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Several independent articles have observed that the Hirzebruch χ y-genus
has an important feature, which we call −1-phenomenon and which tells
us that the coefficients of the Taylor expansion of the χ y-genus at y = −1
have explicit expressions. Hirzebruch’s original χ y-genus can be extended
towards two directions: the pluri-case and the case of elliptic genus. This
paper contains two parts, in which we investigate the −1-phenomena in
these two generalized cases and show that in each case there exists a −1-
phenomenon in a suitable sense. Our main results in the first part have an
application, which states that all characteristic numbers (Chern numbers
and Pontrjagin numbers) on manifolds can be expressed, in a very explicit
way, in terms of some rational linear combination of indices of some elliptic
operators. This gives an analytic interpretation of characteristic numbers
and affirmatively answers a question posed by the author several years ago.
The second part contains our attempt to generalize this −1-phenomenon to
the elliptic genus, a modern version of the χ y-genus. We first extend the el-
liptic genus of an almost-complex manifold to a twisted version where an ex-
tra complex vector bundle is involved, and show that it is a weak Jacobi form
under some assumptions. A suitable manipulation on the theory of Jacobi
forms will produce new modular forms from this weak Jacobi form, and
thus much arithmetic information related to the underlying manifold can be
obtained, in which the −1-phenomenon of the original χ y-genus is hidden.
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1. Introduction

The Hirzebruch χ y-genus and its−1-phenomenon. In his highly influential book,
Hirzebruch [1966] defined a polynomial with integral coefficients χy(M) given
a projective manifold M , which encodes the information of indices of Dolbeault
complexes and is now called the Hirzebruch χy-genus. After the discovery of the
general index theorem due to Atiyah and Singer, we know that χy( · ) can be defined
on compact almost-complex manifolds and computed in terms of Chern numbers
as follows.

Suppose (M2d , J ) is a compact connected almost-complex manifold with an
almost-complex structure J . The choice of an almost Hermitian metric on M
enables us to define the Hodge star operator ∗ and the formal adjoint ∂∗ =−∗ ∂∗
of the ∂-operator. For each pair 0≤ p, q ≤ d , we denote by

�p,q(M) := 0(3pT ∗M ⊗3q T ∗M)

the complex vector space which consists of smooth complex-valued (p, q)-forms.
Here T ∗M is the dual of the holomorphic tangent bundle TM in the sense of J .
Then for each 0≤ p ≤ d , we have the Dolbeault-type elliptic differential operator⊕

q even

�p,q(M)
(∂+∂̄∗)|p
−−−−−→

⊕
q odd

�p,q(M),

whose index is denoted by χ p(M) in the notation of [Hirzebruch 1966]. Then the
Hirzebruch χy-genus of M is nothing but the generating function of the indices
χ p(M) (0≤ p ≤ d):

χy(M) :=
d∑

p=0

χ p(M) · y p.

Let us denote by x1, . . . , xd the formal Chern roots of TM . This means that the
i-th elementary symmetric polynomial of x1, . . . , xd represents the i-th Chern class
ci of TM . Then the general form of the Hirzebruch–Riemann–Roch theorem (first
proved by Hirzebruch [1966] for projective manifolds, and in the general case by
Atiyah and Singer [1968]) tells us that

(1-1) χy(M)=
∫

M

d∏
i=1

xi (1+ ye−xi )

1− e−xi
.

Among other things, the Hirzebruch χy-genus has an important feature, which we
call the “−1-phenomenon” and has been noticed, implicitly or explicitly, in several
independent articles [Narasimhan and Ramanan 1975; Libgober and Wood 1990;
Salamon 1996]. This −1-phenomenon says that at y =−1, the coefficients of the
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Taylor expansion of χy(M) have explicit expressions. To be more precise, if we
write

(1-2) χy(M)=:
d∑

i=0

ai (M) · (y+ 1)i ,

then these ai (M) can be given explicit expressions in terms of Chern numbers of
(M2d , J ) as

(1-3)

a0(M)= cd ,

a1(M)=− 1
2 dcd ,

a2(M)= 1
12

[1
2 d(3d − 5)cd + c1cd−1

]
,

a3(M)=− 1
24

[1
2 d(d − 2)(d − 3)cd + (d − 2)c1cd−1

]
,

...

By definition, these ai (M) are integers. Thus, immediate consequences of their
expressions include divisibility properties of Chern numbers. The derivation of
these expressions is direct, i.e., by expanding the right-hand side of (1-1) at y =−1
and expressing the coefficients in terms of elementary symmetric polynomials of
x1, . . . , xd . The calculations of a0 and a1 are quite easy. The calculation of a2

appears implicitly in [Narasimhan and Ramanan 1975, p. 18] and explicitly in
[Libgober and Wood 1990, p. 141–143]. Narasimhan and Ramanan used a2 to
give a topological restriction on some moduli spaces of stable vector bundles on
smooth projective varieties. Libgober and Wood used a2 to prove the uniqueness
of the complex structure on Kähler manifolds of certain homotopy types. Inspired
by [Narasimhan and Ramanan 1975], Salamon applied a2 [1996, Corollary 3.4]
to obtain a restriction on the Betti numbers of hyper-Kähler manifolds [ibid.,
Theorem 4.1]. The expressions of a3 and a4 are also included in [ibid., p. 145].
Hirzebruch [1999] used a1, a2 and a3 to obtain a divisibility result on the Euler
characteristic of those almost-complex manifolds where c1cd−1 = 0. In particular,
those almost-complex manifolds with c1 = 0 satisfy this property.

Pluri-χ y-genus. Some acquaintance with index theory will lead to the observation
that χy(M) is the index of the Todd operator (whose index is the Todd genus)

(1-4) �0,even(M)
(∂+∂∗)|0
−−−−→�0,odd(M)

twisted by �y(M), with

�y(M) :=
d∑

p=0

3p(T ∗M) · y p
∈ K (M)[y],
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where 3p( · ) and K ( · ) denote the p-th exterior power and K -group. Therefore
χy(M) can be rewritten as

χy(M)= Ind
(
(∂ + ∂∗)|0⊗�y(M)

)
=: χ(M, �y(M)).

Here, for simplicity we denote by the standard notation χ(M, ( · )) the index of
the Todd operator (1-4) twisted by an element ( · ) ∈ K (M).

We can also consider, for an arbitrarily fixed positive integer g, the pluri χy-genus
χy(M) by using sufficiently many forms of the type

(1-5) �y(M) :=
∑

0≤p1,...,pg≤d

3p1(T ∗M)⊗ · · ·⊗3pg (T ∗M) · y p1
1 · · · y

pg
g

=�y1(M)⊗ · · ·⊗�yg (M) ∈ K (M)[y1, . . . , yg]

to twist (∂ + ∂̄∗)|0, i.e.,

χy(M) := Ind
(
(∂ + ∂∗)|0⊗�y(M)

)
= χ(M, �y(M)),

which specializes to Hirzebruch’s original χy-genus when g = 1.
Inspired by the above-mentioned −1-phenomenon of the χy-genus, we may ask

what the coefficients look like if we expand χy(M) at y1 = · · · = yg = −1. Our
first main observation in this article is that the coefficients of (y+1)p1 · · · (y+1)pg

in χy(M) can be divided into three parts, which is our main result in Section 3
(Theorem 2.2). Moreover, we can do a similar manipulation for signature operator
on closed smooth oriented manifolds, and their coefficients also have a similar
feature (Theorem 2.3). A direct corollary of these two theorems is that any Chern
number of (M2d , J ) or any Pontrjagin number of a closed smooth oriented manifold
can be written explicitly as a rational linear combination of indices of some elliptic
operators, which provides an analytic interpretation of characteristic numbers and
answers [Li 2011, Question 1.1] affirmatively.

Elliptic genus. Elliptic genera of oriented differentiable manifolds and almost-
complex manifolds were first constructed by Ochanine, Landweber, Stong and
Hirzebruch in a topological way; Witten gave it a geometric interpretation, in which
they can be viewed as the loop space analogues of the Hirzebruch L-genus and
χy-genus (see [Landweber 1988] and the references therein). The most remarkable
property of elliptic genera is their rigidity for spin manifolds and almost-complex
Calabi–Yau manifolds (in the very weak sense that c1 vanishes up to torsion, i.e.,
c1 = 0 ∈ H 2(M,R)), which was conjectured by Witten and generalizes the famous
rigidity property of the original L-genus, Â-genus [Atiyah and Hirzebruch 1970]
and χy-genus [Lusztig 1971]. The first rigorous proof was presented in [Bott
and Taubes 1989; Taubes 1989]. A quite simple, unified and enlightening proof
was discovered by Liu [1996], in which modular invariance of the four classical
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Jacobi theta functions and their various transformation laws play key roles. Later
on, this modular invariance property, its various remarkable extensions and relation
with vertex operator algebra were established by Liu and his coauthors from various
perspectives [Liu 1995a; 1995b; Liu and Ma 2000; Liu et al. 2001; 2003; Han and
Zhang 2004; Dong et al. 2005; Chen and Han 2009; Chen et al. 2011; Han et al.
2012; Han and Liu 2014].

We are concerned in this paper with the elliptic genus of almost-complex mani-
folds. The elliptic genus of a compact, almost-complex manifold (M2d , J ), which
we denote by Ell(M, τ, z), is defined as a function of two variables (τ, z) ∈ H×C,
where H is the upper half plane. To be more precise, Ell(M, τ, z) is defined to be
the index of the Todd operator (1-4) twisted by

y−d/2
⊗
n≥1

(3−yqn−1 T ∗⊗3−y−1qn T ⊗Sqn T ∗⊗Sqn T )=: Eq,y,

i.e., Ell(M, τ, z) :=χ(M,Eq,y), where q = e2π
√
−1τ , y= e2π

√
−1z and T (resp. T ∗)

is the holomorphic (resp. dual of the holomorphic) tangent bundle of M in the sense
of J . Here, for any complex vector bundle W ,

3t(W ) :=
⊕
i≥0

3i (W ) and St(W ) :=
⊕
i≥0

Si (W )

denote the generating series of the exterior and symmetric powers of W , respectively.
According to the Atiyah–Singer index theorem, we have

Ell(M, τ, z)

=

∫
M

td(M) ·ch(Eq,y)

= y−
1
2 dχ−y(M)+q · [y−

1
2 dχ−y(M, T ∗(1− y)+T (1− y−1))]+q2

·( · · · ),

where

td(M) :=
d∏

i=1

xi

1− e−xi

is the Todd class of M and ch( · ) is the Chern character.
Thus, the elliptic genus Ell(M, τ, z) can be viewed as a generalization of the

Hirzebruch χy-genus, in the sense that the q0-term of the Fourier expansion of
Ell(M, τ, z) is essentially χy(M). If (M2d , J ) is Calabi–Yau, the coefficients of q-
expansion of Ell(M, τ, z) are rigid for arbitrary y [Liu 1996, Theorem B]. Moreover,
in this case, Ell(M, τ, z) itself is a weak Jacobi form of weight 0 and index 1

2 d
[Gritsenko 1999b, Proposition 1.2; Borisov and Libgober 2000, Theorem 2.2].
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As we have mentioned above, the elliptic genus Ell(M, τ, z) can be viewed as a
generalization of χy(M), and also has a rigidity property when M is Calabi–Yau.
So we may ask in the Calabi–Yau case whether Ell(M, τ, z) has some kind of
arithmetic phenomenon which extends the original −1-phenomenon of χy(M).
Note that, strictly speaking, Ell(M, τ, z) is a generalization of χ−y(M) rather than
χy(M), as the q0-term of Ell(M, τ, z) is y−d/2χ−y(M). So if there exists some
kind of phenomenon which extends the original −1-phenomenon of χy(M), the
parameter y = e2π

√
−1z should correspond to 1 rather than −1. Thus the variable z

should correspond to 0. Indeed, there does exist such a kind of generalization, which
depends on some arithmetic properties of Jacobi forms and has been implicitly
used by Gritsenko [1999b]. Our aim in Section 3 is twofold. On the one hand,
given a compact almost-complex manifold (M2d , J ) and a rank-l complex vector
bundle W over it, we construct a generalized elliptic genus Ell(M,W, τ, z), which
is defined to be the index of the Todd operator (1-4) twisted by[ ∞∏

i=1

(1− q i )

]2(d−l)

· y−l/2
⊗
n≥1

(3−yqn−1 W ∗⊗3−y−1qn W ⊗Sqn T ∗⊗Sqn T ),

and show that it is a weak Jacobi form of weight d − l and index 1
2 l if the first

Pontrjagin classes p1(M) equals p1(W ) and the first Chern class c1(W ) is 0 in
H∗(M,R). On the other hand, we highlight a well-known manipulation in Jacobi
forms to obtain modular forms from Ell(M,W, τ, z), whose arithmetic information
will in turn give geometric results on M and W . Some examples are given to
illustrate this observation.

2. −1-phenomenon of the pluri-χ y-genus

Statements of the main results related to the pluri-χ y-genus. Let (M2n, J ) (resp.
X2n) be a compact almost-complex manifold of complex dimension n (resp. smooth,
closed oriented manifold of real dimension 2n). As before, we use (∂ + ∂∗)|0 to
denote the Todd operator on (M2n, J ), whose index is the Todd genus of M . We
denote by D the signature operator on X , whose index is the signature of X2n

[Atiyah and Singer 1968, Section 6]. By definition Ind(D) is zero unless n is even.
Let W be a complex vector bundle over M or X . By means of a connection on

W , the elliptic operator (∂+ ∂∗)|0 and D can be extended to a new elliptic operator
((∂+∂∗)|0)⊗W and D⊗W , whose indices via the Atiyah–Singer index theorem are

χ(M,W )= Ind
(
((∂ + ∂̄∗)|0)⊗W

)
=

∫
M
[td(M) · ch(W )]

=

∫
M

[ n∏
i=1

xi

1− e−xi
· ch(W )

]
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and

Ind((D⊗W ))=

∫
X

[( n∏
i=1

xi

tanh (xi/2)

)
· ch(W )

]
respectively. Here we use the i-th elementary symmetric polynomial of x1, . . . , xn

(resp. x2
1 , . . . , x2

n ) to denote the i-th Chern class (resp. Pontrjagin class) of (M2n, J )
(resp. X2n).

Definition 2.1. For an arbitrary fixed positive integer g, we define

�y(M) :=
∑

0≤p1,...,pg≤n

3p1(T ∗M)⊗ · · ·⊗3pg (T ∗M) · y p1
1 · · · y

pg
g

=�y1(M)⊗ · · ·⊗�yg (M) ∈ K (M)[y1, . . . , yg],

�R
y (X) :=

∑
0≤p1,...,pg≤2n

3p1(T ∗C X)⊗ · · ·⊗3pg (T ∗C X) · y p1
1 · · · y

pg
g

=�R
y1
(X)⊗ · · ·⊗�R

yg
(X) ∈ (KO(X)⊗C)[y1, . . . , yg],

where

�R
y (X) :=

2n∑
p=0

3p(T ∗C X) · y p

and T ∗
C

X is the dual of the complexified tangent bundle of X , and

χy(M) :=
∑

0≤p1,...,pg≤n

Ind
[
(∂ + ∂∗)|0⊗ (3

p1(T ∗M)⊗ · · ·⊗3pg (T ∗M))
]

· y p1
1 · · · y

pg
g

=

∫
M

[ n∏
i=1

xi

1− e−xi
· ch(�y(M))

]
Dy(X) :=

∑
0≤p1,...,pg≤2n

Ind
[
D⊗ (3p1(T ∗C X)⊗ · · ·⊗3pg (T ∗C X))

]
· y p1

1 · · · y
pg
g

=

∫
X

[( n∏
i=1

xi

tanh (xi/2)

)
· ch(�R

y (X))
]
.

Our main result in this section is:

Theorem 2.2. The coefficient of (1+ y1)
n−q1 · · · (1+ yg)

n−qg in χy(M) is equal to
0 if

∑g
i=1 qi > n,∫

M

g∏
i=1

cqi (M) if
∑g

i=1 qi = n,

a rational linear combination of Chern numbers of M if
∑g

i=1 qi < n.

We have a similar result for smooth manifolds.
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Theorem 2.3. If n is even, the coefficient of

(1+ y1)
2(n−q1) · · · (1+ yg)

2(n−qg)

in Dy(X) is equal to
0 if

∑g
i=1 qi >

1
2 n,

(−1)n/2 · 2n
·

∫
X

g∏
i=1

pqi (X) if
∑g

i=1 qi =
1
2 n,

a rational linear combination of Pontrjagin numbers of X if
∑g

i=1 qi <
1
2 n,

where pi (X) is the i-th Pontrjagin class of X.

Clearly, a direct corollary of this theorem is the following result, which gives an
affirmative answer to [Li 2011, Question 1.1].

Corollary 2.4. Any Chern number (resp. Pontrjagin number) on a compact almost-
complex manifold (resp. compact smooth manifold) can be expressed in an explicit
way in terms of the indices of some elliptic differential operators over this manifold.

Proofs of Theorems 2.2 and 2.3. Abusing notation, we use cq( · · · ) to denote
both the q-th Chern class of an almost-complex manifold and the q-th elementary
symmetric polynomial of the variables in the bracket.

The proofs of Theorems 2.2 and 2.3 depend on the following lemma:

Lemma 2.5. If we assign each xi (1≤ i ≤ n) the same degree, then we have:

(1) the coefficient of (1+ y)n−q (0≤ q ≤ n) in
n∏

i=1
(1+ ye−xi ) is

cq(x1, . . . , xn)+ higher-degree terms;

(2) the coefficient of (1+ y)2(n−q) (0≤ q ≤ n) in
n∏

i=1
(1+ ye−xi )(1+ yexi ) is

(−1)qcq(x2
1 , . . . , x2

n)+ higher-degree terms.

Proof. We have

n∏
i=1

(1+ ye−xi )=

n∏
i=1

[(1− e−xi )+ (1+ y)e−xi ] = e−c1

n∏
i=1

[(exi − 1)+ (1+ y)].

Thus the coefficient of (1+ y)n−q in
∏n

i=1(1+ ye−xi ) is

e−c1 · cq(ex1 − 1, . . . , exn − 1)= cq(x1, . . . , xn)+ higher-degree terms.
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Similarly,

n∏
i=1

(1+ ye−xi )(1+ yexi )=

n∏
i=1

[(exi − 1)+ (1+ y)][(e−xi − 1)+ (1+ y)],

and the coefficient of (1+ y)2n−q is

cq(ex1 − 1, . . . , exn − 1, e−x1 − 1, . . . , e−xn − 1)

= cq(x1, . . . , xn,−x1, . . . ,−xn)+ higher-degree terms.

Note that

cq(x1, . . . , xn,−x1, . . . ,−xn)=

{
0 if q is odd,
(−1)q/2cq/2(x2

1 , . . . , x2
n) if q is even.

This gives the desired property. �

Now we can prove Theorems 2.2 and 2.3.

Proof. If we use x1, . . . , xn (resp. x1, . . . , xn,−x1, . . . ,−xn) to denote the formal
Chern roots of TM (resp. TC X ), then we have (see [Hirzebruch et al. 1992, p. 11])

ch(�y(M))=
g∏

j=1

[ n∏
i=1

(1+ y j e−xi )

]
and

ch(�R
y (X))=

g∏
j=1

[ n∏
i=1

(1+ y j e−xi )(1+ y j exi )

]
.

Thus,

χy(M)=
∫

M

[( n∏
i=1

xi

1− e−xi

)
· ch(�y(M))

]

=

∫
M

{( n∏
i=1

xi

1− e−xi

)
·

g∏
j=1

[ n∏
i=1

(1+ y j e−xi )

]}
and

Ind
(
DR

y (X)
)
=

∫
X

[( n∏
i=1

xi

tanh(xi/2)

)
· ch(�R

y (X))
]

=

∫
X

{( n∏
i=1

xi

tanh(xi/2)

)
·

g∏
j=1

[ n∏
i=1

(1+ y j e−xi )(1+ y j exi )

]}
.
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Note that the constant terms of

xi

1− e−xi
= 1+ · · · and

xi

tanh(xi/2)
=

xi (1+ e−xi )

1− e−xi
= 2+ · · ·

are 1 and 2 respectively. So by Lemma 2.5, when considering the Taylor expansions
of Ind(Dy(M)) and Ind(DR

y (X)) at y1 = · · · = yg =−1, the coefficients before the
terms (1+ y1)

n−q1 · · · (1+ yg)
n−qg and (1+ y1)

2(n−q1) · · · (1+ yg)
2(n−qg) are∫

M

{
(1+ higher-degree terms) ·

g∏
j=1

[cq j (x1, . . . , xn)+ higher-degree terms]
}

=

∫
M

g∏
i=1

cqi (M)+
∫

M
(higher-degree terms)

and∫
X

{
(2n
+higher-degree terms)·

g∏
j=1

[(−1)q j cq j (x
2
1 , . . . , x2

n)+higher degree terms]
}

= 2n
· (−1)

∑g
j=1 q j

∫
X

g∏
j=1

pqi (X)+
∫

X
(higher degree terms),

respectively, which give the desired proofs of Theorems 2.2 and 2.3. �

3. The generalized elliptic genus and its −1-phenomenon

The generalized elliptic genus of almost-complex manifolds. In this subsection,
we extend the original definition of the elliptic genus of almost-complex manifolds
by considering an extra complex vector bundle and showing that it is a weak Jacobi
form. As before, let (M2d , J ) be a compact almost-complex manifold and W a
rank-l complex vector bundle over it.

Definition 3.1. The generalized elliptic genus of (M2d , J )with respect to W , which
we denote by Ell(M,W, τ, z), is defined to be the index of the Todd operator

�0,even(M)
(∂+∂∗)|0
−−−−→�0,odd(M)

twisted by

c2(d−l)
· y−l/2

⊗
n≥1

(3−yqn−1 W ∗⊗3−y−1qn W ⊗Sqn T ∗⊗Sqn T )=: E(W, q, y),

where
q = e2π

√
−1τ , y = e2π

√
−1z,

and for simplicity c :=
∏
∞

i=1(1− q i ). If W = T , this definition degenerates to the
original elliptic genus.
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Our first observation in this section is the following, which extends [Gritsenko
1999b, Proposition 1.2; Borisov and Libgober 2000, Theorem 2.2], in which W =T .

Theorem 3.2. The generalized elliptic genus Ell(M,W, τ, z) is a weak Jacobi form
of weight d− l and index 1

2 l provided that the first Pontrjagin classes p1(M) equals
p1(W ) and the first Chern class c1(W ) is 0 in H∗(M,R).

Remark 3.3. (1) A two-variable function ϕ(τ, z) for (τ, z)∈H×C is called a weak
Jacobi form of weight k and index m for k ∈ Z and m ∈ Z/2 if it is a holomorphic
function with respect to the two variables τ and z, has no negative powers of q
in its Fourier expansion in terms of q i y j and satisfies some transformation laws
involving k and m; the precise definition can be found in [Eichler and Zagier 1985,
p. 9, p. 104]. There, only the integral indices are considered. However, with minor
modifications of inserting a character, this notion can be easily extended to the case
where the index is allowed to be a half-integer (see [Gritsenko 1999b, p. 102]).

(2) Motivated by his ingenious proof of the rigidity theorem, Liu constructed a
two-variable function for (M, J ) and W and showed that it is a weak Jacobi form
under some assumptions, and the original Witten theorem exactly corresponds to
the case where the index is equal to zero [Liu 1995b, Theorem 3, Corollary 3.1].
This construction later was generalized to the family case by Liu and Ma [2000,
Theorem 3.1]. So our theorem has a similar flavor to their work.

(3) Gritsenko [1999a, Theorem 1.2] further extended the original elliptic genus to
another case where an extra complex bundle is involved. But his construction is
different from ours as it is still of weight zero.

The Atiyah–Singer index theorem tells us that

Ell(M,W, τ, z)=
∫

M
td(M) · ch(E(W, q, y)).

In particular, if J is integrable, Ell(M,W, τ, z) is the holomorphic Euler charac-
teristic of the (virtual) bundle E(W, q, y).

Let us recall one of the Jacobi-theta series [Chandrasekharan 1985, Chapter 5]:

θ(τ, z) :=
∑
n∈Z

(−1)nq(n+1/2)2/2 yn+1/2

= 2cq1/8 sin(π z)
∞∏

n=1

(1− qn y)(1− qn y−1)

= 2cq1/8 sinh(π
√
−1z)

∞∏
n=1

(1− qn y)(1− qn y−1)

= 2cq1/8 sinh(π
√
−1z)

∞∏
n=1

(1− qne2π
√
−1z)(1− qne−2π

√
−1z).
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The following lemma says that Ell(M,W, τ, z) can be expressed in terms of
θ(τ, z).

Lemma 3.4. If we denote by 2π
√
−1xi (1≤ i ≤ d) and 2π

√
−1wi (1≤ i ≤ l) the

Chern roots of TM and W , respectively, then we have

Ell(M,W, τ, z)

=

∫
M

[
exp

(
c1(M)−c1(W )

2

)
·(η(τ ))3(d−l)

·

d∏
i=1

2π
√
−1xi

θ(τ, xi )
·

l∏
j=1

θ(τ, w j− z)
]
,

where

η(τ) := q1/24
· c = q1/24

∞∏
i=1

(1− q i )

is the famous Dedekind eta function. In particular, Ell(M,W, τ, z) is a holomorphic
function with respect to the two variables τ and z and has no negative powers of q
in its Fourier expansion.

Proof. We have

ch(E(W, q, y))

= c2(d−l)y−l/2
l∏

j=1

(1− ye−2π
√
−1w j )

×

∞∏
n=1

∏l
j=1(1− yqne−2π

√
−1w j )(1− y−1qne2π

√
−1w j )∏d

i=1(1− qne−2π
√
−1xi )(1− qne2π

√
−1xi )

= c2(d−l)y−l/2
l∏

j=1

(1− ye−2π
√
−1w j )

×

l∏
j=1

θ(τ, w j − z)

2cq1/8 sinh(π
√
−1(w j − z))

d∏
i=1

2cq1/8 sinh(π
√
−1xi )

θ(τ, xi )

= exp
(

c1(M)− c1(W )

2

)
· (η(τ ))3(d−l)

·

d∏
i=1

1− e−2π
√
−1xi

θ(τ, xi )
·

l∏
j=1

θ(τ, w j − z).

The last equality is due to the fact that

c1(M)=
d∑

i=1

2π
√
−1xi and c1(W )=

l∑
j=1

2π
√
−1w j .
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Therefore,

Ell(M,W, τ, z)

=

∫
M

td(M) · ch(E(W, q, y))=
∫

M

d∏
i=1

2π
√
−1xi

1− e−2π
√
−1xi
· ch(E(W, q, y))

=

∫
M

[
exp

(
c1(M)− c1(W )

2

)
· (η(τ ))3(d−l)

·

d∏
i=1

2π
√
−1xi

θ(τ, xi )
·

l∏
j=1

θ(τ, w j − z)
]
.

The holomorphicity of Ell(M,W, τ, z) is now clear from this expression, as
the Jacobi theta function θ(τ, z) only has zeroes of order 1 along z = m1+m2τ

(m1,m2 ∈Z) [Chandrasekharan 1985, p. 59]. Also it is obvious from this expression
that Ell(M,W, τ, z) has no negative powers of q in its Fourier expansion. �

Proof of Theorem 3.2. SL2(Z) is generated by the two matrices(
0 −1
1 0

)
and

(
1 1
0 1

)
.

To verify that Ell(M,W, τ, z) satisfies the required transformation laws, it suffices
to show the four identities

Ell(M,W, τ + 1, z)= Ell(M,W, τ, z),(3-1)

Ell(M,W, τ, z+ 1)= (−1)l Ell(M,W, τ, z),(3-2)

Ell(M,W, τ, z+ τ)= (−1)l exp (−π
√
−1l(τ + 2z))Ell(M,W, τ, z),(3-3)

Ell(M,W,−1/τ, z/τ)= τ d−l exp(π
√
−1lz2/τ)Ell(M,W, τ, z).(3-4)

For Dedekind eta function η(τ) and Jacobi theta function θ(τ, z) we have trans-
formation laws [Chandrasekharan 1985]:

η3
(
−

1
τ

)
=

(
τ
√
−1

)3/2

η3(τ ),

η3(τ + 1)= exp
(
π
√
−1

4

)
η3(τ ),

θ(τ, z+ 1)=−θ(τ, z),

θ(τ, z+ τ)=−q−1/2 exp (−2π
√
−1z)θ(τ, z),

θ(τ + 1, z)= exp
(
π
√
−1

4

)
θ(τ, z),

θ

(
−

1
τ
, z
)
=−
√
−1
(

τ
√
−1

)1/2

exp(π
√
−1τ z2)θ(τ, τ z).
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The first three identities (3-1)–(3-3) are easy to verify by using the transformation
laws above. Here we only need to check (3-4) carefully. Indeed,

(3-5)
d∏

i=1

θ

(
−

1
τ
, xi

)
=

d∏
i=1

−
√
−1
(

τ
√
−1

)1/2

exp(π
√
−1τ x2

i )θ(τ, τ xi )

= exp
(
τp1(M)

4π
√
−1

) d∏
i=1

−
√
−1
(

τ
√
−1

)1/2

θ(τ, τ xi ).

Here, we use the assumption that

p1(M)=
d∑

i=1

(2π
√
−1xi )

2.

Similarly,

(3-6)
l∏

j=1

θ

(
−

1
τ
,wi −

z
τ

)

=

l∏
j=1

−
√
−1(

τ
√
−1
)1/2 exp

(
π
√
−1τ

(
w j −

z
τ

)2)
θ(τ, τw j − z)

= exp
(
τp1(W )

4π
√
−1
+
π
√
−1lz2

τ

) l∏
j=1

−
√
−1
(

τ
√
−1

)1/2

θ(τ, τw j − z).

In the last equality, we used the assumption that

c1(W )=

l∑
j=1

2π
√
−1w j = 0.

Combining the transformation law of η(τ), (3-5), (3-6) and the fact that p1(M)=
p1(W ) leads to

Ell
(
M,W,−1

τ
,

z
τ

)
=

∫
M

[
exp

(
c1(M)− c1(W )

2

)(
η

(
−

1
τ

))3(d−l)

×

d∏
i=1

2π
√
−1xi

θ(−1/τ, xi )

l∏
j=1

θ

(
−

1
τ
,w j −

z
τ

)]
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= τ d−l exp
(
π
√
−1lz2

τ

)
×

∫
M

[
exp

(
c1(M)− c1(W )

2

)
(η(τ ))3(d−l)

d∏
i=1

2π
√
−1xi

θ(τ, τ xi )

l∏
j=1

θ(τ, τw j − z)
]

= τ−l exp
(
π
√
−1lz2

τ

)
×

∫
M

[
exp

(
c1(M)− c1(W )

2

)
(η(τ ))3(d−l)

d∏
i=1

2π
√
−1(τ xi )

θ(τ, τ xi )

l∏
j=1

θ(τ, τw j − z)
]

= τ d−l exp
(
π
√
−1lz2

τ

)
×

∫
M

[
exp

(
c1(M)− c1(W )

2

)
(η(τ ))3(d−l)

d∏
i=1

2π
√
−1xi

θ(τ, xi )

l∏
j=1

θ(τ, w j − z)
]

= τ d−l exp
(
π
√
−1lz2

τ

)
Ell(M,W, τ, z)

The penultimate equality is due to the fact that in the integrand we are only
concerned with the homogeneous part of degree d (deg(xi )= deg(w j )= 1). This
completes the proof of Theorem 3.2. �

Algebraic preliminaries. Before discussing the arithmetic properties of the gener-
alized elliptic genus Ell(M,W, τ, z), we need to review a well-known manipulation
in algebraic number theory which helps derive modular forms from Jacobi forms.

Recall that the Eisenstein series G2k(τ ) are defined to be

G2k(τ ) := −
B2k

4k
+

∞∑
n=1

σ2k−1(n) · qn,

[Hirzebruch et al. 1992, p. 131], where

σk(n) :=
∑
m>0
m |n

mk

and the B2k are the Bernoulli numbers.
These G2k(τ ) carry rich arithmetic information. It is well-known that G2k(τ )

(k ≥ 2) are modular forms of weight 2k over the full modular group SL2(Z) and
the whole graded ring of modular forms over SL2(Z) are generated by G4(τ ) and
G6(τ ). However, G2(τ ) is not a modular form but a quasimodular form, as it
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transforms as [Hirzebruch et al. 1992, p. 138]

(3-7) G2

(
aτ + b
cτ + d

)
= (cτ + d)2G2(τ )−

c(cτ + d)

4π
√
−1

for all
(

a b
c d

)
∈ SL2(Z).

The next proposition, which is a well-known fact in algebraic number theory
and has been used implicitly by Gritsenko in the proof of [1999b, Lemma 1.6],
provides us with a method for deriving modular forms from Jacobi forms.

Proposition 3.5. Suppose a function ϕ(τ, z) : H×C→ C satisfies

(3-8) ϕ

(
aτ + b
cτ + d

,
z

cτ + d

)
= (cτ + d)k exp

(
2π
√
−1mcz2

cτ + d

)
·ϕ(τ, z),

for all
(a

c
b
d

)
∈ SL2(Z), i.e., ϕ(τ, z) transforms like a Jacobi form of weight k and

index m.
Then, if we define

8(τ, z) := exp(−8π2mG2(τ )z2)ϕ(τ, z),

we have

(3-9) 8

(
aτ + b
cτ + d

,
z

cτ + d

)
= (cτ + d)k8(τ, z).

This means that if we set

8(τ, z)=:
∑
n∈Z

an(τ ) · zn,

then

an

(
aτ + b
cτ + d

)
= (cτ + d)k+nan(τ ).

In particular, if ϕ(τ, z) is a weak Jacobi form of weight k and index m, then
these an(τ ) are modular forms of weight k+ n over SL2(Z).

Proof. Equation (3-9) can be verified directly by using the assumption (3-8) and
the transformation law (3-7). If, moreover, ϕ(τ, z) is a weak Jacobi form, then
ϕ(τ, z) and thus 8(τ, z) are holomorphic and have no negative powers of q when
considering their Fourier expansions in terms of q and y. This implies that these
an(τ ) are also holomorphic and have no negative powers of q when considering
the Fourier expansions of q , which gives the desired proof. �

With the assumptions in Theorem 3.2 understood, we know that Ell(M,W, τ, z)
is a weak Jacobi form of weight d − l and index 1

2 l. Then Proposition 3.5 tells us:
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Proposition 3.6. The series an(M,W, τ ) determined by

exp[l ·G2(τ ) · (2π
√
−1z)2] ·Ell(M,W, τ, z)=:

∑
n≥0

an(M,W, τ ) · (2π
√
−1z)n

are modular forms of weight d − l + n over SL2(Z). Furthermore, the first three
series of an(M,W, τ ) are of the form

a0(M,W,τ )= χ(M,3−1W ∗)
+q ·χ(M,3−1W ∗⊗(−2(d−l)−W−W ∗+T+T ∗))+q2

·( ·· ·),

a1(M,W,τ )=
l∑

p=0

(−1)p
(

p− l
2

)
χ(M,3pW ∗)+q ·(·· ·),

a2(M,W,τ )=−
l

24
χ(M,3−1W ∗)+ 1

2

l∑
p=0

(−1)p
(

p− l
2

)2
χ(M,3pW ∗)+q ·(·· ·).

Proof. The first statement is a direct application of Proposition 3.5 as Ell(M,W, τ, z)
is a weak Jacobi form of weight d − l and index 1

2 l. For the second one, if we set

exp[lG2(τ )(2π
√
−1z)2] =: A0(y)+ A1(y) · q + ( · · · ) · q2

and
Ell(M,W, τ, z)=: B0(y)+ B1(y) · q + ( · · · ) · q2,

we can easily deduce from their explicit expressions that

A0(y)= exp
[
−

l
24
(2π
√
−1z)2

]
= 1− l

24
(2π
√
−1z)2+ · · · ,

A1(y)= l(2π
√
−1z)2− l2

24
(2π
√
−1z)4+ · · · ,

B0(y)=
l∑

p=0

(−1)pχ(M,3pW ∗)y p−l/2

=

l∑
p=0

(−1)pχ(M,3pW ∗)

×

[
1+

(
p− l

2

)
(2π
√
−1z)+ 1

2

(
p− l

2

)2
(2π
√
−1z)2+ · · ·

]
,

B1(y)= χ
(
M,3−1W ∗⊗ (−2(d − l)−W −W ∗+ T + T ∗)

)
+ 2π
√
−1z( · · · ).

Note that∑
n≥0

an(M,W, τ )(2π
√
−1z)n= A0(y)B0(y)+[A0(y)B1(y)+A1(y)B0(y)]q+ · · · ;

then it is easy to deduce the expressions in Proposition 3.6 in terms of those of
A0(y), A1(y), B0(y) and B1(y). �
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−1-phenomenon of the generalized elliptic genus. Here, using Proposition 3.6,
presented in the last subsection, we investigate the arithmetic information of the
generalized elliptic genus Ell(M,W, τ, z), which can be viewed as an appropriate
−1-phenomenon of Ell(M,W, τ, z).

We will present one proposition and two examples related to a2(M,W, τ ),
a0(M,W, τ ) and a1(M,W, τ ), respectively, to illustrate an appropriate−1-phenom-
enon of the generalized elliptic genus Ell(M,W, τ, z).

Our next proposition related to a2(M,W, τ ) gives the “reason” why these
an(M,W, τ ) should be the −1-phenomenon of Ell(M,W, τ, z).

Proposition 3.7. a2(M,W, τ ) is a modular form of weight d − l + 2 over SL2(Z)

provided that p1(M)= p1(W ) and c1(W )= 0 in H∗(M,R). Consequently, if either
(i) d − l is odd, or (ii) d ≤ l but d − l 6= −2, we have

(3-10)
l∑

p=0

(−1)p
(

p− l
2

)2
χ(M,3pW ∗)= l

12
χ(M,3−1W ∗).

Moreover, if W = T and c1(M) = 0 in H∗(M,R), (3-10) is nothing but the
original −1-phenomenon of the Hirzebruch χy-genus.

Proof. If either (i) d−l is odd or (ii) d ≤ l but d−l 6=−2, a2(M,W, τ ) is a modular
form over SL2(Z) whose weight is either (i) odd or (ii) no more than 2 but not zero.
This means a2(M,W, τ )≡ 0; then its expression in Proposition 3.6 gives (3-10).

If W = T , then the right-hand side of (3-10) is

d
12
χ(M,3−1T ∗)= d

12
χy(M)

∣∣∣
y=−1
=

d
12

cd(M).

However, the left-hand side of (3-10) is

d∑
p=0

(−1)p
(

p− d
2

)2
χ p(M)

=

d∑
p=0

(−1)p
[

2·
p(p−1)

2
+(1−d)p+

d2

4

]
χ p(M)

= 2a2(M)−(1−d)a1(M)+
d2

4
a0(M)

=
d(3d−5)

12
cd(M)+

(1−d)d
2

cd(M)+
d2

4
cd(M) (via (1-3) and c1(M)= 0)

=
d
12

cd(M)= the right-hand side of (3-10). �

The next two examples, related to a0(M,W, τ ) and a1(M,W, τ ), give much
arithmetic information about M and W .
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Example 3.8. By Proposition 3.6, we know that a0(M,W, τ ) is a modular form
of weight d − l over SL2(Z) provided that p1(M) = p1(W ) and c1(M) = 0 in
H 2(M,R). Consequently:

(1) If either d − l is odd or d − l ≤ 2 but is nonzero, we have

χ(M,3−1W ∗)= χ
(
M,3−1W ∗⊗ (−2(d − l)−W −W ∗+ T + T ∗)

)
= 0.

(2) If d − l = 4, a0(M,W, τ ) is proportional to the Eisenstein series

G4(τ )=−
B4

8
+ q + · · · =

1
240
+ q + · · · ,

and so

χ
(
M,3−1W ∗⊗ (−2(d − l)−W −W ∗+ T + T ∗)

)
= 240χ(M,3−1W ∗).

(3) If d − l = 6, a0(M,W, τ ) is proportional to the Eisenstein series

G6(τ )=−
B6

12
+ q + · · · = −

1
504
+ q + · · · ,

and so

χ(M,3−1W ∗⊗ (−2(d − l)−W −W ∗+ T + T ∗))=−504χ(M,3−1W ∗).

(4) If d − l = 8, a0(M,W, τ ) is proportional to

[G4(τ )]
2
=

[
1

240
+ q + · · ·

]2

=
1

2402 +
1

120
q + · · · ,

and so

χ
(
M,3−1W ∗⊗ (−2(d − l)−W −W ∗+ T + T ∗)

)
= 480χ(M,3−1W ∗).

Example 3.9. By Proposition 3.6, we know that a1(M,W, τ ) is a modular form
of weight d − l + 1 over SL2(Z) provided that p1(M)= p1(W ) and c1(M)= 0 in
H 2(M,R). Consequently, if either d−l is even or d−l ≤ 1 but d−l 6=−1, we have

l∑
p=0

(−1)p
(

p− l
2

)
χ(M,3pW ∗)= 0.
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