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We use mirror formulas for the stable quotients analogue of Givental’s J-
function for twisted projective invariants obtained in a previous paper to
obtain mirror formulas for the analogues of the double and triple Givental’s
J-functions (with descendants at all marked points) in this setting. We then
observe that the genus-0 stable quotients invariants need not satisfy the di-
visor, string, or dilaton relations of the Gromov–Witten theory, but they do
possess the integrality properties of the genus-0 three-point Gromov–Witten
invariants of Calabi–Yau manifolds. We also relate the stable quotients in-
variants to the BPS counts arising in Gromov–Witten theory and obtain
mirror formulas for certain twisted Hurwitz numbers.
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1. Introduction

Gromov–Witten invariants of projective varieties are counts of curves that are
conjectured (and known in some cases) to possess a rich structure. In particular,
so-called mirror formulas relate these symplectic invariants of a nonsingular variety
X to complex-geometric invariants of the mirror family of X . In genus 0, this
relation is often described by assembling two-point Gromov–Witten invariants (but
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without constraints on the second marked point) into a generating function, known
as Givental’s J -function, and expressing it in terms of an explicit hypergeometric
series. The genus-0 Gromov–Witten invariants of a projective complete intersection
X are equal to the twisted Gromov–Witten invariants of the ambient space associated
to the direct sum of positive line bundles corresponding to X . The genus-0 mirror
formula in Gromov–Witten theory extends to the twisted Gromov–Witten invariants
associated with direct sums of line bundles over projective spaces; see [Elezi 2003;
Givental 1996; Lian et al. 1999]. By [Cooper and Zinger 2014], the analogue of
Givental’s J -function for the twisted stable quotients invariants defined in [Marian
et al. 2011] satisfies a simpler version of the mirror formula from Gromov–Witten
theory. In this paper, we obtain mirror formulas for the stable quotients analogues
of the double and triple Givental’s J -functions for direct sums of line bundles. We
use them to test the stable quotients invariants for the analogues of the standard
properties satisfied by Gromov–Witten invariants. In the future, we intend to
apply the methods of this paper to show that the stable quotients and Gromov–
Witten invariants of projective complete intersections are related by a simple mirror
transform, in all genera, but with at least one marked point.

1A. Stable quotients. The moduli spaces of stable quotients, Qg,m(X, d), con-
structed in [Marian et al. 2011] and generalized in [Ciocan-Fontanine et al. 2014],
provide an alternative to the moduli spaces of stable maps, Mg,m(X, d), for com-
pactifying spaces of degree-d morphisms from genus-g nonsingular curves with
m marked points to a projective variety X (with a choice of polarization). A stable
tuple of quotients is a tuple

(1-1) (C, y1, . . . , ym; S1 ⊂ Cn1 ⊗OC, . . . , Sp ⊂ Cn p ⊗OC),

where C is a connected (at worst) nodal curve, y1, . . . , ym ∈ C∗ are distinct smooth
points, and

S1 ⊂ Cn1 ⊗OC, . . . , Sp ⊂ Cn p ⊗OC

are subsheaves such that the quotients Cn1 ⊗OC/S1, . . . ,Cn p ⊗OC/Sp are locally
free at the nodes of C and the marked points y1, . . . , ym and the Q-line bundle

ωC(y1+ · · ·+ ym)⊗ (3
topS∗1 )

ε
⊗ · · ·⊗ (3topS∗p)

ε
→ C

is ample for all ε ∈Q+; this implies that 2g+m ≥ 2.
In this paper, we are concerned only with the case g= 0. For m, d1, . . . , dp ∈Z≥0

and n1, . . . , n p ∈ Z+, the moduli space

(1-2) Q0,m(P
n1−1
× · · ·×Pn p−1, (d1, . . . , dp))

parameterizing the stable tuples of quotients as in (1-1) with h1(C,OC)= 0, that is,
C is a rational curve, rk(Si )= 1, and deg(Si )=−di , is a nonsingular irreducible
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Deligne–Mumford stack and

dim Q0,m(P
n1−1
× · · ·×Pn p−1, (d1, . . . , dp))

= (d1+ 1)n1+ · · ·+ (dp + 1)n p − p− 3+m;

see [Cooper and Zinger 2014, Propositions 2.1, 2.2].
As in the case of stable maps, there are evaluation morphisms,

evi : Q0,m(P
n1−1
× · · ·×Pn p−1, (d1, . . . , dp))→ Pn1−1

× · · ·×Pn p−1,

i = 1, 2, . . . ,m, corresponding to each marked point. There is also a universal
curve

π : U→ Q0,m(P
n1−1
× · · ·×Pn p−1, (d1, . . . , dp))

with m sections σ1, . . . , σm (given by the marked points) and p universal rank-1
subsheaves

Si ⊂ Cni ⊗OU .

In the case p = 1, we will denote S1 by S. For each i = 1, 2, . . . ,m, let

ψi =−π∗(σ
2
i ) ∈ H 2(Q0,m(P

n1−1
× · · ·×Pn p−1, (d1, . . . , dp))

)
be the first chern class of the universal cotangent line bundle as usual.

The twisted invariants of projective spaces that we study in this paper are indexed
by tuples a= (a1, . . . , al) ∈ (Z

∗)l of nonzero integers, with l ∈ Z≥0. For each such
tuple a, let

|a| =
l∑

k=1

|ak |, 〈a〉 =
∏
ak>0

ak

/ ∏
ak<0

ak, a! =
∏
ak>0

ak !, aa
=

l∏
k=1

a|ak |
k ,

νn(a)= n− |a|, `±(a)= |{k : (±1)ak > 0}|, `(a)= `+(a)− `−(a).

If in addition n, d ∈ Z+, let

(1-3) V (d)n;a =
⊕
ak>0

R0π∗(S∗ak )⊕
⊕
ak<0

R1π∗(S∗ak )→ Q0,m(P
n−1, d),

where π : U→ Q0,m(P
n−1, d) is the universal curve and m ≥ 2; these sheaves are

locally free.
By [Ciocan-Fontanine et al. 2014, Theorem 4.5.2 and Proposition 6.2.3],

SQd
n;a(c1, . . . , cm)≡

∫
Q0,m(Pn−1,d)

e(V (d)n;a)

m∏
i=1

ev∗i xci , m ≥ 2, d ∈ Z+, ci ∈ Z≥0,
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where x ∈ H 2(Pn−1) is the hyperplane class, are invariants of the total space Xn;a
of the vector bundle

(1-4)
⊕
ak<0

OPn−1(ak)
∣∣

Xn;(ak )ak>0
→ Xn;(ak)ak>0,

where Xn;(ak)ak>0 ⊂ Pn−1 is a nonsingular complete intersection of multidegree
(ak)ak>0. If νn(a)= 0, that is, Xn;a is a Calabi–Yau complete intersection, let

GWc1,...,cm
n;a (q)=

∞∑
d=0

qd SQd
n;a(c1, . . . , cm),

with GW0
n;a(c)≡ 〈a〉 if |c| = n− 4− `(a)+m and 0 otherwise.

1B. SQ invariants and GW invariants. In Gromov–Witten theory, there is a natural
evaluation morphism ev : U→ Pn−1 from the universal curve

π : U→M0,m(P
n−1, d).

If n, d ∈ Z+, the sheaf

(1-5) V (d)n;a =
⊕
ak>0

R0π∗ev∗OPn−1(ak)⊕
⊕
ak<0

R1π∗ev∗OPn−1(ak)→M0,m(P
n−1, d),

is locally free. It is well known that

GWd
n;a(c1, . . . , cm)≡

∫
M0,m(Pn−1,d)

e(V (d)n;a)

m∏
i=1

ev∗i xci , m, ci ∈ Z≥0, d ∈ Z+,

are also invariants of Xn;a. If νn(a)= 0 and m ≥ 2, let

GWc1,...,cm
n;a (Q)=

∞∑
d=0

Qd GWd
n;a(c1, . . . , cm),

with GW0
n;a(c)≡ 〈a〉 if |c| = n− 4− `(a)+m and 0 otherwise.

Stable quotients invariants and Gromov–Witten invariants are equal in many
cases, but differ for many Calabi–Yau targets, as we now describe. Let

(1-6) Ḟn;a(w,q)

≡

∞∑
d=0

qdwνn(a)d
∏

ak>0
∏akd

r=1(akw+ r)
∏

ak<0
∏−akd−1

r=0 (akw− r)∏d
r=1((w+ r)n −wn)

∈Q(w)JqK,

(1-7) İ0(q)= Ḟn;a(0, q), Jn;a(q)=
1

İ0(q)
∂ Ḟn;a

∂w

∣∣∣∣
(0,q)

.

The term wn in the denominator in (1-6) above is irrelevant for the purposes of the
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main formulas of Sections 1–3. Its introduction is related to the expansion (4-9),
which is used in an essential way in the proof of (3-14) in Section 10.

Theorem 1. Let n, l ∈ Z+ and a ∈ (Z∗)l be such that νn(a) = 0. If m = 2, 3 and
c ∈ (Z≥0)m , then

d3−mSQd
n;a(c) ∈ Z for all d ∈ Z,(1-8)

GWc
n;a(Q)= İ0(q)m−2 SQc

n;a(q)− δm,2〈a〉Jn;a(q),(1-9)

where δm,2 is the Kronecker delta function and Q = qeJn;a(q) is the mirror map.
Furthermore, the genus-0 three-marked stable quotients invariants of Xn;a satisfy the
analogue of the dilaton equation of Gromov–Witten theory if and only if `−(a) > 0,
and of the divisor and string relations if and only if `−(a) > 1.

The relation (1-9) follows from the explicit mirror formulas for the stable
quotients analogues of the double and triple Givental’s J -functions provided by
Theorem 2 in Section 2 and similar results in Gromov–Witten theory [Popa 2012;
Zinger 2014]; see Section 2 for more details. By [Ciocan-Fontanine and Kim 2013,
Theorem 1.2.2 and Corollaries 1.4.1, 1.4.2], (1-9) holds for m > 3 as well. As the
mirror formulas of Theorem 2 relate SQ invariants to the hypergeometric series
arising in the B-model of the mirror family without a change of variables, (1-9)
illustrates the principle that the mirror map relating Gromov–Witten theory to the
B-model reflects the choice of the curve-counting theory in the A-model and is not
intrinsic to mirror symmetry itself.

The analogue of (1-8) for GW invariants is well known. By [McDuff and Salamon
2004, Proposition 7.3.2], the genus-0 GW invariants of a Calabi–Yau manifold
with 3+ marked points are integer. The m = 2 case of (1-8) for GW invariants is
implied by the m = 3 case and the divisor relation. The m = 2, 3 cases of (1-8) for
SQ invariants follow from the m = 2, 3 cases of (1-8) for GW invariants and from
(1-9), since İ0(q), Q(q)∈ZJqK; the integrality of the coefficients of Q(q) whenever
`−(a)= 0 is a special case of [Krattenthaler and Rivoal 2010, Theorem 1].1 Since
(1-9) extends to m > 3 by [Ciocan-Fontanine and Kim 2013], so does (1-8), but
without the d3−m factors.

Since İ0(q) = 1 if `−(a) = 0 and Jn;a(q) = 0 if `−(a) = 0, 1, (1-9) gives the
following corollary.

Corollary 1.1. Let n, l ∈ Z+ and a ∈ (Z∗)l be such that νn(a)= 0 and ak1, ak2 < 0
for some k1 6= k2. If m = 2, 3 and c ∈ (Z≥0)m , then

GWc
n;a(Q)= SQc

n;a(q).

1The integrality of the coefficients of İ0(q) and of Q(q) in the cases `−(a) > 0 is immediate from
their definitions.
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d dGWd
n;a(1, 1) dSQd

n;a(1, 1)

1 2875 6725
2 4876875 16482625
3 8564575000 44704818125
4 15517926796875 126533974065625
5 28663236110956000 366622331794131725
6 53621944306062201000 1078002594137326617625
7 101216230345800061125625 3201813567943782886368125
8 192323666400003538944396875 9579628267176528143932815625
9 367299732093982242625847031250 28820906443427523291443507328125

10 704288164978454714776724365580000 87086311562396929291553775833982625

Table 1. Some genus-0 GW and SQ invariants of a quintic three-
fold X5;(5).

Furthermore, the genus-0 three-marked stable quotients invariants of Xn;a satisfy
the analogue of the divisor, dilaton, and string equations of Gromov–Witten theory.

By Theorem 2, the conclusions of Corollary 1.1 also apply to the descendant
invariants. Stable quotients replacements for the divisor, string, or dilaton relations
[Hori et al. 2003, Section 26.3] for an arbitrary Calabi–Yau complete intersection
Xn;a are provided by (2-23), (2-24), and (2-25), respectively. For the sake of
comparison, we list a few genus-0 SQ and GW invariants of the quintic threefold
X5,(5) ⊂ P4 in Table 1; these are obtained from (2-33) and (2-34), respectively.

1C. SQ invariants and BPS states. Using (1-9), the genus-0 two- and three-marked
SQ invariants of a Calabi–Yau complete intersection threefold Xn;a can be expressed
in terms of the BPS counts of GW theory. For example, by the m = 2 case of (1-9),

(1-10) SQ1,1
n;a(q)= 〈a〉Jn;a(q)−

∞∑
d=1

BPSd
n;a(1, 1) ln

(
1− qded Jn;a(q)

)
,

where BPSd
n;a(1, 1) are the genus-0 two-marked BPS counts for Xn;a defined by

GW1,1
n;a(Q)=−

∞∑
d=1

BPSd
n;a(1, 1) ln(1− Qd).

If all genus-0 curves in Xn;a of degree at most d were smooth and had normal
bundles O(−1)⊕O(−1), the number of degree-d genus-0 curves in Xn;a would
be BPSd

n;a(1, 1); see [Voisin 1996, Section 1].
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Under the regularity assumption of the previous paragraph, the moduli space

Q 1,1
0,2(Xn;a, d)≡

{
u ∈ Q0,2(Xn;a, d) : ev1(u) ∈ H1, ev2(u) ∈ H2

}
,

where H1, H2 ⊂ Pn−1 are generic hyperplanes, would split into the topological
components:

• Z1,1
0 (d) of stable quotients with torsion of degree d and thus corresponding to

a constant map to H1 ∩ H2;

• Z1,1
C (d) of stable quotients with image in a genus-0 curve C ⊂ Xn;a of degree

dC ≤ d .

For C ⊂ Xn;a as above, Z1,1
C (d) consists of the closed subspaces Z1,1

C;r (d), with
r ∈ Z+ and dCr ≤ d, whose generic element has torsion of degree d − dCr . We
note that

dimZ1,1
C;r (d)= 2r − 2+ d − dCr + 2= d − (dC − 2)r,

which implies that each Z1,1
C;r (d) is an irreducible component if dC > 1. When

dC =1, Z1,1
C;r (d) is contained in Z1,1

C;d(d), but still gives rise to a separate contribution
to SQd

n;a(1, 1), according to (1-10).
The number SQd

n;a(2, 0), which arises from the constrained moduli space

Q 2,0
0,2(Xn;a, d)= Z2,0

0 (d)= Z1,1
0 (d),

is 〈a〉 times the coefficient JJn;a(q)Kd of qd in Jn;a(q); see [Cooper and Zinger
2014, Theorem 1]. The contribution of Z1,1

0 (d) to SQd
n;a(2, 0) is the same; this

explains the first term on the right-hand side of (1-10). Under the above regularity
assumption, (1-10) can be rewritten as

(1-11) SQd
n;a(1, 1)= 〈a〉JJn;a(q)Kd +

∑
C

∞∑
r=1

1
r
JeJn;a(q)Kd−rdC ,

where the outer sum is taken over all genus-0 curves C ⊂ Xn;a. This suggests that
the contribution of Z1,1

C;r (d) to SQd
n;a(1, 1) is 1

r Je
Jn;a(q)Kd−rdC . This contribution

depends on the embedding into Pn−1, which is as expected, given the nature of SQ
invariants.

Since the embedding C → Pn−1 corresponds to an inclusion OP1(−dC) →

Cn
⊗OP1 , each element of Z1,1

C;r (d) corresponds to a tuple

(C, y1, y2; S ⊂ S′⊗dc , S′ ⊂ C2
⊗OC), where

(C, y1, y2; S⊂C2
⊗OC)∈ Q0,2(P

1, d), (C, y1, y2; S′⊂C2
⊗OC)∈ Q0,2(P

1, r).

This modular style definition readily extends to arbitrary genus, number of marked
points, and dimension of projective space. The arising deformation-obstruction
theory can be studied as in [Marian et al. 2011, Section 6].
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1D. Outline of the paper. Theorem 1 is a direct consequence of Theorem 2 in
Section 2, which in turn is the nonequivariant specialization of Theorem 3 in
Theorem 3. We adapt the approaches of [Zinger 2009; Popa and Zinger 2014;
Popa 2012] from Gromov–Witten theory, outlined in Sections 5 and 6, to show that
certain equivariant two-point generating functions, including the stable quotients
analogue of the double Givental’s J -function, satisfy certain good properties which
guarantee uniqueness. The proof that these generating functions satisfy the required
properties follows principles similar to the proof of the analogous statements in
[Zinger 2009; Popa and Zinger 2014; Popa 2012] and uses the localization theorem
of [Atiyah and Bott 1984]; it is carried out in Sections 7 and 8.

This approach also implies that certain equivariant three-point generating func-
tions, including the stable quotients analogue of the triple Givental’s J -function,
are determined by three-point primary (without ψ-classes) SQ invariants. In the
Fano cases, that is, νn(a) > 0, enough of these invariants are essentially trivial for
dimensional reasons to confirm Proposition 3.1 in these cases; see Corollary 9.1.
However, there is no dimensional reason for the vanishing of these invariants to
extend to the Calabi–Yau cases, that is, νn(a) = 0; thus, a different argument is
needed in these cases. We employ the same kind of trick as used in [Cooper and
Zinger 2014] to confirm mirror symmetry for the stable quotients analogue of
Givental’s J -function and essentially deduce the Calabi–Yau cases from the Fano
cases. Specifically, we show that the equivariant three-point mirror formula of
Proposition 3.1 is equivalent to the closed formula for twisted three-point Hurwitz
numbers of Proposition 4.1, whenever |a|≤n. In Section 9, we show that the validity
of the latter does not depend n; since it holds whenever |a|< n, it follows that it
holds for all a, and so the equivariant three-point mirror formula of Proposition 3.1
holds whenever |a| ≤ n. Along with [Zinger 2014], Proposition 3.1 finally leads
to the mirror formula for the stable quotients analogue of the triple Givental’s
J -function in Theorem 3; see Section 10.

The closed formulas for twisted Hurwitz numbers of Propositions 4.1 and 4.2
are among the key ingredients in computing the genus-1 twisted stable quotients
invariants with 1 marked point. At the same time, this paper and [Zinger 2014]
provide an approach to comparing the (equivariant) genus-g m-fold Givental’s
J -functions,

(1-12)
∞∑

d=0

qd
{ev1× · · ·× evm}∗

[ e(V̇ (d)n;a)

(h̄1−ψ1) · · · (h̄m −ψm)

]
∈ H∗(Pn−1)[h̄−1

1 , . . . , h̄−1
m ]JqK

in the SQ and GW theories for all g ≥ 0 and m ≥ 1 with 2g + m ≥ 2. By
Proposition 6.3 and Lemmas 6.5 and 6.6, in the genus-0 case the restrictions of
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these generating functions to insertions at only one marked point agree whenever
νa > 1. In all cases, the approach of [Zinger 2014] can be adapted to show that
(1-12) is a sum over (at least) trivalent m-marked graphs with coefficients that
involve equivariant m′-pointed Hurwitz numbers with m′≤m, which are conversely
completely determined by the stable quotients analogue of the m′-pointed Givental’s
J -function with insertions at only one marked point through relations that do not
involve n. Since these relations hold whenever νn(a) > 0, they hold for all a. We
intend to clarify these points in a future paper.

The Gromov–Witten analogues of Theorem 2 and its equivariant counterpart,
Theorem 3 in Section 3, extend to the so-called concavex vector bundles over
products of projective spaces, that is, vector bundles of the form

l⊕
k=1

OPn1−1×···×Pn p−1(ak;1, . . . , ak;p)→ Pn1−1
× · · ·×Pn p−1,

where for each given k = 1, 2, . . . , l either ak;1, . . . , ak;p ∈ Z≥0, with ak;i 6= 0 for
some i , or ak;1, . . . , ak;p ∈ Z−. The stable quotients analogue of these bundles are
the sheaves

(1-13)
l⊕

k=1

S∗ak;1
1 ⊗· · ·⊗S∗ak;p

p → U→ Q0,2(P
n1−1
×· · ·×Pn p−1, (d1, . . . , dp))

with the same condition on ak;i , where Si → U is the universal subsheaf corre-
sponding to the i-th factor. We will comment on the necessary modifications at
each step of the proof.

2. Main theorem

We arrange stable quotients invariants with two and three marked points into
generating functions in Section 2A and give explicit closed formulas for them in
Section 2B. In Section 2C, we use these formulas to relate SQ and GW invariants,
with descendants, and obtain replacements for the divisor, string, and dilaton
relations for SQ invariants.

2A. Givental’s J-functions. For computational purposes, it is convenient to define
variations of the bundle (1-3) by

(2-1)

V̇ (d)n;a =
⊕
ak>0

R0π∗(S∗ak (−σ1))⊕
⊕
ak<0

R1π∗(S∗ak (−σ1))→ Q0,m(P
n−1, d),

V̈ (d)n;a =
⊕
ak>0

R0π∗(S∗ak (−σ2))⊕
⊕
ak<0

R1π∗(S∗ak (−σ2))→ Q0,m(P
n−1, d),
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where n, d ∈ Z+, m ≥ 2, and π : U→ Q0,m(P
n−1, d) is the universal curve; these

sheaves are also locally free. Whenever νn(a) ≥ 0, [Cooper and Zinger 2014,
Theorem 1] provides an explicit closed formula for the stable quotients analogue of
Givental’s J -function: the power series

(2-2) Żn;a(x, h̄, q)≡ 1+
∞∑

d=1

qdev1∗

[e(V̇ (d)n;a)

h̄−ψ1

]
∈ H∗(Pn−1)[h̄−1

]JqK,

where ev1 : Q0,2(P
n−1, d)→Pn−1 is as before and x ∈ H 2(Pn−1) is the hyperplane

class. In this paper, we obtain a closed formula for the power series

(2-3) Z̈n;a(x, h̄, q)≡ 1+
∞∑

d=1

qdev1∗

[e(V̈ (d)n;a)

h̄−ψ1

]
∈ H∗(Pn−1)[h̄−1

]JqK;

see (2-26).
We also give explicit formulas for the stable quotients analogues of the double

and triple Givental’s J -functions, the power series

(2-4) Ż∗n;a(x1, x2, h̄1, h̄2, q)

≡

∞∑
d=1

qd
{ev1×ev2}∗

[ e(V̇ (d)n;a)

(h̄1−ψ1)(h̄2−ψ2)

]
∈H∗(Pn−1)[h̄−1

1 , h̄−1
2 ]JqK,

(2-5) Ż∗n;a(x1, x2, x3, h̄1, h̄2, h̄3, q)

≡

∞∑
d=1

qd
{ev1× ev2× ev3}∗

[ e(V̇ (d)n;a)

(h̄1−ψ1)(h̄2−ψ2)(h̄3−ψ3)

]
,

where xi =π
∗

i x is the pullback of the hyperplane class in Pn−1 by the i-th projection
map and

ev1× ev2 : Q0,2(P
n−1, d)→ Pn−1

×Pn−1,

ev1× ev2× ev3 : Q0,3(P
n−1, d)→ Pn−1

×Pn−1
×Pn−1

(2-6)

are the total evaluation maps. Let

(2-7)

Żn;a(x1, x2, h̄1, h̄2, q)

=

(
1

h̄1+ h̄2

∑
s1,s2≥0

s1+s2=n−1

x s1
1 x s2

2

)
+ Ż∗n;a(x1, x2, h̄1, h̄2, q),

Żn;a(x1, x2, x3, h̄1, h̄2, h̄3, q)

=

(
1

h̄1h̄2h̄3

∑
s1,s2,s3≥0

s1,s2,s3≤n−1
s1+s2+s3=2n−2

x s1
1 x s2

2 x s3
3

)
+ Ż∗n;a(x1, x2, x3, h̄1, h̄2, h̄3, q).
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For each s ∈ Z≥0, define

Ż (s)n;a(x, h̄, q)≡ x s
+

∞∑
d=1

qdev1∗

[e(V̇ (d)n;a)ev∗2x s

h̄−ψ1

]
∈ H∗(Pn−1)[h̄−1

]JqK,

Z̈ (s)n;a(x, h̄, q)≡ x s
+

∞∑
d=1

qdev1∗

[e(V̈ (d)n;a)ev∗2x s

h̄−ψ1

]
∈ H∗(Pn−1)[h̄−1

]JqK,

(2-8)

where ev1, ev2 : Q0,2(P
n−1, d)→ Pn−1. Thus, Ż (0)n;a = Żn;a, Z̈ (0)n;a = Z̈n;a, and

x`
+

−(a) Ż
(`−+(a)+s)
n;a (x, h̄, q)= x`

−

+(a) Z̈
(`+−(a)+s)
n;a (x, h̄, q)

for all s ≥ 0, where

`+
−
(a)=max(`(a), 0), `−

+
(a)=max(−`(a), 0).

By Theorem 2 below, Ż (s)n;a, Z̈ (s)n;a, and the stable quotients analogues of the double and
triple Givental’s J -functions, (2-4) and (2-5), are explicit transforms of Givental’s
J -function Żn;a and its “reflection” Z̈n;a; this transform depends only on a (and s
in the first two cases).

2B. Mirror symmetry. Givental’s J -function Żn;a and its “reflection” Z̈n;a in the
Gromov–Witten and stable quotients theories are described by the hypergeometric
series (1-6) and

(2-9) F̈n;a(w,q)

≡

∞∑
d=0

qdwνn(a)d
∏

ak>0
∏akd−1

r=0 (akw+ r)
∏

ak<0
∏−akd

r=1 (akw− r)∏d
r=1((w+ r)n −wn)

∈Q(w)JqK.

These are power series in q with constant term 1 whose coefficients are rational
functions in w which are regular at w = 0. We denote the subgroup of all such
power series by P and define

(2-10)
D :Q(w)JqK→Q(w)JqK, M : P→ P by

DH(w, q)≡
{

1+
q
w

d
dq

}
H(w, q), MH(w, q)≡ D

(
H(w, q)
H(0, q)

)
;

the operator D multiplies the coefficient of qd by (w + d)/w. If νn(a) = 0 and
s ∈ Z≥0, let

(2-11) İs(q)≡Ms Ḟn;a(0, q), Ïs(q)≡Ms F̈n;a(0, q).
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For example, İs(q)= 1 if s < `−(a), Ïs(q)= 1 if s < `+(a),

İ`−(a)(q)= Ï`+(a)(q)=
∞∑

d=0

qd

∏
ak>0(akd)!

∏
ak<0(−1)akd(−akd)!

(d!)n
if νn(a)= 0,

and more generally İs+`−+(a)(q) = Ïs+`+−(a)(q) for all s ≥ 0. If νn(a) > 0, we set
İs(q), Ïs(q)= 1.

It is also convenient to introduce

(2-12) Fn;a(w,q)

≡

∞∑
d=0

qdwνn(a)d
∏

ak>0
∏akd

r=1(akw+ r)
∏

ak<0
∏−akd

r=1 (akw− r)∏d
r=1(w+ r)n

∈Q(w)JqK

and the associated power series Is(q)=Ms Fn;a(0, q) in the νn(a)= 0 case. In the
case 0< νn(a) < n, we define c(d)s,s′ ∈Q with d, s, s ′ ≥ 0 by

(2-13)
∞∑

d=0

∞∑
s′=0

c(d)s,s′w
s′qd
≡ wsDs Fn;a(w, q/wνn(a))

= wsDs+`−(a) Ḟn;a(w, q/wνn(a))

= wsDs+`+(a) F̈n;a(w, q/wνn(a)).

Since c(0)s,s′ = δs,s′ , the relations

(2-14)
∑

d1,d2≥0
d1+d2=d

s−νn(a)d1∑
t=0

c̃(d1)
s,t c(d2)

t,s′ = δd,0δs,s′ for all d, s ′ ∈ Z≥0, s ′ ≤ s− νn(a)d,

inductively define c̃(d)s,s′ ∈Q in terms of the numbers c̃(d1)
s,t with d1 < d . For example,

c̃(0)s,s′ = δs,s′ and

s−νn(a)∑
s′=0

c̃(1)s,s′w
s′
+

l∏
k=1

ak

∏
ak>0

∏ak−1
r=1 (akw+ r)

∏
ak<0

∏−ak−1
r=1 (akw− r)

(w+ 1)n−`+(a)−`−(a)−s

∈ ws−νn(a)+1QJwK.

If s ′ < 0 or νn(a) = 0, n, we set c̃(d)s,s′ = δd,0δs,s′ . The coefficients c̃(d)s,s′ are used
to express the power series (2-7) and (2-8) in terms of derivatives of the power
series (2-2) and (2-3); see Theorem 2.
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For s1, s2, s3, d ∈ Z≥0 with s1, s2, s3 ≤ n− 1, let

(2-15) c̃(d)s1,s2,s3
=


[[(
(1− aaq)İc

s1
(q)Ïc

s2
(q)Ïc

s3
(q)
)−1]]

d if νn(a)= 0;∑
d0,d1,d2,d3≥0

d0+d1+d2+d3=d

(aa)d0
3∏

t=1
c̃(dt )

ŝt−`t (a),ŝt−νn(a)dt−`t (a) if νn(a) > 0;

where

(2-16) İc
s =

n−`+(a)∏
t=s+1

İt , Ïc
s =

n−`−(a)∏
t=s+1

Ït , ŝt = n− 1− st ,

`t(a)=
{
`+(a) if t = 1;
`−(a) if t = 2, 3;

and J f (q)Kd is the coefficient of qd of f (q) ∈ QJqK. In particular, İc
s = 1 if

s ≥ n− `+(a) and Ïc
s = 1 if s ≥ n− `−(a). Since It = İt+`−(a) = Ït+`+(a), we find

that

İc
s(q)= (1− aaq)−1if s < `−(a), Ïc

s(q)= (1− aaq)−1if s < `+(a);

see [Zinger 2014, Proposition 4.4]. This implies that

(2-17)
∞∑

d=0

c̃(d)s1,s2,s3
qd
= 1 if νn(a)= 0, s1+ s2+ s3 = 2n− 2,

min(s1, s2, s3) < `
−(a).

We use this observation in Section 2C. Since c̃(0)s,s′ = δs,s′ , c̃(0)s1,s2,s3 = 1.
Finally, we define Ds Żn;a(x, h̄, q), Ds Z̈n;a(x, h̄, q)∈ H∗(Pn−1)[h̄]JqK for each

s ∈ Z+ inductively by

(2-18)

D0 Żn;a(x, h̄, q)= Żn;a(x, h̄, q),

Ds Żn;a(x, h̄, q)=
1

İs(q)

{
x + h̄ q d

dq

}
Ds−1 Żn;a(x, h̄, q),

D0 Z̈n;a(x, h̄, q)= Z̈n;a(x, h̄, q),

Ds Z̈n;a(x, h̄, q)=
1

Ïs(q)

{
x + h̄ q d

dq

}
Ds−1 Z̈n;a(x, h̄, q).

The operator D first multiplies the coefficient of qd by x+dh̄ and then renormalizes
the power series so that the coefficient of x s becomes 1 in the Calabi–Yau cases
(there is no renormalization in the Fano cases).
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Theorem 2. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l , the stable quotients analogue of the
double Givental’s J -function satisfies

(2-19) Żn;a(x1, x2, h̄1, h̄2, q)= 1
h̄1+h̄2

∑
s1,s2≥0

s1+s2=n−1

Ż (s1)
n;a (x1, h̄1, q)Z̈ (s2)

n;a (x2, h̄2, q).

If in addition νn(a)≥ 0,

(2-20) Żn;a(x1, x2, x3, h̄1, h̄2, h̄3, q)

=
1

h̄1h̄2h̄3

∑
d,s1,s2,s3≥0
s1,s2,s3≤n−1

s1+s2+s3+νn(a)d=2n−2

c̃(d)s1,s2,s3
qd Ż (s1)

n;a (x1, h̄1, q)
3∏

t=2

Z̈ (st )
n;a (xt , h̄t , q),

(2-21) Ž (s)n;a(x, h̄, q)=
∞∑

d=0

s−νn(a)d∑
s′=0

c̃(d)s−`∗(a),s′−`∗(a)q
d h̄s−νn(a)d−s′Ds′ Žn;a(x, h̄, q),

where (Ž , `∗)= (Ż , `−), (Z̈ , `+).

2C. Some computations. The first identity in Theorem 2 also holds for the Gromov–
Witten analogues of the generating series Ż∗n;a, Ż (s)n;a, and Z̈ (s)n;a; see [Popa 2012,
Theorem 1.2] for the general (toric) case. If νn(a) ≥ 2− `−(a), the analogues of
(2-20), (2-21), (2-26), and (2-27) hold in Gromov–Witten theory as well. Thus, in
this case the double Givental’s J -functions in Gromov–Witten and stable quotients
theories agree. If νn(a)=1 and `−(a)=0, the analogue of (2-21) in Gromov–Witten
theory holds with {x+ h̄q d/dq} replaced by {a!q+ x+ h̄q d/dq} in (2-18). Finally,
if νn(a)= 0 and `−(a)≤ 1, the analogue of (2-21) in Gromov–Witten theory holds
with

Ds Żn;a(x, h̄, Q)=
İ1(q)
İs(q)

{
x + h̄Q d

dQ

}
Ds−1 Żn;a(x, h̄, Q)

Ds Z̈n;a(x, h̄, Q)=
İ1(q)
Ïs(q)

{
x + h̄Q d

dQ

}
Ds−1 Z̈n;a(x, h̄, Q)

for all s ∈Z+, where Q = qeJn;a(q). The same comparison applies to the equivariant
version of Theorem 2, Theorem 3 in Section 3, and its Gromov–Witten analogue;
see [Popa 2012, Theorem 4.1] for the general toric case. Thus, just as is the case for
the standard Givental’s J -function, the mirror formulas for the double Givental’s
J -function in the stable quotients theory are simpler versions of the mirror formulas
for the double Givental’s J -function in the Gromov–Witten theory. Furthermore,
just as in Gromov–Witten theory, the generating functions Ż (s)n;a, Z̈ (s)n;a, and Ż∗n;a
above do not change when the tuple (a1, . . . , al) is replaced by (a1, . . . , al, 1); this
is consistent with [Ciocan-Fontanine et al. 2014, Proposition 4.6.1].
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Comparing Theorem 2 and [Cooper and Zinger 2014, Equation (1.7)] with [Popa
2012, Theorem 1.2] and the m = 3 case of [Zinger 2014, Theorem A], we find that

(2-22) ŻGW
n;a (x1, . . . , xm, h̄1, . . . , h̄m, Q)

= İ0(q)m−2e−Jn;a(q)(x1/h̄1+···+xm/h̄m) Żn;a(x1, . . . , xm, h̄1, . . . , h̄m, q)

with Q = qeJn;a(q) as before and m = 2, 3; we intend to extend this comparison to
m > 3 in a future paper. The same relations hold between the generating series Zn:a
described below. For m = 2, 3 and b1, b2, b3, c1, c2, c3 ≥ 0, let

SQ0
n;a(τb1c1, τb2c2, τb3c3)=

{
〈a〉 if b1, b2, b3 = 0, c1+ c2+ c3 = n− 1− `(a);
0 otherwise;

SQ0
n;a(τb1c1, τb2c2)=


〈a〉 if b1, b2 = 0, c1+ c2 = n− 2− `(a);
〈a〉
2

if {b1, b2} = {0,−1}, c1+ c2 = n− 1− `(a);
0 otherwise;

SQd
n;a(τb1c1, . . . , τbm cm)=

∫
Q0,m(Pn−1,d)

e(V (d)n;a)

m∏
i=1

(ψ
bi
i ev∗i xci ) for all d ∈ Z+,

SQc1,...,cm
n;a (q)b1,...,bm =

∞∑
d=0

qd SQd
n;a(τb1c1, . . . , τbm cm).

For m = 3, the degree-0 terms are as expected; for m = 2, the degree-0 terms are
chosen to insure the necessary recursivity and polynomiality properties, as outlined
in Section 5. Since GW invariants satisfy the divisor, string, and dilaton relations,
(2-22) leads to modified versions of these relations for SQ invariants:

İ0(q) İ1(q)SQc1,c2,1
n;a (q)b1,b2,0 =(2-23)

q d
dq

SQc1,c2
n;a (q)b1,b2 +SQc1+1,c2

n;a (q)b1−1,b2 +SQc1,c2+1
n;a (q)b1,b2−1,

İ0SQc1,c2,0
n;a (q)b1,b2,0 = SQc1,c2

n;a (q)b1−1,b2 +SQc1,c2
n;a (q)b1,b2−1,(2-24)

SQc1,c2,0
n;a (q)b1,b2,1 =−Jn;a(q)SQc1,c2,1

n;a (q)b1,b2,0.(2-25)

The discrepancy from the corresponding relations of GW invariants is exhibited by
the power series İ0 and İ1 (or equivalently Jn;a(q)).

By (3-12), (3-9), (1-6), and (2-9)
(2-26)

Żn;a(x, h̄, q)=
Ḟn;a(x/h, q/xνn(a))

İ0(q)
, Z̈n;a(x, h̄, q)=

F̈n;a(x/h, q/xνn(a))

Ï0(q)
,



454 ALEKSEY ZINGER

if νn(a)≥ 0.2 These two formulas explicitly determine the basic stable quotients
invariants appearing in (2-2) and (2-3). For s ∈ Z+, define

D0Ḟn;a(w, q)=
Ḟn;a(w, q)

İ0(q)
, DsḞn;a(w, q)=

1
İs(q)

{
1+

q
w

d
dq

}
Ds−1Ḟn;a(w, q),

D0F̈n;a(w, q)=
F̈n;a(w, q)

Ï0(q)
, DsF̈n;a(w, q)=

1
Ïs(q)

{
1+

q
w

d
dq

}
Ds−1F̈n;a(w, q).

Combining (2-26) with (2-19) and (2-21), we find that

(2-27) Żn;a(x1, x2, h̄1, h̄2, q)

=
1

h̄1+ h̄2

∑
s1,s2≥0

s1+s2=n−1

x s1
1 Ḟ (s1)

n;a

(
x1

h̄1
,

q

xνn(a)
1

)
· x s2

2 F̈ (s2)
n;a

(
x2

h̄2
,

q

xνn(a)
2

)
,

where

(2-28) F̌ (s)n;a(w, q)=
∞∑

d=0

s−νn(a)d∑
s′=0

c̃(d)s−`∗(a),s′−`∗(a)q
d

ws−νn(a)d−s′ Ds′ F̌n;a(w, q),

with (F̌, `∗)= (Ḟ, `−), (F̈, `+).3 Thus, (2-26) and Theorem 2 provide closed for-
mulas for the twisted genus-0 two-point and three-point SQ invariants of projective
spaces.

The equivariant versions of the generating functions Żn;a defined in (2-7) are
ideally suited for further computations, such as of genus-0 invariants with more
marked points and of positive-genus twisted invariants with at least one marked point.
However, for the purposes of computing the genus-0 two-point and three-point
invariants, it is more natural to consider the generating functions
(2-29)

Z∗n;a(x1, x2, h̄1, h̄2, q)≡
∞∑

d=1

qd
{ev1× ev2}∗

[ e(V (d)n;a)

(h̄1−ψ1)(h̄2−ψ2)

]
,

Z∗n;a(x1, x2, x3, h̄1, h̄2, h̄3, q)≡
∞∑

d=1

qd
{ev1× ev2× ev3}∗

[ e(V (d)n;a)

(h̄1−ψ1)(h̄2−ψ2)(h̄3−ψ3)

]
,

2The right-hand sides of these expressions should be first simplified in Q(x, h̄)JqK, eliminating
division by x , and then projected to H∗(Pn−1)[h̄]JqK.

3The right-hand side of (2-27) should be first simplified in Q(x1, x2, h̄1, h̄2)JqK, eliminating
division by x1 and x2, and then projected to H∗(Pn−1

×Pn−1)[h̄1, h̄2]JqK.
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where V (d)n;a is given by (1-3) and the evaluation maps are as in (2-6). In the case
`(a)≥ 0, (2-27) immediately gives

(2-30) Z∗n;a(x1, x2, h̄1, h̄2, q)

=
〈a〉x`(a)1

h̄1+ h̄2

∑
s1,s2≥0

s1+s2=n−1

(
−x s1

1 x s2
2 +x s1

1 x s2
2 Ḟ (s1)

n;a

(
x1

h̄1
,

q

xνn(a)
1

)
·F̈ (s2)

n;a

(
x2

h̄2
,

q

xνn(a)
2

))

and similarly for the three-point generating function in (2-29). In general, (3-28),
(3-30), (3-15), the second identity in (3-12), (3-31), the middle identity in (3-13),
and (2-28) give

(2-31) Z∗n;a(x1, x2, h̄1, h̄2, q)=
〈a〉

h̄1+ h̄2

∑
s1,s2≥0

s1+s2=n−1

(
x s1

1 x s2+`(a)
2 Ḟ (s2)∗

n;a

(
x2

h̄2
,

q

xνn(a)
2

)

+ x s1+`(a)
1 x s2

2 Ḟ (s1)∗
n;a

(
x1

h̄1
,

q

xνn(a)
1

)
F̈ (s2)

n;a

(
x2

h̄2
,

q

xνn(a)
2

))
,

where Ḟ (s)∗n;a (w, q)≡ Ḟ (s)n;a(w, q)− 1.4

An analogue of (2-31) for the three-point generating function in (2-29) can be
similarly obtained from (3-29), the last identity in (3-13), and (2-17). In particular,
in the Calabi–Yau case, νn(a)= 0,

(2-32) Z∗n;a(x1, x2, x3, h̄1, h̄2, h̄3, q)

=
〈a〉

h̄1h̄2h̄3

{ ∑
s1,s2,s3≥0

s1,s2,s3≤n−1
s1+s2+s3=2n−2

(
x s1

1 x s2
2 x s3+`(a)

3 Ḟ (s3)∗
n;a

( x3
h̄3
, q
)

+ x s1
1 x s2+`(a)

2 x s3
3 Ḟ (s2)∗

n;a

( x2
h̄2
, q
)

F̈ (s3)
n;a

( x3
h̄3
, q
)

+ x s1+`(a)
1 x s2

2 x s3
3 c̃s1,s2,s3(q)Ḟ

(s1)∗
n;a

( x1
h̄1
, q
) 3∏

t=2

F̈ (st )
n;a

( xt
h̄t
, q
))

+

∑
s1≥`

−(a), s2,s3≥0
s1,s2,s3≤n−1

s1+s2+s3=2n−2

x s1+`(a)
1 x s2

2 x s3
3 c̃∗s1,s2,s3

(q)
3∏

t=2

F̈ (st )
n;a

( xt
h̄t
, q
)}
,

where
c̃s1,s2,s3(q)≡ 1+ c̃∗s1,s2,s3

(q)=
1

(1− aaq)İc
s1
(q)Ïc

s2
(q)Ïc

s3
(q)

.

4The right-hand side of (2-31) should be first simplified in Q(x1, x2, h̄1, h̄2)JqK, eliminating
division by x1 and x2, and then projected to H∗(Pn−1

×Pn−1)[h̄1, h̄2]JqK.
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This presentation of the three-point formula eliminates division by x1, even if
`(a) < 0, since Ḟ (s)∗n;a (w, q) is divisible by w`

−(a)−s for s ≤ `−(a).
In the Calabi–Yau case, that is, νn(a)= 0, we find that

(2-33)

〈a〉+q d
dq

SQc1,c2
n;a (q)=〈a〉 İc1+1(q), SQc1,c2,c3

n;a (q)=
〈a〉

(1− aaq)
∏t=3

t=1
∏c=ct

c=0 İc(q)
,

whenever c1, c2, c3∈Z≥0, c1+c2=n−2−`(a) in the first equation, and c1+c2+c3=

n − 1− `(a) in the second equation. The c1 = 0 case of (2-33) agrees with the
W � G = Xn;a case of [Ciocan-Fontanine and Kim 2013, Corollary 5.5.4(bc)].
By (2-33),

max(c1, c2)≥ n− `+(a) ⇒ SQd
n;a(c1, c2)(q)= 0 for all d ∈ Z+,

max(c1, c2, c3)≥ n− `+(a) ⇒ SQd
n;a(c1, c2, c3)(q)= 0 for all d ∈ Z+,

as the case should be for intrinsic invariants of Xn;a. On the other hand,

(2-34)

〈a〉+ Q d
dQ

GWc1,c2
n;a (Q)= 〈a〉

İc1+1(q)
İ1(q)

,

GWc1,c2,c3
n;a (Q)=

〈a〉 İ0(q)

(1− aaq)
∏t=3

t=1
∏c=ct

c=0 İc(q)
,

with the same assumptions on c1, c2, c3 as in (2-33) and Q = qeJn;a(q), as before;
see [Popa and Zinger 2014, Equation (1.5)] and [Zinger 2014, Equation (1.7)],
respectively.

In the case of products of projective spaces and concavex sheaves (1-13), the
analogues of the above mirror formulas relate power series:

F̌n1,...,n p;a ∈Q(w)Jq1, . . . , qpK,(2-35)

Ž (s1,...,sp)

n1,...,n p;a ∈ H∗(Pn1−1
× · · ·×Pn p−1)[h̄−1

]Jq1, . . . , qpK,(2-36)

Ž∗n1,...,n p;a ∈ H∗((Pn1−1
× · · ·×Pn p−1)m)[h̄−1

1 , . . . , h̄−1
m ]Jq1, . . . , qpK,(2-37)

with F̌ and Ž denoting F , Ḟ , F̈ , Z , Ż , or Z̈ and m = 2, 3. The coefficients
of qd1

1 · · · q
dp
p in (2-36) and (2-37) are defined by the same pushforwards as in

(2-4), (2-5), (2-8), and (2-29), with the degree d of the stable quotients replaced
by (d1, . . . , dp) and x s by x s1

1 · · · x
sp
p . The coefficients of qd1

1 · · · q
dp
p in (2-35) are

obtained from the coefficients in (1-6), (2-9), and (2-12) by replacing akd and ak x
by ak;1d1+ · · ·+ ak;pdp and ak;1x1+ · · ·+ ak;px p in the numerator and taking the
product of the denominators with (n, x, d)= (ni , xi , di ) for each i = 1, . . . , p;

x1, . . . , x p ∈ H∗(Pn1−1
× · · ·×Pn p−1)
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now correspond to the pullbacks of the hyperplane classes by the projection maps. If
`−(a)=0, the analogue of (2-30) with 〈a〉x`(a) replaced by the products of ak;1x1;1+

· · ·+ ak;px1;p and sums over pairs of p-tuples (s1;1, . . . , s1;p) and (s2;1, . . . , s2;p)

with s1;i + s2;i = ni − 1 provides a closed formula for Z∗n1,...,n p;a. In general, the
relation (2-31) extends to this case by replacing 〈a〉x`(a)i by the products and ratios
of the terms ak;1xi;1+ · · ·+ ak;pxi;p.

3. Equivariant mirror formulas

We begin this section by reviewing the equivariant setup used in [Zinger 2009;
Popa and Zinger 2014; Cooper and Zinger 2014], closely following [Cooper and
Zinger 2014, Section 3]. After defining equivariant versions of the generating
functions Ż (s)n;a, Z̈ (s)n;a, Ż∗n;a, and Z∗n;a and of the hypergeometric series Ḟn;a and F̈n;a,
we state an equivariant version of Theorem 2; see Theorem 3 below. This theorem
immediately implies Theorem 2. The proof of the two-point mirror formulas in
Theorem 3 is outlined in Sections 5 and 6 and completed in Sections 7 and 8. We
conclude this section with a specialization of the three-point formula of Theorem 3
in Proposition 3.1, which is proved in Section 9 and is a key step in the proof of
the full three-point formula of Theorem 3 in Section 10.

3A. Equivariant setup. The quotient of the classifying space for the n-torus T is
BT ≡ (P∞)n . Thus, the group cohomology of T is

H∗T ≡ H∗(BT)=Q[α1, . . . , αn],

where αi ≡π
∗

i c1(γ
∗), γ→P∞ is the tautological line bundle, and πi : (P

∞)n→P∞

is the projection to the i-th component. The field of fractions of H∗T will be denoted
by

Qα ≡Q(α1, . . . , αn).

We denote the equivariant Q-cohomology of a topological space M with a T-action
by H∗T(M). If the T-action on M lifts to an action on a complex vector bundle
V → M , let e(V ) ∈ H∗T(M) denote the equivariant Euler class of V . A continuous
T-equivariant map f : M→ M ′ between two compact oriented manifolds induces
a pushforward homomorphism

f∗ : H∗T(M)→ H∗T(M
′).

The standard action of T on Cn ,

(eiθ1, . . . , eiθn ) · (z1, . . . , zn)≡ (eiθ1 z1, . . . , eiθn zn),

descends to a T-action on Pn−1, which has n fixed points:

(3-1) P1 = [1, 0, . . . , 0], P2 = [0, 1, 0, . . . , 0], . . . , Pn = [0, . . . , 0, 1].
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This standard T-action on Pn−1 lifts to a natural T-action on the tautological line
bundle γ → Pn−1, since γ ⊂ Pn−1

× Cn is preserved by the diagonal T-action.
With

x≡ e(γ ∗) ∈ H∗T(P
n−1)

denoting the equivariant hyperplane class, the equivariant cohomology of Pn−1 is
given by

(3-2) H∗T(P
n−1)=Q[x, α1, . . . , αn]

/
(x−α1) · · · (x−αn).

Let xt ∈ H∗T((P
n−1)m) be the pullback of x by the t-th projection map.

The standard T-representation on Cn (as well as any other representation) induces
T-actions on Q0,m(P

n−1, d), U , V (d)n;a, V̇ (d)n;a, and V̈ (d)n;a; see (1-3) and (2-1) for the

notation. Thus, V (d)n;a, V̇ (d)n;a, and V̈ (d)n;a have well-defined equivariant Euler classes

e
(
V (d)n;a

)
, e
(
V̇ (d)n;a

)
, e
(
V̈ (d)n;a

)
∈ H∗T(Q0,m(P

n−1, d)).

The universal cotangent line bundle for the i-th marked point also has a well-defined
equivariant Euler class, which will still be denoted by ψi .

Similarly to (2-2) and (2-3), let

Żn;a(x, h̄, q)≡ 1+
∞∑

d=1

qdev1∗

[e(V̇ (d)n;a)

h̄−ψ1

]
∈ H∗T(P

n−1)Jh̄−1, qK,

Z̈n;a(x, h̄, q)≡ 1+
∞∑

d=1

qdev1∗

[e(V̈ (d)n;a)

h̄−ψ1

]
∈ H∗T(P

n−1)Jh̄−1, qK.

(3-3)

For each s ∈ Z≥0, let

Ż(s)
n;a(x, h̄, q)≡ xs

+

∞∑
d=1

qdev1∗

[e(V̇ (d)n;a)ev∗2xs

h̄−ψ1

]
∈ H∗T(P

n−1)Jh̄−1, qK,

Z̈(s)
n;a(x, h̄, q)≡ xs

+

∞∑
d=1

qdev1∗

[e(V̈ (d)n;a)ev∗2xs

h̄−ψ1

]
∈ H∗T(P

n−1)Jh̄−1, qK.

(3-4)

Similarly to (2-4) and (2-5), we define

(3-5) Ż∗n;a(x1, x2, h̄1, h̄2, q)

≡

∞∑
d=1

qd
{ev1× ev2}∗

[ e(V̇ (d)n;a)

(h̄1−ψ1)(h̄2−ψ2)

]
∈ H∗T(P

n−1)Jh̄−1
1 , h̄−1

2 , qK,

(3-6) Ż∗n;a(x1, x2, x3, h̄1, h̄2, h̄3, q)

≡

∞∑
d=1

qd
{ev1× ev2× ev3}∗

[ e(V̇ (d)n;a)

(h̄1−ψ1)(h̄2−ψ2)(h̄3−ψ3)

]
,
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with the total pushforwards by the total evaluation maps taken in equivariant coho-
mology. Similarly to (2-7), let

Żn;a(x1, x2, h̄1, h̄2, q)=
PD(1(2)

Pn−1)

h̄1+ h̄2
+ Ż∗n;a(x1, x2, h̄1, h̄2, q),(3-7)

Żn;a(x1, x2, x3, h̄1, h̄2, h̄3, q)=
PD(1(3)

Pn−1)

h̄1h̄2h̄3
+ Ż∗n;a(x1, x2, x3, h̄1, h̄2, h̄3, q),

where PD(1(2)
Pn−1) and PD(1(3)

Pn−1) are the equivariant Poincaré duals of the (small)
diagonals in Pn−1

×Pn−1 and Pn−1
×Pn−1

×Pn−1, respectively.
The above Poincaré duals can be written as

(3-8)
PD(1(2)

Pn−1)=
∑

s1,s2,r≥0
s1+s2+r=n−1

(−1)r sr xs1
1 xs2

2 ,

PD(1(3)
Pn−1)=

∑
s1,s2,s3,r≥0

s1+s2+s3+r=2n−2

s(2)r xs1
1 xs2

2 xs3
3

=

∑
s1,s2,s3,r≥0

s1,s2,s3≤n−1
s1+s2+s3+r=2n−2

∑
r0,r1,r2,r3≥0

r1≤ŝ1,r2≤ŝ2,r3≤ŝ3
r0+r1+r2+r3=r

(−1)r1+r2+r3ηr0sr1sr2sr3xs1
1 xs2

2 xs3
3 ,

where sr , ηr , s(2)r ∈Q[α1, . . . , αn] are the r -th elementary symmetric polynomial in
α1, . . . , αn , the sum of all degree-r monomials in α1, . . . , αn , and the degree-r term
in (1− s1+ s2− · · · )

2, respectively. All three expressions for the Poincaré duals
can be confirmed by pairing them with xt1

1 xt2
2 and xt1

1 xt2
2 xt3

3 , with t1, t2, t3 ≤ n− 1,
and using the localization theorem of [Atiyah and Bott 1984] on (Pn−1)m and
the residue theorem on S2 to reduce the equivariant integrals of xs+t on Pn−1 to
the polynomials ηr ; these are the homogeneous polynomials in the power series
expansion of 1/(1− α1)(1− α2) · · · . The coefficient of xs1

1 xs2
2 xs3

3 in the second
expression for PD(1(3)

Pn−1) is precisely C̃(r)s1,s2,s3(0), with C̃(r)s1,s2,s3 as in Theorem 3;
see the end of Section 3B. This provides a direct check of the degree-0 term in
(3-14).

3B. Equivariant mirror symmetry. The equivariant analogues of the power series
in (1-6) and (2-9) are given by

(3-9) Ẏn;a(x, h̄, q)≡
∞∑

d=0

qd

∏
ak>0

∏akd
r=1(akx+ r h̄)

∏
ak<0

∏−akd−1
r=0 (akx− r h̄)∏d

r=1

(∏n
k=1(x−αk + r h̄)−

∏n
k=1(x−αk)

)
∈Q[α1, . . . , αn, x]Jh̄−1, qK,
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Ÿn;a(x, h̄, q)≡
∞∑

d=0

qd

∏
ak>0

∏akd−1
r=0 (akx+ r h̄)

∏
ak<0

∏−akd
r=1 (akx− r h̄)∏d

r=1

(∏n
k=1(x−αk + r h̄)−

∏n
k=1(x−αk)

)
∈Q[α1, . . . , αn, x]Jh̄−1, qK.

The second products in the denominators above are irrelevant for the statements in
this section, but are material to (4-9) and thus to the proof of (3-14) in this paper.

For each s∈Z+, we defineDsŻn;a(x, h̄, q),DsZ̈n;a(x, h̄, q)∈H∗T(P
n−1)Jh̄−1, qK

inductively by

(3-10)

D0 Żn;a(x, h̄, q)= Żn;a(x, h̄, q),

Ds Żn;a(x, h̄, q)=
1

İs(q)

{
x+ h̄q d

dq

}
Ds−1 Żn;a(x, h̄, q),

D0 Z̈n;a(x, h̄, q)= Z̈n;a(x, h̄, q),

Ds Z̈n;a(x, h̄, q)=
1

Ïs(q)

{
x+ h̄q d

dq

}
Ds−1 Z̈n;a(x, h̄, q).

The next theorem is the equivariant analogue of Theorem 2. It expresses the equi-
variant stable quotient invariants in (3-5) and (3-6) in terms of the basic equivariant
stable quotient invariants in (3-3).

Theorem 3. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l , then

(3-11) Żn;a(x1, x2, h̄1, h̄2, q)

=
1

h̄1+ h̄2

∑
s1,s2,r≥0

s1+s2+r=n−1

(−1)r sr Ż(s1)
n;a (x1, h̄1, q)Z̈(s2)

n;a (x2, h̄2, q),

where sr ∈ Qα is the r-th elementary symmetric polynomial in α1, . . . , αn . If in
addition νn(a)≥ 0,

(3-12) Żn;a(x, h̄, q)=
Ẏn;a(x, h̄, q)

İ0(q)
, Z̈n;a(x, h̄, q)=

Ÿn;a(x, h̄, q)
Ï0(q)

,

and there exist C̃(r)s,s′, C̃
(r)
s1,s2,s3 ∈Q[α1, . . . , αn]JqK with s, s ′, s1, s2, s3, r ∈ Z≥0 such

that

(3-13) C̃(r)s,s′(0)= δ0,rδs,s′,

JC̃(νn(a)d)
s,s′ (q)

∣∣
α=0Kd = c̃(d)s,s′, JC̃(νn(a)d)

s1,s2,s3
(q)
∣∣
α=0Kd = c̃(d)s1,s2,s3

,
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the coefficients of qd in C̃(r)s,s′(q) and C̃(r)s1,s2,s3(q) are homogeneous symmetric poly-
nomials in α1, α2, . . . , αn of degree r − νn(a)d, and

(3-14) Żn;a(x1, x2, x3, h̄1, h̄2, h̄3, q)

=
1

h̄1h̄2h̄3

∑
r,s1,s2,s3≥0

s1,s2,s3≤n−1
s1+s2+s3+r=2n−2

C̃(r)s1,s2,s3
(q)Ż(s1)

n;a (x1, h̄1, q)
3∏

t=2

Z̈(st )
n;a (xt , h̄t , q),

(3-15) Ž(s)
n;a(x, h̄, q)=

s∑
r=0

s−r∑
s′=0

C̃(r)s−`∗(a),s′−`∗(a)(q) h̄s−r−s′Ds′Žn;a(x, h̄, q),

where (Ž, `∗)= (Ż, `−), (Z̈, `+).

Setting α = 0 in (3-11), (3-12), (3-14), and (3-15), we obtain (2-19), (2-26),
(2-20) and (2-21), respectively.

We now completely describe the power series C̃(r)s,s′ of Theorem 3; it will be
shown in Section 5 that they indeed satisfy (3-15). Let

(3-16) D0Yn;a(x, h̄, q)

=
1

I0(q)

∞∑
d=0

qd

∏
ak>0

∏akd
r=1(akx+ r h̄)

∏
ak<0

∏−akd
r=1 (akx− r h̄)∏d

r=1
∏n

k=1(x−αk + r h̄)
.

For s ∈ Z+, let

(3-17) DsYn;a(x, h̄, q)=
1

Is(q)

{
x+ h̄ q d

dq

}
Ds−1Yn;a(x, h̄, q)

∈ xs
+ q ·Q[α1, . . . , αn, x][h̄]Jh̄−1, qK.

Comparing with (2-12), we find that

(3-18) DsYn;a(x, h̄, q)
∣∣
α=0 = xsDs Fn;a(x/h̄, q/xνn(a)), where

D0 Fn;a(w, q)=
Fn;a(w, q)

I0(q)
, Ds Fn;a(w, q)=

1
Is(q)

{
1+

q
w

d
dq

}
Ds−1 Fn;a(w, q)

for all s ∈ Z+. For r, s, s ′ ≥ 0, define C(r)s,s′ ∈Q[α1, . . . , αn]JqK by

(3-19) h̄s
∞∑

s′=0

s′∑
r=0

C(r)s,s′(q)x
s′−r h̄−s′

=DsYn;a(x, h̄, q).

By (3-16), (3-17), and (3-19), the coefficient of qd in C(r)s,s′ is a degree-r − νn(a)d
homogeneous symmetric polynomial in α. By (3-17) and (3-18),

(3-20) C(0)s,s (q)= 1, C(0)s,s′(q)= 0 for s > s ′, C(r)s,s′(0)= δr,0δs,s′ .
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By the first two statements above, the relations

(3-21)
∑

r1,r2≥0
r1+r2=r

s−r1∑
t=0

C̃(r1)
s,t (q)C

(r2)
t,s′−r1

(q)= δr,0δs,s′ for r, s ′ ∈ Z≥0, r ≤ s ′ ≤ s,

inductively define C̃(r)s,s′−r ∈Q[α1, . . . , αn]JqK with r ≤ s ′ ≤ s in terms of the power

series C̃(r1)
s,t with r1 < r or r1 = r and t < s ′− r . By (3-20) and (3-21),

C̃(0)s,s′ = δs,s′, C̃(r)s,s′(0)= δr,0δs,s′,

and the coefficient of qd in C̃(r)s,s′ is a degree-r − νn(a)d homogeneous symmetric

polynomial in α. If s ′ < 0, we set C̃(r)s,s′ = δr,0δs,s′ . If νn(a) > 0,

C(νn(a)d)
s,s′

∣∣
α=0 = c(d)s,s′−νn(a)dqd for all s ′ ≥ νn(a)d

by (3-19), (3-18), and (2-13). Thus, setting α = 0 in (3-21) and comparing with
(2-14) with s ′ replaced by s ′− νn(a)d , we obtain the second identity in (3-13).

We next completely describe the power series C̃(r)s1,s2,s3 of Theorem 3; it will
be shown in Section 10 that they indeed satisfy (3-14). For each r ∈ Z≥0, let
pr ,H(r)

∈Q[z1, z2, . . .] be such that

(3-22) pr (α1, α2, . . .)= α
r
1+α

r
2+ · · · =H(r)(s1, s2, . . .).

For r, ν ∈ Z≥0, we define H(r)
ν ∈Q[s1, s2, . . .]JzK by

(3-23)

H(r)
ν (z)=


(1− z)−1 if ν = 0, r = 0;
1
r

d
dzH

(r)
(
(1− z)−1s1, (1− z)−1s2, . . .

)
if ν = 0, r ≥ 1;

1
r+ν

d
dzH

(r+ν)(s1, . . . , sν−1, sν − (−1)νz, sν+1, . . .) if ν > 0.

In particular, the coefficient of zd in H(r)
ν (z) is a degree-r − νd homogeneous

symmetric polynomial in α,

(3-24) H(r)
ν (0)= ηr , JH(νd)

ν (z)
∣∣
α=0Kd = 1.

The second identity above follows from [Zinger 2014, Lemma B.3]. Using induction
via Newton’s identity [Artin 1991, page 577], the first identity in (3-24) can be
reduced to

r∑
t=0

(−1)tηr−t st = 0,
r∑

t=0

(−1)t(r − t)ηr−t st = pr for all r ∈ Z+;
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these two identities are equivalent to

(1−α1u)(1−α2u) · · ·
(1−α1u)(1−α2u) · · ·

= 1,

d
dz

(1−α1u)(1−α2u) · · ·
(1−α1uz)(1−α2uz) · · ·

∣∣∣∣
z=0
=

α1u
1−α1u

+
α2u

1−α2u
+ · · ·

Let

(3-25) C̃(r)s1,s2,s3
(q)

=

∑
r0,r1,r2,r3≥0

r1≤ŝ1,r2≤ŝ2,r3≤ŝ3
r0+r1+r2+r3=r

H(r0)
νn(a)(a

aq)

İc
s1+r1

(q)Ïc
s2+r2

(q)Ïc
s3+r3

(q)
C̈(r1)

ŝ1
(q)Ċ(r2)

ŝ2
(q)Ċ(r3)

ŝ3
(q),

where

(3-26) Č(r)s (q)=
∑

r ′,r ′′≥0
r ′+r ′′=r

(−1)r
′

sr ′ Č(r
′′)

s−r ′−`∗(a),s−r−`∗(a)(q)

with (Č, `∗)= (Ċ, `−), (C̈, `+). Since the coefficients of qd in H(r)
ν and in C̃(r)s,s′ are

degree-r − νn(a)d homogeneous symmetric polynomials in α, the coefficient of qd

in C̃(r)s1,s2,s3 is also a degree-r − νn(a)d homogeneous symmetric polynomial in α.
The last identity in (3-13) follows from (3-25), the second identity in (3-24), the
middle identity in (3-13), and (2-15).

3C. Related mirror formulas. Similarly to (2-29), we define

(3-27)

Z∗n;a(x1, x2, h̄1, h̄2, q)≡
∞∑

d=1

qd
{ev1× ev2}∗

[ e(V (d)n;a)

(h̄1−ψ1)(h̄2−ψ2)

]
,

Z∗n;a(x1, x2, x3, h̄1, h̄2, h̄3, q)

≡

∞∑
d=1

qd
{ev1× ev2× ev3}∗

[ e(V (d)n;a)

(h̄1−ψ1)(h̄2−ψ2)(h̄3−ψ3)

]
,

with the evaluation maps as in (2-6). For each s ∈ Z≥0, let

Z(s)∗
n;a (x, h̄, q)≡

∞∑
d=1

qdev1∗

[e(V (d)n;a)ev∗2xs

h̄−ψ1

]
∈ H∗T(P

n−1)Jh̄−1, qK,

Z̈(s)∗
n;a (x, h̄, q)≡

∞∑
d=1

qdev1∗

[e(V̈ (d)n;a)ev∗2xs

h̄−ψ1

]
∈ H∗T(P

n−1)Jh̄−1, qK.
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Since x1, x2 ∈ H∗T(P
n−1
×Pn−1)⊗Q[α1,...,αn]Qα are invertible, the first equation in

(3-8) gives

〈a〉
∑

s1,s2,r≥0
s1+s2+r=n−1

(−1)r sr xs1
1 Z̈

(s2)∗
n;a (x2, h̄, q)

=

∞∑
d=1

qd
{id× ev1}∗

[
π∗2 e(V (d)n;a) {id× ev2}

∗(PD(1Pn−1)x−`(a)2 )

h̄−ψ1

]

=

∞∑
d=1

qd
{id× ev1}∗

[
π∗2 e(V (d)n;a) {id× ev2}

∗(PD(1Pn−1)x−`(a)1 )

h̄−ψ1

]
= x−`(a)1

∑
s1,s2,r≥0

s1+s2+r=n−1

(−1)r sr xs1
1 Z

(s2)∗
n;a (x2, h̄, q),

where π2 :P
n−1
×Q0,2(P

n−1, d)→ Q0,2(P
n−1, d) is the projection map. Combin-

ing the last identity with (3-11), we obtain

(3-28) Z∗n;a(x1, x2, h̄1, h̄2, q)

=
1

h̄1+ h̄2

∑
s1,s2,r≥0

s1+s2+r=n−1

(−1)r sr
(
xs1

1 Z
(s2)∗
n;a (x2, h̄2, q)

+Z(s1)∗
n;a (x1, h̄1, q)Z̈(s2)

n;a (x2, h̄2, q)
)
.

Similar reasoning gives

(3-29) Z∗n;a(x1, x2, x3, h̄1, h̄2, h̄3, q)

=
1

h̄1h̄2h̄3

∑
r,s1,s2,s3≥0

s1,s2,s3≤n−1
s1+s2+s3+r=2n−2

(
C̃(r)s1,s2,s3

(0)xs1
1 xs2

2 Z(s3)∗
n;a (x3, h̄3, q)

+ C̃(r)s1,s2,s3
(0)xs1

1 Z
(s2)∗
n;a (x2, h̄2, q)Z̈(s3)

n;a (x3, h̄3, q)

+ C̃(r)s1,s2,s3
(0)Z(s1)∗

n;a (x1, h̄1, q)
3∏

t=2

Z̈(st )
n;a (xt , h̄t , q)

+〈a〉x`
−(a)

1 C̃(r)∗s1,s2,s3
(q)Ż(s1)

n;a (x1, h̄1, q)
3∏

t=2

Z̈(st )
n;a (xt , h̄t , q)

)
,

where C̃(r)∗s1,s2,s3(q)= C̃(r)s1,s2,s3(q)− C̃(r)s1,s2,s3(0).
On the other hand, by (3-15) and the first identity in (3-12),

(3-30) Z(s)∗
n;a (x, h̄,q)

=−〈a〉x`(a)+s
+〈a〉x`(a)

s∑
r=0

s−r∑
s′=0

C̃(r)s−`−(a),s′−`−(a)(q)h̄
s−r−s′Ds′Ẏn;a(x, h̄,q),
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where

D0Y̌n;a(x, h̄, q)=
Y̌n;a(x, h̄, q)

Ǐ0(q)
,

DsY̌n;a(x, h̄, q)=
1

Ǐs(q)

{
x+ h̄ q d

dq

}
Ds−1Y̌n;a(x, h̄, q)

for all s ∈ Z+ and (Y̌, Ǐ )= (Ẏ, İ ), (Ÿ, Ï ). By (3-9), (1-6), and (2-9),

(3-31) DsY̌n;a(x, h̄, q)
∣∣
α=0 = xsDs F̌n;a(x/h̄, q/xνn(a)), where

D0 F̌n;a(w, q)=
F̌n;a(w, q)

Ǐ0(q)
, Ds F̌n;a(w, q)=

1

Ǐs(q)

{
1+

q
w

d
dq

}
Ds−1 F̌n;a(w, q)

for all s ∈ Z+, with (Y̌, F̌, Ǐ ) = (Ẏ, Ḟ, İ ), (Ÿ, F̈, Ï ). Simplifying the right-hand
side of (3-30) in Qα(x, h̄)Jh̄−1, qK to eliminate division by x and setting α = 0, we
obtain (2-31).

3D. Other three-point generating functions. The main step in the proof of the
mirror formula (3-14) for the stable quotients analogue of the triple Givental’s
J -function involves determining a mirror formula for the generating function

(3-32) Ż(0,1)
n;a;3(x, h̄, q)≡ 1+

∞∑
d=1

qdev1∗

[e(V̇ (d)n;a)

h̄−ψ1

]
∈ H∗T(P

n−1)Jh̄−1, qK,

where ev1 : Q0,3(P
n−1, d)→ Pn−1 is the evaluation map at the first marked point;

the meaning of the superscript (0, 1) is explained in (6-7). By (3-33), the SQ
invariants do not satisfy the string relation [Hori et al. 2003, Section 26.3] in the
pure Calabi–Yau cases, νn(a) = 0 and `−(a) = 0 (when İ0(q) 6= 1), even though
the relevant forgetful morphism, f2,3 below, is defined. Since in these cases the
twisted invariants of Pn−1 are intrinsic invariants of the corresponding complete
intersection Xn;a, this implies that the construction of virtual fundamental class in
[Ciocan-Fontanine et al. 2014] does not respect the forgetful morphism

f2,3 : Q0,3(Xn;a, d)→ Q0,2(Xn;a, d),

at least in the Calabi–Yau cases.

Proposition 3.1. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l are such that νn(a)≥ 0, then

(3-33) Ż(0,1)
n;a;3(x, h̄, q)= h̄−1 Żn;a(x, h̄, q)

İ0(q)
.

In principle, this proposition is contained in [Ciocan-Fontanine and Kim 2013,
Corollary 1.4.1]. We give a direct proof, along the lines of [Cooper and Zinger
2014]. In the process of proving this proposition, we establish the mirror formula
for equivariant Hurwitz numbers in Proposition 4.1. This in turn allows us to
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derive (3-14) from (3-11) and (3-15) following the approach of [Zinger 2014]; see
Section 10.

Similarly to (3-32), let

Ż(0,1)
n;a;2(x, h̄, q)≡ 1+

∞∑
d=1

qdev1∗

[ f ∗2,3e(V̇ (d)n;a)

h̄−ψ1

]
∈ H∗T(P

n−1)Jh̄−1, qK,(3-34)

where ev1 : Q0,3(P
n−1, d)→ Pn−1 is the evaluation map at the first marked point

and
f2,3 : Q0,3(P

n−1, d)→ Q0,2(P
n−1, d)

is the forgetful morphism. By the proof of the string relation [Hori et al. 2003,
Section 26.3],

(3-35) Ż(0,1)
n;a;2(x, h̄, q)= h̄−1Żn;a(x, h̄, q).

We use this identity to establish the mirror formula for Hurwitz numbers in
Proposition 4.2.

As stated in Section 1, Theorem 3 generalizes to products of projective spaces
and concavex sheaves (1-13). The relevant torus action is then the product of the
actions on the components described above. If its weights are denoted by αi; j , with
i = 1, . . . , p and j = 1, . . . , ni , the analogues of the above mirror formulas relate
power series

Y̌n1,...,n p;a ∈Q[α1;1, . . . , αp;n p , x1, . . . , xp]Jh̄−1, q1, . . . , qpK,(3-36)

Ž(s1,...,sp)

n1,...,n p;a ∈ H∗T(P
n1−1
× · · ·×Pn p−1)Jh̄−1, q1, . . . , qpK,(3-37)

Ž∗n1,...,n p;a ∈ H∗T((P
n1−1
× · · ·×Pn p−1)m)Jh̄−1

1 , . . . , h̄−1
M , q1, . . . , qpK,(3-38)

with Y̌ and Ž denoting Y , Ẏ , Ÿ , Z , Ż , or Z̈ and m = 2, 3. The coefficients
of qd1

1 . . . qdp
p in (3-37) and (3-38) are defined by the same pushforwards as in

(3-4), (3-5), (3-6), and (3-27) with the degree d of the stable quotients replaced
by (d1, . . . , dp) and xs by xs1

1 · · · x
sp
p . The coefficients of qd1

1 · · · q
dp
p in (3-36) are

obtained from the coefficients in (3-9) and (3-16) by replacing akd and akx by
ak;1d1 + · · · + ak;pdp and ak;1x1 + · · · + ak;pxp in the numerator and taking the
product of the denominators with (n, x, d)= (ni , xi , di ) for each s = 1, . . . , p; in
the i-th factor, αk is also replaced by αi;k ;

x1, . . . , xp ∈ H∗T(P
n1−1
× · · ·×Pn p−1)

now correspond to the pullbacks of the equivariant hyperplane classes by the
projection maps. The statements of Theorem 3, (3-28), and (3-29) extend by
replacing the symmetric polynomials by products of symmetric polynomials in the
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p different sets of variables and 〈a〉x`(a) by the products and ratios of the terms
ak;1x1+ · · ·+ ak;pxp; our proofs extend directly to this situation.

4. Equivariant twisted Hurwitz numbers

The fixed loci of the T-action on Q0,m(P
n−1, d) involve moduli spaces of weighted

curves and certain vector bundles, which we describe in this section. As a corollary
of the proof of Theorem 3, we obtain closed formulas for Euler classes of these
vector bundles in some cases. These formulas, described in Propositions 4.1 and
4.2 below, are a key ingredient in computing the genus-1 stable quotients invariants.

A stable d-tuple of flecks on a quasistable m-marked curve is a tuple

(4-1) (C, y1, . . . , ym; ŷ1, . . . , ŷd),

where C is a connected (at worst) nodal curve, y1, . . . , ym ∈ C∗ are distinct smooth
points, and ŷ1, . . . , ŷd ∈ C∗−{y1, . . . , ym}, such that the Q-line bundle

ωC(y1+ · · ·+ ym + ε(ŷ1+ · · ·+ ŷd))→ C

is ample for all ε ∈Q+; this again implies that 2g+m ≥ 2. An isomorphism

φ : (C, y1, . . . , ym; ŷ1, . . . , ŷd)→ (C′, y′1, . . . , y′m; ŷ′1, . . . , ŷ′d)

between curves with m marked points and d flecks is an isomorphism φ : C→ C′
such that

φ(yi )= y′i for all i = 1, . . . ,m, φ(ŷ j )= ŷ′j for all j = 1, . . . , d.

The automorphism group of any stable curve with m marked points and d flecks
is finite. For g,m, d ∈ Z≥0, the moduli space Mg,m|d parameterizing the stable
d-tuples of flecks as in (4-1) with h1(C,OC) = g is a nonsingular irreducible
proper Deligne–Mumford stack; see [Cooper and Zinger 2014, Proposition 2.3]. If
m ≥ m′ ≥ 2, let

fm′,m :M0,m|d →M0,m′|d+m−m′,

(C, y1, . . . , ym; ŷ1, . . . , ŷd) 7→ (C′, y1, . . . , ym′; ŷ1, . . . , ŷd , ym′+1, . . . , ym),

be the morphism converting the last m −m′ marked points into the last m −m′

flecks and contracting components of C if necessary.
Any tuple as in (4-1) induces a quasistable quotient

OC(−ŷ1− · · ·− ŷd)⊂OC ≡ C1
⊗OC .

For any ordered partition d = d1+ · · ·+ dp with d1, . . . , dp ∈ Z≥0, this correspon-
dence gives rise to a morphism

Mg,m|d → Qg,m(P
0
× · · ·×P0, (d1, . . . , dp)).
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In turn, this morphism induces an isomorphism

(4-2) φ :Mg,m|d
/

Sd1 × · · ·×Sdp
∼
→ Qg,m(P

0
× · · ·×P0, (d1, . . . , dp)),

with the symmetric group Sd1 acting on Mg,m|d by permuting the points ŷ1, . . . , ŷd1 ,
Sd2 acting on Mg,m|d by permuting the points ŷd1+1, . . . , ŷd1+d2 , etc.

There is again a universal curve

π : U→Mg,m|d

with sections σ1, . . . , σm and σ̂1, . . . σ̂d . Let

ψi =−π∗(σ
2
i ), ψ̂i =−π∗(σ̂

2
i ) ∈ H 2(Mg,m|d)

be the first chern classes of the universal cotangent line bundles. For m ≥ 2,
d ′, d ∈ Z+ with d ′ ≤ d , and r≡ (r1, . . . , rd ′) ∈ (Z

≥0)d
′

, let

Sr =O(−σ̂1− · · ·− σ̂d−d ′ − r1σ̂d−d ′+1− · · ·− rd ′ σ̂d)→ U→M0,m|d .

If β ∈ H 2
T , denote by

(4-3) S∗r (β)→ U→M0,m|d

the sheaf S∗r with the T-action so that

e(S∗r (β))= β × 1+ 1× e(S∗r ) ∈ H∗T(U)= H∗T ⊗ H∗(U).

Similarly to (2-1), let
(4-4)
V̇ ′(d)a;r (β)=

⊕
ak>0

R0π∗
(
S∗r (β)ak (−σ1)

)
⊕

⊕
ak<0

R1π∗
(
S∗r (β)ak (−σ1)

)
→M0,m|d ,

V̈ ′(d)a;r (β)=
⊕
ak>0

R0π∗
(
S∗r (β)ak (−σ2)

)
⊕

⊕
ak<0

R1π∗
(
S∗r (β)ak (−σ2)

)
→M0,m|d ,

where π : U→M0,m|d is the projection as before; these sheaves are locally free.
If m′ ∈ Z+, 2≤ m′ ≤ m, and r ∈ (Z≥0)m−m′ , let

(4-5) V̇ (d)a;r (β)= f ∗m′,mV̇
′(d)
a;r (β), V̈

(d)
a;r (β)= f ∗m′,mV̈

′(d)
a;r (β)→M0,m|d .

In the case m′ = m, we will denote the bundles V̇ (d)a;r (β) and V̈ (d)a;r (β) by V̇ (d)a (β)

and V̈ (d)a (β), respectively.
The equivariant Euler classes of the bundles V̇ (d)a;r (β) and V̈ (d)a;r (β) enter into the

localization computations in Sections 7–9. As a corollary of these computations, we
obtain closed formulas for the Euler classes of these bundles in the case m = 3; see
Propositions 4.1 and 4.2 below. These formulas are a key ingredient in computing
the genus-0 three-point and genus-1 SQ invariants.



GIVENTAL’S J-FUNCTIONS FOR STABLE QUOTIENTS INVARIANTS 469

If f ∈ QαJqK and d ∈ Z≥0, let J f Kq;d ∈ Qα denote the coefficient of qd in f .
If f = f (z) is a rational function in z and possibly some other variables, for any
z0 ∈ P1

⊃ C let

(4-6) R
z=z0

f (z)≡ 1
2π i

∮
f (z) dz,

where the integral is taken over a positively oriented loop around z= z0 with no other
singular points of f dz, denote the residue of the 1-form f dz. If z1, . . . , zk ∈ P1 is
any collection of points, let

(4-7) R
z=z1,...,zk

f (z)≡
i=k∑
i=1

R
z=zi

f (z)

be the sum of the corresponding residues.
For any variable y and r ∈ Z≥0, let sr (y) denote the r -th elementary symmetric

polynomial in {y−αk}. We define power series Ln;a, ξn;a ∈Qα[x]JqK by

(4-8)
Ln;a ∈ x+ qQα[x]JqK, sn(Ln;a(x, q))− qaaLn;a(x, q)|a| = sn(x),

ξn;a ∈ qQα[x]JqK, x+ q d
dq
ξn;a(x, q)= Ln;a(x, q).

By [Zinger 2014, Remark 4.5], the coefficients of the power series

e−ξn;a(αi ,q)/h̄ Ẏn;a(αi , h̄, q) ∈Qα[h̄]JqK

are regular at h̄ = 0. Thus, there is an expansion

(4-9) e−ξn;a(αi ,q)/h̄ Ẏn;a(αi , h̄, q)=
∞∑

r=0

8̇
(r)
n;a(αi , q)h̄r ,

with 8̇(0)n;a(x, q)− 1, 8̇(1)n;a(x, q), 8̇(2)n;a(x, q), · · · ∈ qQα[x]JqK. Furthermore,

(4-10) 8̇(0)n;a(x, q)

=

(
x · sn−1(x)

Ln;a(x, q) sn−1(Ln;a(x, q))− |a|qaaLn;a(x, q)|a|

)1
2
(

Ln;a(x, q)
x

)`(a)+1
2

.5

Proposition 4.1. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l , then for every i = 1, . . . , n
∞∑

d=0

qd

d!

∫
M0,3|d

e
(
V̇ (d)a (αi )

)∏
k 6=i e

(
V̇ (d)1 (αi −αk)

)
(h̄1−ψ1)(h̄2−ψ2)(h̄3−ψ3)

=
eξn;a(αi ,q)/h̄1+ξn;a(αi ,q)/h̄2+ξn;a(αi ,q)/h̄3

h̄1h̄2h̄3 8̇
(0)
n;a(αi , q)

∈QαJh̄−1
1 , h̄−1

2 , h̄−1
3 , qK.

5Only the case `−(a)= 0 is explicitly considered in [Zinger 2014], but the argument is the same
in all cases.
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Proposition 4.2. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l , then for every i = 1, . . . , n

∞∑
b=0

∞∑
r=0

∞∑
d=0

qd

d!

∫
M0,3|d

e
(
V̇ (d)a;r (αi )

)
ψb

3 Rh̄=0
(−1)b

h̄b+1 JẎn;∅(αi , h̄, q)Kq;r qr∏
k 6=i e

(
V̇ (d)1 (αi −αk)

)
(h̄1−ψ1)(h̄2−ψ2)

=
eξn;a(αi ,q)/h̄1+ξn;a(αi ,q)/h̄2

h̄1h̄2
∈QαJh̄−1

1 , h̄−1
2 , qK.

5. Outline of the proof of Theorem 3

The first identity in (3-12) is the subject of [Cooper and Zinger 2014, Theorem 3].
The proof of the remaining statements of Theorem 3 follows the same principle as
the proof of [Popa and Zinger 2014, Theorem 4]; it is outlined below. However, its
adaptation to the present situation requires a number of modifications. In particular,
the twisted stable quotients invariants are not known to satisfy the analogue of the
string relation of Gromov–Witten theory (in fact, by Proposition 3.1, in general they
do not). This requires a direct proof of the key properties for the stable quotients
analogue of double Givental’s J -function described in Lemmas 6.5 and 6.6 below; in
Gromov–Witten theory, these properties are deduced from the analogous properties
for three-point invariants, which simplifies the argument. We thus describe the
argument in detail.

Let QαVh̄W≡QαJh̄−1K+Qα[h̄] denote the Qα-algebra of Laurent series in h̄−1

(with finite principal part). We will view the Qα-algebra Qα(h̄) of rational functions
in h̄ with coefficients in Qα as a subalgebra of QαVh̄W via the embedding given by
taking the Laurent series of rational functions at h̄−1

= 0. If

F(h̄, q)=
∞∑

d=0

∞∑
r=−Nd

F (r)(d)h̄−r qd
∈QαVh̄WJqK

for some Nd ∈ Z and F (r)(d) ∈Qα, we define

F(h̄, q)∼=
∞∑

d=0

p−1∑
r=−Nd

F (r)(d)h̄−r (mod h̄−p),

that is we drop h̄−p and higher powers of h̄−1, instead of higher powers of h̄.
For 1≤ i, j ≤ n with i 6= j and d ∈ Z+, let

(5-1)

Ċ
j
i (d)≡

∏
ak>0

∏akd
r=1

(
akαi + r α j−αi

d

) ∏
ak<0

∏−akd−1
r=0

(
akαi − r α j−αi

d

)
d
∏d

r=1
∏n

k=1
(r,k) 6=(d, j)

(
αi −αk + r α j−αi

d

) ∈Qα,

C̈
j
i (d)≡

∏
ak>0

∏akd−1
r=0

(
akαi + r α j−αi

d

) ∏
ak<0

∏−akd
r=1

(
akαi − r α j−αi

d

)
d
∏d

r=1
∏n

k=1
(r,k) 6=(d, j)

(
αi −αk + r α j−αi

d

) ∈Qα.
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We will follow the five steps in [Zinger 2009, Section 1.3] to verify (3-11), the
second statement in (3-12), and (3-15):

(Ma) if F ,F ′ ∈ H∗T(P
n−1)Vh̄WJqK,

F(x= αi , h̄, q) ∈Qα(h̄)JqK⊂QαVh̄WJqK for all i = 1, 2, . . . , n,

F ′ is recursive in the sense of Definition 6.1, and F and F ′ satisfy a mutual
polynomiality condition (MPC) of Definition 6.2, then the transforms of F ′ of
Lemma 6.4 are also recursive and satisfy the same MPC with respect to F ;

(Mb) if F ,F ′ ∈ H∗T(P
n−1)Vh̄WJqK,

F(x= αi , h̄, q) ∈Q∗α + q ·Qα(h̄)JqK⊂QαVh̄WJqK for all i = 1, 2, . . . , n,

F ′ is recursive in the sense of Definition 6.1, and F and F ′ satisfy a fixed
MPC, then F ′ is determined by its “mod h̄−1 part”;

(Mc) the two sides of the second identity in (3-12) and the Z̈ case in (3-15) are
C̈-recursive in the sense of Definition 6.1 with C̈ as in (5-1), while the two
sides of the Ż case in (3-15) are Ċ-recursive in the sense of Definition 6.1 with
Ċ as in (5-1);

(Md) the two sides of each of the equations in (3-12) and (3-15) satisfy the same
η-MPC (dependent on the equation) with respect to Ẏn;a(x, h̄, q);

(Me) the two sides of each of the four equations in (3-12) and (3-15), viewed as
elements of H∗T(P

n−1)Vh̄WJqK, agree mod h̄−1.

The first two claims, (Ma) and (Mb), sum up Lemma 6.4 and Proposition 6.3,
respectively. By Lemmas 6.5 and 6.6, the stable quotients generating functions
Ż(s)

n;a and Z̈(s)
n;a are Ċ-recursive and C̈-recursive and satisfy MPCs with respect to

Żn;a(x, h̄, q). Along with the first identity in (3-12), the latter implies that they
satisfy MPCs with respect to Ẏn;a. It is immediate from (3-4) that

(5-2) Ż(s)
n;a(x, h̄, q), Z̈(s)

n;a(x, h̄, q)∼= xs (mod h̄−1) for all s ∈ Z≥0.

By the proof of the first identity in (3-12), as well as of its Gromov–Witten analogue,
the power series Ẏn;a is Ċ-recursive and satisfies the same MPC with respect to Ẏn;a

as Ż(s)
n;a; see [Cooper and Zinger 2014, Lemma 5.4]. A nearly identical argument

shows that the power series Ÿn;a is C̈-recursive and satisfies the same MPC with
respect to Ẏn;a as Z̈(s)

n;a; see [Popa and Zinger 2014, Section 4.3] for the `−(a)= 0
case. Since

Ÿn;a(x, h̄, q)∼= 1 (mod h̄−1),

this establishes the second identity in (3-12). Along with (3-12), the admissibility
of transforms (i) and (ii) in Lemma 6.4 implies that both sides of the Ż equation in
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(3-15) are Ċ-recursive and satisfy the same MPC with respect to Ẏn;a, no matter
what the coefficients C̃(r)s,s′ are. Similarly, both sides of the Z̈ equation in (3-15) are
C̈-recursive and satisfy the same MPC with respect to Ẏn;a. By (3-10), (3-12), (3-9),
(3-21), (3-19), (3-17), and (3-16),

s∑
r=0

s−r∑
s′=0

C̃(r)s−`−(a),s′−`−(a)(q) h̄s−r−s′Ds′Żn;a(x, h̄, q)∼= xs (mod h̄−1),

s∑
r=0

s−r∑
s′=0

C̃(r)s−`+(a),s′−`+(a)(q) h̄s−r−s′Ds′Z̈n;a(x, h̄, q)∼= xs (mod h̄−1). 6

(5-3)

Thus, (3-15) follows from (Mb).
The proof of (3-11) follows the same principle, which we apply to a multiple of

(3-11). For each i = 1, 2, . . . , n, let

(5-4) φi ≡
∏
k 6=i

(x−αk) ∈ H∗T(P
n−1).

By [Atiyah and Bott 1984, localization theorem], φi is the equivariant Poincaré
dual of the fixed point Pi ∈ Pn−1; see [Zinger 2009, Section 3.1]. Since x|Pi = αi ,

(5-5) Żn;a(αi , α j , h̄1, h̄2, q)

=

∫
Pi×Pj

Żn;a(x1, x2, h̄1, h̄2, q)

=

∫
Pn−1×Pn−1

Żn;a(x1, x2, h̄1, h̄2, q)φi ×φ j

=
1

h̄1+ h̄2

∏
k 6=i

(α j −αk)+

∞∑
d=1

qd
∫

Q0,2(Pn−1,d)

e(V̇ (d)n;a) ev∗1φi ev∗2φ j

(h̄1−ψ1)(h̄2−ψ2)
;

the last equality holds by the defining property of the cohomology push-forward
[Zinger 2009, Equation (3.11)]. By Lemmas 6.5 and 6.6, Żn;a(x1, x2, h̄1, h̄2, q) is
Ċ-recursive and satisfies the same MPC as Żn;a with respect to Żn;a(x, h̄, q) for
(x, h̄) = (x1, h̄1) and x2 = α j fixed.7 It is also C̈-recursive and satisfies the same
MPC as Z̈n;a with respect to Żn;a(x, h̄, q) for (x, h̄)= (x2, h̄2) and x1 = αi fixed.

6The left-hand side of (3-21) with s replaced by s−`−(a) is the coefficient of h̄sx−r (x/h̄)s
′
+`−(a)

in the first identity in (5-3) if s ≥ `−(a); The left-hand side of (3-21) with s replaced by s− `+(a) is
the coefficient of h̄sx−r (x/h̄)s

′
+`+(a) in the second identity in (5-3) if s ≥ `+(a).

7In other words, the coefficient of every power of h̄−1
2 in Żn;a(x, α j , h̄, h̄2, q) is Ċ-recursive and

satisfies the same MPC as Żn;a(x, h̄, q) with respect to Żn;a(x, h̄, q).
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By (Ma) and (Mb), it is thus sufficient to compare

(5-6) (h̄1+ h̄2)Żn;a(x1, x2, h̄1, h̄2, q) and∑
s1,s2,r≥0

s1+s2+r=n−1

(−1)r sr Ż(s1)
n;a (x1, h̄1, q)Z̈(s2)

n;a (x2, h̄2, q)

for all x1 = αi and x2 = α j with i, j = 1, 2, . . . , n modulo h̄−1
1 :

(h̄1+ h̄2)Żn;a(αi , α j , h̄1, h̄2, q)

∼=

∑
s1,s2,r≥0

s1+s2+r=n−1

(−1)r srα
s1
i α

s2
j +

∞∑
d=1

qd
∫

Q0,2(Pn−1,d)

e(V̇ (d)n;a)ev∗1φi ev∗2φ j

h̄2−ψ2
;

∑
s1,s2,r≥0

s1+s2+r=n−1

(−1)r sr Ż(s1)
n;a (αi , h̄1, q)Z̈(s2)

n;a (α j , h̄2, q)

∼=

∑
s1,s2,r≥0

s1+s2+r=n−1

(−1)r srα
s1
i Z̈(s2)

n;a (α j , h̄2, q).

In order to see that the two right-hand side power series are the same, it is sufficient
to compare them modulo h̄−1

2 :

∑
s1,s2,r≥0

s1+s2+r=n−1

(−1)r srα
s1
i α

s2
j +

∞∑
d=1

qd
∫

Q0,2(Pn−1,d)

e(V̇ (d)n;a)ev∗1φi ev∗2φ j

h̄2−ψ2

∼=

∑
s1,s2,r≥0

s1+s2+r=n−1

(−1)r srα
s1
i α

s2
j ;

∑
s1,s2,r≥0

s1+s2+r=n−1

(−1)r srα
s1
i Z̈(s2)

n;a (α j , h̄2, q)∼=
∑

s1,s2,r≥0
s1+s2+r=n−1

(−1)r srα
s1
i α

s2
j .

From this we conclude that the two expressions in (5-6) are the same; this proves
(3-11).

By Proposition 6.3 and Lemmas 6.5 and 6.6, the stable quotients analogue of
triple Givental’s J -function is determined by the primary three-point SQ invariants.
Since all such invariants are related to the corresponding GW invariants by [Ciocan-
Fontanine and Kim 2013, Theorem 1.2.2 and Corollaries 1.4.1, 1.4.2], a version
of (3-14) can be proved by comparing it to its GW analogue provided by [Zinger
2014, Theorem B]. We instead prove (3-14) directly in Section 10 by reducing the
computation to the two-point formulas of Theorem 3 and the mirror formula for
Hurwitz numbers in Propositions 4.1. In the process, we obtain a precise description
of the equivariant structure coefficients appearing in (3-14), which is not done in
[Zinger 2014].
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6. Recursivity, polynomiality, and admissible transforms

This section describes the algebraic observations used in the proof of Theorem 3. It
is based on [Zinger 2009, Sections 2.1, 2.2] and [Popa and Zinger 2014, Section 4.1].
Let

[n] = {1, 2, . . . , n}.

Definition 6.1. Let C ≡ (C j
i (d))d,i, j∈Z+ be any collection of elements of Qα. A

power series F ∈H∗T(P
n−1)Vh̄WJqK is C-recursive if the following holds: if d∗∈Z≥0

is such that

JF(x= αi , h̄, q)Kq;d∗−d ∈Qα(h̄)⊂QαVh̄W for all d ∈ [d∗], i ∈ [n],

and JF(αi , h̄, q)Kq;d is regular at h̄ = (αi −α j )/d for all d < d∗ and i 6= j , then

(6-1) JF(αi , h̄, q)Kq;d∗−

d∗∑
d=1

∑
j 6=i

C j
i (d)

h̄− (α j −αi )/d
JF(α j , z, q)Kq;d∗−d

∣∣
z=(α j−αi )/d

∈Qα[h̄, h̄−1
] ⊂QαVh̄W.

Thus, if F ∈ H∗T(P
n−1)Vh̄WJqK is C-recursive, for any collection C , then

F(x= αi , h̄, q) ∈Qα(h̄)JqK⊂QαVh̄WJqK for all i ∈ [n],

as can be seen by induction on d , and

(6-2) F(αi , h̄, q)

=

∞∑
d=0

Nd∑
r=−Nd

F r
i (d)h̄

r qd
+

∞∑
d=1

∑
j 6=i

C j
i (d)q

d

h̄− (α j −αi )/d
F(α j , (α j−αi )/d, q)

for all i ∈ [n], for some F r
i (d)∈Qα . The nominal issue with defining C-recursivity

by (6-2), as is normally done, is that a priori the evaluation of F(α j , h̄, q) at
h̄ = (α j −αi )/d need not be well defined, since F(α j , h̄, q) is a power series with
coefficients in QαVh̄−1W; a priori they may not converge anywhere. However, taking
the coefficient of each power of q in (6-2) shows by induction on the degree d that
this evaluation does make sense; this is the substance of Definition 6.1.

Definition 6.2. Let η ∈ Qα(x) be such that η(x = αi ) ∈ Qα is well defined
and nonzero for every i ∈ [n]. For any F ≡ F(x, h̄, q),F ′ ≡ F ′(x, h̄, q) ∈
H∗T(P

n−1)Vh̄WJqK, let

(6-3) 8
η

F ,F ′(h̄, z, q)

≡

n∑
i=1

η(αi )eαi z∏
k 6=i (αi −αk)

F(αi , h̄, qeh̄z)F ′(αi ,−h̄, q) ∈QαVh̄WJz, qK.
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If F ,F ′ ∈ H∗T(P
n−1)Vh̄WJqK, the pair (F ,F ′) satisfies the η mutual polynomiality

condition (η-MPC) if 8ηF ,F ′ ∈Qα[h̄]Jz, qK.

If F ,F ′ ∈ H∗T(P
n−1)Vh̄WJqK and

(6-4) F(x= αi , h̄, q),F ′(x= αi , h̄, q) ∈Qα(h̄)JqK for all i ∈ [n],

then the pair (F ,F ′) satisfies the η-MPC if and only if the pair (F ′,F) does; see
[Zinger 2009, Lemma 2.2] for the η = 1, `+(a) = 1, `−(a) = 0 case (the proof
readily carries over to the general case). Thus, if (6-4) holds, the statement that F
and F ′ satisfy the MPC is unambiguous.

Proposition 6.3. Let η ∈ Qα(x) be such that η(x = αi ) ∈ Qα is well defined and
nonzero for every i ∈ [n]. If F ,F ′ ∈ H∗T(P

n−1)Vh̄WJqK,

F(x= αi , h̄, q) ∈Q∗α + q ·Qα(h̄)JqK⊂QαVh̄WJqK for all i ∈ [n],

F ′ is recursive, and F and F ′ satisfy the η-MPC, then F ′ ∼= 0 (mod h̄−1) if and
only if F ′ = 0.

This is essentially [Zinger 2009, Proposition 2.1], with the assumptions corrected
in [Popa and Zinger 2014, Footnote 3]. The proof in [Zinger 2009], which treats
the η= 1 case, readily extends to the general case; see also the paragraph following
[Popa and Zinger 2014, Proposition 4.3].

Lemma 6.4. Let C ≡ (C j
i (d))d,i, j∈Z+ be any collection of elements of Qα and

η ∈Qα(x) be such that η(x= αi ) ∈Qα is well defined and nonzero for every i ∈ [n].
If F ,F ′ ∈ H∗T(P

n−1)Vh̄WJqK,

F(x= αi , h̄, q) ∈Qα(h̄)JqK⊂QαVh̄WJqK for all i ∈ [n],

F ′ is C-recursive (and satisfies the η-MPC with respect to F), then

(i) {x+ h̄ q d/dq}F ′ is C-recursive (and satisfies the η-MPC with respect to F);

(ii) if f ∈Qα[h̄]JqK, then f F ′ is C-recursive (and satisfies the η-MPC with respect
to F).

This lemma is essentially contained in [Zinger 2009, Lemma 2.3]. The proof in
[Zinger 2009], which treats the η = 1 case, readily extends to the general case; see
also the paragraph following [Popa and Zinger 2014, Lemma 4.4].

The next two sections establish Lemmas 6.5 and 6.6 below, the m = 2 cases of
which complete the proofs of (3-11), the second statement in (3-12), and (3-15).
The m = 3 cases of these lemmas are used in the proof of Proposition 3.1 and 4.1
in Section 9. If m ≥ m′ ≥ 2, let

(6-5) fm′,m : Q0,m(P
n−1, d)→ Q0,m′(P

n−1, d)



476 ALEKSEY ZINGER

denote the forgetful morphism dropping the last m−m′ points; this morphism is
defined if m′ > 2 or d > 0. With the bundles

V̇ (d)n;a, V̈
(d)
n;a→ Q0,m′(P

n−1, d)

defined by (2-1), let

(6-6) V̇ (d)n;a;m′ = f ∗m′,mV̇
(d)
n;a, V̈

(d)
n;a;m′ = f ∗m′,mV̈

(d)
n;a→ Q0,m(P

n−1, d).

For b≡ (b2, . . . , bm) ∈ (Z
≥0)m−1 and $ ≡ ($2, . . . ,$m) ∈ H∗T(P

n−1)m−1, let

Ż(b,$)
n;a;m′(x, h̄, q)≡

∞∑
d=0

qdev1∗

[e(V̇ (d)n;a;m′)

h̄−ψ1

j=m∏
j=2

(ψ
b j
j ev∗j$ j )

]
∈ H∗T(P

n−1)[h̄−1
]JqK,

Z̈(b,$)
n;a;m′(x, h̄, q)≡

∞∑
d=0

qdev1∗

[e(V̈ (d)n;a;m′)

h̄−ψ1

j=m∏
j=2

(ψ
b j
j ev∗j$ j )

]
∈ H∗T(P

n−1)[h̄−1
]JqK,

(6-7)

where ev j : Q0,m(P
n−1, d)→ Pn−1 is the evaluation map at the j-th marked point

and the degree-0 terms in the m′ = 2 case are defined by

e(V̇ (0)n;a;2),e(V̈
(0)
n;a;2)= 1 if m ≥ 3,

ev1∗

[e(V̇ (0)n;a;2)

h̄−ψ1
(ψ

b2
2 ev∗2$2)

]
,ev1∗

[e(V̈ (0)n;a;2)

h̄−ψ1
(ψ

b2
2 ev∗2$2)

]
= (−h̄)b2$2 if m = 2.

Lemma 6.5. Let l ∈ Z≥0, m,m′, n ∈ Z+ with m ≥ m′ ≥ 2, and a ∈ (Z∗)l . For all
b ∈ (Z≥0)m−1 and$ ∈ H∗T(P

n−1)m−1, the power series Ż(b,$)
n;a;m′ and Z̈(b,$)

n;a;m′ defined
by (6-7) are Ċ and C̈-recursive, respectively.

Lemma 6.6. Let l ∈ Z≥0, m,m′, n ∈ Z+ with m ≥ m′ ≥ 2, a ∈ (Z∗)l ,

η̇(x)= 〈a〉x`(a), η̈(x)= 1.

For all b ∈ (Z≥0)m−1 and $ ∈ H∗T(P
n−1)m−1, the power series

h̄m−2 Ż(b,$)
n;a;m′(x, h̄, q) and h̄m−2 Z̈(b,$)

n;a;m′(x, h̄, q)

satisfy the η̇ and η̈-MPC, respectively, with respect to the power series Żn;a(x, h̄, q)
defined by (3-3).

By Lemma 6.5, the power series Ż(s)
n;a and Z̈(s)

n;a defined by (3-4) are Ċ- and
C̈-recursive, respectively. Furthermore, the power series Żn;a defined by (3-7) is
Ċ-recursive for (x, h̄)= (x1, h̄1) and x2 = α j fixed and is C̈-recursive for (x, h̄)=
(x2, h̄2) and x1 = α j fixed. By Lemma 6.6, Ż(s)

n;a and Z̈(s)
n;a satisfy the η̇- and η̈-

MPC, respectively, with respect to the power series Żn;a(x, h̄, q) defined by (3-3).
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Furthermore, the power series Żn;a defined by (3-7) satisfies the η̇-MPC with respect
to Żn;a(x, h̄, q) for (x, h̄)= (x1, h̄1) and x2 = α j fixed and the η̈-MPC with respect
to Żn;a(x, h̄, q) for (x, h̄)= (x2, h̄2) and x1 = α j fixed.

In the case of products of projective spaces and concavex sheaves (1-13), the
above Definition 6.1 becomes inductive on the total degree d1+· · ·+dp of qd1

1 · · · q
dp
p .

The power series F is evaluated at (x1, . . . , xp)= (α1;i1, . . . , αp;i p) for the purposes
of the C-recursivity condition (6-1) and (6-2). The relevant structure coefficients,
extending (5-1), are given by

Ċ
j
i1...i p

(s; d)

≡

∏
ak;1≥0

ak;sd∏
r=1

( p∑
t=1

ak;tαt;it + r αs; j−αs;is
d

)∏
ak;1<0

−ak;sd−1∏
r=0

( p∑
t=1

ak;tαt;it − r αs; j−αs;is
d

)

d
d∏

r=1

ns∏
k=1

(r,k) 6=(d, j)

(
αs;is −αs;k + r αs; j−αs;is

d

) ,

C̈
j
i1...i p

(s; d)

≡

∏
ak;1≥0

ak;sd−1∏
r=0

( p∑
t=1

ak;tαt;it + r αs; j−αs;is
d

)∏
ak;1<0

−ak;sd∏
r=1

( p∑
t=1

ak;tαt;it − r αs; j−αs;is
d

)

d
d∏

r=1

ns∏
k=1

(r,k) 6=(d, j)

(
αs;is −αs;k + r αs; j−αs;is

d

) ,

with s ∈ [p] and j 6= is . The double sums in these equations are then replaced by
triple sums over s ∈ [p], j ∈ [ns] − is , and d ∈ Z+, and with F evaluated at

xt =

{
αs; j if t = s;
αt;it if t 6= s;

z =
αs; j −αs;is

d
.

The secondary coefficients F r
i (d) in (6-2) now become F r

i1...i p
(d1, . . . , dp), with

is ∈ [ns] and ds ∈ Z≥0. In the analogue of Definition 6.2, η ∈ R(x1, . . . , xp) is
such that the evaluation of η at (α1;i1, . . . , αp;i p) for all elements (i1, . . . , i p) of
[n1]× · · · × [n p] is well defined and not zero, 8F is a power series in z1, . . . , z p

and q1, . . . , qp, the sum is taken over all elements (i1, . . . , i p) of [n1]× · · ·× [n p],
the leading fraction is replaced by

η(α1;i1, . . . , αp;i p)e
α1;i1 z1+···+αp;i p z p∏p

s=1
∏

k 6=is
(αs;is −αs;k)

,

and the qeh̄z-insertion in the first power series is replaced by q1eh̄z1, . . . , qpeh̄z p .
Lemma 6.6 holds with

η̇(x1, . . . , xp)=

∏
ak;1≥0

∑p
s=1 ak;sxs∏

ak;1<0
∑p

s=1 ak;sxs
.
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7. Recursivity for stable quotients

In this section, we use the classical localization theorem [Atiyah and Bott 1984] to
show that the generating functions Ż(b,$)

n;a;m′ and Z̈(b,$)
n;a;m′ defined in (6-7) are recursive.

The argument is similar to the proof in [Cooper and Zinger 2014, Section 6] of
recursivity for the generating function Żn;a defined by (3-3), but requires some
modifications.

If T acts smoothly on a smooth compact oriented manifold M , there is a well-
defined integration-along-the-fiber homomorphism∫

M
: H∗T(M)→ H∗T

for the fiber bundle B M → BT. The classical localization theorem of [Atiyah
and Bott 1984] relates it to integration along the fixed locus of the T-action. The
latter is a union of smooth compact orientable manifolds F ; T acts on the normal
bundle N F of each F . Once an orientation of F is chosen, there is a well-defined
integration-along-the-fiber homomorphism∫

F
: H∗T(F)→ H∗T .

The localization theorem states that

(7-1)
∫

M
η =

∑
F

∫
F

η|F

e(N F)
∈Qα for all η ∈ H∗T(M),

where the sum is taken over all components F of the fixed locus of T. Part of the
statement of (7-1) is that e(N F) is invertible in H∗T(F)⊗Q[α1,...,αn]Qα . In the case
of the standard action of T on Pn−1, (7-1) implies that

(7-2) η|Pi =

∫
Pn−1

ηφi ∈Qα

for all η ∈ H∗T(P
n−1), i = 1, 2, . . . , n, with φi as in (5-4).

7A. Fixed locus data. The proof of Lemma 6.5 involves a localization computation
on Q0,m(P

n−1, d). Thus, we need to describe the fixed loci of the T-action on
Q0,m(P

n−1, d), their normal bundles, and the restrictions of the relevant cohomology
classes to these fixed loci.

As in the case of stable maps described in [Hori et al. 2003, Section 27.3], the
fixed loci of the T-action on Q0,m(P

n−1, d) are indexed by decorated graphs,

(7-3) 0 = (Ver,Edg;µ, d, ϑ),
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where (Ver,Edg) is a connected graph that has no loops, with Ver and Edg denoting
its sets of vertices and edges, and

µ : Ver→ [n], d : VertEdg→ Z≥0, and ϑ : [m] → Ver

are maps such that

µ(v1) 6= µ(v2) if {v1, v2} ∈ Edg, d(e) 6= 0 for all e ∈ Edg,(7-4)

val(v)≡ |ϑ−1(v)| + |{e ∈ Edg : v ∈ e}| + d(v)≥ 2 for all v ∈ Ver.

In Figure 1, the vertices of a decorated graph 0 are indicated by dots. The values
of the map (µ, d) on some of the vertices are indicated next to those vertices.
Similarly, the values of the map d on some of the edges are indicated next to them.
The elements of the sets [m] are shown in bold face; they are linked by line segments
to their images under ϑ . By (7-4), no two consecutive vertices have the same first
label and thus j 6= i .

With 0 as in (7-3), let

|0| ≡
∑
v∈Ver

d(v)+
∑

e∈Edg

d(e)

be the degree of 0. For each v ∈ Ver, let

Ev = {e ∈ Edg : v ∈ e}

be the set of edges leaving from v. There is a unique partial order ≺ on Ver that
has a unique minimal element vmin such that vmin = ϑ(1) and v ≺ w if there exist
distinct vertices v1, . . . , vk ∈ Ver such that

v ∈ {vmin, v1, . . . , vk−1}, w = vk, and

{vmin, v1}, {v1, v2}, . . . , {vk−1, vk} ∈ Edg,

in other words, v lies between vmin and w in (Ver,Edg). If e = {v1, v2} ∈ Edg is
any edge in 0 with v1 ≺ v2, let

0e ≡
(
{v1, v2}, {e};µe, de, ϑe

)
,

be the decorated graph as in (7-3) given by

µe =µ|e, de(e)= d(e), de|e = 0, ϑe : {1, 2}→ e, ϑe(1)= v1, ϑe(2)= v2;

see Figure 2.
With m′ ≤ m as in Lemmas 6.5 and 6.6, let

Verm′ =
{
v ∈ Ver : v � ϑ(i) for some i ∈ [m′]

}
,

Edgm′ =
{
{v1, v2} ∈ Edg : v1, v2 ∈ Verm′

}
.
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(i, 0) ( j, 2)
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d d ′
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(i, d0)

d0 ∈ Z+
( j, 0) (k, 5)

Figure 1. Two trees with val(vmin)= 2 and a tree with val(vmin)≥ 3.

1
d

2

( j, 0)(i, 0)

1
d ′

2

(k, 0)( j, 0)

Figure 2. The subtrees corresponding to the edges of the last graph
in Figure 1.

In particular, the graph (Verm′,Edgm′) is a tree; it is obtained from the original
graph (Ver,Edg) by discarding the branches that do not end at a vertex with a
marked point labeled by i ≤ m′. For each v ∈ Verm′ , define

rm′;v : Ev −Edgm′→ Z+ by rm′;v({v, v
′
})=

∑
{v1,v2}∈Edg
v′�v2

d({v1, v2})+
∑
w∈Ver
v′�w

d(w),

dm′(v)= d(v)+
∑

e∈Ev−Edgm′

rm;′v(e).

This construction increases the degree d(v) of a vertex v ∈Verm′ by the total degree
of all branches of 0 cut off at v to form the graph (Verm′,Edgm′). The motivation
for this construction is described at the end of the next paragraph.

As is described in [Marian et al. 2011, Section 7.3], the fixed locus Q0 of
Q0,m(P

n−1, |0|) corresponding to a decorated graph 0 consists of the stable quo-
tients

(C, y1, . . . , ym; S ⊂ Cn
⊗OC)

over quasistable rational m-marked curves that satisfy the following conditions. The
components of C on which the corresponding quotient is torsion free are rational and
correspond to the edges of 0; the restriction of S to any such component corresponds
to a morphism to Pn−1 of the opposite degree to that of the subsheaf. Furthermore,
if e = {v1, v2} is an edge, the corresponding morphism fe is a degree-d(e) cover of
the line

P1
µ(v1),µ(v2)

⊂ Pn−1

passing through the fixed points Pµ(v1) and Pµ(v2); it is ramified only over Pµ(v1) and
Pµ(v2). In particular, fe is unique up to isomorphism. The remaining components
of C are indexed by the vertices v ∈ Ver of valence val(v) ≥ 3. The restriction
of S to such a component Cv of C (or possibly a connected union of irreducible
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components) is a subsheaf of the trivial subsheaf Pµ(v)⊂Cn
⊗OCv of degree−d(v);

thus, the induced morphism takes Cv to the fixed point Pµ(v) ∈ Pn−1. Each such
component Cv also carries |ϑ−1(v)| + |Ev| marked points, corresponding to the
marked points and/or the nodes of C; we index these points by the set ϑ−1(v)tEv
in the canonical way. Thus, as stacks,

Q0 ≈

∏
v∈Ver

val(v)≥3

Q0,|ϑ−1(v)|+|Ev |(P
0, d(v))×

∏
e∈Edg

Q0e

≈

∏
v∈Ver

val(v)≥3

M0,|ϑ−1(v)|+|Ev ||d(v)/Sd(v)×

∏
e∈Edg

Q0e

≈

( ∏
v∈Ver

val(v)≥3

M0,|ϑ−1(v)|+|Ev ||d(v)/Sd(v)

)/ ∏
e∈Edg

Zd(e),

(7-5)

with each cyclic group Zd(e) acting trivially. For example, in the case of the last
diagram in Figure 1,

Q0 ≈
(
M0,2|d0/Sd0 ×M0,2|5/S5

)/
Zd ×Zd ′

is a fixed locus in Q0,2(P
n−1, d0+ 5+ d + d ′). If m′ ≤ m is as in Lemmas 6.5 and

6.6, the morphism fm′,m in (6-5) sends the locus Q0 of Q0,m(P
n−1, d) to (a subset

of) the locus Q0m′
of Q0,m′(P

n−1, d), where

0m′ =
(
Verm′,Edgm′;µ|Verm′

, dm′, ϑ |[m′]
)
,

as fm′,m contracts the ends of the elements of Q0,m′(P
n−1, d) that do not carry any

of the marked points indexed by the set [m′].
If v∈Ver and val(v)≥3, for the purposes of definitions (4-4) and (4-5) we identify
[|ϑ−1(v)|+|Ev|] with the set ϑ−1(v)tEv indexing the marked points on Cv so that
the element 1 in the former is identified with 1∈ [m] if ϑ(1)= v and with the unique
edge e−v = {v−, v} with v− ≺ v separating v from the marked point 1 otherwise.
Similarly, if v � ϑ(2), we associate the element 2 of [|ϑ−1(v)|+ |Ev|] with 2 ∈ [m]
if ϑ(2) = v and with the unique edge e+v = {v, v+} with v+ � ϑ(2) separating v
from the marked point 2 otherwise. Finally, if m′ ≤ m is as in Lemmas 6.5 and 6.6
and v ∈ Verm′ , we associate the |Ev −Edgm′ | largest elements of [|ϑ−1(v)| + |Ev|]
with the subset Ev −Edgm′ of ϑ−1(v)tEv.

If 0 is a decorated graph as above and e = {v1, v2} ∈ Edg with v1 ≺ v2, let

πe : Q0→ Q0e ⊂ Q0,2(P
n−1, d(e))

be the projection in the decomposition (7-5) and

ωe;v1 =−π
∗

eψ1, ωe;v2 =−π
∗

eψ2 ∈ H 2(Q0).
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Similarly, for each v ∈ Ver such that val(v)≥ 3, let

πv : Q0→M0,|ϑ−1(v)|+|Ev ||d(v)/Sd(v)

be the corresponding projection and

ψv;e = π
∗

vψe ∈ H 2(Q0) for all v ∈ Ev.

By [Hori et al. 2003, Section 27.2],

(7-6) ωe;vi =
αµ(vi )−αµ(v3−i )

d(e)
i = 1, 2.

By [Marian et al. 2011, Section 7.4], the Euler class of the normal bundle of Q0 in
Q0,m(P

n−1, |0|) is described by

(7-7)
e(N Q0)

e(Tµ(vmin)P
n−1)

=

∏
v∈Ver

val(v)≥3

∏
k 6=µ(v)

π∗v e
(
V̇ (d(v))1 (αµ(v)−αk)

)∏
e∈Edg

π∗e e
(
H 0( f ∗e T Pn

⊗O(−y1))/C
)

×

∏
v∈Ver

val(v)=2,ϑ−1(v)=∅

(∑
e∈Ev

ωe;v

) ∏
v∈Ver

val(v)≥3

(∏
e∈Ev

(ωe;v −ψv;e)

)
,

where C⊂ H 0( f ∗e T Pn
⊗O(−y1)) denotes the trivial T-representation. The terms

on the first line correspond to the deformations of the sheaf without changing the
domain, while the terms on the second line correspond to the deformations of the
domain. By (6-6), (2-1), (4-4), and (4-5),

(7-8)

e(V̇ (|0|)n;a;m′)
∣∣

Q0
=

∏
v∈Verm′
val(v)≥3

π∗v e
(
V̇ (d(v))a;rm′;v

(αµ(v))
)
·

∏
e∈Edgm′

π∗e e
(
V̇d(e)

n;a
)
,

e(V̈ (|0|)n;a;m′)
∣∣

Q0
=

∏
v∈Ver2

val(v)≥3

π∗v e
(
V̈ (d(v))a;rm′;v

(αµ(v))
)
·

∏
e∈Edg2

π∗e e
(
V̈d(e)

n;a
)

×

∏
v∈Verm′−Ver2

val(v)≥3

π∗v e
(
V̇ (d(v))a;rm′;v

(αµ(v))
)
·

∏
e∈Edgm′−Edg2

π∗e e
(
V̇d(e)

n;a
)
.

By [Hori et al. 2003, Section 27.2], for all e = {v1, v2} with v1 ≺ v2

(7-9)

∫
Q0e

e(V̇d(e)
n;a )

e
(
H 0( f ∗e T Pn ⊗O(−y1))/C

) = Ċ
µ(v2)
µ(v1)

(d(e)),

∫
Q0e

e(V̈d(e)
n;a )

e
(
H 0( f ∗e T Pn ⊗O(−y1))/C

) = C̈
µ(v2)
µ(v1)

(d(e)),
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with Ċ
µ(v2)
µ(v1)

(d(e)) and C̈
µ(v2)
µ(v1)

(d(e)) given by (5-1).

7B. Proof of Lemma 6.5. We apply the localization theorem to

(7-10)

Ż(b,$)
n;a;m′(αi , h̄, q)=

∞∑
d=0

qd
∫

Q0,m(Pn−1,d)

e(V̇ (d)n;a;m′)ev∗1φi

h̄−ψ1

m∏
j=2

(ψ
b j
j ev∗j$ j ),

Z̈(b,$)
n;a;m′(αi , h̄, q)=

∞∑
d=0

qd
∫

Q0,m(Pn−1,d)

e(V̈ (d)n;a;m′)ev∗1φi

h̄−ψ1

m∏
j=2

(ψ
b j
j ev∗j$ j ),

where φi is the equivariant Poincaré dual of the fixed point Pi ∈ Pn−1, as in (5-4),
and the degree-0 terms in the m = 2 case are defined by∫

Q0,2(Pn−1,0)

e(V̇ (d)n;a;m′)ev∗1φi

h̄−ψ1
(ψ

b2
2 ev∗2$2)≡ (−h̄)b2$2|Pi ,∫

Q0,2(Pn−1,0)

e(V̈ (d)n;a;m′)ev∗1φi

h̄−ψ1
(ψ

b2
2 ev∗2$2)≡ (−h̄)b2$2|Pi .

Since φi |Pj = 0 unless j = i , a decorated graph as in (7-3) contributes to the
two expressions in (7-10) only if the first marked point is attached to a vertex
labeled i , that is, µ(vmin) = i for the smallest element vmin ∈ Ver. We show that,
just as for Givental’s J -function, the (d, j)-summand in (6-2) with C = Ċ, C̈ and
F = Ż(b,$)

n;a;m′, Z̈
(b,$)
n;a;m′ , that is,

(7-11)

Ċ
j
i (d)q

d

h̄− (α j −αi/d)
Ż(b,$)

n;a;m′(α j , (α j −αi )/d, q) and

C̈
j
i (d)q

d

h̄− (α j −αi/d)
Z̈(b,$)

n;a;m′(α j , (α j −αi )/d, q),

respectively, is the sum over all graphs such that µ(vmin) = i , that is, the first
marked point is mapped to the fixed point Pi ∈ Pn−1, vmin is a bivalent vertex, that
is, d(vmin) = 0, ϑ−1(vmin) = {1}, the only edge leaving this vertex is labeled d,
and the other vertex of this edge is labeled j . We also show that the first sum on
the right-hand side of (6-2) is the sum over all graphs such that µ(vmin) = i and
val(vmin)≥ 3.

If 0 is a decorated graph with µ(vmin)= i as above,

(7-12) ev∗1φi
∣∣

Q0
=

∏
k 6=i

(αi −αk)= e(Tµ(vmin)P
n−1).

Suppose in addition that val(vmin) = 2 and |Evmin | = 1. Let v1 ≡ (vmin)+ be the
immediate successor of vmin in 0 and e1 = {vmin, v1} be the edge leaving vmin. If
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Figure 3. The two subgraphs of the second graph in Figure 1.

|Edg| > 1 or val(v1) > 2, that is, 0 is not as in the first diagram in Figure 1, we
break 0 at v1 into two “subgraphs”:

(i) 01 = 0e1 consisting of the vertices vmin ≺ v1, the edge {vmin, v1}, with the
d-value of 0 at both vertices, and a marked point at v and v1;

(ii) 02 consisting of all vertices, edges, and marked points of 0, other than the
vertex vmin and the edge {vmin, v1}, and with the marked point 1 attached at v1;

see Figure 3. By (7-5),

(7-13) Q0 ≈ Q01 × Q02 .

Let π1, π2 : Q0 → Q01, Q02 be the component projection maps. By (7-7) and
(7-8),

e(N Q0)

e(TPi P
n−1)
= π∗1

(
e(N Q01)

e(TPi P
n−1)

)
·π∗2

(
e(N Q02)

e(TPµ(v1)P
n−1)

)
· (ωe;v1 −π

∗

2ψ1),

e
(
V̇ (|0|)n;a;m′

)∣∣
Q0
= π∗1 e

(
V̇ (|01|)

n;a
)
·π∗2 e

(
V̇ (|02|)

n;a;m′
)
,

e
(
V̈ (|0|)n;a;m′

)∣∣
Q0
= π∗1 e

(
V̈ (|01|)

n;a
)
·π∗2 e

(
V̈ (|02|)

n;a;m′
)
.

Combining the above splittings with (7-6), (7-9), and (7-12), we find that

q |0|
∫

Q0

e(V̇ (|0|)n;a;m′)ev∗1φi

h̄−ψ1

j=m∏
j=2

(ψ
b j
j ev∗j$ j )

∣∣∣
Q0

1
e(N Q0)

=
Ċ
µ(v1)
i (d(e1))qd(e1)

h̄− (αµ(v1)−αi )/d(e1)

×

(
q |02|

{∫
Q02

e(V̇ (|02|)

n;a;m′)ev∗1φµ(v1)

h̄−ψ1

j=m∏
j=2

(ψ
b j
j ev∗j$ j )

1
e(N Q02)

}∣∣∣∣
h̄=

αµ(v1)
−αi

d(e1)

)
;

the same identity holds with V̇ replaced by V̈ and Ċ
µ(v1)
i (d(e1)) by C̈

µ(v1)
i (d(e1)).

By the first equation in (7-10) with i replaced by µ(v1) and the localization formula
(7-1), the sum of the last factor above over all possibilities for 02, with 01 held
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fixed, is

Ż(b,$)
n;a;m′

(
αµ(v1), (αµ(v1)−αi )/d(e1), q

)
− δm,2

(
αi −αµ(v1)

d(e1)

)b2

$2|Pµ(v1);

if V̇ is replaced by V̈ , then the sum becomes

Z̈(b,$)
n;a;m′

(
αµ(v1), (αµ(v1)−αi )/d(e1), q

)
− δm,2

(
αi −αµ(v1)

d(e1)

)b2

$2|Pµ(v1) .

In the m = 2 case, the contributions of the one-edge graph 0iµ(v1)(d(e1)) such as
d(v1)= 0, as in the first diagram in Figure 1, to the two expressions in (7-10) are

Ċ
µ(v1)
i (d(e1))qd(e1)

h̄1− (αµ(v1)−αi )/d(e1)

(
αi −αµ(v1)

d(e1)

)b2

$2|Pµ(v1) and

C̈
µ(v1)
i (d(e1))qd(e1)

h̄1− (αµ(v1)−αi )/d(e1)

(
αi −αµ(v1)

d(e1)

)b2

$2|Pµ(v1),

respectively. Thus, the contributions to the two expressions in (7-10) from all graphs
0 such that d(vmin)= 0, µ(v1)= j , and d(e1)= d are given by (7-11), that is, they
are the (d, j)-summands in the recursions (6-2) for Ż(b,$)

n;a;m′ and Z̈(b,$)
n;a;m′ .

Suppose next that 0 is a graph such that µ(vmin) = i and val(vmin) ≥ 3. If
|Ver| > 1, that is, 0 is not as in the first diagram in Figure 4, we break 0 at vmin

into “subgraphs”:

(i) 00 consisting of the vertex {vmin} only, with the same µ and d-values as in 0,
with the same marked points as before, along with a marked point e for each
edge e ∈ Evmin from vmin;

(ii) for each e ∈ Evmin , 0c;e consisting of the branch of 0 beginning with the edge
e at vmin, with the d-value of vmin replaced by 0, and with one marked point at
vmin;

see Figure 4 and 8. By (7-5),

Q0 ≈ Q00 ×

∏
e∈Evmin

Q0c;e = (M0,m0|d(vmin)/Sd(vmin))×
∏

e∈Evmin

Q0c;e ,(7-14)

where m0 = |ϑ
−1(vmin)| + |Evmin |.

Let π0, πc;e be the component projection maps in (7-14). Since ψ1|Q0
= π∗0ψ1, T

acts trivially on M0,m0|d(vmin),

ψ1 = 1×ψ1 ∈ H∗T(M0,m0|d(vmin))= H∗T ⊗ H∗(M0,m0|d(vmin)),
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1
d d ′
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Figure 4. The two subgraphs of the last graph in Figure 1.

that is, T acts trivially on the universal cotangent line bundle for the first marked
point on M0,m0|d(vmin), and the dimension of M0,m0|d(vmin) is m0+ d(vmin)− 3,

1
h̄−ψ1

∣∣
Q0
=

m0+d(vmin)−3∑
r=0

h̄−(r+1)π∗0ψ
r
1 .

Since m0+d(vmin)≤m+|0| and 0 contributes to the coefficient of q |0| in (7-10), it
follows that (6-2) holds with F replaced by Ż(b,$)

n;a;m′ and Z̈(b,$)
n;a;m′ with Nd =m+d−2,

C j
i (d)= Ċ

j
i (d) in the first case, and C j

i (d)= C̈
j
i (d) in the second case.

The argument in this section extends to products of projective spaces and concavex
sheaves (1-13) as described in [Cooper and Zinger 2014, Section 6].

8. Polynomiality for stable quotients

In this section, we use the classical localization theorem [Atiyah and Bott 1984] to
show that the generating functions h̄m−2Ż(b,$)

n;a;m′ and h̄m−2Z̈(b,$)
n;a;m′ defined in (6-7)

satisfy specific mutual polynomiality conditions of Definition 6.2 with respect to
the generating function Żn;a defined in (3-3). The argument is similar to the proof
in [Cooper and Zinger 2014, Section 7] of self-polynomiality for the generating
function Żn;a defined in (3-3), but requires some modifications.

8A. Proof of Lemma 6.6. The proof involves applying the classical localization
theorem [Atiyah and Bott 1984] with (n+ 1)-torus

T̃ ≡ C∗×T,

where T = (C∗)n as before. We denote the weight of the standard action of the
one-torus C∗ on C by h̄. Thus, by Section 3A,

H∗C∗ ≈Q[h̄], H∗
T̃
≈Q[h̄, α1, . . . , αn].

Throughout this section, V = C⊕ C denotes the representation of C∗ with the
weights 0 and −h̄. The induced action on PV has two fixed points:

q1 ≡ [1, 0], q2 ≡ [0, 1].

With γ1→ PV denoting the tautological line bundle,

(8-1) e(γ ∗1 )
∣∣
q1
= 0, e(γ ∗1 )

∣∣
q2
=−h̄, e(Tq1PV )= h̄, e(Tq2PV )=−h̄;
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this follows from our definition of the weights in [Cooper and Zinger 2014, Sec-
tion 3].

For each d ∈ Z≥0, the action of T̃ on Cn
⊗Symd V ∗ induces an action on

Xd ≡ P(Cn
⊗Symd V ∗).

It has (d + 1)n fixed points:

Pi (r)≡
[
P̃i ⊗ ud−rvr ], i ∈ [n], r ∈ {0} ∪ [d],

if (u, v) are the standard coordinates on V and P̃i ∈Cn is the i-th coordinate vector
(so that [P̃i ] = Pi ∈ Pn−1). Let

�≡ e(γ ∗) ∈ H∗
T̃
(Xd)

denote the equivariant hyperplane class.
For all i ∈ [n] and r ∈ {0} ∪ [d],

(8-2) �|Pi (r) = αi + r h̄, e(TPi (r)Xd)=

{ d∏
s=0

n∏
k=1

(s,k) 6=(r,i)

(�−αk − sh̄)
}∣∣∣∣
�=αi+r h̄

.

Since

BXd = P(B(Cn
⊗Symd V ∗))→ BT̃ and

c(B(Cn
⊗Symd V ∗))=

d∏
s=0

n∏
k=1

(1− (αk + sh̄)) ∈ H∗(BT̃),

the T̃-equivariant cohomology of Xd is given by

H∗
T̃
(Xd)≡ H∗(BXd)= H∗(BT̃)[�]

/ d∏
s=0

n∏
k=1

(�− (αk + sh̄))

≈Q[�, h̄, α1, . . . , αn]

/ d∏
s=0

n∏
k=1

(�−αk − sh̄)

⊂Qα[h̄, �]
/ d∏

s=0

n∏
k=1

(�−αk − sh̄).

In particular, every element of H∗
T̃
(Xd) is a polynomial in � with coefficients in

Qα[h̄] of degree at most (d + 1)n− 1.
For each d ∈ Z≥0, let

(8-3)
X′d =

{
b ∈ Q0,m(PV ×Pn−1, (1, d)) : ev1(b) ∈ q1×Pn−1, ev2(b) ∈ q2×Pn−1}.
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A general element of b of X′d determines a morphism

( f, g) : P1
→ (PV,Pn−1),

up to an automorphism of the domain P1. Thus, the morphism

g ◦ f −1
: PV → Pn−1

is well defined and determines an element θ(b) ∈Xd . By [Cooper and Zinger 2014,
Section 7], this morphism extends to a T̃-equivariant morphism

θ = θd : X
′

d → Xd .
8

If d ∈ Z+, there is also a natural forgetful morphism

F : X′d → Q0,m(P
n−1, d),

which drops the first sheaf in the pair and contracts one component of the domain if
necessary. If in addition m ≥m′ ≥ 2, fm′,m is as in (6-5), and V (d)n;a is as in (1-3), let

V (d)n;a;m′ = f ∗m′,mV
(d)
n;a→ Q0,m(P

n−1, d).

From the usual short exact sequence for the restriction along σ1, we find that

(8-4) e(V (d)n;a;m′)= 〈a〉ev∗1x`(a)e(V̇ (d)n;a;m′) ∈ H∗T(Q0,m(P
n−1, d)).

In the case d = 0, we set

F∗e(V (0)n;a;m′)= 〈a〉ev∗1(1× x`(a)) ∈ H∗
(
Q0,m(PV ×Pn−1, (1, 0))

)
,

F∗e(V̈ (0)n;a;m′)= 1 ∈ H∗
(
Q0,m(PV ×Pn−1, (1, 0))

)
.

Lemma 8.1. Let l ∈ Z≥0, m,m′, n ∈ Z+ with m ≥ m′ ≥ 2, and a ∈ (Z∗)l . With
Żn;a, Ż(b,$)

n;a;m′, Z̈
(b,$)
n;a;m′ as in (3-3) and (6-7),

(8-5) (− h̄)m−28
η̌

Żn;a;m′ ,Ž
(b,$)
n;a;m′

(h̄, z, q)

=

∞∑
d=0

qd
∫
X′d

e(θ
∗�)z F∗e(V̌ (d)n;a;m′) ψ

b2
2 ev∗2$2

m∏
j=3

ψ
b j
j ev∗j (e(γ

∗

1 )$ j ).

with (Ž, V̌, η̌)= (Ż,V, η̇), (Z̈, V̈, η̈).

Since the right-hand sides of the above expressions lie in H∗
T̃
Jz, qK⊂Qα[h̄]Jz, qK,

this lemma is a more precise version of Lemma 6.6.

8This morphism is the composition of the morphism θd defined in [Cooper and Zinger 2014] in
the m = 2 case with the forgetful morphism

Q0,m(PV ×Pn−1, (1, d))→ Q0,2(PV ×Pn−1, (1, d)).
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1

2 4

2

6

3

(1, 4) (i, 0) (i, 2) (3, 0) (1, 3)

Figure 5. A graph representing a fixed locus in X′d ; i 6= 1, 3.

8B. Proof of Lemma 8.1. We apply the localization theorem of [Atiyah and Bott
1984] to the T̃-action on X′d . We show that each fixed locus of the T̃-action on
X′d contributing to the right-hand sides in (8-5) corresponds to a pair (01, 02) of
decorated graphs as in (7-3), with 01 and 02 contributing to the two generating
functions in the subscript of the corresponding correlator 8 evaluated at x = αi for
some i ∈ [n].

Similarly to Section 7, the fixed loci of the T̃-action on Q0,m(PV×Pn−1, (d ′, d))
correspond to decorated graphs 0 with m marked points distributed between the
ends of 0. The map d should now take values in pairs of nonnegative integers,
indicating the degrees of the two subsheaves. The map µ should similarly take
values in the pairs (i, j) with i ∈ [2] and j ∈ [n], indicating the fixed point (qi , Pj )

to which the vertex is mapped. The µ-values on consecutive vertices must differ by
precisely one of the two components.

The situation for the T̃-action on

X′d ⊂ Q0,m(PV ×Pn−1, (1, d))

is simpler, however. There is a unique edge of positive PV -degree; we draw it as a
thick line in Figure 5. The first component of the value of d on all other edges and
on all vertices must be 0; so we drop it. The first component of the value of µ on
the vertices changes only when the thick edge is crossed. Thus, we drop the first
components of the vertex labels as well, with the convention that these components
are 1 on the left side of the thick edge and 2 on the right. In particular, the vertices
to the left of the thick edge (including the left endpoint) lie in q1×Pn−1 and the
vertices to its right lie in q2×Pn−1. Thus, by (8-3), the marked point 1 is attached
to a vertex to the left of the thick edge and the marked point 2 is attached to a vertex
to the right. By the localization formula (7-1) and the first equation in (8-1), 0 does
not contribute to the right-hand sides in (8-5) unless the marked points indexed
by j ≥ 3 are also attached to vertices to the right of the thick edge. Finally, the
remaining, second component of µ takes the same value i ∈ [n] on the two vertices
of the thick edge.

Let Ai denote the set of graphs as above so that the µ-value on the two endpoints
of the thick edge is labeled i ; see Figure 5. We break each graph 0 ∈Ai into three
subgraphs:

(i) 01 consisting of all vertices of 0 to the left of the thick edge, including its left
vertex v1 with its d-value, and a new marked point attached to v1;
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1 2
2

(1, 4) (i, 0)
01

1 2

(i, 0) (i, 0)
00

1 2 3
4 6

(i, 2) (3, 0) (1, 3)
02

Figure 6. The three subgraphs of the graph in Figure 5.

(ii) 00 consisting of the thick edge e0, its two vertices v1 and v2, with d-values set
to 0, and new marked points 1 and 2 attached to v1 and v2, respectively;

(iii) 02 consisting of all vertices to the right of the thick edge, including its right
vertex v2 with its d-value, and a new marked point attached to v2;

see Figure 6. From (7-5), we then obtain a splitting of the fixed locus in X′d
corresponding to 0:
(8-6)
Q0 ≈ Q01 × Q00 × Q02 ⊂ Q0,2(P

n−1, |01|)× Q0,2(PV, 1)× Q0,m(P
n−1, |02|).

The exceptional cases are |01| = 0 and m = 2, |02| = 0; the above isomorphism
then holds with the corresponding component replaced by a point.

Let π1, π0, and π2 denote the three component projection maps in (8-6). By
(7-7),

(8-7) e(N Q0)

e(TPi P
n−1)

=π∗1

(
e(N Q01)

e(TPi P
n−1)

)
·π∗2

(
e(N Q02)

e(TPi P
n−1)

)
·(ωe0;v1−π

∗

1ψ2)(ωe0;v2−π
∗

2ψ1).

Since for every j = m′+ 1, . . . ,m the closest vertex of Verm′ lies to the right of
the thick edge, by (7-8) and (8-4),

F∗e
(
V (|0|)n;a;m′

)∣∣
Q0
= η̇(αi )π

∗

1 e
(
V̈ (|01|)

n;a
)
π∗2 e

(
V̇ (|02|)

n;a;m′
)
,

F∗e
(
V̈ (|0|)n;a;m′

)∣∣
Q0
= η̈(αi )π

∗

1 e
(
V̈ (|01|)

n;a
)
π∗2 e

(
V̈ (|02|)

n;a;m′
)
.

(8-8)

Since Q00 consists of a degree-1 map, by the last two identities in (8-1)

(8-9) ωe0;v1 = h̄, ωe0;v2 =−h̄.

The morphism θ takes the locus Q0 to a fixed point Pk(r) ∈ Xd . It is immediate
that k = i . By continuity considerations, r = |01|. Thus, by the first identity in
(8-2),

(8-10) θ∗�
∣∣

Q0
= αi + |01|h̄.

Combining (8-7)–(8-10) and the second equation in (8-1), we obtain
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(8-11) q |0|
∫

Q0

e(θ
∗�)z F∗e(V (|0|)n;a;m′) ψ

b2
2 ev∗2$2

∏m
j=3 ψ

b j
j ev∗j (e(γ

∗

1 )$ j )

e(N Q0)

=
(−h̄)m−2η̇(αi )eαi z∏

k 6=i (αi −αk)

{
e|01|h̄zq |01|

∫
Q01

e(V̈ (|01|)

n;a )ev∗2φi

h̄−ψ2

∣∣∣
Q01

1
e(N Q01)

}

×

{
q |02|

∫
Q02

e(V̇ (|02|)

n;a;m′)ev∗1φi
∏m

j=2(ψ
b j
j ev∗j$ j )

(−h̄)−ψ1

∣∣∣
Q02

1
e(N Q02)

}
.

This identity remains valid with |01| = 0 and/or m = 2, |02| = 0 if we set the
corresponding integral to 1 or to h̄b2$2|Pi , respectively.

We now sum up the last identity over all 0 ∈Ai . This is the same as summing
over all pairs (01, 02) of decorated graphs such that

(1) 01 is a 2-pointed graph of degree d1 ≥ 0 such that the marked point 2 is
attached to a vertex labeled i ;

(2) 02 is an m-pointed graph of degree d2 ≥ 0 such that the marked point 1 is
attached to a vertex labeled i .

By the localization formula (7-1) and symmetry,

1+
∑
01

(qeh̄z)|01|

{∫
Q01

e(V̈ (|01|)

n;a )ev∗2φi

(h̄−ψ2)e(N Q01)

}

= 1+
∞∑

d=1

(qeh̄z)d
∫

Q0,2(Pn−1,d)

e(V̈ (d)n;a)ev∗2φi

h̄−ψ2
= Żn;a(αi , h̄, qeh̄z);

δm,2h̄b2$2|Pi +

∑
02

q |02|

{∫
Q02

e(V̇ (|02|)

n;a;m′)ev∗1φi
∏m

j=2(ψ
b j
j ev∗j$ j )

e(N Q02)(−h̄−ψ1)

}

= δm,2h̄b2$2|Pi +

∞∑
d=max(3−m,0)

qd
∫

Q0,m(Pn−1,d)

e(V̇ (|02|)

n;a;m′)ev∗1φi
∏m

j=2(ψ
b j
j ev∗j$ j )

(−h̄−ψ1)

= Ż(b,$)
n;a;m′(αi ,−h̄, q).

Combining with this with (7-1), we obtain
∞∑

d=0

qd
∫
X′d

e(θ
∗�)z F∗e(V (d)n;a;m′)ψ

b2
2 ev∗2$2

m∏
j=3

ψ
b j
j ev∗j (e(γ

∗

1 )$ j )

= (−h̄)m−2
n∑

i=1

η̇(αi )eαi z∏
k 6=i (αi −αk)

Żn;a(αi , h̄, qeh̄z)Ż(b,$)
n;a;m′(αi ,−h̄, q)

= (−h̄)m−28
η̇

Żn;a,Ż(b,$)
n;a;m′

(h̄, z, q),
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as claimed in the Ż identity in (8-5).
From (8-7)–(8-10), we also find that (8-11) holds with V and V̇ replaced by

V̈ and η̇ by η̈, with the same conventions in the |01| = 0 and m = 2, |02| = 0
cases. We then sum up the resulting identity over all pairs (01, 02) of decorated
graphs as in the previous paragraph. The sum of the terms in the first curly brackets
over all possibilities for 01 is exactly the same as before, while the sum of the
terms in the second curly brackets over all possibilities for 02 is described by the
same expression as before with V̇ (|02|)

n;a;m′ and Ż(b,$)
n;a;m′ replaced by V̈ (|02|)

n;a;m′ and Z̈(b,$)
n;a;m′ ,

respectively. Thus,

∞∑
d=0

qd
∫
X′d

e(θ
∗�)z F∗e(V̈ (d)n;a;m′) ψ

b2
2 ev∗2$2

m∏
j=3

ψ
b j
j ev∗j (e(γ

∗

1 )$ j )

= (−h̄)m−2
n∑

i=1

η̈(αi )eαi z∏
k 6=i (αi −αk)

Żn;a(αi , h̄, qeh̄z)Z̈(b,$)
n;a;m′(αi ,−h̄, q)

= (−h̄)m−28
η̈

Żn;a,Z̈(b,$)
n;a;m′

(h̄, z, q),

as claimed in the Z̈ identity in (8-5).
In the case of products of projective spaces and concavex sheaves (1-13), the

spaces

Q0,m(PV ×Pn−1, (1, d)) and Xd = P(Cn
⊗Symd V ∗)

are replaced by

Q0,m(PV ×Pn1−1
× · · ·×Pn p−1, (1, d1, . . . , dp)) and

P(Cn1 ⊗Symd1 V ∗)× · · ·×P(Cn p ⊗Symdp V ∗),

respectively. Lemma 8.1 extends to this situation by replacing z and q in (8-5)
with z1, . . . , z p and q1, . . . , qp, qd with qd1

1 · · · q
dp
p , X′d with X′d1,...,dp

, e(θ
∗�z) with

e(θ
∗�1)z1+···+(θ

∗�p)z p , and the indices d and n on the bundles V, V̈ with (d1, . . . , dp)

and (n1, . . . , n p), and summing over d1, . . . , dp ≥ 0 instead of d ≥ 0. The vertices
of the thick edge in Figure 5 are now labeled by a tuple (i1, . . . , i p) with is ∈ [ns],
as needed for the extension of Definition 6.2 described at the end of Section 6. The
relation (8-10) becomes

θ∗�s
∣∣

Q0
= αs;is + |01|s h̄,

where |01|s is the sum of the s-th components of the values of d on the vertices
and edges of 01 (corresponding to the degree of the maps to Pns−1). Otherwise,
the proof is identical.
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9. Stable quotients vs. Hurwitz numbers

Our proof of Propositions 4.1 and 4.2 that describe twisted Hurwitz numbers on
M0,3|d is analogous to the proof of [Cooper and Zinger 2014, Theorem 4], which
describes similar integrals on M0,2|d . In particular, we show that it is sufficient
to verify the statements of Propositions 4.1 and 4.2 for each fixed a and for all n
sufficiently large (compared to |a|). For νn(a) > 0, we obtain the statements of
Propositions 4.1 and 4.2 by analyzing the secondary (middle) terms in the recursion
(6-2) for the three-point generating functions Ż(0,1)

n;a;3 and Ż(0,1)
n;a;2 defined in (3-32) and

(3-34), respectively. We also use (3-35) and (3-33). The latter is the string equation
for stable quotients invariants; in Proposition 9.3, we show that it is equivalent
to Proposition 4.2 whenever νn(a) ≥ 0. In Proposition 9.2, we show that (3-33)
is equivalent to Proposition 4.1 whenever νn(a)≥ 0. We confirm Proposition 4.1
whenever νn(a) > 0 using Proposition 6.3; see Corollary 9.1. Since it is sufficient
to verify the statement of Proposition 4.1 with νn(a) > 0, the νn(a) = 0 case of
Proposition 4.1 then concludes the proof of (3-33).

9A. Proof of Propositions 3.1, 4.1, and 4.2. With n and a as in Propositions 4.1
and 4.2 and b1, b2, b3, r ∈ Z≥0, let

F (b1,b2,b3)
n;a (αi , q)=

∞∑
d=0

qd

d!

∫
M0,3|d

e(V̇ (d)a (αi ))ψ
b1
1 ψ

b2
2 ψ

b3
3∏

k 6=i e(V̇ (d)1 (αi −αk))
,

F (b1,b2,b3)
n;a;r (αi , q)=

∞∑
d=0

qd

d!

∫
M0,3|d

e(V̇ (d)a;r (αi ))ψ
b1
1 ψ

b2
2 ψ

b3
3∏

k 6=i e(V̇ (d)1 (αi −αk))
.

By [Cooper and Zinger 2014, Remark 8.5],

(9-1) F (b1,b2,b3)
n;a (αi , q)=

ξn;a(αi , q)b1+b2+b3

b1!b2!b3!
F (0,0,0)

n;a (αi , q);

thus, it is sufficient to show that

(9-2) F (0,0,0)
n;a (αi , q)=

1

8̇
(0)
n;a(αi , q)

.

By the same reasoning as in [Cooper and Zinger 2014, Remarks 8.4, 8.5],

F (b1,b2,b3)
n;a;r (αi , q)=

ξn;a(αi , q)b1+b2

b1!b2!
F (0,0,b3)

n;a;r (αi , q);

thus, it is sufficient to show that

(9-3)
∞∑

b=0

∞∑
r=0

F (0,0,b)
n;a;r (αi , q) R

h̄=0

{
(−1)b

h̄b+1 JẎn;∅(αi , h̄, q)Kq;r qr
}
= 1.
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Corollary 9.1. Let l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l . If νn(a) > 0,

Ż(0,1)
n;a;3(x, h̄, q)= h̄−1 Żn;a(x, h̄, q) ∈ H∗T(P

n−1)Jh̄−1, qK.

Proof. By Lemma 6.4(ii) and Lemmas 6.5 and 6.6, the series h̄Ż(0,1)
n;a;3(x, h̄, q) and

Żn;a(x, h̄, q) are C-recursive and satisfy the η̇-MPC with respect to Żn;a(x, h̄, q),
no matter what n and a are. It is immediate that

Żn;a(x, h̄, q)∼= 1 (mod h̄−1).

If νn(a) > 0 and d ∈ Z+,

dim Q0,3(P
n−1, d)− rkV̇ (d)n;a;3 = νn(a)d + (n− 1) > n− 1= dim Pn−1.

Thus,
h̄ Ż(0,1)

n;a;3(x, h̄, q)∼= 1 (mod h̄−1),

whenever νn(a) > 0. The claim now follows from Proposition 6.3. �

Proposition 9.2. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l are such that νn(a)≥ 0, then

(9-4) Ż(0,1)
n;a;3(x, h̄, q)= h̄−1 Żn;a(x, h̄, q)

İ0(q)
∈ (H∗T(P

n−1))Jh̄−1, qK

if and only if (9-2) holds for all i ∈ [n].

Proposition 9.3. If l ∈ Z≥0, n ∈ Z+, and a ∈ (Z∗)l are such that νn(a)≥ n, then

(9-5) Ż(0,1)
n;a;2(x, h̄, q)= h̄−1 Żn;a(x, h̄, q) ∈ (H∗T(P

n−1))Jh̄−1, qK

if and only if (9-3) holds for all i ∈ [n].

For any t, t ′ ∈ [d] with t 6= t ′, let 1t t ′ ∈ H 2(M0,m|d) denote the class of the
diagonal divisor{

[C, y1, . . . , ym; ŷ1, . . . , ŷd ] ∈Mg,m|d : ŷt = ŷt ′
}
.

For any t ∈ [d], let
1t =

∑
t ′>t

1t t ′ .

We denote by s1, s2, . . . the elementary symmetric polynomials in

{βk} =
{
(αi −αk)

−1
: k 6= i

}
for any given number of formal variables βk . Let

Aa(αi )=
∏
ak>0

(aak
k α

ak
i )

∏
ak<0

(a−ak
k α

−ak
i ), An;a(αi )=

Aa(αi )∏
k 6=i (αi −αk)

.
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Proof of (9-2). By (1) in the proof of [Cooper and Zinger 2014, Proposition 8.3],

(9-6)
JF (0,0,0)

n;a (αi , q)Kq;d

Ad
n;a(αi )

=

∫
M0,3|d

∏
ak>0

d∏
t=1

ak∏
λ=1

(
1− λψ̂t

akαi
+
1t
αi

) ∏
ak<0

d∏
t=1

−ak−1∏
λ=0

(
1+ λψ̂t

akαi
+
1t
αi

)
∏
k 6=i

d∏
t=1

(
1− ψ̂t

αi−αk
+

1t
αi−αk

)
=Ha;d(α

−1
i , s1, . . . , sd)

for some Ha;d ∈ Q[y, s1, . . . , sd ] dependent only on a and d, but not on n.9

Similarly, for any d, d ′ ∈ Z≥0 there exists Ẏa;d,d ′ ∈Q[y, s1, . . . , sd ′], independent
of n, such that

(9-7) Jh̄dJẎn;a(αi , h̄, q)Kq;dKh̄;d ′ = Ad
n;a(αi )Ẏa;d,d ′(y, s1, . . . , sd ′).

Thus, by (4-9), there exist ξa;d , 8̇
(0)
a;d ∈ Q[y, s1, . . . , sd ], independent of n, such

that

Jξn;a(αi , q)Kq;d ≡ R
h̄=0

Jlog Ẏn;a(αi , h̄, q)Kq;d = Ad
n;a(αi )ξa;d(α

−1
i , s1, . . . , sd−1),

J8̇(0)n;a(αi , q)Kq;d ≡ R
h̄=0

1
h̄
Je−ξn;a(αi ,q)/h̄ Ẏn;a(αi , h̄, q)Kq;d

= Ad
n;a(αi )8̇

(0)
a;d(α

−1
i , s1, . . . , sd).

We conclude that (9-2) is equivalent to∑
d1,d2≥0

d1+d2=d

Ha;d18̇
(0)
a;d2
= δd,0 for all d ∈ Z≥0.

By Corollary 9.1 and Proposition 9.2, these relations hold whenever νn(a) > 0;
since they do not involve n, they thus hold for all pairs (n, a). �

Proof of (9-3). For t ∈ [d + 1] and r ∈ Z≥0, we define ψ̂ ′t ,1
′

t;r ∈ H 2(M0,3|d) by

ψ̂ ′t = f ∗2;3ψ̂t , 1t;r = f ∗2;31t +

{
(r − 1) f ∗2;31t,d+1 if t ≤ d;
0 if t = d + 1.

9Whatever polynomial works for n > d works for all n; this can be seen by setting the extra βk ’s
to 0.
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Similarly to (1) in the proof of [Cooper and Zinger 2014, Proposition 8.3],

ak > 0 ⇒ e(V̇ (d)ak ;r (αi ))=

d∏
t=1

ak∏
λ=1

(akαi − λψ̂
′

t + ak1
′

t;r ) ·

rak∏
λ=1

(akαi − λψ̂
′

d+1);

ak < 0 ⇒ e(V̇ (d)ak ;r (αi ))=

d∏
t=1

−ak−1∏
λ=0

(akαi + λψ̂
′

t + ak1
′

t;r ) ·

−rak−1∏
λ=0

(akαi + λψ̂
′

d+1).

Thus, similarly to (9-6),

JF (0,0,b)
n;a;r (αi , q)Kq;d

An;a(αi )d Aa(αi )r
=H(b)

a;r;d(α
−1
i , s1, . . . , sd)

for some H(b)
a;r;d ∈Q[y, s1, . . . , sd ] dependent only on a, r , b, and d , but not on n.

Thus, by (9-7) with a=∅, (9-3) is equivalent to∑
d1,d2≥0

d1+d2=d

∞∑
b=0

(−1)bH(b)
a;d2;d1

Ẏ∅;d2,d2+b = δd,0 for all d ∈ Z≥0.

By (3-35) and Proposition 9.3, these relations hold whenever νn(a)≥ 0; since they
do not involve n, they thus hold for all pairs (n, a). �

9B. Proof of Proposition 9.2. We study the secondary (middle) terms in the recur-
sions (6-2) for

Z̃n;a(x, h̄, q)≡ h̄−1 Żn;a(x, h̄, q)
İ0(q)

and Ż(0,1)
n;a;3(x, h̄, q).

We show that (9-4) implies (9-2) by considering the r =−1 coefficients in these
recursions. Conversely, if (9-2) holds, we show that the r = −1 coefficients
in these recursions are described in the same degree-recursive way in terms of
the corresponding power series; Proposition 6.3 and Lemma 6.5 then imply that
Ż(0,1)

n;a;3 = Z̃n;a. 10

By Lemmas 6.4 and 6.5,
(9-8)
Żn;a(αi , h̄,q)

=

∞∑
d=0

Nd−1∑
r=0

{Żn;a}
r
i (d)h̄

−rqd
+

∞∑
d=1

∑
j 6=i

Ċ
j
i (d)q

d

h̄− (α j −αi )/d
Żn;a(α j , (α j −αi )/d,q),

10The same argument, with slightly more notation, can be used to show that all secondary
coefficients are described in the same degree-recursive way, thus bypassing Proposition 6.3 and
Lemma 6.5.
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Z̃n;a(αi , h̄,q)

=

∞∑
d=0

Nd∑
r=1

{Z̃n;a}
r
i (d)h̄

−rqd
+

∞∑
d=1

∑
j 6=i

Ċ
j
i (d)q

d

h̄− (α j −αi )/d
Z̃n;a(α j , (α j −αi )/d,q),

for some Nd ∈ Z+ and {Żn;a}
r
i (d), {Z̃n;a}

r
i (d) ∈Qα. It is immediate that

İ0(q)
∞∑

d=0

{Z̃n;a}
1
i (d)q

d
−

∞∑
d=0

{Żn;a}
0
i (d)q

d

=−

∞∑
d=1

∑
j 6=i

Ċ
j
i (d)q

d

(α j −αi )/d
Żn;a(α j , (α j −αi )/d, q)

=−

∞∑
d=1

∑
j 6=i

R
h̄=(α j−αi )/d

{h̄−1 Żn;a(αi , h̄, q)}

= R
h̄=0,∞

{h̄−1 Żn;a(αi , h̄, q)} = R
h̄=0
{h̄−1Żn;a(αi , h̄, q)}− 1;

the first and second equalities above follow from the first equation in (9-8), while
the third from the residue theorem on P1 and (9-8) again, which implies that the
coefficients of qd in Żn;a(αi , h̄, q) are regular in h̄ away from h̄ = (α j − αi )/d
with d ∈ Z+ and j 6= i and h̄ = 0,∞. Combining the last identity with the first
statement in (3-12), and (4-9), we obtain

(9-9)
∞∑

d=0

{Z̃n;a}
1
i (d)q

d
=
8̇
(0)
n;a(q)

İ0(q)2
−

∞∑
b=1

ξn;a(q)b

b!
R

h̄=0

{
(−1)b

h̄b Z̃n;a(αi , h̄, q)
}
.

By Lemma 6.5,

Ż(0,1)
n;a;3(αi , h̄,q)

=

∞∑
d=0

Nd∑
r=1

{Ż(0,1)
n;a;3}

r
i (d)h̄

−rqd
+

∞∑
d=1

∑
j 6=i

Ċ
j
i (d)q

d

h̄− (α j−αi )/d
Ż(0,1)

n;a;3(α j , (α j−αi )/d,q),

for some Nd ∈Z+ and {Ż(0,1)
n;a;3}

r
i (d)∈Qα . By Section 7B, the secondary coefficients

{Ż(0,1)
n;a;3}

r
i (d) arise from the contributions of decorated graphs 0 as in (7-3) such

that the vertex vmin to which the first marked point is attached is of valence 3 or
higher. In this case, there are four types of such graphs, as shown in Figure 7:

(i) single-vertex graphs;

(ii) graphs with either marked point 2 or 3, but not both, attached to vmin, that is,
|ϑ−1(vmin)| = 2;

(iii) graphs with two edges leaving vmin, that is, |Evmin | = 2;

(iv) graphs with |ϑ−1(vmin)|, |Evmin | = 1, but d(vmin) > 0.
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1

3

(i, d0)

1

(i, d0)

2

d

( j, ∗)

3

1

(i, d0)

( j2, ∗)

d2

d3

( j3, ∗)

2

3

1
d

2

3
( j, ∗)(i, d0)

d0 ∈ Z+

Figure 7. The four types of graphs determining the secondary
coefficients {Ż(0,1)

n;a;3}
r
i (d).

By (7-7), (7-8), and (7-12), the contribution of the graphs of type (i) to the sum∑
∞

d=0{Ż
(0,1)
n;a;3}

1
i (d)q

d is

(9-10)
∞∑

d=0

qd

d!

∫
M0,3|d

e(V̇ (d)a (αi ))∏
k 6=i e(V̇ (d)1 (αi −αk))

= F (0,0,0)
n;a (αi , q).

In the three remaining cases, we split each decorated graph 0 into subgraphs as on
page 485; see Figure 8. Let π0, πc;e denote the projection maps in the decomposition
(7-14). By (7-7) and (7-8),

e(N Q0)

e(TPi P
n−1)
=

∏
k 6=i

π∗0 e
(
V̇ (|00|)

1 (αi −αk)
)
·

∏
e∈Evmin

(
π∗c;e

e(N Q0c;e)

e(TPi P
n−1)

(ωe;vmin −π
∗

0ψe)

)
,

e
(
V̇ (|0|)n;a

)∣∣
Q0
= π∗0 e

(
V̇ (|00|)

a (αi )
)
·

∏
e∈Evmin

π∗c;ee
(
V̇ (|0c;e|)

n;a
)
.

(9-11)

Thus, the contribution of 0 to
∑
∞

d=0{Ż
(0,1)
n;a;3}

1
i (d)q

d is

(9-12) q |0|
∫

Q0

e(V̇ (|0|)n;a )ev∗1φi |Q0

e(N Q0)

=

∑
b∈(Z≥0)

Evmin

(
qd0

d0!

∫
M0,m0|d0

e(V̇ (d0)
a (αi ))

∏
e∈Evmin

ψ
be
e∏

k 6=i e(V̇ (d0)
1 (αi −αk))

×

∏
e∈Evmin

q |0c;e|ω
−(be+1)
e;vmin

∫
Q0c;e

e(V̇ (|0c;e|)

n;a )ev∗1φi

e(N Q0c;e)

)
,

where m0 = |ϑ
−1(vmin)| + |Evmin | (which equals 3 if 0 is of type (ii) or (iii), or 2 if

0 is of type (iv) above) and d0 = d(vmin).
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2

3

(i, d0)

1
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2
(i, 0) ( j2, ∗)

1
d3

3
(i, 0) ( j3, ∗)

Figure 8. The subgraphs of the second and third graphs in Figure 7.

We now sum up (9-12) over all possibilities for 0 of each of the three types. For
each e ∈ Evmin , let ve ∈ Ver denote the vertex of e other than vmin. By (7-6) and
Section 7B, the sum of the factor corresponding to e ∈ Evmin over all possibilities
for 0e with d(e)= de and µ(ve)= je fixed is

(−1)be+1 R
h̄=(α je−αi/de)

{
h̄−(be+1) Ż(αi , h̄, q)

}
,

where Ż = Żn;a in cases (ii) and (iii) and Ż = Ż(1,0)
n;a;3 in case (iv). Thus, by the

residue theorem on P1 and Lemma 6.5, the sum of the factors corresponding to
e ∈ Evmin over all possibilities for 0e is
(9-13)

(−1)be R
h̄=0,∞

{
Ż(αi , h̄, q)

h̄be+1

}
= (−1)be R

h̄=0

{
Ż(αi , h̄, q)

h̄be+1

}
−

{
δbe,0 in cases (ii), (iii);
0 in case (iv).

Combining (9-12) and (9-13) with (9-1), the first equation in (3-12), and (4-9), we
find that the contribution to

∑
∞

d=0{Ż
(0,1)
n;a;3}

1
i (d)q

d from all graphs 0 of types (ii)
and (iii) above is given by

F (0,0,0)
n;a (αi , q)

∑
b∈(Z≥0)

Evmin

(−ξn;a(αi , q))|b|

b!

∏
e∈Evmin

(
R

h̄=0

{
1

h̄be+1 Żn;a(αi , h̄, q)
}
−δbe,0

)

= F (0,0,0)
n;a (αi , q)

(
R

h̄=0

{
1
h̄

e−
ξn;a(αi ,q)

h̄ Żn;a(αi , h̄, q)
}
− 1

)|Evmin |

= F (0,0,0)
n;a (αi , q)

(
8̇
(0)
n;a(αi , q)

İ0(q)
− 1

)|Evmin |

,

with |Evmin | = 1 in (ii) and |Evmin | = 2 in (iii). Using [Cooper and Zinger 2014,
Theorem 4] instead of (9-1), we find that the contribution to

∑
∞

d=0{Ż
(0,1)
n;a;3}

1
i (d)q

d

from all graphs 0 of type (iv) above is given by

−

∞∑
b=0

(−ξn;a(αi , q))b+1

(b+ 1)!
R

h̄=0

{
1

h̄b+1 Ż
(0,1)
n;a;3(αi , h̄, q)

}

=−

∞∑
b=1

ξn;a(αi , q)b

b!
R

h̄=1

{
(−1)b

h̄b Ż(0,1)
n;a;3(αi , h̄, q)

}
.
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Putting this all together and taking into account that there are two flavors of type (ii)
graphs, we conclude that

(9-14)
∞∑

d=0

{Ż(0,1)
n;a;3}

1
i (d)q

d
= F (0,0,0)

n;a (αi , q)
8̇
(0)
n;a(αi , q)2

İ0(q)2

−

∞∑
b=1

ξn;a(αi , q)b

b!
R

h̄=0

{
(−1)b

h̄b Ż(0,1)
n;a;3(αi , h̄, q)

}
.

This is the same degree-recursive relation as (9-9) if and only if (9-2) holds.

9C. Proof of Proposition 9.3. We next apply the same argument to the power
series

Z̃n;a(x, h̄, q)≡ h̄−1 Żn;a(x, h̄, q) and Ż(0,1)
n;a;2(x, h̄, q).

In this case, (9-9) becomes

(9-15)
∞∑

d=0

{Z̃n;a}
1
i (d)q

d
=
8̇
(0)
n;a(q)

İ0(q)
−

∞∑
b=1

ξn;a(q)b

b!
R

h̄=0

{
(−1)b

h̄b Z̃n;a(αi , h̄, q)
}
.

The graphs contributing to {Żn;a}
r
i (d) are the same as before, as are the decom-

position (7-14) and the first splitting in (9-11). However, the second splitting in
(9-11) changes. For graphs 0 of type (i) and (ii) with ϑ(3)= vmin, it becomes

e
(
V̇ (|0|)n;a;2

)∣∣
Q0
= π∗0 e

(
V̇ (|00|)

a;0 (αi )
)
·π∗c;ee

(
V̇ (|0c;e|)

n;a
)

with the second factor being 1 for the graphs of type (i) and e ∈ Evmin denoting the
unique element for the graphs of type (ii). For graphs of type (ii) with ϑ(2)= vmin,
graphs of type (iii), and graphs of type (iv), it becomes

e
(
V̇ (|0|)n;a;2

)∣∣
Q0
= π∗0 e

(
V̇ (|00|)

a;|0c;e|
(αi )

)
,

e
(
V̇ (|0|)n;a;2

)∣∣
Q0
= π∗0 e

(
V̇ (|00|)

a;|0c;e3 |
(αi )

)
·π∗c;e2

e
(
V̇ (|0c;e2 |)

n;a
)
,

e
(
V̇ (|0|)n;a;2

)∣∣
Q0
= π∗0 e

(
V̇ (|00|)

a (αi )
)
·π∗c;ee

(
V̇ (|0c;e|)

n;a;2
)
,

respectively.
Thus, like (9-10), the contribution of the graphs of type (i) to

∞∑
d=0
{Ż(0,1)

n;a;2}
1
i (d)q

d

is
∞∑

d=0

qd

d!

∫
M0,3|d

e(V̇ (d)a;0(αi ))∏
k 6=i e(V̇ (d)1 (αi −αk))

=

∞∑
b=0

F (0,0,b)
n;a;0 (αi , q) R

h̄=0

{
(−1)b

h̄b+1 JŻn;∅(αi , h̄, q)Kq;0q0
}
.
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Similarly to (9-13), the sum of the factor corresponding to an edge e ∈ Evmin in the
analogue of (9-12) over all possibilities for 0e is

(−1)be


R

h̄=0

{
Żn;a(αi ,h̄,q)

h̄be+1

}
− δbe,0 in case (ii) with ϑ(3)= vmin, (iii) with e = e2;

R
h̄=0

{
Żn;∅(αi ,h̄,q)

h̄be+1

}
− δbe,0 in case (ii) with ϑ(2)= vmin, (iii) with e = e3;

R
h̄=0

{ Ż(0,1)
n;a;2(αi ,h̄,q)

h̄be+1

}
in case (iv).

Thus, the contribution to
∑
∞

d=0{Ż
(0,1)
n;a;3}

1
i (d)q

d from all graphs 0 of types (ii) with
ϑ(3)= vmin and ϑ(2)= vmin is

F (0,0,0)
n;a;0 (αi , q)

∞∑
b=0

(−ξn;a(αi , q))b

b!

(
R

h̄=0

{
Żn;a(αi , h̄, q)

h̄b+1

}
− δb,0

)

=

(
8̇
(0)
n;a(αi , q)

İ0(q)
− 1

)
F (0,0,0)

n;a;0 (αi , q)

and
∞∑

b=0

∞∑
r=1

F (0,0,b)
n;a;r (αi , q) R

h̄=0

{
(−1)b

h̄b+1 JŻn;∅(αi , h̄, q)Kq;r qr
}
,

respectively. Similarly, the contribution from all graphs 0 of type (iii) is

∞∑
b2,b3≥0

∞∑
r=1

F (0,0,b3)
n;a;r (αi , q)

(
(−ξn;a(αi , q))b2

b2!

(
R

h̄=0

{
Żn;a(αi , h̄, q)

h̄b2+1

}
− δb2,0

)

× R
h̄=0

{
(−1)b3

h̄b3+1 JŻn;∅(αi , h̄, q)Kq;r qr
})

=

(
8̇
(0)
n;a(αi , q)

İ0(q)
− 1

) ∞∑
b=0

∞∑
r=1

F (0,0,b)
n;a;r (αi , q) R

h̄=0

{
(−1)b

h̄b+1 JŻn;∅(αi , h̄, q)Kq;r qr
}
.

Finally, the contribution from all graphs 0 of type (iv) is given by

−

∞∑
b=1

ξn;a(αi , q)b

b!
R

h̄=1

{
(−1)b

h̄b Ż(0,1)
n;a;2(αi , h̄, q)

}
.

Putting this all together and using the first equation in (3-12), but now with a=∅
and thus İ0 = 1, we conclude that
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∞∑
d=0

{Ż(0,1)
n;a;2}

1
i (d)q

d

=
8̇
(0)
n;a(αi , q)

İ0(q)

∞∑
b=0

∞∑
r=0

F (0,0,b)
n;a;r (αi , q) R

h̄=0

{
(−1)b

h̄b+1 JẎn;∅(αi , h̄, q)Kq;r qr
}

−

∞∑
b=1

ξn;a(αi , q)b

b!
R

h̄=0

{
(−1)b

h̄b Ż(0,1)
n;a;2(αi , h̄, q)

}
.

This is the same degree-recursive relation as (9-15) if and only if (9-3) holds.

10. Proof of (3-14)

The equivariant cohomology of Pn−1
×Pn−1

×Pn−1 is given by

H∗T(P
n−1
×Pn−1

×Pn−1)

=Q[α1, . . . , αn, x1, x2, x3]

/{ n∏
k=1

(x1−αk),

n∏
k=1

(x2−αk),

n∏
k=1

(x3−αk)

}
.

Thus, by the defining property of the cohomology pushforward [Zinger 2009,
Equation (3.11)], the three-point power series Żn;a in (3-3) is completely determined
by the n3 power series

(10-1) Żn;a(αi1, αi2, αi3, h̄1, h̄2, h̄3, q)

=

∞∑
d=0

qd
∫

Q0,3(Pn−1,d)

e(V̇d
n;a) ev∗1φi1 ev∗2φi2 ev∗3φi3

(h̄1−ψ1)(h̄2−ψ2)(h̄3−ψ3)
.

The localization formula (7-1) reduces this expression to a sum over decorated
trees as in Section 7. Each of these trees has a unique special vertex v0: the vertex
where the branches from the three marked points come together (one or more of the
marked points may be attached to this vertex). We compute this sum by breaking
each such tree 0 at v0 into up to 4 “subgraphs”:

(i) 00 consisting of the vertex v0 only, with 3 marked points and with the same µ
and d-values as in 0;

(ii) for each marked point t = 1, 2, 3 of 0 with ϑ(t) 6= v0, 0t consisting of the
branch of 0 running between the vertices ϑ(t) and v0, with the d-value of v0

replaced by 0 and with one new marked point attached to v0;

see Figure 9. The contribution of the vertex graphs (i) is accounted for by the
Hurwitz numbers of Proposition 4.1, while the contribution of each of the strands
is accounted for by the SQ analogue of the double Givental’s J -function computed
by (3-11), (3-12), and (3-15). Putting these contributions together, we will obtain
(3-14).
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Figure 9. The four subgraphs of the second graph in Figure 1,
with label i replaced by i1.

Let i =µ(v0) and d0= d(v0). For each t = 1, 2, 3 with ϑ(t) 6= v0, let et ={v0, vt }

be the edge leaving v0 in the direction of ϑ(t). By (7-5),

(10-2) Q0 ≈ Q00 ×

3∏
t=1

Q0t = (M0,3|d0/Sd0)×

3∏
t=1

Q0t ,

where the t-th factor is defined to be a point if ϑ(t) = v0. Let π0, . . . , π3 be the
component projection maps in (10-2). By (7-7) and (7-8),
(10-3)

e(N Q0)

e(TPi P
n−1)
=

∏
k 6=i

π∗0 e
(
V̇ (d0)

1 (αi −αk)
)
·

3∏
t=1

(
π∗t

e(N Q0t )

e(TPi P
n−1)

(ωet ;v0 −π
∗

0ψt)

)
,

e
(
V̇ (|0|)n;a

)∣∣
Q0
= π∗0 e

(
V̇ (d0)

a (αi )
)
·

3∏
t=1

π∗t e
(
V̇ (|0t |)

n;a
)
,

with the t-factor defined to be 1 if ϑ(t)= v0. Thus, the contribution of 0 to (10-1)
is

1∏
k 6=i (αi −αk)

∑
b1,b2,b3≥0

(
qd0

d0!

∫
M0,3|d0

e(V̇ (d0)
a (αi ))

∏3
t=1ψ

bt
t∏

k 6=i e(V̇ (d0)
1 (αi −αk))

× q |01|ω
−(b1+1)
e1;v0

∫
Q01

e(V̇ (|01|)

n;a )ev∗1φi1ev∗2φi

e(N Q01)(h̄1−ψ1)

3∏
t=2

q |0t |ω
−(bt+1)
et ;v0

∫
Q0t

e(V̇ (|0t |)

n;a )ev∗1φi ev∗t φit

e(N Q0t )(h̄t −ψt)

)
,

(10-4)

where the t-th factor on the second line is defined to be h̄−(bt+1)
t if ϑ(t)= v0.

We next sum up (10-4) over all possibilities for 0. Let

Żi (h̄, αit , h̄t , q)=
{
Żn;a(αi1, αi , h̄1, h̄, q) if t = 1;
Żn;a(αi , αit , h̄, h̄t , q) if t = 2, 3.



504 ALEKSEY ZINGER

By (7-6) and Section 7B, the sum of the factor in (10-4) corresponding to each
t = 1, 2, 3 over all possibilities for 0t with d(et)= dt and µ(vt)= jt fixed is

(−1)bt+1 R
h̄=(α jt−αi )/dt

{
h̄−(bt+1)Żi (h̄, αit , h̄t , q)

}
.

Thus, by the residue theorem on P1 and Lemma 6.5, the sum of the factor in (10-4)
corresponding to each t = 1, 2, 3 over all possibilities for 0t nontrivial is

(−1)bt R
h̄=0,∞,−h̄t

{
Żi (h̄, αit , h̄t , q)

h̄bt+1

}
= (−1)bt R

h̄=0

{
Zi (h̄, αit , h̄t , q)

h̄bt+1

}
− h̄−(bt+1)

t

∏
k 6=i

(αit −αk).

Since the last term above is the contribution from the trivial subgraph 0t , the sum
of the factor in (10-4) corresponding to each t = 1, 2, 3 over all possibilities for 0t

with µ(v0)= i fixed is

(10-5)
∑
0t

[
t-factor in (10-4)

]
= (−1)bt R

h̄=0

{
Żi (h̄, αit , h̄t , q)

h̄bt+1

}
;

this takes into account the graphs 0 with ϑ(t)= i .
By (10-4), (10-5), and Proposition 4.1,

(10-6) Żn;a(αi1, αi2, αi3, h̄1, h̄2, h̄3, q)

=

n∑
i=1

1

sn−1(αi )8̇
(0)
n;a(αi , q)

3∏
t=1

R
h̄=0

{
1
h̄

e−ξn;a(αi ,q)/h̄ Żi (h̄, αit , h̄t , q)
}
.

By (3-11), (3-15), (3-12), and (4-9),

R
h̄=0

{
1
h̄

e−ξn;a(αi ,q)/h̄ Żi (h̄, αit , h̄t , q)
}
=

∑
s′t ,st ,r ′t≥0

s′t+st+r ′t=n−1

(
(−1)r

′
t sr ′t

×

s′t∑
r ′′t =0

C̃(r
′′
t )

s′t−`−(a),s′t−r ′′t −`−(a)
(q)

8̇
(0)
n;a(αi , q)Ln;a(αi , q)s

′
t−r ′′t

İ0(q) · · · İs′t−r ′′t (q)
Z̈(st )

n;a (αit , h̄t , q)
)

for t = 2, 3. Combining this with (3-26), [Popa 2013, Proposition 4.4], and (2-16),
we find that

(10-7) R
h̄=0

{1
h̄

e−ξn;a(αi ,q)/h̄ Żi (h̄, αit , h̄t , q)
}

=

n−1∑
st=0

ŝt∑
rt=0

Ċ(rt )

ŝt
(q)

8̇
(0)
n;a(αi , q)Ln;a(αi , q)ŝt−rt

Ïc
st+rt

(q)
Z̈(st )

n;a (αit , h̄t , q)
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for t = 2, 3. By the same reasoning,

(10-8) R
h̄=0

{1
h̄

e−ξn;a(αi ,q)/h̄ Żi (h̄, αi1, h̄1, q)
}

=

n−1∑
s1=0

ŝ1∑
r1=0

C̈(r1)

ŝ1
(q)

8̈
(0)
n;a(αi , q)Ln;a(αi , q)ŝ1−r1

İc
s1+r1

(q)
Ż(s1)

n;a (αi1, h̄1, q),

where

(10-9) 8̈
(0)
n;a(αi , q)=

(
Ln;a(αi , q)

αi

)−`(a)
8̇
(0)
n;a(αi , q).

On the other hand, by (4-10) and (4-8),

n∑
i=1

8̇
(0)
n;a(αi , q)3Ln;a(αi , q)s

sn−1(αi )8̇
(0)
n;a(αi , q)

(
Ln;a(αi , q)

αi

)−`(a)
=

1
aa

n∑
i=1

Ln;a(αi , q)s−|a| dL
dq

=
1
aa

d
dq

{
ln
∏n

i=1 Ln;a(αi , q) if s = |a| − 1;
1

s+1−|a|
∑n

i=1 Ln;a(αi , q)s+1−|a| otherwise.

The collection {Ln;a(αi , q)−1
} is the set of n roots y of the equation

1− s1y+ · · ·+ (−1)nsnyn
− aaqyνn(a) = 0.

Thus, if s ≥ 0 and s+ 1< |a|,

d
dq

n∑
i=1

Ln;a(αi , q)s+1−|a|

=
d

dq
H(|a|−s−1)

(
−

sn−1

sn
,

sn−2

sn
, . . . , (−1)|a|−s−1 sνn(a)+s+1

sn

)
= 0,

where H(r) is as in (3-22). If |a| = n, {Ln;a(αi , q)} is the set of n roots y of the
equation

yn
− (1− aaq)−1s1yn−1

+ (1− aaq)−1s2yn−2
− · · ·+ (−1)n(1− aaq)−1sn = 0.

Thus, if s+ 1≤ |a| = n,

(10-10)
n∑

i=1

Ln;a(αi , q)s−|a| dL
dq
= aaH(s+1−n)

νn(a) (aaq),
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where H(r)
ν is as in (3-23). If |a| < n, {Ln;a(αi , q)} is the set of n roots y of the

equation

yn
−s1yn−1

+·· ·+(−1)νn(a)−1sνn(a)−1y|a|+1
+(−1)νn(a)

(
sνn(a)−(−1)νn(a)aaq

)
y|a|

+(−1)νn(a)+1sνn(a)+1y|a|−1
+·· ·+(−1)nsn = 0.

Thus, if s + 1 ≤ |a| < n, (10-10) still holds. Combining the equations in this
paragraph, we find that

n∑
i=1

8̇
(0)
n;a(αi , q)3Ln;a(αi , q)s

sn−1(αi )8̇
(0)
n;a(αi , q)

(
Ln;a(αi , q)

αi

)−`(a)
=

{
H(s+1−n)
νn(a) (aaq) if s ≥ n− 1;

0 if 0≤ s < n− 1.

Combining this with (10-6)–(10-9) and (3-25), we obtain (3-14).
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