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WITH MULTIPLE BOUNDARY COMPONENTS

TEJAS KALELKAR AND RACHEL ROBERTS

Let M be a fibered 3-manifold with multiple boundary components. We
show that the fiber structure of M transforms to closely related transversely
oriented taut foliations realizing all rational multislopes in some open neigh-
borhood of the multislope of the fiber. Each such foliation extends to a taut
foliation in the closed 3-manifold obtained by Dehn filling along its bound-
ary multislope. The existence of these foliations implies that certain contact
structures are weakly symplectically fillable.

1. Introduction

Any closed, orientable 3-manifold can be realized by Dehn filling a 3-manifold
which is fibered over S1 [Alexander 1920; Myers 1978]. In other words, any closed
oriented 3-manifold can be realized by Dehn filling a 3-manifold M0, where M0

has the form of a mapping torus

M0 = S×[0, 1]/∼,

where S is a compact orientable surface with nonempty boundary and ∼ is an
equivalence relation given by (x, 1) ∼ (h(x), 0) for some orientation-preserving
homeomorphism h : S→ S which fixes the components of ∂S setwise. Although
we shall not appeal to this fact in this paper, it is interesting to note that it is
possible to assume that h is pseudo-Anosov [Colin and Honda 2008] and hence M0

is hyperbolic [Thurston 1988]. It is also possible to assume that S has positive
genus. Any nonorientable closed 3-manifold admits a double cover of this form.

Taut codimension-one foliations are topological objects which have proved very
useful in the study of 3-manifolds. The problem of determining when a 3-manifold
contains a taut foliation appears to be a very difficult one. A complete classification
exists for Seifert fibered manifolds [Brittenham 1993; Eisenbud et al. 1981; Jankins
and Neumann 1985; Naimi 1994], but relatively little is known for the case of
hyperbolic 3-manifolds. There are many partial results demonstrating existence
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(see, for example, [Calegari and Dunfield 2003; Delman and Roberts 1999; Gabai
1983; 1987a; 1987b; Li 2002; Li and Roberts 2013; Roberts 1995; 2001a; 2001b])
and partial results demonstrating nonexistence [Jun 2004; Kronheimer and Mrowka
2007; Kronheimer et al. 2007; Roberts et al. 2003]. In this paper, we investigate the
existence of taut codimension-one foliations in closed orientable 3-manifolds by
first constructing taut codimension-one foliations in corresponding mapping tori M0.
In contrast with [Roberts 2001a; 2001b], we consider the case that the boundary
of M0 is not connected. We obtain the following results. Precise definitions will
follow in Section 2.

Theorem 1.1. Given an orientable, fibered compact 3-manifold, a fibration with
fiber surface of positive genus can be modified to yield transversely oriented taut
foliations realizing a neighborhood of rational boundary multislopes about the
boundary multislope of the fibration.

As an immediate corollary for closed manifolds we therefore have:

Corollary 1.2. Let M = M̂0(r j ) be the closed manifold obtained from M0 by Dehn
filling M0 along the multicurve with rational multislope (r j )kj=1. When (r j ) is
sufficiently close to the multislope of the fibration, M admits a transversely oriented
taut foliation.

Dehn filling M0 along the slope of the fiber gives a mapping torus of a closed
surface with the fibration as the obvious taut foliation. This corollary shows that
Dehn filling M0 along slopes sufficiently close to the multislope of the fiber also
gives a closed manifold with a taut foliation.

When the surgery coefficients r j are all meridians, the description of M as a
Dehn filling of M0 gives an open book decomposition (S, h) of M . The foliations of
Corollary 1.2 can be approximated by a pair of contact structures, one positive and
one negative, both naturally related to the contact structure ξ(S,h) compatible with the
open book decomposition (S, h) [Eliashberg and Thurston 1998; Kazez and Roberts
2014]. It follows that the contact structure ξ(S,h) is weakly symplectically fillable.

Corollary 1.3. Let M have open book decomposition (S, h). Then M is obtained
by Dehn filling M0 along the multicurve with rational multislope (r j )kj=1, where
the r j are all meridians. When (r j ) is sufficiently close to the multislope of the
fibration, ξ(S,h) is weakly symplectically fillable and hence universally tight.

It is natural to ask whether the qualifier “sufficiently close” can be made precise.
Honda, Kazez, and Matić [Honda et al. 2008] proved that when an open book

with connected binding has monodromy with fractional Dehn twist coefficient c at
least one, it supports a contact structure which is close to a coorientable taut foliation.
Note that c ≥ 1 is sufficient but not always necessary to guarantee that ξ(S,h) is
close to a coorientable taut foliation.
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For an open book with multiple binding components, there is no such global lower
bound on the fractional Dehn twist coefficients sufficient to guarantee that ξ(S,h)
is close to a coorientable taut foliation. This was shown by Baldwin and Etnyre
[2013], who constructed a sequence of open books with arbitrarily large fractional
Dehn twist coefficients and disconnected bindings that support contact structures
which are not deformations of a taut foliation. So we cannot expect to obtain a
neighborhood around the slope of the fiber which would satisfy our criteria of
“sufficiently close” for every open book decomposition. At the end of the paper, in
Section 4, we explicitly compute a neighborhood around the multislope of the fiber
realizable by our construction for the Baldwin–Etnyre examples.

2. Preliminaries

In this section we introduce basic definitions and fix conventions used in the rest of
the paper.

Foliations. Roughly speaking, a codimension-one foliation F of a 3-manifold M
is a disjoint union of injectively immersed surfaces such that (M,F) looks locally
like (R3,R2

×R).

Definition 2.1. Let M be a closed C∞ 3-manifold and let r be a nonnegative integer
or infinity. A Cr codimension-one foliation F of (or in) M is a union of disjoint
connected surfaces L i , called the leaves of F, in M such that

(1)
⋃

i L i = M , and

(2) there exists a Cr atlas A on M which contains all C∞ charts and with respect
to which F satisfies the following local product structure: for every p ∈ M ,
there exists a coordinate chart (U, (x, y, z)) in A about p such that U ≈ R3

and the restriction of F to U is the union of planes given by z = constant.

When r = 0, we require also that the tangent plane field T F be C0.

A taut foliation [Gabai 1983] is a codimension-one foliation of a 3-manifold for
which there exists a transverse simple closed curve that has nonempty intersection
with each leaf of the foliation. Although every 3-manifold contains a codimension-
one foliation [Lickorish 1965; Novikov 1965; Wood 1969], it is not true that every
3-manifold contains a codimension-one taut foliation. In fact, the existence of a taut
foliation in a closed orientable 3-manifold has important topological consequences
for the manifold. For example, if M is a closed, orientable 3-manifold that has a
taut foliation with no sphere leaves then M is covered by R3 [Palmeira 1978], M
is irreducible [Rosenberg 1968] and has an infinite fundamental group [Haefliger
1962]. In fact, its fundamental group acts nontrivially on interesting 1-dimensional
objects (see, for example, [Thurston 1998; Calegari and Dunfield 2003; Palmeira
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Figure 1. Local model of a standard spine.

1978; Roberts et al. 2003]). Moreover, taut foliations can be perturbed to weakly
symplectically fillable contact structures [Eliashberg and Thurston 1998] and hence
can be used to obtain Heegaard–Floer information [Ozsváth and Szabó 2004].

Multislopes. Let F be a compact oriented surface of positive genus and with
nonempty boundary consisting of k components. Let h be an orientation-preserving
homeomorphism of F which fixes each boundary component pointwise. Let

M = F × I/(x, 1)∼ (h(x), 0),

and denote the k (toral) boundary components of ∂M by T 1, T 2, . . . , T k .
We use the given surface bundle structure on M to fix a coordinate system on each

of the boundary tori, as follows. (See, for example, [Rolfsen 1976, Section 9.G]
for a definition and description of this coordinate system.) For each j we choose
as longitude λ j

= ∂F ∩ T j , with orientation inherited from the orientation of F .
For each j , we then fix as meridian µ j an oriented simple closed curve dual to λ j .
Although, as described in [Kazez and Roberts 2014; Roberts 2001b], it is possible
to use the homeomorphism h to uniquely specify such simple closed curves µ j , we
choose not to do so in this paper, as all theorem statements are independent of the
choice of meridional multislope.

We say a taut foliation F in M realizes boundary multislope (m j )kj=1 if for
each j , 1≤ j ≤ k, F∩ T j is a foliation of T j of slope m j in the chosen coordinate
system of T j .

Spines and branched surfaces.

Definition 2.2. A standard spine [Casler 1965] is a space X locally modeled on
one of the spaces of Figure 1. The critical locus of X is the 1-complex of points
of X where the spine is not locally a manifold.

Definition 2.3. A branched surface (see [Williams 1974] and [Oertel 1984; 1988])
is a space B locally modeled on the spaces of Figure 2. The branching locus L of B
is the 1-complex of points of B where B is not locally a manifold. The components
of B \ L are called the sectors of B. The points where L is not locally a manifold
are called double points of L .
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Figure 2. Local model of a branched surface.

A standard spine X together with an orientation in a neighborhood of the critical
locus determines a branched surface B in the sense illustrated in Figure 3.

Example 2.4. Let F0 := F × {0} be a fiber of M = F × I/(x, 1) ∼ (h(x), 0).
Let αi , 1 ≤ i ≤ k, be pairwise disjoint, properly embedded arcs in F0, and set
Di = αi× I in M . Isotope the image arcs h(αi ) as necessary so that the intersection
(
⋃
αi )∩ (

⋃
i h(αi )) is transverse and minimal. Assign an orientation to F and to

each Di . Then X = F0 ∪
⋃

i Di is a transversely oriented spine. We will denote by
B =

〈
F;
⋃

i Di
〉

the transversely oriented branched surface associated with X .
Similarly,

〈⋃
i Fi ;

⋃
i, j D j

i

〉
will denote the transversely oriented branched surface

associated to the transversely oriented standard spine

X = F0 ∪ F1 ∪ · · · ∪ Fn−1 ∪
⋃

i, j
D j

i ,

where Fi = F × {i/n} and D j
i = α

j
i × [i/n, (i + 1)/n] for some set of arcs α j

i
properly embedded in F so that the intersection

(⋃
j α

j
i−1

)
∩
(⋃

j α
j
i

)
is transverse

and minimal.

Definition 2.5. A lamination carried by a branched surface B in M is a closed
subset λ of an I -fibered regular neighborhood N (B) of B, such that λ is a disjoint
union of injectively immersed 2-manifolds (called leaves) that intersect the I -fibers
of N (B) transversely.

Laminar branched surfaces. Li [2002; 2003] introduced the fundamental notions
of sink disk and half sink disk.

Definition 2.6 [Li 2002; 2003]. Let B be a branched surface in a 3-manifold M .
Let L be the branching locus of B and let X denote the union of double points of L .
Associate to each component of L \ X a vector (in B) pointing in the direction of
the cusp. A sink disk is a disk branch sector D of B for which the branch direction

+

+

+

−→

+

+

+

Figure 3. Oriented spine to oriented branched surface.
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Figure 4. A sink disk.

of each component of (L \ X)∩ D points into D (as shown in Figure 4). A half
sink disk is a sink disk which has nonempty intersection with ∂M .

Sink disks and half sink disks play a key role in Li’s notion of laminar branched
surface.

Definition 2.7 [Li 2002, Definition 1.3]. Let D1 and D2 be the two disk components
of the horizontal boundary of a D2

× I region in M \ int N (B). If the projection
π :N (B)→ B restricted to the interior of D1∪D2 is injective, that is, the intersection
of any I -fiber of N (B) with int D1 ∪ int D2 is either empty or a single point, then
we say that π(D1 ∪ D2) forms a trivial bubble in B.

Definition 2.8 [Li 2002, Definition 1.4]. A branched surface B in a closed 3-mani-
fold M is called a laminar branched surface if it satisfies the following conditions:

(1) ∂h N (B) is incompressible in M \ int N (B), no component of ∂h N (B) is a
sphere and M \ B is irreducible.

(2) There is no monogon in M \ int N (B), that is, no disk D ⊂ M \ int N (B) with
∂D = D∩N (B)= α∪β, where α⊂ ∂vN (B) is in an interval fiber of ∂vN (B)
and β ⊂ ∂h N (B)

(3) There is no Reeb component; that is, B does not carry a torus that bounds a
solid torus in M .

(4) B has no trivial bubbles.

(5) B has no sink disk or half sink disk.

Gabai and Oertel [1989] introduced essential branched surfaces and proved
that any lamination fully carried by an essential branched surface is an essential
lamination and, conversely, any essential lamination is fully carried by an essential
branched surface. In practice, to check if a manifold has an essential lamination, the
tricky part often is to verify that a candidate branched surface does in fact fully carry
a lamination. Li [2002] uses laminar branched surfaces to relax this requirement
and prove the following:

Theorem 2.9 [Li 2002, Theorem 1]. Suppose that M is a closed and orientable
3-manifold. Then:
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(1) Every laminar branched surface in M fully carries an essential lamination.

(2) Any essential lamination in M that is not a lamination by planes is fully carried
by a laminar branched surface.

Li [2003] noticed that if a branched surface has no half sink disk, then it can be
arbitrarily split in a neighborhood of its boundary train track without introducing
any sink disk (or half sink disk). He was therefore able to conclude the following.

Theorem 2.10 [Li 2003, Theorem 2.2]. Let M be an irreducible and orientable
3-manifold whose boundary is a union of incompressible tori. Suppose B is a
laminar branched surface and ∂M\∂B is a union of bigons. Then, for any multislope
(s1, . . . , sk) ∈ (Q∪ {∞})

k that can be realized by the train track ∂B, if B does not
carry a torus that bounds a solid torus in M̂(s1, . . . , sk), then B fully carries a
lamination λ(s1,...,sk) whose boundary consists of the multislope (s1, . . . , sk), and
λ(s1,...,sk) can be extended to an essential lamination in M̂(s1, . . . , sk).

We note that Li stated Theorem 2.2 only for the case that ∂M is connected.
However, as Li has observed and is easily seen, his proof extends immediately
to the case that ∂M consists of multiple toral boundary components. Key is the
fact that splitting B open, to a branched surface B ′ say, in a neighborhood of
its boundary, so that ∂B ′ consists of multislopes (s1, . . . , sk), does not introduce
sink disks. Therefore, capping B ′ off to B̂ ′ yields a laminar branched surface in
M̂(s1, . . . , sk).

Good oriented sequence of arcs. In this section we introduce some definitions that
will be used in the rest of the paper.

Definition 2.11. Let (α1, . . . , αk) be a tuple of pairwise disjoint simple arcs prop-
erly embedded in F with ∂α j

⊂ T j . Such a tuple will be called parallel if
F \ {α1, . . . , αk

} has k components, k − 1 of which are annuli {A j
} with ∂A j

containing {α j , α j+1
} and one of which is a surface S of genus g− 1 with ∂S con-

taining {α1, αk
}. Furthermore, all α j are oriented in parallel, that is, the orientation

of ∂A j agrees with {−α j , α j+1
} and the orientation of ∂S agrees with {−αk, α1

}.
Note that, in particular, each α j is nonseparating. See Figure 5 for an example of a
parallel tuple.

Definition 2.12. A pair of tuples (αi )i=1,...,k and (β j ) j=1,...,k will be called good if
both are parallel tuples and αi and β j have exactly one (interior) point of intersection
when i 6= j , while αi is disjoint from β j when i = j .

A sequence of parallel tuples

σ = ((α1
0, α

2
0, . . . , α

k
0), (α

1
1, α

2
1, . . . , α

k
1), . . . , (α

1
n, α

2
n, . . . , α

k
n)),

also shortened to
((α

j
0 ), (α

j
1 ), . . . , (α

j
n ))
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α1
α2 α3

A1 A2

Ak−1 αk−1

αk

c

S

Figure 5. A parallel tuple (αi ) on the surface F .

or
(α

j
0 )

σ
−→ (α j

n ),

will be called good if, for each fixed j , 1≤ j ≤ k, the pair ((α j
i ), (α

j
i+1)) is good.

Definition 2.13. We say a good pair ((α j ), (β j )) is positively oriented if for each
j ∈ {1, . . . , k} a neighborhood of the j-th boundary component in F is as shown
on the right in Figure 6. Similarly, we say a good pair ((α j ), (β j )) is negatively
oriented if for each j ∈ {1, . . . , k} a neighborhood of the j -th boundary component
in F is as shown on the left in Figure 6.

We say a good sequence σ = ((α j
0 ), (α

j
1 ), . . . , (α

j
n )) is positively oriented if each

pair ((α j
i ), (α

j
i+1)) is positively oriented. Similarly, σ = ((α j

1 ), (α
j
2 ), . . . , (α

j
n )) is

negatively oriented if each pair ((α j
i ), (α

j
i+1)) is negatively oriented. We say the

sequence σ is oriented if it is positively or negatively oriented. See Figure 7 for an
example of a negatively oriented good pair in F .

Preferred generators. Let

Hg,k = {η1, η2, . . . , η2g−2+k,, γ12, γ24, γ46, γ68, . . . ,

γ2g−4,2g−2, β, β1, β2, . . . , βg−1, δ1, δ2, . . . , δk−1}

α

β

α

β

α α

ββ

Figure 6. Left: a negatively oriented pair of arcs (α, β). Right: a
positively oriented pair of arcs (α, β).
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S

c
D1 D2 Dk

T 1

T k

T 2

α1 αkα2

β1

βk

β2

Figure 7. Neighborhood of F with a good negatively oriented pair
((α j ), (β j )) in the oriented spine X .

be the curves on F as shown in Figure 8. Then by [Gervais 2001, Proposition 1
and Theorem 1] the mapping class group MCG(F, ∂F) of F (fixing boundary) is
generated by Dehn twists about curves in Hg,k .

Theorem (Gervais). The mapping class group MCG(F, ∂F) of F is generated by
Dehn twists about the curves in Hg,k .

As Dehn twists about δi are isotopic to the identity via an isotopy that does not
fix the boundary, we have the following obvious corollary:

Corollary 2.14. The mapping class group MCG(F) of F (not fixing the boundary
pointwise) is generated by Dehn twists about the curves in

H′g,k =Hg,k \ {δ1, . . . , δk−1}.

3. Main theorem

Definition 3.1. Let (α1, . . . , αk) be a parallel tuple in F . Orient F so that the
normal vector n̂ induced by the orientation of M points in the direction of increasing
t ∈ [0, 1]. Let D j

= α j
×[0, 1] in Mh with the orientation induced by orientations

of α j and F ; that is, if v j is tangent to α j then (v j , n̂) gives the orientation of D j .
Let X = F ∪

⋃
j D j be an oriented standard spine and Bα =

〈
F;
⋃

j D j
〉

the
transversely oriented branched surface associated with X .

Notice that the multislope of the fibration is 0̄. In order to prove Theorem 1.1,
we shall prove the following:
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η1

η2g+k−2

η2g−1
η2g−2

η7

η6

η5

η4
η3

η2 γ12

γ2g−4,2g−2

γ68

γ46

γ24

α1

αk

αk−1

α2

β

β1

βg−1

β3

β2

η2g+2

δ1

δk

δk−1

δ2

Figure 8. Generators of the mapping class group.

Theorem 3.2. There is an open neighborhood U of 0̄∈Rk such that, for each point
(m1, . . . ,mk) ∈ U ∩Qk , there exists a lamination carried by Bα with boundary
multislope (m j ). These laminations extend to taut foliations which also intersect
the boundary in foliations with multislope (m j ).

This gives us the following corollary for closed manifolds.

Corollary 3.3. Let M̂(r j ) denote the closed manifold obtained from M by a Dehn
filling along a multicurve with rational multislope (r j )kj=1. For each tuple (r j )

in U∩Qk , the closed manifold M̂(r j ) also has a transversely oriented taut foliation.

We outline the proof of Theorem 3.2 with details worked out in the lemmas.

Proof. In Lemma 3.4 we show that there is a good positively oriented sequence
(α

j
0 )→ (h−1(α

j
0 )), or equivalently from (h(α j

n ))→ (α
j
n ). In Lemma 3.6 we show

that whenever there exists such a positive sequence there is a splitting of the branched
surface Bα to a branched surface Bσ that is laminar and that therefore carries
laminations realizing every multislope in some open neighborhood of 0̄∈Rk . Finally,
in Lemma 3.8 we show that these laminations extend to taut foliations on all of M . �
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Lemma 3.4. Let (α j ) be a parallel tuple in F and let h ∈ Aut+(F). Then there is
a good positively oriented sequence (α j )

σ
−→ (h(α j )).

Proof. By Corollary 2.14 to Gervais’s theorem, h ∼ hmhm−1 · · · h2h1 for twists hi

about curves in H′g,k . Set h′ = hmhm−1 · · · h2h1, and notice that Mh = Mh′ .
By changing the handle decomposition of F as necessary, we may assume that

the parallel tuple (α j ) is as shown in Figure 8. Let b denote the Dehn twist about
β ∈ H′g,k . Notice that any hi in the factorization of h′ is either b, b−1 or a twist
about a curve disjoint from all components of α j . Thus ((α j ), (hi (α

j )) is either a
good positive pair, a good negative pair, or a pair of equal tuples.

Now, if ((α j ), (β j )) is a good pair then so is ((hi (α
j )), (hi (β

j ))); therefore,
each of the pairs(

(α j ), hm(α
j )
)
,(

(hm(α
j )), (hmhm−1(α

j ))
)
,(

(hmhm−1(α
j )), (hmhm−1hm−2(α

j ))
)
,

...(
(hmhm−1 · · · h2(α

j )), (hmhm−1 · · · h2h1(α
j )= h(α j ))

)
,

is either a good oriented pair or a pair of equal tuples.
If at least one of the hi is b or b−1 then, ignoring the equal tuples, we get a good

oriented sequence ((α j
0 ), (α

j
1 ), . . . , (α

j
n−1), (α

j
n )= h((α j

0 ))) or (α j )
σ
−→ (h(α j )) as

required. The length of this sequence is equal to the number of times hi equals b
or b−1, that is, n = n++ n−, where n+ is the sum of the positive powers of b in
this expression of h′ and n− is the magnitude of the sum of negative powers of b.

If none of the hi are Dehn twists about β then (α j ) = (h(α j )). In this case,
σ = ((α j ), (b(α j )), (b−1b(α j )= (α j ))) is a good oriented sequence.

If ((α j ), (β j )) is a positively oriented good pair then ((α j ), (−β j ), (−α j ), (β j ))

is a negatively oriented good sequence. Performing n− such substitutions, we get a
positively oriented good sequence (α j )

σ
−→ (h(α j )). �

Definition 3.5. Let σ = (h(α j
n ) = α

j
0 , α

j
1 , . . . , α

j
n−1, α

j
n ) be a good oriented se-

quence. Let Fi = F ×{i/n} for 0≤ i < n and let D j
i = α

j
i ×[i/n, (i + 1)/n], for

0≤ i < n, in Mh . Let
X =

(⋃
i Fi

)
∪
(⋃

i, j D j
i

)
,

and orient Fi and D j
i as in Definition 3.1. Define

Bσ =
〈⋃

i Fi ;
⋃

i, j D j
i

〉
as the associated branched surface. Figure 7 shows the neighborhood of F in X ,
while Figure 9 shows a neighborhood of F in the associated branched surface.
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c

α1
i αk

iα3
iα2

i

α2
i−1

α1
i−1

α3
i−1

αk
i−1

Figure 9. A neighborhood of one of the fibers in the branched
surface B. The small circles along the diagonal represent longitudes
of the boundary tori. The vertical subarcs of the boundaries of the
vertical disk sectors lie on these boundary tori. Compare with
Figure 7.

Lemma 3.6. Let σ = (h(α j
n )= α

j
0 , α

j
1 , . . . , α

j
n−1, α

j
n ) be a good oriented sequence

in F and Bσ the associated branched surface in Mh . Then Bσ has no sink disk or
half sink disk.

Proof. As the sequence σ is good and oriented for each fixed i , the tuple of arcs
(α

j
i ) is parallel and |α j

i ∩α
k
i−1| = δ

k
j , so a neighborhood of Fi in Bσ is as shown in

Figure 9.
The sectors of Bσ consist of disks D j

i = α
j
i ×[i/n, (i + 1)/n] and components

of Fi \{α
j
i ∪α

j
i−1} j=1,...,k . As Fi−1 and Fi both have a coorientation in the direction

of increasing t for (x, t) ∈ Mh , so for any orientation of D j
i , ∂D j

i is the union of
two arcs in ∂Mh , together with one arc with the direction of the cusp pointing into
the disk and one arc with the direction of the cusp pointing outwards. Similarly, as
α

j
i and α j+1

i are oriented in parallel, each disk component of Fi \ {α
j
i , α

j
i−1} j=1,...,k

has a boundary arc with cusp direction pointing outwards. Therefore, no branch
sector in Bσ is a sink disk or a half sink disk. �
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Figure 10. The weighted boundary train track when n = 4.

Remark 3.7. Notice that Bσ =
〈⋃

i Fi ;
⋃

i, j D j
i

〉
is a splitting (see [Oertel 1988])

of the original branched surface Bα =
〈
F;
⋃

j D j
〉

and, equivalently, Bσ collapses
to Bα. So, in particular, laminations carried by Bσ are also carried by Bα.

Now consider the train tracks τ j
= Bσ ∩ T j . Focus on one of the τ j . Recall

that we fixed a coordinate system (λ j , µ j ) on T j . For simplicity of exposition, we
now make a second choice µ j

0 of meridian. This choice is dictated by the form of
τ j ; namely, we choose µ j

0 to be disjoint from the disks D j
i so that τ j has the form

shown in Figure 10. Notice that there is a change of coordinates homeomorphism
taking slopes in terms of the coordinate system (λ j , µ

j
0) to slopes in terms of the

coordinate system (λ j , µ j ). Since λ j is unchanged, this homeomorphism takes
an open interval about 0 to an open interval about 0. Assign to τ j the measure
determined by weights x, y shown in Figure 10. In terms of the coordinate system
(λ j , µ

j
0), τ

j carries all slopes realizable by

x − y
n(1+ y)

for some x, y > 0. Therefore, in terms of the coordinate system (λ j , µ
j
0), τ

j carries
all slopes in (−1/n,∞). Converting to the coordinate system (λ j , µ j ), τ j carries
all slopes in some open neighborhood of 0. Repeat for all j . By Theorem 2.10, we
see that the branched surface Bσ carries laminations λ(x̄,ȳ) realizing multislopes( x1− y1

n(1+ y1)
,

x2− y2

n(1+ y2)
, . . . ,

xk − yk

n(1+ yk)

)
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for any strictly positive values of x1, . . . , xk, y1, . . . , yk , and hence realizing all
rational multislopes in some open neighborhood of 0̄ ∈ Rk .

Lemma 3.8. Suppose the weights x̄, ȳ are distinct and have strictly positive coordi-
nates. Then each lamination λ(x̄,ȳ) contains only noncompact leaves. Furthermore,
each lamination λ(x̄,ȳ) extends to a taut foliation F(x̄,ȳ), which realizes the same
multislope.

Proof. Suppose that λ(x̄,ȳ) contains a compact leaf L . Such a leaf determines a
transversely invariant measure on B given by counting intersections with L .

Now focus on any i, j , where 0≤ i, j < n. By considering, for example, a simple
closed curve in Fi parallel to the arc α j

i , we see that there is an oriented simple
closed curve in Fi which intersects the branching locus of Bσ exactly k times and
which has orientation consistent with the branched locus. Since this is true for all
possible i, j , it follows that the only transversely invariant measure B can support
is the one with all weights on the branches D j

i necessarily 0. But this means that
λ(x̄,ȳ) realizes multislope 0̄ and hence that x̄ = ȳ.

The complementary regions to the lamination λ(x̄,ȳ) are product regions. Filling
these up with product fibrations, we get the required foliation F(x̄,ȳ), which also
has no compact leaves and is therefore taut. �

4. Example

As discussed in the introduction, an open book with connected binding and mon-
odromy with fractional Dehn twist coefficient more than one supports a contact
structure which is the deformation of a coorientable taut foliation [Honda et al. 2008].
However, for open books with disconnected binding there is no such universal lower
bound on the fractional Dehn twist coefficient. This was illustrated by Baldwin
and Etnyre [2013] who constructed a sequence of open books with arbitrarily large
fractional Dehn twist coefficients and disconnected binding that support contact
structures which are not deformations of a taut foliation. This shows, in particular,
that there is no global neighborhood about the multislope of the fiber of a surface
bundle such that Dehn filling along rational slopes in that neighborhood produces
closed manifolds with taut foliations.

The notion of “sufficiently close” in Corollary 1.2 can, however, be bounded
below for a given manifold. Deleting a neighborhood of the binding in the Baldwin–
Etnyre examples gives a surface bundle, and using the techniques developed in
the previous sections we now calculate a neighborhood of multislopes realized by
taut foliations around the multislope of the fiber in this fibration. In particular, we
observe that this neighborhood does not contain the meridional multislope. So
Dehn filling along these slopes does not give a taut foliation of the sequence of
Baldwin–Etnyre manifolds, as is to be expected.



TAUT FOLIATIONS IN SURFACE BUNDLES WITH BOUNDARY COMPONENTS 271

δ1 δ2

d c

b

a

180◦

Figure 11. The Baldwin–Etnyre examples.

The following is a description of the Baldwin–Etnyre examples [2013]. Let T
denote the genus one surface with two boundary components, B1 and B2. Let ψ be
the diffeomorphisms of T given by the product of Dehn twists,

ψ = Da D−1
b Dc D−1

d ,

where a, b, c and d are the curves shown in Figure 11 (reproduced from Figure 1
of [Baldwin and Etnyre 2013]). Then ψ is pseudo-Anosov by a well-known
construction of Penner [1988]. We define

ψn,k1,k2 = Dk1
δ1

Dk2
δ2
ψn,

where δ1 and δ2 are curves parallel to the boundary components B1 and B2 of T .
Let Mn,k1,k2 be the open book (T, ψn,k1,k2). Let N (B1), N (B2) be regular neigh-

borhoods of B1 and B2 in Mn,k1,k2 and let M ′n,k1,k2
= Mn,k1,k2 \ (N (B1)∪ N (B2)).

Let λ1, λ2 be the closed curves in T ∩ ∂M ′n,k1,k2
represented by B1, B2, with

induced orientation. The monodromy ψn,k1,k2 is freely isotopic to the pseudo-
Anosov map ψn . Let µ1, µ2 be the suspension flow of a point in λ1 and λ2,
respectively, under the monodromy ψn . As ψn is the identity on ∂T , µi = pi × S1

in ∂M ′n,k1,k2
= (B1× S1)∪ (B2× S1) for pi ∈ λi .

We use these pairs of dual curves (λ1, µ1) and (λ2, µ2) as coordinates to calculate
the slope of curves on the boundary tori of M ′n,k1,k2

, as detailed in Section 2.
If D1 is the meridional disk of a regular neighborhood N (B1) of B1 in Mn,k1,k2 ,

then ∂D1=µ1. Similarly, for D2 a meridional disk of a regular neighborhood of B2

in Mn,k1,k2 , ∂D2 = µ2.
In order to express the monodromy of the surface bundle in terms of the Gervais

generators we use the pseudo-Anosov monodromy ψn
= ψn,0,0 which is freely

isotopic to ψn,k1,k2 , with the observation that Dehn filling M ′n,0,0 along slopes−1/k1
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α1

α3

α2 γ1

γ2

γ3

β

Figure 12. The Gervais star-relation.

and−1/k2 gives the manifold Mn,k1,k1 . So for M ′n,0,0 we have slope(∂D1)=−1/k1,
slope(∂D2)=−1/k2.

As shown in Theorem 1.16 of [Baldwin and Etnyre 2013], for any N > 0 there
exist n, k1 > N such that the corresponding open book in Mn,k1,n has a compatible
contact structure that is not a deformation of the tangent bundle of a taut foliation.
We shall now show that the slope −1/n lies outside the interval of perturbation that
gives slopes of taut foliations via our construction. Hence, the manifolds Mn,k1,n

cannot be obtained by capping off the taut foliations realized by our interval of
boundary slopes around the fibration.

To obtain the branched surface required in our construction in the previous
sections we need a good sequence of arcs α j

→ φ−1(α j ), where φ = ψn , j = 1, 2.
These arcs are used to construct product disks which we then smooth along copies
of the fiber surface to get the required branched surface.

Following the method outlined in Lemma 3.4, we need to express φ−1 in terms
of the Gervais generators. The curves a, b and c correspond to the generating
curves η1, β and η2 among the Gervais generators, as can be seen in Figure 8. We
now need to express the curve d in terms of these generating curves.

Definition 4.1. Let Sg,n be a surface of genus g and n boundary components.
Consider a subsurface of Sg,n homeomorphic to S1,3. Then for curves αi , β, γi as
shown in Figure 12 (reproduced from Figure 2 of [Gervais 2001]), the star-relation is

(Dα1 Dα2 Dα3 Dβ)
3
= Dγ1 Dγ2 Dγ3,

where D represents Dehn-twist along the corresponding curves.

Let S be the component of T \ d which is homeomorphic to a once-punctured
torus. Let γ1 = d and γ2, γ3 be curves bounding disjoint disks D1 and D2 in S so
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that S \ (D1 ∪ D2) is homeomorphic to S1,3. As γ2, γ3 are trivial in T , γ1 = d and
α1 = α2 = α3 = a, so the star relation reduces to Dd = (D3

a Db)
3.

Hence, the monodromy ψ in terms of the Gervais generators is the word ψ =
Da D−1

b Dc(D3
a Db)

−3, which gives us ψ−1
= D3

a Db D3
a Db D3

a Db D−1
c Db D−1

a . Take
arcs α1, α2 as shown in Figure 8, where a = η1, b = β and c = η2. Then, as
(α j , Db(α j )) is a negatively oriented pair and α j = Da(α j ), α j = Dc(α j ) so we
have a negatively oriented good sequence (α1, α2)→ (ψ−1(α1), ψ

−1(α2)) obtained
by taking the sequence of arcs

σ =
(
α j , D3

a Db(α j ), D3
a Db D3

a Db(α j ), D3
a Db D3

a Db D3
a Db(α j ),

D3
a Db D3

a Db D3
a Db D−1

c Db D−1
a (α j )= ψ

−1(α j )
)

for j = 1, 2.

Let Bσ be the branched surface corresponding to this good oriented sequence, as
in Definition 3.5. The weighted train track τσ = Bσ ∩ ∂M ′n,0,0 on the boundary tori
is as shown in Figure 10.

The slope of this measured boundary lamination is (x − y)/(4(1+ y)), so the
interval of slopes that are realized by taut foliations is

(
−

1
4 ,∞

)
.

When the monodromy is ψn (instead of ψ), by a similar argument, we get the
slope of the measured lamination on the boundary as (x − y)/(4n(1+ y)) so that
the interval of slopes realized by taut foliations is (−1/4n,∞). And we observe
that the point (−1/k1,−1/n) does not lie in (−1/4n,∞)× (−1/4n,∞); that is,
the taut foliations from our construction cannot be capped off to give a taut foliation
of the Baldwin–Etnyre examples.
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