
Pacific
Journal of
Mathematics

ONE LINE COMPLEX KLEINIAN GROUPS

WALDEMAR BARRERA, ANGEL CANO AND JUAN PABLO NAVARRETE

Volume 272 No. 2 December 2014





PACIFIC JOURNAL OF MATHEMATICS
Vol. 272, No. 2, 2014

dx.doi.org/10.2140/pjm.2014.272.275

ONE LINE COMPLEX KLEINIAN GROUPS

WALDEMAR BARRERA, ANGEL CANO AND JUAN PABLO NAVARRETE

We give an algebraic description of those subgroups of PGL(3, C) acting
on P2

C
with Kulkarni limit set equal to one complex projective line. Con-

versely, we prove that the Kulkarni limit set of a group G ≤ PGL(3, C)

acting properly and discontinuously on the complement of one line in P2
C

is
equal to one or two lines.

1. Introduction

The Kleinian groups are discrete subgroups of PSL(2,C) acting on S2 ∼= P1
C

in
such way that its limit set is not all of S2. They are classified in elementary and
nonelementary groups. The elementary groups are those Kleinian groups whose
limit set is equal to zero, one or two points, and they are classified (see [Maskit
1988]). The nonelementary groups are those Kleinian groups whose limit set
contains more than two points and in this case its limit set is a perfect set.

Our interest relies on the study of complex Kleinian groups. These are discrete
subgroups of PGL(3,C) acting properly and discontinuously on some open subset
of P2

C
. In this setting, there is no standard definition of limit set, however, in

[Barrera Vargas et al. 2011] it is proved that under some mild hypothesis on the
dynamics of the group, Kulkarni’s definition of limit set is an appropriate definition
(see Definition 2.1).

In [Cano and Seade 2014] it is proved that the Kulkarni limit set of a complex
Kleinian group contains a complex projective line whenever the group is infinite.
Moreover, in [Barrera Vargas et al. 2011] it is proved that under some mild hypoth-
esis on the group, the Kulkarni limit set is a union of complex projective lines. The
definition of elementary group in this case is that the Kulkarni limit set consists of
a finite union of complex projective subspaces (see [Cano et al. 2013]).

An interesting problem consists of classifying all elementary complex Kleinian
groups, and one natural step consists of classifying those discrete subgroups of
PGL(3,C) whose Kulkarni limit set consists of one complex projective line. In
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this paper we prove that the complex Kleinian group G ≤ PGL(3,C) is virtually
nilpotent whenever its Kulkarni limit set is equal to one complex projective line. In
fact we prove the following:

Theorem 1.1. If G is a subgroup of PGL(3,C) such that its Kulkarni limit set3(G)
consists of precisely one complex projective line `, then:

(i) If G contains a loxoparabolic element then G is a finite cyclic extension of
order 1, 2, 3, 4 or 6 of Z⊕Z⊕Zn0 , where n0 ∈ N is arbitrary. The Z⊕Z is a
group of rank two generated by a loxoparabolic element and another element
which can be loxoparabolic or parabolic. Also, the Zn0 is a group of complex
reflections.

(ii) If G does not contain any loxoparabolic elements and the group G does not
contain any element which acts as a parabolic element on the complex line
3(G)= `, then G is a group of isometries of C2 and it contains a free abelian
normal subgroup of finite index and of rank less than or equal to four.

(iii) If G does not contain any loxoparabolic elements but it does contain an element
which acts as a parabolic element on the complex line 3(G)= `, then G does
not contain any irrational ellipto-parabolic elements and it is a finite extension
of a unipotent subgroup (this subgroup consists of unipotent parabolic maps).
Hence it is a finite extension of a group of the form Z,Z2,Z3,Z4, 1k or 0k ,
where

1k =
〈
A, B,C, D : C, D are central and [A, B] = Ck 〉, k ∈ N,

and

0k =
〈
A, B,C : C is central and [A, B] = Ck 〉, k ∈ N.

The outline of the proof of Theorem 1.1 is as follows: Since the group acts
properly and discontinuously on the complement of one complex projective line
in P2

C
, the dynamics of each element in the group are restricted in some way; see

Remark 2.4. In fact, the elements in the group are elliptic, parabolic or loxoparabolic
according to the classification given in [Navarrete 2008].

If the group contains a loxoparabolic element, then there are restrictions on the
group G, as shown in Lemma 3.1. The proof of Theorem 1.1(i) follows from the
fact that there exists an invariant complex projective line where the action of the
group is properly discontinuous except in one point. Hence the group acts as a
Euclidean group on this line.

If the group does not contain any loxoparabolic elements, then we consider the
following two cases:

If G acts on the limit set `∼= Ĉ∼= S2 without parabolic elements then G can be
considered as a group of Euclidean isometries of R4.



ONE LINE COMPLEX KLEINIAN GROUPS 277

If some element in G acts on the limit set ` as parabolic element then the
group can be identified with a group of triangular matrices (see Proposition 5.2).
The existence of irrational ellipto-parabolic elements in the group is ruled out by
Propositions 5.6 and 5.7. Finally, there exists a unipotent subgroup of finite index
(see Proposition 5.8.)

We remark that not every finite extension of those nilpotent groups given in
Theorem 1.1(ii) and (iii) can occur as a group with Kulkarni limit set equal to one
line. Which of them can occur is a more delicate question. However, Theorem 1.1
gives a qualitative description according to the dynamics of the kind of elements
contained in the group.

We are not restricting here to the case where the quotient space P2
C
\ ` by the

group G is compact. The case where the action of G ≤ PGL(3,C) on P2
C
\ ` is

free, properly discontinuous and the quotient is compact is handled in [Fillmore
and Scheuneman 1973; Scheuneman 1974; Suwa 1975].

Finally, if G≤PGL(3,C) satisfies3(G) is equal to one line, then G acts properly
and discontinuously on the complement of one line in P2

C
, so G can be considered

as a discrete subgroup of Aff(C2) acting properly and discontinuously on C2. The
converse statement is not true as we show in the following:

Theorem 1.2. Let G ≤ PGL(3,C) be an infinite group which acts properly and
discontinuously on the complement of the line `⊂ P2

C
.

(i) If G contains a loxoparabolic element then,
• the Kulkarni limit set 3(G) is equal to the union of ` and another line

whenever G contains a cyclic subgroup of finite index generated by a
loxoparabolic element, or

• the Kulkarni limit set3(G) is equal to ` whenever G contains a finite-index
free abelian subgroup of rank two generated by a loxoparabolic element
and another element, which can be either loxoparabolic or parabolic.

(ii) If G does not contain any loxoparabolic elements then 3(G)= `.

2. Preliminaries

2.1. Projective geometry. Recall that the complex projective plane P2
C

is defined as

P2
C := (C

3
\ {0})/C∗,

where C∗ = C \ {0} acts on C3
\ {0} by the usual scalar multiplication. This is a

compact connected complex 2-dimensional manifold. Let [ · ] :C3
\{0}→P2

C
be the

quotient map. If β = {e1, e2, e3} is the standard basis of C3, we write [e j ] = e j and
if z= (z1, z2, z3) ∈ C3

\ {0} then we write [z] = [z1 : z2 : z3]. Also, `⊂ P2
C

is said
to be a complex line if [`]−1

∪ {0} is a complex linear subspace of dimension two.
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Given distinct points [z], [w] ∈P2
C

, there is a unique complex projective line passing
through [z] and [w]. Such a complex projective line is called a line, for short, and
it is denoted by←−−→[z], [w]. Consider the action of C∗ on GL(3,C) given by the usual
scalar multiplication. Then

PGL(3,C)= GL(3,C)/C∗

is a Lie group. The elements of this Lie group are called projective transforma-
tions. Let [[ · ]] : GL(3,C)→ PGL(3,C) be the quotient map, g ∈ PGL(3,C) and
g∈GL(3,C). We say that g is a lift of g if [[g]] = g. One can show that PGL(3,C)

is a Lie group that acts transitively, effectively and by biholomorphisms on P2
C

by
[[g]]([w])= [g(w)], where w ∈ C3

\ {0} and g ∈ GL(3,C).
The Fubini–Study metric on P2

C
is a useful tool in the computation of the Kulkarni

limit set of cyclic subgroups of PGL(3,C) acting on P2
C

(see [Navarrete 2008]).
The Fubini–Study distance d([z], [w]) between [z], [w] ∈P2

C
satisfies the equation

(1) cos2(d([z], [w]))= |z1w̄1+ z2w̄2+ z3w̄3|
2

(|z1|2+ |z2|2+ |z3|2)(|w1|2+ |w2|2+ |w3|2)
.

We denote by M3×3(C) the space of all 3×3 matrices with entries in C equipped
with the standard topology. The quotient space

(M3×3(C) \ {0})/C∗

is called the space of pseudo-projective maps of P2
C

and it is naturally identified
with the projective space P8

C
. Since GL(3,C) is an open, dense, C∗-invariant set

of M3×3(C) \ {0}, we obtain that the space of pseudo-projective maps of P2
C

is a
compactification of PGL(3,C). As in the case of projective maps, if s is an element
in M3×3(C)\ {0}, then [s] denotes the equivalence class of the matrix s in the space
of pseudo-projective maps of P2

C
. Also, we say that s ∈ M3×3(C) \ {0} is a lift of

the pseudo-projective map S whenever [s] = S.
Let S be an element in (M3×3(C) \ {0})/C∗ and s a lift to M3×3(C) \ {0} of S.

The matrix s induces a nonzero linear transformation s : C3
→ C3, which is

not necessarily invertible. Let Ker s ( C3 be its kernel and let Ker S denote its
projectivization to P2

C
, taking into account that Ker S := ∅ whenever Ker s =

{(0, 0, 0)}. We refer to [Cano and Seade 2010] for more details about this subject.

2.2. Complex Kleinian groups. We recall that a point z ∈ Ĉ∼= S2 ∼= P1
C

is a limit
point of the discrete subgroup G of PSL(2,C) if it is a cluster point of some orbit
{gx : g ∈ G}, where x ∈ Ĉ. The set 3(G) = {z ∈ Ĉ : z is a limit point of G} is
called the limit set of G (see [Marden 2007]).
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It is a known fact that the action of G on the complement of the limit set Ĉ\3(G)
is properly discontinuous. However, when working on higher dimensions, this is
no longer valid. See Example 2.3 below.

Kulkarni considers a very general setting of discrete group actions on a topolog-
ical space X , and the Kulkarni limit set provides a canonical choice of a closed
G-invariant set in X such that the G-action on its complement is properly discon-
tinuous.

Definition 2.1. Let G ⊂ PGL(n+ 1,C) be a subgroup. The set L0(G) is defined
as the closure of the points in Pn

C
with infinite isotropy group. In other words,

L0(G) = {x ∈ Pn
C
: StabG(x) is an infinite group} (see [Kulkarni 1978]). The set

L1(G) is the closure of the set of cluster points of the G-orbit of z, where z runs
over Pn

C
\L0(G). Recall that q is a cluster point of the family of sets {g(K ) : g ∈G},

where K ⊂Pn
C

is a nonempty set, if there is a sequence (km)m∈N⊂ K and a sequence
of distinct elements (gm)m∈N ⊂ G such that gm(km) m→∞−−−→ q. The set L2(G) is
defined as the closure of the union of cluster points of {g(K ) : g ∈ G}, where K
runs over all the compact sets in Pn

C
\ (L0(G) ∪ L1(G)). The Kulkarni limit set

for G is defined as the G-invariant closed set

3(G)= L0(G)∪ L1(G)∪ L2(G).

The discontinuity region in the sense of Kulkarni of G is defined as

�(G)= Pn
C \3(G).

If �(G) 6=∅ then we say that G is a complex Kleinian group.

In the case of a cyclic group 〈g〉, we write L0(g), L1(g), etc. instead of L0(〈g〉),
L1(〈g〉), etc.

The following lemma is a useful tool for the computation of Kulkarni limit sets,
and we include it here for reader’s convenience. See [Navarrete 2008] for a proof.

Lemma 2.2. Let G be a subgroup of PGL(3,C). If C is a closed set such that for
every compact set K ⊂ P2

C
\ C , the cluster points of the family of compact sets

{g(K )}g∈G are contained in L0(G)∪ L1(G), then L2(G)⊂ C.

Example 2.3. If g ∈ PGL(3,C) is induced by the matrix

g=

1 0 1
0 λ 0
0 0 1

 , λ ∈ C∗, |λ|< 1,

then:

(i) L0(g)= {e1, e2}.

(ii) g−n( · ) n→∞−−−→ e2 uniformly on compact subsets of P2
C
\ (
←−→e1, e2 ∪

←−→e1, e3).
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(iii) gn( · ) n→∞−−−→ e1 uniformly on compact subsets of P2
C
\ (
←−→e1, e2 ∪

←−→e1, e3).

(iv) L1(g)= {e1, e2}.

(v) L2(g)=
←−→e1, e2 ∪

←−→e1, e3.

(vi) The action of the cyclic group generated by g on P2
C
\ {e1, e2} is not properly

discontinuous.

(vii) The cyclic group generated by g acts properly and discontinuously on P2
C
\
←−→e1, e2.

Proof.

(i) The proof follows straightforwardly from the fact that {(z1, 0, 0) : z1 ∈ C} and
{(0, z2, 0) : z2 ∈ C} are the only possible eigenspaces for each matrix of the form

gn
=

1 0 n
0 λn 0
0 0 1

 , n ∈ Z \ {0}.

(ii) If K is a compact subset of P2
C
\ (
←−→e1, e2 ∪

←−→e1, e3), then every point in K can be
written as [z] = [z1 : z2 : z3], where |z1|

2
+ |z2|

2
+ |z3|

2
= 1, |z2| ≥ ε and |z3| ≥ ε

for some fixed ε > 0. If d(g−n
[z], e2) denotes the Fubini–Study distance between

g−n
[z] and e2, then

cos2(d(g−n([z]), e2)
)
=

|λ−nz2|
2

|z1− nz3|2+ |λ−nz2|2+ |z3|2

≥
|λ−nz2|

2

(nε+ 1)2+ |λ−nz2|2+ 1

≥
|λ|−2nε2

(nε+ 1)2+ |λ|−2nε2+ 1
,

and the last expression goes to 1 as n→∞. Therefore, g−n( · ) n→∞−−−→e2 uniformly
on compact subsets of P2

C
\ (
←−→e1, e2 ∪

←−→e1, e3).

(iii) The proof is analogous to (ii)

(iv) Since g acts on the invariant line←−→e1, e2 as a loxodromic element of PGL(2,C)

with fixed points e1 and e2, the orbits of the points in←−→e1, e2 \ {e1, e2} accumulate
at e1 and e2.

Also, g acts on the invariant line←−→e1, e3 as a parabolic element of PGL(2,C) with
fixed point at e1, so the orbits of the points in←−→e1, e3 \ {e1} accumulate at e1.

Finally, by (ii) and (iii), the set of cluster points of the orbits of points in
P2

C
\ (
←−→e1, e2 ∪

←−→e1, e3) is equal to {e1, e2}.

(v) By (ii) and (iii), for every compact set K ⊂ P2
C
\ (
←−→e1, e2 ∪

←−→e1, e3), the cluster
points of the family of compact sets {gn(K )}n∈Z is equal to {e1, e2}⊂ L0(g)∪L1(g).
It follows, by Lemma 2.2, that L2(g)⊂

←−→e1, e2 ∪
←−→e1, e3.
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Conversely, for every z ∈ C∗, the compact set

Kz =

{[
z+ λn

−
1
n
: 1 : − z

n

] ∣∣∣ n ∈ N
}
∪
{
[z : 1 : 0]

}
is contained in P2

C
\ {e1, e2} = P2

C
\ (L0(g)∪ L1(G)). Since

gn
([

z+ λn
−

1
n
: 1 : − z

n

])
=

[
λn
−

1
n
: λn
: −

z
n

]
= [nλn

− 1 : nλn
: − z] n→∞−−−→[1 : 0 : z],

it follows that←−→e1, e3 ⊂ L2(g).
Similarly, for every z ∈ C∗, consider the compact set{

[n : nz : − λ−n
]
∣∣ n ∈ N

}
∪ {e3} ⊂ P2

C \ (L0(g)∪ L1(G)).

Since g−n([n : nz : − λ−n
])= [λn

+ 1 : z : − 1/n] n→∞−−−→[1 : z : 0], it follows that
←−→e1, e2 ⊂ L2(g).

(vi) If Kz is as in the proof of (v), then gn(Kz) intersects any compact neighborhood
of [1 : 0 : z] for infinitely many values of n ∈ Z.

(vii) The set P2
C
\
←−→e1, e2 is naturally identified with C2 by the map [z1 : z2 : 1] 7→

(z1, z2), and the action is now g(z1, z2)= (z1+ 1, λz2).
If for some fixed R > 0, (z1, z2) ∈ C2 satisfies

(2) ‖(z1, z2)‖1 = |z1| + |z2| ≤ R,

and

(3) ‖gn(z1, z2)‖1 = |z1+ n| + |λnz2| ≤ R,

then |n| ≤ |z1+ n| + |z1| ≤ 2R. Hence (2) and (3) are satisfied for finitely many
values of n ∈ Z. Therefore the cyclic group 〈g〉 acts properly discontinuously on
P2

C
\
←−→e1, e2. �

By conformal properties, we have that the Kulkarni limit set of a discrete subgroup
of PGL(2,C) acting on Ĉ agrees with its classical limit set. In fact, L0=L1=L2=3

in that case. However, when working in higher dimensional projective geometry,
the sets L0, L1 and L2 can be quite different amongst themselves. Moreover, the set
�(G) is not always the maximal open subset where the action is properly discontin-
uous, as illustrated in Example 2.3(vii). Nevertheless, when G acts on P2

C
without

fixed points nor invariant lines, it is possible to show that�(G) is the maximal open
set where the action is properly discontinuous (see [Barrera Vargas et al. 2011]).

2.3. Classification of automorphisms of P2
C

. The nontrivial elements of PGL(3,C)

can be classified as elliptic, parabolic or loxodromic (see [Navarrete 2008]).
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The elliptic elements in PGL(3,C) are those elements g that have a lift to
GL(3,C) whose Jordan canonical form ise2π iθ1 0 0

0 e2π iθ2 0
0 0 e2π iθ3

 , where θ1, θ2, θ3 ∈ R.

The limit set 3(g) for an elliptic element g is ∅ or all of P2
C

according to whether
the order of g is finite or infinite. Those subgroups of PGL(3,C) containing an
elliptic element of infinite order cannot be discrete.

The parabolic elements in PGL(3,C) are those elements g such that the limit
set 3(g) is equal to a single complex line. If g is parabolic then it has a lift to
GL(3,C) whose Jordan canonical form is one of the following matrices:1 1 0

0 1 0
0 0 1

 ,
1 1 0

0 1 1
0 0 1

 ,
e2π iθ 1 0

0 e2π iθ 0
0 0 e−4π iθ

 , θ ∈ R \Z.

In the first case, 3(g) is the complex line consisting of all the fixed points of g. In
the second case, 3(g) is the unique g-invariant complex line. In the last case, 3(g)
is the complex line determined by the two fixed points of g.

There are four kinds of loxodromic elements in PGL(3,C):

• The complex homotheties are those elements g ∈ PGL(3,C) that have a lift to
GL(3,C) whose Jordan canonical form isλ 0 0

0 λ 0
0 0 λ−2

 , λ ∈ C, |λ| 6= 1,

and its limit set 3(g) is the set of fixed points of g, consisting of one line `
and a point not lying in `. Moreover, in this case, L0(g)∪ L1(g) = 3(g) is
not contained in one line.

• The screws are those elements g ∈ PGL(3,C) that have a lift to GL(3,C)

whose Jordan canonical form isλ 0 0
0 µ 0
0 0 (λµ)−1

 , λ, µ ∈ C, λ 6= µ, |λ| = |µ| 6= 1,

and its limit set 3(g) consists of the line ` on which g acts as an elliptic
transformation of PSL(2,C) and the fixed point of g not lying in `. In this
case, L0(g)∪ L1(g)=3(g) is not contained in one line.
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• The loxoparabolic elements g ∈ PGL(3,C) have a lift to GL(3,C) whose
Jordan canonical form is1 0 1

0 λ 0
0 0 1

 , λ ∈ C, |λ| 6= 1,

and the limit set3(g) consists of two g-invariant complex lines. The element g
acts on one of these complex lines as a parabolic element of PSL(2,C) and on
the other as a loxodromic element of PSL(2,C). In this case L0(g)∪ L1(g) is
contained in one line.

• The strongly loxodromic elements g∈PGL(3,C) have a lift to GL(3,C) whose
Jordan canonical form isλ1 0 0

0 λ2 0
0 0 λ3

 , λ1, λ2, λ3 ∈ C, |λ1|< |λ2|< |λ3|.

This kind of transformation has three fixed points: one of them is attracting,
another is repelling and the last one is a saddle. The limit set 3(g) is equal to
the union of the complex line determined by the attracting and saddle points
and the complex line determined by the saddle and repelling points. In this case
L0(g)∪ L1(g) consists of three points in general position, so L0(g)∪ L1(g)
is not contained in one line.

Remark 2.4. If g ∈ PGL(3,C) satisfies that L0(g)∪ L1(g) is contained in one line
then g is elliptic, parabolic or loxoparabolic.

2.4. Groups acting properly and discontinuously on P2
C
\ `. If G is a subgroup

of PGL(3,C) acting properly and discontinuously on P2
C
\ `, where ` ⊂ P2

C
is a

line, then we can assume, from now on, that ` =←−→e1, e2. So every element g ∈ G
can be induced by a matrix of the form

(4)

a b v

c d w

0 0 1

 .
When convenient, we shall write a(g), b(g), c(g), . . . instead of a, b, c, . . ..

We can regard P2
C
\ ` as C2, and (4) means that g can be considered as the affine

automorphism
z 7→ Az+ v,

where

(5) A =
(

a b
c d

)
, v=

(
v

w

)
.



284 WALDEMAR BARRERA, ANGEL CANO AND JUAN PABLO NAVARRETE

The projection onto the linear part of the affine map above is denoted by

(6) φ : G→ PGL(2,C),

φ(g)= A,

and it is a group homomorphism.
On the other hand, the map

(7) ψ : G→ PGL(2,C)

ψ(g)=
(

a v

0 1

)
is not necessarily a group homomorphism. However, it will be useful in Section 3.

Given that G acts properly discontinuously on P2
C
\ `, then for every g ∈ G,

the cyclic group 〈g〉 acts properly and discontinuously on P2
C
\ `. So one has

L0(g) ∪ L1(g) ⊂ `. By Remark 2.4, G contains only elliptic, parabolic or lox-
oparabolic elements.

In Section 3, we assume that G contains a loxoparabolic element and we prove
Theorem 1.1(i) together with some other results that will be useful for the proof of
Theorem 1.2 in Section 4.

When G does not contain any loxoparabolic elements, the group φ(G) contains
only elliptic or parabolic elements. In the first part of Section 5, we consider the
case when G acts on ` without parabolic elements. In other words, φ(G) does not
contain any parabolic element, and we prove Theorem 1.1(ii). Finally, in the last
part of the same section, we consider the case when φ(G) contains a parabolic
element, and we finish the proof of Theorem 1.1.

3. G contains a loxoparabolic element

Lemma 3.1. Let ` be a line in P2
C

. If G is a discrete subgroup of PGL(3,C) acting
properly and discontinuously on P2

C
\ ` and G contains a loxoparabolic element,

then there exists a conjugate of G such that every element in this conjugate group
has a representative in GL(3,C) of the form

(8)

a 0 v

0 d 0
0 0 1

 ,
where a is a root of unity of order 1, 2, 3, 4 or 6. Moreover, this conjugate group
acts properly and discontinuously on P2

C
\
←−→e1, e2.
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Proof. Every element g ∈ G has a representative matrix of the form (4) and we can
assume that the matrix that induces a loxoparabolic element h0 in G has the form1 0 1

0 λ 0
0 0 1

 , 0< |λ|< 1.

The commutator gn = [hn
0, g] and its inverse are induced by matrices of determi-

nant one and their traces are equal to

τn =
−3ad + bc(1+ λ−n

+ λn)

(bc− ad)
.

If bc 6= 0 then, by Theorem 6.3 in [Navarrete 2008], gn ∈G is a strongly loxodromic
element for all sufficiently large n. Hence, for every g ∈ G, b(g)= 0 or c(g)= 0.
It is not hard to check that b(g)= 0 for every g ∈ G or c(g)= 0 for every g ∈ G.
Therefore we can assume, conjugating if necessary, that c(g)= 0 for every g ∈ G.

If g ∈G satisfies that a(g)= 1 then, by Lemma 3.3 in [Fillmore and Scheuneman
1973], g commutes with h0. It follows that for every h in the normal subgroup
H = {g ∈ G : a(g)= 1}, one has b(h)= w(h)= 0.

Let g be an arbitrary element in G. Then

gh0g−1
=

1 b(−1+λ)
dλ a− d+bw(−1+λ)

d
0 d w−wλ

0 0 1

 ∈ H.

It follows that b(−1+ λ)/(dλ)= 0= w−wλ. Hence b = 0= w.
The line←−→e1, e3 is G-invariant because b(g) = c(g) = w(g) = 0. Moreover, G

acts on it as a classic elementary group with limit point e1. In fact, the action of G
on this line is the action on P1

C
of the group

ψ(G)=
{(

a(g) v(g)
0 1

)
: g ∈ G

}
,

where ψ is defined as in (7). It follows, by well-known facts on Euclidean groups
(see [Maskit 1988]), that a(g) is a root of unity of order 1, 2, 3, 4 or 6. �

Lemma 3.2. If G ≤ PGL(3,C) acts properly and discontinuously on the comple-
ment of the line `⊂ P2

C
and G contains a loxoparabolic element then G contains

a normal abelian subgroup H isomorphic to Z⊕Zn0 or to Z⊕Z⊕Zn0 for some
n0 ∈ N. Moreover, the index of H in G is equal to 1, 2, 3, 4 or 6.

Proof. We can assume that every element of G is induced by a matrix of the form (8).
In this case, the map ψ :G→ PGL(2,C), defined as in (7), is a homomorphism and
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its image is a Euclidean group of PGL(2,C). The kernel of this homomorphism
consists of all those transformations in G induced by a matrix of the form1 0 0

0 d 0
0 0 1

 ,
but these transformations are necessarily elliptic or the identity. Hence Kerψ is
a finite group (because it is discrete and every element has finite order). Moreover,
it is a cyclic group of some order n0. Let us denote by1 0 0

0 d0 0
0 0 1


the generator of Kerψ .

Let H be the normal abelian subgroup of G consisting of those elements g ∈ G
induced by a matrix of the form

(9)

1 0 v

0 d 0
0 0 1

 .
We notice that H/Kerψ is a free abelian subgroup of the Euclidean group G/Kerψ ,
consisting of all parabolic elements. Furthermore, H/Kerψ has rank equal to one
or two.

Since H/Kerψ has index equal to 1, 2, 3, 4 or 6 in G/Kerψ , it follows that H
has index equal to 1, 2, 3, 4 or 6 in G. �

Lemma 3.3. Let G ≤ PGL(3,C) be a group that acts properly and discontinuously
on P2

C
\`. If G contains a loxoparabolic element and the abelian normal subgroup H

has rank equal to one (where H is as in Lemma 3.2), then L0(G)= L1(G) consists
of two points in ` and L2(G) is equal to the union of ` and one other line. In
particular, the Kulkarni limit set of G is equal to the union of two lines.

Proof. Let ψ be as in (7) and H be defined as the subgroup of G induced by
matrices of the form (9). There are two possible cases:

• If H/Kerψ = G/Kerψ , then we can assume that G is generated by the two
elements induced by the matrices1 0 1

0 λ 0
0 0 1

 ,
1 0 0

0 d0 0
0 0 1

 ,
where 0< |λ|< 1 and d0 is an n0-th root of unity.
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• If H/Kerψ ( G/Kerψ , then we can assume that G is generated by three
elements induced by the matrices1 0 1

0 λ 0
0 0 1

 ,
1 0 0

0 d0 0
0 0 1

 ,
−1 0 0

0 dm
0 0

0 0 1

 ,
where 0 < |λ| < 1, d0 is an n0-th root of unity and m is an integer. (If the
parabolic subgroup of a Euclidean group E has rank one and it is not equal E ,
then E is the dihedral infinite group {z 7→ ±z+ n, n ∈ Z}.)

In any case, the subgroup N of G generated by1 0 1
0 λ 0
0 0 1

 , 0< |λ|< 1,

is normal and it has finite index in G. Moreover, L0(N ) = L0(G) = {e1, e2} and
L1(G)=

⋃m
i=1 gi (L1(N )), where {g1 N , . . . , gm N } are all the cosets of N in G, but

L1(N )={e1, e2} and each gi , i =1, . . . ,m fixes e1 and e2. Hence, L1(G)={e1, e2}.
Since L0(G)= L0(N )= {e1, e2} = L1(N )= L1(G), it follows that

L2(G)=
m⋃

i=1

gi (L2(N ))=
m⋃

i=1

gi (
←−→e1, e2 ∪

←−→e1, e3).

We conclude that L2(G)=
←−→e1, e2 ∪

←−→e1, e3 because←−→e1, e2 ∪
←−→e1, e3 is G-invariant. �

The proof of Theorem 1.1(i) follows immediately from Lemmas 3.2 and 3.3.
Now we prove the converse.

Lemma 3.4. Let G ≤ PGL(3,C) be a group that acts properly and discontinuously
on P2

C
\`. If G contains a loxoparabolic element and the abelian normal subgroup H

has rank equal to two (where H is as in Lemma 3.2), then L0(G)∪ L1(G)= ` and
L2(G)⊂ `. In particular, the Kulkarni limit set of G is equal to `.

Proof. We can assume that the two transformations induced by

γ1=

1 0 1
0 λ 0
0 0 1

 , 0< |λ|< 1, and γ2=

1 0 ν

0 δ 0
0 0 1

 , ν ∈C\R, δ ∈C∗,

generate a subgroup N of finite index in the abelian group H . Hence, L0(N ) =
L0(H) = L0(G) and L1(G) =

⋃m
i=1 gi L1(N ), where {g1 N , . . . , gm N } are all

distinct left cosets of N in G. It follows that L0(G) ∪ L1(G) = ` whenever
L0(N )∪ L1(N )= ` because ` is G-invariant.

Now we consider all possible cases:
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If |δ| = 1, let us say δ = e2iπθ , θ ∈ R, then L0(γ2) = ` whenever θ ∈ Q or
L1(γ2)= ` whenever θ /∈Q. In any case, L0(N )∪ L1(N )= `.

If |δ| 6= 1 then there are two cases depending on whether log |λ| and log |δ| are
rationally independent or not. In the first case, the action of N on ` is not discrete.
Hence L0(N )∪ L1(N )= `. In the second case, there exists an element γ ∈ N such
that L0(γ )∪ L1(γ )= `. Thus L0(N )∪ L1(N )= `.

Since G acts properly and discontinuously on P2
C
\ ` and L0(G)∪ L1(G)= `, it

follows (by Lemma 2.2) that L2(G)⊂ `. �

We notice that the proof of Theorem 1.2(i) follows from Lemmas 3.3 and 3.4.

Examples. In these examples, λ is a fixed complex number such that 0< |λ|< 1.

(i) The abelian group G1, generated by the projective transformations1 0 1
0 λ 0
0 0 1

 ,
1 0 i

0 1 0
0 0 1

 ,
acts properly and discontinuously on C2

= P2
C
\
←−→e1, e2, and, by Lemma 3.4,

3(G1)=
←−→e1, e2.

(ii) Let θ be a fixed real number. The abelian group G2, generated by the projective
transformations 1 0 1

0 λ 0
0 0 1

 ,
1 0 i

0 e2π iθ 0
0 0 1

 ,
acts properly and discontinuously on C2

= P2
C
\
←−→e1, e2 and, by Lemma 3.4,

3(G2)=
←−→e1, e2.

(iii) Let θ be a fixed real number and n0 ∈N a fixed natural number. Denote by G3

the abelian group G3 generated by the projective transformations1 0 1
0 λ 0
0 0 1

 ,
1 0 i

0 e2π iθ 0
0 0 1

 ,
1 0 0

0 e2π i/n0 0
0 0 1

 .
Since G2 is a finite-index subgroup of G3, it follows that G3 acts properly and
discontinuously on C2

= P2
C
\
←−→e1, e2. By Lemma 3.4, 3(G3)=

←−→e1, e2.

(iv) In an analogous way, the group generated by G3 and the projective transfor-
mation i 0 0

0 1 0
0 0 1


is a group whose Kulkarni limit set is equal to the line←−→e1, e2.
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(v) If θ ∈ R and n0 ∈ N are fixed numbers, the reader can check that the group
generated by the projective transformationseπ i/3 0 0

0 1 0
0 0 1

 ,
1 0 1

0 λ 0
0 0 1

 ,
1 0 eπ i/3

0 e2π iθ 0
0 0 1

 ,
1 0 0

0 e2π i/n0 0
0 0 1


is a group whose Kulkarni limit set is equal to the line←−→e1, e2.

4. Proof of Theorem 1.2

The main purpose of this section is to prove Theorem 1.2. First, we prove some
technical results in order to achieve our goal. In what follows we assume that G
does not contain any loxoparabolic elements.

Lemma 4.1. Let G be a subgroup of PGL(3,C) acting properly and discon-
tinuously on P2

C
\ `. If G does not contain any loxoparabolic elements and

L0(G)∪ L1(G)( `, then L2(G)= `.

Proof. Since L0(G)∪L1(G)( `, it follows that the group φ(G), where φ is defined
as in (6), is a classical Kleinian group containing only parabolic or elliptic elements.
Hence it acts as an elementary group on `. It follows that this group has a fixed
point in `, so we can assume this fixed point is e1, and it implies that every element
in G can be represented by a matrix of the forma b v

0 d w

0 0 1

 .
The kernel of the homomorphism φ : G→ PGL(2,C) consists of all the trans-

formations in G induced by matrices of the forma 0 v

0 a w

0 0 1

 .
Since L0(G)∪ L1(G)( `, every infinite order element in G has canonical form1 1 0

0 1 1
0 0 1

 .
It follows that every element in Kerφ is elliptic, and so Kerφ is finite. Moreover,
it is cyclic because it is isomorphic to a finite subgroup of S1. This isomorphism is
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given by a 0 v

0 a w

0 0 1

 7→ a.

Lemma 4.2. Let G be a subgroup of PGL(3,C) acting properly and discon-
tinuously on P2

C
\ `. If G does not contain any loxoparabolic elements and

L0(G)∪ L1(G)( `, then the matrix

Q =

0 0 1
0 0 0
0 0 0


induces the only pseudo-projective limit of the group G, also denoted by Q. In
consequence, by Lemma 2.2, L2(G)⊂ `.

Proof. Let gn be a sequence of distinct elements in G such that gn → R when
n→∞ ( where R is a pseudo-projective transformation)

Case 1. The sequence contains a subsequence which consists only of parabolic
elements.

In this case, we can assume that the elements are induced by matrices of the
form 1 bn vn

0 1 wn

0 0 1

 ,
but the set of all these transformations lying in G form a subgroup of G which is
abelian because the commutator of two such elements is equal to the identity or to
a parabolic element having a line of fixed points (and the group G does not contain
this kind of parabolic elements). Moreover, the restriction of the homomorphism φ

to this abelian subgroup is an isomorphism onto the “parabolic subgroup” of the
Euclidean group {A(g) : g ∈ G}. Hence, this free abelian subgroup has rank at
most two. If the group has rank one, then we can assume (conjugating by an upper
triangular matrix) that this group is generated by an element induced by a matrix of
the form 1 1 0

0 1 1
0 0 1

 ,
and it is not hard to check that the pseudo-projective limit R is induced by the
matrix Q.
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If the rank is equal to two, then we can assume (conjugating by an upper triangular
matrix) that the parabolic group is generated by

A =

1 1 0
0 1 1
0 0 1

 , B =

1 β ν

0 1 β

0 0 1

 , β ∈ C \R.

It is not hard to check, by means of an analysis of the general element Am Bn

that any pseudo-projective limit must be induced by the matrix Q.

Case 2. The sequence (gn) consists (except for finitely many values of n) of elliptic
elements.

Since G/Kerφ is a Euclidean group and Kerφ is finite, there is an n0 ∈ N such
that for every elliptic element in G, gn0 = Id. Therefore, there exists a subsequence
of (gn), still denoted (gn), and a diagonal matrix h such that (h−1gn) is a sequence of
distinct parabolic elements (because these transformations are represented by upper
triangular matrices with ones in the diagonal entries). By Case 1 above, it follows
that the pseudo-projective limit of h−1gn is induced by the matrix Q. Therefore,
the pseudo-projective limit of the sequence gn is induced by the same matrix. �

Finally, if `0 is a line not intersecting L0(G) ∪ L1(G) and g ∈ G is a parabolic
element, then the family of compact sets {gn(`0)} accumulates in `. Therefore,
`⊂ L2(G). �

Proof of Theorem 1.2. The proof of (i) follows from Lemmas 3.3 and 3.4.
Now, for (ii), the group G contains a parabolic element of infinite order. Since G

acts properly and discontinuously on P2
C
\ `, it follows that L0(G)∪ L1(G)⊂ `.

Then, we consider two cases according to whether L0(G) ∪ L1(G) = ` or
L0(G)∪ L1(G)( `.

If L0(G)∪ L1(G)= `, then, by Lemma 2.2, L2(G)⊂ `. Therefore, `=3(G).
If L0(G)∪ L1(G)( `, then by Lemma 4.1, L2(G)= `. �

The next corollary follows from Lemma 4.2.

Corollary 4.3. If G ⊂ PGL(3,C) acts properly and discontinuously on P2
C
\ `

and G does not contain any loxoparabolic elements, then one and only one of the
following statements is verified:

• L0(G)∪ L1(G)= ` and L2(G)⊂ `, or

• L0(G)= L1(G) is a point in ` and L2(G)= `.

Proposition 4.4. If G ⊂ PGL(3,C) is a discrete subgroup such that 3(G) is equal
to a line ` and G does not contain loxoparabolic elements, then for any finite
extension G1 of G (i.e., G is a finite-index normal subgroup of G1 ≤ PGL(3,C)),
3(G1)=3(G)= `.
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Proof. (a) Since G is a finite-index normal subgroup of G1, we have L0(G) =
L0(G1) and L1(G1)= g1(L1(G))∪ · · · ∪ gk(L1(G)), where [g1], . . . , [gk] are all
the distinct cosets in G1/G.

(b) If L0(G1)= L0(G) and L1(G1)= L1(G) then

L2(G1)= g1(L2(G))∪ · · · ∪ gk(L2(G)),

where [g1], . . . , [gk] are all the distinct cosets in G1/G.

(c) If L0(G)∪ L1(G)= ` then we consider two cases.

Case 1. The set L0(G) consists of a single point, called p. In this case, L0(G1)∪

L1(G1) is a G1-invariant set and it is a finite union of lines passing through p (the
line ` is one of such lines). Let g ∈ G1 be a parabolic element with p as its only
fixed point. Then there exists n0 ∈ N such that every line in L0(G1) ∪ L1(G1)

is gn0-invariant. Since gn0 is parabolic with a single fixed point, it has a single
invariant line. Hence L0(G1)∪ L1(G1)= `.

Case 2. The set L0(G) contains more than one point. In this case, the set L0(G1)=

L0(G) determines the line ` and is G1-invariant. Then ` is G1-invariant and

L0(G1)∪ L1(G1)= g1(L0(G)∪ L1(G))∪ · · · ∪ gk(L0(G)∪ L1(G))= `.

In any case, it is not hard to check that G1 acts properly and discontinuously on
P2

C
\ `, and by Lemma 2.2 we obtain that L2(G1)⊂ `.

(d) If L0(G) ∪ L1(G) ( `, then by Corollary 4.3, L0(G) = L1(G) is equal to
one point. Thus we can assume that L2(G) = ` and L0(G) = L1(G) = {e1}.
In this case, L0(G1) = L0(G) = {e1} and it follows that every element in G1

fixes e1. Hence (by item (a)), L1(G1)= L1(G)= {e1}. It follows (by item (b)) that
L2(G1)= g1(`)∪ · · · ∪ gk(`), where [g1], . . . , [gk] are all distinct cosets in G1/G.
Therefore, 3(G1)= `1∪· · ·∪`k , but there exists a parabolic element g0 ∈ G ⊂ G1

with Jordan canonical form equal to1 1 0
0 1 1
0 0 1

 .
Thus, every line ` j , j = 1, . . . , k, is invariant under some fixed power of g0, but
every power of g0 has a single invariant line, and this line is equal to `. We conclude
that 3(G1)= `. �

5. Proof of Theorem 1.1

We recall that the proof of Theorem 1.1(i) follows from Lemmas 3.2 and 3.3.
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Proof of Theorem 1.1(ii). Since G does not contain any element which acts as a
parabolic element on `, it follows that φ(G) \ {Id} induces only elliptic elements,
where φ is defined as in (6). We notice that the determinant of the matrix

A =
(

a b
c d

)
has modulus equal to one. Hence, every element in φ(G) can be written as a matrix
of the form

λ

(
a b
c d

)
, λ ∈ S1 and ad − bc = 1.

Since φ(G) induces a purely elliptic group acting on Ĉ, there is a global fixed
point for the action of φ(G) on H3

R. We can assume that this global fixed point
is (0, 0, 1) (in the upper half-space model). Then every element in φ(G) can be
written as a matrix of the form

λ

(
a b
−b̄ ā

)
, λ ∈ S1 and |a|2+ |b|2 = 1.

Therefore, every element g ∈ G can be written in the form

g =
(

A v
0 1

)
, where A ∈U (2) and v, 0T

∈ C2.

Hence, G is a discrete subgroup of isometries of R4. By Theorem 5.4.5 in [Ratcliffe
1994], G contains a normal finite-index free abelian subgroup of rank less than or
equal to four. �

Remark 5.1. If φ(G) \ {Id} induces only elliptic elements, then G is conjugate
in PGL(3,C) to some group such that every element in a finite-index subgroup is
induced by an upper triangular matrix.

Examples. (i) Let G be the group generated by the two matrices1 0 1
0 e2π iθ1 0
0 0 1

 ,
1 0 i

0 e2π iθ2 0
0 0 1

 ,
where θ1, θ2 are fixed real numbers. It is not hard to check that G acts properly
and discontinuously on P2

C
\
←−→e1, e2. It follows from Theorem 1.2(ii) that

3(G)=←−→e1, e2. In this case φ(G) does not contain any parabolic elements.

(ii) Let G1 be the group generated by the matrices1 0 1
0 1 0
0 0 1

 ,
1 0 i

0 1 0
0 0 1

 ,
1 0 0

0 1 1
0 0 1

 ,
1 0 0

0 1 i
0 0 1

 .
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It is not hard to check that G1 acts properly and discontinuously on P2
C
\
←−→e1, e2.

It follows from Theorem 1.2(ii) that 3(G1) =
←−→e1, e2. In this case φ(G1)

consists of the identity element.

(iii) If k is a fixed natural number, then the group G2 generated by the matrices1 0 0
0 1 k
0 0 1

 ,
1 −1 0

0 1 i
0 0 1

 ,
1 0 1

0 1 0
0 0 1

 ,
1 0 i

0 1 0
0 0 1


acts properly and discontinuously on P2

C
\
←−→e1, e2 and the Kulkarni limit set

3(G2) is equal to←−→e1, e2 by Theorem 1.2(ii). In this case, φ(G2) is a cyclic
group generated by a parabolic element. We notice that G2 is a 2-step nilpotent
group, so it is a uniform lattice of H3×R, where H3 is the 3-dimensional real
Heisenberg group (see [Dekimpe 1996, Corollary 6.2.5]). If 0 is a subgroup
of G2 such that 0< rank0 < 4 then 3(0)=←−→e1, e2. However, the quotient of
P2

C
\
←−→e1, e2 by 0 is not compact.

In what follows we develop some tools that will be useful in the proof of
Theorem 1.1(iii).

Proposition 5.2. If G ⊂ PGL(3,C) is a discrete subgroup such that 3(G) is equal
to a line `, G does not contain any loxoparabolic elements and G contains an
element which acts as a parabolic element on `, then G is conjugate in PGL(3,C)

to some group such that every element in it is induced by a matrix of the form

(10)

a b v

0 d w

0 0 1

 , |a| = |d| = 1.

(If the group G does contain any loxoparabolic elements, then the statement is
still valid with the exception that the eigenvalues are not unitary complex numbers.
See Lemma 3.1)

Proof. Since the set φ(G) contains a parabolic element, we can assume (conjugating,
if needed, by an element that preserves the line `) that such parabolic element is
induced by a matrix of the form

A1 = µ

(
1 1
0 1

)
for some µ ∈ C.

If we assume there is a matrix

A2 =

(
a b
c d

)
such that c 6= 0,
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which induces an element in φ(G), then Tr2(An
1 A2 A−n

1 A−1
2 )= (2+ (cn)2)2. Thus,

An
1 A2 A−n

1 A−1
2 is a loxodromic element for n large enough, and it contradicts that

φ(G) contains only elliptic or parabolic elements. �

Lemma 5.3. Let V be an abelian subgroup of C2 of rank r = 1, 2, 3 or 4 and u an
m-th root of unity that generates a cyclic group of order m. Assume that uν ∈ V
whenever ν ∈ V . Then ϕ(m) ≤ r (where ϕ denotes the Euler’s totient function).
Hence, m ≤ 12.

Proof. This proof is contained in the proof of Theorem 4.1 in [Fillmore and
Scheuneman 1973], and we include it here for reader’s convenience. Let ν1, . . . , νr

be a basis of V . Expressing uνi in terms of this basis and taking a determinant, we
obtain a polynomial of degree r with integer coefficients which is satisfied by u.
Hence the field generated by u over the rationals is of degree at most r . This field
is generated by a primitive m-th root of unity, so it has degree ϕ(m), where ϕ is
Euler’s totient. Thus ϕ(m)≤ r . It follows that m = 1, 2, 3, 4, 5, 6, 8, 10 or 12. �

The hypothesis in the lemma above can be slightly modified to obtain the fol-
lowing:

Lemma 5.4. Let V be an abelian subgroup of C2 of rank r = 1, 2 or 3 and u ∈ S1.
Assume uν ∈ V whenever ν ∈ V . Then u is a root of unity of order 1, 2, 3, 4 or 6.

The proof is almost the same as the one given for Lemma 5.3. One just uses the
fact that u ∈ S1 is a root of unity whenever there is a monic polynomial of degree
r ≤ 3 with integer coefficients which is satisfied by u.

Remark 5.5. Lemmas 5.3 and 5.4 can be applied to abelian subgroups of

(C,+)∼= ({0}×C,+)∼= (C×{0},+).

If we assume that every element in G can be represented by an upper triangular
matrix of the form (10) and G contains an irrational ellipto-parabolic element then
we can assume that it is induced by one of the following two upper triangular
matrices:

E1 =

1 0 1
0 d0 0
0 0 1

 , E2 =

a0 0 0
0 1 1
0 0 1

 , a0 = d0 = e2π iθ , θ ∈ R \Q.

Proposition 5.6. Let G be a discrete subgroup of PGL(3,C) such that every ele-
ment can be induced by a matrix of the form (10) and 3(G)= `. If G contains the
irrational ellipto-parabolic element induced by E1, then the normal subgroup N1
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consisting of the elements of the form1 b v

0 d w

0 0 1


is a (finitely generated) finite-index abelian subgroup. In fact, b = w = 0 for every
element in N1.

Proof. Every element in the subgroup N1 commutes with E1 (by Lemma 3.3 in
[Fillmore and Scheuneman 1973]), and hence it has the form

(11) h =

1 0 v(h)
0 d(h) 0
0 0 1

 .
Therefore, N1 is a finitely generated abelian subgroup. Moreover, the set

V = {ν ∈ C | ∃h ∈ N1 with v(h)= ν}

is an abelian subgroup of (C,+).
Now, let g be any element in G. By considering the upper right entry of ghg−1,

it is possible to check that a(g)ν ∈ V whenever ν ∈ V . It follows, by Lemma 5.4,
that a(g) is a root of unity of order 1, 2, 3, 4 or 6. Therefore N1 has finite index
in G. Since every element in the discrete abelian group N1 has the form (11), it is
not hard to check that N1 is finitely generated and its rank is less or equal to two. �

Proposition 5.7. Let G be a discrete subgroup of PGL(3,C) such that every ele-
ment can be induced by a matrix of the form (10) and 3(G)= `. If G contains the
irrational ellipto-parabolic element induced by E2, then the normal subgroup N2

consisting of those elements of the forma b v

0 1 w

0 0 1


is a (finitely generated) finite-index abelian subgroup. In fact, b = v = 0 for every
element in N2.

Proof. Let us denote by L the set consisting of those (β, ν) ∈ C2 for which there
exists an element in G of the form

(12)

1 β ν

0 1 0
0 0 1

 .
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It is not hard to check that L is a discrete subgroup of (C2,+). If we assume that
b 6= 0 for some

f =

a b v

0 1 w

0 0 1

 ∈ N2,

then L 6= 0 because the commutator of E2 and f is equal to

[E2, f ] =

1 (a0− 1)b (a0− 1)v− (a0− 1)bw− a0b
0 1 0
0 0 1

 .
If (β, ν) ∈ L then (a0β, a0ν − a0β) ∈ L (conjugate the element of the form (12)
by E2). In other words, the C-linear map induced by(

a0 0
−a0 a0

)
preserves L . If we assume rank L = 4, then a0 is a root of a polynomial with integer
coefficients of the form p(x)= (x2

− 2x cos(2πθ)+ 1)2 and it implies that a0 is
a root of unity, which is a contradiction. Therefore, rank L ≤ 3. Hence, applying
Lemma 5.4 to the abelian group L and to the unitary complex number a0, we obtain
that a0 is a root of unity, a contradiction. It follows that b = 0 for all f ∈ N2.

Analogously, it can be proved that v = 0 for all f ∈ N2. Thus every f ∈ N2 has
the form a 0 0

0 1 w

0 0 1

 ,
and it follows that N2 is an abelian group of rank less than or equal to two.

Let W denote the subset of C consisting of those ω ∈ C such that there exist
f ∈ N2 of the form

f =

a 0 0
0 1 ω

0 0 1

 .
We notice that W is an abelian discrete subgroup of C and W 6= 0 because E2 ∈ N2.

If g ∈ G is an arbitrary element, then it is not hard to check that d(g)ω ∈ W
whenever ω ∈ W . It follows, by Lemma 5.4, that d(g) is a root of unity of order
1, 2, 3, 4 or 6. Therefore N2 has finite index in G. �

Proposition 5.8. Let G be a discrete subgroup of PGL(3,C) such that 3(G)= `
and every element g ∈ G is induced by a matrix of the form (10). Assume that for
every g ∈ G, there exists n ∈N, depending on g, such that a(g), d(g) are n-th roots
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of unity. If N denotes the subset of G consisting of those elements in G induced by
matrices of the form 1 b v

0 1 w

0 0 1

 ,
then N is a finite-index torsion free normal subgroup of G (it is also finitely gener-
ated).

Proof. Let B be the abelian subgroup of C that consists of all those β ∈C for which
there exists an element in N of the form1 β v

0 1 w

0 0 1

 .
Analogously, let W be the abelian subgroup of C consisting of those ω ∈ C such

that exists an element in N of the form1 b v

0 1 ω

0 0 1

 .
Finally, let V be the subset of C (it is not necessarily a subgroup) consisting of

those ν ∈ C such that there exists an element in G of the form1 b ν

0 1 w

0 0 1

 .
Since G acts properly and discontinuously on C2, so does N . Moreover, the

nilpotent group N acts freely on C2, so N is generated by at most four elements (see
[Cartan and Eilenberg 1999] and [Fillmore and Scheuneman 1973]). It follows that
rank B ≤ 4 and rank W ≤ 4. Moreover, when V is an abelian group, rank V ≤ 4.

We consider the following cases:

Case 1. B 6= 0 and W 6= 0.
In this case, by Lemma 5.3 applied to W and to the root of unity d(g), there

exists n1 ∈ N (not depending on g) such that for every g ∈ G, d(g)n1 = 1.
Similarly, by Lemma 5.3 applied to B and to the root of unity a(g)/d(g), there

exists n2 ∈ N (not depending on g) such that for every g ∈ G, (a(g)/d(g))n2 = 1.
Therefore, there exists n0 ∈ N such that gn0 ∈ N for every g ∈ G.

Case 2. B 6= 0, W = 0 and V 6= 0.
In this case, by Lemma 5.3 applied to the abelian group V and to the root of

unity a(g)/d(g), there exists n1 ∈ N such that (a(g)/d(g))n1 = 1 for every g ∈ G.
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Let us fix an element

g0 =

a0 b0 v0

0 d0 w0

0 0 1

 ∈ G,

with d0 6= 1 (if such an element does not exist then the proof ends). If g ∈ G is an
arbitrary element, then the commutator [g0, g] has the form1 β ν

0 1 (d0− 1)w− (d − 1)w0

0 0 1

 .
Then (d0 − 1)w − (d − 1)w0 = 0. Therefore, conjugating G by the projective
transformation induced by

h =

1 0 0
0 d0− 1 w0

0 0 1

 ,
we can assume that w = 0 for all g ∈ G.

Now, if ν ∈ V and g is an arbitrary element in G as above, then aν ∈ V (just
conjugate 1 β ν

0 1 0
0 0 1


by g). It follows, by Lemma 5.3, that there exists n2 ∈N such that an2 = 1 for every
g ∈ G. Therefore, there exists n0 ∈ N such that gn0 ∈ N for every g ∈ G.

Case 3. B 6= 0, W = 0 and V = 0.
This case cannot happen, otherwise the Kulkarni limit set of N (and the Kulkarni

limit set of G) would be equal to←−→e1, e3.

Case 4. B = 0, W 6= 0 and V 6= 0.
In this case, V is an abelian subgroup of C. By Lemma 5.3, there exists n1 ∈ N

such that dn1 = 1 for every g ∈ G. Let us fix an element

g0 =

a0 b0 v0

0 d0 w0

0 0 1

 ∈ G,

with a0 6= d0 (if such element does not exist then the proof ends).
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If g ∈ G is an arbitrary element, then the commutator [g0, g] has the form1 b(a0−d0)−b0(a−d)
dd0

ν

0 1 ω

0 0 1

 .
Then [g0, g] ∈ N , so b(a0− d0)− b0(a− d)= 0.

Hence, we can assume, conjugating G by

h =

a0− d0 b0 0
0 1 0
0 0 1

 ,
that b = 0 for all g ∈ G.

It is not hard to check that if g ∈G, and ν ∈ V , then aν ∈ V (just conjugate by g).
Lemma 5.3 implies that there exists n2 ∈ N such that an2 = 1 for every g ∈ G.

Case 5. B = 0, W 6= 0 and V = 0.
In this case, W is an abelian subgroup of C and it is not hard to check that there

exists n1 ∈ N such that dn1 = 1 for every g ∈ G. Now we consider the normal
subgroup N1 consisting of all those elements in G of the forma b v

0 1 w

0 0 1

 .
It is easy to check by straightforward computation that the commutator of any

two elements in G has the form 1 β ν

0 1 0
0 0 1

 .
Since B = V = 0, it follows that N1 is an abelian group.

We can assume, conjugating by a suitable matrix, that every element in N1 has
the form a 0 0

0 1 w

0 0 1

 .
It follows that N1 is a (finitely generated) finite-index abelian subgroup of G.

Case 6. B = 0, W = 0 and V 6= 0.
In this case, V 6= 0 is an abelian subgroup of C and there is a fixed natural

number n1 ∈ N such that an1 = 1 for every g ∈ G.
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Now, let us denote by N2 the normal subgroup of G consisting of those elements
of the form 1 b v

0 d w

0 0 1

 .
Let us fix an element

h0 =

1 b0 v0

0 d0 w0

0 0 1

 ∈ N2, d0 6= 1,

(if d = 1 for every element in N2, then the proof ends). If

h =

1 b v

0 d w

0 0 1

 ∈ N2,

then [h, h0] ∈ N . Hence

(1− d)b0+ (1− d0)b = 0= (1− d)w0+ (1− d0)w.

Thus, conjugating by 1 b0/(1− d0) 0
0 d0− 1 w0

0 0 1

 ,
we can assume that every element in N2 has the form

h =

1 0 v

0 d 0
0 0 1

 .
It follows that N2 is a (finitely generated) finite-index abelian subgroup of G.

Case 7. B = 0, W = 0 and V = 0.
In this case, every element in G is of finite order, so G is finite. �

Proof of Theorem 1.1(iii).
If G contains the ellipto-parabolic element E1 then Proposition 5.6 implies the

group N1 is a finite-index normal abelian subgroup, and no element in N1 acts on `
as a parabolic element. If we assume that there exists g ∈ G such that φ(g) acts
on ` as a parabolic element then for some n0 ∈N, we have that φ(g)n0 ∈ φ(N1) acts
as a parabolic element on `, which is a contradiction. A similar argument, using
Proposition 5.6, shows that G cannot contain the ellipto-parabolic element E2.

The second part is analogous to the proof of Theorem 4.1 in [Fillmore and Sche-
uneman 1973], and we include it here for reader’s convenience. By Proposition 5.8,



302 WALDEMAR BARRERA, ANGEL CANO AND JUAN PABLO NAVARRETE

G is a finite extension of a discrete unipotent group N , and by Theorem 5.4.3 in
[Corwin and Greenleaf 1990], there exists a unique Lie unipotent group H such
that H/N is compact (in consequence, N is finitely generated). This group H is
necessarily simply connected, and in fact it is a Euclidean space.

Since N acts properly discontinuously (and freely) on C2, it follows that the
projective dimension of the integer group ring of N is less or equal to four (see
[Cartan and Eilenberg 1999]). Moreover, the dimension of H is less or equal to four.

The nilpotent simply connected Lie groups of dimension four are R4 and H3×R,
where H3 denotes the real Heisenberg group. The nilpotent simply connected Lie
groups of dimension three are H3 and R3. Finally, those nilpotent simply connected
Lie groups of dimension two and one are R2 and R.

The discrete subgroups with compact quotient of H3×R are of the form

1k = 〈A, B,C, D : C, D are central and [A, B] = Ck
〉,

where k ∈ N. The discrete subgroups of H3 with compact quotient are of the form

0k = 〈A, B,C : C is central and [A, B] = Ck
〉,

where k ∈ N. �
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