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Dedicated to the memory of Franki Dillen (1963–2013).

We give explicit representation formulas for marginally trapped submani-
folds of codimension two in pseudo-Riemannian spaces with arbitrary sig-
nature and constant sectional curvature.

Introduction

Let (N, g) be a pseudo-Riemannian manifold and S a submanifold of (N, g) with
nondegenerate induced metric. We shall say that S is marginally trapped if its mean
curvature vector is null, that is, g( EH , EH) vanishes. When (N, g) is a Lorentzian four-
manifold and S is spacelike, the marginally trapped condition has an interpretation
in terms of general relativity: it describes the horizon of a black hole [Penrose
1965; Chruściel et al. 2010]. The equation g( EH , EH)= 0 is nevertheless interesting
in whole generality from the geometric viewpoint, being actually the simplest
curvature equation which is purely pseudo-Riemannian: in the Riemannian case
this equation implies minimality.

In [Anciaux and Godoy 2012], marginally trapped submanifolds with codimen-
sion two have been locally characterized in several simple Lorentzian spaces: the
Minkowski space Rn+2, the Lorentzian space forms dSn+2 and Ad Sn+2, and the
Lorentzian products Sn+1

×R and Hn+1
×R. Little has been done about marginally

trapped surfaces in the case of a manifold with a non Lorentzian metric. In [Chen
2009], flat marginally trapped surfaces of R4 endowed with the neutral metric
dx2

1 + dx2
2 − dx2

3 − dx2
4 have been studied, while Lagrangian marginally trapped

surfaces of complex space forms of complex dimension two were characterized in
[Chen and Dillen 2007]. Recently marginally trapped surfaces of certain spaces of
oriented geodesics have been investigated [Georgiou and Guilfoyle 2014].

The purpose of the present paper is to extend the results of [Anciaux and Godoy
2012] to the case of codimension-two submanifolds in constant curvature spaces
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with arbitrary signature, that is, (i) in the pseudo-Euclidean space Rn+2
p+1 equipped

with the inner product of signature (p+ 1, q + 1), and (ii) in the space form Sn+2
p+1

of signature (p+ 1, q + 1) and sectional curvature 1 (see next section for more
precise definition and notation). As in [Anciaux and Godoy 2012], we rely on the
use of the contact structure of the set of null geodesics of the ambient space. The
congruence of null lines which are normal to a submanifold of codimension two is
a Legendrian submanifold with respect to this contact structure. Conversely, given
a null line congruence L which is Legendrian, there exists an infinite-dimensional
family of submanifolds, parametrized by the set of real maps τ ∈ C2(L), such
that the congruence is normal to them. In order to obtain our characterization
results, we prove that, given a Legendrian, null line congruence L, the submanifold
parametrized by τ is marginally trapped if and only if the real map τ ∈ C2(L) is a
root of certain polynomial map with coefficients valued in C2(L).

The paper is organized as follows: Section 1 introduces some notation and gives
the precise statements of the results; Section 2 gives a characterization of those
submanifolds whose second fundamental tensor is null (Theorem 1), while Section 3
provides a local representation formula which is similar to that of [Anciaux and
Godoy 2012] (Theorem 2). In Section 4, an alternative, more global representation
formula is given, under certain maximal rank assumption (Theorems 3 and 4).
Finally Section 5 attempts to shed light on the ideas in this paper by providing an
interpretation of the general construction in terms of contact geometry and explains
also the relation between Theorems 2 and 3 in the Lorentzian case.

1. Statement of results

We fix throughout three integers p, q and n such that p + q = n ≥ 1. We shall
denote by Rn+2

p+1 the (n+ 2)-dimensional real vector space equipped with the inner
product of signature (p+ 1, q + 1) given by

〈 · , · 〉 =

p+1∑
i=1

dx2
i −

n+2∑
i=p+2

dx2
i .

A nonvanishing vector v of Rn+2
p+1 is said to be null if 〈v, v〉 = 0. We furthermore

introduce the hyperquadric

Sn+2
p+1 := {x ∈ Rn+3

p+2 〈x, x〉 = 1}.

The induced metric of Sn+2
p+1, still denoted by 〈 · , · 〉, has signature (p+ 1, q + 1)

and constant sectional curvature 1. Conversely it is well known (see [Kriele 1999])
that a simply connected (n + 2)-dimensional manifold endowed with a pseudo-
Riemannian metric with signature (p+ 1, q + 1) and constant sectional curvature
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is, up to isometries and scaling, Rn+2
p+1 or Sn+2

p+1. We shall call these spaces pseudo-
Riemannian space forms.

We shall be concerned with submanifolds 6 of Rn+2
p+1 and Sn+2

p+1 with nondegener-
ate induced metric g and whose normal bundle N6 (i) is two-dimensional (so that6
has dimension n), and (ii) has indefinite (Lorentzian) metric (so that the induced
metric on 6 has signature (p, q)). We recall that the second fundamental form h
of 6 is the symmetric tensor h : T6×T6→ N6 defined by h(X, Y ) := (DX Y )⊥,
where ( · )⊥ denotes the projection onto the normal space N6 and D is the Levi-
Civita connection of ambient space. If ν is a normal vector field along 6, we define
the shape operator of 6 with respect to ν to be the endomorphism of T6 defined
by AνX = −(DXν)

>, where ( · )> denotes the projection onto T6. The relation
〈h(X, Y ), ν〉 = 〈AνX, Y 〉 shows that the second fundamental form and the shape
operator carry the same information.

The mean curvature vector EH of the immersion is the trace of h with respect
to the induced metric of 6 divided by n. Our first result is the characterization of
n-dimensional submanifolds of space forms with null second fundamental form,
that is, such that h(X, Y ) is null for all X, Y ∈ T6:

Theorem 1. Let ν be a constant, null vector of Rn+2
p+1 and 6 an n-dimensional

submanifold with nondegenerate induced metric which is contained in the hyper-
plane ν⊥. Then 6 has null second fundamental form and is therefore marginally
trapped. Moreover both the tangent and the normal bundles of 6 are flat.

Analogously let ν be a constant, null vector of Rn+3
p+2 and 6 an n-dimensional

submanifold of Sn+2
p+1 with nondegenerate induced metric which is contained in the

hypersurface ν⊥∩Sn+2
p+1. Then6 has null second fundamental form and is therefore

marginally trapped. Moreover 6 has constant scalar curvature and flat normal
bundle.

Conversely any submanifold of Rn+2
p+1 or Sn+2

p+1 with null second fundamental
form is locally described in this way.

Quite surprisingly, the method introduced in [Anciaux and Godoy 2012] in the
Lorentzian case can be used here, in the case of marginally trapped submanifolds
whose second fundamental form is not null, providing local parametrizations:

Theorem 2. Let σ be an immersion of class C4 of an n-dimensional manifold M

into Rn+1
p+1 (respectively, Sn+1

p+1) whose induced metric is nondegenerate and has
signature (p, q). Denote by ν the Gauss map of σ , which is therefore Sn

p-valued
(respectively, Sn+1

p+1-valued), by A =−dν the corresponding shape operator, and
by τi the roots of the polynomial of degree n− 1

P(τ ) := tr(Id−τ A)−1.

Then the immersions ϕi :M→ Rn+2
p+1 = Rn+1

p+1×R (respectively, Sn+2
p+1 ⊂ Rn+2

p+2×R)
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defined by
ϕi = (σ + τiν, τi )

are marginally trapped.
Conversely any n-dimensional marginally trapped submanifold of Rn+2

p+1 (respec-
tively, Sn+1

p+1) whose second fundamental form is not null is locally congruent to the
image of such an immersion.

Remark 1. If the shape operator A of σ is diagonalizable (which is not always the
case since the induced metric on σ is not definite) the polynomial P takes the form

P(τ ) :=
p∑

i=1

mi

p∏
j 6=i

(κ−1
j − τ),

where κ1, . . . , κp, p ≥ 2 are the p distinct, nonvanishing principal curvatures of σ
with multiplicity mi .

In order to state the next theorem, we introduce some more notation: writing
x = (x ′, x ′′)∈Rn+2

=Rp+1
×Rq+1, where x ′ ∈Rp+1 and x ′′ ∈Rq+1, we introduce

the conjugation map (x ′, x ′′) := (x ′,−x ′′), as well as the n×n diagonal matrix Idn

whose (p, q)-block decomposition is Idn =
( Idp

0
0
− Idq

)
.

Since the normal spaces N6 are assumed to be two-dimensional and Lorentzian,
the marginally trapped assumption 〈 EH , EH〉 = 0 is equivalent to the fact that EH is
contained in one of the two null lines of N6. We shall call mean Gauss map, and
denote by ν = (ν ′, ν ′′), the null vector which is collinear to EH and normalized by
the condition ν ∈ S p

×Sq
⊂ Rp+1

×Rq+1. The next two theorems give a global
description of those marginally trapped submanifolds whose mean Gauss map has
maximal rank. We observe that this is a generic property and that it is a stronger
assumption than requiring the mean curvature vector EH to have itself maximal rank.

Theorem 3. Let � be an open subset of the universal covering of S p
×Sq and

σ ∈ C4(�). Denote by τi the roots of the polynomial of degree n− 1

P(τ )= tr
(
(τ Idn + σ Idn + 2 Hess(σ ))−1).

Then the immersions

ϕi :�→ Rn+2
p+1, ν 7→ τiν+ σν+ 2∇σ,

are marginally trapped.
Conversely any connected, marginally trapped n-dimensional submanifold of

Rn+2
p+1 whose mean Gauss map ν has maximal rank is the image of such an immersion.

When n = 2, the condition of maximal rank on ν is equivalent to the fact that the
second fundamental form is not null. Hence Theorems 1 and 3 provide a complete
characterization of marginally trapped surfaces of R4 with arbitrary signature. Since
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the Minkowski case has already been discussed in [Anciaux and Godoy 2012], we
detail the case (p, q)= (1, 1), that is, of a Lorentzian surface in R4

2. Observe first
that R4

2 is endowed with

(i) a natural pseudo-Kähler structure, with complex structure J (x1, x2, x3, x4) :=

(−x2, x1,−x4, x3) and symplectic form ω= 〈J · , · 〉 = dx1∧dx2−dx3∧dx4;
this corresponds to the identification of R4

2 with C2 through the formula
(z1, z2)= (x1+ i x2, x3+ i x4);

(ii) a natural para-Kähler structure, with paracomplex1 structure

K (x1, x2, x3, x4) := (x3, x4, x1, x2)

and symplectic form ω′ = 〈K · , · 〉 = dx1∧ dx3+ dx2∧ dx4; this corresponds
to the identification of R4

2 with D2, where D= {a+eb | (a, b)∈R2
} is the ring

of paracomplex numbers, through the formula (w1, w2)= (x1+ex3, x2+ex4);

Corollary 1. Let � be an open subset of R2 endowed with the Lorentzian metric
du2
− dv2 and σ ∈ C4(�). Denote by subscript u or v the partial derivative with

respect to the corresponding variable. Then the immersion

ϕ :�→R4
2'C2, (u, v) 7→

(
(σ−σuu+σvv+2iσu)eiu, (−σ−σuu+σvv−2iσv)eiv),

is weakly conformal and its null points are characterized by σ +σuu+σvv =±2σuv .
Moreover, away from its null points, ϕ is marginally trapped.

Conversely any connected, marginally trapped surface of R4
2 whose second

fundamental form is not null is the image of such an immersion.

In [Chen 2009] and [Chen and Dillen 2007], marginally trapped surfaces of R4
2

which are in addition, respectively, flat and Lagrangian with respect to ω have been
characterized. These additional conditions may be readily seen in terms of the
formula given above:

Corollary 2. The marginally trapped immersion ϕ of Corollary 1 is in addition

(i) flat if and only if (∂uu − ∂vv)
(
(σ + σuu + σvv)

2
− 4σ 2

uv
)
= 0;

(ii) Lagrangian with respect to the symplectic form ω if and only if

σu + σv + σvvv − σuuv − σuvv + σuuu = 0.

Moreover there is no marginally trapped surface which is in addition Lagrangian
with respect to the symplectic form ω′.

In the next theorem we give a characterization of marginally trapped submanifolds
whose mean Gauss map has maximal rank in Sn+2

p+1.

1We refer the reader to [Alekseevsky et al. 2009] or [Cruceanu et al. 1996] for material about
paracomplex geometry, also called split geometry.
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Theorem 4. Let σ : M→ S p+1
×Sq be an immersed, oriented hypersurface of

class C4 whose induced metric has signature (p, q). Denote by ν its Gauss map
(hence a Sn+2

p+1-valued map) and by A = −dν the corresponding shape operator.
Denote by τi the roots of the polynomial of degree n− 1

P(τ )= tr(τ Id−A)−1.

Then the immersions ϕi : M → Sn+2
p+1 defined by ϕi := ν + τiσ are marginally

trapped.
Conversely any connected, marginally trapped n-dimensional submanifold of

Sn+2
p+1 whose mean Gauss map has maximal rank is the image of such an immersion.

Like in the flat case R4
2, a marginally trapped surface of S4

2 has either null second
fundamental form, or a mean Gauss map with maximal rank. Therefore Theorems 1
and 4 provide a complete characterization in this case. It enjoys, moreover, a more
explicit description:

Corollary 3. Let σ be an immersion of class C4 of a surface M into S2
×S1 with

Lorentzian induced metric. Denote by ν the Gauss map of σ (hence a S4
2-valued

map) and by H the (scalar) mean curvature of σ with respect to ν. Then the
immersion ϕ :M→ S4

2 defined by

ϕ = ν+ Hσ

is marginally trapped.
Conversely any connected marginally trapped surface of S4

2 whose second
fundamental form is not null is the image of such an immersion.

2. Submanifolds with null second fundamental form: proof of Theorem 1

Let6 be an n-dimensional submanifold of Rn+2
p+1 such that the induced metric on the

normal bundle N6 is Lorentzian. Since the intersection of the light cone of Rn+2
p+1

with N6 is made of two null lines, there exists a null normal frame, that is, a pair
of normal, null vector fields along 6 such that 〈ν, ν〉 = 〈ξ, ξ〉 = 0 and 〈ν, ξ〉 = 2.
So, given a normal vector N , we have

N = 1
2(〈N , ξ〉ν+〈N , ν〉ξ).

Lemma 1. The second fundamental form h is collinear to ν (so in particular it is
null) if and only if the mean curvature vector EH is collinear to ν and ν has rank at
most 1.

Proof. We denote by (e1, . . . , en) a local, orthonormal, tangent frame along 6 and
we set

h1
i j := 〈h(ei , e j ), ν〉 = −〈dν(ei ), e j 〉.
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Then we have, taking into account that 〈dν, ν〉 = 0,

dν(ei )=−

n∑
i=1

h1
i j e j +

1
2〈dν(ei ), ξ〉ν.

Assume first that h is collinear to ν. Then clearly its trace n EH is collinear to ν as
well. Moreover all the coefficients h1

i j vanish, so by the equation above, for all i ,
1≤ i ≤ n, the vector dν(ei ) is collinear to ν, and hence dν has rank at most 1.

Conversely, if dν has rank 1, then dν(ei ) and dν(e j ) are proportional for any
pair (i, j), i 6= j . Taking into account the symmetry of the tensor h1

i j , an ele-
mentary calculation implies that there exist n+ 1 real constants c, λ1, λ2, . . . , λn

such that h1
i j = cλiλ j . If in addition 6 is marginally trapped, that is, 〈n EH , ν〉 =

tr [h1
i j ]1≤i, j≤n = c

∑n
i=1 λ

2
i = 0, then either c= 0 or (λ1, . . . , λn)= (0, . . . , 0) and

in both cases the whole tensor h1
i j vanishes, that is, h is collinear to ν. �

We come back to the proof of Theorem 1, observing that under the assumption
of the lemma above, dν is collinear to ν. This implies the existence of a map
λ ∈ C1(6) such that ν = eλν0, where ν0 is a constant, null vector of Rn+2

p+1 or Rn+3
p+2.

We conclude that 6 ⊂ ν⊥0 .
We now write the Gauss and the Ricci equations in the flat case:

〈R(X, Y )Z ,W 〉+ 〈h(X, Z), h(Y,W )〉− 〈h(X,W ), h(Y, Z)〉 = 0,

〈R⊥(X, Y )ν, ξ〉− 〈[Aν, Aξ ]X, Y 〉 = 0,

If h is collinear to ν, both terms 〈h(X, Z), h(Y,W )〉 and 〈h(X,W ), h(Y, Z)〉 vanish,
hence the curvature of the tangent bundle vanishes. Moreover, if h is collinear to ν,
then Aν vanishes as well and the normal bundle is flat.

In the case of Sn+2
p+1, the Gauss and the Ricci equations become

〈R(X, Y )Z ,W 〉+ 〈h(X, Z), h(Y,W )〉− 〈h(X,W ), h(Y, Z)〉

= 〈X, Z〉〈Y,W 〉− 〈X,W 〉〈Y, Z〉,

〈R⊥(X, Y )ν, ξ〉− 〈[Aν, Aξ ]X, Y 〉 = 0.

Again, if h is collinear to ν, the terms 〈h(X, Z), h(Y,W )〉 and 〈h(X,W ), h(Y, Z)〉
vanish. It follows that the scalar curvature of the induced metric is constant and
equal to 1. Analogously, the fact that h is collinear to ν implies the vanishing of Aν
and therefore the flatness of the normal bundle.

3. Parametrizations by hypersurfaces: proof of Theorem 2

3.1. The flat case. Let ϕ= (ψ, τ) be an immersion of an n-dimensional manifold M

into Rn+2
p+1 whose induced metric g̃ := ϕ∗〈 · , · 〉 has signature (p, q). In particular

the induced metric on the normal space of ϕ̄ is Lorentzian. Let ν̃ be one of the two
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normalized, null normal fields along ϕ. Since the discussion is local, there is no
loss of generality in assuming that, modulo congruence, its last component νn+3

does not vanish, so that we may normalize ν̃ = (ν, 1).

Lemma 2. We set σ := ψ − τν. Then the map (σ, ν) : M→ Rn+1
p+1 × Sn

p is an
immersion.

Proof. Suppose (ϕ, ν) is not an immersion, so that there exists a nonvanishing
vector v ∈ TM such that (dϕ(v), dν(v))= (0, 0). Since dψ = dσ + τdν+ dτν, it
follows that

dϕ(v)= (dψ(v), dτ(v))= (dτ(v)ν, dτ(v))= dτ(v)ν̃,

which is a normal to ϕ. However the immersion ϕ is pseudo-Riemannian and
therefore a vector cannot be tangent and normal at the same time, so we get the
required contradiction. �

Lemma 3. 〈dσ, ν〉 = 0.

Proof. Using again that dψ = dσ + τdν+ dτν and observing that 〈ν, dν〉 = 0, we
have

0= 〈dϕ, ν̃〉 = 〈(dψ, dτ), (ν, 1)〉 = 〈dψ, ν〉− dτ = 〈dσ, ν〉. �

Lemma 4. Given ε > 0, there exists t0 ∈ (−ε, ε) such that σ + t0ν is an immersion,
and ν is its Gauss map.

Proof. This follows from the fact that the set {t ∈ R | σ + tν is not an immersion}
contains at most n elements. To see this, observe that given a pair of distinct real
numbers (t, t ′), we have

Ker(dσ + tdν)∩Ker(dσ + t ′dν)= {0}

(otherwise we would have a contradiction with the fact that (σ, ν) is an immersion).
Hence there cannot be more than n distinct values t such that Ker(dσ + tdν) 6= {0}.
The fact that ν is the Gauss map of σ + t0ν comes from Lemma 3:

〈d(σ + t0ν), ν〉 = 〈dσ, ν〉+ t0〈dν, ν〉 = 0. �

Lemma 4 shows that there is no loss of generality in assuming that σ is an
immersion: if it is not the case, we may translate the immersion ϕ along the vertical
direction, setting ϕt0 := ϕ− (0, t0). Of course ϕ is marginally trapped if and only
if ϕt0 is so, and moreover the vector field ν̃ is still normal to ϕt0 . Finally observe
that the map σt0 :M→ Rn+1

p+1 associated to ϕt0 is

σt0 = ψ − (τ − t0)ν = ψ − τν+ t0ν = σ + t0ν,

hence an immersion.
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We now describe the first fundamental form of ϕ and its second fundamental
form with respect to ν̃, both in terms of the geometry of the immersion σ :

Lemma 5. Denote by g := σ ∗〈 · , · 〉 the metric induced on M by σ and A the shape
operator associated to ν.

Then the metric g̃ := ϕ∗〈 · , · 〉 induced on M by ϕ is given by the formula

g̃ = g( · , · )− 2τg(A · , · )+ τ 2g(A · , A · ).

In particular, the nondegeneracy assumption on g̃ implies that τ−1 is not equal to
any principal curvature of ϕ. Moreover the second fundamental form of ϕ with
respect to ν̃ is given by

h̃ ν̃ := 〈h̃( · , · ), ν̃〉 = g( · , A · )− τg(A · , A · ).

Proof. Since 〈dσ, ν〉 = 〈dν, ν〉 = 0, given v1, v2 ∈ TM, we have

g̃(v1, v2)= 〈dϕ(v1), dϕ(v2)〉

= 〈dσ(v1), dσ(v2)〉+ τ 〈dσ(v1), dν(v2)〉+ τ 〈dν(v1), dσ(v2)〉

+ τ 2
〈dν(v1), dν(v2)〉+ dτ(v1)dτ(v2)〈ν, ν〉− dτ(v1)dτ(v2)

= g(v1, v2)− τ(g(v1, Av2)+ g(Av1, v2))+ τ
2g(Av1, Av2)

= g(v1, v2)− 2τg(Av1, v2)+ τ
2g(Av1, Av2).

We calculate the second fundamental form of ϕ with respect to ν̃ = (ν, 1):

h̃ ν̃ =−〈dϕ, d ν̃〉

= −〈dσ + τdν+ dτν, dν〉 = −〈dσ, dν〉− τ 〈dν, dν〉

= g( · , A · )− τg(A · , A · ). �

The proof of Theorem 2 follows easily: denoting by Ãν̃ the shape operator of ϕ
with respect to ν̃, we have from Lemma 5

g( Ãν̃(Id−τ A) · , (Id−τ A) · )= g( · , (Id−τ A) · ).

It follows that

Ãν̃ := (Id−τ A)−1

and that EH is collinear to ν̃ if and only if Ãν̃ is trace-free, that is, τ is the root of
the polynomial P(τ )= tr(Id−τ A)−1.

Remark 2. If ϕ is minimal, τ = 0 is a root of P(τ ). The corresponding immersion
ϕ = (σ, 0) is not only marginally trapped but minimal.
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3.2. The Sn+2
p+1 case. Let ϕ = (ψ, τ) : M → Sn+2

p+1 an immersion such that the
induced metric g̃ := ϕ∗〈 · , · 〉 has signature (p, q). Let ν̃ be one of the two normal-
ized, null normal fields along ϕ. Since the discussion is local, there is no loss of
generality to assume that, modulo congruence, its last component νn+3 does not
vanish, so that we may normalize ν̃ = (ν, 1).

We define the null projection of ϕ to be σ :=ψ−τν. The fact that (ν, 1)∈TϕSn+2
p+1,

that is, 0= 〈(ψ, τ), (ν, 1)〉 = 〈ψ, ν〉− τ , implies that 〈ψ, ν〉 = τ . Hence

〈σ, σ 〉 = 〈ψ,ψ〉− 2τ 〈ψ, ν〉+ τ 2
〈ν, ν〉

= 〈ψ,ψ〉− τ 2

= 〈ϕ, ϕ〉

= 1,

which shows that σ is Sn+1
p -valued. The proofs of the next two lemmas are omitted,

since they are similar to the flat case:

Lemma 6. The map (σ, ν) :M→ Sn+1
p+1×Sn+1

p+1 is an immersion.

Lemma 7. 〈σ, ν〉 = 0 and 〈dσ, ν〉 = 0.

Unlike the flat case, there is no vertical translation in Sn+2
p+1. We may however,

up to an arbitrarily small perturbation, assume that σ is an immersion.

Lemma 8. Given ε > 0, there exists α ∈ (−ε, ε) and a hyperbolic rotation Rα of
angle α such that the null projection σ α of ϕα := Rαϕ is an immersion.

Proof. Set

Rα =

( coshα sinhα
Id

sinhα coshα

)
∈ SO(p+ 2, q + 1)

and ϕα := Rαϕ, ν̃α := Rα ν̃. Observe that ν̃α := (να, ναn+3) is no longer normalized
a priori, since its last component ναn+3 is equal to cosh(α)+ sinh(α)ν1, where ν1 is
the first component of the vector ν̃.

Nevertheless the null geodesic passing through the point ϕα and directed by the
vector ν̃α crosses the slice dSn+2

p+2 ∩ {xn+3 = 0} at the point

(σ α, 0) :=
(
ψα −

τα

ναn+3
να, 0

)
.

Clearly σ α is an immersion if and only if

R−ασ α = ψ − ταν/ναn+3 = ϕ+ (τ − τ
α/ναn+3)ν
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is so. Observe that

τ −
τα

ναn+3
= τ −

cosh(α)τ + sinh(α)ψ1

cosh(α)+ sinh(α)ν1

= tanh(α)(ψ1− τν1)+ o(α)

= σ1α+ o(α).

Now assume that R−ασ α is not an immersion for α ∈ (−ε, ε). Hence there exists a
one-parameter family of unit tangent vectors vα such that

0= d(R−ασ α)(vα)= dσ(vα)+ (dσ1(v
α)ν+ σ1dν(vα))α+ o(α)

for all α ∈ (−ε, ε). Thus{
dσ(vα)= 0,
dσ1(v

α)ν+ σ1dν(vα)= σ1dν(vα)= 0.

By Lemma 6, dν(vα) and dσ(vα) cannot vanish simultaneously, therefore σ1

vanishes. Repeating the argument with suitable rotations yields that all the other
coordinates of σ vanish, a contradiction since σ ∈ Sn+1

p+1. �

By the previous lemma we may assume that σ is an immersion. The remainder of
the proof follows the lines of that of the flat case; in particular, Lemma 5 still holds.

4. Parametrization by the mean Gauss map

4.1. The flat case: proof of Theorem 3. In this section6 denotes an n-dimensional
submanifold of Rn+2

p+1 whose induced metric has signature (p, q) and such that the
normalized vector ν ∈S p

×Sq
⊂Rn+2 has rank n. We may therefore parametrize6

locally by ν, that is, by a map ϕ : �→ Rn+2
p+1, where � is an open subset of the

universal covering of S p
×Sq . We set σ(ν) := 1

2〈ϕ(ν), ν〉 and τ(ν) := 1
2〈ϕ(ν), ν〉.

2

Lemma 9. We have
ϕ = τν+ σν+ 2∇σ,

where ∇ is the gradient with respect to the induced metric on S p
× Sq (that is,

∇σ = (∇ ′σ,−∇ ′′σ), where∇ ′ and∇ ′′ are respectively the gradients on S p and Sq ).

Proof. Since ν and ν are null and 〈ν, ν〉 = 2, we clearly have ϕ = τν + σν + V ,
where V ∈ Tν(S p

×Sq)= Tν(S p
×Sq)= Tν′S p

×Tν′′Sq . In order to determine V ,
we use the assumption 〈dϕ, ν〉 = 0. Taking into account that

dϕ = dτ ν+ τ dν+ dσ ν+ σ dν+ dV

2The pair (σ, τ ) may be regarded as a generalization of the support function of a hypersurface.
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and that 〈ν, ν〉, 〈dν, ν〉 and 〈dν, ν〉 vanish, we have

〈dϕ, ν〉 = dσ 〈ν, ν〉+ 〈dV, ν〉 = 2dσ +〈dV, ν〉.

On the other hand, from 0= d(〈V, ν〉)=〈dV, ν〉+〈V, dν〉, we conclude, observing
that dν = Id,

〈V,W 〉 = 〈V, dν(W )〉 = −〈dV (W ), ν〉 = 2dσ(W ) for all W ∈ Tν(S p
×Sq),

which, by the very definition of the gradient, proves that V = 2∇σ . �

We now complete the proof of Theorem 3: define the endomorphism Aν on
Tν(S p

×Sq) by
〈Aν · , · 〉 = hν .

Hence, using that dν is the identity map of Tν(S p
×Sq), we have

〈dϕ ◦ Aν · , dϕ · 〉 = −〈dν · , dϕ · 〉 = −〈5 · , dϕ · 〉,

where 5 is the restriction to Tν(S p
×Sq) of the normal projection Rn+2

p+1→ Tϕ(ν)S.
It follows that

dϕ ◦ Aν =−5,
and therefore

A−1
ν =−5

−1
◦ dϕ

(the maximal rank assumption on ν implies that 5 is one-to-one). In order to calcu-
late the trace of Aν we introduce an orthonormal basis (e1, . . . , en) of Tν(S p

×Sq),
such that 〈ei , ei 〉 = 1 if 1≤ i ≤ p and 〈ei , ei 〉 = −1 if p+1≤ i ≤ n. We define the
coefficients ai j by

dϕ(ei )=

n∑
j=1

ai j5e j .

Clearly
A−1
ν = [ai j ]1≤i, j≤n.

To determine the coefficients ai j explicitly, we calculate

(1) dϕ = dτ ν+ τ dν+ dσ ν+ σ dν+ 2d∇σ.

Then we introduce a null, normal vector field ξ along S such that (ν, ξ) is a null
frame of N6 = T6⊥, which is in addition normalized, that is, 〈ν, ξ〉 = 2. Then
the projection of a vector V of Rn+2

p+1 onto N6 is given by the formula

1
2(〈V, ξ〉ν+〈V, ν〉ξ).

It follows that

(2) 5V = V − 1
2(〈V, ξ〉ν+〈V, ν〉ξ).
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For 1≤ i ≤ p, using (1) and observing that dν(ei )= dν(ei )= ei , we have

dϕ(ei )= (τ + σ)ei + dτ(ei )ν+ dσ(ei )ν+ 2d(∇σ)(ei )

Using (2) and the fact that 〈d(∇σ)(ei ), e j 〉 = Hess(σ )(ei , e j ), we conclude that,
for 1≤ i ≤ p,

ai j = δi j (τ + σ)+ 2 Hess(σ )(ei , e j ).

Analogously we get, if p+ 1≤ i ≤ n,

ai j = δi j (τ − σ)+ 2 Hess(σ )(ei , e j ).

The conclusion of the proof of Theorem 3 follows easily.

4.2. The case ( p, q) = (1, 1): proof of Corollaries 1 and 2. We use the natural
identification R4

2 ' C2 and denote by (u, v) the natural coordinates on S1
×S1, so

that ν := (eiu, eiv). In particular, the metric on S1
×S1 is du2

− dv2. Hence

Aν =−
(
τ + σ + 2σuu 2σuv

−2σuv τ − σ − 2σvv

)−1

,

whose trace is 2/det Aν(τ + σuu − σvv). Hence ϕ is marginally trapped if and only
if τ = σvv − σuu .

We now study the induced metric ϕ∗〈 · , · 〉. Since

ϕ = τ(eiu, eiv)+ σ(eiu,−eiv)+ 2(iσueiu,−iσveiv),

we have

ϕu =
(
((τ − σ)u + i(2σuu + τ + σ))eiu, ((τ − σ)u − 2iσuv)eiv),

ϕv =
(
((τ + σ)v + 2iσuv)eiu, ((τ + σ)v + i(−2σvv + τ − σ))eiv).

By a straightforward calculation the coefficients of the first fundamental form
ϕ∗〈 · , · 〉 are

E := (2σuu + τ + σ)
2
− 4σ 2

uv,

F := 4σuv(σuu − σvv + 2τ),

G := −(2σvv − τ + σ)2+ 4σ 2
uv.

The marginally trapped assumption τ = σvv − σuu implies

E =−G = (2σuu + τ + σ)
2
− 4σ 2

uv = (σ + σuu + σvv)
2
− 4σ 2

uv

and the vanishing of F , so that ϕ is weakly conformal (and conformal whenever E
does not vanish).

It is well known that the induced metric of a surface with isothermic coordinates
is flat if and only if its conformal factor is harmonic. Here we are dealing with the
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Lorentzian metric du2
− dv2, whose Laplacian operator is ∂uu − ∂vv. Hence the

induced metric is flat if and only if

(∂uu − ∂vv)E = (∂uu − ∂vv)
(
(σ + σuu + σvv)

2
− 4σ 2

uv
)
.

Marginally trapped Lagrangian surfaces. We recall that J (z1, z2)= (i z1, i z2), so

Jϕu =
(
−(2σuu + τ + σ + i(τ − σ)u)eiu, (2σuv + i(τ − σ)u)eiv).

Hence, using the usual formula ω = 〈J · , · 〉,

ω(ϕu, ϕv)= 〈Jϕu, ϕv〉

= −(2σuu + τ + σ)(τ + σ)v + 2σuv(τ − f )u − 2σuv(τ + σ)v

− (τ − σ)u(−2σvv + τ − σ)

=−(τ + σ)v(σ + σuu + σvv + 2σuv)+ (τ − σ)u(σ + σuu + σvv + 2σuv)

= (σ + σuu + σvv + 2σuv)(−σv − σu − σvvv + σuuv + σuvv − σuuu).

The first factor does not vanish except at degenerate points, so ϕ is Lagrangian with
respect to ω if and only if σv + σu + σvvv − σuuv − σuvv + σuuu = 0.

Recalling that the paracomplex structure is given by

K (x1, x2, x3, x4) := (x3, x4, x1, x2),

we have

Kϕu =
(
((τ − σ)u − 2iσuv)eiv, ((τ − σ)u + i(2σuu + τ + σ))eiu),

and so

ω′(ϕu, ϕv)= 〈Kϕu, ϕv〉

= cos(u− v)
(
−4σ 2

uv − (τ − σ − 2σvv)(2σuu + τ + σ)
)

= cos(u− v)
(
(−4σ 2

uv + (σ + σuu + σvv)
)2

= cos(u− v)E .

Hence ϕ is Lagrangian with respect to ω′ if and only if the induced metric is totally
null, which is incompatible with the marginally trapped assumption.

4.3. The case of Sn+2
p+1: proof of Theorem 4. Let ϕ :M→ Sn+2

p+1 be an immersed
submanifold of codimension two of Sn+2

p+1. Let σ be a normal, null vector field
along ϕ which is normalized in such way that σ ∈S p+1

×Sq . We moreover assume
that σ has maximal rank, that is, σ :M→ S p+1

×Sq is an immersed hypersurface.

Lemma 10 [Godoy and Salvai 2013]. There exists a unique pair (ν, τ ), where
ν :M→ Sn+2

p+1 and τ ∈ C2(M) are such that

ϕ = ν+ τσ.
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Moreover the map ν :M→Sn+2
p+1 is the Gauss map of σ ; that is, ν ∈ Tσ (S p+1

×Sq)

and 〈dσ, ν〉 = 0.

Proof. For an arbitrary τ ∈C2(M), we have ν :=ϕ−τσ ∈Sn+2
p+1. Hence we shall de-

termine τ ∈C2(M) by the condition ν∈Tν(S p+1
×Sq). Recalling the decomposition

Rn+3
=Rp+2

×Rq+1, and writing ν= (ν ′, ν ′′), σ = (σ ′, σ ′′) accordingly, this condi-
tion amounts to 〈ν ′, σ ′〉p+2= 0 and 〈ν ′′, σ ′′〉q+1= 0, where 〈 · , · 〉p+2 and 〈 · , · 〉q+1

denote the Euclidean inner products of Rp+2 and Rq+1, respectively. These two
equations yield τ = 〈ν ′, σ ′〉p+1 and τ = 〈ν ′′, σ ′′〉q+1, which are actually two equiv-
alent requirements since 〈ϕ, σ 〉 = 〈ϕ′, σ ′〉p+2−〈ϕ

′′, σ ′′〉q+1 vanishes. Therefore τ
is uniquely determined by the condition ν ∈ Tσ (S p+1

×Sq)= Tσ ′S p+1
×Tσ ′′S

q .
It remains to check that ν is the Gauss map of σ . For this purpose we differentiate

ϕ = ν+ τσ and remember that σ is normal to ϕ, so that

0= 〈dϕ, σ 〉 = 〈dν, σ 〉+ dτ 〈σ, σ 〉+ τ 〈dσ, σ 〉 = 〈dν, σ 〉.

Hence 〈dν, σ 〉 vanishes. Since 0= d(〈ν, σ 〉)= 〈dν, σ 〉+ 〈ν, dσ 〉, we deduce that
〈dσ, ν〉 vanishes as well. �

Observe that the lemma above implies furthermore that the induced metric
g := σ ∗〈 · , · 〉 is nondegenerate, since σ(M) is a hypersurface and admits a unit
normal vector field.

Lemma 11. Denote by g := σ ∗〈 · , · 〉 the metric induced on M by σ , and by A the
shape operator associated to ν, so A(v) := −dν(v) for all v ∈ TM. Then the metric
g̃ := ϕ∗〈 · , · 〉 induced on M by ϕ is given by the formula

g̃ = τ 2g( · , · )− 2τg(A · , · )+ g(A · , A · ).

In particular, the nondegeneracy assumption on g̃ implies that τ is not equal to any
principal curvature of ν. Moreover the second fundamental form of ϕ with respect
to σ is given by

hσ := 〈h( · , · ), σ 〉 = g(A · , · )− τg( · , · ).

Proof. Taking into account that dϕ = dν+ dτ σ + τdσ , we have

g̃ = 〈dϕ, dϕ〉 = 〈dν, dν〉+ 2τ 〈dν, dσ 〉+ τ 2
〈dσ, dσ 〉

= g(A · , A · )− 2τg(A · , · )+ τ 2g( · , · )

and

hσ =−〈dϕ, dσ 〉 = −〈dν, dσ 〉− τ 〈dσ, dσ 〉 = g(A · , · )− τg( · , · ). �

The proof of Theorem 4 is now straightforward: if ϕ is marginally trapped, we
may assume without loss of generality that its mean curvature vector EH is collinear
to σ . By the maximal rank assumption on σ we may use Lemmas 10 and 11.
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Denote by Ãσ the shape operator of ϕ with respect to σ . Then, from Lemma 11
above, we have

g( Ãσ (τ Id−A) · , (τ Id−A) · )= g( · , (τ Id−A) · ).

It follows that Ãσ := (τ Id−A)−1 and that EH is collinear to ν if and only if Aν is
trace-free, that is, τ is the root of the polynomial P(τ )= tr(τ Id−A)−1.

4.4. The case ( p, q) = (1, 1): proof of Corollary 3. It is straightforward that if
M is a 2× 2 matrix, then tr M−1

= (det M)−1 tr M . Hence tr(τ Id−A)−1 vanishes
if and only if tr(τ Id−A)= 2τ − tr A does. Hence ϕ is marginally trapped if and
only if τ = tr A/2 := H , the (scalar) mean curvature of the immersion σ . This
proves Corollary 3.

5. Further remarks

5.1. Interpretation of the result in terms of contact geometry. The constructions
in the previous sections come from the natural contact structure enjoyed by the
spaces of null geodesics of the ambient spaces and from the fact that the set of null
geodesics which are normal to a submanifold of codimension two is Legendrian
with respect to this contact structure.

The proof of Theorem 2 is based on the following fact: Let U be the dense, open
subset of null geodesics of Rn+2

p+1 that cross the horizontal hyperplane {xn+2 = 0}
(in the Minkowski case (p, q) = (n, 0), all null geodesics cross the horizontal
hyperplane). Then the correspondence {(σ, 0)+ t (ν, 1) | t ∈ R} 7→ (σ, ν) defines a
contactomorphism between U and the unit tangent bundle T 1Rn+1

p . The canonical
contact structure α of the unit tangent of a pseudo-Riemannian manifold (M, g)
is given by the expression α = g(dσ, ν), where ν is a unit vector tangent to M at
the point σ . Hence, given an immersion x 7→ (σ (x), ν(x)) of an n-dimensional
manifold such that x 7→ σ(x) is an immersion as well (a generic assumption), the
Legendre condition g(dσx , ν(x))= 0 simply means that ν is the Gauss map of σ
or, equivalently, ν is a unit vector field normal to the immersed hypersurface σ .

The interpretation of the proof of Theorem 3 in terms of contact geometry is
as follows: The space of null geodesics of Rn+2

p+1 may be identified with space of
one-jets on S p

× Sq , that is, the space T (S p
× Sq)× R such that to the triple

(ν, V, z)∈ T (S p
×Sq)×R, we associate the null line {V +zν+ tν | t ∈R}⊂Rn+2

p+1.
The natural contact structure on the space of one-jets TM×R, where (M, g) is a
pseudo-Riemannian manifold, is given by α := ψ − dz, where ψ is the Liouville
form3 or tautological form on TM. Moreover a generic Legendrian immersion

3To be more precise, the Liouville form is canonically defined on the cotangent bundle T ∗M of a
differentiable manifold M. If M is moreover equipped with a pseudo-Riemannian metric (as it is the
case of S p

×Sq ), we may identify T ∗M and TM and therefore speak of a Liouville form on TM.
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in TM×R is locally a section and takes the form ν 7→ (ν,∇σ(ν), σ (ν)), where
σ ∈ C2(M) and ∇ denotes the gradient of the metric g. It follows, in the case
M = S p

×Sq , that a generic Legendrian congruence of null lines of Rn+2
p+1 takes

the form
ν 7→ {∇σ(ν)+ σ(ν)ν+ tν | t ∈ R},

where σ ∈ C2(S p
×Sq). The choice of real function τ ∈ C2(S p

×Sq) determines
an n-dimensional submanifold parametrized by ν 7→ ∇σ(ν)+ σ(ν)ν+ τ(ν)ν, one
of whose null normals is ν. These observations inspired the proof of Theorem 3.

Finally the proof of Theorem 4 comes from the fact, proved in [Godoy and Salvai
2013], that the space of null geodesics of Sn+2

p+1 can be identified with T 1(S p
×Sq),

the unit tangent bundle of S p
×Sq , as follows: to the pair (ν, ψ) ∈ T 1(S p

×Sq),
we associate the null line {ψ + tν | t ∈ R} ⊂ Sn+2

p+1.

5.2. Relation between Theorems 2 and 3 in the case ( p, q) = (n, 0). In the
Lorentzian case (p, q) = (n, 0), it is easy to relate the formulas of Theorems 2
and 3. To avoid confusion, all mathematical quantities from Theorem 2 will be
written with subscript 2, and those from Theorem 3 with subscript 3. We start by
writing ν3 = (ν2, 1) ∈ Sn

×S0
' Sn

×{1,−1}, so that ν3 = (ν2,−1). Hence the
main formula of Theorem 3 becomes

ϕ =
(
(τ3+ σ3)ν2+ 2∇σ3, τ3− σ3

)
,

where σ3 ∈C4(Sn
×S0)'C4(Sn) and τ3 depends on the second derivatives of σ3.

Introducing σ2 := 2σ3 ν2+ 2∇σ3 and τ2 := τ3− σ3, we obtain

ϕ = (σ2+ τ2ν2, τ2),

which is exactly the main formula of Theorem 2. Observe that 〈dσ2, ν2〉 vanishes,
that is, ν2 is normal to the immersion σ2, which is therefore parametrized by its
Gauss map. Moreover 〈σ2, ν2〉 = 2σ3, that is, 2σ3 is the support function of the
immersion σ2.
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