Pacific Journal of Mathematics

SOME RESULTS ON ARCHIMEDEAN RANKIN–SELBERG INTEGRALS

JINGSONG CHAI

Volume 273 No. 2

February 2015

SOME RESULTS ON ARCHIMEDEAN RANKIN–SELBERG INTEGRALS

JINGSONG CHAI

We use a notion of derivatives of smooth representations of moderate growth of $GL(n, \mathbb{R})$ and exceptional poles to study local Rankin–Selberg integrals. We obtain various results which are archimedean analogs of *p*-adic results obtained by Cogdell and Piatetski-Shapiro.

1. Introduction

Let *F* be a *p*-adic field, π a smooth admissible representation of GL(*n*, *F*). J. Bernstein and A. Zelevinsky [1977] defined the notion of derivatives for π , denoted by $\pi^{(k)}$, $n \ge k \ge 0$, which is a useful tool to study properties of π .

If π' is another smooth admissible representation of GL(n, F), when both π and π' are generic with associated Whittaker models $\mathcal{W}(\pi, \psi)$ and $\mathcal{W}(\pi', \psi^{-1})$, where ψ is a fixed nontrivial additive character of *F*, we have the following local Rankin–Selberg integrals:

$$I(s, W, W', \Phi) = \int_{N_n \setminus \mathrm{GL}_n} W(g) W'(g) \Phi(\epsilon_n g) |\det g|^s \, dg$$

for $W \in \mathcal{W}(\pi, \psi)$, $W' \in \mathcal{W}(\pi', \bar{\psi})$, $\Phi \in \mathcal{G}(F^n)$ a Schwartz function, *s* a complex number, and $\epsilon_n = (0, 0, ..., 1) \in F^n$.

By the work of H. Jacquet, J. Shalika and Piatetski-Shapiro [1983], these integrals converge in some right half-plane of s, and have a meromorphic continuation to the whole plane. Suppose s_0 is a pole with the expansion

$$I(s, W, W', \Phi) = \frac{B_{s_0}(W, W', \Phi)}{(q^s - q^{s_0})^d} + \cdots$$

Note that the Schwartz function space $\mathcal{G}(F^n)$ has a filtration

$$0 \subset \mathcal{G}^0 \subset \mathcal{G}(F^n),$$

MSC2010: primary 11F70; secondary 22E46.

Keywords: archimedean derivatives, exceptional poles, Rankin-Selberg integrals.

JINGSONG CHAI

where $\mathscr{P}^0 = \{\Phi \in \mathscr{P}(F^n) : \Phi(0) = 0\}$. Cogdell and Piatetski-Shapiro [≥ 2015] defined s_0 to be an exceptional pole if the leading coefficient $B_{s_0}(W, W', \Phi)$ vanishes identically on \mathscr{P}^0 , and used it together with derivatives to analyze the poles of local Rankin–Selberg integrals. As a consequence, they can compute the local *L*-factor for a pair of generic representations on general linear groups in terms of *L*-functions of the inducing datum.

It is interesting to see if there is an analogous theory for $GL(n, \mathbb{R})$, and there is in fact some work in this direction; for example, [Chang and Cogdell 1999]. In this paper, we will take one more step towards such an archimedean theory, based on results in that reference. There are a couple of difficulties in the archimedean case. First of all, we need an appropriate theory of "derivatives". In a recent preprint, A. Aizenbud, D. Gourevitch and S. Sahi [Aizenbud et al. 2012] defined the derivatives for smooth representations of moderate growth on $GL(n, \mathbb{R})$ as the inverse limit of certain coinvariants. But this seems complicated for our applications to local Rankin–Selberg integrals.

Here we simply take the naive analog of *p*-adic derivatives as our archimedean derivatives. It is a component in the n-homology, where n is the nilradical of some parabolic subalgebra. The advantages of this definition are that it is relatively easier to deal with, and compatible with Rankin–Selberg integrals. But it is also interesting to see if one can relate the derivatives defined in [ibid.] to integrals $I(s, W, W', \Phi)$ in some way.

For the exceptional poles, the situation again is a little more complicated. The leading coefficients in the expansion of $I(s, W, W', \Phi)$ at a pole will involve a finite-dimensional representation of $GL(n, \mathbb{R})$, due to the nature of the differences between Schwartz functions on \mathbb{R} and the *p*-adic field *F*. To be more precise, the Schwartz function space $\mathcal{G}_n = \mathcal{G}_n(\mathbb{R}^n)$ has a natural filtration. Let

 $\mathscr{G}_n^m = \{ f \in \mathscr{G} : f \text{ vanishes to order at least } m \text{ at zero} \}.$

Then each \mathcal{G}_n^m is a closed subspace, and we have a filtration

$$\mathscr{G}_n = \mathscr{G}_n^0 \supset \mathscr{G}_n^1 \supset \cdots \supset \mathscr{G}_n^m \supset \cdots,$$

where $\mathcal{G}_n^m/\mathcal{G}_n^{m+1}$ is isomorphic to the space of homogeneous polynomials on \mathbb{R}^n of degree *m*, denoted as E_n^m — a finite-dimensional representation of $GL(n, \mathbb{R})$.

At a pole s_0 , $I(s, W, W', \Phi)$ has an expansion

$$I(s, W, W', \Phi) = \frac{B_{s_0}(W, W', \Phi)}{(q^s - q^{s_0})^d} + \cdots,$$

and we say s_0 is an exceptional pole of type 1 and level *m* if B_{s_0} vanishes identically on \mathcal{G}^{m+1} , but not on \mathcal{G}^m .

In general, we say s_0 is an exceptional pole of type 2 and level *m*, for π and π' , if there exists a continuous trilinear form

$$l: V \times V' \times E_n^m \to \mathbb{C}$$

such that, for $g \in GL(n, \mathbb{R})$,

$$l(g \cdot W, g \cdot W', g \cdot \Phi_n) = |\det g|^{-s_0} l(W, W', \Phi_n).$$

It follows that an exceptional pole of type 1 is also of type 2.

We can now state our main results. We say π is in general position as in [Chang and Cogdell 1999] (or see Section 2 for more details). We refer to page 294 for a definition of depth of exceptional poles of type 1.

Theorem. Let π and π' be irreducible generic Casselman–Wallach representations of $GL_n(\mathbb{R})$ and $GL_m(\mathbb{R})$ in general position.

Case m = n: Any pole of the Rankin–Selberg integrals for π and π' is an exceptional pole of type 2 for a pair of components of $\pi^{(k)}$ and $\pi'^{(k)}$, $0 \le k \le n-1$. On the other hand, any exceptional pole of type 1 of depth 0 for a pair of components of $\pi^{(k)}$ and $\pi'^{(k)}$, $0 \le k \le n-1$, is a pole of the Rankin–Selberg integrals of π and π' .

Case m < n: Any pole of the Rankin–Selberg integrals for π and π' is an exceptional pole of type 2 for a pair of components of $\pi^{(n-k)}$ and $\pi'^{(m-k)}$, $1 \le k \le m$. On the other hand, any exceptional pole of type 1 of depth 0 for a pair of components of $\pi^{(n-k)}$ and $\pi'^{(m-k)}$, $1 \le k \le m$, is a pole of the Rankin–Selberg integrals of π and π' .

The first remark is that these are not the exact archimedean analog we are seeking. We expect that the poles of Rankin–Selberg integrals are exactly exceptional poles of type 1 for pairs of components of derivatives of π and π' . A missing point here is that we haven't obtained the asymptotic results analogous to those in [Cogdell and Piatetski-Shapiro ≥ 2015 , Section 1.4]; this will be addressed in the future.

We also remark here that the same ideas and techniques of this paper can also be applied to local exterior square *L*-integrals in [Jacquet and Shalika 1990]; this will appear in a forthcoming paper.

The paper is organized as follows. In Section 2 we review some preliminaries. In Section 3 we define the derivatives and obtain some basic properties. Section 4 is devoted to the study of exceptional poles. We obtain the main results in Section 5 for $GL_n(\mathbb{R}) \times GL_n(\mathbb{R})$, and in Section 6 we discuss the case $GL_n(\mathbb{R}) \times GL_m(\mathbb{R})$, m < n.

2. Notations and preliminaries

In this section, we introduce some notations and results needed in this paper.

JINGSONG CHAI

Let $G_n = \operatorname{GL}_n(\mathbb{R})$ be the general linear group of invertible $n \times n$ matrices over \mathbb{R} , and $K = K_n = O(n)$ be the orthogonal subgroup of G_n , which is a maximal compact subgroup of G_n . We use $\mathfrak{g} = \mathfrak{g}_n$, $\mathfrak{k} = \mathfrak{k}_n$ to denote the complexified Lie algebras of G_n and K_n respectively. Let N_n be the upper triangular unipotent subgroup of G_n . Fix ψ as the additive character of \mathbb{R} given by $\psi(x) = \exp(2\pi \sqrt{-1}x)$, and define a character on N_n , still denoted as ψ , by

$$\psi(u) = \psi\Big(\sum_i u_{i,i+1}\Big),\,$$

where $u = (u_{ij}) \in N_n$. Let μ be the differential of ψ ; then μ is a linear form on \mathfrak{n}_n , the Lie algebra of N_n , vanishing on $[\mathfrak{n}_n, \mathfrak{n}_n]$.

A smooth representation (π, V) is called generic if it admits a nontrivial Whittaker functional. A Whittaker functional Λ with respect to μ on (π, V) is a continuous linear functional on V satisfying

$$\Lambda(\pi(X)v) = \mu(X)\Lambda(v)$$

for all $X \in \mathfrak{n}_n$, $v \in V$.

If π is generic, let Λ be the Whittaker functional on π , and for any $v \in V$ define a function $W_v : G_n \to \mathbb{C}$ by $W_v(g) = \Lambda(\pi(g)v)$. Then W_v is called the Whittaker function on G_n corresponding to v, and the space $\mathcal{W}(\pi, \psi) = \{W_v : v \in V\}$ is called the Whittaker model of π .

Throughout the paper, we will work with smooth representations of moderate growth. Suppose V is a Fréchet space. A smooth representation (π, V) is called a representation of moderate growth if, for every seminorm ρ on V, there exists a positive integer N and a seminorm ν such that for every $g \in G_n$, $v \in V$, we have

$$|\pi(g)v|_{\rho} \leq ||g||^N |v|_{\nu}$$

where $||g|| = \text{Tr}(g^t g) + \text{Tr}(g^{-1}g^t)$ and $g^t = {}^tg^{-1}$. If in addition every irreducible representation of *K* has finite multiplicity in π , we will say π is admissible.

We have the following important result of Casselman and Wallach.

Theorem 2.1. For any finitely generated admissible (\mathfrak{g}, K) -module W, there exists exactly one smooth representation of moderate growth on a Fréchet space V, up to canonical topological isomorphism, such that the underlying (\mathfrak{g}, K) -module V_K is isomorphic to W. Moreover, the assignment $W \to V$ is an exact functor from the category of finitely generated admissible modules to the category of smooth admissible finitely generated Fréchet representations of moderate growth.

Proof. See, for example, [Wallach 1992, Chapter 12].

280

Remark. We refer to V in this theorem as the completion or globalization of W, and we refer to smooth admissible finitely generated Fréchet representations of moderate growth (π , V) as Casselman–Wallach representations.

For irreducible Casselman–Wallach representations, by results of J. Shalika [1974], there exists at most one Whittaker functional with respect to a given nontrivial ψ , unique up to a scalar.

For a given smooth representation V of G_n , and a nilpotent subalgebra n of \mathfrak{g} , we use $H_0(\mathfrak{n}, V)$ to denote the quotient of V by the closure of the subspace spanned by $\{X \cdot v : X \in \mathfrak{n}, v \in V\}$. When W is a (\mathfrak{g}, K) -module, use $H_0(\mathfrak{n}, W)$ to denote $W/\mathfrak{n}W$. Similarly, if N is a unipotent subgroup of G_n , denote by $H_0(N, V)$ the quotient of V by the closure of the subspace spanned by vectors $\{\pi(u)v - v : u \in N, v \in V\}$.

If (π, V) is an irreducible Casselman–Wallach representation of G_n , V_K denotes its K-finite vectors. If P is a standard parabolic subgroup of G_n , denote its Levi decomposition by P = MN, where N is the unipotent subgroup of P and M is the Levi component. Let \mathfrak{p} , \mathfrak{m} , \mathfrak{n} be their complexified Lie algebras, respectively. It is a result of B. Casselman that $H_0(\mathfrak{n}, V_K)$ is nonzero. By results of Stafford and N. Wallach it is an admissible $(\mathfrak{m}, K \cap M)$ module. Moreover, it is finitely generated over $U(\mathfrak{m})$; here $U(\mathfrak{m})$ denotes the universal enveloping algebra of \mathfrak{m} . See, for example, [Borel and Wallach 2000] for more details.

For $H_0(n, V)$, M acts naturally on this quotient, which is also a Fréchet space. This gives a smooth representation of M, which is also of moderate growth.

Naturally $H_0(\mathfrak{n}, V_K)$ embeds into $H_0(\mathfrak{n}, V)$, sending $v + \mathfrak{n}V_K$ to $v + \overline{\mathfrak{n}V}$ for any $v \in V_K$. Moreover, we have the following.

Proposition 2.2. $H_0(\mathfrak{n}, V)$ is a Casselman–Wallach representation of M, and its $K \cap M$ -finite vectors are exactly $H_0(\mathfrak{n}, V_K)$; so it is the completion of $H_0(\mathfrak{n}, V_K)$.

Proof. The image of the embedding $H_0(\mathfrak{n}, V_K) \to H_0(\mathfrak{n}, V)$ is a $(\mathfrak{m}, K \cap M)$ module, and is dense in $H_0(\mathfrak{n}, V)$. Hence $H_0(\mathfrak{n}, V_K)$ can be identified with the underlying $(\mathfrak{m}, K \cap M)$ -module of $H_0(\mathfrak{n}, V)$. As $H_0(\mathfrak{n}, V_K)$ is nonzero, finitely generated and admissible, so is $H_0(\mathfrak{n}, V)$. Hence $H_0(\mathfrak{n}, V)$ is the completion of $H_0(\mathfrak{n}, V_K)$.

Remark. According to an unpublished result of B. Casselman, $H_*(n, V)$ is the completion of $H_*(n, V_K)$; see [Bunke and Olbrich 1997, Theorem 1.5].

For any two smooth representations of moderate growth (π, V) and (ρ, W) of G_n and G_m , respectively, denote by $(\pi \widehat{\otimes} \rho, V \widehat{\otimes} W)$ the complete projective tensor product. It is also a smooth representation of moderate growth on $G_n \times G_m$.

Now if π (or π') is an irreducible admissible representation of G_n (or G_m), by the local Langlands correspondence π (or π') corresponds to an *n*- (or *m*-) dimensional semisimple representation of the Weil group $W_{\mathbb{R}}$, denoted as ρ (or ρ'). Now consider

the tensor product $\rho \otimes \rho'$, which defines a semisimple representation of $W_{\mathbb{R}}$ with dimension *mn*. Then one can associate a local *L*-factor, denoted by $L(s, \pi \times \pi')$, to $\rho \otimes \rho'$, which is a product of gamma functions. For more details, see, for example, [Knapp 1994].

For any $W_v \in \mathcal{W}(\pi, \psi)$, define $\widetilde{W}_v(g) = W_v(\omega_n g^i)$, where

$$\omega_n = \begin{pmatrix} 0 & \cdots & 1 \\ & \ddots & \\ 1 & \cdots & 0 \end{pmatrix}$$

and $g^{\iota} = {}^{t}g^{-1}$. Then by [Jacquet and Shalika 1981], it is known that $\{\widetilde{W}_{v} : v \in V\}$ is a Whittaker model for $\tilde{\pi}$ with respect to $\bar{\psi}$, the contragredient of π .

To introduce the local Rankin–Selberg integrals, assume (π, V) and (π', V') are generic irreducible Casselman–Wallach representations of G_n and G_m , respectively, with Whittaker models $\mathcal{W}(\pi, \psi)$ and $\mathcal{W}(\pi', \bar{\psi})$. Let $\mathcal{G}(\mathbb{R}^n)$ be the space of Schwartz functions on \mathbb{R}^n .

If m = n, set

$$I(s, W, W', \Phi) = \int_{N_n \setminus G_n} W(g) W'(g) \Phi(\epsilon_n g) |\det g|^s \, dg$$

for $W \in \mathcal{W}(\pi, \psi)$, $W' \in \mathcal{W}(\pi', \bar{\psi})$, $\Phi \in \mathcal{G}(\mathbb{R}^n)$, and $\epsilon_n = (0, 0, \dots, 1) \in \mathbb{R}^n$. If n > m, set

$$I(s, W, W') = \int_{N_m \setminus G_m} W \begin{pmatrix} g & 0 \\ 0 & I_{n-m} \end{pmatrix} W'(g) |\det g|^{s - \frac{n-m}{2}} dg$$

In general, for $0 \le j \le n - m - 1$, set

 $I_i(s, W, W')$

$$= \int_{M(m \times j,\mathbb{R})} \int_{N_m \setminus G_m} W \begin{pmatrix} g & 0 & 0 \\ X & I_j & 0 \\ 0 & 0 & I_{n-m-j} \end{pmatrix} W'(g) |\det g|^{s-\frac{n-m}{2}} dg \, dX.$$

The following theorem is due to Jacquet and Shalika; see, for example, [Jacquet 2009].

Theorem 2.3. (1) *These integrals converge for* $\operatorname{Re}(s) \gg 0$.

- (2) Each integral has a meromorphic continuation to all $s \in \mathbb{C}$, which is a holomorphic multiple of $L(s, \pi \times \pi')$.
- (3) The following functional equations are satisfied:

$$I_j(1-s,\widetilde{W},\widetilde{W}') = \omega'(-1)^{n-1}\gamma(s,\pi\times\pi',\psi)I_{n-m-1-j}(s,W,W')$$

and

$$I(1-s, \widetilde{W}, \widetilde{W}', \widehat{\Phi}) = \omega'(-1)^{n-1} I(s, W, W', \Phi),$$

where $\widehat{\Phi}$ is the Fourier transform of Φ , given by

$$\widehat{\Phi}(X) = \int \Phi(Y)\psi(-\operatorname{Tr}({}^{t}XY)) \, dY. \qquad \Box$$

Now we recall some results from [Cogdell and Piatetski-Shapiro 2004] which are essential in Section 4, which studies exceptional poles.

The first result is an extension of the Dixmier–Malliavin theorem. Let (π, V) be a continuous representation of G_n on a Fréchet space V. Still use π to denote the smooth representation of G_n induced from π on the smooth vectors V^{∞} of V.

Proposition 2.4 [Cogdell and Piatetski-Shapiro 2004, Proposition 1.1]. Let $v_k \rightarrow v_0$ be a convergent sequence in V^{∞} . Then there exists a finite set of functions $f_j \in \mathscr{C}_c^{\infty}(G_n)$ and a collection of vectors $v_{k,j} \in V^{\infty}$ such that $v_k = \sum_j \pi(f_j)v_{k,j}$ for all $k \ge 0$, and such that $v_{k,j} \rightarrow v_{0,j}$ as $k \rightarrow \infty$ for each j.

The second result is about the continuity of archimedean Rankin–Selberg integrals. Let (π, V) and (π', V') be generic irreducible Casselman–Wallach representations of G_n and G_m , respectively. For $W \in \mathcal{W}(\pi, \psi)$, $W' \in \mathcal{W}(\pi', \psi^{-1})$, $\Phi \in \mathcal{G}(\mathbb{R}^n)$, we have:

Theorem 2.5. The linear functionals

$$\Lambda_s = \frac{I(s, W, W')}{L(\pi \times \pi')}, \qquad n > m,$$

$$\Lambda_s = \frac{I(s, W, W', \Phi)}{L(\pi \times \pi')}, \quad n = m,$$

are uniformly continuous in s on compact sets with respect to the topologies involved.

Proof. See [Cogdell and Piatetski-Shapiro 2004, Theorem 1.1].

Remark. As noted in [Cogdell and Piatetski-Shapiro 2004], here we claim the result is true for all *s*.

To end this section, let's explain irreducible representations in general position, following [Chang and Cogdell 1999]. Let P = MN be a parabolic subgroup of G_n , with $M = G_1^p \times G_2^q$ and p + 2q = n. Write C_2 for the cyclic group $\{\pm 1\}$, $G_1 \simeq \mathbb{R}_{>0} \times C_2$ and $G_2 \simeq \mathbb{R}_{>0} \times SL_2^{\pm}$, where SL_2^{\pm} stands for the subgroup of G_2 consisting of matrices with determinant ± 1 . So $M = (\mathbb{R}_{>0})^{p+q} \times C_2^p \times (SL_2^{\pm})^q$.

Let T_m be the discrete series of SL_2^{\pm} with parameter $m \in \mathbb{Z}_{>0}$. We will use notation (s_1, \ldots, s_p) to denote the character on $(\mathbb{R}_{>0})^p$ sending (x_1, \ldots, x_p) to $\prod_{i=1}^p x_i^{s_i}$. And let ϵ be a character on C_2 . Then form the tensor product

$$\sigma = (s_1, \ldots, s_p, 2t_1, \ldots, 2t_q) \otimes (\epsilon_1 \otimes \cdots \otimes \epsilon_p \otimes T_{m_1} \otimes \cdots \otimes T_{m_q}).$$

JINGSONG CHAI

This is a representation on M, and then we get the normalized parabolic induced representation $Ind(\sigma)$. We say $\pi = Ind(\sigma)$ is a representation in general position if

$$s_i, t_j, s_i - s_j \notin \mathbb{Z}$$
 for $i \neq j$, $t_i - t_j \notin \frac{1}{2}\mathbb{Z}$ for $i \neq j$, $s_i - t_j \notin \frac{1}{2}\mathbb{Z}$.

It is known that these induced representations are irreducible and generic, see [Chang and Cogdell 1999] for more information.

3. Archimedean derivatives

In this section we introduce archimedean derivatives. First we need more notation. For any $1 \le l \le n$, let U_{n-l+1} be the unipotent radical of the standard parabolic subgroup associated to the partition (n-l, 1, ..., 1), that is, the subgroup of N_n consisting of matrices having the form

$$\begin{pmatrix} I_{n-l} & x \\ 0 & u \end{pmatrix}$$

where x is a $(n-l) \times l$ matrix and $u \in N_l$ is an upper triangular matrix with 1 on the diagonal. Note that $U_1 = N_n$. Denote by u_{n-l+1} the corresponding Lie algebras. Define a linear form μ_{n-l+1} on each u_{n-l+1} by

$$\mu_{n-l+1}(X) = \mu(X_{n-l+1,n-l+2} + \dots + X_{n-1,n}).$$

Now let (π, V) be a Casselman–Wallach representation of G_n , V_K its underlying (\mathfrak{g}, K) -module. For $1 \leq l \leq n$, let V_l be the closure of the subspace spanned by $\{X \cdot v - \mu_{n-l+1}(X)v : v \in V, X \in \mathfrak{u}_{n-l+1}\}$.

Definition. For each integer $0 \le l \le n$, we define the *l*-th derivative of π , denoted by $(\pi^{(l)}, V^{(l)})$, as follows:

(1) If l = 0, put $(\pi^{(0)}, V^{(0)}) = (\pi, V)$.

(2) If $1 \le l \le n$, put $V^{(l)} = V/V_l$, and define the action $\pi^{(l)}$ by

$$\pi^{(l)}(g) \cdot (v+V_l) = |\det g|^{-l/2} \pi(g)v + V_l \quad \text{for any } g \in G_{n-l}.$$

To continue, we need more notation. Use $P_{n-l,l}$ to denote the standard parabolic subgroup of G_n associated to the partition (n-l,l) of n. It has Levi decomposition $P_{n-l,l} = M_{n-l,l}N_{n-l,l}$, with Levi component $M_{n-l,l}$ isomorphic to $G_{n-l} \times G_l$ and unipotent part $N_{n-l,l}$. Let $\mathfrak{p}_{n-l,l}$, $\mathfrak{m}_{n-l,l}$ and $\mathfrak{n}_{n-l,l}$ be their complexified Lie algebras, respectively.

Note that we have the decomposition

$$\begin{pmatrix} I_{n-l} & x \\ 0 & v \end{pmatrix} = \begin{pmatrix} I_{n-l} & 0 \\ 0 & v \end{pmatrix} \begin{pmatrix} I_{n-l} & x \\ 0 & I_l \end{pmatrix},$$

so we can write $U_{n-l+1} = V_{n-l+1}N_{n-l,l}$, where V_{n-l+1} is the standard unipotent subgroup N_l of G_l embedded in G_n in the right lower corner.

Let v_{n-l+1} be the complexified Lie algebra of V_{n-l+1} . Note that the character μ_{n-l+1} is trivial on $n_{n-l,l}$. Let Y_l be the closure of the space spanned by

$$\{X \cdot \bar{v} - \mu_{n-l+1}(X)\bar{v} : X \in \mathfrak{v}_{n-l+1}, \bar{v} \in H_0(\mathfrak{n}_{n-l,l}, V)\}.$$

Since $V^{(l)} = V/V_l$ and

$$V_l = \overline{\{X \cdot v - \mu_{n-l+1}(X)v : v \in V, X \in \mathfrak{u}_{n-l+1}\}},$$

note that $\mathfrak{u}_{n-l+1} = \mathfrak{v}_{n-l+1} + \mathfrak{n}_{n-l,l}$. Then

$$H_0(\mathfrak{n}_{n-l,l},V)/Y_l = (V/\overline{\mathfrak{n}_{n-l,l}V})/(\overline{\{X \cdot v - \mu_{n-l+1}(X)v : X \in \mathfrak{u}_{n-l+1}, v \in V\}}/\overline{\mathfrak{n}_{n-l,l}V}) = V/V_l.$$

Thus, we have verified the following proposition.

Proposition 3.1. $V^{(l)} = H_0(n_{n-l,l}, V) / Y_l.$

The following result states that the derivatives $\pi^{(l)}$ belong to a nice class of representations.

Proposition 3.2. For each l, $\pi^{(l)}$ is a Casselman–Wallach representation of G_{n-l} .

Proof. This follows from the fact that the n-homology $H_0(n, V)$ is admissible. \Box

Now assume (π, V) is an irreducible smooth admissible generic representation of moderate growth on G_n in general position as in Section 2. Denote by V_K its *K*finite vectors, which is an irreducible admissible (\mathfrak{g}, K) -module. For the rest of this section, unless otherwise stated, we will drop the subscript for the standard upper triangular parabolic subgroup P = MN associated with the partition (n - k, k)of *n*, to simplify notation.

By [Chang and Cogdell 1999, Theorem 4.2] the n-homology $V_K/\mathfrak{n}V_K$ is nonzero and is a semisimple $(\mathfrak{m}, K \cap M)$ -module. By Proposition 2.2, $V/\mathfrak{n}V$ is the smooth completion of $V_K/\mathfrak{n}V_K$. It follows that $V/\mathfrak{n}V$ is also semisimple, so we can write

$$V/\overline{\mathfrak{n}V} = \bigoplus_{i=1}^r A_i,$$

where each A_i is an irreducible smooth admissible representation of moderate growth on M and hence, by results of D. Gourevitch and A. Kemarsky [2013], isomorphic to $\rho_i \widehat{\otimes} \sigma_i$, where each ρ_i and σ_i are irreducible smooth representations of moderate growth on G_{n-k} and G_k , respectively. Note that it is possible to have $A_i \cong A_j$ for $i \neq j$. We use $\rho_{i,K}$ and $\sigma_{i,K}$ to denote the representations on the underlying K-finite modules. Let p_i be the natural projection from $V_K/\mathfrak{n}V_K$ onto $\rho_{i,K} \otimes \sigma_{i,K}$, and also be the projection from $V/\overline{\mathfrak{n}V}$ onto $\rho_i \widehat{\otimes} \sigma_i$. We will also use p to denote the projections $V \to V/\overline{\mathfrak{n}V}$.

Lemma 3.3. For each *i*, ρ_i and σ_i are generic representations.

Proof. This follows from [Chang and Cogdell 1999, Theorem 4.2]. See Remarks 4.3 there. \Box

Denote by $\mathcal{W}(\rho_i, \psi)$ the Whittaker model for ρ_i .

Proposition 3.4. For every $W_i \in \mathcal{W}(\rho_i, \psi)$ and every $\Phi \in \mathcal{G}(\mathbb{R}^{n-k})$, there is a Whittaker function $W_v \in \mathcal{W}(\pi, \psi)$ such that

$$W_v \begin{pmatrix} g & 0 \\ 0 & I_k \end{pmatrix} = W_i(g) \Phi(\epsilon_{n-k}g).$$

Proof. The projection p_i from $V_K/\mathfrak{n}V_K$ onto $\rho_{i,K} \otimes \sigma_{i,K}$ induces an injective intertwining map $V_K \to \operatorname{Ind}(|\det|^{-k/2}\rho_{i,K} \otimes |\det|^{(n-k)/2}\sigma_{i,K})$. This extends to an injective map

$$V \to \operatorname{Ind}(|\det|^{-k/2}\rho_i \widehat{\otimes} |\det|^{(n-k)/2}\sigma_i).$$

Denote by Q its quotient; we have a short exact sequence of smooth representations of moderate growth

(1)
$$0 \longrightarrow V \longrightarrow \operatorname{Ind}(|\det|^{-k/2}\rho_i \widehat{\otimes} |\det|^{(n-k)/2}\sigma_i) \longrightarrow Q \longrightarrow 0.$$

The underlying (g, K)-modules also form a short exact sequence

(2)
$$0 \longrightarrow V_K \longrightarrow \operatorname{Ind}(|\det|^{-k/2}\rho_{i,K} \otimes |\det|^{(n-k)/2}\sigma_{i,K}) \longrightarrow Q_K \longrightarrow 0.$$

By taking the dual (contragredient representation) of the short exact sequence (2), we have

$$0 \longrightarrow \mathcal{Q}_K^* \longrightarrow \left(\operatorname{Ind}(|\det|^{-k/2} \rho_{i,K} \otimes |\det|^{(n-k)/2} \sigma_{i,K}) \right)^* \longrightarrow V_K^* \longrightarrow 0.$$

By [Wallach 1988, Lemma 4.5.2], we have

$$0 \longrightarrow Q_K^* \longrightarrow \operatorname{Ind}((|\det|^{-k/2} \rho_{i,K})^* \otimes (|\det|^{(n-k)/2} \sigma_{i,K})^*) \longrightarrow V_K^* \longrightarrow 0,$$

which induces a short exact sequence for their smooth completions:

(3)
$$0 \longrightarrow Q^* \longrightarrow \operatorname{Ind}((|\det|^{-k/2}\rho_i)^* \widehat{\otimes} (|\det|^{(n-k)/2}\sigma_i)^*) \longrightarrow V^* \longrightarrow 0.$$

Now for any representation (τ, U) , define representation (τ^s, U) by $\tau^s(g) \cdot u = \tau({}^tg^{-1}) \cdot u$ for any $g \in G_n$, $u \in U$; then τ^s is isomorphic to τ^* when τ is irreducible, by [Aizenbud et al. 2008, Theorem 2.4.2]. Note that we are working in the same space, but simply changing the action. So if we have a short exact sequence

$$0 \longrightarrow (\tau_1, U_1) \longrightarrow (\tau_2, U_2) \longrightarrow (\tau_3, U_3) \longrightarrow 0,$$

applying the operation 's', we then have a new exact sequence

$$0 \longrightarrow (\tau_1^s, U_1) \longrightarrow (\tau_2^s, U_2) \longrightarrow (\tau_3^s, U_3) \longrightarrow 0.$$

Now apply operation 's' to the sequence (3); then we have

(4)
$$0 \longrightarrow (Q^*)^s \longrightarrow (\operatorname{Ind}((|\det|^{-k/2}\rho_i)^* \widehat{\otimes} (|\det|^{(n-k)/2}\sigma_i)^*))^s \longrightarrow (V^*)^s \longrightarrow 0.$$

It follows that the sequence (4) becomes

$$0 \longrightarrow (Q^*)^s \longrightarrow \operatorname{Ind}_{P'}^{G_n} \left((|\det|^{-k/2} \rho_i)^{*s} \widehat{\otimes} (|\det|^{(n-k)/2} \sigma_i)^{*s} \right) \longrightarrow (V^*)^s \longrightarrow 0.$$

Since π , ρ_i and σ_i are irreducible, the above is

$$0 \longrightarrow (Q^*)^s \longrightarrow \operatorname{Ind}_{P'}^{G_n}(|\det|^{-k/2}\rho_i \widehat{\otimes} |\det|^{(n-k)/2}\sigma_i) \longrightarrow V \longrightarrow 0.$$

Let Λ be the unique (up to a constant) continuous Whittaker functional on V. Composed with the projection

$$\operatorname{Ind}_{P'}^{G_n}(|\det|^{-k/2}\rho_i\widehat{\otimes}|\det|^{(n-k)/2}\sigma_i)\longrightarrow V,$$

we get a nontrivial continuous Whittaker functional Λ' on

$$\operatorname{Ind}_{P'}^{G_n}(|\det|^{-k/2}\rho_i\widehat{\otimes}|\det|^{(n-k)/2}\sigma_i).$$

By the last conclusion of [Wallach 1992, Theorem 15.4.1], there is a linear bijection between the space of Whittaker functionals on

$$\operatorname{Ind}_{P'}^{G_n}(|\det|^{-k/2}\rho_i\widehat{\otimes}|\det|^{(n-k)/2}\sigma_i)$$

and the space of Whittaker functionals on

$$|\det|^{-k/2}\rho_i \widehat{\otimes} |\det|^{(n-k)/2}\sigma_i$$

By Lemma 3.3, the latter space has dimension 1, thus there is a unique (up to a constant) continuous Whittaker functional on $\operatorname{Ind}_{P'}^{G_n}(|\det|^{-k/2}\rho_i \widehat{\otimes} |\det|^{(n-k)/2}\sigma_i)$, and it must be Λ' . Then we can conclude that the space of Whittaker functions $\mathscr{W}(\pi, V)$ for π and that for $\operatorname{Ind}_{P'}^{G_n}(|\det|^{-k/2}\rho_i \widehat{\otimes} |\det|^{(n-k)/2}\sigma_i)$, are the same.

So in order to prove the existence of W_v in $\mathcal{W}(\pi, V)$ as in the proposition, it suffices to find some Whittaker function for $\operatorname{Ind}_{P'}^{G_n}(|\det|^{-k/2}\rho_i \widehat{\otimes} |\det|^{(n-k)/2}\sigma_i)$ with the required property. Now this follows from [Jacquet 2009, Proposition 14.1], which finishes the proof.

Corollary 3.5. For every Whittaker function W_i in any irreducible component of $\pi^{(k)}$, and any Schwartz function Φ on \mathbb{R}^{n-k} , we can always find some $W_v \in W(\pi, \psi)$ such that

$$W_{v}\begin{pmatrix}g&0\\0&I_{k}\end{pmatrix} = W_{i}(g)\Phi(\epsilon_{n-k}g)|\det g|^{k/2}.$$

Proof. This follows from the fact that $\pi^{(k)}$ is isomorphic to $|\det|^{-k/2} \bigoplus_i \rho_i$. \Box

4. Exceptional poles

In this section, we will introduce two types of exceptional poles and discuss their basic properties. Set

 $\mathscr{G}_n^m = \{ f \in \mathscr{G} : f \text{ vanishes to order at least } m \text{ at zero} \};$

then we have a filtration of closed subspaces for the Schwartz function space $\mathcal{G}_n = \mathcal{G}_n(\mathbb{R}^n)$:

$$\mathscr{S}_n = \mathscr{S}_n^0 \supset \mathscr{S}_n^1 \supset \cdots \supset \mathscr{S}_n^m \supset \cdots$$

 $\mathscr{G}_n^m/\mathscr{G}_n^{m+1}$ is isomorphic to the space of homogeneous polynomials on \mathbb{R}^n of degree *m*, denoted by E_n^m . The group G_n acts on \mathscr{G}_n from the right, which preserves this filtration, and therefore induces an action on E_n^m .

Let π and π' be irreducible generic Casselman–Wallach representations on G_n . The Rankin–Selberg integrals for π and π' , are given by

$$I(s, W, W', \Phi) = \int_{N_n \setminus G_n} W(g) W'(g) \Phi(\epsilon_n g) |\det g|^s \, dg$$

for $W \in \mathcal{W}(\pi, \psi)$, $W' \in \mathcal{W}(\pi', \psi^{-1})$, $\Phi \in \mathcal{G}$, where $\epsilon_n = (0, 0, \dots, 1) \in \mathbb{R}^n$, $s \in \mathbb{C}$. By Theorem 2.3, these integrals converge when *s* is in some right half-plane, and have a meromorphic continuation to the whole complex plane.

For any integer $1 \le k \le n$, for $v \in \pi$, $v' \in \pi'$ and $\Phi \in \mathcal{G}_k$, we define the following family of integrals:

$$I_k(s, W_v, W_{v'}, \Phi) = \int_{N_k \setminus G_k} W_v \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} W_{v'} \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} \Phi(\epsilon_k g) |\det g|^{s-n+k} dg.$$

Lemma 4.1. The integrals I_k belong to the space of Rankin–Selberg integrals for π and π' .

Proof. This follows from [Jacquet 2009, Proposition 6.1 and Lemma 14.1].

Thus it follows that I_k converges when $\operatorname{Re}(s)$ is large and has a meromorphic continuation to the whole complex plane. Suppose s_0 is a pole of order d for the integral $I_k(s, W, W', \Phi)$, with Laurent expansion

$$I_k(s, W, W', \Phi) = \frac{B_{s_0,k}(W, W', \Phi)}{(s - s_0)^d} + \cdots,$$

where $B_{s_0,k}(W, W', \Phi)$ is a trilinear form on $V \times V' \times \mathcal{G}_k$ satisfying the following invariance property:

$$B_{s_0,k}(g \cdot W, g \cdot W', g \cdot \Phi) = |\det g|^{-s_0 + n - k} B_{s_0,k}(W, W', \Phi)$$

for any $g \in G_k$, $W \in \mathcal{W}(\pi, \psi)$, $W' \in \mathcal{W}(\pi', \psi^{-1})$, $\Phi \in \mathcal{G}_k$.

Proposition 4.2. The trilinear form $B_{s_0,k}$ is continuous with respect to the topologies involved.

Proof. When k = n, the continuity of $B_{s_0,n}$ follows from Theorem 2.5. When k < n, we will use the constructions in the proof of [Jacquet 2009, Lemma 14.1] to prove the continuity.

Now suppose $v_l \rightarrow v, v'_l \rightarrow v'$ and $\Phi_l \rightarrow \Phi$; then write

$$I_k(s, W_{v_l}, W_{v_l'}, \Phi_l) = \frac{B_{s_0,k}(v_l, v_l', \Phi_l)}{(s - s_0)^d} + \cdots$$

and

$$I_k(s, W_v, W_{v'}, \Phi) = \frac{B_{s_0,k}(v, v', \Phi)}{(s - s_0)^d} + \cdots$$

Then we want to show that $B_{s_0,k}(v_l, v'_l, \Phi_l) \to B_{s_0,k}(v, v', \Phi)$ as $l \to \infty$.

Let Ψ_l and Ψ be Schwartz functions on \mathbb{R}^k whose Fourier transforms are given by $\widehat{\Psi}_l = \Phi_l$, $\widehat{\Psi} = \Phi$. Since Fourier transform is a topological isomorphism on Schwartz function space, it follows that $\Psi_l \to \Psi$. Now we set

$$u_{l} = \int \pi \begin{pmatrix} I_{k} & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} v_{l} \Psi_{l}(x) \, dx$$

and

$$u = \int \pi \begin{pmatrix} I_k & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} v \Psi(x) \, dx.$$

Claim 1. If f is a Schwartz function on \mathbb{R}^k , the map $(f, v) \mapsto \pi(f)v$ is a continuous map from $V \times \mathcal{G}_k$ to V, where

$$\pi(f)v = \int_{\mathbb{R}^k} f(x)\pi(x)v\,dx.$$

Proof of Claim 1. Suppose $f_l \to f$ in \mathcal{G}_k , $v_l \to v$ in V. We want to show that $\pi(f_l)v_l \to \pi(f)v$.

Because (π, V) is of moderate growth, for any seminorm $|\cdot|_1$ on V there exists a seminorm $|\cdot|_2$ on V, a positive integer N_0 , and a positive number C, such that for any $v \in V$ and $x \in \mathbb{R}^k$, we have $|\pi(x)v|_1 \leq C(1 + ||x||^2)^{N_0}|v|_2$. Here we identify x with

$$\begin{pmatrix} I_k & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} \in G_n,$$

and ||x|| denotes the usual Euclidean norm of x. Then we have

$$\begin{aligned} |\pi(f_l)v_l - \pi(f)v|_1 &\leq |\pi(f_l)v_l - \pi(f)v_l|_1 + |\pi(f)v_l - \pi(f)v|_1 \\ &\leq \int |f_l(x) - f(x)| |\pi(x)v_l|_1 dx + \int |f(x)| |\pi(x)(v_l - v)|_1 dx \\ &\leq C |v_l|_2 \int |f_l(x) - f(x)| (1 + ||x||^2)^{N_0} dx \\ &+ C |v_l - v|_2 \int |f(x)| (1 + ||x||^2)^{N_0} dx. \end{aligned}$$

Since $v_l \to v$, $|v_l|_2$ is bounded for any l, and $|v_l - v|_2 \to 0$ as $l \to \infty$. Because $f_l \to f$ in \mathcal{S}_k ,

$$\int |f_l(x) - f(x)| (1 + ||x||^2)^{N_0} \, dx \to 0 \quad \text{as} \quad l \to \infty.$$

Hence $\pi(f_l)v_l \to \pi(f)v$ as $l \to \infty$, which proves the claim.

So, by Claim 1, $u_l \rightarrow u$. And by the first conclusion of [Jacquet 2009, Proposition 6.1], we have

$$W_{u_l}\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix} = W_{v_l}\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix}\Phi_l(\epsilon_k g)$$

and

$$W_u\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix}=W_v\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix}\Phi(\epsilon_k g).$$

Thus

$$I_k(s, W_{v_l}, W_{v_l'}, \Phi_l) = \int W_{u_l} \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} W_{v_l'} \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} |\det g|^{s-n+k} dg$$

and

$$I_k(s, W_v, W_{v'}, \Phi) = \int W_u \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} W_{v'} \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} |\det g|^{s-n+k} dg.$$

We will view $w_l = u_l \otimes v'_l$ as an element in $\sigma = \pi \widehat{\otimes} \pi'$; consequently $W_{w_l}(g) = W_{u_l}(g)W_{v'_l}(g) \in \mathcal{W}(\pi \widehat{\otimes} \pi', \psi \otimes \psi^{-1})$, and we have

(5)
$$I_k(s, W_{v_l}, W_{v'_l}, \Phi_l) = \int W_{w_l}\left(\begin{pmatrix} g & 0\\ 0 & I_{n-k} \end{pmatrix}, \begin{pmatrix} g & 0\\ 0 & I_{n-k} \end{pmatrix}\right) |\det g|^{s-n+k} dg.$$

Similarly, write $w = u \otimes v' \in \sigma = \pi \widehat{\otimes} \pi'$; then we have $w_l \to w$ and

(6)
$$I_k(s, W_v, W_{v'}, \Phi) = \int W_w\left(\begin{pmatrix}g & 0\\ 0 & I_{n-k}\end{pmatrix}, \begin{pmatrix}g & 0\\ 0 & I_{n-k}\end{pmatrix}\right) |\det g|^{s-n+k} dg.$$

Now by Proposition 2.4¹ applied to the group $\mathbb{R}^k \times \mathbb{R}^{\times}$, there exists a finite set of functions $f_j(x,h) \in \mathscr{C}^{\infty}_c(\mathbb{R}^k \times \mathbb{R}^{\times})$ and vectors $w_{l,j} \in \pi \otimes \pi'$ with $l \ge 0$ such that

$$w_l = \sum_j \sigma(f_j) w_{l,j}$$
 for all $l \ge 1$, $w = \sum_j \sigma(f_j) w_{0,j}$,

and $w_{l,j} \rightarrow w_{0,j}$ for each j.

More precisely, we can write

$$w_{l} = \sum_{j} \int \sigma \left(\begin{pmatrix} a^{-1}(h) & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix}, \begin{pmatrix} a^{-1}(h) & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} \right) w_{l,j} f_{j}(x,h) dx d^{\times} h$$

and

$$w = \sum_{j} \int \sigma \left(\begin{pmatrix} a^{-1}(h) & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix}, \begin{pmatrix} a^{-1}(h) & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} \right) w_{0,j} f_j(x,h) dx d^{\times}h,$$

where a(h) = diag(h, 1, ..., 1).

Then the integrals (5) and (6) now become

$$I_{k}(s, W_{v_{l}}, W_{v_{l}'}, \Phi_{l}) = \sum_{j} \int W_{w_{l,j}} \left(\begin{pmatrix} ga^{-1}(h) & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix}, \begin{pmatrix} ga^{-1}(h) & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} \right) \times f_{j}(x, h) |\det g|^{s-n+k} dg dx d^{\times}h,$$

and

$$I_{k}(s, W_{v}, W_{v'}, \Phi) = \sum_{j} \int W_{w_{0,j}} \left(\begin{pmatrix} ga^{-1}(h) & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix}, \begin{pmatrix} ga^{-1}(h) & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} \right) \times f_{j}(x, h) |\det g|^{s-n+k} \, dg \, dx \, d^{\times}h.$$

¹There is a change of topology for the convergence in Proposition 2.4 in general, but in our special case considered here, the topologies involved are the same.

Make the change of variable $ga^{-1}(h) \rightarrow g$; we have the integrals

(7)
$$I_k(s, W_{v_l}, W_{v'_l}, \Phi_l)$$

= $\sum_j \int W_{w_{l,j}} \left(\begin{pmatrix} g & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix}, \begin{pmatrix} g & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} \right)$
 $\times f_j(x, h) |\det g|^{s-n+k} |h|^{s+1-n+k} dg dx d^{\times}h$

and

(8)
$$I_k(s, W_v, W_{v'}, \Phi)$$

$$= \sum_j \int W_{w_{0,j}} \left(\begin{pmatrix} g & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix}, \begin{pmatrix} g & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} \right)$$

$$\times f_j(x, h) |\det g|^{s-n+k} |h|^{s+1-n+k} dg dx d^{\times}h$$

Now we will view $f_j(x,h)$ as Schwartz functions on \mathbb{R}^{k+1} which vanish on $\mathbb{R}^k \times \{0\}$. Then let

$$e_{l,j} = \int \sigma \left(\begin{pmatrix} I_{k+1} & y & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I_{n-k-2} \end{pmatrix}, \begin{pmatrix} I_{k+1} & y & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I_{n-k-2} \end{pmatrix} \right) w_{l,j} f_j(y) \, dy$$

and

$$e_{0,j} = \int \sigma \left(\begin{pmatrix} I_{k+1} & y & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I_{n-k-2} \end{pmatrix}, \begin{pmatrix} I_{k+1} & y & 0 \\ 0 & 1 & 0 \\ 0 & 0 & I_{n-k-2} \end{pmatrix} \right) w_{0,j} f_j(y) \, dy,$$

where $y = (x, h) \in \mathbb{R}^{k+1}$.

Thus it follows that, $e_{l,j} \rightarrow e_{0,j}$ for each j, and we have

(9)
$$I_k(s, W_{v_l}, W_{v'_l}, \Phi_l)$$

= $\sum_j \int W_{e_{l,j}} \left(\begin{pmatrix} g & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix}, \begin{pmatrix} g & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} \right)$
× $|\det g|^{s-n+k} |h|^{s+1-n+k} dg dx d^{k}h$

and

(10)
$$I_k(s, W_v, W_{v'}, \Phi)$$

= $\sum_j \int W_{e_{0,j}} \left(\begin{pmatrix} g & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix}, \begin{pmatrix} g & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} \right) \times |\det g|^{s-n+k} |h|^{s+1-n+k} dg dx d^{\times}h.$

As in [Jacquet 2009, Lemma 14.1],

$$f \to \int f \begin{pmatrix} g & 0 & 0 \\ x & h & 0 \\ 0 & 0 & I_{n-k-1} \end{pmatrix} dx |\det g|^{-1} d^{\times}h$$

gives an invariant measure on $N_{k+1} \setminus G_{k+1}$. Thus, we can rewrite these integrals as

(11)
$$I_k(s, W_{v_l}, W_{v'_l}, \Phi_l)$$

= $\sum_j \int_{N_{k+1} \setminus G_{k+1}} W_{e_{l,j}} \left(\begin{pmatrix} g & 0 \\ 0 & I_{n-k-1} \end{pmatrix}, \begin{pmatrix} g & 0 \\ 0 & I_{n-k-1} \end{pmatrix} \right) \times |\det g|^{s+1-n+k} dg$

and

(12)
$$I_k(s, W_v, W_{v'}, \Phi)$$

= $\sum_j \int_{N_{k+1} \setminus G_{k+1}} W_{e_{0,j}} \left(\begin{pmatrix} g & 0 \\ 0 & I_{n-k-1} \end{pmatrix}, \begin{pmatrix} g & 0 \\ 0 & I_{n-k-1} \end{pmatrix} \right) \times |\det g|^{s+1-n+k} dg,$

which are the same type integrals as (5) and (6) belonging to I_{k+1} .

So by induction, we may assume k = n - 1 in the integrals (5) and (6); then integrals (7) and (8) now become

(13)
$$I_k(s, W_{v_l}, W_{v'_l}, \Phi_l) = \sum_j \int W_{w_{l,j}}\left(\begin{pmatrix} g & 0 \\ x & h \end{pmatrix}, \begin{pmatrix} g & 0 \\ x & h \end{pmatrix} \right) f_j(x, h) |\det g|^{s-1} |h|^s \, dg \, dx \, d^{\times}h$$
and

and

(14)
$$I_k(s, W_v, W_{v'}, \Phi) = \sum_j \int W_{w_{0,j}}\left(\begin{pmatrix} g & 0 \\ x & h \end{pmatrix}, \begin{pmatrix} g & 0 \\ x & h \end{pmatrix} \right) f_j(x,h) |\det g|^{s-1} |h|^s \, dg \, dx \, d^{\times}h.$$

Write

$$g' = \begin{pmatrix} g & 0 \\ x & h \end{pmatrix} \in G_n,$$

and view $f_j(x, h)$ as Schwartz functions on \mathbb{R}^n which vanish on $\mathbb{R}^{n-1} \times \{0\}$; then the above integrals now become

$$I_k(s, W_{v_l}, W_{v_l'}, \Phi_l) = \sum_j \int W_{w_{l,j}}(g', g') f_j(\epsilon_n g') |\det g'|^s |\det g'|^{-1} dg' dx d^{\times} h$$

and

$$I_k(s, W_v, W_{v'}, \Phi) = \sum_j \int W_{w_{0,j}}(g', g') f_j(\epsilon_n g') |\det g'|^s |\det g'|^{-1} dg' dx d^{\times}h.$$

Again, as in [Jacquet 2009, Lemma 14.1],

$$f \mapsto \int f(g') \, dx |\det g'|^{-1} \, d^{\times} h$$

gives an invariant measure on $N_n \setminus G_n$. We can rewrite the above integrals as

(15)
$$I_k(s, W_{v_l}, W_{v'_l}, \Phi_l) = \sum_j \int_{G_n} W_{w_{l,j}}(g', g') f_j(\epsilon_n g') |\det g'|^s \, dg'$$

and

(16)
$$I_k(s, W_v, W_{v'}, \Phi) = \sum_j \int_{G_n} W_{w_{0,j}}(g', g') f_j(\epsilon_n g') |\det g'|^s dg'.$$

It follows that

$$B_{s_0,k}(v_l, v'_l, \Phi_l) = \sum_j B_{s_0,n}(w_{l,j}, f_j),$$

and similarly

$$B_{s_0,k}(v,v',\Phi) = \sum_j B_{s_0,n}(w_{0,j},f_j).$$

Since $w_{l,j} \to w_{0,j}$ for each j, and the form $B_{s_0,n}$ is continuous, we conclude that $B_{s_0,k}$ is continuous. This completes the proof.

Definition. We say a pole s_0 is an exceptional pole of type 1, with level *m* and depth n - k, if the corresponding $B_{s_0,k}$ is zero on \mathcal{G}_k^{m+1} , but not identically zero on \mathcal{G}_k^m . In this case, we also say s_0 is an exceptional pole for the integrals $I_k(s, W_v, W_{v'}, \Phi)$.

Remark. If s_0 is an exceptional pole of order m, then B_{s_0} defines a continuous linear form on $V \times V' \times E_k^m$ such that, for any $g \in G_k$,

$$B_{s_0,k}(g \cdot W, g \cdot W', g \cdot \Phi) = |\det g|^{-s_0 + n - k} B_{s_0,k}(W, W', \Phi).$$

Definition. We say a complex number s_0 is an exceptional pole of type 2, with level *m*, for π and π' , if there exists a continuous trilinear form

$$l: V \times V' \times E_n^m \to \mathbb{C}$$

such that for $g \in G_n$,

$$l(g \cdot W, g \cdot W', g \cdot \Phi_n) = |\det g|^{-s_0} l(W, W', \Phi_n).$$

Remark. It follows that an exceptional pole of type 1 with level *m* and depth 0 is also of type 2 with level *m*.

Next we want to relate the exceptional poles for the integrals I_k to the exceptional poles of type 2 for the components of $\pi^{(n-k)}$ and $\pi'^{(n-k)}$.

Lemma 4.3. If $X = (X_{ij}) \in \mathfrak{n}_{k,n-k}$, then there exists a linear form P_X on \mathbb{R}^k such that for any $v \in V$ we have

$$W_{\pi(X)\cdot v}\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix} = P_X(\epsilon_k g)W_v\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix}.$$

Proof. First, it is easy to see that

$$W_{\pi(X)\cdot v}\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix} = \frac{d}{dt}\Big|_{t=0}W_{v}\left(\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix}\begin{pmatrix}I_{k}&tX\\0&I_{n-k}\end{pmatrix}\right)$$
$$= 2\pi\sqrt{-1}\sum_{j=1}^{k}g_{kj}X_{j,k+1}W_{v}\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix}.$$

So define a linear form $P_X(a_1, ..., a_k) = 2\pi \sqrt{-1} \sum_{j=1}^k X_{j,k+1}a_j$ on \mathbb{R}^k ; then $P_X(\epsilon_k g) = 2\pi \sqrt{-1} \sum_{j=1}^k g_{kj} X_{j,k+1}$, which proves the lemma.

Proposition 4.4. Let s_0 be an exceptional pole of level m for the integrals I_k ; then the continuous trilinear form $B_{s_0,k}$ defines a continuous trilinear form on $V/\overline{\mathfrak{n}V} \times V'/\overline{\mathfrak{n}V'} \times E_k^m$.

Proof. It suffices to show that the form $B_{s_0,k}$ vanishes on $\overline{\mathfrak{n}V}$ and $\overline{\mathfrak{n}V'}$ when restricted to \mathcal{G}_k^m .

For any $W_{\pi(X),v}$, $X \in \mathfrak{n}$, any $W_{v'}$ and any $\Phi \in \mathcal{G}_k^m$, by Lemma 4.3 we have

$$W_{\pi(X)\cdot v}\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix} = P_X(\epsilon_k g)W_v\begin{pmatrix}g&0\\0&I_{n-k}\end{pmatrix}$$

for some linear form P_X on \mathbb{R}^k .

It follows that

$$I_{k}(s, W_{\pi(X) \cdot v}, W_{v'}, \Phi)$$

$$= \int W_{\pi(X) \cdot v} \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} W_{v'} \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} \Phi(\epsilon_{k}g) |\det g|^{s-k+n} dg$$

$$= \int_{N_{k} \setminus G_{k}} W_{v} \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} W_{v'} \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} \Psi(\epsilon_{k}g) |\det g|^{s-k+n} dg$$

where $\Psi_k(\epsilon_k g) = P_X(\epsilon_k g)\Phi(\epsilon_k g)$.

Since $\Phi \in \mathcal{G}_k^m$, thus $\Psi = P_X \Phi \in \mathcal{G}_k^{m+1}$. Note that s_0 is an exceptional pole with level *m*, so

$$B_{s_0,k}(W_{\pi(X)\cdot v}, W_{v'}, \Phi) = B_{s_0,k}(W_{\cdot v}, W_{v'}, \Psi_k) = 0.$$

Similarly, $B_{s_0,k}$ vanishes when $v' \in \overline{\mathfrak{n}V'}$. Thus the proposition follows.

Theorem 4.5. If s_0 is an exceptional pole of type 1 with level *m* and depth n - k, then s_0 is an exceptional pole of type 2 with level *m* for some components of $\pi^{(n-k)}$ and $\pi'^{(n-k)}$.

Proof. Note that we have the decompositions

$$V/\overline{\mathfrak{n} V} = \bigoplus_{i} (\rho_i, A_i) \widehat{\otimes} (\sigma_i, B_i)$$

and

$$V'/\overline{\mathfrak{n}V'} = \bigoplus_i (\rho'_i, A'_i) \widehat{\otimes} (\sigma'_i, B'_i).$$

By Proposition 4.4, if s_0 is an exceptional pole of level *m* for I_k , $B_{s_0,k}$ defines a nontrivial continuous trilinear form on $V/\overline{\mathfrak{n}V} \times V'/\overline{\mathfrak{n}V'} \times E_k^m$. Thus it has to be nontrivial on some components

$$B_{s_0,k}:(\rho_i,A_i)\widehat{\otimes}(\sigma_i,B_i)\times(\rho'_j,A'_j)\widehat{\otimes}(\sigma'_j,B'_j)\times E_k^m\to\mathbb{C},$$

which implies it is also nontrivial on the subspace $A_i \otimes B_i \times A'_i \otimes B'_i \times E^m_k$.

Now fix $v_2 \in B_i$, $v'_2 \in B'_i$, so that $B_{s_0,k}$ is nontrivial on $A_i \otimes v_2 \times A'_i \otimes v'_2 \times E_k^m$. Then the restriction of $B_{s_0,k}$ to this subspace induces a nontrivial continuous trilinear form, still denoted as $B_{s_0,k}$, on $A_i \times A'_i \times E_k^m$, with

$$B_{s_0,k}(g \cdot v_1, g \cdot v_1', g \cdot \Phi) = |\det g|^{-s_0 + n - k} B_{s_0,k}(v_1, v_1', \Phi)$$

for any $v_1 \in A_i$, $v'_1 \in A'_i$, $\Phi_i \in E_k^m$ and $g \in G_k$. Note that $|\det|^{(n-k)/2}\rho_i$ is a component for $\pi^{(n-k)}$, thus we have proved the theorem.

5. Rankin–Selberg integrals: $G_n \times G_n$

Suppose a pole s_0 is not exceptional for the integrals I_n , and that we have the Laurent expansion

$$I_n(s, W, W', \Phi) = \frac{B_{s_0}(W, W', \Phi)}{(s - s_0)^d} + \cdots,$$

and B_{s_0} is continuous on $V \times V' \times E_n^m$ with the invariance property

$$B_{s_0,n}(g \cdot W, g \cdot W', g \cdot \Phi) = |\det g|^{-s_0} B_{s_0,n}(W, W', \Phi).$$

Since s_0 is not exceptional, for any integer *m*, we can find some $\Phi \in \mathcal{G}^m$ such that the form $B_{s_0,n}(W, W', \Phi)$ is nonzero for some choices of *W* and *W'*. Because

of the continuity of $B_{s_0,n}$, we may further assume W and W' are both K_n -finite. By Iwasawa decomposition, we have

$$I_n(s, W, W', \Phi) = \int_{K_n} \int_{N_n \setminus P_n} W(pk) W'(pk) |\det p|^{s-1} \int_{\mathbb{R}^{\times}} \omega(a) \omega'(a) |a|^{ns} \Phi(\epsilon_n ak) d^{\times} a \, dp \, dk.$$

Take $\{W_i\}$ to be some base vectors in the *K*-span subspace of *W*, and we write $W(gk) = \sum_i f_i(k)W_i(g)$, where f_i are continuous functions on *K*. Similarly, write $W'(gk) = \sum_i f'_i(k)W'_i(g)$, where $\{W'_j\}$ are some base vectors of the *K*-span subspace of *W'*, and f'_i are continuous functions on *K*. Now $I(s, W, W', \Phi)$ equals

$$\sum_{i,j} \int_{N_n \setminus P_n} W_i(p) W_j(p) |\det p|^{s-1} \int_{\mathbb{R}^{\times}} \omega(a) \omega'(a) |a|^{ns} \\ \times \int_K f_i(k) f'_j(k) \Phi(\epsilon_n ak) \, dk \, d^{\times} a \, dp.$$

Lemma 5.1. For any continuous function f(k) on K, the function

$$\Psi(a) = \int_{K} f(k) \Phi(\epsilon_n ak) \, dk$$

belongs to $\mathcal{G}^m(\mathbb{R})$ if Φ is in $\mathcal{G}^m(\mathbb{R}^n)$.

Proof. We will only check that $\Psi(a)$ vanishes at least to order *m* around 0; other verifications are routine and will be omitted. Since Φ vanishes at 0 at least to order *m*, by [Trèves 1967, Theorem 38.1] there exists a homogeneous polynomial $P(x_1, \ldots, x_n)$ of degree *m* such that the Taylor expansion of Φ at 0 has the form

$$\Phi(x_1,\ldots,x_n)=P(x_1,\ldots,x_n)+\cdots.$$

Then

$$\Psi(a) = \int_{K} f(k)\Phi(\epsilon_{n}ak)dk = \int_{K} f(k)P(\epsilon_{n}ak)dk + \cdots$$
$$= a^{m}\int_{K} f(k)P(\epsilon_{n}k)dk + \cdots$$

This shows that $\Psi(a)$ vanishes at least to order *m* at 0, which finishes the proof. \Box Lemma 5.2. If $\Phi \in \mathcal{G}^m(\mathbb{R})$ for some m > 0, then as a function of $s \in \mathbb{C}$, the function

$$\int_0^\infty a^s \Phi(a) \, d^{\times} a$$

is holomorphic in the half-plane $\operatorname{Re}(s) > -m$.

Proof. Since Φ is a Schwartz function, the integral

$$\int_{\epsilon}^{\infty} a^s \Phi(a) \, d^{\times} a$$

is holomorphic in s, when ϵ is away from 0.

In a neighborhood of 0, when $\operatorname{Re}(s) > -m$ and $\Phi \in \mathcal{G}^m(\mathbb{R})$, the function $a^s \Phi(a)$ is continuous. Thus

$$\int_0^\epsilon a^s \Phi(a) \, d^{\times} a$$

is also holomorphic in s.

By Lemma 5.1, as a function of a, the integral

$$\int_{K} f_i(k) f'_j(k) \Phi(\epsilon ak) \, dk$$

belongs to $\mathcal{G}_n^m(\mathbb{R})$, and by Lemma 5.2, when we choose *m* large enough, the function

$$\int_{\mathbb{R}^{\times}} \omega(a) \omega'(a) |a|^{ns} \int_{K} f_{i}(k) f_{j}'(k) \Phi(\epsilon ak) d^{\times} a \, dk$$

is holomorphic in the half-plane containing s_0 . Hence the pole s_0 has to occur in the sum

$$\sum_{i,j} \int_{N_n \setminus P_n} W_i(p) W'_j(p) |\det p|^{s-1} dp,$$

and we may assume one of the terms

$$\int_{N_n \setminus P_n} W_i(p) W_j'(p) |\det p|^{s-1} \, dp$$

contains the pole s_0 . But this integral descends to the integral

$$\int_{N_{n-1}\backslash G_{n-1}} W_i\begin{pmatrix}g&0\\0&1\end{pmatrix}W_j'\begin{pmatrix}g&0\\0&1\end{pmatrix}|\det g|^{s-1}\,dg$$

on $N_{n-1} \setminus G_{n-1}$. Each $W_v \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}$ can be written as a finite sum

$$\sum_{i} W_i \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix} \Phi_i(\epsilon_{n-1}g)$$

for some functions $W_i \in \mathcal{W}(\pi, \psi)$ and Schwartz functions Φ_i on \mathbb{R}^{n-1} . Thus the above integral becomes

$$\sum_{i} \int_{N_{n-1}\backslash G_{n-1}} W_i\begin{pmatrix}g&0\\0&1\end{pmatrix} W'\begin{pmatrix}g&0\\0&1\end{pmatrix} \Phi_i(\epsilon_{n-1}g) |\det g|^{s-1} dg,$$

which are integrals belonging to I_{n-1} . So we have the following corollary.

Proposition 5.3. If a pole s_0 of I_n of order d is not exceptional of type 1, then it occurs as a pole of order d for the integrals I_{n-1} .

298

In general, we have the following reduction result.

Proposition 5.4. If a pole s_0 of I_k is not an exceptional pole for the integrals I_k , then it is a pole for I_{k-1} .

Proof. By [Jacquet and Shalika 1990, Proposition 2], there exists a finite set of functions $\{\xi\}$ on $(\mathbb{R}^{\times})^k$, which have the form $\xi(z_1, \ldots, z_k) = \prod_{j=1}^k \chi_j(z_j) (\log |z_j|)^{n_j}$, where χ_j is a character on \mathbb{R}^{\times} , and Schwartz functions ϕ_{ξ} on $\mathbb{R}^k \times O(n)$, such that

$$W_{v}(\alpha x) = \sum_{\xi} \xi(a_1, \ldots, a_k) \phi_{\xi}(a_1, \ldots, a_k, x),$$

where $x \in O(n)$ and

$$\alpha = \operatorname{diag}(a_1 \cdots a_k, a_2 \cdots a_k, \dots, a_{k-1}a_k, a_k),$$

which will be viewed as

$$\operatorname{diag}(a_1 \cdots a_k, a_2 \cdots a_k, \dots, a_{k-1}a_k, a_k, 1, \dots, 1) \in G_n.$$

Since ϕ_{ξ} is a Schwartz function, for each x, it has a Taylor expansion around 0,

$$\phi_{\xi}(a_1,\ldots,a_k,x) = f(x)P_{\xi}(a_1,\ldots,a_k) + \cdots,$$

where f(x) is some continuous function of x, and P_{ξ} denotes the sum of leading coefficients in the Taylor expansion, which is a polynomial in a_1, \ldots, a_k .

It follows that, around 0, we can write

(17)
$$W_{v}(\alpha x) = \sum_{\xi} \{f(x)\xi(a_{1},\ldots,a_{k})P_{\xi}(a_{1},\ldots,a_{k})+\cdots\}.$$

Similarly, around 0, we have

(18)
$$W_{v'}(\alpha x) = \sum_{\xi'} \{ f'(x)\xi'(a_1, \dots, a_k) P_{\xi'}(a_1, \dots, a_k) + \dots \}.$$

By Iwasawa decomposition, we have

$$I_{k} = \int W_{v} \begin{pmatrix} pax & 0\\ 0 & I_{n-k} \end{pmatrix} W_{v'} \begin{pmatrix} pax & 0\\ 0 & I_{n-k} \end{pmatrix} \times \Phi(\epsilon_{k}ax) |\det p|^{s-n+k-1} |a|^{k(s-n+k)} dp dx d^{\times}a,$$

with $p \in N_k \setminus P_k$, where P_k is the mirabolic subgroup in G_k , $x \in O(k)$, $a \in \mathbb{R}^{\times}$.

Note that $N_k \setminus P_k = N_{k-1} \setminus G_{k-1}$, so we can write $pax = n_{k-1}\alpha yx$ for some $n_{k-1} \in N_{k-1}$,

$$\alpha = \operatorname{diag}(a_1 \cdots a_{k-1} a, \dots, a_{k-1} a, a, 1, \dots, 1),$$

and $y \in O(k-1)$.

Thus by (17), around 0 we have

$$W_{v}(pax) = \psi(n_{k}) \sum_{\xi} \{f(yx)\xi(a_{1}, \dots, a_{k-1}, a) P_{\xi}(a_{1}, \dots, a_{k-1}, a) + \dots \}$$

and

$$W_{v'}(pax) = \psi^{-1}(n_k) \sum_{\xi'} \{ f'(yx)\xi'(a_1, \dots, a_{k-1}, a) P_{\xi'}(a_1, \dots, a_{k-1}, a) + \dots \}.$$

Note that the poles of I_k are caused by the integration around 0, and in a neighborhood of 0, the integral is

$$\sum_{\xi,\xi'} \int f(yx) f'(yx) \, dy \, dx \int (\xi P_{\xi} \xi' P_{\xi'})(a_1, \dots, a_{k-1}, a) \\ \times \Phi(\epsilon_k a x) |a|^{k(s-n+k)} |a_1|^{c_1} \cdots |a_{k-1}|^{c_k} \, d^{\times} a \cdots d^{\times} a_{k-1} + \cdots,$$

where c_1, \ldots, c_{k-1} are some complex numbers depending on *s*.

First, since s_0 is a pole for this integral and O(k), O(k-1) are compact, it follows that this pole occurs as a pole for the integral with respect to the variables a_1, \ldots, a_{k_1}, a , and the integrals with respect to x, y are nonzero.

Since s_0 is not an exceptional pole, we can choose the Schwartz function Φ so that the integral on a in the above expression is holomorphic in a region containing s_0 . Thus the pole is caused by the integration with respect to the variables a_1, \ldots, a_{k-1} . This implies that the integral

$$\int W_v \begin{pmatrix} g & 0 \\ 0 & I_{n-k+1} \end{pmatrix} W'_v \begin{pmatrix} g & 0 \\ 0 & I_{n-k+1} \end{pmatrix} |\det g|^{s-n+k-1} dg$$

has the pole s_0 . This integral belongs to the integrals I_{k-1} , and the proposition follows.

Corollary 5.5. Any pole of the Rankin–Selberg integrals I_n for π and π' is an exceptional pole of type 2 for some components of $\pi^{(k)}$ and $\pi'^{(k)}$, $0 \le k < n$.

For the other direction, suppose σ and σ' are a pair of components of $\pi^{(k)}$ and $\pi'^{(k)}$ respectively.

Proposition 5.6. Any Rankin–Selberg integral of σ and σ' can be written as a sum of Rankin–Selberg integrals of π and π' .

Proof. For any $W_{v_1} \in \mathcal{W}(\sigma, \psi)$, $W_{v'_1} \in \mathcal{W}(\sigma', \psi^{-1})$, and $\Phi \in \mathcal{G}_{n-k}$, we have the Rankin–Selberg integral for σ and σ' :

$$I(s, W_{v_1}, W_{v'_1}, \Phi) = \int_{N_{n-k} \setminus G_{n-k}} W_{v_1}(g) W_{v'_1}(g) \Phi(\epsilon_{n-k}g) |\det g|^s \, dg.$$

By Corollary 3.5, there exists some $W_v \in \mathcal{W}(\pi, \psi)$ such that

$$W_{v}\begin{pmatrix}g&0\\0&I_{k}\end{pmatrix} = W_{v_{1}}(g)\Phi(\epsilon_{n-k}g)|\det g|^{k/2}.$$

Thus, the above integral is

$$I(s, W_{v_1}, W_{v'_1}, \Phi) = \int_{N_{n-k} \setminus G_{n-k}} W_v \begin{pmatrix} g & 0 \\ 0 & I_k \end{pmatrix} W_{v'_1}(g) |\det g|^{s-k/2} \, dg,$$

which can be written as

$$W_{v}\begin{pmatrix}g&0\\0&I_{k}\end{pmatrix} = \sum_{j} W_{j}\begin{pmatrix}g&0\\0&I_{k}\end{pmatrix} \Phi_{j}(\epsilon_{n-k}g)$$

with $W_i \in \mathcal{W}(\pi, \psi)$, and Schwartz functions Φ_i on \mathbb{R}^{n-k} . So we have

$$I(s, W_{v_1}, W_{v_1'}, \Phi) = \sum_j \int W_j \begin{pmatrix} g & 0 \\ 0 & I_k \end{pmatrix} W_{v_1'}(g) \Phi_j(\epsilon_{n-k}g) |\det g|^{s-k/2} dg.$$

Using Corollary 3.5 again, we have

$$I(s, W_{v_1}, W_{v_1'}, \Phi) = \sum_j \int W_j \begin{pmatrix} g & 0 \\ 0 & I_k \end{pmatrix} W_j' \begin{pmatrix} g & 0 \\ 0 & I_k \end{pmatrix} |\det g|^{s-k} dg$$

for some $W'_j \in W(\pi', \psi^{-1})$. Then by [Jacquet 2009, Lemma 14.1], each integral on the right side can be written as a Rankin–Selberg integral for π and π' . Thus the proposition follows.

Corollary 5.7. Any exceptional pole of type 1 of depth 0 for Rankin–Selberg integrals of σ and σ' is a pole of the Rankin–Selberg integrals I_n for π and π' .

Summarizing the above, we obtain the main result of this section.

Theorem 5.8. Let π and π' be irreducible generic Casselman–Wallach representations of G_n in general position. Then any pole of the Rankin–Selberg integrals for π and π' is an exceptional pole of type 2 for a pair of components of $\pi^{(k)}$ and $\pi'^{(k)}$, $0 \le k \le n - 1$. On the other hand, any exceptional pole of type 1 of depth 0 for a pair of components of $\pi^{(k)}$ and $\pi'^{(k)}$, $0 \le k \le n - 1$, is a pole of the Rankin–Selberg integrals of π and π' .

6. Case $G_n \times G_m$, m < n

This section is devoted to the case $G_n \times G_m$, m < n, using the same ideas and techniques as in the previous section. We will indicate the necessary changes and omit details.

JINGSONG CHAI

Now suppose π and π' are generic irreducible Casselman–Wallach representations of G_n and G_m in general position, respectively. Let $\mathcal{W}(\pi, \psi)$ and $\mathcal{W}(\pi', \psi^{-1})$ be their Whittaker models. The family of integrals is given by

$$I(s, W, W') = \int_{N_m \setminus G_m} W \begin{pmatrix} g & 0 \\ 0 & I_{n-m} \end{pmatrix} W'(g) |\det g|^{s-\frac{n-m}{2}} dg,$$

and for $1 \le j \le n - m - 1$

$$= \int_{M(m \times j,\mathbb{R})} \int_{N_m \setminus G_m} W \begin{pmatrix} g & 0 & 0 \\ X & I_j & 0 \\ 0 & 0 & I_{n-m-j} \end{pmatrix} W'(g) |\det g|^{s-\frac{n-m}{2}} dg dX,$$

with $W \in \mathcal{W}(\pi, \psi)$ and $W' \in \mathcal{W}(\pi', \psi^{-1})$. We will only consider the integrals I(s, W, W') since they have the same poles with the same multiplicities as $I^{j}(s, W, W')$ for each j.

For each $1 \le k \le m$, let Φ be a Schwartz function on \mathbb{R}^k , and introduce

$$I_k(s, W, W', \Phi) = \int_{N_k \setminus G_k} W \begin{pmatrix} g & 0 \\ 0 & I_{n-k} \end{pmatrix} W' \begin{pmatrix} g & 0 \\ 0 & I_{m-k} \end{pmatrix} \Phi(\epsilon_k g) |\det g|^{s - \frac{n+m}{2} + k} dg.$$

By [Jacquet 2009, Lemma 14.1], the integrals I_k belong to the family I_m , which implies that they are convergent when Re(s) is large, and have meromorphic continuations to the whole plane.

At a pole s_0 for $I_k(s, W, W', \Phi)$, we have an expansion

$$I_k(s, W, W', \Phi) = \frac{B_{s_0, k}(W, W', \Phi)}{(s - s_0)^d} + \cdots,$$

where $B_{s_0,k}(W, W', \Phi)$ is a trilinear form on $V \times V' \times \mathcal{G}_k$ satisfying the following invariance property: for any $g \in G_k$,

$$B_{s_0,k}(g \cdot W, g \cdot W', g \cdot \Phi) = |\det g|^{-s_0 + \frac{n+m}{2} - k} B_{s_0,k}(W, W', \Phi).$$

Similar to Proposition 4.2, we can show $B_{s_0,k}$ is continuous.

Definition. We say a pole s_0 is an exceptional pole of type 1, with level l and depth m-k, if the corresponding $B_{s_0,k}$ is zero on \mathcal{G}_k^{l+1} , but not identically zero on \mathcal{G}_k^l . In this case, we also say s_0 is an exceptional pole for the integrals $I_k(s, W_v, W_{v'}, \Phi)$.

Definition. We say a complex number s_0 is an exceptional pole of type 2, with level *l*, for π and π' , if there exists a continuous trilinear form

$$l: V \times V' \times E_k^l \to \mathbb{C}$$

such that

$$l(g \cdot W, g \cdot W', g \cdot \Phi) = |\det g|^{-s_0 + \frac{n-m}{2}} l(W, W', \Phi).$$

Remark. If s_0 is an exceptional pole of type 1 with level l and depth 0, then s_0 is also an exceptional pole of type 2 with level l for π and π' .

Along the same lines, we have the following theorem.

Theorem 6.1. If s_0 is an exceptional pole of type 1 with level l and depth m - k, then s_0 is an exceptional pole of type 2 with level l for some components of $\pi^{(n-k)}$ and $\pi'^{(m-k)}$.

The main reduction step is the following analog to Proposition 5.4, with essentially the same proof.

Proposition 6.2. If a pole s_0 of I_k is not an exceptional pole for these integrals, then it is a pole of I_{k-1} .

As a corollary, we have:

Corollary 6.3. Any pole of the Rankin–Selberg integrals I_m for π and π' is an exceptional pole of type 2 for some components of $\pi^{(n-k)}$ and $\pi'^{(m-k)}$, $0 \le k < m$.

A converse statement is also true.

Proposition 6.4. Any exceptional pole of type 1 of depth 0 for a pair of components of $\pi^{(n-k)}$ and $\pi'^{(m-k)}$ is a pole of the Rankin–Selberg integrals I_n for π and π' .

The main result of this section is the following.

Theorem 6.5. Let π and π' be irreducible generic Casselman–Wallach representations of G_n and G_m in general position. Then any pole of the Rankin–Selberg integrals for π and π' is an exceptional pole of type 2 for a pair of components of $\pi^{(n-k)}$ and $\pi'^{(m-k)}$, $1 \le k \le m$. On the other hand, any exceptional pole of type 1 of depth 0 for a pair of components of $\pi^{(n-k)}$ and $\pi'^{(m-k)}$, $1 \le k \le m$, is a pole of the Rankin–Selberg integrals of π and π' .

Acknowledgements

The results of this paper consist of the main part of the author's thesis at the Ohio State University. The author would like to thank his advisor Professor Cogdell for many helpful discussions and constant encouragement. The author also would like to thank Professor Stanton for carefully reading the draft and for his suggestions. During the final preparation of this paper, the author was supported by the Young Teacher Program of Hunan University.

JINGSONG CHAI

References

- [Aizenbud et al. 2008] A. Aizenbud, D. Gourevitch, and E. Sayag, " $(GL_{n+1}(F), GL_n(F))$ is a Gelfand pair for any local field *F*", *Compos. Math.* **144**:6 (2008), 1504–1524. MR 2009k:22022 Zbl 1157.22004
- [Aizenbud et al. 2012] A. Aizenbud, D. Gourevitch, and S. Sahi, "Derivatives for smooth representations of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$ ", preprint, 2012. arXiv 1109.4374
- [Bernstein and Zelevinsky 1977] I. N. Bernstein and A. V. Zelevinsky, "Induced representations of reductive p-adic groups, I", *Ann. Sci. École Norm. Sup.* (4) **10**:4 (1977), 441–472. MR 58 #28310 Zbl 0412.22015
- [Borel and Wallach 2000] A. Borel and N. R. Wallach, *Continuous cohomology, discrete subgroups, and representations of reductive groups*, 2nd ed., Mathematical Surveys and Monographs **67**, American Mathematical Society, Providence, RI, 2000. MR 2000j:22015 Zbl 0980.22015
- [Bunke and Olbrich 1997] U. Bunke and M. Olbrich, "Cohomological properties of the canonical globalizations of Harish-Chandra modules: consequences of theorems of Kashiwara–Schmid, Casselman, and Schneider–Stuhler", *Ann. Global Anal. Geom.* **15**:5 (1997), 401–418. MR 99b:22025 Zbl 0890.22004
- [Chang and Cogdell 1999] J.-T. Chang and J. W. Cogdell, "n-homology of generic representations for GL(*N*)", *Proc. Amer. Math. Soc.* **127**:4 (1999), 1251–1256. MR 99f:22021 Zbl 0911.22011
- [Cogdell and Piatetski-Shapiro 2004] J. W. Cogdell and I. I. Piatetski-Shapiro, "Remarks on Rankin– Selberg convolutions", pp. 255–278 in *Contributions to automorphic forms, geometry, and number theory* (Baltimore, MD, 2002), edited by H. Hida et al., Johns Hopkins University Press, Baltimore, MD, 2004. MR 2005d:11075 Zbl 1080.11038
- [Cogdell and Piatetski-Shapiro \geq 2015] J. W. Cogdell and I. I. Piatetski-Shapiro, "Derivatives and L functions for GL(*n*)", in *The Heritage of B. Moishezon*, edited by M. Teicher. To appear.
- [Gourevitch and Kemarsky 2013] D. Gourevitch and A. Kemarsky, "Irreducible representations of a product of real reductive groups", *Journal of Lie Theory* **23**:4 (2013), 1005–1010.
- [Jacquet 2009] H. Jacquet, "Archimedean Rankin–Selberg integrals", pp. 57–172 in *Automorphic forms and L-functions, II: Local aspects*, edited by D. Ginzburg et al., Contemp. Math. **489**, American Mathematical Society, Providence, RI, 2009. MR 2011a:11103 Zbl 1250.11051
- [Jacquet and Shalika 1981] H. Jacquet and J. A. Shalika, "On Euler products and the classification of automorphic forms, II", *Amer. J. Math.* **103**:4 (1981), 777–815. MR 82m:10050b Zbl 0491.10020
- [Jacquet and Shalika 1990] H. Jacquet and J. A. Shalika, "Exterior square *L*-functions", pp. 143–226 in *Automorphic forms, Shimura varieties, and L-functions* (Ann Arbor, MI, 1988), vol. 2, edited by L. Clozel and J. S. Milne, Perspect. Math. **11**, Academic Press, Boston, 1990. MR 91g:11050 Zbl 0695.10025
- [Jacquet et al. 1983] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, "Rankin-Selberg convolutions", *Amer. J. Math.* **105**:2 (1983), 367–464. MR 85g:11044
- [Knapp 1994] A. W. Knapp, "Local Langlands correspondence: the Archimedean case", pp. 393–410 in *Motives* (Seattle, WA, 1991), vol. 2, edited by U. Jannsen et al., Proc. Sympos. Pure Math. 55, American Mathematical Society, Providence, RI, 1994. MR 95d:11066 Zbl 0811.11071
- [Shalika 1974] J. A. Shalika, "The multiplicity one theorem for GL_n", *Ann. of Math.* (2) **100** (1974), 171–193. MR 50 #545 Zbl 0316.12010
- [Trèves 1967] F. Trèves, *Topological vector spaces, distributions and kernels*, Pure and Applied Mathematics **25**, Academic Press, New York, 1967. MR 37 #726 Zbl 0171.10402

[Wallach 1988] N. R. Wallach, *Real reductive groups*, vol. 1, Pure and Applied Mathematics **132**, Academic Press, Boston, 1988. MR 89i:22029 Zbl 0666.22002

[Wallach 1992] N. R. Wallach, *Real reductive groups*, vol. 2, Pure and Applied Mathematics **132**, Academic Press, Boston, 1992. MR 93m:22018 Zbl 0785.22001

Received October 21, 2013. Revised October 31, 2013.

JINGSONG CHAI COLLEGE OF MATHEMATICS AND ECONOMETRICS HUNAN UNIVERSITY CHANGSHA, HUNAN 410082 CHINA chaijingsong@gmail.com

PACIFIC JOURNAL OF MATHEMATICS

msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS

Don Blasius (Managing Editor) Department of Mathematics University of California Los Angeles, CA 90095-1555 blasius@math.ucla.edu

Vyjayanthi Chari Department of Mathematics University of California Riverside, CA 92521-0135 chari@math.ucr.edu

> Kefeng Liu Department of Mathematics University of California Los Angeles, CA 90095-1555 liu@math.ucla.edu

Jie Qing Department of Mathematics University of California Santa Cruz, CA 95064 qing@cats.ucsc.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI CALIFORNIA INST. OF TECHNOLOGY INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV. OREGON STATE UNIV.

STANFORD UNIVERSITY UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO UNIV. OF CALIF., SANTA BARBARA

Daryl Cooper Department of Mathematics University of California Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu Department of Mathematics The University of Hong Kong Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

Paul Yang Department of Mathematics Princeton University Princeton NJ 08544-1000 yang@math.princeton.edu

UNIV. OF CALIF., SANTA CRUZ UNIV. OF MONTANA UNIV. OF OREGON UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH UNIV. OF WASHINGTON WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2015 is US \$420/year for the electronic version, and \$570/year for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

 mathematical sciences publishers

nonprofit scientific publishing http://msp.org/

© 2015 Mathematical Sciences Publishers

Paul Balmer Department of Mathematics University of California Los Angeles, CA 90095-1555 balmer@math.ucla.edu

Robert Finn Department of Mathematics Stanford University Stanford, CA 94305-2125 finn@math.stanford.edu

Sorin Popa Department of Mathematics University of California Los Angeles, CA 90095-1555 popa@math.ucla.edu

PACIFIC JOURNAL OF MATHEMATICS

Volume 273 No. 2 February 2015

Taut foliations in surface bundles with multiple boundary components	257
TEJAS KALELKAR and RACHEL ROBERTS	
Some results on archimedean Rankin–Selberg integrals JINGSONG CHAI	277
Prescribing the boundary geodesic curvature on a compact scalar-flat Riemann surface via a flow method	307
Hong Zhang	
-1-Phenomena for the pluri χ_y -genus and elliptic genus PING LI	331
On the geometry of Prüfer intersections of valuation rings BRUCE OLBERDING	353
Non-Kähler expanding Ricci solitons, Einstein metrics, and exotic cone structures	369
MARIA BUZANO, ANDREW S. DANCER, MICHAEL GALLAUGHER and MCKENZIE WANG	
A note on <i>L</i> -packets and abelian varieties over local fields JEFFREY D. ACHTER and CLIFTON CUNNINGHAM	395
Rotating drops with helicoidal symmetry BENNETT PALMER and OSCAR M. PERDOMO	413
The bidual of a radical operator algebra can be semisimple CHARLES JOHN READ	443
Dimension jumps in Bott–Chern and Aeppli cohomology groups JIEZHU LIN and XUANMING YE	461
Fixed-point results and the Hyers–Ulam stability of linear equations of higher orders	483
BING XU, JANUSZ BRZDĘK and WEINIAN ZHANG	
Complete curvature homogeneous metrics on $SL_2(\mathbb{R})$ BENJAMIN SCHMIDT and JON WOLFSON	499

