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We use a notion of derivatives of smooth representations of moderate growth
of GL.n; R/ and exceptional poles to study local Rankin–Selberg integrals.
We obtain various results which are archimedean analogs of p-adic results
obtained by Cogdell and Piatetski-Shapiro.

1. Introduction

Let F be a p-adic field, � a smooth admissible representation of GL.n; F /. J. Bern-
stein and A. Zelevinsky [1977] defined the notion of derivatives for � , denoted
by �.k/, n� k � 0, which is a useful tool to study properties of � .

If � 0 is another smooth admissible representation of GL.n; F /, when both �
and � 0 are generic with associated Whittaker models W.�;  / and W.� 0;  �1/,
where  is a fixed nontrivial additive character of F, we have the following local
Rankin–Selberg integrals:

I.s;W;W 0; ˆ/D

Z
NnnGLn

W.g/W 0.g/ˆ.�ng/jdetgjs dg

for W 2W.�;  /, W 0 2W.� 0; N /, ˆ 2 S.F n/ a Schwartz function, s a complex
number, and �n D .0; 0; : : : ; 1/ 2 F n.

By the work of H. Jacquet, J. Shalika and Piatetski-Shapiro [1983], these integrals
converge in some right half-plane of s, and have a meromorphic continuation to the
whole plane. Suppose s0 is a pole with the expansion

I.s;W;W 0; ˆ/D
Bs0.W;W

0; ˆ/

.qs � qs0/d
C � � � :

Note that the Schwartz function space S.F n/ has a filtration

0� S0� S.F n/;
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where S0 D fˆ 2 S.F n/ W ˆ.0/ D 0g. Cogdell and Piatetski-Shapiro [� 2015]
defined s0 to be an exceptional pole if the leading coefficient Bs0.W;W

0; ˆ/ van-
ishes identically on S0, and used it together with derivatives to analyze the poles
of local Rankin–Selberg integrals. As a consequence, they can compute the local
L-factor for a pair of generic representations on general linear groups in terms of
L-functions of the inducing datum.

It is interesting to see if there is an analogous theory for GL.n;R/, and there is
in fact some work in this direction; for example, [Chang and Cogdell 1999]. In
this paper, we will take one more step towards such an archimedean theory, based
on results in that reference. There are a couple of difficulties in the archimedean
case. First of all, we need an appropriate theory of “derivatives”. In a recent
preprint, A. Aizenbud, D. Gourevitch and S. Sahi [Aizenbud et al. 2012] defined
the derivatives for smooth representations of moderate growth on GL.n;R/ as the
inverse limit of certain coinvariants. But this seems complicated for our applications
to local Rankin–Selberg integrals.

Here we simply take the naive analog of p-adic derivatives as our archimedean
derivatives. It is a component in the n-homology, where n is the nilradical of some
parabolic subalgebra. The advantages of this definition are that it is relatively easier
to deal with, and compatible with Rankin–Selberg integrals. But it is also interesting
to see if one can relate the derivatives defined in [ibid.] to integrals I.s;W;W 0; ˆ/
in some way.

For the exceptional poles, the situation again is a little more complicated. The
leading coefficients in the expansion of I.s;W;W 0; ˆ/ at a pole will involve a
finite-dimensional representation of GL.n;R/, due to the nature of the differences
between Schwartz functions on R and the p-adic field F. To be more precise, the
Schwartz function space Sn D Sn.R

n/ has a natural filtration. Let

Smn D ff 2 S W f vanishes to order at least m at zerog:

Then each Smn is a closed subspace, and we have a filtration

Sn D S0n � S1n � � � � � Smn � � � � ;

where Smn =SmC1n is isomorphic to the space of homogeneous polynomials on Rn

of degree m, denoted as Emn — a finite-dimensional representation of GL.n;R/.
At a pole s0, I.s;W;W 0; ˆ/ has an expansion

I.s;W;W 0; ˆ/D
Bs0.W;W

0; ˆ/

.qs � qs0/d
C � � � ;

and we say s0 is an exceptional pole of type 1 and levelm if Bs0 vanishes identically
on SmC1, but not on Sm.
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In general, we say s0 is an exceptional pole of type 2 and level m, for � and � 0,
if there exists a continuous trilinear form

l W V �V 0 �Emn ! C

such that, for g 2 GL.n;R/,

l.g �W;g �W 0; g �ˆn/D jdetgj�s0l.W;W 0; ˆn/:

It follows that an exceptional pole of type 1 is also of type 2.
We can now state our main results. We say � is in general position as in [Chang

and Cogdell 1999] (or see Section 2 for more details). We refer to page 294 for a
definition of depth of exceptional poles of type 1.

Theorem. Let � and � 0 be irreducible generic Casselman–Wallach representations
of GLn.R/ and GLm.R/ in general position.

Case m D n: Any pole of the Rankin–Selberg integrals for � and � 0 is an
exceptional pole of type 2 for a pair of components of �.k/ and � 0.k/, 0� k � n�1.
On the other hand, any exceptional pole of type 1 of depth 0 for a pair of components
of �.k/ and � 0.k/, 0 � k � n� 1, is a pole of the Rankin–Selberg integrals of �
and � 0.

Case m < n: Any pole of the Rankin–Selberg integrals for � and � 0 is an
exceptional pole of type 2 for a pair of components of �.n�k/ and � 0.m�k/, 1 �
k �m. On the other hand, any exceptional pole of type 1 of depth 0 for a pair of
components of �.n�k/ and � 0.m�k/, 1 � k � m, is a pole of the Rankin–Selberg
integrals of � and � 0. �

The first remark is that these are not the exact archimedean analog we are seeking.
We expect that the poles of Rankin–Selberg integrals are exactly exceptional poles
of type 1 for pairs of components of derivatives of � and � 0. A missing point here
is that we haven’t obtained the asymptotic results analogous to those in [Cogdell
and Piatetski-Shapiro � 2015, Section 1.4]; this will be addressed in the future.

We also remark here that the same ideas and techniques of this paper can also be
applied to local exterior square L-integrals in [Jacquet and Shalika 1990]; this will
appear in a forthcoming paper.

The paper is organized as follows. In Section 2 we review some preliminaries.
In Section 3 we define the derivatives and obtain some basic properties. Section 4 is
devoted to the study of exceptional poles. We obtain the main results in Section 5 for
GLn.R/�GLn.R/, and in Section 6 we discuss the case GLn.R/�GLm.R/,m<n.

2. Notations and preliminaries

In this section, we introduce some notations and results needed in this paper.



280 JINGSONG CHAI

Let GnDGLn.R/ be the general linear group of invertible n�n matrices over R,
andKDKnDO.n/ be the orthogonal subgroup ofGn, which is a maximal compact
subgroup of Gn. We use gD gn, kD kn to denote the complexified Lie algebras
of Gn and Kn respectively. Let Nn be the upper triangular unipotent subgroup
of Gn. Fix  as the additive character of R given by  .x/D exp.2�

p
�1x/, and

define a character on Nn, still denoted as  , by

 .u/D  
�X
i

ui;iC1

�
;

where uD .uij / 2Nn. Let � be the differential of  ; then � is a linear form on nn,
the Lie algebra of Nn, vanishing on Œnn; nn�.

A smooth representation .�; V / is called generic if it admits a nontrivial Whittaker
functional. A Whittaker functional ƒ with respect to � on .�; V / is a continuous
linear functional on V satisfying

ƒ.�.X/v/D �.X/ƒ.v/

for all X 2 nn, v 2 V.
If � is generic, let ƒ be the Whittaker functional on � , and for any v 2 V define

a function Wv WGn! C by Wv.g/Dƒ.�.g/v/. Then Wv is called the Whittaker
function on Gn corresponding to v, and the space W.�;  /DfWv W v 2V g is called
the Whittaker model of � .

Throughout the paper, we will work with smooth representations of moderate
growth. Suppose V is a Fréchet space. A smooth representation .�; V / is called
a representation of moderate growth if, for every seminorm � on V, there exists a
positive integer N and a seminorm � such that for every g 2Gn, v 2 V, we have

j�.g/vj� � kgk
N
jvj� ;

where kgk D Tr.g tg/CTr.g�1g�/ and g� D tg�1. If in addition every irreducible
representation of K has finite multiplicity in � , we will say � is admissible.

We have the following important result of Casselman and Wallach.

Theorem 2.1. For any finitely generated admissible .g; K/-module W, there exists
exactly one smooth representation of moderate growth on a Fréchet space V, up
to canonical topological isomorphism, such that the underlying .g; K/-module VK
is isomorphic to W. Moreover, the assignment W ! V is an exact functor from
the category of finitely generated admissible modules to the category of smooth
admissible finitely generated Fréchet representations of moderate growth.

Proof. See, for example, [Wallach 1992, Chapter 12]. �
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Remark. We refer to V in this theorem as the completion or globalization of W,
and we refer to smooth admissible finitely generated Fréchet representations of
moderate growth .�; V / as Casselman–Wallach representations.

For irreducible Casselman–Wallach representations, by results of J. Shalika
[1974], there exists at most one Whittaker functional with respect to a given
nontrivial  , unique up to a scalar.

For a given smooth representation V of Gn, and a nilpotent subalgebra n of g, we
use H0.n; V / to denote the quotient of V by the closure of the subspace spanned by
fX �v WX 2n; v2V g. WhenW is a .g; K/-module, useH0.n; W / to denoteW=nW.
Similarly, if N is a unipotent subgroup of Gn, denote by H0.N; V / the quotient
of V by the closure of the subspace spanned by vectors f�.u/v�v W u 2N; v 2 V g.

If .�; V / is an irreducible Casselman–Wallach representation of Gn, VK denotes
its K-finite vectors. If P is a standard parabolic subgroup of Gn, denote its Levi
decomposition by P DMN , where N is the unipotent subgroup of P and M is
the Levi component. Let p, m, n be their complexified Lie algebras, respectively.
It is a result of B. Casselman that H0.n; VK/ is nonzero. By results of Stafford
and N. Wallach it is an admissible .m; K \M/ module. Moreover, it is finitely
generated over U.m/; here U.m/ denotes the universal enveloping algebra of m.
See, for example, [Borel and Wallach 2000] for more details.

For H0.n; V /, M acts naturally on this quotient, which is also a Fréchet space.
This gives a smooth representation of M , which is also of moderate growth.

Naturally H0.n; VK/ embeds into H0.n; V /, sending vCnVK to vCnV for any
v 2 VK . Moreover, we have the following.

Proposition 2.2. H0.n; V / is a Casselman–Wallach representation of M , and its
K \M -finite vectors are exactly H0.n; VK/; so it is the completion of H0.n; VK/.

Proof. The image of the embedding H0.n; VK/ ! H0.n; V / is a .m; K \M/-
module, and is dense in H0.n; V /. Hence H0.n; VK/ can be identified with the
underlying .m; K \M/-module of H0.n; V /. As H0.n; VK/ is nonzero, finitely
generated and admissible, so is H0.n; V /. Hence H0.n; V / is the completion of
H0.n; VK/. �

Remark. According to an unpublished result of B. Casselman, H�.n; V / is the
completion of H�.n; VK/; see [Bunke and Olbrich 1997, Theorem 1.5].

For any two smooth representations of moderate growth .�; V / and .�;W / of
Gn and Gm, respectively, denote by .� y̋ �; V y̋W / the complete projective tensor
product. It is also a smooth representation of moderate growth on Gn �Gm.

Now if � (or � 0) is an irreducible admissible representation ofGn (orGm), by the
local Langlands correspondence � (or � 0) corresponds to an n- (or m-) dimensional
semisimple representation of the Weil groupWR, denoted as � (or �0). Now consider
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the tensor product �˝ �0, which defines a semisimple representation of WR with
dimensionmn. Then one can associate a local L-factor, denoted by L.s; ��� 0/, to
�˝ �0, which is a product of gamma functions. For more details, see, for example,
[Knapp 1994].

For any Wv 2W.�;  /, define zWv.g/DWv.!ng�/, where

!n D

0B@0 � � � 1: :
:

1 � � � 0

1CA
and g� D tg�1. Then by [Jacquet and Shalika 1981], it is known that f zWv W v 2 V g
is a Whittaker model for Q� with respect to N , the contragredient of � .

To introduce the local Rankin–Selberg integrals, assume .�; V / and .� 0; V 0/ are
generic irreducible Casselman–Wallach representations of Gn and Gm, respectively,
with Whittaker models W.�;  / and W.� 0; N /. Let S.Rn/ be the space of Schwartz
functions on Rn.

If mD n, set

I.s;W;W 0; ˆ/D

Z
NnnGn

W.g/W 0.g/ˆ.�ng/jdetgjs dg

for W 2W.�;  /, W 0 2W.� 0; N /, ˆ 2 S.Rn/, and �n D .0; 0; : : : ; 1/ 2 Rn.
If n > m, set

I.s;W;W 0/D

Z
NmnGm

W

�
g 0

0 In�m

�
W 0.g/jdetgjs�

n�m
2 dg:

In general, for 0� j � n�m� 1, set

Ij .s;W;W
0/

D

Z
M.m�j;R/

Z
NmnGm

W

0@g 0 0

X Ij 0

0 0 In�m�j

1AW 0.g/jdetgjs�
n�m

2 dg dX:

The following theorem is due to Jacquet and Shalika; see, for example, [Jacquet
2009].

Theorem 2.3. (1) These integrals converge for Re.s/� 0.

(2) Each integral has a meromorphic continuation to all s 2 C, which is a holo-
morphic multiple of L.s; � �� 0/.

(3) The following functional equations are satisfied:

Ij .1� s; zW ; zW
0/D !0.�1/n�1.s; � �� 0;  /In�m�1�j .s;W;W

0/

and
I.1� s; zW ; zW 0; b̂/D !0.�1/n�1I.s;W;W 0; ˆ/;
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where b̂ is the Fourier transform of ˆ, given by

b̂.X/D Z ˆ.Y / .�Tr. tXY // dY: �

Now we recall some results from [Cogdell and Piatetski-Shapiro 2004] which
are essential in Section 4, which studies exceptional poles.

The first result is an extension of the Dixmier–Malliavin theorem. Let .�; V / be
a continuous representation of Gn on a Fréchet space V. Still use � to denote the
smooth representation of Gn induced from � on the smooth vectors V1 of V.

Proposition 2.4 [Cogdell and Piatetski-Shapiro 2004, Proposition 1.1]. Let vk!
v0 be a convergent sequence in V1. Then there exists a finite set of functions
fj 2C1c .Gn/ and a collection of vectors vk;j 2 V1 such that vk D

P
j �.fj /vk;j

for all k � 0, and such that vk;j ! v0;j as k!1 for each j . �

The second result is about the continuity of archimedean Rankin–Selberg in-
tegrals. Let .�; V / and .� 0; V 0/ be generic irreducible Casselman–Wallach rep-
resentations of Gn and Gm, respectively. For W 2W.�;  /, W 0 2W.� 0;  �1/,
ˆ 2 S.Rn/, we have:

Theorem 2.5. The linear functionals

ƒs D
I.s;W;W 0/

L.� �� 0/
; n > m;

ƒs D
I.s;W;W 0; ˆ/

L.� �� 0/
; nDm;

are uniformly continuous in s on compact sets with respect to the topologies involved.

Proof. See [Cogdell and Piatetski-Shapiro 2004, Theorem 1.1]. �

Remark. As noted in [Cogdell and Piatetski-Shapiro 2004], here we claim the
result is true for all s.

To end this section, let’s explain irreducible representations in general position,
following [Chang and Cogdell 1999]. Let P D MN be a parabolic subgroup
of Gn, with M DGp1 �G

q
2 and pC 2q D n. Write C2 for the cyclic group f˙1g,

G1 ' R>0 �C2 and G2 ' R>0 � SL˙2 , where SL˙2 stands for the subgroup of G2
consisting of matrices with determinant ˙1. So M D .R>0/pCq �C

p
2 � .SL˙2 /

q .
Let Tm be the discrete series of SL˙2 with parameter m 2 Z>0. We will use

notation .s1; : : : ; sp/ to denote the character on .R>0/p sending .x1; : : : ; xp/ toQp
iD1 x

si
i . And let � be a character on C2. Then form the tensor product

� D .s1; : : : ; sp; 2t1; : : : ; 2tq/˝ .�1˝ � � �˝ �p˝Tm1
˝ � � �˝Tmq

/:
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This is a representation on M , and then we get the normalized parabolic induced
representation Ind.�/. We say � D Ind.�/ is a representation in general position if

si ; tj ; si � sj … Z for i ¤ j; ti � tj …
1
2

Z for i ¤ j; si � tj …
1
2

Z:

It is known that these induced representations are irreducible and generic, see
[Chang and Cogdell 1999] for more information.

3. Archimedean derivatives

In this section we introduce archimedean derivatives. First we need more notation.
For any 1 � l � n, let Un�lC1 be the unipotent radical of the standard parabolic
subgroup associated to the partition .n� l; 1; : : : ; 1/, that is, the subgroup of Nn
consisting of matrices having the form�

In�l x

0 u

�
;

where x is a .n� l/� l matrix and u 2 Nl is an upper triangular matrix with 1
on the diagonal. Note that U1 D Nn. Denote by un�lC1 the corresponding Lie
algebras. Define a linear form �n�lC1 on each un�lC1 by

�n�lC1.X/D �.Xn�lC1;n�lC2C � � �CXn�1;n/:

Now let .�; V / be a Casselman–Wallach representation of Gn, VK its underlying
.g; K/-module. For 1 � l � n, let Vl be the closure of the subspace spanned by
fX � v��n�lC1.X/v W v 2 V;X 2 un�lC1g.

Definition. For each integer 0� l � n, we define the l-th derivative of � , denoted
by .�.l/; V .l//, as follows:

(1) If l D 0, put .�.0/; V .0//D .�; V /.

(2) If 1� l � n, put V .l/ D V=Vl , and define the action �.l/ by

�.l/.g/ � .vCVl/D jdetgj�l=2�.g/vCVl for any g 2Gn�l :

To continue, we need more notation. Use Pn�l;l to denote the standard parabolic
subgroup of Gn associated to the partition .n� l; l/ of n. It has Levi decomposition
Pn�l;l DMn�l;lNn�l;l , with Levi component Mn�l;l isomorphic to Gn�l �Gl
and unipotent part Nn�l;l . Let pn�l;l , mn�l;l and nn�l;l be their complexified Lie
algebras, respectively.

Note that we have the decomposition�
In�l x

0 v

�
D

�
In�l 0

0 v

��
In�l x

0 Il

�
;
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so we can write Un�lC1D Vn�lC1Nn�l;l , where Vn�lC1 is the standard unipotent
subgroup Nl of Gl embedded in Gn in the right lower corner.

Let vn�lC1 be the complexified Lie algebra of Vn�lC1. Note that the character
�n�lC1 is trivial on nn�l;l . Let Yl be the closure of the space spanned by

fX � Nv��n�lC1.X/ Nv WX 2 vn�lC1; Nv 2H0.nn�l;l ; V /g:

Since V .l/ D V=Vl and

Vl D fX � v��n�lC1.X/v W v 2 V;X 2 un�lC1g;

note that un�lC1 D vn�lC1C nn�l;l . Then

H0.nn�l;l ;V /=Yl

D .V=nn�l;lV /
ı�
fX � v��n�lC1.X/v WX2un�lC1;v2V g=nn�l;lV

�
D V=Vl :

Thus, we have verified the following proposition.

Proposition 3.1. V .l/ DH0.nn�l;l ; V /=Yl : �

The following result states that the derivatives �.l/ belong to a nice class of
representations.

Proposition 3.2. For each l , �.l/ is a Casselman–Wallach representation of Gn�l .

Proof. This follows from the fact that the n-homology H0.n; V / is admissible. �

Now assume .�; V / is an irreducible smooth admissible generic representation
of moderate growth on Gn in general position as in Section 2. Denote by VK its K-
finite vectors, which is an irreducible admissible .g; K/-module. For the rest of this
section, unless otherwise stated, we will drop the subscript for the standard upper
triangular parabolic subgroup P DMN associated with the partition .n� k; k/
of n, to simplify notation.

By [Chang and Cogdell 1999, Theorem 4.2] the n-homology VK=nVK is nonzero
and is a semisimple .m; K \M/-module. By Proposition 2.2, V=nV is the smooth
completion of VK=nVK . It follows that V=nV is also semisimple, so we can write

V=nV D

rM
iD1

Ai ;

where each Ai is an irreducible smooth admissible representation of moderate
growth on M and hence, by results of D. Gourevitch and A. Kemarsky [2013],
isomorphic to �i y̋ �i , where each �i and �i are irreducible smooth representations
of moderate growth on Gn�k and Gk , respectively. Note that it is possible to have
Ai Š Aj for i ¤ j . We use �i;K and �i;K to denote the representations on the
underlying K-finite modules. Let pi be the natural projection from VK=nVK onto
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�i;K˝�i;K , and also be the projection from V=nV onto �i y̋ �i . We will also use p
to denote the projections V ! V=nV .

Lemma 3.3. For each i , �i and �i are generic representations.

Proof. This follows from [Chang and Cogdell 1999, Theorem 4.2]. See Remarks 4.3
there. �

Denote by W.�i ;  / the Whittaker model for �i .

Proposition 3.4. For every Wi 2 W.�i ;  / and every ˆ 2 S.Rn�k/, there is a
Whittaker function Wv 2W.�;  / such that

Wv

�
g 0

0 Ik

�
DWi .g/ˆ.�n�kg/:

Proof. The projection pi from VK=nVK onto �i;K ˝ �i;K induces an injective
intertwining map VK! Ind.jdetj�k=2�i;K˝jdetj.n�k/=2�i;K/. This extends to an
injective map

V ! Ind.jdetj�k=2�i y̋ jdetj.n�k/=2�i /:

Denote by Q its quotient; we have a short exact sequence of smooth representa-
tions of moderate growth

(1) 0 �! V �! Ind.jdetj�k=2�i y̋ jdetj.n�k/=2�i / �!Q �! 0:

The underlying .g; K/-modules also form a short exact sequence

(2) 0 �! VK �! Ind.jdetj�k=2�i;K ˝jdetj.n�k/=2�i;K/ �!QK �! 0:

By taking the dual (contragredient representation) of the short exact sequence (2),
we have

0 �!Q�K �!
�
Ind.jdetj�k=2�i;K ˝jdetj.n�k/=2�i;K/

��
�! V �K �! 0:

By [Wallach 1988, Lemma 4.5.2], we have

0 �!Q�K �! Ind
�
.jdetj�k=2�i;K/�˝ .jdetj.n�k/=2�i;K/�

�
�! V �K �! 0;

which induces a short exact sequence for their smooth completions:

(3) 0 �!Q� �! Ind
�
.jdetj�k=2�i /� y̋ .jdetj.n�k/=2�i /�

�
�! V � �! 0:

Now for any representation .�; U /, define representation .�s; U / by �s.g/ �uD
�. tg�1/ �u for any g 2Gn, u2U ; then �s is isomorphic to �� when � is irreducible,
by [Aizenbud et al. 2008, Theorem 2.4.2]. Note that we are working in the same
space, but simply changing the action. So if we have a short exact sequence

0 �! .�1; U1/ �! .�2; U2/ �! .�3; U3/ �! 0;
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applying the operation ‘s’, we then have a new exact sequence

0 �! .�s1 ; U1/ �! .�s2 ; U2/ �! .�s3 ; U3/ �! 0:

Now apply operation ‘s’ to the sequence (3); then we have

(4) 0�! .Q�/s�!
�
Ind..jdetj�k=2�i /� y̋ .jdetj.n�k/=2�i /�/

�s
�! .V �/s�!0:

It follows that the sequence (4) becomes

0 �! .Q�/s �! IndGn

P 0

�
.jdetj�k=2�i /�s y̋ .jdetj.n�k/=2�i /�s

�
�! .V �/s �! 0:

Since � , �i and �i are irreducible, the above is

0 �! .Q�/s �! IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i / �! V �! 0:

Let ƒ be the unique (up to a constant) continuous Whittaker functional on V.
Composed with the projection

IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i / �! V;

we get a nontrivial continuous Whittaker functional ƒ0 on

IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i /:

By the last conclusion of [Wallach 1992, Theorem 15.4.1], there is a linear
bijection between the space of Whittaker functionals on

IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i /

and the space of Whittaker functionals on

jdetj�k=2�i y̋ jdetj.n�k/=2�i :

By Lemma 3.3, the latter space has dimension 1, thus there is a unique (up to a
constant) continuous Whittaker functional on IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i /,
and it must be ƒ0. Then we can conclude that the space of Whittaker functions
W.�; V / for � and that for IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i /, are the same.
So in order to prove the existence of Wv in W.�; V / as in the proposition, it

suffices to find some Whittaker function for IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i /
with the required property. Now this follows from [Jacquet 2009, Proposition 14.1],
which finishes the proof. �

Corollary 3.5. For every Whittaker function Wi in any irreducible component
of �.k/, and any Schwartz function ˆ on Rn�k , we can always find some Wv 2
W.�;  / such that

Wv

�
g 0

0 Ik

�
DWi .g/ˆ.�n�kg/jdetgjk=2:
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Proof. This follows from the fact that �.k/ is isomorphic to jdetj�k=2
L
i �i . �

4. Exceptional poles

In this section, we will introduce two types of exceptional poles and discuss their
basic properties. Set

Smn D ff 2 S W f vanishes to order at least m at zerogI

then we have a filtration of closed subspaces for the Schwartz function space
Sn D Sn.R

n/:
Sn D S0n � S1n � � � � � Smn � � � � :

Smn =SmC1n is isomorphic to the space of homogeneous polynomials on Rn of
degreem, denoted byEmn . The groupGn acts on Sn from the right, which preserves
this filtration, and therefore induces an action on Emn .

Let � and � 0 be irreducible generic Casselman–Wallach representations on Gn.
The Rankin–Selberg integrals for � and � 0, are given by

I.s;W;W 0; ˆ/D

Z
NnnGn

W.g/W 0.g/ˆ.�ng/jdetgjs dg

for W 2W.�;  /, W 0 2W.� 0;  �1/,ˆ 2S, where �n D .0; 0; : : : ; 1/ 2Rn, s 2C.
By Theorem 2.3, these integrals converge when s is in some right half-plane, and
have a meromorphic continuation to the whole complex plane.

For any integer 1� k� n, for v 2� , v0 2� 0 andˆ2Sk , we define the following
family of integrals:

Ik.s;Wv;Wv0 ;ˆ/D

Z
NknGk

Wv

�
g 0

0 In�k

�
Wv0

�
g 0

0 In�k

�
ˆ.�kg/jdetgjs�nCk dg:

Lemma 4.1. The integrals Ik belong to the space of Rankin–Selberg integrals for
� and � 0.

Proof. This follows from [Jacquet 2009, Proposition 6.1 and Lemma 14.1]. �
Thus it follows that Ik converges when Re.s/ is large and has a meromorphic

continuation to the whole complex plane. Suppose s0 is a pole of order d for the
integral Ik.s;W;W 0; ˆ/, with Laurent expansion

Ik.s;W;W
0; ˆ/D

Bs0;k.W;W
0; ˆ/

.s� s0/d
C � � � ;

where Bs0;k.W;W
0; ˆ/ is a trilinear form on V �V 0�Sk satisfying the following

invariance property:

Bs0;k.g �W;g �W
0; g �ˆ/D jdetgj�s0Cn�kBs0;k.W;W

0; ˆ/
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for any g 2Gk , W 2W.�;  /, W 0 2W.� 0;  �1/, ˆ 2 Sk .

Proposition 4.2. The trilinear form Bs0;k is continuous with respect to the topolo-
gies involved.

Proof. When k D n, the continuity of Bs0;n follows from Theorem 2.5. When
k < n, we will use the constructions in the proof of [Jacquet 2009, Lemma 14.1] to
prove the continuity.

Now suppose vl ! v, v0
l
! v0 and ˆl !ˆ; then write

Ik.s;Wvl
; Wv0

l
; ˆl/D

Bs0;k.vl ; v
0
l
; ˆl/

.s� s0/d
C � � �

and

Ik.s;Wv; Wv0 ; ˆ/D
Bs0;k.v; v

0; ˆ/

.s� s0/d
C � � � :

Then we want to show that Bs0;k.vl ; v
0
l
; ˆl/! Bs0;k.v; v

0; ˆ/ as l!1.
Let ‰l and ‰ be Schwartz functions on Rk whose Fourier transforms are given

by b‰l D ˆl , b‰ D ˆ. Since Fourier transform is a topological isomorphism on
Schwartz function space, it follows that ‰l !‰. Now we set

ul D

Z
�

0@Ik x 0

0 1 0

0 0 In�k�1

1A vl‰l.x/ dx
and

uD

Z
�

0@Ik x 0

0 1 0

0 0 In�k�1

1A v‰.x/ dx:
Claim 1. If f is a Schwartz function on Rk , the map .f; v/ 7! �.f /v is a continu-
ous map from V �Sk to V, where

�.f /v D

Z
Rk

f .x/�.x/v dx:

Proof of Claim 1. Suppose fl ! f in Sk , vl ! v in V. We want to show that
�.fl/vl ! �.f /v.

Because .�; V / is of moderate growth, for any seminorm j � j1 on V there exists
a seminorm j � j2 on V, a positive integer N0, and a positive number C , such that
for any v 2 V and x 2 Rk , we have j�.x/vj1 � C.1C kxk2/N0 jvj2. Here we
identify x with 0@Ik x 0

0 1 0

0 0 In�k�1

1A 2Gn;
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and kxk denotes the usual Euclidean norm of x. Then we have

j�.fl/vl��.f /vj1 � j�.fl/vl ��.f /vl j1Cj�.f /vl ��.f /vj1

�

Z
jfl.x/�f .x/k�.x/vl j1dxC

Z
jf .x/k�.x/.vl �v/j1dx

� C jvl j2

Z
jfl.x/�f .x/j.1Ckxk

2/N0 dx

CC jvl �vj2

Z
jf .x/j.1Ckxk2/N0 dx:

Since vl ! v, jvl j2 is bounded for any l , and jvl �vj2! 0 as l!1. Because
fl ! f in Sk ,Z

jfl.x/�f .x/j.1Ckxk
2/N0 dx! 0 as l!1:

Hence �.fl/vl ! �.f /v as l!1, which proves the claim. �

So, by Claim 1, ul ! u. And by the first conclusion of [Jacquet 2009, Proposi-
tion 6.1], we have

Wul

�
g 0

0 In�k

�
DWvl

�
g 0

0 In�k

�
ˆl.�kg/

and

Wu

�
g 0

0 In�k

�
DWv

�
g 0

0 In�k

�
ˆ.�kg/:

Thus

Ik.s;Wvl
; Wv0

l
; ˆl/D

Z
Wul

�
g 0

0 In�k

�
Wv0

l

�
g 0

0 In�k

�
jdetgjs�nCk dg

and

Ik.s;Wv; Wv0 ; ˆ/D

Z
Wu

�
g 0

0 In�k

�
Wv0

�
g 0

0 In�k

�
jdetgjs�nCk dg:

We will view wl D ul˝v
0
l

as an element in � D� y̋� 0; consequently Wwl
.g/D

Wul
.g/Wv0

l
.g/ 2W.� y̋� 0;  ˝ �1/, and we have

(5) Ik.s;Wvl
; Wv0

l
; ˆl/D

Z
Wwl

��
g 0

0 In�k

�
;

�
g 0

0 In�k

��
jdetgjs�nCk dg:
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Similarly, write w D u˝ v02 � D � y̋� 0; then we have wl ! w and

(6) Ik.s;Wv; Wv0 ; ˆ/D

Z
Ww

��
g 0

0 In�k

�
;

�
g 0

0 In�k

��
jdetgjs�nCk dg:

Now by Proposition 2.41 applied to the group Rk�R�, there exists a finite set of
functions fj .x; h/ 2 C1c .R

k �R�/ and vectors wl;j 2 � y̋� 0 with l � 0 such that

wl D
X
j

�.fj /wl;j for all l � 1; w D
X
j

�.fj /w0;j ;

and wl;j ! w0;j for each j .
More precisely, we can write

wl D
X
j

Z
�

0@0@a�1.h/ 0 0

x h 0

0 0 In�k�1

1A;
0@a�1.h/ 0 0

x h 0

0 0 In�k�1

1A1Awl;jfj .x;h/dxd�h
and

wD
X
j

Z
�

0@0@a�1.h/ 0 0

x h 0

0 0 In�k�1

1A;
0@a�1.h/ 0 0

x h 0

0 0 In�k�1

1A1Aw0;jfj .x;h/dxd�h;
where a.h/D diag.h; 1; : : : ; 1/.

Then the integrals (5) and (6) now become

Ik.s;Wvl
; Wv0

l
; ˆl/

D

X
j

Z
Wwl;j

0@0@ga�1.h/ 0 0

x h 0

0 0 In�k�1

1A ;
0@ga�1.h/ 0 0

x h 0

0 0 In�k�1

1A1A
�fj .x; h/jdetgjs�nCk dg dx d�h;

and

Ik.s;Wv; Wv0 ; ˆ/

D

X
j

Z
Ww0;j

0@0@ga�1.h/ 0 0

x h 0

0 0 In�k�1

1A ;
0@ga�1.h/ 0 0

x h 0

0 0 In�k�1

1A1A
�fj .x; h/jdetgjs�nCk dg dx d�h:

1There is a change of topology for the convergence in Proposition 2.4 in general, but in our special
case considered here, the topologies involved are the same.
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Make the change of variable ga�1.h/! g; we have the integrals

(7) Ik.s;Wvl
; Wv0

l
; ˆl/

D

X
j

Z
Wwl;j

0@0@g 0 0

x h 0

0 0 In�k�1

1A ;
0@g 0 0

x h 0

0 0 In�k�1

1A1A
�fj .x; h/jdetgjs�nCkjhjsC1�nCk dg dx d�h

and

(8) Ik.s;Wv; Wv0 ; ˆ/

D

X
j

Z
Ww0;j

0@0@g 0 0

x h 0

0 0 In�k�1

1A ;
0@g 0 0

x h 0

0 0 In�k�1

1A1A
�fj .x; h/jdetgjs�nCkjhjsC1�nCk dg dx d�h:

Now we will view fj .x; h/ as Schwartz functions on RkC1 which vanish on
Rk � f0g. Then let

el;j D

Z
�

0@0@IkC1 y 0

0 1 0

0 0 In�k�2

1A ;
0@IkC1 y 0

0 1 0

0 0 In�k�2

1A1Awl;jfj .y/ dy
and

e0;j D

Z
�

0@0@IkC1 y 0

0 1 0

0 0 In�k�2

1A ;
0@IkC1 y 0

0 1 0

0 0 In�k�2

1A1Aw0;jfj .y/ dy;
where y D .x; h/ 2 RkC1.

Thus it follows that, el;j ! e0;j for each j , and we have

(9) Ik.s;Wvl
; Wv0

l
; ˆl/

D

X
j

Z
Wel;j

0@0@g 0 0

x h 0

0 0 In�k�1

1A ;
0@g 0 0

x h 0

0 0 In�k�1

1A1A
� jdetgjs�nCkjhjsC1�nCk dg dx d�h

and

(10) Ik.s;Wv; Wv0 ; ˆ/

D

X
j

Z
We0;j

0@0@g 0 0

x h 0

0 0 In�k�1

1A ;
0@g 0 0

x h 0

0 0 In�k�1

1A1A
� jdetgjs�nCkjhjsC1�nCk dg dx d�h:
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As in [Jacquet 2009, Lemma 14.1],

f !

Z
f

0@g 0 0

x h 0

0 0 In�k�1

1A dxjdetgj�1 d�h

gives an invariant measure on NkC1nGkC1. Thus, we can rewrite these integrals as

(11) Ik.s;Wvl
; Wv0

l
; ˆl/

D

X
j

Z
NkC1nGkC1

Wel;j

��
g 0

0 In�k�1

�
;

�
g 0

0 In�k�1

��
� jdetgjsC1�nCk dg

and

(12) Ik.s;Wv; Wv0 ; ˆ/

D

X
j

Z
NkC1nGkC1

We0;j

��
g 0

0 In�k�1

�
;

�
g 0

0 In�k�1

��
� jdetgjsC1�nCk dg;

which are the same type integrals as (5) and (6) belonging to IkC1.
So by induction, we may assume k D n� 1 in the integrals (5) and (6); then

integrals (7) and (8) now become

(13) Ik.s;Wvl
; Wv0

l
; ˆl/

D

X
j

Z
Wwl;j

��
g 0

x h

�
;

�
g 0

x h

��
fj .x; h/jdetgjs�1jhjs dg dx d�h

and

(14) Ik.s;Wv; Wv0 ; ˆ/

D

X
j

Z
Ww0;j

��
g 0

x h

�
;

�
g 0

x h

��
fj .x; h/jdetgjs�1jhjs dg dx d�h:

Write

g0 D

�
g 0

x h

�
2Gn;

and view fj .x; h/ as Schwartz functions on Rn which vanish on Rn�1 � f0g; then
the above integrals now become

Ik.s;Wvl
;Wv0

l
;ˆl/D

X
j

Z
Wwl;j

.g0;g0/fj .�ng
0/jdetg0jsjdetg0j�1dg0dxd�h
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and

Ik.s;Wv;Wv0 ;ˆ/D
X
j

Z
Ww0;j

.g0;g0/fj .�ng
0/jdetg0jsjdetg0j�1dg0dxd�h:

Again, as in [Jacquet 2009, Lemma 14.1],

f 7!

Z
f .g0/ dxjdetg0j�1 d�h

gives an invariant measure on Nn nGn. We can rewrite the above integrals as

(15) Ik.s;Wvl
; Wv0

l
; ˆl/D

X
j

Z
Gn

Wwl;j
.g0; g0/fj .�ng

0/jdetg0js dg0

and

(16) Ik.s;Wv; Wv0 ; ˆ/D
X
j

Z
Gn

Ww0;j
.g0; g0/fj .�ng

0/jdetg0js dg0:

It follows that

Bs0;k.vl ; v
0
l ; ˆl/D

X
j

Bs0;n.wl;j ; fj /;

and similarly
Bs0;k.v; v

0; ˆ/D
X
j

Bs0;n.w0;j ; fj /:

Since wl;j ! w0;j for each j , and the form Bs0;n is continuous, we conclude that
Bs0;k is continuous. This completes the proof. �

Definition. We say a pole s0 is an exceptional pole of type 1, with level m and
depth n � k, if the corresponding Bs0;k is zero on SmC1

k
, but not identically

zero on Sm
k

. In this case, we also say s0 is an exceptional pole for the integrals
Ik.s;Wv; Wv0 ; ˆ/.

Remark. If s0 is an exceptional pole of order m, then Bs0 defines a continuous
linear form on V �V 0 �Em

k
such that, for any g 2Gk ,

Bs0;k.g �W;g �W
0; g �ˆ/D jdetgj�s0Cn�kBs0;k.W;W

0; ˆ/:

Definition. We say a complex number s0 is an exceptional pole of type 2, with
level m, for � and � 0, if there exists a continuous trilinear form

l W V �V 0 �Emn ! C

such that for g 2Gn,

l.g �W;g �W 0; g �ˆn/D jdetgj�s0l.W;W 0; ˆn/:
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Remark. It follows that an exceptional pole of type 1 with level m and depth 0 is
also of type 2 with level m.

Next we want to relate the exceptional poles for the integrals Ik to the exceptional
poles of type 2 for the components of �.n�k/ and � 0.n�k/.

Lemma 4.3. If X D .Xij / 2 nk;n�k , then there exists a linear form PX on Rk such
that for any v 2 V we have

W�.X/�v

�
g 0

0 In�k

�
D PX .�kg/Wv

�
g 0

0 In�k

�
:

Proof. First, it is easy to see that

W�.X/�v

�
g 0

0 In�k

�
D
d

dt

ˇ̌̌
tD0

Wv

��
g 0

0 In�k

��
Ik tX

0 In�k

��

D 2�
p
�1

kX
jD1

gkjXj;kC1Wv

�
g 0

0 In�k

�
:

So define a linear form PX .a1; : : : ; ak/D 2�
p
�1

Pk
jD1Xj;kC1aj on Rk ; then

PX .�kg/D 2�
p
�1

Pk
jD1 gkjXj;kC1, which proves the lemma. �

Proposition 4.4. Let s0 be an exceptional pole of level m for the integrals Ik;
then the continuous trilinear form Bs0;k defines a continuous trilinear form on
V=nV �V 0=nV 0 �Em

k
.

Proof. It suffices to show that the form Bs0;k vanishes on nV and nV 0 when
restricted to Sm

k
.

For any W�.X/�v, X 2 n, any Wv0 and any ˆ 2 Sm
k

, by Lemma 4.3 we have

W�.X/�v

�
g 0

0 In�k

�
D PX .�kg/Wv

�
g 0

0 In�k

�
for some linear form PX on Rk .

It follows that

Ik.s;W�.X/�v; Wv0 ; ˆ/

D

Z
W�.X/�v

�
g 0

0 In�k

�
Wv0

�
g 0

0 In�k

�
ˆ.�kg/jdetgjs�kCn dg

D

Z
NknGk

Wv

�
g 0

0 In�k

�
Wv0

�
g 0

0 In�k

�
‰.�kg/jdetgjs�kCn dg;

where ‰k.�kg/D PX .�kg/ˆ.�kg/.
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Since ˆ 2Sm
k

, thus ‰DPXˆ 2SmC1
k

. Note that s0 is an exceptional pole with
level m, so

Bs0;k.W�.X/�v; Wv0 ; ˆ/D Bs0;k.W�v; Wv0 ; ‰k/D 0:

Similarly, Bs0;k vanishes when v0 2 nV 0. Thus the proposition follows. �

Theorem 4.5. If s0 is an exceptional pole of type 1 with level m and depth n� k,
then s0 is an exceptional pole of type 2 with level m for some components of �.n�k/

and � 0.n�k/.

Proof. Note that we have the decompositions

V=nV D
M

i
.�i ; Ai / y̋ .�i ; Bi /

and
V 0=nV 0 D

M
i
.�0i ; A

0
i / y̋ .�

0
i ; B
0
i /:

By Proposition 4.4, if s0 is an exceptional pole of level m for Ik , Bs0;k defines a
nontrivial continuous trilinear form on V=nV � V 0=nV 0 �Em

k
. Thus it has to be

nontrivial on some components

Bs0;k W .�i ; Ai / y̋ .�i ; Bi /� .�
0
j ; A

0
j / y̋ .�

0
j ; B

0
j /�E

m
k ! C;

which implies it is also nontrivial on the subspace Ai ˝Bi �A0i ˝B
0
i �E

m
k

.
Now fix v2 2Bi , v02 2B

0
i , so that Bs0;k is nontrivial on Ai˝v2�A0i˝v

0
2�E

m
k

.
Then the restriction ofBs0;k to this subspace induces a nontrivial continuous trilinear
form, still denoted as Bs0;k , on Ai �A0i �E

m
k

, with

Bs0;k.g � v1; g � v
0
1; g:ˆ/D jdetgj�s0Cn�kBs0;k.v1; v

0
1; ˆ/

for any v1 2 Ai , v01 2 A
0
i , ˆi 2 E

m
k

and g 2 Gk . Note that jdetj.n�k/=2�i is a
component for �.n�k/, thus we have proved the theorem. �

5. Rankin–Selberg integrals: Gn � Gn

Suppose a pole s0 is not exceptional for the integrals In, and that we have the
Laurent expansion

In.s;W;W
0; ˆ/D

Bs0.W;W
0; ˆ/

.s� s0/d
C � � � ;

and Bs0 is continuous on V �V 0 �Emn with the invariance property

Bs0;n.g �W;g �W
0; g �ˆ/D jdetgj�s0Bs0;n.W;W

0; ˆ/:

Since s0 is not exceptional, for any integer m, we can find some ˆ 2 Sm such
that the form Bs0;n.W;W

0; ˆ/ is nonzero for some choices of W and W 0. Because
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of the continuity of Bs0;n, we may further assume W and W 0 are both Kn-finite.
By Iwasawa decomposition, we have

In.s;W;W
0; ˆ/

D

Z
Kn

Z
NnnPn

W.pk/W 0.pk/jdetpjs�1
Z

R�
!.a/!0.a/jajnsˆ.�nak/ d

�a dp dk:

Take fWig to be some base vectors in the K-span subspace of W, and we write
W.gk/ D

P
i fi .k/Wi .g/, where fi are continuous functions on K. Similarly,

writeW 0.gk/D
P
i f
0
i .k/W

0
i .g/, where fW 0j g are some base vectors of theK-span

subspace ofW 0, and f 0i are continuous functions onK. Now I.s;W;W 0; ˆ/ equalsX
i;j

Z
NnnPn

Wi .p/Wj .p/jdetpjs�1
Z

R�
!.a/!0.a/jajns

�

Z
K

fi .k/f
0
j .k/ˆ.�nak/ dk d

�a dp:

Lemma 5.1. For any continuous function f .k/ on K, the function

‰.a/D

Z
K

f .k/ˆ.�nak/ dk

belongs to Sm.R/ if ˆ is in Sm.Rn/.

Proof. We will only check that ‰.a/ vanishes at least to order m around 0; other
verifications are routine and will be omitted. Since ˆ vanishes at 0 at least to
order m, by [Trèves 1967, Theorem 38.1] there exists a homogeneous polynomial
P.x1; : : : ; xn/ of degree m such that the Taylor expansion of ˆ at 0 has the form

ˆ.x1; : : : ; xn/D P.x1; : : : ; xn/C � � � :

Then

‰.a/D

Z
K

f .k/ˆ.�nak/dk D

Z
K

f .k/P.�nak/ dkC � � �

D am
Z
K

f .k/P.�nk/ dkC � � � :

This shows that ‰.a/ vanishes at least to order m at 0, which finishes the proof. �

Lemma 5.2. Ifˆ2Sm.R/ for somem>0, then as a function of s 2C, the functionZ 1
0

asˆ.a/ d�a

is holomorphic in the half-plane Re.s/ > �m.

Proof. Since ˆ is a Schwartz function, the integralZ 1
�

asˆ.a/ d�a
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is holomorphic in s, when � is away from 0.
In a neighborhood of 0, when Re.s/ >�m and ˆ2Sm.R/, the function asˆ.a/

is continuous. Thus Z �

0

asˆ.a/ d�a

is also holomorphic in s. �

By Lemma 5.1, as a function of a, the integralZ
K

fi .k/f
0
j .k/ˆ.�ak/ dk

belongs to Smn .R/, and by Lemma 5.2, when we choosem large enough, the functionZ
R�
!.a/!0.a/jajns

Z
K

fi .k/f
0
j .k/ˆ.�ak/ d

�a dk

is holomorphic in the half-plane containing s0. Hence the pole s0 has to occur in
the sum X

i;j

Z
NnnPn

Wi .p/W
0
j .p/jdetpjs�1 dp;

and we may assume one of the termsZ
NnnPn

Wi .p/W
0
j .p/jdetpjs�1 dp

contains the pole s0. But this integral descends to the integralZ
Nn�1nGn�1

Wi

�
g 0

0 1

�
W 0j

�
g 0

0 1

�
jdetgjs�1 dg

on Nn�1 nGn�1.
Each Wv

�
g
0
0
1

�
can be written as a finite sumX

i

Wi

�
g 0

0 1

�
ˆi .�n�1g/

for some functions Wi 2W.�;  / and Schwartz functions ˆi on Rn�1. Thus the
above integral becomesX

i

Z
Nn�1nGn�1

Wi

�
g 0

0 1

�
W 0

�
g 0

0 1

�
ˆi .�n�1g/jdetgjs�1 dg;

which are integrals belonging to In�1. So we have the following corollary.

Proposition 5.3. If a pole s0 of In of order d is not exceptional of type 1, then it
occurs as a pole of order d for the integrals In�1.
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In general, we have the following reduction result.

Proposition 5.4. If a pole s0 of Ik is not an exceptional pole for the integrals Ik ,
then it is a pole for Ik�1.

Proof. By [Jacquet and Shalika 1990, Proposition 2], there exists a finite set of func-
tions f�g on .R�/k , which have the form �.z1; : : : ; zk/D

Qk
jD1 �j .zj /.log jzj j/nj ,

where �j is a character on R�, and Schwartz functions �� on Rk �O.n/, such that

Wv.˛x/D
X
�

�.a1; : : : ; ak/��.a1; : : : ; ak; x/;

where x 2O.n/ and

˛ D diag.a1 � � � ak; a2 � � � ak; : : : ; ak�1ak; ak/;

which will be viewed as

diag.a1 � � � ak; a2 � � � ak; : : : ; ak�1ak; ak; 1; : : : ; 1/ 2Gn:

Since �� is a Schwartz function, for each x, it has a Taylor expansion around 0,

��.a1; : : : ; ak; x/D f .x/P�.a1; : : : ; ak/C � � � ;

where f .x/ is some continuous function of x, and P� denotes the sum of leading
coefficients in the Taylor expansion, which is a polynomial in a1; : : : ; ak .

It follows that, around 0, we can write

(17) Wv.˛x/D
X
�

ff .x/�.a1; : : : ; ak/P�.a1; : : : ; ak/C � � � g:

Similarly, around 0, we have

(18) Wv0.˛x/D
X
�0

ff 0.x/� 0.a1; : : : ; ak/P�0.a1; : : : ; ak/C � � � g:

By Iwasawa decomposition, we have

Ik D

Z
Wv

�
pax 0

0 In�k

�
Wv0

�
pax 0

0 In�k

�
�ˆ.�kax/jdetpjs�nCk�1jajk.s�nCk/ dp dx d�a;

with p 2Nk nPk , where Pk is the mirabolic subgroup in Gk , x 2O.k/, a 2 R�.
Note that Nk nPk DNk�1 nGk�1, so we can write pax D nk�1˛yx for some

nk�1 2Nk�1,

˛ D diag.a1 � � � ak�1a; : : : ; ak�1a; a; 1; : : : ; 1/;

and y 2O.k� 1/.
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Thus by (17), around 0 we have

Wv.pax/D  .nk/
X
�

ff .yx/�.a1; : : : ; ak�1; a/P�.a1; : : : ; ak�1; a/C � � � g

and

Wv0.pax/D 
�1.nk/

X
�0

ff 0.yx/� 0.a1; : : : ; ak�1; a/P�0.a1; : : : ; ak�1; a/C� � � g:

Note that the poles of Ik are caused by the integration around 0, and in a
neighborhood of 0, the integral isX
�;�0

Z
f .yx/f 0.yx/ dy dx

Z
.�P��

0P�0/.a1; : : : ; ak�1; a/

�ˆ.�kax/jaj
k.s�nCk/

ja1j
c1 � � � jak�1j

ck d�a � � � d�ak�1C � � � ;

where c1; : : : ; ck�1 are some complex numbers depending on s.
First, since s0 is a pole for this integral and O.k/;O.k � 1/ are compact, it

follows that this pole occurs as a pole for the integral with respect to the variables
a1; : : : ; ak1

; a, and the integrals with respect to x; y are nonzero.
Since s0 is not an exceptional pole, we can choose the Schwartz functionˆ so that

the integral on a in the above expression is holomorphic in a region containing s0.
Thus the pole is caused by the integration with respect to the variables a1; : : : ; ak�1.
This implies that the integralZ

Wv

�
g 0

0 In�kC1

�
W 0v

�
g 0

0 In�kC1

�
jdetgjs�nCk�1 dg

has the pole s0. This integral belongs to the integrals Ik�1, and the proposition
follows. �

Corollary 5.5. Any pole of the Rankin–Selberg integrals In for � and � 0 is an
exceptional pole of type 2 for some components of �.k/ and � 0.k/, 0� k < n.

For the other direction, suppose � and � 0 are a pair of components of �.k/ and
� 0.k/ respectively.

Proposition 5.6. Any Rankin–Selberg integral of � and � 0 can be written as a sum
of Rankin–Selberg integrals of � and � 0.

Proof. For any Wv1
2W.�;  /, Wv01 2W.� 0;  �1/, and ˆ 2 Sn�k , we have the

Rankin–Selberg integral for � and � 0:

I.s;Wv1
; Wv01

; ˆ/D

Z
Nn�knGn�k

Wv1
.g/Wv01

.g/ˆ.�n�kg/jdetgjs dg:



SOME RESULTS ON ARCHIMEDEAN RANKIN–SELBERG INTEGRALS 301

By Corollary 3.5, there exists some Wv 2W.�;  / such that

Wv

�
g 0

0 Ik

�
DWv1

.g/ˆ.�n�kg/jdetgjk=2:

Thus, the above integral is

I.s;Wv1
; Wv01

; ˆ/D

Z
Nn�knGn�k

Wv

�
g 0

0 Ik

�
Wv01

.g/jdetgjs�k=2 dg;

which can be written as

Wv

�
g 0

0 Ik

�
D

X
j

Wj

�
g 0

0 Ik

�
ĵ .�n�kg/

with Wj 2W.�;  /, and Schwartz functions ĵ on Rn�k . So we have

I.s;Wv1
; Wv01

; ˆ/D
X
j

Z
Wj

�
g 0

0 Ik

�
Wv01

.g/ ĵ .�n�kg/jdetgjs�k=2 dg:

Using Corollary 3.5 again, we have

I.s;Wv1
; Wv01

; ˆ/D
X
j

Z
Wj

�
g 0

0 Ik

�
W 0j

�
g 0

0 Ik

�
jdetgjs�k dg

for some W 0j 2W.� 0;  �1/. Then by [Jacquet 2009, Lemma 14.1], each integral
on the right side can be written as a Rankin–Selberg integral for � and � 0. Thus
the proposition follows. �

Corollary 5.7. Any exceptional pole of type 1 of depth 0 for Rankin–Selberg inte-
grals of � and � 0 is a pole of the Rankin–Selberg integrals In for � and � 0.

Summarizing the above, we obtain the main result of this section.

Theorem 5.8. Let � and � 0 be irreducible generic Casselman–Wallach representa-
tions of Gn in general position. Then any pole of the Rankin–Selberg integrals for �
and � 0 is an exceptional pole of type 2 for a pair of components of �.k/ and � 0.k/,
0� k � n� 1. On the other hand, any exceptional pole of type 1 of depth 0 for a
pair of components of �.k/ and � 0.k/, 0� k� n�1, is a pole of the Rankin–Selberg
integrals of � and � 0.

6. Case Gn � Gm, m < n

This section is devoted to the case Gn �Gm, m < n, using the same ideas and
techniques as in the previous section. We will indicate the necessary changes and
omit details.
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Now suppose � and � 0 are generic irreducible Casselman–Wallach representa-
tions ofGn andGm in general position, respectively. Let W.�;  / and W.� 0;  �1/

be their Whittaker models. The family of integrals is given by

I.s;W;W 0/D

Z
NmnGm

W

�
g 0

0 In�m

�
W 0.g/jdetgjs�

n�m
2 dg;

and for 1� j � n�m� 1

I j .s;W;W 0/

D

Z
M.m�j;R/

Z
NmnGm

W

0@g 0 0

X Ij 0

0 0 In�m�j

1AW 0.g/jdetgjs�
n�m

2 dgdX;

with W 2 W.�;  / and W 0 2 W.� 0;  �1/. We will only consider the inte-
grals I.s;W;W 0/ since they have the same poles with the same multiplicities
as I j .s;W;W 0/ for each j .

For each 1� k �m, let ˆ be a Schwartz function on Rk , and introduce

Ik.s;W;W
0; ˆ/

D

Z
NknGk

W

�
g 0

0 In�k

�
W 0

�
g 0

0 Im�k

�
ˆ.�kg/jdetgjs�

nCm
2
Ck dg:

By [Jacquet 2009, Lemma 14.1], the integrals Ik belong to the family Im,
which implies that they are convergent when Re.s/ is large, and have meromorphic
continuations to the whole plane.

At a pole s0 for Ik.s;W;W 0; ˆ/, we have an expansion

Ik.s;W;W
0; ˆ/D

Bs0;k.W;W
0; ˆ/

.s� s0/d
C � � � ;

where Bs0;k.W;W
0; ˆ/ is a trilinear form on V �V 0�Sk satisfying the following

invariance property: for any g 2Gk ,

Bs0;k.g �W;g �W
0; g �ˆ/D jdetgj�s0C

nCm
2
�kBs0;k.W;W

0; ˆ/:

Similar to Proposition 4.2, we can showBs0;k is continuous.

Definition. We say a pole s0 is an exceptional pole of type 1, with level l and depth
m�k, if the corresponding Bs0;k is zero on SlC1

k
, but not identically zero on Sl

k
. In

this case, we also say s0 is an exceptional pole for the integrals Ik.s;Wv; Wv0 ; ˆ/.

Definition. We say a complex number s0 is an exceptional pole of type 2, with
level l , for � and � 0, if there exists a continuous trilinear form

l W V �V 0 �Elk! C
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such that

l.g �W;g �W 0; g �ˆ/D jdetgj�s0C
n�m

2 l.W;W 0; ˆ/:

Remark. If s0 is an exceptional pole of type 1 with level l and depth 0, then s0 is
also an exceptional pole of type 2 with level l for � and � 0.

Along the same lines, we have the following theorem.

Theorem 6.1. If s0 is an exceptional pole of type 1 with level l and depth m� k,
then s0 is an exceptional pole of type 2 with level l for some components of �.n�k/

and � 0.m�k/.

The main reduction step is the following analog to Proposition 5.4, with essen-
tially the same proof.

Proposition 6.2. If a pole s0 of Ik is not an exceptional pole for these integrals,
then it is a pole of Ik�1.

As a corollary, we have:

Corollary 6.3. Any pole of the Rankin–Selberg integrals Im for � and � 0 is an
exceptional pole of type 2 for some components of �.n�k/ and � 0.m�k/, 0� k < m.

A converse statement is also true.

Proposition 6.4. Any exceptional pole of type 1 of depth 0 for a pair of components
of �.n�k/ and � 0.m�k/ is a pole of the Rankin–Selberg integrals In for � and � 0.

The main result of this section is the following.

Theorem 6.5. Let � and � 0 be irreducible generic Casselman–Wallach represen-
tations of Gn and Gm in general position. Then any pole of the Rankin–Selberg
integrals for � and � 0 is an exceptional pole of type 2 for a pair of components of
�.n�k/ and � 0.m�k/, 1� k �m. On the other hand, any exceptional pole of type 1
of depth 0 for a pair of components of �.n�k/ and � 0.m�k/, 1� k �m, is a pole of
the Rankin–Selberg integrals of � and � 0.
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