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A NOTE ON FLUX INTEGRALS
OVER SMOOTH REGULAR DOMAINS

IDO BRIGHT AND JOHN M. LEE

We provide new bounds on a flux integral over the portion of the boundary
of one regular domain contained inside a second regular domain, based on
properties of the second domain rather than the first one. This bound is
amenable to numerical computation of a flux through the boundary of a
domain, for example, when there is a large variation in the normal vector
near a point. We present applications of this result to occupational measures
and two-dimensional differential equations, including a new proof that all
minimal invariant sets in the plane are trivial.

1. Introduction

A regular domain in Rd is a closed, embedded d-dimensional smooth submanifold
with boundary, such as a closed ball or a closed half-space. (Throughout this paper,
smooth means infinitely differentiable.) If D⊂Rd is a regular domain, its interior D̊
is an open subset of Rd , and its boundary ∂D is a closed, embedded, codimension-1
smooth submanifold (without boundary) which is the common topological boundary
of the open sets D̊ and Rd r D. For this reason, the boundary of a regular domain
is often called a space-separating hypersurface. The Jordan–Brouwer separation
theorem (see, for example, [Guillemin and Pollack 1974, p. 89]) shows that if
S ⊂ Rd is any compact, connected, embedded hypersurface, then the complement
of S has two connected components, one bounded (the interior of S) and another
unbounded (the exterior of S), with S as their common boundary; thus S ∪ Int S
and S ∪Ext S are both regular domains. But in general, the boundary of a regular
domain need not be connected (for example, an annulus in the plane).

Surface integrals computing the flux through boundaries of regular domains are
ubiquitous in physics and engineering. We present two bounds for surface integrals
on a portion of the boundary of one domain contained inside a second domain. The
results are presented for regular domains in Euclidean space for simplicity, but
Theorems 1.1 and 1.2 extend to regular domains in Riemannian manifolds. See
Theorem 3.3. For more details about the notation in these theorems, see Section 2.
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Theorem 1.1. Suppose D1, D2 ⊂ Rd are regular domains, such that D1 ∩ D2 is
compact and D2 has finite volume and surface area. Suppose f is a smooth vector
field defined on a neighborhood of D2 such that | f | and |∇· f | are bounded. Then
the absolute value of the flux of f across the portion of ∂D1 inside D2 satisfies

(1-1)
∣∣∣∣∫
∂D1∩D2

f · n∂D1 dA
∣∣∣∣≤ Area(∂D2)‖ f ‖∞+Vol(D2)‖∇· f ‖∞.

When the vector field is divergence-free, we have the following much better bound.

Theorem 1.2. Suppose D1, D2⊂Rd are regular domains with compact intersection
and finite surface areas, and f is a smooth bounded vector field on Rd satisfying
∇· f ≡ 0. Then

(1-2)
∣∣∣∣∫
∂D1∩D2

f · n∂D1 dA
∣∣∣∣≤ 1

2 Area(∂D2)‖ f ‖∞.

A surprising corollary to Theorem 1.2 bounds the integral of the normal vector
of the portion of a hypersurface contained inside a second regular domain.

Corollary 1.3. Suppose D1, D2 ⊂ Rd are regular domains with compact intersec-
tion and finite surface areas. The following inequality holds:

(1-3)
∣∣∣∣∫
∂D1∩D2

n∂D1 dA
∣∣∣∣≤ 1

2 Area(∂D2).

When D2 is convex we have the following alternative bound, which is an im-
provement in some cases.

Theorem 1.4. Suppose D1, D2 ⊂ Rd are regular domains. If D2 is compact and
convex with diameter δ, then

(1-4)
∣∣∣∣∫
∂D1∩D2

n∂D1 dA
∣∣∣∣≤ 1

2 Vol(Bd−1(δ/2)),

where Bd−1(δ/2) denotes the ball in Rd−1 of radius δ/2.

The significance of these results is that, although the integration is with respect
to the portion of ∂D1 inside D2, which might have arbitrarily large surface area (see
Figure 1), the bound depends only on D2. This is due to the cancellations of the
normal vector that occur in hypersurfaces that bound regular domains, and would
not hold for images of general immersions of codimension 1 (see Example 4.2).

Theorem 1.1 is applicable to the numerical computation of the flux on the surface
of a regular domain when there is a large variation of the normal vector near a point,
resulting in a large surface area contained in a region of small volume. Indeed, the
flux over the problematic part can be estimated by finding a domain containing
it, avoiding direct computation. We provide an application of Corollary 1.3 in
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Figure 1. The setup for Theorems 1.1 and 1.2.

Section 5, for limits of sequences of regular domains with surface area increasing
without bound; there we use the bound to show that in the limit, the average
normal vector, say in a ball, is zero. Such a result is applied in the case d = 2, in
[Artstein and Bright 2010], to obtain a new Poincaré–Bendixson type result for
planar infinite-horizon optimal control.

Corollary 1.3 generalizes a previous result, for d = 2, established by Artstein
and Bright [2010; 2013]. This topological result has proved fruitful in applications,
providing new Poincaré–Bendixson type results, in an optimal-control setting
[Artstein and Bright 2010; Bright 2012], and in the context of dynamics with no
differentiability assumptions by Bright [2012]. The proofs of the planar result in
[Artstein and Bright 2010; 2013] employ a dynamical argument, which is similar
to the one used in the textbook proof of the Poincaré–Bendixson theorem. In this
paper, we generalize the results to boundaries of open sets, restricting ourselves in
this presentation to regular domains; however the results hold for more general sets
and vector fields. The results in their fullest generality for nonsmooth domains and
fluxes are presented in [Bright and Torres 2014].

Remark 1.5. The requirement that D1 ∩ D2 be compact is essential, as it implies
that ∂D1 ∩ D2 is compact, so that the integrals in (1-1)–(1-3) are finite.

Remark 1.6. Theorem 1.1 can be extended, by replacing the smooth vector field f
with a smooth matrix-valued function 5, using the induced norm.

Remark 1.7. For simplicity, Theorem 1.2 is stated under the assumption that f is
defined on all of Rd ; but as the proof will show, if D2 has finite volume it is only
necessary that f be defined on some neighborhood of D2.

The structure of this paper is as follows. Section 2 presents notation and lemmas
used in the paper. In Section 3 we prove Theorems 1.1 and 1.2, and describe how our
results extend to regular domains in a Riemannian manifold. In Section 4 we prove
Corollary 1.3 and Theorem 1.4, and also provide examples showing the tightness
of the bound. In the last section we provide three applications of Corollary 1.3: an
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application to limits of sequences of regular domains; an extension when d = 2;
and a simplified proof of a theorem on invariant sets for dynamical systems.

2. Notation and lemmas

Throughout this paper, we denote the characteristic function of a set A⊂ Rd by χA.
The d-dimensional volume is denoted by Vol(A), and the (d − 1)-dimensional
surface area of its boundary by Area(∂A). Given two submanifolds S1, S2 ⊂ Rd ,
the notation S1 t S2 means that S1 and S2 intersect transversally. The Euclidean
norm on Rd is denoted by | · |, and the supremum norm on functions by ‖ · ‖∞.
The divergence of a smooth vector field f = ( f 1, f 2, . . . , f d) at the point x =
(x1, x2, . . . , xd) ∈ Rd is denoted by

∇· f (x)=
∂

∂x1 f 1(x)+
∂

∂x2 f 2(x)+ · · ·+
∂

∂xd f d(x).

The following is a simple lemma we need for the proof of the main theorems.

Lemma 2.1. Suppose (X, µ) is a measure space, U, V ⊂ X , and U has finite
measure. For every real-valued function f ∈ L∞(X), we have∣∣∣∣∫

UrV
f (x)µ(dx)

∣∣∣∣≤ 1
2

(
µ(U )‖ f ‖∞+

∣∣∣∣∫
U

f (x)µ(dx)
∣∣∣∣),∣∣∣∣∫

U∩V
f (x)µ(dx)

∣∣∣∣≤ 1
2

(
µ(U )‖ f ‖∞+

∣∣∣∣∫
U

f (x)µ(dx)
∣∣∣∣).

Proof. The first inequality follows from the triangle inequality:∫
U

∣∣∣∣ f (x)
∣∣∣∣µ(dx)≥

∣∣∣∣∫
UrV

f (x)µ(dx)
∣∣∣∣+ ∣∣∣∣∫

U∩V
f (x)µ(dx)

∣∣∣∣
=

∣∣∣∣∫
UrV

f (x)µ(dx)
∣∣∣∣+ ∣∣∣∣∫

UrV
f (x)µ(dx)−

∫
U

f (x)µ(dx)
∣∣∣∣

≥ 2
∣∣∣∣∫

UrV
f (x)µ(dx)

∣∣∣∣− ∣∣∣∣∫
U

f (x)µ(dx)
∣∣∣∣.

The second inequality follows by replacing V with X r V . �

The proofs of the main theorems are based on the divergence theorem for certain
domains in Rd . Let us say a regular domain with corners in Rd is a closed subset
D⊂Rd such that for each point p ∈ D, there exist an open set U ⊂Rd containing p
and a smooth coordinate chart ϕ :U→Rd such that ϕ(U ∩D) is the intersection of
ϕ(U ) with Rd

+
= {x ∈ Rd

| x1
≥ 0, . . . , xd

≥ 0}. Some typical examples are closed
simplices and rectangular solids. Every regular domain is a regular domain with
corners, and a regular domain with corners is a d-dimensional smooth manifold
with corners in the sense defined in [Lee 2013].
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Here is the version of the divergence theorem we will use.

Lemma 2.2. Suppose D ⊂ Rd is a regular domain with corners, having finite
volume and surface area. If f is a smooth vector field defined on D such that both
| f | and |∇· f | are bounded, then∫

∂D
f · n∂D dA =

∫
D
∇· f dV .

Proof. If D is compact, or more generally if f is compactly supported, this follows
immediately from Stokes’s theorem applied to the (d−1)-form f (dx1

∧· · ·∧ dxd),
where denotes interior multiplication. (For Stokes’s theorem on manifolds with
corners, see, for example, [Lee 2013, Theorem 16.25, p. 419].) In the general case,
we argue as follows. Let ϕ : [0,∞)→[0, 1] be a smooth function that is equal to 1
on
[
0, 1

2

]
and supported in [0, 1], and for each r > 0 let ϕr (x)= ϕ(|x |2/r2). Then

the vector field ϕr f is compactly supported, so the divergence theorem implies

(2-1)
∫
∂D
ϕr f · n∂D dA =

∫
D
∇· (ϕr f ) dV .

As r→∞, the integral on the left-hand side of (2-1) converges to
∫
∂D f · n∂D dA

by the dominated convergence theorem. On the other hand, for each r > 0,

|∇· (ϕr f )(x)| =
∣∣∣∣ϕr (x)∇· f (x)+

2
r2

d∑
i=1

ϕ′
(
|x |2

r2

)
x i f i (x)

∣∣∣∣
≤ ‖∇· f ‖∞+

2
r
‖ϕ′‖∞‖ f ‖∞,

because |x | ≤ r on the support of ϕ′(|x |2/r2). Since ∇· (ϕr f ) converges pointwise
to ∇· f and D has finite volume, it follows from the dominated convergence theorem
that the right-hand side of (2-1) converges to

∫
D ∇· f dV . �

The next proposition is used in the proof of the main theorems.

Proposition 2.3. Suppose D1 and D2 are regular domains in Rd , with D1 ∩ D2

compact and with D2 of finite volume and surface area. Suppose further that f
is a smooth bounded vector field defined on a neighborhood of D2. There exists
a sequence of regular domains D2,i such that ∂D2,i is transverse to ∂D1, and the
following limits hold as i→∞:

(a) Vol(D2,i )→ Vol(D2);

(b) Area(∂D2,i )→ Area(∂D2);

(c)
∫
∂D2,i

f · n∂D2,i dA→
∫
∂D2

f · n∂D2 dA.

The domains can be chosen so that D2,i is either a decreasing sequence of domains
whose intersection is D2, or an increasing sequence of domains whose union is D̊2.
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D2

Vη

Figure 2. Defining a domain Dη

2 containing D2.

Proof. As a smooth embedded hypersurface, ∂D2 has a tubular neighborhood N ,
and there exists a smooth embedding E : ∂D2 × (−δ, δ)→ N such that E( · , 0)
is the identity on ∂D2. It can be chosen such that E(∂D2× (0, δ))∩ D2 =∅ and
E(∂D2× (−δ, 0])⊂ D2.

Let W ⊂ Rd be a precompact neighborhood of D1 ∩ D2 contained in the set
on which f is defined, and let ϕ : Rd

→ [0, 1] be a smooth compactly supported
function that is equal to 1 on W . For each η such that δ > η > 0, define

Vη = {E(x, s) : 0≤ s ≤ ηϕ(x)},

Dη

2 = D2 ∪ Vη.

(See Figure 2.) Then Dη

2 is a regular domain containing D2, which agrees with D2

outside the support of ϕ. Its boundary ∂Dη

2 is the image of the embedding ιη :
∂D2 → Rd given by ιη(x) = E(x, ηϕ(x)), which is equal to the inclusion map
∂D2 ↪→ Rd outside supp ϕ. The map E has full rank in (∂D2 ∩W )× (−δ, δ), and
ϕ ≡ 1 there, so by the parametric transversality theorem (see, for example, [Lee
2013, Theorem 6.35, p. 145]), ∂Dη

2 is transverse to ∂D1 for almost every η∈ (−δ, δ).
Now let ηi be a sequence of positive numbers that decreases to zero, chosen so

that ∂Dηi
2 is transverse to ∂D1 for each i , and set D2,i = Dηi

2 . Then D2,i decreases
to D2 and Vol(D2,i ) decreases to Vol(D2). Moreover, because the embeddings ιηi

converge uniformly with all derivatives to the inclusion map ∂D2 ↪→Rd , the surface
area of ∂D2,i converges to that of ∂D2. Further, the function n∂D2,i ◦ ιηi : ∂D2→Rd

converges to n∂D2 . Combining these two arguments, we conclude that (c) is satisfied.
To obtain a sequence of domains that increase to D̊2, we proceed instead as

follows. For each η such that −δ < η < 0, define

Vη = {E(x, s) | ηϕ(x) < s ≤ 0}, Dη

2 = D2 r Vη.

In this case, we can choose a sequence of negative numbers ηi increasing to zero
such that ∂Dηi

2 is transverse to ∂D1. The rest of the proof proceeds as before. �
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3. Proof of Theorems 1.1 and 1.2

In this section, we prove Theorems 1.1 and 1.2. We start with a more general result
that implies both theorems; first, we prove it when the boundaries of the domains
intersect transversally, then, employing an approximation argument, we prove the
general case.

Theorem 3.1. Suppose D1 and D2 are two regular domains in Rd , such that
D1 ∩ D2 is compact and D2 has finite volume and surface area. Let f be a smooth
vector field defined on a neighborhood of D2 such that both | f | and |∇ · f | are
bounded. The absolute value of the flux of f across the portion of ∂D1 inside D2

satisfies the following bound:

(3-1)
∣∣∣∣∫
∂D1∩D2

f · n∂D1 dA
∣∣∣∣

≤
1
2

(
Area(∂D2)‖ f ‖∞+

∣∣∣∣∫
∂D2

f · n∂D2 dA
∣∣∣∣+Vol(D2)‖∇· f ‖∞+

∣∣∣∣∫
D2

∇· f dV
∣∣∣∣).

The same estimate holds when ∂D1 ∩ D2 is replaced by ∂D1 ∩ D̊2 on the left-
hand side.

Proposition 3.2. Theorem 3.1 holds when ∂D1 t ∂D2.

Proof. Note that ∂(D1 ∩ D2) is compact, and

(3-2) ∂(D1 ∩ D2)= (∂D1 ∩ D2)∪ (D1 ∩ ∂D2).

Adding and subtracting
∫
∂D2∩D1

f · n∂D2 dA, we obtain∫
∂D1∩D2

f · n∂D1 dA =
∫
∂D1∩D2

f · n∂D1 dA+
∫
∂D2∩D1

f · n∂D2 dA−
∫
∂D2∩D1

f · n∂D2 dA

=

∫
∂(D1∩D2)

f · n∂(D1∩D2) dA−
∫
∂D2∩D1

f · n∂D2 dA,

since ∂D1 ∩ ∂D2 is a smooth (d − 2)-dimensional submanifold and thus has zero
(d − 1)-dimensional area.

The assumption ∂D1 t ∂D2 implies that D1 ∩ D2 is a smooth manifold with
corners. To see this, we just need to show that each point is contained in the domain
of an appropriate smooth coordinate chart. For points not in ∂D1∩∂D2, this follows
easily from the fact that D1 and D2 are regular domains. If x ∈ ∂D1 ∩ ∂D2, we
can find a local defining function u1 for D1 such that D1 is locally given by the
equation u1

≥ 0; and similarly we can find a local defining function u2 for D2. The
assumption ∂D1 t ∂D2 ensures that du1 and du2 are linearly independent at x . Thus
we can find smooth functions u3, . . . , ud such that (u1, . . . , ud) form the required
local coordinates in a neighborhood of x .
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Applying the divergence theorem, we get∫
∂D1∩D2

f · n∂D1 dA =
∫

D2∩D1

∇· f dV −
∫
∂D2∩D1

f · n∂D2 dA.

Applying Lemma 2.1 to both terms on the right hand side completes the proof
for ∂D1∩D2. The result for ∂D1∩ D̊2 is immediate in this case, because ∂D1∩∂D2

has zero surface area. �

Proof of Theorem 3.1. Let D2,i be a sequence of regular domains decreasing to D2

and satisfying the conclusions of Proposition 2.3. By Proposition 3.2, for every i
we have that

∣∣∫
∂D1∩D2,i

f · n∂D1 dA
∣∣ is bounded by

1
2

(
Area(∂D2,i )‖ f ‖∞+

∣∣∣∣∫
∂D2,i

f ·n∂D2,i dA
∣∣∣∣+Vol(D2,i )‖∇· f ‖∞+

∣∣∣∣∫
D2,i

∇· f dV
∣∣∣∣).

Proposition 2.3 shows that the first three terms above converge to the first three
terms on the right-hand side of (3-1). To complete the proof, we use the facts that
the sets D2,i decrease to D2 and the compact sets ∂D1∩ D2,i decrease to ∂D1∩ D2

as i goes to infinity, and thus the Lebesgue dominated convergence theorem yields

lim
i→∞

∣∣∣∣∫
D2,i

∇· f dV
∣∣∣∣= ∣∣∣∣∫

D2

∇· f dV
∣∣∣∣

and

lim
i→∞

∣∣∣∣∫
∂D1∩D2,i

f · n∂D1 dA
∣∣∣∣= ∣∣∣∣∫

∂D1∩D2

f · n∂D1 dA
∣∣∣∣.

This completes the proof for ∂D1 ∩ D2.
To prove the estimate for ∂D1 ∩ D̊2, we use the same argument, but with D2,i

chosen to increase to D̊2. Because ∂D2 has d-dimensional measure zero, we have∫
D̊2
∇· f dV =

∫
D2
∇· f dV , and the result follows. �

Proof of Theorem 1.1. Inequality (1-1) follows immediately from (3-1) and obvious
estimates for the integrals. �

Proof of Theorem 1.2. We first assume that Vol(D2) <∞, so that (3-1) holds. In
this case, the last two terms in (3-1) are zero because ∇· f = 0, and the second term
is zero by the divergence theorem.

Now consider the case in which D2 has infinite volume. Let D′2 denote the
closure of Rd r D2, which is a regular domain with interior D̊′2=Rd rD2. Because
Area(∂D′2)= Area(∂D2) <∞, the isoperimetric inequality (see [De Giorgi 1953])
implies that D′2 has finite volume. If D1 also has finite volume, the divergence
theorem gives∫

∂D1∩D2

f · n∂D1 dA+
∫
∂D1∩D̊′2

f · n∂D1 dA =
∫
∂D1

f · n∂D1 dA =
∫

D1

∇· f dV = 0,
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and (1-2) follows from Theorem 3.1 applied to the second term on the left-hand side
above. On the other hand, if Vol(D1)=∞, we let D′1 be the closure of Rd r D1

(which has finite volume), and apply the above argument with D′1 in place of D1. �

To conclude this section, we explain what modifications need to be made to
Theorems 1.1 and 1.2 and their proofs to adapt them to the case of regular domains
in Riemannian manifolds.

Suppose M is a d-dimensional smooth Riemannian manifold with Riemannian
metric g and volume density dVg. (If M is oriented, dVg can be interpreted as a
differential d-form; but otherwise it needs to be interpreted as a density. See [Lee
2013, pp. 427–434] for basic properties of densities.) A regular domain D ⊂ M is
defined just as in the case M =Rd . If D ⊂ M is a regular domain, it has a uniquely
defined outward unit normal vector field n∂D . For any such domain, we let g̃ denote
the induced Riemannian metric on ∂D, and let dAg̃ denote its volume density.

For any smooth vector field f defined on an open subset of M , the divergence of
f , denoted by ∇· f , is defined as follows. If M is oriented, then ∇· f is the unique
vector field that satisfies (∇· f ) dVg = d( f dVg). On a nonorientable manifold, we
define it locally by choosing an orientation and using the same formula; because ∇· f
is unchanged when the orientation is reversed, it is globally defined. The divergence
theorem then holds in exactly the same form for smooth d-dimensional submanifolds
with corners in M . Moreover, any compact smooth embedded hypersurface in M has
a tubular neighborhood in M . (See [Bredon 1993, Theorem 11.14, p. 100] for a proof.
Although the proof there is for manifolds embedded in Euclidean space, it follows
from the Whitney embedding theorem that it applies to all smooth manifolds.)

Using these facts, the proof of the following theorem is carried out exactly like
the proofs of Theorems 1.1 and 1.2. To avoid complications, we restrict to the case
in which D2 is compact.

Theorem 3.3. If D1 and D2 are regular domains in a Riemannian manifold (M, g)
with D2 compact, and f is a smooth vector field defined on a neighborhood of D2,
then the conclusions of Theorems 1.1 and 1.2 hold, namely,∣∣∣∣∫

∂D1∩D2

〈 f, n∂D1〉g dAg̃

∣∣∣∣≤ Area(∂D2)‖ f ‖∞+Vol(D2)‖∇· f ‖∞,

and if ∇· f ≡ 0, ∣∣∣∣∫
∂D1∩D2

〈 f, n∂D1〉g dAg̃

∣∣∣∣≤ 1
2 Area(∂D2)‖ f ‖∞.

4. Bounding integrals of normal fields

In this section, we prove Corollary 1.3 and Theorem 1.4. We also provide examples
on the tightness of the bound.
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Proof of Corollary 1.3. Let v =
∫
∂D1∩D2

n∂D1 dA. If |v| = 0 there is nothing to
prove, so we assume that |v|> 0, and let f : Rd

→ Rd be the constant vector field
f ≡ v/ |v|. Clearly, |v| = v · v/|v| =

∫
∂D1∩D2

f · n∂D1 dA. Now, since ∇· f ≡ 0 and
‖ f ‖∞ = 1, the proof follows from Theorem 1.2. �

To prove Theorem 1.4, we begin with a lemma.

Lemma 4.1. Suppose D ⊂Rd is a compact convex regular domain with diameter δ
and C is any measurable subset of ∂D. Then for any unit vector v ∈ Rd , we have

(4-1)
∫

C
v · n∂D dA ≤ 1

2 Vol(Bd−1(δ/2)).

Proof. First consider the case v = ed = (0, . . . , 0, 1). After applying a translation,
we can assume that D is contained in the set where xd

≥ 0. Its boundary is the
union of the three subsets ∂D+, ∂D0, and ∂D−, defined as the subsets of ∂D where
v · n∂D is positive, zero, or negative, respectively.

Now, let A be the following subset of Rd :

A = {(x1, . . . , xd−1, t xd) | (x1, . . . , xd) ∈ D, 0≤ t ≤ 1}.

Then A is a compact convex set, and its boundary is the union of the three subsets
∂A+, ∂A0, and ∂A−, defined in the same way as above. (See Figure 3.)

The fact that D is convex ensures that ∂A+ = ∂D+, ∂A0 ⊃ ∂D0, and ∂A− is
contained in the hyperplane where xd

= 0. Moreover, A is a C1 manifold with
corners. (Its boundary might not be smooth at points where ∂A0 meets ∂A+, but it
is at least C1 there.)

D

A
v

xd

x1, . . . , xd−1

∂D0

∂A−

∂A0

∂D−

∂A+ = ∂D+

∂A0

Figure 3. Proof of Lemma 4.1.
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Using the fact that v · n∂D < 0 on ∂D− and v · n∂D = 0 on ∂D0, we compute∫
C
v · n∂D dA =

∫
C∩∂D+

v · n∂D dA+
∫

C∩∂D0

v · n∂D dA+
∫

C∩∂D−
v · n∂D dA

≤

∫
C∩∂D+

v · n∂D dA ≤
∫
∂D+
v · n∂D dA

=

∫
∂A+
v · n∂A dA =−

∫
∂A−
v · n∂A dA,

where in the last line we have used the divergence theorem for the vector field f ≡ v
and the fact that v · n∂A = 0 on ∂A0. Since n∂A = −v on ∂A−, the last integral is
equal to the area of ∂A−. Since ∂A− is contained in a (d − 1)-dimensional ball of
radius δ/2, the result follows.

Finally, for the case of a general unit vector v, we just apply a rotation to D and
apply the above argument. �

Proof of Theorem 1.4. Let D1 and D2 be as in the statement of the theorem. If∫
∂D1∩D2

n∂D1 dA = 0, there is nothing to prove, so assume the integral is nonzero,
and let v be the unit vector in the direction of

∫
∂D1∩D2

n∂D1 dA. Then∣∣∣∣∫
∂D1∩D2

n∂D1 dA
∣∣∣∣= v · ∫

∂D1∩D2

n∂D1 dA

=

∫
∂D1∩D2

v · n∂D1 dA,

and the result follows from Lemma 4.1. �

The following examples demonstrate the tightness of the bound for nonconvex
sets, as well as the necessity of the condition that the hypersurface be the boundary
of a regular domain.

Example 4.2. The main theorem explicitly uses the divergence theorem, which
is applied to space-separating hypersurfaces. In fact, the bounds do not apply for
images of general smooth immersions. To construct a counterexample in the plane
(i.e., for d = 2), start with a smooth Jordan curve in the plane, then cover it m times,
with small perturbations, making the integral on the left-hand side of (1-3) roughly
m times as large, while the right-hand side is fixed because it depends only on ∂D2.
Clearly, whenever the left-hand side of (1-3) is not zero, we can choose m large
enough that the inequality does not hold.

Example 4.3. To see that the bound obtained in Corollary 1.3 is tight, and cannot
be replaced by a bound based only on the diameter of D2 when D2 is not convex,
we consider comb-shaped subsets of Rd , for d ≥ 2, generated in the following
manner. Fix n > 2, and let Dn be a closed nonsmooth comb-shaped set defined as
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D1,4

D2,4

Figure 4. The domains of Example 4.3 in the case n = 4 (before smoothing).

the union of the following rectangles:

Ri,n = {(x1, . . . , xd) ∈ [0, 1]d | i/n ≤ x2
≤ i/n+ 1/n2

}, 0≤ i ≤ n− 1;

Rn,n = {(x1, . . . , xd) ∈ [0, 1]d | 0≤ x1
≤ 1/n2

}.

Applying a small perturbation we then smooth its corners, and set D1,n accordingly.
Let D2,n be the translation of D1,n by the vector (1/(2n2), 1/(2n2), 0, . . . , 0) ∈Rd .
(See Figure 4.) By our construction, the surface area of each set ∂D1,n or ∂D2,n is
roughly 2n+ 2, and the fraction of the boundary area where the normal vector of
∂D1,n is parallel to the x2-axis is roughly n/(n+1), approaching 1 when n is large.
Notice that by the choice of D2,n , when we integrate the normal vector in the portion
of ∂D1,n inside D2,n we capture only the part pointing in the positive direction of
the x2-axis. This shows that the integral of the normal vector has magnitude of
roughly n, approaching half the surface area when we take n to infinity.

5. Applications: limits of hypersurfaces & planar results

In this section we provide two applications of Corollary 1.3, extending previous
planar results in [Artstein and Bright 2010; 2013]. The first is for limits of regular
domains whose surface areas increase without bound. The second is an application
in the planar case.

Corollary 1.3 bounds the normal vector of the boundary of a regular domain in a
second regular domain, by the surface area of the boundary of the second domain,
and completely disregarding the surface area of the original hypersurface. This is
now applied to surfaces with increasing surface area, establishing a new result on
the limit.

We will denote by Sd−1
⊂ Rd the unit (d−1)-sphere. For every hypersurface

we define a corresponding probability measure using the following notation:
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Definition 5.1. Suppose S ⊂ Rd is a smooth hypersurface endowed with a unit
normal vector field nS . We define the empirical measure µ ∈ P(Rd

× Sd−1)

corresponding to S by

µ(U × V )=
1

Area(S)

∫
S∩U

χV (nS) dA,

for all open sets U ⊂ Rd and V ⊂ Sd−1.

A useful property of empirical measures is that, if f : Rd
×Sd−1

→ R is
continuous, we have

1
Area(S)

∫
S

f (x, nS) dA =
∫

Rd×Sd−1
f (x, n)µ(dx, dn).

We endow the set of probability measures P(Rd
×Sd−1) with the weak topology,

namely, a sequence of measures µ1, µ2, . . .∈ P(Rd
×Sd−1) converges to a measure

µ0 ∈ P(Rd
×Sd−1) if for every bounded continuous function g(x, n),∫

Rd×Sd−1
g(x, n)µ0(dx, dn)= lim

i→∞

∫
Rd×Sd−1

g(x, n)µi (dx, dn).

Another tool we need for the next theorem is disintegration of measures. Given
a probability measure µ ∈ P(Rd

×Sd−1), we define its marginal measure, p(dx),
as the projection on Rd , namely, p(A) = µ(A×Sd−1) for every measurable set
A ⊂ Rd . Also, we denote the measure valued function µx(dn), the disintegration
of µ with respect to p, for p-almost every x . With this notation, for every pair of
measurable sets U ⊂ Rd and V ⊂ Sd−1, we have that

µ(U × V )=
∫

U
µx(V )p(dx).

We now state the main result regarding the limits of regular domains.

Theorem 5.2. Let D1, D2, . . . ⊂ Rd be a sequence of compact regular domains,
such that the surface areas of their boundaries increases to infinity. If the empiri-
cal measures µ1, µ2, . . . , corresponding to the sequence ∂D1, ∂D2, . . . , converge
weakly to µ0, then

h(x)=
∫

Sd−1
n µx

0(x)(dn)= 0

for p0-almost every x , where µ0(dx, dn)= p0(dx)µx
0(dn) is the disintegration of µ0

with respect to its projection p0.

Proof. Let B = B(x, r) ⊂ Rd be a ball centered at x with radius r > 0. By the
definition of the empirical measures and by Corollary 1.3,∣∣∣∣∫

B×Sd−1
n dµi (dx, dn)

∣∣∣∣= ∣∣∣∣ 1
Area(∂Di )

∫
∂Di∩B

n∂Di dA
∣∣∣∣≤ Area(∂B)

2 Area(∂Di )
.
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Weak convergence of measures and the dominated convergence theorem imply that∣∣∣∣∫
B×Sd−1

n dµ0(dx, dn)
∣∣∣∣= lim

i→∞

∣∣∣∣∫
B×Sd−1

n dµi (dx, dn)
∣∣∣∣

≤ lim
i→∞

Area(∂B)
2 Area(∂Di )

= 0

for a set of values of r > 0 of full measure for which µi (∂B(x, r)×Sd−1)= 0, for
all i = 0, 1, 2, . . . . Using the disintegration notation we obtain that∣∣∣∣∫

B×Sd−1
n dµ0(dx, dn)

∣∣∣∣= ∣∣∣∣∫
B

(∫
Sd−1

n µx
0(dn)

)
p0(dx)

∣∣∣∣
=

∫
B

h(x)p0(dx)= 0

for almost every ball B. If the measure p0(dx) is Lebesgue measure, by the Lebesgue
differentiation theorem we have h(x) = 0 almost everywhere. The Lebesgue–
Besicovitch differentiation theorem extends this result to Radon measures (see, for
example, [Evans and Gariepy 1992, p. 43]). �

Remark 5.3. Theorem 5.2 requires the convergence of the empirical measures.
When the domains in the sequence are contained in some compact set K , the
compactness of the space K ×Sd−1 implies the compactness of P(K ×Sd−1), and,
therefore, the existence of a converging subsequence [Billingsley 1999, p. 72].

In two dimensions, our result extends as follows.

Corollary 5.4. Suppose x1 : [0, τ1] → R2 is a parametrized smooth Jordan curve
and D2 ⊂ R2 is a regular domain. If the length of ∂D2 is L2, then∣∣∣∣∫ τ1

0
χD2(x1(t))

d
dt

x1(t) dt
∣∣∣∣≤ L2

2
.

Proof. Let T1 and N1 be the unit tangent and normal vectors of x1. Using the
arc-length parametrization, we have that∣∣∣∣∫ τ1

0
χD2(x1(t))

d
dt

x1(t) dt
∣∣∣∣= ∣∣∣∣∫ L1

0
χD2(x1(s))T1(s) ds

∣∣∣∣ ,
where L1 is the length of x1. Expressing the tangent vector in terms of the normal
vector, we reduce the previous expression to∣∣∣∣∫ L1

0
χD2(x1(s))

[
0 −1
1 0

]
N1(s) ds

∣∣∣∣= ∣∣∣∣∫ L1

0
χD2(x1(s))N1(s) ds

∣∣∣∣ ,
as the rotation matrix is orthogonal. Applying Corollary 1.3 completes the proof. �
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For our final application, we consider an ordinary differential equation in the
plane defined by

(5-1)
dx
dt
= f (x),

where f :R2
→R2 is a vector field (generally assumed at least Lipschitz continuous).

An invariant set for f is a subset of R2 that is invariant under the forward flow of f
and a minimal set is a nonempty closed invariant set that is minimal with respect
to inclusions. A trivial minimal set is a set that is the image of either a stationary
solution or a periodic solution.

We present a new short proof of the following well-known result.

Theorem 5.5. Suppose f is a smooth vector field on R2. Then every minimal set
for f is trivial.

The textbook proof of this theorem (see [Verhulst 1996]) relies on the Poincaré–
Bendixson theorem, and employs dynamical arguments. Here we present a simpler
proof based on the divergence theorem, and specifically on Corollary 1.3. Note
that the divergence theorem was used by Bendixson in the proof of the Bendixson
criterion, which verifies that no periodic solutions exist.

Our proof uses the following well-known lemmas.

Lemma 5.6. Suppose �⊂ R2 is a minimal set for (5-1) and x∗ : [0,∞)→ R2 is a
solution to (5-1) with trajectory contained in �. For every y0 ∈�, s ∈ [0,∞), and
δ > 0, there exists t > s such that |x∗(t)− y0|< δ.

Proof. Suppose the lemma does not hold for some y0, s, and δ. Then the curve
y∗(t) = x∗(s + t) is a solution to (5-1) with trajectory contained in �r B(y0, δ)

for a suitable δ > 0, in contradiction to the minimality of �. �

The next lemma follows easily from Sard’s theorem.

Lemma 5.7. Suppose I ⊂ R is a compact interval and g : I → R is smooth. Then
for almost every r ∈ R, the set g−1(r)= {t ∈ I | g(t)= r} is finite.

Proof of Theorem 5.5. Clearly,� is a singleton if and only if it contains a point y ∈�
such that f (y)= 0, so we may assume henceforth that f does not vanish in � and
� contains more than one point. Choose D > 0 such that �r B(x∗(0), 3D) 6=∅.
We construct sequences of real numbers {δi } and {ti }, and a sequence of simple
closed curves {γi }, as follows. Set δ0 = D, and let t0 be the first time where x∗

meets ∂B(x∗(0), δ0). For i = 1, 2, . . . do the following:

(a) Choose δi < δi−1/2 small enough that |x∗(0)− x∗(t)|> δi for all t ∈ [t0, ti−1].

(b) Let ti be the first time after t0 where the curve x∗ meets ∂B(x∗(0), δi ). (Here
we use Lemma 5.6.)
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x∗(0)

x∗(s1)

x∗(t1)

x∗(t0)

Figure 5. Proof of Theorem 5.5.

(c) Starting from x∗(ti ), follow the line connecting it to x∗(0), until that line first
meets a point in x∗([0, t0]). Let x∗(si ) be this point. (See Figure 5.)

(d) Let γi be the parametrized piecewise smooth curve obtained by following the
curve x∗ in the interval [si , ti ], and then the line connecting its endpoints with
unit speed.

Note that ti is an increasing sequence and that the uniqueness of the solution with
respect to the initial condition implies that every γi is a Jordan curve. Suppose first
that the sequence {ti } is bounded above. Then ti → t∗ ∈ R+ and x∗(ti )→ x∗(t∗).
According to our construction, |x∗(0)− x∗(ti )| = δi < 2−i D for every i . Hence by
continuity x∗(t∗)= x∗(0), and x∗ is periodic. By the minimality of �, the image
of x∗ is �.

The only remaining possibility is ti↗∞. Fix y0 ∈� such that |y0− x∗(0)|>2D.
By Lemma 5.7, there exists arbitrarily small r0 < D such that the set

{t ∈ [0, s] | |x∗(t)− y0| = r0}

is finite for every s > 0. (This follows from the fact that g(t)= |x∗(t)− y0|
2 is a

smooth function of t .) Note that this implies that the portion of γi in B0= B(y0, r0)

is part of the trajectory x∗, and that for every i the Jordan curve γi intersects ∂B0 at
a finite number of points.

For every i , we let Di denote the domain consisting of the Jordan curve γi

together with its interior. Although Di is not a regular domain, it is a regular
domain with two corner points, which are outside of B0, and it is easy to see that
Corollary 1.3 can be applied to ∂Di ∩ B0. Thus by Corollary 5.4,∣∣∣∣∫

{t≤ti |x∗(t)∈B0}

d
dt

x∗(t) dt
∣∣∣∣= ∣∣∣∣∫

{t≤ti |x∗(t)∈B0}

f (x∗(t)) dt
∣∣∣∣≤ πr0.
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Because � is minimal, Lemma 5.6 implies that the set {t | x∗(t) ∈ B0} has infinite
measure. This implies that 0 is contained in the convex hull of the set

{ f (y) | y ∈ B0}.

The radius r0 can be chosen arbitrary small; therefore, the continuity of f implies
that f (y0)= 0, in contradiction. �
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