =g (Lo(G)UL{(G)U---Ugr(Lo(G)UL(G)) =¢.

In any case, it is not hard to check that G acts properly and discontinuously on
[P’([z: \ £, and by Lemma 2.2 we obtain that L,(G) C £.

(d) If Lo(G) U L1(G) C ¢, then by Corollary 4.3, Lo(G) = L1(G) is equal to
one point. Thus we can assume that L,(G) = € and Lo(G) = L(G) = {e1}.
In this case, Lo(G1) = Lo(G) = {e;} and it follows that every element in G
fixes e;. Hence (by item (a)), L1(G1) = L1(G) = {e;}. It follows (by item (b)) that
Lry(Gy)=g1(£)U---Ugr(£), where [g1], ..., [gr] are all distinct cosets in G;/G.
Therefore, A(G1) = £, U---UZy, but there exists a parabolic element go € G C G
with Jordan canonical form equal to

110

011

001
Thus, every line £;, j =1, ..., k, is invariant under some fixed power of gy, but
every power of gg has a single invariant line, and this line is equal to £. We conclude
that A(G) =¢. (]

5. Proof of Theorem 1.1

We recall that the proof of Theorem 1.1(i) follows from Lemmas 3.2 and 3.3.
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Proof of Theorem 1.1(ii). Since G does not contain any element which acts as a
parabolic element on ¢, it follows that ¢ (G) \ {Id} induces only elliptic elements,
where ¢ is defined as in (6). We notice that the determinant of the matrix

()

has modulus equal to one. Hence, every element in ¢ (G) can be written as a matrix
of the form

A(a b), reS' and ad—bc=1.
c d

Since ¢ (G) induces a purely elliptic group acting on C, there is a global fixed
point for the action of ¢(G) on [H]?R. We can assume that this global fixed point
is (0,0, 1) (in the upper half-space model). Then every element in ¢(G) can be
written as a matrix of the form

x( 4 l_’), reS' and |a>+|bf=1.
—b a
Therefore, every element g € G can be written in the form

g= (13 ;’) , where AcU(2) and v,0' € C2.

Hence, G is a discrete subgroup of isometries of R*. By Theorem 5.4.5 in [Ratcliffe
1994], G contains a normal finite-index free abelian subgroup of rank less than or
equal to four. (I

Remark 5.1. If ¢ (G) \ {Id} induces only elliptic elements, then G is conjugate
in PGL(3, C) to some group such that every element in a finite-index subgroup is
induced by an upper triangular matrix.

Examples. (i) Let G be the group generated by the two matrices

1 0 1 1 0 i
0 6271101 0 0 eZﬂi@g 0
0 0 1 0 0 1

where 01, 6, are fixed real numbers. It is not hard to check that G acts properly
and discontinuously on [P% \ €1, ¢2. It follows from Theorem 1.2(ii) that
A(G) = ey, é>. In this case ¢ (G) does not contain any parabolic elements.

(ii) Let G| be the group generated by the matrices

101 101 100 100
010], 010], 0111, 01
001 001 001
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It is not hard to check that G acts properly and discontinuously on [IJ% \ 1, e.
It follows from Theorem 1.2(ii) that A(G|) = ey, €. In this case ¢(G)
consists of the identity element.

(iii) If k is a fixed natural number, then the group G, generated by the matrices
100 1 -10 101 10
01k], 0o 11i], 0101, 010
001 0 01 001 001

acts properly and discontinuously on [P% \ &1, @ and the Kulkarni limit set
A(G») is equal to el,<—eE by Theorem 1.2(ii). In this case, ¢ (G») is a cyclic
group generated by a parabolic element. We notice that G is a 2-step nilpotent
group, so it is a uniform lattice of H3 x R, where Hj is the 3-dimensional real
Heisenberg group (see [Dekimpe 1996, Corollary 6.2.5]). If I is a subgroup
of G, such that 0 < rankI” <4 then A(I") = el,<_ez. However, the quotient of
IP% \én, e by I' is not compact.

In what follows we develop some tools that will be useful in the proof of
Theorem 1.1(iii).

Proposition 5.2. If G C PGL(3, C) is a discrete subgroup such that A(G) is equal
to a line £, G does not contain any loxoparabolic elements and G contains an
element which acts as a parabolic element on £, then G is conjugate in PGL(3, C)
to some group such that every element in it is induced by a matrix of the form

(10) . lal=1d|=1.

S O _
= RESWEN
HSC

(If the group G does contain any loxoparabolic elements, then the statement is
still valid with the exception that the eigenvalues are not unitary complex numbers.
See Lemma 3.1)

Proof. Since the set ¢ (G) contains a parabolic element, we can assume (conjugating,
if needed, by an element that preserves the line £) that such parabolic element is
induced by a matrix of the form

11
Alz,u<0 1) for some pu € C.

If we assume there is a matrix

ab
Ay = (c a’) such that ¢ # 0,
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which induces an element in ¢ (G), then Tr2(A" A, A7"AS") = (2 + (cn)?)?. Thus,
ATAAT"AS !'is a loxodromic element for n large enough, and it contradicts that
¢ (G) contains only elliptic or parabolic elements. (I

Lemma 5.3. Let V be an abelian subgroup of C* of rank r = 1,2, 3 or 4 and u an
m-th root of unity that generates a cyclic group of order m. Assume that uv € V
whenever v € V. Then ¢(m) < r (where ¢ denotes the Euler’s totient function).
Hence, m < 12.

Proof. This proof is contained in the proof of Theorem 4.1 in [Fillmore and
Scheuneman 1973], and we include it here for reader’s convenience. Let vy, ..., v,
be a basis of V. Expressing uv; in terms of this basis and taking a determinant, we
obtain a polynomial of degree r with integer coefficients which is satisfied by u.
Hence the field generated by u over the rationals is of degree at most r. This field
is generated by a primitive m-th root of unity, so it has degree ¢(m), where ¢ is
Euler’s totient. Thus ¢(m) < r. It follows thatm =1,2,3,4,5,6,8, 10 or 12. [

The hypothesis in the lemma above can be slightly modified to obtain the fol-
lowing:

Lemma 5.4. Let V be an abelian subgroup of C* of rankr = 1,2 or3 andu € S'.
Assume uv € V whenever v € V. Then u is a root of unity of order 1,2, 3,4 or 6.

The proof is almost the same as the one given for Lemma 5.3. One just uses the
fact that u € S! is a root of unity whenever there is a monic polynomial of degree
r < 3 with integer coefficients which is satisfied by u.

Remark 5.5. Lemmas 5.3 and 5.4 can be applied to abelian subgroups of
(C, ) =({0} xC, +) =(C x {0}, +).

If we assume that every element in G can be represented by an upper triangular
matrix of the form (10) and G contains an irrational ellipto-parabolic element then
we can assume that it is induced by one of the following two upper triangular
matrices:

1 01 aop
Ei=104dy 0]).,E,=
0 1

00
1 1], ag=dy=e""?, 0ecR\Q.
0 01

o O

Proposition 5.6. Let G be a discrete subgroup of PGL(3, C) such that every ele-
ment can be induced by a matrix of the form (10) and A(G) = L. If G contains the
irrational ellipto-parabolic element induced by E |, then the normal subgroup N
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consisting of the elements of the form

(BRSNS
— & <

1
0
0
is a (finitely generated) finite-index abelian subgroup. In fact, b = w = 0 for every

element in Nj.

Proof. Every element in the subgroup N; commutes with £; (by Lemma 3.3 in
[Fillmore and Scheuneman 1973]), and hence it has the form

1 0 wvh)
an h=10dh) O
0 O 1

Therefore, N is a finitely generated abelian subgroup. Moreover, the set
V={veC|3h e N withv(h) =v}

is an abelian subgroup of (C, +).

Now, let g be any element in G. By considering the upper right entry of ghg ™",
it is possible to check that a(g)v € V whenever v € V. It follows, by Lemma 5.4,
that a(g) is a root of unity of order 1, 2, 3,4 or 6. Therefore N; has finite index
in G. Since every element in the discrete abelian group N; has the form (11), it is
not hard to check that Ny is finitely generated and its rank is less or equal to two. []

Proposition 5.7. Let G be a discrete subgroup of PGL(3, C) such that every ele-
ment can be induced by a matrix of the form (10) and A(G) = L. If G contains the
irrational ellipto-parabolic element induced by E», then the normal subgroup N,
consisting of those elements of the form

S O _

b v
1 w
01

is a (finitely generated) finite-index abelian subgroup. In fact, b = v = 0 for every
element in N».

Proof. Let us denote by L the set consisting of those (8, v) € C? for which there
exists an element in G of the form

12)

S O =
S =™
=
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It is not hard to check that L is a discrete subgroup of (C?, +). If we assume that
b # 0 for some

ab v
f =101 w] eN,,
001
then L # 0 because the commutator of £, and f is equal to

1 (ao— Db (ag— v — (ag — 1)bw — agh
[E2, f1=]0 1 0
0 0 1

If (B8, v) € L then (apf, apv — apB) € L (conjugate the element of the form (12)
by E»). In other words, the C-linear map induced by

ap 0
—dao do

preserves L. If we assume rank L =4, then ay is a root of a polynomial with integer
coefficients of the form p(x) = (x2 = 2x cos(270) + 1)? and it implies that ag is
a root of unity, which is a contradiction. Therefore, rank L < 3. Hence, applying
Lemma 5.4 to the abelian group L and to the unitary complex number ag, we obtain
that ag is a root of unity, a contradiction. It follows that » =0 for all f € N,.

Analogously, it can be proved that v =0 for all f € N;. Thus every f € N3 has
the form

S O Q

00
1 w],
01

and it follows that N, is an abelian group of rank less than or equal to two.
Let W denote the subset of C consisting of those w € C such that there exist
f € N> of the form

oS = O

0
0}
1

~
Il
o o .

We notice that W is an abelian discrete subgroup of C and W # 0 because E; € N;.

If g € G is an arbitrary element, then it is not hard to check that d(g)w € W
whenever w € W. It follows, by Lemma 5.4, that d(g) is a root of unity of order
1,2, 3,4 or 6. Therefore N, has finite index in G. O

Proposition 5.8. Let G be a discrete subgroup of PGL(3, C) such that A(G) = ¢
and every element g € G is induced by a matrix of the form (10). Assume that for
every g € G, there exists n € N, depending on g, such that a(g), d(g) are n-th roots
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of unity. If N denotes the subset of G consisting of those elements in G induced by
matrices of the form

(=
S =

v
wil,
1

then N is a finite-index torsion free normal subgroup of G (it is also finitely gener-
ated).

Proof. Let B be the abelian subgroup of C that consists of all those 8 € C for which
there exists an element in N of the form

1 B v
01 w
001

Analogously, let W be the abelian subgroup of C consisting of those w € C such
that exists an element in N of the form

1bv
01 w
001

Finally, let V be the subset of C (it is not necessarily a subgroup) consisting of
those v € C such that there exists an element in G of the form

1 b v
01w
001

Since G acts properly and discontinuously on C2, so does N. Moreover, the
nilpotent group N acts freely on C2, so N is generated by at most four elements (see
[Cartan and Eilenberg 1999] and [Fillmore and Scheuneman 1973]). It follows that
rank B < 4 and rank W < 4. Moreover, when V is an abelian group, rank V < 4.

We consider the following cases:

Casel. B#0and W #0.
In this case, by Lemma 5.3 applied to W and to the root of unity d(g), there
exists n; € N (not depending on g) such that for every g € G, d(g)"' = 1.
Similarly, by Lemma 5.3 applied to B and to the root of unity a(g)/d(g), there
exists no € N (not depending on g) such that for every g € G, (a(g)/d(g))" = 1.
Therefore, there exists ng € N such that g"° € N for every g € G.

Case2. B#0,W=0and V #0.
In this case, by Lemma 5.3 applied to the abelian group V and to the root of
unity a(g)/d(g), there exists n; € N such that (a(g)/d(g))" =1 for every g € G.
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Let us fix an element

ao b() Vo
go=10 dyo wo| €G,
0 0 1

with dy # 1 (if such an element does not exist then the proof ends). If g € G is an
arbitrary element, then the commutator [gg, g] has the form

18 v
01 (d—Dw—(d—1Dwy
00 1

Then (dp — 1)w — (d — 1)wo = 0. Therefore, conjugating G by the projective
transformation induced by

1 0 0
h=10dy—1 wo|,
0 O 1

we can assume that w =0 for all g € G.
Now, if v € V and g is an arbitrary element in G as above, then av € V (just
conjugate

1 g
01
00

— O <

by g). It follows, by Lemma 5.3, that there exists n, € N such that a"? = 1 for every
g € G. Therefore, there exists ng € N such that g"® € N for every g € G.

Case3. B#0,W=0and V =0.
This case cannot happen, otherwise the Kulkarni limit set of N (and the Kulkarni
limit set of G) would be equal to ey, €3.

Case4. B=0,W #0and V #0.
In this case, V is an abelian subgroup of C. By Lemma 5.3, there exists n; € N
such that d"' =1 for every g € G. Let us fix an element

ao b() Vo
go=10 dy w | €G,
0 0 1

with ag # dy (if such element does not exist then the proof ends).
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If g € G is an arbitrary element, then the commutator [gg, g] has the form

1 b(ag—dp)—bo(a—d)

2 v
0 1 w
0 0 1

Then [go, gl € N, so b(ap — dp) — bo(a —d) =0.
Hence, we can assume, conjugating G by

ag—dy by O
h = 0 1 0],
0 01

that b =0 for all g € G.
It is not hard to check that if g € G, and v € V, then av € V (just conjugate by g).
Lemma 5.3 implies that there exists n, € N such that a2 =1 for every g € G.

CaseS5. B=0,W #0and V =0.

In this case, W is an abelian subgroup of C and it is not hard to check that there
exists n; € N such that d"' = 1 for every g € G. Now we consider the normal
subgroup N; consisting of all those elements in G of the form

S O Q
[>T e I NN

v
w
1

It is easy to check by straightforwar
two elements in G has the form

computation that the commutator of any

1B
01
00

—_— O <

Since B =V =0, it follows that N; is an abelian group.
We can assume, conjugating by a suitable matrix, that every element in N; has
the form

S O Q
S = O

0
w
1

It follows that N; is a (finitely generated) finite-index abelian subgroup of G.

Case 6. B=0, W=0and V £0.
In this case, V # 0 is an abelian subgroup of C and there is a fixed natural
number n; € N such that "' =1 for every g € G.
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Now, let us denote by N, the normal subgroup of G consisting of those elements
of the form

16 v
0dw
001
Let us fix an element
1 by vo
ho=10do wo | € No, dop#1,
00 1

(if d = 1 for every element in N;, then the proof ends). If

10 v
h=10d w]| € N>,
001

then [k, hg] € N. Hence
(1—=d)bg+ (1 —dp)b=0=1—-d)wo+ (1 —dy)w.

Thus, conjugating by
1 bo/(1—dp) O
0 d() —1 wo |,
0 0 1

we can assume that every element in N; has the form

10w
h=]0d 0
001

It follows that N, is a (finitely generated) finite-index abelian subgroup of G.

Case7. B=0,W=0and V =0.
In this case, every element in G is of finite order, so G is finite. (I

Proof of Theorem 1.1(iii).

If G contains the ellipto-parabolic element £ then Proposition 5.6 implies the
group N is a finite-index normal abelian subgroup, and no element in N; acts on £
as a parabolic element. If we assume that there exists g € G such that ¢(g) acts
on £ as a parabolic element then for some ng € N, we have that ¢ (g)"° € ¢ (N;) acts
as a parabolic element on ¢, which is a contradiction. A similar argument, using
Proposition 5.6, shows that G cannot contain the ellipto-parabolic element E.

The second part is analogous to the proof of Theorem 4.1 in [Fillmore and Sche-
uneman 1973], and we include it here for reader’s convenience. By Proposition 5.8,
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G is a finite extension of a discrete unipotent group N, and by Theorem 5.4.3 in
[Corwin and Greenleaf 1990], there exists a unique Lie unipotent group H such
that H/N is compact (in consequence, N is finitely generated). This group H is
necessarily simply connected, and in fact it is a Euclidean space.

Since N acts properly discontinuously (and freely) on C?, it follows that the
projective dimension of the integer group ring of N is less or equal to four (see
[Cartan and Eilenberg 1999]). Moreover, the dimension of H is less or equal to four.

The nilpotent simply connected Lie groups of dimension four are R* and Hz x R,
where H3 denotes the real Heisenberg group. The nilpotent simply connected Lie
groups of dimension three are H3 and R>. Finally, those nilpotent simply connected
Lie groups of dimension two and one are R? and R.

The discrete subgroups with compact quotient of H3 x R are of the form

Ar=(A,B,C,D : C,D are central and [A, B] = Ck),
where k € N. The discrete subgroups of H3 with compact quotient are of the form
I'v = (A, B,C : C is central and [A, B] = CY),
where k € N. |
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A NOTE ON FLUX INTEGRALS
OVER SMOOTH REGULAR DOMAINS

IDO BRIGHT AND JOHN M. LEE

We provide new bounds on a flux integral over the portion of the boundary
of one regular domain contained inside a second regular domain, based on
properties of the second domain rather than the first one. This bound is
amenable to numerical computation of a flux through the boundary of a
domain, for example, when there is a large variation in the normal vector
near a point. We present applications of this result to occupational measures
and two-dimensional differential equations, including a new proof that all
minimal invariant sets in the plane are trivial.

1. Introduction

A regular domain in R? is a closed, embedded d-dimensional smooth submanifold
with boundary, such as a closed ball or a closed half-space. (Throughout this paper,
smooth means infinitely differentiable.) If D C R? is a regular domain, its interior D
is an open subset of R?, and its boundary aD is a closed, embedded, codimension-1
smooth submanifold (without boundary) which is the common topological boundary
of the open sets D and R? <. D. For this reason, the boundary of a regular domain
is often called a space-separating hypersurface. The Jordan—Brouwer separation
theorem (see, for example, [Guillemin and Pollack 1974, p. 89]) shows that if
S C R? is any compact, connected, embedded hypersurface, then the complement
of S has two connected components, one bounded (the inferior of §) and another
unbounded (the exterior of S), with § as their common boundary; thus S U Int S
and S UExt S are both regular domains. But in general, the boundary of a regular
domain need not be connected (for example, an annulus in the plane).

Surface integrals computing the flux through boundaries of regular domains are
ubiquitous in physics and engineering. We present two bounds for surface integrals
on a portion of the boundary of one domain contained inside a second domain. The
results are presented for regular domains in Euclidean space for simplicity, but
Theorems 1.1 and 1.2 extend to regular domains in Riemannian manifolds. See
Theorem 3.3. For more details about the notation in these theorems, see Section 2.

MSC2010: primary 53A05, 58C35; secondary 28A99.
Keywords: flux integral, smooth, regular domain, occupational measure.
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Theorem 1.1. Suppose D, D, C RY are regular domains, such that Dy N Dy is
compact and D, has finite volume and surface area. Suppose f is a smooth vector
field defined on a neighborhood of D, such that | f| and |V- f| are bounded. Then
the absolute value of the flux of f across the portion of 0D inside D, satisfies

/ F-nyp, dA
oD1ND,

When the vector field is divergence-free, we have the following much better bound.

(1-1)

< Area(dD2) || flloo + VOI(D)[|V- f [l -

Theorem 1.2. Suppose Dy, D, C R? are regular domains with compact intersection
and finite surface areas, and f is a smooth bounded vector field on R? satisfying
V-f =0. Then

(1-2) < 3 Area(dD)) | f |-

/ f-naD, dA
oD1NDy

A surprising corollary to Theorem 1.2 bounds the integral of the normal vector
of the portion of a hypersurface contained inside a second regular domain.

Corollary 1.3. Suppose D1, D, C R? are regular domains with compact intersec-
tion and finite surface areas. The following inequality holds:

(1-3)

/ nop, dA’ < 1 Area(dDy).
oD1ND,

When D, is convex we have the following alternative bound, which is an im-
provement in some cases.

Theorem 1.4. Suppose Dy, D, C R are regular domains. If Dy is compact and
convex with diameter 6§, then

/ nyp, dA
oD1ND;,

where B4~1(8/2) denotes the ball in R~ of radius 8 /2.

(1-4) < 3 Vol(BY~1(8/2)).

The significance of these results is that, although the integration is with respect
to the portion of dD; inside D;, which might have arbitrarily large surface area (see
Figure 1), the bound depends only on D,. This is due to the cancellations of the
normal vector that occur in hypersurfaces that bound regular domains, and would
not hold for images of general immersions of codimension 1 (see Example 4.2).

Theorem 1.1 is applicable to the numerical computation of the flux on the surface
of a regular domain when there is a large variation of the normal vector near a point,
resulting in a large surface area contained in a region of small volume. Indeed, the
flux over the problematic part can be estimated by finding a domain containing
it, avoiding direct computation. We provide an application of Corollary 1.3 in



A NOTE ON FLUX INTEGRALS OVER SMOOTH REGULAR DOMAINS 307

Figure 1. The setup for Theorems 1.1 and 1.2.

Section 5, for limits of sequences of regular domains with surface area increasing
without bound; there we use the bound to show that in the limit, the average
normal vector, say in a ball, is zero. Such a result is applied in the case d = 2, in
[Artstein and Bright 2010], to obtain a new Poincaré—Bendixson type result for
planar infinite-horizon optimal control.

Corollary 1.3 generalizes a previous result, for d = 2, established by Artstein
and Bright [2010; 2013]. This topological result has proved fruitful in applications,
providing new Poincaré—Bendixson type results, in an optimal-control setting
[Artstein and Bright 2010; Bright 2012], and in the context of dynamics with no
differentiability assumptions by Bright [2012]. The proofs of the planar result in
[Artstein and Bright 2010; 2013] employ a dynamical argument, which is similar
to the one used in the textbook proof of the Poincaré-Bendixson theorem. In this
paper, we generalize the results to boundaries of open sets, restricting ourselves in
this presentation to regular domains; however the results hold for more general sets
and vector fields. The results in their fullest generality for nonsmooth domains and
fluxes are presented in [Bright and Torres 2014].

Remark 1.5. The requirement that D; N D, be compact is essential, as it implies
that dD; N D, is compact, so that the integrals in (1-1)—(1-3) are finite.

Remark 1.6. Theorem 1.1 can be extended, by replacing the smooth vector field f
with a smooth matrix-valued function IT, using the induced norm.

Remark 1.7. For simplicity, Theorem 1.2 is stated under the assumption that f is
defined on all of RY; but as the proof will show, if D, has finite volume it is only
necessary that f be defined on some neighborhood of D;.

The structure of this paper is as follows. Section 2 presents notation and lemmas
used in the paper. In Section 3 we prove Theorems 1.1 and 1.2, and describe how our
results extend to regular domains in a Riemannian manifold. In Section 4 we prove
Corollary 1.3 and Theorem 1.4, and also provide examples showing the tightness
of the bound. In the last section we provide three applications of Corollary 1.3: an
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application to limits of sequences of regular domains; an extension when d = 2;
and a simplified proof of a theorem on invariant sets for dynamical systems.

2. Notation and lemmas

Throughout this paper, we denote the characteristic function of a set A C R? by x4.
The d-dimensional volume is denoted by Vol(A), and the (d — 1)-dimensional
surface area of its boundary by Area(dA). Given two submanifolds Sy, S, C R?,
the notation S; h S, means that S and S, intersect transversally. The Euclidean
norm on R? is denoted by |- |, and the supremum norm on functions by || - ||co-
The divergence of a smooth vector field f = (f!, f2,..., f%) at the point x =
(x', x2, ..., x%) e R? is denoted by

d d o 9 a
V- fx) = 8x—1f (X)+@f (x)+---+ 3x—df (x).
The following is a simple lemma we need for the proof of the main theorems.

Lemma 2.1. Suppose (X, ) is a measure space, U,V C X, and U has finite
measure. For every real-valued function f € L°°(X), we have

/ f(X)M(dX)D,

U

f f(X)M(dX)D.
U

Proof. The first inequality follows from the triangle inequality:

J () (dx)

U~V

J () (dx)

unv

< %(M(U)Hf”oo-l-

< %(u(U)Hfum

/ fx)|uldx) = f(x)M(dx)‘ + fx)pu(dx)
U U~v unv
= [ seom@n|+| [ roue- [ foua
U~V U~\v U
22 [ feoutn| - ‘ / f(x)u(dX)‘-
U~V U
The second inequality follows by replacing V with X \ V. U

The proofs of the main theorems are based on the divergence theorem for certain
domains in R?. Let us say a regular domain with corners in R? is a closed subset
D C R? such that for each point p € D, there exist an open set U C R? containing p
and a smooth coordinate chart ¢ : U — R such that ¢ (U N D) is the intersection of
o (U) with @i ={xeR|x'>0,...,x?>0}. Some typical examples are closed
simplices and rectangular solids. Every regular domain is a regular domain with
corners, and a regular domain with corners is a d-dimensional smooth manifold
with corners in the sense defined in [Lee 2013].
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Here is the version of the divergence theorem we will use.

Lemma 2.2. Suppose D C R? is a regular domain with corners, having finite
volume and surface area. If f is a smooth vector field defined on D such that both
| f| and |V- f| are bounded, then

/wf-naDdA:/DV-de.

Proof. If D is compact, or more generally if f is compactly supported, this follows
immediately from Stokes’s theorem applied to the (d — 1)-form fi(dx'A---A dx?),
where _ denotes interior multiplication. (For Stokes’s theorem on manifolds with
corners, see, for example, [Lee 2013, Theorem 16.25, p. 419].) In the general case,
we argue as follows. Let ¢ : [0, 0co) — [0, 1] be a smooth function that is equal to 1
on [O, %] and supported in [0, 1], and for each r > 0 let ¢, (x) = ¢(|x|2/r2). Then
the vector field ¢, f is compactly supported, so the divergence theorem implies

@-1) f gorf-naDdAsz-«p,f)clv.
oD D

As r — o0, the integral on the left-hand side of (2-1) converges to [; op J - Map dA
by the dominated convergence theorem. On the other hand, for each r > 0,

x|

2 d i i ri
V- (or ()| = wr<x)V-f<x>+r—2§w (r_z)x f (x)‘

2
< V-Flloo + 2@ ool flloo,

because |x| < r on the support of ¢’ (|x|?/r?). Since V- (¢, f) converges pointwise
to V-f and D has finite volume, it follows from the dominated convergence theorem
that the rig