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ON SOLUTIONS TO
COURNOT–NASH EQUILIBRIA EQUATIONS ON THE SPHERE

MICAH WARREN

We discuss equations associated to Cournot–Nash Equilibria as put forward
recently by Blanchet and Carlier. These equations are related to an optimal
transport problem in which the source measure is known, but the target
measure is part of the problem. The resulting equation is of Monge–Ampère
type with possible nonlocal terms. If the cost function is of a particular
form, the equation is vulnerable to standard optimal transportation PDE
techniques, with some modifications to deal with the new terms. We give
some sufficient conditions for the problem on the sphere from which we can
conclude that solutions are smooth.

1. Introduction

In this note, we discuss equations associated to Cournot–Nash equilibria as put
forward in [Blanchet and Carlier 2012], a reference we henceforth abbreviate as
[BC]. These equations are related to an optimal transport problem in which the
source measure is known but the target measure is to be determined. A Cournot–
Nash equilibrium (CNE) is a special type of optimal transport: Each individual x
is transported to a point T (x) in a way that not only minimizes the total cost of
transportation, but minimizes a cost to the individual x (transportation plus other).
This latter cost may depend on the target distribution, and may involve congestion,
isolation and geographical terms.

Blanchet and Carlier demonstrated how CNE are related to nonlinear elliptic
PDEs, explicitly deriving a Euclidean version of the equation [BC, (4.6)] and
showing that this problem has some very nice properties [BC, Theorem 3.8]. The
fully nonlinear Monge–Ampère equation differs from “standard” optimal transport
equations in that the potential itself occurs on the right-hand side, along with possibly
some nonlocal terms. Here we study the problem on the sphere. Immediately one
can conclude from [BC, Theorem 3.8] and [Loeper 2009] that optimal maps are
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continuous with control on the Hölder norm. We move this a step further and show
that all derivative norms can be controlled in terms of the data, when the solution is
smooth. When the solution is known to be differentiable enough, one can easily
adapt the estimates of Ma, Trudinger and Wang [Ma et al. 2005]. To make the
conclusion a priori, we must use the continuity method. Closedness follows from
the same estimates, but openness is not immediate and requires some conditions. In
Theorem 6 we give some conditions on the data so that the problem can be solved
smoothly.

2. Background and setup

In this section we briefly recap the setup in [BC]. Given a space of player types X
endowed with a probability measure µ, an action space Y , and a cost function

8 : X × Y ×P(Y )→ R,

assume x-type agents pay cost 8(x, y, ν) to take action y. Here ν ∈ P(Y ) is the
probability measure in the action space which is the push forward of µ by the map
of actions from X to Y . Supposing that x-type agents know the distribution ν, they
can choose the best action y. A Cournot–Nash equilibrium is a joint probability
distribution measure γ ∈ P(X × Y ) with first marginal µ such that

(2-1) γ
{
(x, y) ∈ X × Y :8(x, y, ν)=min

z∈Y
8(x, z, ν)

}
= 1,

where ν is the second marginal.
We will be interested in a particular type of cost,

8(x, y, ν)= c(x, y)+V[ν](y),

where c is the transportation cost. Lemma 2.2 of [BC] shows that a CNE will neces-
sarily be an optimal transport pairing for the cost c between the measures µ and ν.
They further show that, if V[ν] is the differential of a functional E[ν], then, at a
minimizer for E[ν]+Wc(µ, ν), the optimal transport will necessarily be a CNE (here
Wc(µ, ν) is the Wasserstein distance). In particular, if the cost Vm[ν] is of the form

(2-2) Vm[ν](y)= f
(

dν
dm

(y)
)
+

∫
φ(y, z) dν(z)+ V (y),

where m is a “background” measure and the function φ(y, z) is symmetric on
Y × Y , then Vm is a differential, and a solution to the optimal transport is a CNE.
(We will be licentious with notation, letting ν denote not only the measure, but
also the density with respect to the background m.) From here on we suppose we
are working with a solution to an optimal transport with cost c between measures
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µ and ν which is also a CNE for a total cost 8. We also assume that the manifolds
X and Y are compact without boundary.

One can consider the pair (u, u∗) which maximizes the Kantorovich functional

J (u, v)=
∫
−u dµ+

∫
v dν

over all −u(x)+ v(y)≤8(x, y). The pair (u, u∗) will satisfy

(2-3) −u(x)+ u∗(y)=8(x, y)

γ -almost everywhere, where γ is the optimal measure for the Kantorovich problem.
If the cost satisfies the standard Spence–Mirrlees condition (in the mathematics
literature, the “twist”, or [Ma et al. 2005, Section 2, condition (A1)]) we have,
µ-almost everywhere,

(2-4) −u(x)+ u∗(T (x))=8(x,T (x)).

The twist condition says that T (x) is uniquely determined by

(2-5) T (x)= {y : Du(x)+ Dc(x, y)= 0},

which gives the identity

(2-6) Du(x)+ Dc(x,T (x))= 0.

Note that, fixing an x , the quantity

8(x, y)− u∗(y)

must have a minimum at T (x); we conclude that

Dy8(x,T (x))= Du∗(T (x)).

Then by condition (2-1), for fixed x ,

8(x,T (x))≤8(x, y),

which implies that
Dy8(x,T (x))= 0,

from which we conclude that
Du∗(y)≡ 0.

Now the pair (u, u∗) is determined up to a constant. One can choose the constant
in u or u∗ but not both. At this point we simply choose u∗ = 0. Having fixed this
choice, we obtain information about u and the measure ν, using (2-2) and (2-4):

−u(x)= c(x,T (x))+ f
(
ν(T (x))

)
+

∫
φ(T (x), z) dν(z)+ V (T (x)).
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In particular, the density ν(y) must be determined by

(2-7) ν(T (x))

= f −1
(
−u(x)− c(x,T (x))−

∫
φ(T (x),T (z)) dµ(z)− V (T (x))

)
,

having used the change of integration variables T between µ and ν. The optimal
transportation equation (see [Ma et al. 2005]) becomes

(2-8)
det
(
ui j (x)+ ci j (x,T (x))

)
det
(
−cis(x,T (x))

) =
µ(x)

f −1(Q(x, u))
.

Here and in the sequel, we use i , j , k to denote derivatives in the source X , and
p, s, t to denote derivatives in the target Y . It will be convenient to assume
that cis is negative definite, which follows if we are assuming condition (A2) of
[Ma et al. 2005] and have chosen an appropriate coordinate system. We will use
bis(x)=−cis(x,T (x)). Also (to keep equations within one line) we abbreviate

Q(x, u)=−u(x)− c(x,T (x))−
∫
φ(T (x),T (z)) dµ(z)− V (T (x)),

with T (x) being determined by (2-5).
Before we say how this fully nonlinear equation is vulnerable, we mention the

“Inada-like” conditions [BC, Section 3.3]

(2-9)
lim
ν→0+

f (ν)=−∞ and lim
ν→+∞

f (ν)=+∞,

f ′ > 0 and f ∈ C2(R+).

If f satisfies these conditions, then several observations are in order. First, as noted
in [BC, Theorem 3.8], on a compact manifold we get bounds away from zero and
infinity for the density ν. In the spherical distance-squared transportation cost case,
this immediately gives Cα-continuity of the map, by results of Loeper. Secondly,
the right-hand side of (2-8) is strictly monotone in the zeroth-order term — this is
crucial in obtaining existence and uniqueness results, as it will allow us to invert
the linearized operator. Finally, as we will show below, the first derivatives of
this density will be bounded in terms of an a priori constant (depending on the
smoothness of f ) and the second derivatives will be bounded by a constant times
second derivatives of u. These estimates will allow us to take advantage of the
Ma–Trudinger–Wang estimates.

We will show an estimate on smooth solutions: If a solution to (2-8) is C4, then
it enjoys estimates of all orders subject to universal bounds. In order to show that
arbitrary solutions are C4 and hence smooth, we must use a continuity method.
This method relies on a linearization which requires some discussion, given the
integral terms in the equation.
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The problem here, on a compact manifold with cost function satisfying the
Ma–Trudinger–Wang condition, is quite simpler than the delicate boundary value
problem in [BC]. With or without the nonlocal terms, such a problem may be
approached as in [Liu and Trudinger 2010]. We leave this problem aside for now.

3. Linearization

We take the natural log of (2-8) and then consider the functional

(3-1) F(x, u, Du, D2u)= ln det
(
ui j (x)+ ci j (x,T (x))

)
− ln det

(
bis(x,T (x))

)
− lnµ(x)+ ln f −1(Q(x, u));

the equation we want to solve is

(3-2) F(x, u, Du, D2u)= 0.

Preparing for linearization, consider (2-6) applied to u+ tv:

Du(x)+ t Dη(x)+ Dc(x,Tt(x))= 0.

Differentiate with respect to t to get

Dη(x)= bis(x,T (x))
dT s

dt
.

Linearizing, we obtain

Lη = d
dt

F(u+ tη)= L0η+ L1η,

where

(3-3) L0η = wi jηi j +w
i j ci jsbskηk + biscispbpkηk,

(3-4) L1η =
( f −1(Q))′

f −1(Q)

(
−cs(x,T (x))bskηk − η− Vsbskηk

− bskηk(x)
∫
φs(T (x),T (z)) dµ(z)

−

∫
φs̄(T (x),T (z))bsk(z)ηk(z) dµ(z)

)
.

Here we are using
wi j (x)= ui j (x)+ ci j (x,T (x)).

We note also that differentiating (2-6) shows

(3-5) T s
i (x,T (x))=

∂T s

∂xi
= bsk(x,T (x))wki (x,T (x)).

We take gi j (x) = wi j (x) to define a metric (one can check that it transforms as
such), then write

(3-6) dµ(x)= e−a(x) dVg(x),
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where

−a(x)= lnµ(x)− 1
2 ln detwi j (x).

From the definition of F in (3-1) we have

−a(x)= 1
2 ln detwi j − ln det b+ ln ν− F,

having introduced

ν(x)= ln f −1(Q(x, u)).

First, we compute the weighted Laplace

4aη =4gη−∇a · ∇η.

We begin with 4gη, differentiating in some coordinate system (see (4-1) for very
similar computations):(√

detwwi jη j
)

i
√

detw
= wi jηi j +

1
2w

ab∂iwabw
i jη j −w

iawbj∂iwabη j

= wi jηi j +w
abwi j (∂ iwab− ∂bwia)η j −

1
2w

ab∂iwabw
i jη j

= wi jηi j + (w
bacabsbs j

−wi j ciskbsk)η j −
1
2w

i j (ln detw)iη j

= L0η− biscispbpkηk −w
i j ckisbskη j −

1
2w

i j (ln detw)iη j .

Thus

4aη = L0η− biscispbpkηk −w
i j ckisbskη j −

1
2w

i j (ln detw)iη j

+
1
2w

i j (ln detw)iη j −w
i j (ln det b)iη j + (ln ν)iwi jη j − Fiw

i jη j

= L0v+ (ln ν)iwi jη j − Fiw
i jη j ,

and hence

Lη =4aη+ L1η− (ln ν)iwi jη j + Fiw
i jη j .

Next, we compute

(ln ν)i =
( f −1(Q))′

f −1(Q)

(
−ui (x)− ci (x,T (x))− cs(x,T (x))bskwki

− bskwki

∫
φs(T (x),T (z)) dµ(z)− Vsbskwki

)
.

Noting that −ui (x)− ci (x,T (x)) vanishes, and (3-4), we have

L1η− (ln ν)iwi jη j =
( f −1(Q))′

f −1(Q)

(
−η−

∫
φs(T (x),T (z))bsk(z)ηk(z) dµ(z)

)
.
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Next, we compute the integral term in the previous expression. Notice∫
〈∇φ(y,T (z)),∇η〉e−a(z) dVg(z)=

∫
φs(y,T (z))bskwkiη jw

i j e−a(x) dVg

=

∫
φs(T (x),T (z))bskηk(z) dµ(z).

Now, integrating by parts, we have

−

∫
φs(T (x),T (z))bskηk(z) dµ(z)=

∫
φ(T (x),T (z))4a η(z)e−a(z) dVg(z).

Combining, we have

(3-7) Lη=4aη−h(x)η(x)−h(x)
∫
φ(T (x),T (z))4a η(z) dµ(z)+〈∇F,∇η〉,

using the shorthand

h(x)=
( f −1(Q))′

f −1(Q)
,

which represents a positive differentiable quantity if f satisfies (2-9). In particular,
if f (τ )= ln τ then h will be identically 1. When F ≡ 0 we have the following.

Proposition 1. At a solution of (3-2), the linearized operator takes the form

(3-8) Lη =4aη− h(x)η(x)− h(x)
∫
φ(T (x),T (z))4a η(z) dµ(z).

Lemma 2. Suppose that

(3-9) max
(x,y)∈X×Y

h(x)|φ(x, y)|< 1.

Then the operator (3-8) has trivial kernel.

Proof. To make use of some functional analytic formality, we define operators A,
J , h, and I on the space B = L2(X, dµ) by

[Aη](x)=4aη(x),

[Jη](x)=
∫
φ(T (x),T (z))η(z) dµ(z),

[hη](x)= h(x)η(x),

[Iη](x)= η(x).

Then L = A− h− h J A = (I − h J )A− h = (I − h J )
(

A− (I − h J )−1h
)
.

First, we have the pointwise estimate

[h Jη](x)=
∫

h(x)φ(T (x),T (y))η(y) dµ(y)

≤
∥∥∫ h(x)φ(T (x),T (y)) dµ(x)

∥∥1/2
L2 ‖η‖

1/2
L2

≤
(

max
(x,y)∈X×Y

h(x)|φ(x, y)|
)1/2

< ‖η‖
1/2
L2 ,
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using (3-9). Integrating this quantity over µ yields

‖h J‖< 1

as an operator on B, so (I − h J ) is invertible. Thus we have

Ker L = Ker(A− (I − h J )−1h).

Now suppose, for purposes of contradiction, that we have nontrivial η ∈ Ker L .
Then

Aη = (I − h J )−1hη,

thus
〈(I − h J )−1hη, η〉 = 〈Aη, η〉 = −

∫
|∇η|2 dµ < 0.

But, as (I − h J ) is invertible, we can let

(I − h J )ω = hη.

Then
〈ω, h−1(I − h J )ω〉 = 〈(I − h J )−1hη, η〉< 0,

that is,

0>
〈
ω,

1
h
ω
〉
−〈ω, Jω〉 ≥ 1

max h
‖ω‖2−‖J‖‖ω‖2 =

( 1
max h

−‖J‖
)
‖ω‖2,

which is clearly a contradiction if 1>max h‖J‖. �

4. Estimates on the sphere

From here on we specialize to the round unit sphere, with cost function half of
distance squared. Note that this sphere has Riemannian volume nωn .

Oscillation estimates. The following estimates are a version of [BC, Lemma 3.7].
On a compact manifold, the cost function will be bounded. Since the solution u
is c-convex, at its maximum point xmax, u is supported below by the cost sup-
port function c(x,T (x0))+ λ. Hence, at the minimum point xmin, we have that
u(xmin)≥c(xmin,T (xmax))+ λ, which in turn tells us that

osc u ≤ osc c = 1
2π

2.

Next we observe that, because the integration of the density ν against m gives a
probability measure, the density ν must be larger than 1/(nωn) at some point y0.
Using (2-7), it follows that, at the point x0 = T−1(y0),

−c(x0, y0)− u(x0)−
∫
φ(y0,T (z)) dµ(z)− V (y0)≥ f

( 1
nωn

)
,
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and similarly, at the point x1 where the density ν is smallest,

−c(x1, y1)− u(x1)−
∫
φ(y1,T (z)) dµ(z)− V (y1)= f (ν(x1)).

Hence,

−c(x0, y0)+ c(x1, y1)− u(x0)+ u(x1)−
∫ (
φ(y0,T (z))+φ(y1,T (z))

)
dµ(z)

−V (y0)+ V (y1)≥ f
( 1

nωn

)
− f (ν(x1)),

that is,

f (ν(x1))≥ f
( 1

nωn

)
− 2 osc c− 2 oscφ− osc V >−∞.

By Inada’s conditions,

ν ≥ f −1
(

f
( 1

nωn

)
−π2

− 2 oscφ− osc V
)
> 0.

Similarly, an upper bound can be derived:

ν ≤ f −1
(

f
( 1

nωn

)
+π2

+ 2 oscφ+ osc V
)
<∞.

4.1. Stayaway. Now that ν is under control, it follows from the stayaway estimates
of [Delanoë and Loeper 2006] that the map T (x) must satisfy

distSn (x,T (x))≤ π − ε( f, µ, V, φ).

In particular, the map stays clear of the cut locus. All derivatives of the cost function
are now controlled.

MTW estimates.

Lemma 3. If the map T is differentiable and locally invertible, then the target
measure density

ν(T (x))= f −1
(
−c(x,T (x))− u(x)−

∫
φ(T (x),T (z)) dµ(z)− V (T (x))

)
has first derivatives bounded by a universal constant and has second derivatives

νsr = C1+C2k(T−1)kr ,

where the bounding constants are within a controlled range.

Proof. Differentiate in the xk direction:

νs T s
k (x)= ( f −1)′

(
−ck(x,T (x))− cs(x,T (x))T s

k − uk

− T s
k

∫
φs(T (x),T (z)) dµ(z)− Vs T s

k

)
= ( f −1)′T s

k (x)
(
−cs(x,T (x))−

∫
φs(T (x),T (z)) dµ(z)− Vs(T (x))

)
.
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As this is true for all k, and DT is invertible, we can conclude that

νs(T (x))= ( f −1)′
(
−cs(x,T (x))−

∫
φs(T (x),T (z)) dµ(z)− Vs(T (x))

)
is a bounded quantity. For second derivatives, differentiate this equation in x again:

νspT p
k = ( f −1)′′T p

k (x)
(
−cs(x,T (x))−

∫
φs(T (x),T (z)) dµ(z)− Vs(T (x))

)
×

(
−cp(x,T (x))−

∫
φp(T (x),T (z)) dµ(z)− Vp(T (x))

)
+ ( f −1)′

(
−csk(x,T (x))− csp(x,T (x))T

p
k (x)

− T p
k (x)

∫
φps(T (x),T (z)) dµ(z)− T p

k (x)Vsp(T (x))
)
,

that is,

νsr = ( f −1)′′
(
−cs(x,T (x))−

∫
φs(T (x),T (z)) dµ(z)− Vs(T (x))

)
×

(
−cp(x,T (x))−

∫
φp(T (x),T (z)) dµ(z)− Vp(T (x))

)
+ ( f −1)′

(
−csk(x,T (x))(T−1)kr − csp(x,T (x))

−

∫
φps(T (x),T (z)) dµ(z)− Vsp(T (x))

)
.

Now all the terms, with the exception of the (T−1)kr term, are given by controlled
constants, independent of u. We are done. �

Before we state the main a priori estimate, we recall the Ma–Trudinger–Wang
(MTW) tensor [Ma et al. 2005, p. 154]. For each y in the target, one can define the
MTW tensor as a (2, 2)-tensor on Tx M via

MTWkl
i j (x, y)= {(−ci j pr + ci jscsmcmr p)cpkcrl

}(x, y).

It is by now a well-known fact that, on the sphere,

MTWkl
i j ξkξlτ

iτ j
≥ δn‖ξ‖

2
‖τ‖2

for a positive δn and all vector–covector pairs such that

ξ(τ )= 0.

(For more discussion of the geometry of this tensor, see [Kim and McCann 2010].)
Given a solution, we define an operator on (2, 0)-tensors as follows. Let h be a

(2, 0)-tensor. Given vector fields X1, X2, we define

(Lwh)(X1, X2)=
1

√
detw

∇ j
(√

detwwi j
∇i h

)
−wi j

∇ j a∇i h(X1, X2),

where
−a(x)= 1

2 ln detw(x)− ln det b(x)+ ln ν(x,T (x))
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and covariant differentiation is taken with respect to the round metric.

Proposition 4. Let u be a solution of (2-8). If e is a unit direction in a local chart
on Sn , then

Lww(e, e)

≥wi j (−ci j pr+ci jsckr pcsk)cpmcrlwmewle−C
(
1+

∑
wi i ∑w j j+

∑
wi i
+
∑
w2

i i
)

Proof. This was proven in the case where densities are known ahead of time by Ma
et al. [2005]. Adapting their proof requires only a small modification somewhere
in the middle, but for completeness (and mostly for fun), we will present the
calculation.

First, we note that

(4-1)
∂ j
(√

detwwi j
)√

detwi j
−wi j a j

= ∂ jw
i j
+

1
2w

i j (ln detw) j+w
i j 1

2(ln detw) j−w
i j (ln det b) j+w

i j (ln ν)s T s
j

=−wiawbj∂ jwab+w
i j (ln detw) j −w

i j(bskbsk j + bskbskt T t
j
)
+ bsi (ln ν)s

=−wiawbj (∂ jwab− ∂awbj )−w
iawbj∂awbj +w

i j (ln detw) j

−wi j bskbsk j − bti bskbskt + bsi (ln ν)s
=−wiawbj (cabs T s

j − cbjs T s
a )−w

i j bskbsk j − bti bskbskt + bsi (ln ν)s

= bsiwbj cbjs − bti bskbskt + bsi (ln ν)s

using (among others) the relations

(4-2) ∂ jwab− ∂awbj = cabs T s
j − cbjs T s

a , wbj T s
j = bs j .

Now

Lww(e1, e1)

=
1

√
detw

∇ j (
√

detwwi j
∇iw)(e1, e1)−w

i j
∇ j a∇iw(e1, e1)

= wi j
∇ j∇iw(e1, e1)+ (bsiwbj cbjs − bti bskbskt + bsi (ln ν)s)∇iw(e1, e1)

=wi j (∂i∂ jw(e1, e1)−∇ j∂iw(e1, e1)+ 2w(∇∇ j∂i e1, e1)− 2∂iw(∇ j e1, e1)

−2∂ jw(∇i e1, e1)+ 2w(∇ j∇i e1, e1)+ 2w(∇i e1,∇ j e1)
)

+ (bsiwbj cbjs − bti bskbskt + bsi (ln ν)s)(∂iw(e1, e1)− 2w(∇i e1, e1)).

At this point, we choose a normal coordinate system (in the round metric), then
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Lww(e1, e1)= (bsiwbj cbjs − bti bskbskt + bsi (ln ν)s)∂iw(e1, e1)

+wi j (∂i∂ jw(e1, e1)+ 2w(∇ j∇i e1, e1))

= (biswbj cbjs − bi t bskbskt + bis(ln ν)s)∂iw11

+wi j (∂i∂ jw11− ∂1∂1wi j )+w
i j (∂1∂1wi j + 2w(∇ j∇i e1, e1)).

Again harking back to [Ma et al. 2005], we let

K = C
∑
wi i ∑w j j +C

∑
wi i
+C

∑
w2

i i +C

and note that terms of the following form are K :

K = wi j T s
b , K = (∂ jwik − ∂kwi j ), K = wi j 2w(∇ j∇i e1, e1), K = wi jwkl;

so that

Lww(e1, e1)=−K + (bsiwbj cbjs − bti bskbskt + bsi (ln ν)s)∂iw11

+wi j (∂i∂ jw11− ∂1∂1wi j )+w
i j∂1∂1wi j .

Now, differentiating

(4-3) ln detwi j = ln det bis + lnµ− ln ν,

we have

(4-4) wi j∂1wi j = bsi (bis1+ bist T t
1 )+ (lnµ)1− (ln ν)s T s

1

and again

wi j∂11wi j + ∂1w
i j∂1wi j = K + bsi bist T t

11+ (ln ν)sr T r
1 T s

1 − (ln ν)s T s
11.

Now recall Lemma 3, which gives

(ln ν)sr T r
1 T s

1 =
C1sr +C2sk(T−1)kr

ν
T r

1 T s
1 − (ln ν)s(ln ν)r T r

1 T s
1 = K ;

thus

(4-5) wi j∂11wi j = w
iawbj∂1wab∂1wi j + K + bsi bist T t

11− (ln ν)s T s
11.

Note that differentiating T s
i = bskwki yields

(4-6) T s
i j = bsk∂ jwki − bsabpkwki (bapj + bapq T q

j ),

in particular
T s

11 = bsk∂1wk1− bsabpkwk1(bap1+ bapq T q
1 ).

Now it follows that

T s
11− bsk∂kw11 = bsk(∂1wk1− ∂kw11)− bsabpkwk1(bap1+ bapq T q

1 )(4-7)

= K .(4-8)
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Bringing in the concavity of the Monge–Ampère equation (4-5) and (4-8), we can
eliminate some terms to see

Lww(e1, e1)≥−K + biswbj cbjs∂iw11+w
i j (∂i∂ jw11− ∂1∂1wi j ).

Then, using

∂1∂1wi j = ui j11+ ci j11+ 2ci js1T s
1 + ci js T s

11+ ci j pr T p
1 T r

1 ,

∂i∂ jw11 = u11i j + c11i j + c11si T s
j + c11s j T s

i + c11s T s
i j + c11pr T p

i T r
j ,

we have

Lww(e1, e1)

≥−K + (biswbj cbjs)∂iw11+w
i j (c11s T s

i j + c11pr T p
i T r

j − ci js T s
11− ci j pr T p

1 T r
1 ).

From (4-6),

wi j T s
i j = w

i j (bsk∂ jwki − bsabpkwki (bapj + bapq T q
j ))

= wi j bsk(∂ jwki − ∂kwi j + ∂kwi j )− bsabpj (bapj + bapq T q
j )

= K + bsk∂k(ln detw)

= K

by (4-4). Using (4-7) we conclude

Lww(e1, e1)≥−K −wbj cbjsbsabpkwk1bapq T q
1 −w

i j ci j pr T p
1 T r

1 ,

which is the desired result after reindexing. �

Corollary 5. Second derivatives of u are uniformly bounded.

Proof. Given the maximum principle estimate, this proof is standard, following
[Ma et al. 2005]. For some more details in the setting of Riemannian manifolds see
[Kim et al. 2012, Theorem 3.5]. �

5. Main theorem

In order to make a precise statement, we define

νlower = f −1
(

f
(

1
nωn

)
− 2 osc c− 2‖φ‖∞− osc V

)
νupper = f −1

(
f
(

1
nωn

)
+ 2 osc c+ 2‖φ‖∞+ osc V

)
.

Similarly, an upper bound can be defined by

hmax = sup
Q∈[νlower,νupper]

( f −1(Q))′

f −1(Q)
.
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Theorem 6. Suppose that f satisfies the Inada-like conditions (2-9), µ and m are
smooth, and φ and V are Lipschitz. If

(5-1) max
x,y∈M

|φ(x, y)|<
1

hmax
,

then there exists a smooth solution to (3-2).

Proof. For existence, we proceed by continuity [Gilbarg and Trudinger 2001,
Theorem 17.6] on (3-2), letting

(5-2) F(t, x, u, Du, D2u)

= ln det
(
D2u+ D2c(x,T (x))

)
− ln det

(
−DDc(x,T (x))

)
− ln(tµ(x)+ (1− t)m(x))+ ln f −1(Q(t, x,T (x))

)
,

where

Q(t, x,T (x))=−u(x)− c(x,T (x))− t
∫
φ(T (x),T (z)) dµ(z)− tV (T (x)).

At time t = 0, a solution is given by u ≡ 0: this maps the measure m to itself via the
identity mapping. Thus the interval I of t for which a solution exists is nonempty.
Notice that the form of (5-2) is the same as of (3-2) up to a scale of the functions φ
and V and a change of measure, so the estimates from the previous section all hold.
From the theory of Krylov and Evans one can obtain C2,α estimates. Thus I is
closed. Lemma 2 with these conditions gives openness, noting that on the sphere
a Laplacian has index zero, and that the linearized operator which has the same
principal symbol has index zero as well. �

Remark. For uniqueness, the standard PDE trick does not work immediately, even
under assumptions such as those in the theorem. One may be tempted to use
the standard argument [Gilbarg and Trudinger 2001, Theorem 17.1] to obtain a
contradiction. However, the intermediate linearized operator will have the additional
∇F term that arises in (3-7) because combinations of u and v are not solutions.
Our proof of invertibility fails for these, so we have no reason to expect that the
proof would remain valid after being integrated. Uniqueness may be more easily
obtained from geometric consideration as in [BC, Section 4]; see also [Villani 2009,
Chapters 15 and 16].

However, if the integral term is not present, we can use the argument [Gilbarg
and Trudinger 2001, Theorem 17.1], making the important note that on the sphere
the set of c-convex functions is convex [Figalli et al. 2011, Theorem 3.2]. In this
case, invertibility of the linearized operator follows easily from standard maximum
principle arguments.
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