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THE BOCHNER FORMULA FOR ISOMETRIC IMMERSIONS

ALESSANDRO SAVO

We study the Bochner formula for a manifold isometrically immersed into
another and obtain a Gauss-type splitting of its curvature term. In fact, we
prove that the curvature term in the Bochner formula is an operator that
can be explicitly expressed in terms of the curvature operator of the ambi-
ent manifold and the extrinsic geometry (second fundamental form) of the
immersion. Several applications of this splitting are given, namely, eigen-
value estimates for the Hodge Laplacian, vanishing results for the de Rham
cohomology and rigidity of immersions of Kähler manifolds into negatively
curved spaces.

1. Introduction

Let 6n be a Riemannian manifold of dimension n (all manifolds in this paper are
connected, orientable and without boundary) and let ω be a differential p-form
on 6. The Bochner formula states

(1) 1ω =∇?∇ω+B[p]ω.

Here 1= dδ+ δd is the Hodge Laplacian (δ being the adjoint of d), ∇?∇ is the
connection Laplacian, and

B[p] :3p(6)→3p(6)

is a certain symmetric endomorphism of the bundle of p-forms. We call B[p] the
Bochner curvature term or simply the Bochner operator.

When 6 is compact, knowing that B[p] is positive at each point implies that any
harmonic p-form must vanish; then, by the Hodge–de Rham theorem, the de Rham
cohomology H p(6,R) must vanish. More generally, a positive lower bound of
the eigenvalues of B[p] implies a positive lower bound of the first eigenvalue of
the Hodge Laplacian acting on p-forms. All these facts are consequences of the
well-known Bochner method, and will be recalled in Proposition 3.

It is then important to look for estimates of the eigenvalues of B[p]. It turns out
that B[1] is simply the Ricci tensor (acting on 1-forms); but for degrees 2≤ p≤n−2
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the operator B[p] is more complicated and difficult to control. A breakthrough was
obtained by Gallot and Meyer [1975]. They proved that, for all p = 1, . . . , n− 1,

(2) B[p] ≥ p(n− p)γ6,

where γ6 is a lower bound of the eigenvalues of the curvature operator of 6.
In this paper, we study the Bochner curvature term of a manifold6n isometrically

immersed in a larger manifold Mn+q by a smooth map f :6n
→Mn+q . The natural

problem we address is to give a new expression of the Bochner curvature in terms
of the extrinsic geometry of the immersion, which would eventually improve the
estimate (2) in this important situation. It turns out that this is in fact possible. In
Theorem 1 we prove a Gauss-type formula and show that B[p] splits into the sum
of two operators acting on 3p(6):

B
[p]
=B

[p]
res +B

[p]
ext .

We then prove that B
[p]
res , which depends on the geometry of the ambient manifold M ,

is bounded below by the lowest eigenvalue of the curvature operator of M :

B[p]res ≥ p(n− p)γM ,

while the extrinsic part B
[p]
ext is explicitly described in terms of the second funda-

mental form of the immersion. For example, if 6 has codimension one and S is the
shape operator relative to any of the two choices of the unit normal vector field, then

(3) B
[p]
ext = tr S · S[p]− S[p] ◦ S[p],

where S[p] : 3p(6)→ 3p(6) is the self-adjoint extension of S, acting on the
form ω by

(4) S[p]ω(X1, X2, . . . , X p)=

p∑
j=1

ω(X1, . . . , S(X j ), . . . , X p)

for all tangent vectors X1, . . . , X p. In higher codimensions, one simply sums the
expression (3) over the shape operators of an orthonormal basis of the normal
bundle. We refer to Theorem 1 for the precise statement.

From (3) and (4) one sees that the eigenvalues of B
[p]
ext can be estimated in terms

of the eigenvalues of S (principal curvatures) and explicit bounds of the extrinsic
part will follow.

Thus, one can bound the Bochner curvature in terms of the curvature operator of
the ambient manifold M and the second fundamental form of the immersion. This
can be done in different ways (see Section 4) and leads to a number of applications.
In particular:
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• We prove an extrinsic, sharp lower bound of the first eigenvalue of the Hodge
Laplacian of 6, assuming that 6 has codimension one in M (Theorem 7).

• We prove a vanishing theorem for the de Rham cohomology of 6, assuming that
the norm of the traceless second fundamental form of 6 is bounded above by
a suitable function of the mean curvature (Theorem 8). The condition is sharp
when the ambient manifold is a sphere, in which case we get a rigidity result for
Clifford tori (Theorem 9).

• We prove a lower bound of the first eigenvalue of the Hodge Laplacian of 6,
assuming that the norm of its second fundamental form is bounded above by a
suitable constant and that the ambient manifold is positively curved (Theorem 10).
When the ambient manifold is a sphere this reproves a vanishing theorem for the
de Rham cohomology of 6 due to Lawson and Simons; moreover the limit case
leads to a rigidity result for a certain Clifford torus (Theorem 11).

• We prove that if 6 supports a nontrivial parallel p-form and admits an isometric
immersion into a negatively curved space, then its mean curvature vector has
norm bounded below by an explicit positive constant (Theorem 12). This has
applications to immersions of Kähler manifolds (Corollary 13).

• We classify the compact hypersurfaces of Sn+1 which support a parallel p-form
(Theorem 4): if n ≥ 3 they are in fact products of spheres (Clifford tori). This
result is perhaps of independent interest, and is needed to prove the rigidity
theorems above.

In conclusion, we hope that this new representation of the Bochner formula
will be useful, and that it will lead to other interesting applications in submanifold
geometry.

The paper is organized as follows. In Section 2 we state the main theorem; in
Section 3 we state the main applications; these will be proved in Section 4, along
with the explicit bounds on the Bochner operator. In Section 5 we prove the main
theorem and in Section 6 we prove Theorem 4.

2. The Bochner curvature term

Let f : 6n
→ Mn+q be an isometric immersion with codimension q ≥ 1. The

second fundamental form L of f is defined by the relation

∇
M
X Y =∇X Y + L(X, Y ),

where X, Y ∈ T6 and ∇M ,∇ denote the Levi-Civita connections in M and 6,
respectively. Note that L(X, Y ) is a vector normal to 6, so that L takes values in
the normal bundle of the immersion. If ν ∈ T⊥6 is a normal vector, we denote its
associated shape operator by Sν . It is the self-adjoint endomorphism of T6 defined
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on X, Y ∈ T6 by
〈Sν(X), Y 〉 = 〈L(X, Y ), ν〉.

The mean curvature vector H is defined by H = (1/n) tr L; so, for any orthonormal
basis (e1, . . . , en) of T6, one has nH =

∑n
j=1L(e j , e j ). The squared norm of

the second fundamental form is denoted by |S|2. Note that if (ν1, . . . , νq) is an
orthonormal basis in the normal bundle, then

n2
|H |2 =

q∑
i=1

(tr Sνi )
2 and |S|2 =

q∑
i=1

|Sνi |
2.

Now extend Sν to a self-adjoint operator acting on p-forms, S[p]ν :3p(6)→3p(6),
as in (4), and let

T [p]ν

.
= (tr Sν)S[p]ν − S[p]ν ◦ S[p]ν .

Introduce the self-adjoint endomorphism of 3p(6)

(5) B
[p]
ext =

q∑
j=1

T [p]ν j
=

q∑
j=1

(
(tr Sν j )S

[p]
ν j
− S[p]ν j

◦ S[p]ν j

)
.

Then, we have:

Theorem 1. Let f :6n
→Mn+q be an isometric immersion. The Bochner operator

acting on p-forms of 6 splits as

B
[p]
=B

[p]
res +B

[p]
ext ,

where the operator B
[p]
ext is defined by (5), and the operator B

[p]
res satisfies the bounds

p(n− p)γM ≤B[p]res ≤ p(n− p)0M ,

where γM and 0M are respectively a lower and an upper bound on the curvature
operator of M. If M has constant sectional curvature γ , then

B[p]res = p(n− p)γ.

For the definition of B
[p]
res and the proof of Theorem 1, see Section 5. The notation

“res” is chosen because B
[p]
res depends on the restriction of the curvature operator of

M to the submanifold 6.
Let us give a more explicit expression of B

[p]
ext . In what follows, S = Sν will be

the shape operator associated to a given unit normal vector ν. We denote by Ip the
set of p-multi-indices

Ip = {{ j1, . . . , jp} : 1≤ j1 < · · ·< jp ≤ n}.



THE BOCHNER FORMULA FOR ISOMETRIC IMMERSIONS 399

Let (e1, . . . , en) be an orthonormal basis of T6 which diagonalizes S; then

S(e j )= k j e j ,

where k1, . . . , kn are the principal curvatures. If α = { j1, . . . , jp} ∈ Ip, we define

(6) Kα
.
= k j1 + · · ·+ k jp

and call it a p-curvature of S. Let (θ1, . . . , θn) be the dual basis of (e1, . . . , en); if
α = { j1, . . . , jp} ∈ Ip, consider the p-form

2α
.
= θ j1 ∧ · · · ∧ θ jp .

Then {2α}α∈Ip is an orthonormal basis of 3p(6). From the definition (4) one sees
that S is extended as a derivation of 3?(6), hence 2α is an eigenform of S[p]

associated to the eigenvalue Kα:

S[p]2α = Kα2α.

In turn, if α = { j1, . . . , jp} ∈ Ip, let ?α ∈ In−p be the multi-index given by the
complement of α in {1, . . . , n}:

?α
.
= {1, . . . , n} \ { j1, . . . , jp}.

Let T [p] = (tr S)S[p]− S[p] ◦ S[p]. Since Kα + K?α = k1+ · · ·+ kn , we have

T [p]2α =
(
(k1+ · · ·+ kn)Kα − K 2

α

)
2α = KαK?α2α

and then 2α is also an eigenform of T [p] associated to the eigenvalue KαK?α. In
conclusion, we have:

Lemma 2. Let S = Sν be the shape operator relative to a given unit normal vector
ν ∈ T⊥6. Let T [p] :3p(6)→3p(6) be the operator

T [p] = (tr S)S[p]− S[p] ◦ S[p].

Then the eigenvalues of T [p] are given by the
(n

p

)
numbers KαK?α, where α ∈ Ip

runs over the set of p-multi-indices and Kα are the p-curvatures defined in (6).
In particular, if 6 is a hypersurface of Mn+1, and S is the shape operator of 6

relative to any of the two choices of the unit normal vector, then T [p] =B
[p]
ext and

(7) min
α∈Ip

KαK?α ≤B
[p]
ext ≤max

α∈Ip
KαK?α.

In higher codimensions, in order to estimate B
[p]
ext it is enough to estimate the

p-curvatures of the shape operators Sν j for an orthonormal frame (ν1, . . . , νq) in
the normal bundle of the immersion. It will then be possible to bound B

[p]
ext in terms

of |S|2 and |H |2 (see Section 3).
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Let us briefly explain why Theorem 1 improves the bound (2). For simplicity,
assume that 6n is a hypersurface of Rn+1, with principal curvatures k1, . . . , kn .
It is known that the curvature operator of 6 has eigenvalues {ki k j : i 6= j} (see also
Section 5.2). Hence

γ6 = inf{ki k j : i 6= j}.

Now observe that since B
[p]
res = 0, we have B

[p]
=B

[p]
ext ; if α ∈ Ip is a multi-index,

then KαK?α is a sum of p(n− p) products of type ki k j with i 6= j . Then (7) gives

B[p] ≥ min
α∈Ip

KαK?α ≥ p(n− p)γ6,

the expression on the right being the lower bound in (2). Numerical examples show
that the lower bound in (7) is often much better than (2).

2.1. The Bochner method. When the manifold 6 is compact, lower bounds of the
Bochner curvature lead to lower bounds of the Hodge–Laplace spectrum. Here we
recall the main facts. Let λ1,p(6) be the lowest eigenvalue of the Hodge–Laplace
operator acting on p-forms of 6. It is well known that

(8) λ1,p(6)= inf
{∫

6
|dω|2+ |δω|2∫

6
|ω|2

: ω ∈3p(6) \ {0}
}
.

As6 is orientable and the quadratic form in (8) is invariant under the Poincaré duality
induced by the Hodge ?-operator, we have λ1,p = λ1,n−p and so we can assume that
p ≤ n/2. Clearly λ1,p = 0 if and only if 6 supports a nontrivial harmonic p-form,
in which case H p(6,R)= H n−p(6,R) 6= 0 (the Hodge–de Rham theorem).

The next proposition is well known and is often called the Bochner method (the
estimate (iii) follows from a lower estimate of the energy of a form due to Gallot
and Meyer [1975]). We state it in the following form for future reference.

Proposition 3. Let 6n be a compact, orientable manifold, 1≤ p ≤ n/2 and B[p]

the curvature term in the Bochner formula (1).

(i) If B[p] ≥ 0 and the strict inequality holds at some point, then we have
H p(6,R)= H n−p(6,R)= 0.

(ii) If B[p] ≥ 0 and H p(6,R) 6= 0, then any harmonic p-form is parallel. In
particular, 6n supports a parallel p-form.

(iii) If B[p] ≥ p(n− p)3 for some 3> 0, then

λ1,p(6)≥ p(n− p+ 1)3.

Proof. Let ω be a p-form. Taking the scalar product with ω on both sides of (1),
we obtain

(9) 〈1ω,ω〉 = |∇ω|2+〈B[p]ω,ω〉+ 1
21|ω|

2.
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Integrating on 6 (with respect to the canonical Riemannian measure), we get

(10)
∫
6

〈1ω,ω〉 =

∫
6

(
|∇ω|2+〈B[p]ω,ω〉

)
.

If we assume that B[p] ≥ 0 and that ω is harmonic, we get

0=
∫
6

(
|∇ω|2+〈B[p]ω,ω〉

)
≥ 0,

which implies |∇ω| = 0 and 〈B[p]ω,ω〉 = 0 everywhere. It is well known that a
harmonic form cannot vanish on an open set unless it is zero everywhere. If, at
some point x0 ∈6, the strict inequality B[p] > 0 holds, we see that ω must vanish
in a neighborhood of x0, hence ω = 0 everywhere. This proves (i). Assertion (ii) is
immediate.

We now prove (iii). Let ω be a p-eigenform, so that 1ω = λ1,pω. By an
inequality of Gallot and Meyer [1975] we have

|∇ω|2 ≥
|dω|2

p+ 1
+
|δω|2

n− p+ 1
.

Since p ≤ n/2 we see that p+ 1≤ n− p+ 1, hence∫
6

|∇ω|2 ≥

∫
6

|dω|2+ |δω|2

n− p+ 1
=

λ1,p

n− p+ 1

∫
6

|ω|2.

Inserting this in (10) and using the lower bound on B[p] we arrive easily at

λ1,p

∫
6

|ω|2 ≥ p(n− p+ 1)3
∫
6

|ω|2,

which gives the assertion. �

We already remarked that for p= 1, the Bochner operator B1 is simply given by
the Ricci tensor acting on 1-forms. In particular, when n=2, B[1] is a scalar operator
and is given by multiplication by the Gaussian curvature K6 of 6: B[1]ω = K6ω.

2.2. Rigidity of Clifford tori. For p = 1, . . . , n − 1 and r ∈ (0, 1), consider the
manifold (Clifford torus)

(11) Tp,r
.
= Sp(r)×Sn−p(√1− r2

)
which is naturally isometrically embedded as a hypersurface in Sn+1. Note that
Tp,r supports a parallel p-form, which is the pullback of the volume form of Sp(r)
by the projection onto the first factor. We have the following rigidity theorem (when
6 is minimal, it reduces to [Colbois and Savo 2012, Theorem 10]).
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Theorem 4. Let 6n be a compact hypersurface of Sn+1 supporting a (nontrivial)
parallel p-form for some p = 1, . . . , n− 1.

(a) If n = 2 and p = 1, then 6 is a flat 2-torus.

(b) If n ≥ 3, then 6 is isometric to a Clifford torus Tp,r for some r ∈ (0, 1).

For the proof, see Section 6. The interest in the theorem lies in the case n ≥ 3.
In fact, (a) holds for any compact, orientable surface supporting a parallel 1-form.
We remark that there exist flat 2-tori in S3 which are not isometric to any Clifford
torus T1,r (see [Weiner 1991] for a classification result).

Combining Theorem 4 with Proposition 3(ii), we obtain:

Corollary 5. Let 6n be a compact hypersurface of Sn+1 such that H p(6,R) 6= 0
and B[p] ≥ 0 for some p = 1, . . . , n − 1. Then 6 is a flat torus if n = 2 and, if
n ≥ 3, it is isometric to a Clifford torus Tp,r for some r ∈ (0, 1).

We also record the following consequence.

Corollary 6. Let 6n be a compact hypersurface of Sn+1 having nonnegative sec-
tional curvature. If n ≥ 3, then either 6 is a homology sphere (i.e., H p(6,R)= 0
for all p = 1, . . . , n− 1) or 6 is isometric to a Clifford torus.

Proof. Let (e1, . . . , en) be an orthonormal basis of principal directions and let
k1, . . . , kn be the associated principal curvatures of 6. Let i 6= j . By the Gauss
formula R(ei , e j , ei , e j )= 1+ ki k j and then, by our assumptions,

ki k j ≥−1.

If α ∈ Ip is any multi-index, we observe that KαK?α is a sum of p(n− p) products
of type ki k j with i 6= j . Hence

KαK?α ≥−p(n− p),

and by (7) we obtain B
[p]
ext ≥ −p(n − p). As B

[p]
res = p(n − p) we conclude by

Theorem 1 that B[p] ≥ 0 for all p = 1, . . . , n− 1. If H p(6,R) 6= 0 we see that 6
is a Clifford torus by Corollary 5. This completes the proof. �

3. Applications

3.1. Applications in codimension one. Let 6n be a hypersurface of Mn+1 and S
its shape operator. Fix a point x ∈6 and let (k1, . . . , kn) be the principal curvatures
of 6 at x . The (scalar) mean curvature is denoted by

H = 1
n
(k1+ · · ·+ kn).
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For each multi-index α = { j1, . . . , jp} ∈ Ip, let Kα(x) be the corresponding
p-curvature, as defined in (6). Set

(12)

βp(x)=
1

p(n− p)
inf
α∈Ip

Kα(x)K?α(x),

βp(6)= inf
x∈6

βp(x).

From (7) we then see that at all points of 6 one has B
[p]
ext ≥ p(n− p)βp(6). If γM

is a lower bound of the curvature operator of Mn+1 then B
[p]
res ≥ p(n− p)γM , and

then by Theorem 1

(13) B[p] ≥ p(n− p)(γM +βp(6)).

From (13) and Proposition 3(iii) we immediately get the following estimate.

Theorem 7. Let6n be a compact hypersurface of Mn+1, a manifold with curvature
operator bounded below by γM ∈ R. Let 1≤ p ≤ n/2. Then

(14) λ1,p(6)≥ p(n− p+ 1)(γM +βp(6)),

where βp(6) is defined by (12). If 6 is a geodesic sphere in a simply connected
manifold of constant curvature γM , then equality holds.

To verify that the inequality is sharp, let Mn+1(c) be the simply connected
manifold of constant curvature c=γM . Then Mn+1(c) is, respectively, the Euclidean
space Rn+1 when c = 0, the unit sphere Sn+1 when c = 1 and the hyperbolic space
Hn+1 when c=−1. If6 is a geodesic sphere in Mn+1(c) then6 is totally umbilical:
Kα(x) = pH , K?α(x) = (n− p)H , where H is the mean curvature of 6. Hence
βp(x)= H 2 and (14) becomes

λ1,p(6)≥ p(n− p+ 1)(c+ H 2).

On the other hand, 6 is known to be isometric to Sn(r), with r = (c+ H 2)−
1
2 .

Therefore, by a well-known calculation in [Gallot and Meyer 1975],

λ1,p(6)= p(n− p+ 1)(c+ H 2).

This shows that Theorem 7 is sharp. Note also that the condition βp(6) > −γM
implies H p(6,R)= H n−p(6,R)= 0. For an upper bound of λ1,p(6) when M is
a sphere, see [Savo 2005].

We now compare this estimate with the results in [Raulot and Savo 2011]. Let
us say that 6 is p-convex if we can choose an orientation of 6 so that all of its
p-curvatures are nonnegative at every point: Kα(x)≥ 0 for all α ∈ Ip and x ∈6.
This is equivalent to asking that the operator S[p] is nonnegative at every point.
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Clearly, if 6 is p-convex, then it is q-convex for all q ≥ p. In that case, let

Kp =
1
p

inf
x∈6

inf
α∈Ip

Kα(x)≥ 0

be a lower bound of the mean p-curvatures (note that K1 is a lower bound of the
principal curvatures, while Kn is a lower bound of the mean curvature). It is easy to
prove that Kp ≤ Kq whenever p ≤ q. Using a Reilly-type formula for differential
forms, it is proved in [Raulot and Savo 2011] that if 6 is the boundary of a domain
in a manifold Mn+1 with nonnegative curvature operator (γM ≥ 0), and if 6 is
p-convex (for the orientation given by the inner unit normal), then

(15) λ1,p(6)≥ p(n− p+ 1)KpKn−p+1

with equality if and only if 6 is a sphere in Rn+1. Numerical examples show that, in
that situation, (14) is often better than (15). Moreover, (14) applies also in negative
curvature, and for immersions which are not necessarily embeddings. For example,
if Mn+1 is the hyperbolic space Hn+1, it is easy to see that the inequality gives a
positive lower bound whenever Kp > 1.

The next application is inspired by the following result of [Alencar and do Carmo
1994]. Assume that 6n is a compact hypersurface of Sn+1 with constant mean
curvature H . Let

8= S− H I

be the traceless second fundamental form of 6, and let R(1, H) be the positive
root of the polynomial

(16) F1(x)= x2
+

n(n− 2)
√

n(n− 1)
|H |x − n(H 2

+ 1).

Alencar and do Carmo [1994] proved that if |8| ≤ R(1, H), then 6 is either totally
umbilical (|8| = 0) or a Clifford torus

T1,r = S1(r)×Sn−1(
√

1− r2)

with r ≥
√

1/n (in which case |8| = R(1, H)). To the best of our knowledge, there
is still no similar characterization of the other Clifford tori Tp,r for 2≤ p ≤ n− 2
among constant mean curvature hypersurfaces of the sphere.

We prove a vanishing result for the de Rham cohomology in degree p assuming
that the norm of the traceless second fundamental form is bounded above by a
suitable function of the mean curvature. When the ambient manifold is the sphere,
this will lead to a topological version of the Alencar–do Carmo result, in which the
assumption of constant mean curvature is replaced by an assumption of nontrivial
cohomology in degree p.
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More precisely, fix real numbers γ , H and an integer 1≤ p ≤ n/2. Consider the
polynomial function

(17) Fp(x)= x2
+

n|n− 2p|
√

pn(n− p)
|H |x − n(H 2

+ γ ).

Note that Fp(x) reduces to (16) when p = γ = 1. If γ < 0, we assume that
H 2
+γ ≥ 0. Then, the largest root of Fp(x) is nonnegative, and will be denoted by

R(p, H). It is easy to check that for fixed H and γ one has

0≤ R(1, H)≤ R(2, H)≤ · · · ≤ R
([n

2

]
, H

)
where [n/2] is the largest integer less than or equal to n/2. If n is even, one has

R
(n

2
, H

)
=

√
n(H 2

+ γ ).

We then have the following result.

Theorem 8. Let6n be a compact hypersurface of Mn+1, a manifold with curvature
operator bounded below by γ ∈ R. We suppose p ≤ n/2 and H 2

+ γ ≥ 0. If

|8| ≤ R(p, H)

everywhere on 6 and strict inequality holds somewhere, then

H k(6,R)= 0 for all k = p, . . . , n− p.

Here 8 is the traceless second fundamental form of 6, and R(p, H) ≥ 0 is the
largest root of (17). In particular, if |8|≤ R(1, H), with strict inequality somewhere,
then 6 is a homology sphere.

The proof is given in Section 4.1. Now let6n be a compact hypersurface of Sn+1;
we take γ = 1 and then consider the polynomial

(18) Fp(x)= x2
+

n|n− 2p|
√

pn(n− p)
|H |x − n(H 2

+ 1).

We have the following rigidity result, which shows that the conditions in the previous
theorem are sharp.

Theorem 9. Let 6n be a compact hypersurface of Sn+1, take 1 ≤ p ≤ n/2 and
denote by R(p, H) the positive root of (18). We also assume n ≥ 3.

(a) Let 1≤ p < n/2. If

|8| ≤ R(p, H) and H p(6,R) 6= 0,

then 6 is isometric to a Clifford torus Tp,r =Sp(r)×Sn−p
(√

1− r2
)

for some
r ≥
√

p/n.
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(b) Let n be even and p = n/2. If we assume that

|8|2 ≤ n(1+ H 2) and H p(6,R) 6= 0,

then6 is isometric to a Clifford torus Sp(r)×Sp
(√

1− r2
)

for some r ∈ (0, 1).

For the proof, see Section 4.1.

3.2. Applications in arbitrary codimension. Lawson and Simons [1973] proved
the following vanishing result. If 6n is a compact, immersed submanifold of a
sphere Sn+q and if at all points of 6 one has

|S|2 <min
{

p(n− p), 2
√

p(n− p)
}

for some p= 1, . . . , n−1, then H p(6,Z)= H n−p(6,Z)= 0. The proof depends
on deep results of geometric measure theory, and used the fact that any integral
homology class is represented by a stable current. Taking variations induced by
suitable vector fields (namely, orthogonal projections to 6 of parallel vector fields
on Rn+2), one gets the stated result.

If we limit ourselves to real cohomology theory, we have another proof of this
result by a completely different method (the Bochner method) as follows. Note that
this also gives an explicit lower bound of the spectrum of the Hodge Laplacian and
an associated rigidity result (Theorem 11).

Theorem 10. Let6n be a compact submanifold of Mn+q , a manifold with curvature
operator bounded below by γM > 0, and let 1≤ p ≤ n/2. If

|S|2 ≤ 2γM

√
p(n− p)

and strict inequality holds somewhere, then H k(6,R)= 0 for all k = p, . . . , n− p.
More generally, if

|S|2 ≤ 2γM

√
p(n− p)(1−3)

for some 3 ∈ (0, 1], then λ1,p(6)≥ p(n− p+ 1)γM3.

For the proof, see Section 4.3.
In codimension one the condition is sharp, and our approach gives the following

rigidity result.

Theorem 11. Let 6n be a compact hypersurface of Sn+1, n ≥ 2, such that

|S|2 ≤ 2
√

p(n− p) and H p(6,R) 6= 0

for some 1 ≤ p ≤ n/2. Then 6 is isometric to the Clifford torus Tp,r = Sp(r)×
Sn−p

(√
1− r2

)
for

r =
( √

p
√

p+
√

n− p

)1
2

.
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In fact, one can check that the Clifford torus of Theorem 11 minimizes |S|2

among the family of Clifford tori {Tp,r : r ∈ (0, 1)}. The proof is given in Section 4.4.

3.3. Submanifolds with a parallel p-form. In our final application, we study im-
mersions of a manifold supporting a (nontrivial) parallel p-form (our estimates
are local, and so we do not assume compactness). Noteworthy examples of such
manifolds are given by:

• Riemannian products N1 × N2 (having parallel forms in degrees p = dim N1,
dim N2).

• Kähler manifolds.

In fact, the Kähler 2-form � is parallel. As all powers of � are nontrivial
(and parallel), we see that a Kähler manifold supports nontrivial parallel forms in
all even degrees.

It is well known that a Kähler manifold does not admit any minimal immersion
into a hyperbolic space (see [Dajczer and Rodríguez 1986; El Soufi and Petit
2000]). More generally, in [Grosjean 2004], it is proved that a manifold 6 with a
parallel p-form does not admit any minimal immersion into a manifold M if certain
curvature conditions on 6 and M are met. We also refer to [Grosjean 2004] for
other rigidity results on minimal immersions.

Our point of view is to observe that if ω is a parallel p-form, then 〈B[p]ω,ω〉 = 0
everywhere on 6. More generally, if ω is a harmonic p-form with constant length,
then, from the Bochner formula (9),

〈B[p]ω,ω〉 = −|∇ω|2 ≤ 0.

Using the pointwise bounds on the eigenvalues of B[p] derived in Section 4, we
then obtain pointwise bounds for the extrinsic geometry of 6. Precisely:

Theorem 12. Let6n be an immersed submanifold of Mn+q and let p=1, . . . , n−1.

(a) If 6 supports a parallel p-form and M has curvature operator bounded above
by 0M < 0 then

|H |2 ≥
4p(n− p)

n2 |0M | and |S|2 ≥ 2|0M |
√

p(n− p)

at all points of 6.

(b) If 6 supports a harmonic p-form of constant length (in particular, a parallel
p-form) and M has curvature operator bounded below by γM > 0 then

|S|2 ≥ 2γM

√
p(n− p)

at all points of 6.
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For the proof, see Section 4.5. Assertion (a) is sharp when p = n/2 (see below)
and (b) is sharp for the Clifford torus of Theorem 11.

Now let 62m be a Kähler manifold of complex dimension m ≥ 2. Since 6
supports nontrivial parallel forms in all even degrees, we see that it supports a
parallel form of degree m or m − 1 depending on whether m is even or odd.
Applying the previous theorem we immediately get the following estimates.

Corollary 13. Let 62m be a Kähler manifold of complex dimension m ≥ 2 isomet-
rically immersed in the Riemannian manifold M2m+q .

(a) If M has curvature operator bounded above by 0M < 0, then at all points of 6

|H |2 ≥

|0M | if m is even,
m2
− 1

m2 |0M | if m is odd.

(b) If M has curvature operator bounded below by γM > 0, then

|S2
| ≥

{
2mγM if m is even,
2γM

√
m2− 1 if m is odd.

We remark that if m is even and the ambient space is the hyperbolic space H2m+q

then (a) gives
|H |2 ≥ 1,

which is an equality when 62m
= R2m , embedded in H2m+1 as a horosphere.

4. Estimates of the Bochner operator

In this section we first estimate the extrinsic part of the Bochner operator, thanks to
Lemma 2 and some elementary algebra. We then apply these estimates to prove the
theorems of Section 3. Let 6n be a submanifold of the Riemannian manifold Mn+q .
We start from the following algebraic lemma.

Lemma 14. Let S = Sν be the shape operator of 6 relative to a unit normal vector
ν ∈ T⊥6, and let T [p] = (tr S)S[p]− S[p] ◦ S[p]. If k1, . . . , kn are the eigenvalues
of S, set

(19) nH =
n∑

j=1

k j , |S|2 =
n∑

j=1

k2
j , |8|

2
=

n∑
j=1

(k j − H)2.

Then the following inequalities for T [p] hold. Recall that if 6 has codimension one,
then T [p] =B

[p]
ext .

(a) −
√

p(n− p)
2

|S|2 ≤ T [p] ≤
√

p(n− p)
2

|S|2.
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(b) If H = 0, then

−
p(n− p)

n
|S|2 ≤ T [p] ≤ 0.

(c)
n2
|H |2

4
−

1
4

(
|n− 2p||H | +

√
4p(n− p)

n
|8|

)2

≤ T [p] ≤
n2
|H |2

4
.

(d) If n is even and p = n/2, then

T [p] ≥ 1
4 n2
|H |2− 1

4 n|8|2.

Proof. We know from Lemma 2 that the eigenvalues of T [p] are given by λα =
KαK?α, where α runs over the set of p-multi-indices. Then, it is enough to show
the inequalities for any such eigenvalue. Fix a multi-index α. After reordering, we
can assume that

(20) λα = (k1+ · · ·+ kp)(kp+1+ · · ·+ kn).

In conclusion, it is enough to show the given bounds for the product (20), given
any set of real numbers k1, . . . , kn satisfying (19).

Proof of (a). We use the Schwarz inequality and the inequality
√

ab ≤ (a+ b)/2
applied to a = k2

1 + · · ·+ k2
p, b = k2

p+1+ · · ·+ k2
n . We obtain

|λα| = |k1+ · · ·+ kp||kp+1+ · · ·+ kn|

≤
√

p(n− p)
√

k2
1 + · · ·+ k2

p

√
k2

p+1+ · · ·+ k2
n ≤

1
2(
√

p(n− p))|S|2,

and (a) follows.

Proof of (b). Since kp+1+· · ·+kn =−(k1+· · ·+kp), the Schwarz inequality yields

λα =−(k1 + · · · + kp)
2
≥−p

(
k2

1 + · · ·+ k2
p
)
,

λα =−(kp+1+ . . .+kn)
2
≥−(n− p)

(
k2

p+1+ · · ·+ k2
n
)
.

Summing the two inequalities, we get

λα

p
+

λα

n− p
≥−|S|2,

from which the lower bound follows. The upper bound is obvious.

Proof of (c). As
n∑

j=1
(k j − H)= 0, we see that, by the lower bound in (b),

((k1− H)+ · · ·+ (kp − H))((kp+1− H)+ · · ·+ (kn − H))≥−
p(n− p)

n
|8|2.
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Hence

(21) −
p(n− p)

n
|8|2

≤ (k1+· · ·+kp− pH)(kp+1+· · ·+kn−(n− p)H)

= λα+ p(n− p)H 2
− pH(kp+1+· · ·+kn)−(n− p)H(k1+· · ·+kp).

Substituting kp+1+ · · ·+ kn = nH − (k1+ · · ·+ kp) in (21), we have

(22) −
p(n− p)

n
|8|2 ≤ λα − p2 H 2

− (n− 2p)H(k1+ · · ·+ kp).

Substituting k1+ · · ·+ kp = nH − (kp+1+ · · ·+ kn) in (21), we also have

(23) −
p(n− p)

n
|8|2 ≤ λα − (n− p)2 H 2

+ (n− 2p)H(kp+1+ · · ·+ kn).

We now sum (22) and (23) to obtain

(24) 2λα −
(

p2
+ (n− p)2

)
H 2
+

2p(n− p)
n

|8|2

≥ (n− 2p)H((k1+ · · ·+ kp)− (kp+1+ · · ·+ kn))

≥−|n− 2p||H ||(k1+ · · ·+ kp)− (kp+1+ · · ·+ kn)|.

Set a= k1+· · ·+kp, b= kp+1+· · ·+kn . As |a−b|2= (a+b)2−4ab, we see that

n2 H 2
− 4λα ≥ 0,

which is the upper bound in (c), and |a−b| =
√

n2 H 2− 4λα . Substituting in (24),

(25) 2λα−
(

p2
+ (n− p)2

)
H 2
+

2p(n− p)
n

|8|2 ≥−|n−2p||H |
√

n2 H 2− 4λα.

If we set δ =
√

n2 H 2− 4λα ≥ 0, then (25) takes the form

δ2
− 2|n− 2p||H |δ+ (n− 2p)2 H 2

−
4p(n− p)

n
|8|2 ≤ 0,

which implies

δ ≤ |n− 2p||H | +

√
4p(n− p)

n
|8|.

Recalling the definition of δ, one concludes that

4λα ≥ n2 H 2
−

(
|n− 2p||H | +

√
4p(n− p)

n
|8|

)2

,

which is the lower bound in (c). Finally, (d) is a particular case of (c). �
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4.1. Proofs of Theorems 8 and 9. Let 6n be a hypersurface of Mn+1, a manifold
with curvature operator bounded below by γ ∈ R. Let H be the mean curvature of
6 and 8 its traceless second fundamental form. Recall that

Fp(x)= x2
+

n |n− 2p|
√

pn(n− p)
|H |x − n(H 2

+ γ ).

The theorems are a result of the following bound for B[p].

Proposition 15. In the above notation, one has

B[p] ≥−
p(n− p)

n
Fp(|8|).

Proof. By Lemma 14(c) we have

B
[p]
ext = T [p] ≥

n2
|H |2

4
−

1
4

(
|n− 2p||H | +

√
4p(n− p)

n
|8|

)2

.

Then, as B
[p]
res ≥ p(n− p)γ and B[p] =B

[p]
res +B

[p]
ext ,

4B[p] ≥ 4p(n− p)γ + 4B
[p]
ext

≥ 4p(n− p)γ + n2
|H |2−

(
|n− 2p||H | +

√
4p(n− p)

n
|8|

)2

= 4p(n− p)γ + 4p(n− p)|H |2−
4p(n− p)

n
|8|2

− 2|n− 2p|

√
4p(n− p)

n
|8||H |

=
4p(n− p)

n

(
n
(
γ + |H |2

)
− |8|2−

n|n− 2p|
√

pn(n− p)
|8||H |

)
=−

4p(n− p)
n

Fp(|8|)

and the assertion follows. �

Proof of Theorem 8. By assumption, |8| ≤ R(p, H), hence Fp(|8|) ≤ 0 by the
definition of R(p, H). By Proposition 15 we see that

B[p] ≥ 0.

As the inequality is strict somewhere, we can apply the Bochner method and con-
clude that H p(6,R)= 0. By Poincaré duality, one has also H n−p(6,R)= 0. Since
R(p, H) is nondecreasing in p, we see that |8| ≤ R(k, H) for all p ≤ k ≤ [n/2]
and the conclusion follows. �
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Proof of Theorem 9. Under the given assumptions, one has B[p]≥0 and H p(6,R) 6=

0. Then, 6 is a Clifford torus by Corollary 5. Conversely, the Clifford torus Tp,r

obviously satisfies H p(Tp,r ) 6= 0. Moreover, Tp,r is known to have two distinct
principal curvatures given (up to sign) by

(26)

λ=
√

1−r2

r
with multiplicity p,

µ=−
r

√
1−r2

with multiplicity n− p.

Therefore

|H | =
|nr2
− p|

nr
√

1− r2
and |8| =

√
p(n− p)

n
1

r
√

1− r2
.

A straightforward calculation shows that if p< n/2 and r2
≥ p/n, then Fp(|8|)= 0,

that is, |8| = R(p, H). If p = n/2 then |8| = R(p, H) =
√

n(1+ H 2) for all
r ∈ (0, 1). The proof is complete. �

4.2. An estimate in higher codimensions.

Proposition 16. Let 6n be a submanifold of the manifold Mn+q having curvature
operator bounded below by γM . Then

B[p] ≥ p(n− p)
(
γM −

|S|2

2
√

p(n− p)

)
.

If M has curvature operator bounded above by 0M , then

B[p] ≤ p(n− p)
(
0M +

|S|2

2
√

p(n− p)

)
and B[p] ≤ p(n− p)0M +

n2
|H |2

4
.

Proof. Let (ν1, . . . , νq) be an orthonormal frame in the normal bundle. We know
from the main theorem that

B
[p]
ext =

q∑
j=1

T [p]ν j
, where T [p]ν j

= (tr Sν j )S
[p]
ν j
− S[p]ν j

◦ S[p]ν j
.

If λ1
(
T [p]ν j

)
denotes the lowest eigenvalue of T [p]ν j , we see that B

[p]
ext ≥

q∑
j=1
λ1(T

[p]
ν j ).

From Lemma 14(a) applied to S = Sν j , we obtain

λ1(T [p]ν j
)≥−

√
p(n− p)

2
|Sν j |

2.

Summing over j , we get

B
[p]
ext ≥−

√
p(n− p)

2
|S|2.
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From Theorem 1 and the above,

B[p] =B[p]res +B
[p]
ext

≥ p(n− p)γM −

√
p(n− p)

2
|S|2

= p(n− p)
(
γM −

|S|2

2
√

p(n− p)

)
,

as asserted. The other inequalities are proved similarly, using Lemma 14. �

4.3. Proof of Theorem 10. If

|S|2 ≤ 2γM

√
p(n− p)(1−3),

for some 3 ∈ [0, 1], we see from the first estimate of Proposition 16 that

B[p] ≥ p(n− p)3γM .

The assertions follow immediately from the Bochner method (Proposition 3). �

4.4. Proof of Theorem 11. Let n ≥ 3. Together with Proposition 16, the assump-
tions give B[p]≥ 0; as H p(6,R) 6= 0, we get immediately that6 must be a Clifford
torus Tp,r by Corollary 5. On the other hand, it is seen from (26) that the only
Clifford torus satisfying |S|2 ≤ 2

√
p(n− p) is the one corresponding to the stated

value of r .
Now assume n=2 and p=1, so that |S|2≤2. We know that B[1] is multiplication

by the Gaussian curvature K6 of 6. From the formula 4H 2
= |S|2+ 2K6 − 2 we

obtain K6 ≥ 2H 2
≥ 0. The assumption H 1(6,R) 6= 0 and the Bochner formula

force K6 = 0, hence 6 is a minimal flat torus. As such, it is isometric with
S1(1/

√
2)×S1(1/

√
2) and the assertion follows. �

4.5. Proof of Theorem 12. Assume that ω is a parallel p-form. Then B[p]ω = 0
identically and, by the last upper bound in Proposition 16,

0= 〈B[p]ω,ω〉 ≤
(

p(n− p)0M +
n2
|H |2

4

)
|ω|2.

As |ω| is a positive constant, the assertion follows.
Now assume that ω is a harmonic p-form with constant length. From the Bochner

formula (9) we see that 〈B[p]ω,ω〉 = −|∇ω|2 ≤ 0 at every point. Hence, applying
Proposition 16,

0≥ 〈B[p]ω,ω〉 ≥ p(n− p)
(
γM −

|S|2

2
√

p(n− p)

)
|ω|2,

which implies |S|2 ≥ 2γM
√

p(n− p) everywhere, as asserted. �
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5. Proof of the main theorem

Let 6n be a Riemannian manifold and R its curvature tensor, defined on tangent
vectors X , Y by

(27) R(X, Y )=−∇X∇Y +∇Y∇X +∇[X,Y ].

The Bochner curvature term acting on p-forms is given by

B[p]ω(X1, . . . , X p)=

n∑
j=1

p∑
k=1

(−1)k(R(e j , Xk)ω)(e j , X1, . . . , X̂k, . . . , X p)

where (e1, . . . , en) is an orthonormal frame in T6 and X1, . . . , X p are arbitrary
tangent vectors. However, in our proof of Theorem 1, we follow the approach of
[Petersen 1998], which uses the formalism of Clifford multiplication, and allows to
express B[p] directly in terms of the curvature operator (see Theorem 17 below).
Our Theorem 1 follows from Theorem 17 and the splitting of the curvature operator
induced by the Gauss formula. The next section relies on the exposition in [Petersen
1998, Section 7.4], which we follow closely; the only difference is the sign of the
Riemann tensor.

5.1. The Bochner operator in the Clifford formalism. Let 3?(6) be the algebra
of forms on 6. Given θ ∈31 and ω ∈3p, define their Clifford multiplication by{

θ ·ω = θ ∧ω− iθ#ω,

ω · θ = (−1)p(θ ∧ω+ iθ#ω),

where iθ# denotes interior multiplication of a form by θ#, the dual vector field of θ .
Note that by demanding that the product be bilinear and associative, the preceding
equalities extend uniquely to define the Clifford multiplication of a p-form by a
q-form. For 1-forms,

(28)
{
θ · θ =−|θ |2,

θ1 · θ2+ θ2 · θ1 =−2〈θ1, θ2〉,

hence orthogonal 1-forms anticommute; moreover, any two orthogonal forms satisfy

(29) ω1 ·ω2 = ω1 ∧ω2.

Define the bracket as usual: [ω1, ω2] = ω1 ·ω2−ω2 ·ω1. If θ is a 1-form and ψ is
a 2-form, one checks that for all forms ω1, ω2

(30)
{
〈θ ·ω1, ω2〉 = −〈ω1, θ ·ω2〉,

〈[ψ,ω1], ω2〉 = −〈ω1, [ψ,ω2]〉.
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Fix an orthonormal frame (e1, . . . , en)with dual coframe (θ1, . . . , θn), and define
the Dirac operator on forms D :3?(6)→3?(6) by

Dω =
n∑

j=1

θ j · ∇e jω.

As dω =
n∑

j=1
θ j ∧∇e jω and δω =−

n∑
j=1

iθ#
j
∇e jω, one sees that D = d + δ, hence

D2
=1,

where 1 is the Laplacian on forms. Theorem 4.5 of [Petersen 1998] proves that

D2ω =∇?∇ω+
1
2

n∑
i, j=1

R(ei , e j )ω · θi · θ j ,

D2ω =∇?∇ω−
1
2

n∑
i, j=1

θi · θ j · R(ei , e j )ω.

(As already observed, the change of sign in our formula is due to the opposite sign
convention for the Riemann tensor adopted by Petersen.)

As D2ω =1ω, summing the two relations and dividing by 2 we then see

(31) B[p]ω =
1
4

n∑
i, j=1

[R(ei , e j )ω, θi · θ j ].

Now recall that the curvature operator R :32(6)→32(6) is the self-adjoint
operator uniquely determined by the formula

(32) 〈R(X ∧ Y ), Z ∧ T 〉 = R(X, Y, Z , T ) .= 〈R(X, Y )Z , T 〉.

for all tangent vectors X , Y , Z , T . Then, we arrive at the following description of
B[p] in terms of R.

Theorem 17. Let 6 be a manifold, and let B[p] be the Bochner operator acting
on p-forms of 6. At any point of 6, fix any orthonormal basis {ξr } of 32(6)

(here r = 1, . . . ,
(n

2

)
) and let {ξ̂r } be its dual basis. Then

〈B[p]ω, φ〉 =
1
4

∑
r,s

〈Rξr , ξs〉〈[ξ̂r , ω], [ξ̂s, φ]〉,

where the bracket is relative to Clifford multiplication and R is the curvature
operator of 6.

For the proof, we start from [Petersen 1998, Lemma 4.7], which gives

R(ei , e j )ω =
1
4

n∑
h,k=1

〈R(eh, ek)ei , e j 〉[θh · θk, ω].
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By (31),

(33) B[p]ω =
1
4

∑
i< j
h<k

〈R(eh ∧ ek), ei ∧ e j 〉[[θh · θk, ω], θi · θ j ].

By the adjointness property (30), we see that if φ is another p-form,

〈[[θh · θk, ω], θi · θ j ], φ〉 = −〈[θi · θ j , [θh · θk, ω]], φ〉 = 〈[θh · θk, ω], [θi · θ j , φ]〉,

and then

〈B[p]ω, φ〉 =
1
4

∑
i< j
h<k

〈R(eh ∧ ek), ei ∧ e j 〉〈[θh · θk, ω], [θi · θ j , φ]〉.

This is the expression in the orthonormal basis {ξr } = {ei ∧ e j }i< j of 32(6).
Obviously, the choice of the orthonormal basis is not important and the theorem
follows. �

5.2. A splitting of the curvature operator. Assume that 6n is a submanifold of
Mn+q . Let R be the Riemann tensor of 6 and RM that of M . For X, Y, Z , T ∈ T6,
the Gauss formula gives

R(X, Y, Z , T )= RM(X, Y, Z , T )+ Rext(X, Y, Z , T ),

where

Rext(X, Y, Z , T )= 〈L(X, Z), L(Y, T )〉− 〈L(X, T ), L(Y, Z)〉

and L is the second fundamental form. Accordingly, we can split the curvature
operator R of 6 as the sum of two self-adjoint operators acting on 32(6),

R=Rres+Rext,

which are respectively defined on decomposable elements X∧Y , Z∧T in32(6) by

(34)
{
〈Rres(X ∧ Y ), Z ∧ T 〉 = 〈RM(X ∧ Y ), Z ∧ T 〉,
〈Rext(X ∧ Y ), Z ∧ T 〉 = 〈L(X, Z), L(Y, T )〉− 〈L(X, T ), L(Y, Z)〉.

Let γM be the lowest eigenvalue of RM . As 〈Rresξ, ξ〉 = 〈R
Mξ, ξ〉 ≥ γM |ξ |

2

for all ξ ∈32(6), we see that Rres ≥ γM . The same remark applies to the largest
eigenvalue 0M of RM . Hence

(35) γM ≤Rres ≤ 0M .

Now let (ν1, . . . , νq) be an orthonormal frame in the normal bundle of 6. By
the definition of Sν , we can write Rext =

∑q
j=1 R

( j)
ext , where

(36) 〈R( j)
ext(X ∧ Y ), Z ∧ T 〉 = 〈Sν j (X), Z〉〈Sν j (Y ), T 〉− 〈Sν j (X), T 〉〈Sν j (Y ), Z〉.
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In conclusion, one has the splitting

(37) R=Rres+

q∑
j=1

R
( j)
ext

with Rres and R
( j)
ext respectively given by (34) and (36).

5.3. Algebraic lemma. The proof of Theorem 1 depends on the following algebraic
fact. Let S be a self-adjoint endomorphism of T6 and consider the associated
“curvature operator” RS :32(6)→32(6) uniquely determined by the formula

(38) 〈RS(X ∧ Y ), Z ∧ T 〉 = 〈S(X), Z〉〈S(Y ), T 〉− 〈S(X), T 〉〈S(Y ), Z〉

for all X, Y, Z , T ∈ T6. Clearly, RS is self-adjoint. Introduce the self-adjoint
operator T [p]S :3

p(6)→3p(6) such that, on any pair of p-forms ω, φ,

(39) 〈T [p]S ω, φ〉 =
1
4

∑
r,s

〈RSξr , ξs〉〈[ξ̂r , ω], [ξ̂s, φ]〉,

where {ξr } is any fixed orthonormal basis of 32(6) and {ξ̂r } is its dual basis.

Lemma 18. In the above notation, the operator T [p]S can be written as

T [p]S = (tr S)S[p]− S[p] ◦ S[p],

where S[p] is the self-adjoint extension of S to 3p(6).

Proof. Let (e1, . . . , en) be an orthonormal basis which diagonalizes S, so that
S(e j ) = k j e j for all j = 1, . . . , n and k j are the associated eigenvalues. Let
(θ1, . . . , θn) be its dual basis. We refer to the notation in the proof of Lemma 2.
Denote by Ip the set of multi-indices { j1, . . . , jp} with j1 < · · · < jp. If α =
{ j1, . . . , jp}, let

2α = θ j1 ∧ · · · ∧ θ jp = θ j1 · · · θ jp

where the dots in the last term indicate Clifford multiplication. The set {2α :α ∈ Ip}

is then an orthonormal basis of 3p(6). It is enough to show that{
〈T [p]2α,2β〉 = 0 if α 6= β,
〈T [p]2α,2α〉 = KαK?α.

In fact, in that case, each 2α is an eigenform of T [p]S associated to the eigenvalue
KαK?α, and it is readily seen from the discussion in Lemma 2 that the operator
(tr S)S[p]− S[p] ◦ S[p] is the only one having that property.

Observe from (38) that the 2-vector ei ∧ e j with i < j is an eigenvector of RS

with associated eigenvalue ki k j . The set {ξr } = {ei ∧ e j }i< j forms an orthonormal
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basis of 32(6). Therefore, by the definition in (39),

(40) 〈T [p]S ω, φ〉 =
1
4

∑
i< j

ki k j 〈[θi · θ j , ω], [θi · θ j , φ]〉.

A straightforward calculation using (28) shows that, for any α ∈ Ip,

(41) [θi · θ j ,2α] =


0 if i, j ∈ α,
0 if i, j ∈ ?α,
2θi · θ j ·2α otherwise.

Then 〈[θi · θ j ,2α], [θi · θ j ,2β]〉 is either zero or is equal to

4〈θi · θ j ·2α, θi · θ j ·2β〉 = 4〈2α,2β〉

because 〈θ ·ω1, θ ·ω2〉=〈ω1, ω2〉 for any 1-form θ and p-formsω1, ω2. In particular
〈T [p]2α,2β〉 = 0 when α 6= β. It remains to show that 〈T [p]2α,2α〉 = KαK?α.
After renumbering, we can assume that α= {1, . . . , p} so that ?α= {p+1, . . . , n}.
Then

|[θi · θ j ,2α]|
2
=

{
4 if i ≤ p, j ≥ p+ 1,
0 otherwise,

so that, by (40),

〈T [p]2α,2α〉 =
1
4

∑
i< j

ki k j |[θi · θ j ,2α]|
2

=

∑
i≤p

j≥p+1

ki k j = (k1+ · · ·+ kp)(kp+1+ · · ·+ kn)= KαK?α

as asserted. �

5.4. Proof of Theorem 1. Let {ξr } be an orthonormal basis of 32(6) with dual
basis {ξ̂r }, where r is an index running from 1 to

(n
2

)
. By Theorem 17 and the

splitting given in (37), we have

B[p] =B[p]res +

q∑
j=1

T [p]ν j
,

where, on given p-forms ω and φ,

〈B[p]resω, φ〉 =
1
4

∑
r,s

〈Rresξr , ξs〉〈[ξ̂r , ω], [ξ̂s, φ]〉,

〈T [p]ν j
ω, φ〉 =

1
4

∑
r,s

〈R
( j)
extξr , ξs〉〈[ξ̂r , ω], [ξ̂s, ω]〉.
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From Lemma 18 applied to S = Sν j , we get directly that

T [p]ν j
= (tr Sν j

)S[p]ν j
− S[p]ν j

◦ S[p]ν j
.

It remains to show the bounds on B
[p]
res . Choose {ξr } to be an orthonormal basis of

eigenvectors of Rres. We know from (35) that 〈Rresξr , ξr 〉 ≥ γM |ξr |
2
= γM for all r .

Then, for any p-form ω,

〈B[p]resω,ω〉 =
1
4

∑
r

〈Rresξr , ξr 〉|[ξ̂r , ω]|
2
≥
γM

4

∑
r

|[ξ̂r , ω]|
2.

Now, the right-hand side does not depend on the choice of the basis {ξr } of 32(6);
choosing the basis {θi · θ j }i< j relative to an orthonormal coframe (θ1, . . . , θn) of
T6, we have

1
4

∑
r

|[ξ̂r , ω]|
2
=

1
4

∑
i< j

|[θi · θ j , ω]|
2
= p(n− p)|ω|2,

which follows from Lemma 18 applied to S = I d, with eigenvalues k j all equal
to 1. Then B

[p]
res ≥ p(n− p)γM . The upper bound B

[p]
res ≤ p(n− p)0M is proved

similarly. �

6. Proof of Theorem 4

Let 6n be a compact hypersurface of Sn+1 and let ω be a nontrivial parallel p-form
on 6, for some p = 1, . . . , n− 1.

We first take care of the case n= 2, p= 1. As B[1]ω= K6ω, we see immediately
that K6 = 0, hence 6 is flat. As 6 is compact and orientable, 6 must be a flat torus.

We then assume n≥ 3. Let (e1, . . . , en) be a local orthonormal frame of principal
directions associated to the principal curvatures k1, . . . , kn on an open set U and
let (θ1, . . . , θn) be its dual basis. The following facts have been proved in [Colbois
and Savo 2012, Theorem 9]. As a consequence of the identity R(ei , e j )ω = 0 one
obtains, for all i 6= j ,

(42) (1+ ki k j )8i j = 0,

where8i j is the p-form8i j = θ j∧ieiω−θi∧ie jω.As ω is parallel, it never vanishes;
as it is nontrivial we can assume, after renumbering the basis, that ω(e1, . . . , ep) 6=0
on U . This implies that for all i ≤ p and j ≥ p+ 1 the form 8i j is nonzero, which
forces 1+ki k j = 0. One quickly concludes that at each point, there are two principal
curvatures, λ (with multiplicity p) and µ (with multiplicity n− p); that is,{

S(ei )= λei for i = 1, . . . , p,
S(e j )= µe j for j = p+ 1, . . . , n.
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Moreover, one has, on U ,
λµ=−1.

Now λ, µ are smooth functions on U . To prove Theorem 4 it is enough to show
that ∇λ = ∇µ = 0 on U . In fact, as U is arbitrary and 6 is connected, λ and µ
will be constant on 6. Therefore 6 is a compact isoparametric hypersurface with
two principal curvatures, and by a well-known classification result it is isometric to
a Clifford torus.

A result by T. Otsuki [1970] states that if 6 is a hypersurface in Sn+1 such
that the multiplicities of its principal curvatures are constant, then the distribution
Dλ = {v ∈ T6 : S(v) = λv} relative to a principal curvature λ is completely
integrable. Moreover, if the multiplicity of λ is greater than one, then λ is constant
on each of the integral leaves of the corresponding distribution. When there are
only two principal curvatures (which is our case) this fact was also proved in [Ryan
1969, Proposition 2.3].

We first assume that 2≤ p ≤ n− 2. By what we have just said, on U we have

(43)
{
〈∇λ, ei 〉 = 0 for i = 1, . . . , p,
〈∇µ, e j 〉 = 0 for j = p+ 1, . . . , n.

Differentiating λµ=−1, we see that, on U ,

(44) µ∇λ+ λ∇µ= 0.

Fix i = 1, . . . , p. As 〈∇λ, ei 〉 = 0, we obtain from (44) that 〈λ∇µ, ei 〉 = 0; as
λ 6= 0 we then have

∇µ(ei )= 0 for all i = 1, . . . , p.

By (43) we see that ∇µ= 0 (hence ∇λ= 0) on U .
We now assume that p = 1. Therefore

S(e1)= λe1, S(e j )= µe j for j = 2, . . . , n.

As n ≥ 3, the multiplicity of µ is greater than one, and we have

〈∇µ, e j 〉 = 0 for j = 2, . . . , n.

By (44) we also have

〈∇λ, e j 〉 = 0 for j = 2, . . . , n.

To prove the theorem, it then remains to show that 〈∇λ, e1〉 = 0.
From (42), we see that (1+ ki k j )8i j = 0, where 8i j = ω(ei )θ j −ω(e j )θi . Take

i, j ≥ 2 with i 6= j . As 1+ ki k j = 1+µ2
6= 0, we must have 8i j = 0. Hence

0=8i j (e j )= ω(ei ) for all i = 2, . . . , n.
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As ω(e1) 6= 0, this gives

S[1]ω(e1)= λω(e1) and S[1]ω(e j )= 0 for all j ≥ 2.

This means that S[1]ω = λω, and that the dual vector field X of ω is parallel and is
a principal direction associated to λ:

S(X)= λX.

As X has constant length, we can normalize so that X = e1. We now compute
div(S(X)) in two ways. Since X is parallel, one has ∇e j (S(X))=∇e j S(X). Then,
by the Codazzi formula,

(45) div(S(X))= 〈n∇H , X〉.

On the other hand, since div X = 0,

(46) div(S(X))= div(λX)= 〈∇λ, X〉.

Therefore 〈n∇H −∇λ, X〉 = 0. Differentiating the identity nH = λ− (n− 1)/λ,
we obtain

n− 1
λ2 〈∇λ, X〉 = 0 and 〈∇λ, e1〉 = 〈∇λ, X〉 = 0.

The proof is complete. �
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