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Let F be a field, let D be a subring of F and let Z be an irreducible subspace
of the space of all valuation rings between D and F that have quotient
field F. Then Z is a locally ringed space whose ring of global sections is
A =

⋂
V∈Z V . All rings between D and F that are integrally closed in

F arise in such a way. Motivated by applications in areas such as mul-
tiplicative ideal theory and real algebraic geometry, a number of authors
have formulated criteria for when A is a Prüfer domain. We give geometric
criteria for when A is a Prüfer domain that reduce this issue to questions
of prime avoidance. These criteria, which unify and extend a variety of
different results in the literature, are framed in terms of morphisms of Z
into the projective line P1

D.

1. Introduction

A subring V of a field F is a valuation ring of F if for each nonzero x ∈ F , x or x−1

is in V ; equivalently, the ideals of V are linearly ordered by inclusion and V has
quotient field F . Although the ideal theory of valuation rings is straightforward, an
intersection of valuation rings in F can be quite complicated. Indeed, by a theorem
of Krull [Matsumura 1980, Theorem 10.4], every integrally closed subring of F is
an intersection of valuation rings of F . In this article, we describe a geometrical
approach to determining when an intersection A of valuation rings of F is a Prüfer
domain, meaning that for each prime ideal P of A, the localization AP is a valuation
ring of F . Whether an intersection of valuation rings is Prüfer is of consequence in
multiplicative ideal theory, where Prüfer domains are of central importance, and
real algebraic geometry, where the real holomorphy ring is a Prüfer domain that
expresses properties of fields involving sums of squares; see the discussion below.
Over the past eighty years, Prüfer domains have been extensively studied from
ideal-theoretic, homological and module-theoretic points of view; see, for example,
[Fontana et al. 1997; Fuchs and Salce 2001; Gilmer 1968; Knebusch and Zhang
2002; Larsen and McCarthy 1971].
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Throughout the paper F denotes a field, D is a subring of F that need not have
quotient field F , and Z is a subspace of the Zariski–Riemann space X of F/D,
the space of all valuation rings of F that contain D. The topology on X is given
by declaring the basic open sets to be those of the form {V ∈ X : t1, . . . , tn ∈ V },
where t1, . . . , tn ∈ F . We assume for technical convenience that F ∈ Z . With this
notation fixed, the focus of this article is the holomorphy ring1 A =

⋂
V∈Z V of

the subspace Z . Such a ring is integrally closed in F , and, as noted above, every
ring between D and F that is integrally closed in F occurs as the holomorphy
ring of a subspace of X. In general it is difficult to determine the structure of A
from properties of Z , topological or otherwise; see [Olberding 2007; 2008; 2011],
where the emphasis is on the case in which D is a two-dimensional Noetherian
domain with quotient field F . In this direction, there are a number of results that
are concerned with when the holomorphy ring A is a Prüfer domain with quotient
field F . Geometrically, this is equivalent to Spec(A) being an affine scheme
in X. Moreover, by virtue of the valuative criterion for properness, A is a Prüfer
domain with quotient field F if and only if there are no nontrivial proper birational
morphisms into the scheme Spec(A), an observation that motivates Temkin and
Tyomkin’s notion [2013] of Prüfer algebraic spaces.

We show in this article that the morphisms of Z (viewed as a locally ringed
space) into the projective line P1

D determine whether the holomorphy ring A of Z
is a Prüfer domain. A goal in doing so is to provide a unifying explanation for an
interesting variety of results in the literature. By way of motivation, and because
we will refer to them later, we recall these results here.

(1) Perhaps the earliest result in this direction is due to Nagata [1962, (11.11)]:
When Z is finite, the holomorphy ring A of Z is a Prüfer domain with quotient
field F .

(2) Gilmer [1969, Theorem 2.2] shows that when f is a nonconstant monic poly-
nomial over D having no root in F and each valuation ring in Z contains the set
S := {1/ f (t) : t ∈ F}, then A is a Prüfer domain with torsion Picard group and
quotient field F . Rush [2001, Theorem 1.4] has since generalized this by allowing
the polynomial f to vary with the choice of t , but at the (necessary) expense of
requiring the rational functions in S to have certain numerators other than 1. Gilmer
was motivated by a special case of this theorem due to Dress [1965], which states
that when the field F is formally real (meaning that−1 is not a sum of squares), then
the subring of F generated by {(1+ t2)−1

: t ∈ F} is a Prüfer domain with quotient
field F whose set of valuation overrings is precisely the set of valuation rings of F

1This terminology is due to Roquette [1973, p. 362]. Viewing Z as consisting of places rather than
valuation rings, the elements of A are precisely the elements of F that have no poles (i.e., do not have
value infinity) at the places in Z .
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for which −1 is not a square in the residue field. In the literature of real algebraic
geometry, the Prüfer domain thus constructed is the real holomorphy ring of F/D.
The fact that such rings are Prüfer has a number of interesting consequences for
real algebraic geometry and sums of powers of elements of F ; see, for example,
[Becker 1982; Schülting 1982]. These rings are also the only known source of
Prüfer domains having finitely generated ideals that cannot be generated by two
elements, as was shown by Schülting [1979] and Swan [1984]; the related literature
on this aspect of holomorphy rings is discussed in [Olberding and Roitman 2006].
The notion of existential closure leads to more general results on Prüfer holomorphy
rings in function fields. For references on this generalization, see [Olberding 2006].

(3) Roquette [1973, Theorem 1] proves that when there exists a nonconstant monic
polynomial f ∈ A[T ] which has no root in the residue field of V for each valuation
ring V ∈ Z (i.e., the residue fields are “uniformly algebraically non-closed”), A is
a Prüfer domain with torsion Picard group and quotient field F . Roquette [1973,
p. 362] developed these ideas as a general explanation for his principal ideal theorem,
which states that the ring of totally p-integral elements of a formally p-adic field is
a Bézout domain; that is, every finitely generated ideal is principal. In particular,
if there is a bound on the size of the residue fields of the valuation rings in Z ,
then A is a Bézout domain [Roquette 1973, Theorem 3]. Motivated by just such
a situation, Loper [1994] independently proved similar results in order to apply
them to the ring of integer-valued polynomials of a domain R with quotient field
F : Int(R)= {g(T ) ∈ F[T ] : g(R)⊆ R}.

(4) In [Olberding and Roitman 2006] it is shown that if the holomorphy ring A of
Z contains a field of cardinality greater than that of Z , then A is a Bézout domain.

In this article we offer a geometric explanation for these results that reduces all
the arguments to a question of homogeneous prime avoidance in the projective line
P1

D := Proj(D[T0, T1]). Nagata’s theorem in (1) reduces to the observation that a
finite set of points of P1

D is contained in an affine open subset of P1
D . The example

in (4) is explained similarly by showing that a “small” enough set of points in P1
D

is contained in an affine open set. And finally, in cases (2) and (3), the condition
on the residue fields guarantees that the image of each D-morphism Z → P1

D is
contained in the open affine subset (P1

D)g, where g is the homogenization of f .
To frame things geometrically, we view Z as a locally ringed space. Its structure

sheaf OZ is defined for each nonempty open subset U of Z by OZ (U )=
⋂

V∈Z V ,
while the ring of sections of the empty set is defined to be the trivial ring with 0= 1;
thus OZ is the holomorphy sheaf of Z . The restriction maps on OZ off the empty
set are simply set inclusion, and the stalks of OZ are the valuation rings in Z . The
standing assumption that F is one of the valuation rings in Z guarantees that Z
is an irreducible space; irreducibility in turn guarantees that OZ is a sheaf. (Note
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that since we are interested in the ring A =
⋂

V∈Z V , the assumption F ∈ Z is no
limitation.) When considering irreducible subspaces Y of X, we similarly treat Y
as a locally ringed space with structure sheaf defined in this way.

By a morphism we always mean a morphism in the category of locally ringed
spaces. If X and Y are locally ringed spaces with fixed morphisms α : X→Spec(D)
and β : Y → Spec(D), then a morphism φ : X→ Y is a D-morphism if α = β ◦φ.
A scheme X is a D-scheme if a morphism φ : X → Spec(D) is fixed. There is a
morphism δ= (d, d#) : Z→Spec(D) defined by letting d be the continuous map that
sends a valuation ring in Z to its center in D, and by letting d#

: OSpec(D)→ d∗OZ

be the sheaf morphism defined for each open subset U of Spec(D) by the set
inclusion d#

U : OSpec(D)(U )→ OZ (d−1(U )). Thus when considering D-morphisms
from Z to X , with X a D-scheme, we always assume that the structure morphism
Z→ Spec(D) is the one defined above.

2. Morphisms into projective space

In this section we describe the D-morphisms of Z into projective space by proving
an analogue of the fact that morphisms from schemes into projective space are
determined by invertible sheaves. Our main technical device in describing such
morphisms is the notion of a projective model, as defined in [Zariski and Samuel
1975, Chapter VI, §17]. Let t0, . . . , tn be nonzero elements of F , and for each
i = 0, 1, . . . , n, define Di = D[t0/ti , . . . , tn/ti ] and Ui = Spec(Di ). Then the
projective model of F/D defined by t0, . . . , tn is

X = {(Di )P : P ∈ Spec(Di ), i = 0, 1, . . . , n}.

The projective model X is a topological space whose basic open sets are of the
form {R ∈ X : u0, . . . , um ∈ R}, where u0, . . . , um ∈ F , and which is covered by
the open subsets {(Di )P : P ∈Ui }, i = 0, 1, . . . , n. Define a sheaf OX of rings on
X for each nonempty open subset U of X by OX (U )=

⋂
R∈U R, and let the ring

of sections of the empty set be the trivial ring with 0= 1. Since X is irreducible,
OX is a sheaf and hence (X,OX ) is a scheme, and in light of the following remark,
it is a projective scheme.

Remark 2.1. If X is a projective model defined by n + 1 elements, then there
is a closed immersion X → Pn

D. For let X be the projective model defined by
t0, . . . , tn ∈ F . For each i = 0, 1, . . . , n, let bi : D[T0/Ti , . . . , Tn/Ti ] → Di be the
D-algebra homomorphism that sends T j/Ti to t j/ti , and let

ai : Spec(Di )→ Spec(D[T0/Ti , . . . , Tn/Ti ])

be the induced continuous map of topological spaces. Then the scheme morphisms
(ai , bi ) : Spec(Di ) → Spec(D[T0/Ti , . . . , Tn/Ti ]) glue together to a morphism
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φ : X→Pn
D [Hartshorne 1977, p. 88], which, by virtue of the way it is constructed,

is a closed immersion [de Jong et al. 2005–, Lemma 01QO].

Let t0, . . . , tn be nonzero elements of F , and let X be the projective model of F/D
defined by t0, . . . , tn . For each valuation ring V in Z , there exists i = 0, 1, . . . , n
such that t j/ti ∈ V for all j , and it follows that each valuation ring V in Z dominates
a unique local ring R in the model X , meaning that R ⊆ V and the maximal
ideal of R is contained in the maximal ideal of V . The domination morphism
δ = (d, d#) : Z → X is defined by letting d be the continuous map that sends
a valuation ring in Z to the local ring in X that it dominates, and by letting
d#
: OX → d∗OZ be the sheaf morphism defined for each open subset U of Z by

the set inclusion d#
U : OX (U )→ OZ (d−1(U )).

Let γ : X → Pn
D be the closed immersion defined in Remark 2.1, and let

δ : Z → X denote the domination morphism. Then we say that the D-morphism
γ ◦ δ is the morphism defined by t0, . . . , tn . We show in Proposition 2.3 that each
D-morphism Z→ Pn

D arises in this way. Our standing assumption F ∈ Z is used
in a strong way here, in that the proposition relies on a lemma which shows that
the D-morphisms from Z into projective space are calibrated by the inclusion
morphism Spec(F)→ Z .

Lemma 2.2. Let ι : Spec(F)→ Z be the canonical morphism, let φ = ( f, f #) :

Z→ X and γ = (g, g#) : Z→ X be morphisms of locally ringed spaces, where X
is a separated scheme, and let η = f (F). Then φ = γ if and only if φ ◦ ι= γ ◦ ι if
and only if η = f (F)= g(F) and f #

η = g#
η.

Proof. Suppose that η = f (F) = g(F) and f #
η = g#

η. Let U be an affine open
subset of X containing η, and let Y = f −1(U ). Then Y is a locally ringed space
with structure sheaf OY defined for each open set W in Y by OY (W ) = OZ (W ).
We claim that φ|Y = γ |Y . Since U is affine and Y is a locally ringed space, the
morphisms φ|Y and γ |Y are equal if and only if f #

U = g#
U [Holme 2012, Theorem

10.8, p. 200]. Now since OZ (Y )⊆ OZ ,F = F and the restriction maps on the sheaf
OZ are set inclusions, for each s ∈ OX (U ) we have f #

U (s)= f #
η (s)= g#

η(s)= g#
U (s).

Thus f #
U = g#

U , and hence φ|Y = γ |Y . Finally, let {Ui } be the collection of all affine
open subsets of X that contain η. Then { f −1(Ui )} is a cover of Z , and we have
shown that φ and γ restrict to the same morphism on each of these open sets, so
we conclude that φ = γ . It is straightforward to verify that φ ◦ ι= γ ◦ ι if and only
if f (F)= g(F) and f #

η = g#
η, so the lemma follows. �

Proposition 2.3. If φ : Z → Pn
D is a D-morphism, then there exist t0, . . . , tn ∈ F

such that φ is defined by t0, . . . , tn .

Proof. Write φ= ( f, f #), let η= f (F), and let S=Pn
D =Proj(D[T0, . . . , Tn]). For

each i = 0, . . . , n, let Ui be the open affine set STi , so that S =U0 ∪ · · · ∪Un . Let
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α = (a, a#) : Spec(F)→ S be the composition of φ with the canonical morphism
Spec(F) → Z , and note that for each i , we have a#

Ui
(s) = f #

S,η(s) for all s ∈
OS(Ui ). Since α is a morphism of schemes into projective n-space over D, there
exist t0, . . . , tn ∈ F such that f #

Ui
(T j/Ti ) = t j/ti for each i, j ; see the proof of

Theorem II.7.1 of [Hartshorne 1977, p. 150]. Let X be the projective model of
F/D defined by t0, . . . , tn . Then t0, . . . , tn can be viewed as global sections of an
invertible sheaf on X that is the image of the twisting sheaf O(1) of S. By the theorem
just cited and its proof, there is then a unique D-morphism γ = (g, g#) : X → S
such that g#

U = f #
U for each open set U of S and g : X → S is the continuous

map that for each i = 0, . . . , n sends the equivalence class of a prime ideal P in
Spec(D[t0/ti , . . . , tn/ti ])⊆ X to the equivalence class of the prime ideal ( f #

Ui
)−1(P)

in Ui =Spec(D[T0/Ti , . . . , Tn/Ti ]). Then, with δ= (d, d#) : Z→ X the domination
morphism, γ ◦δ : Z→ S is a D-morphism. Moreover, g(d(F))= g(F)= η= f (F)
and (viewing F as a point in both X and Z ), (d#

◦ g#)F = d#
F ◦ g#

η = f #
η . Therefore,

by Lemma 2.2, φ = γ ◦ δ. �

Corollary 2.4. Every D-morphism φ : Z → Pn
D lifts to a unique D-morphism

φ̃ : X→ Pn
D .

Proof. Let φ : Z→ Pn
D be a D-morphism. Then by Proposition 2.3, there exist a

projective model X of F/D and a D-morphism γ : X→ Pn
D such that φ = γ ◦ δ|Z ,

where δ : Z→ X is the domination map. Since X is a projective model of F/D, each
valuation ring in X dominates X , and hence δ : Z→ X extends to the domination
morphism δ̃ : X → X . Thus φ̃ = γ ◦ δ̃ lifts φ. If there is another morphism
ψ : X→ Pn

D that lifts φ, then with ι : Spec(F)→ Z the canonical morphism,
ψ ◦ ι= φ ◦ ι= φ̃ ◦ ι, so that by Lemma 2.2, ψ = φ̃. �

Remark 2.5. By Lemma 2.2, the D-morphisms Z→ Pn
D are determined by their

composition with the morphism Spec(F)→ Pn
D. Conversely, by Corollary 2.4,

each D-morphism Spec(F)→ Z lifts to a unique morphism Z → X. Thus the
D-morphisms Z→ Pn

D are in one-to-one correspondence with the F-valued points
of Pn

D .

3. A geometrical characterization of Prüfer domains

We show in this section that if Z has the property that the image of every D-
morphism Z→ P1

D of locally ringed spaces factors through an affine scheme, then
the holomorphy ring A of Z is a Prüfer domain. A special case in which this is
satisfied is when there is a homogeneous polynomial f (T0, T1) of positive degree
d such that the image of each such morphism is contained in (P1

D) f . In this case,
we show that the Prüfer domain A has torsion Picard group.
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Theorem 3.1. The ring A =
⋂

V∈Z V is a Prüfer domain with quotient field F if
and only if every D-morphism Z→ P1

D factors through an affine scheme.

Proof. Suppose A is a Prüfer domain, and let φ : Z → P1
D be a D-morphism.

By Proposition 2.3, there exist a projective model X of F/D and a D-morphism
γ : X → P1

D such that φ = γ ◦ δ, where δ : Z → X is the domination morphism.
Since A is a Prüfer domain with quotient field F , every localization of A is a
valuation domain and hence dominates a local ring in X . Since every valuation ring
in Z contains A, it follows that φ factors through the affine scheme Spec(A).

Conversely, suppose that every D-morphism Z→ P1
D factors through an affine

scheme. Let P be a prime ideal of A. To prove that AP is a valuation domain
with quotient field F , it suffices to show that for each 0 6= t ∈ F we have t ∈ AP

or t−1
∈ AP . Let 0 6= t ∈ F , and let X be the projective model of F/D defined

by 1, t . Then by Remark 2.1, there is a closed immersion of X into P1
D. Let

φ = ( f, f #) : Z→ P1
D be the D-morphism that results from composing this closed

immersion with the domination morphism Z→ X . In particular, with ν = f (F),
we have f #

ν (T1/T0)= t and f #
ν (T0/T1)= t−1.

By assumption, there are a ring R and D-morphisms δ = (d, d#) : Z→ Spec(R)
and γ = (g, g#) : Spec(R)→P1

D such that φ= γ ◦δ. By replacing R with its image
in F under d#

η , where η=d(F), we may assume by Lemma 2.2 that R is a subring of
F and that δ is the domination morphism. Then since R is the ring of global sections
of Spec(R) and A is the ring of global sections of Z , it follows that R⊆ A, and hence
Q= R∩ P is a prime ideal of R. Let x = g(Q). Then x ∈ (P1

D)T0 or x ∈ (P1
D)T1 . In

the former case, f #
x (T1/T0)= t , and in the latter, f #

x (T0/T1)= t−1. But f #
= d#
◦g#

and d# restricts on each nonempty open subset of Spec(R) to the inclusion mapping,
so either x ∈ (P1

D)T0 , so that t = f #
x (T1/T0)= g#

x(T1/T0)∈ RQ ⊆ AP , or x ∈ (P1
D)T1 ,

so that t−1
= f #

x (T0/T1)= g#
x(T0/T1) ∈ RQ ⊆ AP . This proves that A is a Prüfer

domain with quotient field F . �

Nagata’s theorem discussed in (1) follows then from prime avoidance:

Corollary 3.2 [Nagata 1962, (11.11)]. If Z is a finite set, then A is a Prüfer domain
with quotient field F.

Proof. Let φ : Z → P1
D be a D-morphism. Then the image of φ in P1

D is finite,
so by homogeneous prime avoidance [Bruns and Herzog 1993, Lemma 1.5.10],
there exists a homogeneous polynomial f (necessarily of positive degree) in the
irrelevant ideal (T0, T1) of D[T0, T1] such that f is not in the union of the finitely
many homogeneous prime ideals corresponding to the image of Z in P1

D; i.e., the
image of φ is contained in (P1

D) f . This subset is affine [Eisenbud and Harris 2000,
Exercise III.10, p. 99], so by Theorem 3.1, A is a Prüfer domain with quotient
field F . �
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In fact, when Z is finite, A is a Bézout domain: If M is a maximal ideal of A,
then AM is a valuation domain, but since Z is finite, AM =

⋂
V∈Z V AM , which,

since AM is a valuation domain, forces AM = V for some V ∈ Z . Therefore, A has
only finitely many maximal ideals, so that every invertible ideal is principal, and
hence A is a Bézout domain.

In Theorem 3.5, we give a criterion for when A is a Prüfer domain with torsion
Picard group. In this case, each D-morphism Z → P1

D not only factors through
an affine scheme, but has image in an affine open subscheme of P1

D . For lack of a
precise reference, we note the following standard observation.

Lemma 3.3. Let X be a projective model of F/D defined by t0, . . . , tn ∈ F , and
let f (T0, . . . , Tn) ∈ D[T0, . . . , Tn] be homogeneous of positive degree d such that
f (t0, . . . , tn) 6= 0. Let

R = {0} ∪
{

h(t0, . . . , tn)
f (t0, . . . , tn)e

: e ≥ 0 and h is a homogeneous form of degree de
}
.

Then {RP : P ∈ Spec(R)} is an open affine subset of X.

Proof. Let S = Pn
D. Then S f is an open affine subset of S [Eisenbud and Harris

2000, Exercise III.10, p. 99]. By Remark 2.1, there is a closed immersion γ =
(g, g#) : X→ S such that with η = g(F), we have g#

η(T j/Ti )= t j/ti for each i , j .
Since S f is an open affine subset of S and γ is a closed immersion, g−1(S f ) is an
open affine subset of X whose ring of sections is g#

η(OS(S f )) [de Jong et al. 2005–,
Lemma 01IN]. Now OS(S f ) is the ring consisting of 0 and the rational functions of
the form h/ f e, where e > 0 and h is a homogeneous form of degree de. Moreover,
for such a rational function, since f (t0, . . . , tn) 6= 0, we have that f (T0, . . . , Tn) is
a unit in OS,η and

g#
η

(
h(T0, . . . , Tn)

f (T0, . . . , Tn)e

)
=

h(t0, . . . , tn)
f (t0, . . . , tn)e

∈ R.

Thus g#
η(OS(S f ))= R, which proves the lemma. �

Lemma 3.4. Let t0, t1, . . . , tn be nonzero elements of F , and let f be a homoge-
neous polynomial in D[T0, . . . , Tn] of positive degree d. Then the following are
equivalent.

(1) td
0 , . . . , td

n ∈ f (t0, . . . , tn)A.

(2) (t0, . . . , tn)d A = f (t0, . . . , tn)A.

(3) The image of the morphism Z→ Pn
D defined by t0, . . . , tn is in (Pn

D) f .

Proof. Let u= f (t0, . . . , tn). First we claim that (1) implies (2). If V ∈ Z , then there
is i such that ti divides in V each of t0, . . . , tn . It follows that when

∑
i ei = d for
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nonnegative integers ei , we have te0
0 te1

1 . . . ten
n ∈ td

i V . Thus by (1), te0
0 te1

1 . . . ten
n ∈ uV ,

so that te0
0 te1

1 . . . ten
n ∈ u A. Statement (2) now follows.

To see that (2) implies (3), let γ = (g, g#) : Z→ Pn
D be the morphism defined

by t0, . . . , tn . By (2), u = f (t0, . . . , tn) is nonzero. Define

R = {0} ∪
{

h(t0, . . . , tn)
ue : e ≥ 0 and h is a homogeneous form of degree de

}
,

S = {0} ∪
{

h(T0, . . . , Tn)

f (T0, . . . , Tn)e
: e ≥ 0 and h is a homogeneous form of degree de

}
,

so that (Pn
D) f = Spec(S). Let α = (a, a#) : Spec(R)→ Spec(S) be the morphism

induced by the ring homomorphism a#
: S→ R given by evaluation at t0, . . . , tn .

Observe that R⊆ A, since if h is a homogeneous form in D[T0, . . . , Tn] of degree de,
then by (2), h(t0, . . . , tn) ∈ (t0, . . . , tn)de A= ue A, so that R ⊆ A. Now let β : Z→
Spec(R) be the induced domination morphism. We claim that γ = α ◦β. Indeed,
by Lemma 3.3, Spec(R) is an affine submodel of the projective model X of F/D
defined by t0, . . . , tn , and γ factors through X . Since β is the domination mapping,
it follows that γ =α◦β, and hence the image of γ is contained in Spec(S)= (Pn

D) f .
Finally, to see that (3) implies (1), let U = (Pn

D) f and let γ = (g, g#) : Z→ Pn
D

be the morphism defined by t0, . . . , tn . By (3), Z ⊆ g−1(U ), so S, the ring of
sections of U , is mapped via g#

U into the holomorphy ring A of Z . But the image
of g#

U is R, so R ⊆ A, and hence every element of F of the form td
i /u is an element

of A, from which (1) follows. �

Theorem 3.5. The ring A=
⋂

V∈Z V is a Prüfer domain with torsion Picard group
and quotient field F if and only if for each A-morphism φ : Z → P1

A there is a
homogeneous polynomial f ∈ A[T0, T1] of positive degree such that the image of φ
is in (P1

A) f .

Proof. The choice of the subring D of F was arbitrary, so for the sake of this
proof we may assume without loss of generality that D = A and apply then the
preceding results to A. Suppose that for each A-morphism φ : Z → P1

A there
exists a homogeneous polynomial f ∈ A[T0, T1] of positive degree such that the
image of φ is in the affine subset (P1

A) f . By Theorem 3.1, A is a Prüfer domain
with quotient field F . Thus, to prove that A has torsion Picard group, it suffices
to show that for each two-generated ideal (t0, t1)A of A, there exists e > 0 such
that (t0, t1)e A is a principal ideal (see, for example, the proof of Theorem 2.2 of
[Gilmer 1969]). Let t0, t1 ∈ F , and let φ : Z → P1

A be the morphism defined by
t0, t1. Then by assumption, there exists a homogeneous polynomial f ∈ A[T0, T1]

of positive degree d such that the image of Z in P1
A is contained in (P1

A) f . Thus
by Lemma 3.4, (t0, t1)d A is a principal ideal.
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Conversely, let φ : Z→ P1
A be an A-morphism. Then by Proposition 2.3, there

exist t0, t1 ∈ F such that φ is defined by t0, t1. Since A has torsion Picard group and
quotient field F , there exists d > 0 such that (t0, t1)d A= u A for some u ∈ (t0, t1)d A.
Since u is an element of (t0, t1)d A, there exists a homogeneous polynomial f ∈
A[T0, T1] of degree d such that f (t0, t1)= u, and hence by Lemma 3.4, the image
of the morphism φ is contained in (P1

A) f . �

For applications such as those discussed in (2) and (3) of the introduction, one
needs to work with D-morphisms into the projective line over D, rather than A.
This involves a change of base, but causes no difficulties when verifying that A is a
Prüfer domain. However, the converse of Theorem 3.5 (which is not needed in the
applications in (2) and (3) of the introduction) is lost in the base change.

Corollary 3.6. If for each D-morphism φ : Z → P1
D there exists a homogeneous

polynomial f ∈ D[T0, T1] of positive degree such that the image of Z is contained
in (P1

D) f , then A is a Prüfer domain with torsion Picard group and quotient field F.

Proof. Let φ : Z→P1
A be a D-morphism, and let α :P1

A→P1
D be the change of base

morphism. By assumption, there exists a homogeneous polynomial f ∈ D[T0, T1]

such that the image of α◦φ is contained in (P1
D) f . Then the image of φ is contained

in (P1
A) f , and the corollary follows from Theorem 3.1. �

Let n be a positive integer. An abelian group G is an n-group if each element of
G has finite order and this order is divisible by only such primes that also appear as
factors of n. If A is a Prüfer domain with quotient field F , then the Picard group of
A is an n-group if and only if for each t ∈ F there exists k > 0 such that (A+ t A)n

k

is a principal fractional ideal of A [Roquette 1973, Lemma 1].

Remark 3.7. If each homogeneous polynomial f arising as in the statement of
the corollary can be chosen with degree ≤ n (n fixed), then the Picard group of
the Prüfer domain A is an n-group. For when t ∈ F and φ : Z → P1

D is the
D-morphism defined by 1, t , then with f the polynomial of degree ≤ n given
by the corollary, Lemma 3.4 shows that (A+ t A)n is a principal fractional ideal
of A. In particular, when for each D-morphism φ : Z → P1

D there exists a linear
homogeneous polynomial f ∈ A[T0, T1] such that the image of φ is contained in
(P1

A) f , the ring A is a Bézout domain with quotient field F .

The next corollary is a stronger version of statement (4) in the introduction.

Corollary 3.8. If D is a local domain and Z has cardinality less than that of the
residue field of D, then A is a Bézout domain with quotient field F.

Proof. Let φ : Z → P1
D be a D-morphism. For each P ∈ Proj(D[T0, T1]), let

1P = {d ∈ D : T0+ dT1 ∈ P}. Then all the elements of 1P have the same image
in the residue field of D. Indeed, if d1, d2 ∈1P , then
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(d1− d2)T1 = (T0+ d1T1)− (T0+ d2T1) ∈ P.

If T1 ∈ P , then since T0+d1T1 ∈ P , this forces (T0, T1)⊆ P , a contradiction to the
fact that P ∈ Proj(D[T0, T1]). Therefore, T1 6∈ P , so that d1− d2 ∈ P ∩ D ⊆m :=

maximal ideal of D, which shows that all the elements of1P have the same image in
the residue field of D. Let X denote the image of φ in P1

D . Then since |X |< |D/m|,
there exists d ∈ D \

⋃
P∈X 1P , and hence f (T0, T1) := T0+dT1 6∈ P for all P ∈ X .

Thus the image of φ is in (P1
D) f , and by Corollary 3.6 and Remark 3.7, A is a

Bézout domain with quotient field F . �

The following corollary is a small improvement of a theorem of Rush [2001,
Theorem 1.4]. Whereas the theorem of Rush requires that 1, t, t2, . . . , tdt ∈ ft(t)A,
we need only that 1, tdt ∈ ft(t)A.

Corollary 3.9. The ring A is a Prüfer domain with torsion Picard group and
quotient field F if and only if for each 0 6= t ∈ F , there is a polynomial ft(T )∈ A[T ]
of positive degree dt such that 1, tdt ∈ ft(t)A.

Proof. If A is a Prüfer domain with torsion Picard group and quotient field F , then
for each 0 6= t ∈ F , there is dt > 0 such that (1, t)dt A is a principal fractional ideal
of A. Since A is a Prüfer domain, local verification shows that (1, t)dt A= (1, tdt )A,
and it follows that there is a polynomial ft(T ) ∈ A[T ] of positive degree dt such
that 1, tdt ∈ ft(t)A.

To prove the converse, we use Theorem 3.5. Let φ : Z→ P1
D be a D-morphism.

Then by Proposition 2.3, there exists 0 6= t ∈ F such that φ is defined by 1, t . By
assumption, there is a polynomial ft(T ) ∈ A[T ] of positive degree dt such that
1, tdt ∈ ft(t)A. Set gt(T0, T1)= ft(T0/T1)T

dt
1 , so that gt(T0, T1) is a homogeneous

form of positive degree. Then 1, tdt ∈ gt(t, 1)A, and by Lemma 3.4, the image of
φ is in (P1

A)g. By Theorem 3.5, A is a Prüfer domain with torsion Picard group
and quotient field F . �

Rush [2001, Theorem 2.2] proves that when f is a monic polynomial of positive
degree in A[T ], then (a) {1/ f (t) : t ∈ F} ⊆ A if and only if (b) the image of f in
(V/MV )[T ] has no root in V/MV for each V ∈ Z if and only if (c) A is a Prüfer
domain and f (a) is a unit in A for each a ∈ A. As Rush points out, Gilmer’s
theorem discussed in (2) of the introduction follows quickly from the equivalence
of (a) and (b) and Corollary 3.9; see the discussion on pp. 314–315 of [Rush 2001].
Similarly, the results of Loper and Roquette described in (3) of the introduction
also follow from Corollary 3.9 and the equivalence of (a) and (b). Thus all the
constructions in (1)–(4) of the introduction are recovered by the results in this
section.
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4. The case where D is a local ring

This section focuses on the case where D is a local ring that is integrally closed
in F . (By a local ring, we mean a ring that has a unique maximal ideal; in particular,
we do not require local rings to be Noetherian.) In such a case, as is noted in the
proof of Theorem 4.2, every proper subset of closed points of P1

D is contained
in an affine open subset of P1

D, a fact which leads to a stronger result than could
be obtained in the last section. To prove the theorem, we need a coset version of
homogeneous prime avoidance. The proof of the lemma follows Gabber, Liu and
Lorenzini [Gabber et al. 2013] but involves a slight modification to permit cosets.

Lemma 4.1. (cf. [Gabber et al. 2013, Lemma 4.11]) Let R =
⊕
∞

i=0 Ri be a graded
ring, and let P1, . . . , Pn be incomparable homogeneous prime ideals not contain-
ing R1. Let I =

⊕
∞

i=0 Ii be a homogeneous ideal of R such that I 6⊆ Pi for each
i = 1, . . . , n. Then there exists e0 > 0 such that for all e ≥ e0 and r1, . . . , rn ∈ R,
Ie 6⊆

⋃n
i=1(Pi + ri ).

Proof. The proof is by induction on n. For the case n = 1, let s be a homogeneous
element in I \ P1, let e0 = deg s, let e ≥ e0 and let t ∈ R1 \ P1. Suppose that
r1 ∈ R and Ie ⊆ P1 + r1. Then since 0 ∈ Ie, this forces r1 ∈ P1 and hence
ste−e0 ∈ Ie ⊆ P1, a contradiction to the fact that neither s nor t is in P1. Thus
Ie 6⊆ P1+ r1. Next, let n > 1, and suppose that the lemma holds for n− 1. Then
since the Pi are incomparable, IP1 . . . Pn−1 6⊆ Pn , and by the case n= 1, there exists
f0 > 0 such that for all f ≥ f0 and rn ∈ R we have (IP1 . . . Pn−1) f 6⊆ (Pn + rn).

Also, by the induction hypothesis, there exists g0 > 0 such that for all g ≥ g0

and r1, . . . , rn−1 ∈ R we have (IPn)g 6⊆
⋃n−1

i=1 (Pi + ri ). Let e0 = max{ f0, g0},
let e ≥ e0 and let r1, . . . , rn ∈ R. Then in light of the above considerations, we
may choose a ∈ (IP1 . . . Pn−1)e \ (Pn + rn) and b ∈ (IPn)e \

⋃n−1
i=1 (Pi + ri ). Then

a+ b ∈ Ie \
⋃n

i=1(Pi + ri ). �

Theorem 4.2. Suppose D is local and integrally closed in F and only finitely many
valuation rings in Z do not dominate D. If no D-morphism Z → P1

D has every
closed point of P1

D in its image, then A =
⋂

V∈Z V is a Prüfer domain with torsion
Picard group and quotient field F.

Proof. Let S = D[T0, T1]. By Corollary 3.6, it suffices to show that for each
D-morphism φ : Z→ P1

D, there is a homogeneous polynomial f ∈ S of positive
degree such that the image of φ is in (P1

D) f . To this end, let φ : Z → P1
D be a

D-morphism. By assumption, there is a closed point x ∈ P1
D not in the image of φ.

Let π : P1
D→ Spec(D) be the structure morphism. Since π is a proper morphism,

π is closed and hence π(x) is a closed point in Spec(D). Thus since D is local,
π(x) is the maximal ideal m of D. Let k be the residue field of D. Then, with
Q the homogeneous prime ideal in S corresponding to x , we must have m ⊆ Q,
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and hence Proj(k[T0, T1]) is isomorphic to a closed subset of P1
D containing Q.

Since a homogeneous prime ideal in Proj(k[T0, T1]) is generated by a homogeneous
polynomial in k[T0, T1], it follows that there is a homogeneous polynomial g ∈ S
of positive degree d such that Q = (m, g)S. Since, as noted above, every prime
ideal in P1

D = Proj(S) corresponding to a closed point in P1
D contains m, it follows

that every closed point in P1
D distinct from x is contained in (P1

D)g. Thus if every
valuation ring in Z other than F dominates D, then the image of φ is contained in
(P1

D)g, which proves the theorem.
It remains to consider the case where Z also contains, in addition to the valuation

ring F , valuation rings V1, . . . , Vn that are not centered on the maximal ideal m
of D. Let P1, . . . , Pn be the homogeneous prime ideals of S that are the images
under φ of V1, . . . , Vn , respectively. Let I = mS. No Vi dominates D, so since
φ is a morphism of locally ringed spaces, I 6⊆ Pi for all i = 1, . . . , n. We may
assume P1, . . . , Pk are the prime ideals that are maximal in the set {P1, . . . , Pn}.
Then by Lemma 4.1, there exists e > 0 such that Ide 6⊆

⋃k
i=1(Pi + ge). Let h be

a homogeneous element in Ide \
⋃k

i=1(Pi + ge). Since P1, . . . , Pk are maximal in
{P1, . . . , Pn}, it follows that h ∈ Ide \

⋃n
i=1(Pi + ge). Set f = h− ge. Then f 6∈ Pi

for all i . In particular, f 6= 0, and hence f is homogeneous of degree de. Since
f 6∈ P1 ∪ · · · ∪ Pn , we have P1, . . . , Pn ∈ (P

1
D) f .

Finally we show that every closed point of P1
D distinct from x is in (P1

D) f . Let
L be a prime ideal in Proj(S) corresponding to a closed point distinct from x . Then
L 6= Q, and to finish the proof, we need only show that f 6∈ L . As noted above,
m⊆ L , so if f ∈ L , then since h ∈mS, we have ge

∈ L . But then Q = (m, g)S⊆ L ,
forcing Q = L since Q is maximal in Proj(S). This contradiction implies that
f 6∈ L , and hence every closed point of P1

D distinct from x is in (P1
D) f , which

completes the proof. �

Remark 4.3. When the valuation rings in Z do not dominate D, the theorem can
still be applied if there exists Y ⊆ X containing F such that (a) each valuation
ring in Y other than F dominates D, (b) each valuation ring in Z specializes to a
valuation ring in Y , and (c) no D-morphism φ : Y → P1

D has every closed point in
its image. For by the theorem, the holomorphy ring of Y is a Prüfer domain with
torsion Picard group and quotient field F . As an overring of the holomorphy ring
of Y , the holomorphy ring of Z has these same properties also.

The following corollary shows how the theorem can be used to prove that real
holomorphy rings can be intersected with finitely many nondominating valuation
rings and the result remains a Prüfer domain with quotient field F . In general
an intersection of a Prüfer domain and a valuation domain need not be a Prüfer
domain. For example, when D is a two-dimensional local Noetherian UFD with
quotient field F and f is an irreducible element of D, then D f is a PID and D( f )
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is a valuation ring, but D = D f ∩ D( f ), so that the intersection is not Prüfer. This
example can be modified to show more generally that for this choice of D, there
exist quasicompact schemes in X that are not affine.

Corollary 4.4. Suppose D is essentially of finite type over a real-closed field and
that F and the residue field of D are formally real. Let H be the real holomorphy
ring of F/D. Then for any valuation rings V1, . . . , Vn ∈ X not dominating D, the
ring H ∩ V1 ∩ · · · ∩ Vn is a Prüfer domain with torsion Picard group and quotient
field F.

Proof. Each formally real valuation ring in X specializes to a formally real val-
uation ring dominating D (this can be deduced, for example, from Theorem 23
of [Kuhlmann 2004]). Let Y be the set of all the formally real valuation rings
dominating D, let Z = Y ∪{F, V1, . . . , Vn}, and let φ : Z→P1

D be a D-morphism.
Then the image of Y under φ is contained in (P1

D) f , where f (T0, T1)= T 2
0 + T 2

1 .
Because V1, . . . , Vn do not dominate D, they are not mapped by φ to closed points
of P1

D . Thus the corollary follows from Theorem 4.2. �

We include the last corollary as more of a curiosity than an application. Suppose
that D has quotient field F . A valuation ring V in X admits local uniformization if
there exists a projective model X of F/D such that V dominates a regular local
ring in X . Thus if Spec(D) has a resolution of singularities, then every valuation
ring in X admits local uniformization. If D is essentially of finite type over a field
k of characteristic 0, then D has a resolution of singularities by the theorem of
Hironaka, but when k has positive characteristic, it is not known in general whether
local uniformization holds in dimension greater than 3; see, for example, [Cutkosky
2004; Temkin 2013].

Corollary 4.5. Suppose that D is a quasiexcellent integrally closed local Noether-
ian domain with quotient field F. If there exists a valuation ring in X that dominates
D but does not admit local uniformization, and Y consists of all such valuation
rings, then the holomorphy ring of Y is a Prüfer domain with torsion Picard group.

Proof. Let Z = Y ∪ {F}, and let φ : Z → P1
D be a D-morphism. Then by

Proposition 2.3, φ factors through a projective model X of F/D. Since Y is
nonempty, the projective model X has a singularity, and thus since D is quasiex-
cellent, the singular points of X are contained in a proper nonempty closed subset
of X . In particular, there are closed points of X that are not in the image of the
domination map Z→ X , and hence there are closed points of P1

D that are not in the
image of φ. Therefore, by Theorem 4.2, A is a Prüfer domain with torsion Picard
group and quotient field F . �

In particular, all the valuation rings that dominate D and do not admit local
uniformization lie in an affine scheme in X.
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