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We consider complete multiple warped product type Riemannian metrics
on manifolds of the form R2 × M2 × · · · × Mr , where r ≥ 2 and Mi are
arbitrary closed Einstein spaces with positive scalar curvature. We con-
struct on these spaces a family of non-Kähler, non-Einstein, expanding gra-
dient Ricci solitons with conical asymptotics as well as a family of Einstein
metrics with negative scalar curvature. The 2-dimensional Euclidean space
factor allows us to obtain homeomorphic but not diffeomorphic examples
which have analogous cone structure behaviour at infinity. We also produce
numerical evidence for complete expanding solitons on the vector bundles
whose sphere bundles are the twistor or Sp(1) bundles over quaternionic
projective space.

0. Introduction

In [Buzano et al. 2013] we constructed complete steady gradient Ricci soliton
structures (including Ricci-flat metrics) on manifolds of the form R2

×M2×· · ·×Mr ,
where Mi , 2 ≤ i ≤ r , are arbitrary closed Einstein manifolds with positive scalar
curvature. We also produced numerical solutions of the steady gradient Ricci soliton
equation on certain nontrivial R3 and R4 bundles over quaternionic projective spaces.
In the current paper we will present the analogous results for the case of expanding
solitons on the same underlying manifolds.

Recall that a gradient Ricci soliton is a manifold M together with a smooth
Riemannian metric g and a smooth function u, called the soliton potential, which
give a solution to the equation

(0.1) Ric(g)+Hess(u)+ ε
2

g = 0

for some constant ε. The soliton is then called expanding, steady, or shrinking
according to whether ε is greater than, equal to, or less than zero.
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A gradient Ricci soliton is called complete if the metric g is complete. The
completeness of the vector field ∇u follows from that of the metric; see [Zhang
2009]. If the metric of a gradient Ricci soliton is Einstein, then either Hess u = 0
(i.e., ∇u is parallel) or we are in the case of the Gaussian soliton; see [Petersen and
Wylie 2009; Pigola et al. 2011].

At present most examples of non-Kählerian expanding solitons arise from left-
invariant metrics on nilpotent and solvable Lie groups (resp. nilsolitons, solvsoli-
tons), as a result of work by J. Lauret [2001; 2011], M. Jablonski [2013], and many
others (see the survey [Lauret 2009]). These expanders are however not of gradient
type, i.e., they satisfy the more general equation

(0.2) Ric(g)+ 1
2
LX g+ ε

2
g = 0,

where X is a vector field on M and L denotes Lie differentiation.
A large class of complete, non-Einstein, non-Kählerian expanders of gradient

type (with dimension ≥ 3) consists of an r-parameter family of solutions to (0.1)
on Rk+1

×M2×· · ·×Mr where k > 1 and Mi are positive Einstein manifolds. The
special case r = 1 (i.e., no Mi ) is due to R. Bryant [2005] and the solitons have
positive sectional curvature. The r = 2 case is due to Gastel and Kronz [2004],
who adapted Böhm’s construction of complete Einstein metrics with negative scalar
curvature to the soliton case. The case of arbitrary r was treated in [Dancer and
Wang 2009a] via a generalization of the dynamical system studied by Bryant. The
soliton metrics in this family are all of multiple warped product type. In other
words, the manifold is thought of as being foliated by hypersurfaces of the form
Sk
×M2×· · ·×Mr each equipped with a product metric depending smoothly on a

real parameter t . As k ≥ 2 in these works, the hypersurfaces and the asymptotic
cones have finite fundamental group.

More recently, Schulze and Simon [2013] constructed expanding gradient Ricci
solitons with nonnegative curvature operator in arbitrary dimensions by studying
the scaling limits of the Ricci flow on complete open Riemannian manifolds with
nonnegative bounded curvature operator and positive asymptotic volume ratio.

As pointed out in [Buzano et al. 2013], the situation of multiple warped products
on nonnegative Einstein manifolds is rather special because of the automatic lower
bound on the scalar curvature of the hypersurfaces. This leads, in the case where
all factors have positive scalar curvature, k > 1, to definiteness of certain energy
functionals occurring in the analysis of the dynamical system arising from (0.1),
and hence to coercive estimates on the flow. In the present case, where one factor is
a circle, i.e., k = 1, we can pass, as in [Buzano et al. 2013], to a subsystem where
coercivity holds, and this is enough for the analysis to proceed. The new solitons
obtained, like those of [Dancer and Wang 2009a], have conical asymptotics and are
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not of Kähler type (Theorem 2.14). We note that the lowest-dimensional solitons we
obtain form a 2-parameter family on R2

× S2. The special case r = 1 was analysed
earlier by the physicists Gutperle, Headrick, Minwalla and Schomerus [Gutperle
et al. 2003].

As in [Buzano et al. 2013], we also obtain a family of solutions to our soli-
ton equations that yield complete Einstein metrics of negative scalar curvature
(Theorem 3.1). These are analogous to the metrics discovered by Böhm [1999].
Recall that for Böhm’s construction the fact that the hyperbolic cone over the
product Einstein metric on the hypersurface acts as an attractor plays an important
role in the convergence proof for the Einstein trajectories. When k = 1, however, no
product metric on the hypersurface can be Einstein with positive scalar curvature,
so the hyperbolic cone construction cannot be exploited directly. It turns out that
the analysis of the soliton case already contains most of the analysis required for
the Einstein case. The new Einstein metrics we obtain have exponential volume
growth.

The fact that k = 1 (rather than k > 1) allows for some new phenomena displayed
by the asymptotic cones of some of our expander and Einstein examples. This
is a consequence of the striking observation of Kwasik and Schultz [2002] that
for an exotic sphere 6 and the standard sphere S of the same dimension, R2

×6

is not diffeomorphic to R2
× S, but if we replace R2 by R3 in the products the

resulting spaces do become diffeomorphic. In fact, the open cones R+×S1
×6 and

R+× S1
× S are also homeomorphic but not diffeomorphic. As a result, we obtain

examples of pairs of expanders and negative Einstein manifolds whose asymptotic
cones are also homeomorphic but not diffeomorphic. These results are described in
greater detail at the end of Section 3; see Corollary 3.2 and Proposition 3.3.

To make further progress in the search for expanders, we need to consider more
complicated hypersurface types where the scalar curvature may not be bounded
below. In [Buzano et al. 2013] we carried out numerical investigations of steady
solitons where the hypersurfaces are the total spaces of Riemannian submersions
for which the hypersurface metric involves two functions, one scaling the base and
one the fibre of the submersion. We now look numerically at expanding solitons
with such hypersurface types, in particular where the hypersurfaces are S2 or S3

bundles over quaternionic projective space. We produce numerical evidence of
complete expanding gradient Ricci soliton structures in these cases.

Before undertaking our theoretical and numerical investigations, we first prove
some general results about expanding solitons of cohomogeneity one type. Some
of the results follow from properties of general expanding gradient Ricci solitons.
However, the proofs are much simpler and sometimes the statements are sharper,
which is helpful in numerical studies. The results include monotonicity and con-
cavity properties for the soliton potential similar to those proved in [Buzano et al.



372 BUZANO, DANCER, GALLAUGHER AND WANG

2013] in the steady case, as well as an upper bound for the mean curvature of the
hypersurfaces. To derive this bound, we need to know that complete non-Einstein
expanding gradient Ricci solitons have infinite volume. We include a proof of this
fact here (Proposition 1.22) since we were not able to find an explicit statement in
the literature. Finally we derive an asymptotic lower bound for the gradient of the
soliton potential, which is in turn used to exhibit a general Lyapunov function for
the cohomogeneity one expander equations.

1. Background on cohomogeneity one expanding solitons

We briefly review the formalism [Dancer and Wang 2011] for Ricci solitons of
cohomogeneity one. We work on a manifold M with an open dense set foliated by
equidistant diffeomorphic hypersurfaces Pt of real dimension n. The dimension
of M , the manifold where we construct the soliton, is therefore n+ 1. The metric
is then of the form ḡ = dt2

+ gt , where gt is a metric on Pt and t is the arclength
coordinate along a geodesic orthogonal to the hypersurfaces. This set-up is more
general than the cohomogeneity one ansatz, as it allows us to consider metrics with
no symmetry provided that appropriate additional conditions on Pt are satisfied;
see the following as well as [Dancer and Wang 2011, Remarks 2.18, 3.18]. We will
also suppose that u is a function of t only.

We let rt denote the Ricci endomorphism of gt , defined by Ric(gt)(X, Y ) =
gt(rt(X), Y ) and viewed as an endomorphism via gt . Also let L t be the shape
operator of the hypersurfaces, defined by the equation ġt = 2gt L t where gt is
regarded as an endomorphism with respect to a fixed background metric Q. The
Levi-Civita connections of ḡ and gt will be denoted by ∇ and ∇ respectively. The
relative volume v(t) is defined by dµgt = v(t) dµQ

We assume that the scalar curvature St = tr(rt) and the mean curvature tr(L t)

(with respect to the normal ν = ∂/∂t) are constant on each hypersurface. These
assumptions hold, for example, if M is of cohomogeneity one with respect to an
isometric Lie group action. They are satisfied also when M is a multiple warped
product over an interval.

The gradient Ricci soliton equation now becomes the system

− tr L̇ − tr(L2)+ ü+ 1
2ε = 0,(1.1)

r − (tr L)L − L̇ + u̇L + 1
2ε I= 0,(1.2)

d(tr L)+ δ∇L = 0.(1.3)

The first two equations represent the components of the equation in the directions
normal and tangent to the hypersurfaces P , respectively. The third equation repre-
sents the equation in mixed directions — here δ∇L denotes the codifferential for
T P-valued 1-forms.
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In the warped product case the final equation involving the codifferential automat-
ically holds. This is also true for cohomogeneity one metrics that are monotypic, i.e.,
when there are no repeated real irreducible summands in the isotropy representation
of the principal orbits; see [Bérard-Bergery 1982, Proposition 3.18].

There is a conservation law

(1.4) ü+ (−u̇+ tr L) u̇− εu = C

for some constant C . Using our equations we may rewrite this as

(1.5) S+ tr(L2)− (u̇− tr L)2− εu+ 1
2(n− 1)ε = C.

where S := tr(rt) is the scalar curvature S of the principal orbits. If R denotes the
scalar curvature of the ambient metric ḡ, then

R =−2 tr L̇ − tr(L2)− (tr L)2+ S.

We can deduce the equality

(1.6) R+ u̇2
+ εu =−C − ε

2
(n+ 1).

We let ξ denote the dilaton mean curvature

ξ := −u̇+ tr L .

This is the mean curvature of the dilaton volume element e−udµḡ. It is often useful
to define a new independent variable s by

(1.7) d
ds
:=

1
ξ

d
dt
,

and use a prime to denote d/ds. We note that (1.1) implies that ξ̇ =− tr(L2)+ ε/2.
It is also useful, following [Dancer et al. 2013], to introduce the quantity

E := C + εu.

The conservation law may now be rewritten (for nonzero ε) as

(1.8) Ë + ξ Ė − εE = 0.

Note that, for a function t 7→ f (t), the quantity f̈ + ξ ḟ is just the u-Laplacian in
the sense of metric measure spaces.

Another useful quantity is the normalised mean curvature

H= tr L
ξ
= 1+ u̇

ξ
= 1+ u′,

which was introduced in [Dancer and Wang 2009a; Dancer et al. 2013].
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We now specialise to the case of expanding solitons, that is,

ε > 0.

We shall consider complete noncompact expanding solitons with one special orbit.
We may take the interval I over which t ranges to be [0,∞) with the special orbit
placed at t = 0. Let k denote the dimension of the collapsing sphere at t = 0. We
will moreover assume in this section that u(0)= 0, since adding a constant to the
soliton potential does not affect the equations.

A basic result of B.-L. Chen [2009] together with the strong maximum principle
says that for a non-Einstein expanding gradient Ricci soliton R >− ε2(n+ 1). So
we deduce from (1.6) that

E < 0 and (u̇)2 <−E := −(C + εu).

Using the first inequality and the smoothness conditions at t = 0, we find as in the
steady case that ü(0)=C/(k+1) < 0, so completeness imposes restrictions on our
initial conditions.

Integrating the second inequality and using the initial conditions yield

(1.9) 0≤−u(t) < ε

4
t2
+
√
−Ct

and

(1.10) |u̇|< ε

2
t +
√
−C .

These are just the cohomogeneity one versions of general estimates of the potential
due to Z.-H. Zhang [2009].

Proposition 1.11. For a non-Einstein, complete, expanding gradient Ricci soliton of
cohomogeneity one with a special orbit, the soliton potential u is strictly decreasing
and strictly concave on (0,∞).

Proof. The conservation law (1.8) and the fact that E is negative and ε is positive
show that u is strictly concave on a neighbourhood of each critical point t0. As
we noted above, we also have concavity at the special orbit t = 0. Now, as in the
steady case [Buzano et al. 2013], we see there are no critical points of u in (0,∞).
As u̇(0)= 0, we see u is strictly decreasing on (0,∞).

Now set y = u̇ and differentiate (1.4); using (1.1) we obtain

ÿ+ ξ ẏ−
(
ε

2
+ tr(L2)

)
y = 0.

In particular, ÿ+ ξ ẏ < 0, since y is negative. Integrating shows ve−u ẏ is strictly
decreasing, where we recall that v is the relative volume. As t tends to 0, the
smoothness conditions imply that ve−u ẏ tends to 0, so ẏ = ü is negative, as
required. �
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Our next result is inspired by the work of Munteanu and Sesum [2013] for the
case of steady solitons.

Proposition 1.12. For a non-Einstein, complete, expanding gradient Ricci soliton
of cohomogeneity one with a special orbit, the volume growth is at least logarithmic.

Proof. Let Mt = π
−1([0, t]), where π is the projection of M onto the orbit space I .

We consider the integral

f (t) :=
∫

Mt

(
R+ ε

2
(n+ 1)

)
dµḡ

As we are considering non-Einstein solitons the integrand is positive.
Let t0 > 0 and let b := f (t0). Using the trace of the soliton equation and also

the divergence theorem we have, for t ≥ t0,

0< b ≤ f (t)=−
∫

Mt

4u dµḡ

=

∫
∂Mt

(∇u) ·
(
−
∂

∂t

)
dµḡ

∣∣
∂Mt

= |u̇| v(t)

<
(
ε

2
t +
√
−C

)
v(t)

where we use (1.10) in the last line. Hence v(t) > b/
(
ε
2 t +
√
−C

)
, and integrating

yields

vol(Mt) > vol(Mt0)−
2b
ε

log
(
ε

2
t0+
√
−C

)
+

2b
ε

log
(
ε

2
t +
√
−C

)
. �

Proposition 1.13. Let (M, ḡ, u) be a non-Einstein, complete, expanding gradient
Ricci soliton of cohomogeneity one with a special orbit. Then there exists t1 > 0
such that on (t1,∞) we have tr L <

√
nε/2.

Proof. By Cauchy–Schwartz and the concavity result, we have

(1.14) d
dt
(tr L) < ε

2
− tr(L2)≤

ε

2
−

1
n
(tr L)2.

Note that by the smoothness conditions tr L is strictly decreasing near t = 0, and
its limit as t tends to zero from above is +∞.

(i) First let us assume that d(tr L)/dt is nonnegative at some t1. The inequality
above shows that |tr L|2 < ε

2 n at t = t1.
Let us consider the solutions of the equation

(1.15) ḣ = ε
2
−

1
n

h2.

These are the family of increasing functions
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h(t)=
√
εn
2

a exp(t
√

2ε/n)− 1
a exp(t

√
2ε/n)+ 1

,

where a is a positive constant, as well as the constant functions ±
√
εn/2 which

form the bounding envelope for this family. Hence tr L ≤ h∗(t) <
√
εn/2, where

h∗(t) is the solution to (1.15) which agrees with tr L at t1.

(ii) Next suppose that d(tr L)/dt is always negative. Now if tr L is ever zero then it is
negative and bounded away from zero on some semi-infinite interval. Recalling that
tr L= v̇/v and integrating, we see that the soliton volume is finite, which contradicts
Proposition 1.12. So tr L is positive on (0,∞) and, using Proposition 1.11, we
see ξ is also positive on this interval. By [Pigola et al. 2011, Theorem 11], ξ tends
to infinity as t tends to∞. But ξ also tends to infinity as t tends to zero, so we
have a minimum t1 where ξ̇ vanishes. Now (1.1) shows tr(L2) = ε/2 at t1 and
Cauchy–Schwartz shows (tr L)2 ≤ nε/2 at t1. As tr L is decreasing, we have the
desired result. �

Remark 1.16. This bound on tr L is best possible, at least if we allow the solitons
to be Einstein. Indeed, the negative scalar curvature Einstein metrics of Böhm
[1999] give exactly this bound, as tr L is asymptotic to nε/2.

Next we consider properties of the Lyapunov function F0, which was introduced
by Böhm [1999] for the Einstein case and was subsequently studied in [Dancer
et al. 2013; Buzano et al. 2013] for the soliton case. Note that this function was
denoted by F in [Dancer et al. 2013].

Proposition 1.17. Let F0 denote the function v2/n
(
S+ tr((L(0))2)

)
defined on the

velocity phase space of the cohomogeneity one expanding gradient Ricci soliton
equations, with L(0) representing the trace-free part of L. Then along the trajectory
of a complete smooth non-Einstein expanding soliton, F0 is nonincreasing for
sufficiently large t.

Proof. The formula for dF0/dt in [Dancer et al. 2013, Proposition 2.17] shows
that the proposition would follow if, for sufficiently large t , one can show that

ξ −
1
n

tr L =−u̇+ n−1
n

tr L ≥ 0.

We first note that tr L is eventually bounded below by −
√
εn/2. Otherwise, at

some t = t1 > 0, tr L ≤ −
√
εn/2 and (1.14) shows that this inequality continues

to hold from t1 onwards. But this would imply that the soliton has finite volume,
contradicting Proposition 1.12.

We are now done since part (i) of the next proposition shows that |u̇| = −u̇
grows at least linearly for sufficiently large t . In particular, for large enough t , F0

fails to be strictly decreasing iff the shape operator of the hypersurfaces become
diagonal. �
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Proposition 1.18. Let (M, ḡ, u) be a complete, non-Einstein, expanding gradient
Ricci soliton of cohomogeneity one with a special orbit. Suppose t1 > 2

√
5/ε and

on [t1,+∞) we have an upper bound λ0 > 0 for tr L. Set a := λ0+
√
−C. Then on

[t1,+∞) we have

(i) |∇u| = −u̇(t) > 9
10

(
−u̇(t1)
ε
2 t1+ a

)(
ε

2
t + a

)
,

(ii) ü+ ε
2
=−Ricḡ

(
∂

∂t
,
∂

∂t

)
≤
ε

2

(
1+ 9

10
u̇(t1)
ε
2 t1+ a

)
.

Proof. By assumption and the upper bound (1.10) we have ξ < ε
2 t + a. Since

ẏ = ü < 0 and y = u̇ < 0 by Proposition 1.11, we see that y satisfies the differential
inequality

ÿ+
(
ε

2
t + a

)
ẏ− ε

2
y < 0.

We will now compare y with solutions of the corresponding equation

(1.19) ẍ +
(
ε

2
t + a

)
ẋ − ε

2
x = 0,

which can be solved explicitly. This is because, if we differentiate this equation,
we obtain

d3x
dt3 +

(
ε

2
t + a

)
ẍ = 0,

from which we can solve for ẍ . Accordingly, upon integration and using (1.19), we
obtain

(1.20) x(t)=−
(
ε

2
t + a

)( c0
ε
2 t1+ a

− c1e(ε/4)t
2
1+at1

∫ t

t1

e−(ε/4)τ
2
−aτ(

ε
2τ + a

)
2

dτ
)
,

where c0 and c1 are arbitrary constants.
In order to apply [Protter and Weinberger 1984, Theorem 13, p. 26], we must

choose x(t1)≥ y(t1)= u̇(t1) and ẋ(t1)≥ ẏ(t1)= ü(t1). Since x(t1)=−c0, we can
maximize c0 by choosing x(t1)= u̇(t1). It follows that

c1 =−ẍ(t1)=−
ε

2
x(t1)+

(
ε

2
t1+ a

)
ẋ(t1)≥−

ε

2
u̇(t1)+

(
ε

2
t1+ a

)
ü(t1).

In particular, an admissible choice for c1 is c1 =
ε
2 c0 > 0. With this choice, it

remains to find an upper bound for the integral in (1.20).
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To do this, we integrate by parts three times and then throw away the resulting
term involving integration (this term is negative). Specifically, we have∫ λ

λ1

e−σ
2/ε

σ 2 dσ

≤
ε

2

(
e−λ

2
1/ε

λ3
1

)(
1− 3

2
ε

λ2
1
+

15
λ4

1

(
ε

2

)2
−

(
λ1

λ

)3

e−(λ
2
−λ2

1)/ε

(
1− 3

2
ε

λ2 +
15
λ4

(
ε

2

)2
))
.

Using the change of independent variable λ := ε
2 t + a and the fact that

1− 3ε
2

x + 15
4
ε2x2
=

(
1− 3ε

4
x
)2
+

51
16
ε2x2
≥

17
20
,

we obtain

e(ε/4)t
2
1+at1

∫ t

t1

e−(ε/4)τ
2
−aτ(

ε
2τ + a

)
2

dτ

≤
1(

ε
2 t1+ a

)
3

(
1− ε

2
3(

ε
2 t1+ a

)
2
+

(
ε

2

)2 15(
ε
2 t1+ a

)
4
−

17
20

( ε
2 t1+ a
ε
2 t + a

)3 e(ε/4)t
2
1+at1

e(ε/4)t2+at

)
.

If we substitute the information above together with the choice c1 =
ε
2 c0 in the

comparison inequality u̇(t)≤ x(t) (for t ≥ t1), we obtain

−u̇(t)

≥−
u̇(t1)
ε
2 t1+ a

(
ε

2
t + a

)(
1− ε

2
1(

ε
2 t1+ a

)
2

(
1− ε

2
3(

ε
2 t1+ a

)
2
+

(
ε

2

)2 15(
ε
2 t1+ a

)
4

))
≥−

u̇(t1)
ε
2 t1+ a

(
ε

2
t + a

)(
1− ε

2
1(

ε
2 t1+ a

)
2

)
>

9
10

(
−

u̇(t1)
ε
2 t1+ a

)(
ε

2
t + a

)
where for the last inequality we used the hypothesis that t1 > 2

√
5/ε, so that

ε
2 t1+ a >

√
5ε. This completes the proof of (i).

The proof of (ii) follows by applying the same estimates to the comparison
inequality ü(t) = ẏ(t) ≤ ẋ(t) for t ≥ t1. Note that by [Dancer and Wang 2000,
(2.2)] and (1.2), the quantity ü+ ε

2 is precisely the negative of the Ricci curvature
of the soliton metric in the direction ∂/∂t . �

Remark 1.21. In the above proof we can of course take λ0 to be
√
εn/2 by

Proposition 1.13. Notice, however, that in part (ii) of the proof of Proposition 1.13
one automatically has an upper bound on tr L . So one can apply Proposition 1.18
instead of [Pigola et al. 2011, Theorem 11] to obtain a self-contained proof for
Proposition 1.13.
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Note also that neither Proposition 1.13 nor 1.18 requires any curvature bounds.

We end this section with a simple generalization of Proposition 1.12 which, as far
as we know, has not been explicitly observed in the literature. An analogous result
for steady gradient Ricci solitons is [Munteanu and Sesum 2013, Theorem 5.1].

Proposition 1.22. A complete non-Einstein expanding gradient Ricci soliton has at
least logarithmic volume growth.

We shall give a sketch of the proof only since the basic outline is the same as that
for the cohomogeneity one case. One replaces Mt in the proof of Proposition 1.12
by the metric ball Bp(t) of radius t from an arbitrary but fixed point p ∈ M . The
integrand in the boundary integral that is left after applying Stokes’ theorem can be
bounded by c̃ (t + 2) voln−1(∂Bp(t)) where c̃ is a positive constant which depends
only on n and ε; see [Zhang 2009]. One then obtains the inequality

b
c̃(t + 2)

≤ voln−1(∂Mp(t)).

Integrating this inequality and applying the coarea formula, one deduces that the
volume of Bp(t) grows at least logarithmically in t .

The main technical point in the above is to justify the use of Stokes’ theorem as
the distance function from p is only Lipschitz continuous. For this one can use the
well-known fact that Stokes’ theorem holds for Lipschitz domains (see [McLean
2000, Theorem 3.34]), or one can use the approximation arguments of Gaffney
[1954] as in [Yau 1976, p. 660] to get a compact exhaustion of the underlying
manifold with sufficiently good properties for applying the usual version of Stokes’
theorem (see the version of this paper at arXiv:1311.5097).

Remark 1.23. Of course there are noncompact negative Einstein manifolds with
finite volume. It is quite probable though that for nontrivial expanders the above
volume lower bound is not sharp. Most lower bounds for the volume in the literature
involve additional assumptions on the curvature. For example, in [Carrillo and
Ni 2009, Proposition 5.1(b)] or [Chen 2012, Theorem 1] a lower bound on the
(average) scalar curvature is assumed.

2. Multiple warped product expanders

In this section, we specialise to multiple warped products, that is, metrics of the
form

(2.1) ḡ = dt2
+

r∑
i=1

g2
i (t) hi

on I ×M1× · · ·×Mr , where I is an interval in R, r ≥ 2 and (Mi , hi ) are Einstein

http://arxiv.org/abs/1311.5097


380 BUZANO, DANCER, GALLAUGHER AND WANG

manifolds with real dimensions di and Einstein constants λi . We observe that
n =

∑
i di is greater than or equal to 3 as long as some Mi is nonflat.

The Ricci endomorphism is now diagonal with components given by blocks
(λi/g2

i )Idi , where i = 1, . . . , r and Im denotes the identity matrix of size m. We
work with the variables

X i =

√
di

ξ

ġi

gi
,(2.2)

Yi =

√
di

ξ

1
gi
,(2.3)

W =
1
ξ
:=

1
−u̇+ tr L

,(2.4)

for i = 1, . . . , r . The definition of Yi in [Dancer and Wang 2009a; 2009b] differs
from that above by a scale factor of

√
λi . This choice reflects the fact that we are

now allowing one of the λi to be zero. As in [Buzano et al. 2013] we have
r∑

j=1

X2
j =

tr(L2)

ξ 2 and
r∑

j=1

λ j Y 2
j =

tr(rt)

ξ 2 .

As mentioned earlier, we shall introduce the new independent variable s defined
by (1.7) and use a prime to denote differentiation with respect to s.

In these new variables the Ricci soliton system (1.1)–(1.2) becomes

X ′i = X i

( r∑
j=1

X2
j − 1

)
+

λi
√

di
Y 2

i +
ε

2
(
√

di − X i )W 2,(2.5)

Y ′i = Yi

( r∑
j=1

X2
j −

X i
√

di
−
ε

2
W 2
)
,(2.6)

W ′ =W
( r∑

j=1

X2
j −

ε

2
W 2
)
,(2.7)

for i = 1, . . . , r . Note that, in the warped product situation, (1.3) is automatically
satisfied.

As in [Buzano et al. 2013] we use G to denote
∑r

i=1 X2
i . The quantity H=W tr L

becomes
∑r

i=1
√

di X i in our new variables. We further have the equation

(H− 1)′ = (H− 1)
(
G− 1− ε

2
W 2
)
+Q,

where

(2.8) Q=
r∑

i=1

(X2
i + λi Y 2

i )+
ε(n− 1)

2
W 2
− 1.
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As explained in [Dancer and Wang 2009a], Q serves as an energy functional in the
expanding case, modifying the Lyapunov functional

(2.9) L :=
r∑

i=1

(X2
i + λi Y 2

i )− 1,

which plays a key role in the steady case; see [Dancer and Wang 2009b; Buzano
et al. 2013]. The general conservation law (1.5) then becomes Q= (C + εu)W 2.

Note that, in our situation, the quantity Q is no longer a Lyapunov function.
However, we do have the equations

(H− 1)′ = f1(H− 1)+ f2Q
Q′ = f3(H− 1)+ f4Q,

where f1 = G− 1− ε
2 W 2, f2 = 1, f3 = εW 2, and f4 = 2

(
G− ε

2 W 2
)
. The crucial

point for us is that in the expanding case both f2 and f3 are positive, so the phase
plane diagram in the (H− 1,Q)-plane shows that the regions {H< 1,Q< 0} and
{H> 1,Q> 0} are both flow-invariant. Furthermore, the region {Q= 0,H= 1} of
phase space corresponds to Einstein metrics of negative Einstein constant and is of
course also flow-invariant.

The above observations are in fact valid for the general monotypic cohomogeneity
one expanding soliton equations, not just for the warped product case, provided we
make the general definition

Q :=W 2E =W 2(C + εu) and H :=W tr L .

(The conservation law shows that this is consistent with the earlier formula for Q
that we gave in the warped product case; see [Dancer et al. 2013, (4.6)].) We refer
to [Dancer et al. 2013] for a discussion of this topic as well as the qualitatively
different situation of shrinking solitons, where ε is negative. However, apart from
the multiple warped product case, these formulae for Q involve polynomial or
rational expressions in the X i and Yi variables which need not be definite, so the
estimates obtained are not coercive.

In the warped product case with all λi positive, which was the situation examined
in [Dancer and Wang 2009a], Q is, as explained above, a positive definite form
(up to an additive constant) in the X i , Yi , so we obtained coercive estimates which
allowed us to analyse the flow. For the rest of this section, we shall look at the case
where the collapsing factor M1 is S1, so d1 = 1, λ1 = 0, and the remaining Einstein
constants λi are positive. Then the equation for X1 becomes

X ′1 = X1

( r∑
j=1

X2
j − 1

)
+
ε

2
(1− X1)W 2.



382 BUZANO, DANCER, GALLAUGHER AND WANG

As Q now does not include a Y1 term, the region Q< 0 is no longer precompact.
However, we will see by using similar ideas to those in [Buzano et al. 2013] that
we can still analyse the flow.

It is clear that we can recover t and gi from a solution X , Y , W of the above
system via the relation dt =W ds and the formulae (2.2), (2.3), (2.4). As usual we
choose t = 0 to correspond to s = −∞. The soliton potential u is recovered by
integrating

(2.10) u̇ = tr L −
1
W
=

H− 1
W
=

∑r
i=1
√

di X i − 1
W

.

We next compute the critical points of the soliton system (2.5)–(2.7).

Lemma 2.11. Let d1= 1 and di > 1 for i > 1, so that λi = 0 iff i = 1. The stationary
points of (2.5), (2.6), (2.7) in X, Y,W -space consist of

(i) the origin

(ii) points with W = 0, Yi = 0 for all i , and
∑r

i=1 X2
i = 1

(iii) points given by

W = 0, X i =
√

diρA, Y 2
i =

di

λi
ρA(1− ρA), i ∈ A

and X i = Yi = 0 for i /∈ A, where A is any nonempty subset of {2, . . . , r},
and ρA =

(∑
j∈A d j

)−1

(iv) the line where W = 0, X i = 0 for all i , and Yi = 0 for i > 1

(v) the line where W = 0, X1 = 1, and X i , Yi = 0 for i > 1.

(vi) the points E± with coordinates

X i =

√
di

n
, Yi = 0, W =±

√
2

nε
. �

Note that L equals −1 in case (i) and (iv), equals 0 in case (ii), (iii) and (v), and
equals (1− n)/n in case(vi). Also Q is −1 in cases (i) and (iv) and 0 otherwise.
Cases (i)–(v) arose in [Buzano et al. 2013] in the steady case. Case (vi) is special
to the expanding case and arose in [Dancer and Wang 2009a]. Again the origin is
no longer an isolated critical point.

The analysis of the equations is quite similar to that in [Dancer and Wang 2009a],
with appropriate changes as in [Buzano et al. 2013] to reflect the fact that one
factor M1 of the product hypersurface is flat. Accordingly, we shall be brief in our
discussion.

We look for solutions where the flat factor M1 = S1 collapses at the end cor-
responding to t = 0 (that is, s = −∞). In our new variables, this translates into
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considering trajectories in the unstable manifold of the critical point P of (2.5)–(2.7)
(of type (v)) given by

W = 0, X1 = 1, Y1 = 1, X i = Yi = 0 (i > 1).

Note that at this critical point we have L=Q= 0 and G =H= 1.
The linearisation about this critical point is the system

x ′1 = 2x1,

y′1 = x1,

x ′i = 0 (i ≥ 2),

y′i = yi (i ≥ 2),

w′ = w

with eigenvalues 2, 1 (r times), and 0 (r times).

The results of [Buzano 2011] now show we have an r-parameter family of
trajectories γ (s) emanating from P and pointing into the region {Q< 0,H < 1}.
Moreover, by the arguments above, such trajectories stay in this region. We can
choose the trajectories to have W , Yi positive for all time, as the loci {Yi = 0} or
{W = 0} are flow-invariant and the equations are invariant under changing the sign
of W and/or of any Yi .

As mentioned above, as M1 is flat and Y1 does not appear in Q, the region
{Q< 0} is no longer precompact. However, since the variable Y1 only enters into
the equations through the equation for Y ′1, we may follow [Buzano et al. 2013]
and consider the subsystem obtained by omitting the i = 1 equation in (2.6). The
result is a system of equations in W , X i (i = 1, . . . , r) and Yi (i = 2, . . . , r), and
on this 2r -dimensional phase space the locus {Q< 0} is precompact. Once we have
a long-time solution to the subsystem, Y1 may be recovered via

Y1(s)= Y1(s0) exp
(∫ s

s0

r∑
j=1

X2
j − X1−

ε

2
W 2
)
,

where s0 is a fixed but arbitrary constant.
The critical points of the subsystem are obtained by removing the Y1-coordinate

from those of the full system. In particular, the origin becomes an isolated critical
point, and case (v) of Lemma 2.11 gives rise to the special critical point P̂ with
W = 0, X1 = 1, X i = 0 (i > 1), Yi = 0 (i = 2, . . . , r), from which emanates an
r -parameter family of local solutions lying in the region

{W > 0, Yi > 0 (i > 1),Q< 0,H< 1}.

The r parameters may be thought of as gi (0), i > 1, and the constant C in the
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conservation law (which has to be negative under the assumption that u(0) = 0).
Homothetic solutions are eliminated by fixing the value of ε.

Precompactness of the region where the subsystem flow lives shows that the
variables are bounded, so that the flow exists for all s. Hence the same is true for the
original flow also. As in [Dancer and Wang 2009a, Lemma 2.2] we can show that
the X i are positive for all s. It follows that H> 0 and X i < 1/

√
di . Furthermore,

we still have the equation (
W
Yi

)′
=

X i
√

di

(
W
Yi

)
,

including the possibility i = 1. So W/Yi increases monotonically to a limit
σi ∈ (0,∞]. (We shall presently show that the σi must all be equal to +∞.)

As the trajectories of interest lie in a precompact set, each of them has a nonempty
ω-limit set �, where we suppressed the dependence on the trajectory. Moreover,
each � is compact, connected, and invariant under both forward and backward
flows.

As in [Dancer and Wang 2009a, p. 1115] we can show that � lies in the locus
{Yi =0, 2≤ i ≤ r}. Now, on this locus the flow is just the same as that in [Dancer and
Wang 2009a], and the arguments there (see pp. 1116–1120) show as before that �
contains the origin (in the phase space for the subsystem). The centre manifold
argument in [Dancer and Wang 2009a, pp. 1121–1122] then shows the origin is a
nonlinear sink, so in fact the trajectory converges to the origin.

Now we can follow the arguments of for Lemma 3.13 in [Dancer and Wang
2009a] to show that

(2.12) lim
s→∞

X i

W 2 =3i :=
λi

σ 2
i
√

di
+
ε

2

√
di ,

where 3i > 0. This is valid in particular for i = 1, in which case 31 =
ε
2 . In fact,

the proof of [Dancer and Wang 2009a, Lemma 3.15] shows that σi cannot be finite,
and so 3i/

√
di =

ε
2 for all i . Applying this fact to the relation

ġi

gi
=

1
√

di

X i

W
=

1
√

di

X i

W 2 W,

it follows that the hypersurfaces have asymptotically decaying principal curvatures.
The limits (2.12) also imply that, for sufficiently large s, there exist a1, a2>0 such

that a1W 4
≤G≤a2W 4, from which we deduce completeness of the soliton metric by

using the relation dt =W ds and the equation (from (2.7)) W ds = dW/(G− ε
2 W 2).

We further have W ∼ 1/
√
εs and s ∼ 1

4εt2.
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The asymptotics for gi , i > 1, are deduced as in [Dancer and Wang 2009a]. As
for g1, the equation (

W
Y1

)′
=

X i
√

di

(
W
Y1

)
and X1 ∼

ε
2 W 2
∼ 1/(2s) show that g1 = W/Y1 is also asymptotically linear in t ,

so we have conical asymptotics for all factors.

Remark 2.13. This contrasts with the steady case, where the asymptotic geometry
for n = 1, r = 1 (the cigar) is different from the paraboloid asymptotics for the
Bryant solitons with n> 1, r = 1. In the steady case with r > 1 our work in [Buzano
et al. 2013] yielded solitons of mixed asymptotic type, where g1 tends to a positive
constant and gi behaves like

√
t for i > 1.

In the expanding case, both the n = 1, r = 1 case (due to [Gutperle et al. 2003])
and the n > 1, r = 1 case (due to R. Bryant) have conical asymptotics, and our
solutions here for the r > 1 case also exhibit conical behaviour.

We summarise the discussion in this section by the following:

Theorem 2.14. Let M2, . . . ,Mr be closed Einstein manifolds with positive scalar
curvature. There is an r-parameter family of nonhomothetic complete smooth
expanding gradient Ricci soliton structures on the trivial rank 2 vector bundle over
M2× · · ·×Mr , with conical asymptotics in the sense given above. �

Remark 2.15. As in [Dancer and Wang 2009a] we can see directly from the
equations that the soliton potential u is concave, in accordance with Proposition 1.11.
We can similarly deduce directly that Ric(ḡ)+ ε

2 ḡ is positive semidefinite, so −u
is subharmonic.

Next we note that when r ≥ 2 the sectional curvatures κ(X∧Y ), for X , Y tangent
to different Einstein factors, satisfy −c1/t2

≤ κ(X ∧ Y )≤−c2/t2 < 0 for certain
positive constants c1, c2. This shows that the hypothesis of limt→∞ t2

|sect| = 0
in many results in [Chen 2012] is not satisfied by our examples. In particular,
the simplest hypersurface type in our examples is S1

× Sn−1; see [Chen 2012,
Theorem 4].

Furthermore, all sectional curvatures decay faster than t−2+δ for an arbitarily
small δ > 0. Hence the ambient scalar curvature R tends to zero. Finally we note
that none of the hypotheses (topological or metric) in the recent rigidity theorem of
Chodosh [2014] are satisfied by our examples.

3. Complete Einstein metrics with negative scalar curvature

We may also consider the flow of equations (2.5)–(2.7) in the variety {Q= 0,H= 1}.
Such solutions of course correspond to Einstein metrics with negative scalar curva-
ture, the soliton potential now being constant. In the case when di > 1 for all i , such
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metrics were constructed earlier in [Böhm 1999] by dynamical systems methods as
well. In [Dancer and Wang 2009a, Remark 4.13] we pointed out that a simpler proof
of Böhm’s result can be obtained using our special variables and the embedding of
the Einstein system within the soliton system.

In the present situation, where d1 = 1, the hypersurfaces in the multiple warped
product no longer admit a positive Einstein product metric whose hyperbolic cone
acts as an attractor for the Einstein system. Nevertheless our setup allows us easily
to deduce the following:

Theorem 3.1. Let M2, . . . ,Mr be compact Einstein manifolds with positive scalar
curvature. There is an r−1-parameter family of nonhomothetic complete smooth
Einstein metrics on the trivial rank 2 vector bundle over M2× · · ·×Mr .

To prove the theorem, we consider the r−1-parameter family of trajectories
emanating from the critical point P and lying in the variety {Q= 0, H= 1}. Note
that this variety is smooth.

As in the previous section, we see that the flow is defined for all s by first
restricting to the subsystem obtained by omitting the equation for Y1 and observing
that the locus {Q = 0} is compact. As usual we can take Yi , W positive on our
trajectories, and we can show the X i are positive also. In the following we will
work with the subsystem.

The ω-limit set � of a fixed trajectory lies within the locus {Yi = 0 : i = 2, . . . , r}
by the same argument as in the soliton case. However, the difference now is that no
point in � can have W -coordinate equal to 0. Otherwise, G = 1 and such a point
is a critical point of type (ii) in Lemma 2.11. The argument in the last part of the
proof of [Dancer and Wang 2009a, Proposition 3.6] then leads to a contradiction.
This in particular implies that the only critical point of the flow lying in � is E+
(since W > 0 along our trajectory).

We next consider the trajectory starting from a noncritical point in �.
Recall from [Dancer and Wang 2009a] that on the locus {Q= 0,H= 1, Y = 0},

the quantity J := G− ε
2 W 2 satisfies 0≤ J ≤ 1 and the equation

J ′ = 2J (J − 1).

Moreover, J = 1 exactly when W = 0 and G = 1, and J = 0 exactly at the critical
points E± (of type (vi) in Lemma 2.11). Points with W > 0 (resp. W < 0) flow to
E+ (resp. E−) and flow backwards to W = 0.

For our trajectory, W is necessarily positive, so we obtain a contradiction since
� is compact, flow-invariant, and contains no point with zero W -coordinate. We
therefore deduce that � is {E+}. Now it was observed in [Dancer and Wang 2009a,
Lemma 3.8] that for the flow on {Q = 0,H = 1} the point E+ is a sink, so our
(original) trajectory converges to E+.



NON-KÄHLER EXPANDING RICCI SOLITONS, EINSTEIN METRICS 387

As dt =W ds and W is converging to a positive constant we deduce the metric
is complete. Using (2.2) we see that the metric components g2

i grow exponentially
fast asymptotically.

We end this section with some consequences of combining our existence theorems
with a study of the differential topology of some of our examples.

We will focus on the case where r = 2 and M2 is a homotopy sphere. Recall that
Boyer, Galicki and Kollár [Boyer et al. 2005a; 2005b] have constructed Sasakian
Einstein metrics with positive scalar curvature on all Kervaire spheres (with di-
mension 4m + 1) and those homotopy spheres of dimension 7, 11 or 15 which
bound parallelizable manifolds. As in [Buzano et al. 2013] we can take these
Einstein manifolds or the standard sphere as M2 in our constructions in Section 2
and Section 3. Since it follows from the independent work of K. Kawakubo [1969]
and R. Schultz [1969] that the manifolds R2

×M2 and R2
×Sq are not diffeomorphic

if M2 is an exotic sphere (see [Kwasik and Schultz 2002]), we deduce the following:

Corollary 3.2. In dimensions 9, 13, 17 and all dimensions 4m+3 with m 6= 0, 1, 3,
7, 15, 31, there exist pairs of homeomorphic but not diffeomorphic manifolds both
of which admit non-Einstein, complete, expanding gradient Ricci soliton structures.
The same holds for complete Einstein metrics with negative scalar curvature. �

Note also that our expanding gradient Ricci solitons and negative Einstein man-
ifolds exhibit conical asymptotics. The corresponding cones are differentially of
the form R+ × S1

× M2, where R+ is the set of positive real numbers. We are
indebted to Ian Hambleton for providing an outline of the proof of the following
consequence of the above-mentioned work of Kawakubo and Schultz.

Proposition 3.3. Let 6q and Sq be, respectively, a nonstandard homotopy sphere
and the standard q-sphere. Then the open cones R+× S1

×6 and R+× S1
× Sq

are not diffeomorphic.

Proof (I. Hambleton). Let

φ : R+× S1
×6q

→ R+× S1
× Sq

be an orientation-preserving diffeomorphism. For convenience, let

X = S1
×6q , Xa = {a}× X,

Y = S1
× Sq , Yb = {b}× Y.

By compactness, φ(X1)⊂ (a, b)×Y for some 0< a < b. Moreover, by Alexander
duality (applied to (a, b)× Y with the ends capped off by attaching D2

±
× Y , for

example), φ(X1) is a two-sided hypersurface that separates (a, b)× Y into two
path-connected open submanifolds of R+× Y .
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Let W± denote the closures of these path components. Then, using the diffeomor-
phism φ, which has to preserve the ends of R+×X and R+×Y , one easily sees that
W− (resp. W+) is a compact manifold whose boundary consists of Ya and φ(X1)

(resp. φ(X1) and Yb). Moreover, by composition with suitable retractions and the
restrictions of φ or φ−1 to suitable subsets, one also sees easily that the inclusion
of the boundary components into W− are homotopy equivalences, i.e., W− is an
h-cobordism between its boundary components. Noting that the Whitehead group
of π1(S1

× Sq) = Z is trivial and applying the s-cobordism theorem, we get a
contradiction to the result of Kawakubo and Schultz that S1

×6q and S1
× Sq are

not diffeomorphic. �

Hence we obtain for the dimensions given in Corollary 3.2 pairs of non-Einstein,
complete, expanding gradient Ricci solitons (or complete negative Einstein mani-
folds) whose asymptotic cones are homeomorphic but not diffeomorphic.

4. Numerical examples

We shall now look at some numerical solutions of the equations (1.1)–(1.3). The
Ricci soliton equation in the cohomogeneity one setting has an irregular singular
point at t = 0. We therefore follow the procedure in [Dancer et al. 2013, § 5;
Buzano et al. 2013]. That is, we first find a series solution in a neighbourhood
of the singular orbit satisfying the appropriate smoothness conditions. We then
truncate the series and use the values of the resulting functions at some small t0 > 0
as initial values to generate solutions of the equations for t > t0 via a fourth-order
Runge–Kutta scheme. Because the manifolds we are considering are noncompact,
we check the numerics obtained against the general asymptotic properties given in
Section 1.

The explicit cases that we shall look at are those where the hypersurface is the
twistor space of quaternionic projective space and the total space of the correspond-
ing Sp(1) bundle. For these examples, the estimates Q< 0 and H< 1 do not give
coercive estimates, and we do not yet have analytical existence proofs. However the
numerics give a strong indication that complete expanding solitons exist in these
cases.

Let us recall the equations that will be analysed numerically, following [Buzano
et al. 2013]. We consider cohomogeneity one manifolds with principal orbits
G/K whose isotropy representation consists of two inequivalent Ad(K )-invariant
irreducible real summands. We assume that K ⊂ H ⊂ G, where H , K are closed
subgroups of the compact Lie group G such that H/K is a sphere. A G-invariant
background metric b is chosen on G/K such that it induces the constant curvature 1
metric on H/K . The cohomogeneity one manifolds are then the vector bundles
G×H Rd1+1 where H/K ⊂ Rd1+1 is regarded as the unit sphere.
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Let g = k⊕ p be an Ad(K )-invariant decomposition of the Lie algebra of G,
so that p is identified with the tangent space of G/K at the base point. We can
further decompose p into irreducible K -modules, thus p= p1⊕ p2, where p1 and
p2 are respectively the tangent spaces (at the base point) to the sphere H/K and
the singular orbit G/H . Their respective dimensions are denoted by d1 and d2.

The metrics of cohomogeneity one take the form

ḡ = dt2
+ g1(t)2 b|p1+ g2(t)2 b|p2.

Letting (z1, . . . , z6) := (g1, ġ1, g2, ġ2, u, u̇), the gradient Ricci soliton equations
become

ż1 = z2,

ż2 =−(d1− 1)
z2

2

z1
− d2

z2z4

z3
+ z2z6+

d1− 1
z1
+

A3

d1

z3
1

z4
3
+
ε

2
z1,

ż3 = z4,

ż4 =−d1
z2z4

z1
− (d2− 1)

z2
4

z3
+ z4z6+

A2

d2

1
z3
− 2

A3

d2

z2
1

z3
3

+
ε

2
z3,

ż5 = z6,

ż6 =−z6

(
d1

z2

z1
+ d2

z4

z3

)
+ z2

6+ εz5+C,

where the Ai are positive constants which appear in the scalar curvature function
of the principal orbit. Note that, because of the backgound metric chosen, the
coefficient A1/d1 of the 1/z1 term in the second equation becomes d1− 1, and for
expanding solitons we have ε > 0.

Recall also the general relation (d1 + 1) ü(0) = C + εu, which follows from
the conservation law and the smoothness conditions at t = 0. In generating the
numerics, we find it convenient to eliminate homothetic solutions by choosing ε to
be 1. Furthermore, rather than setting u(0)= 0, as was done throughout Section 1,
we now set the constant C to be zero. It then follows from the necessary condition
E < 0 that in the series solution we must arrange for ü(0) = u(0)/(d1 + 1) < 0,
with u(0) as an otherwise arbitrary parameter.

Example 1. We set G = Sp(m+ 1), H = Sp(m)×Sp(1), and K = Sp(m)×U(1).
The principal orbit G/K is diffeomorphic to CP2m+1 and the singular orbit G/H
is HPm . So d1 = 2, d2 = 4m, and A2 = 2m(m + 2), A3 = m/2 (with b chosen
to be −2 tr(XY )). The initial values of (z1, . . . , z6) are given by (0, 1, h̄, 0, ū, 0),
where h̄ > 0 and ū < 0. These give rise to a 2-parameter family of numerical
solutions.

In Figure 1 on the next page we plot the functions gi and u for the cases m = 1
and m = 2, with parameter values h̄ = 6 and ū =−1.
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Figure 1. Plots of g1 (blue), g2 (red) and u (green) for m = 1 (top)
and m = 2 (bottom).

Note that the soliton potential is concave down and becomes approximately
quadratic, in accordance with Proposition 1.11 and Proposition 1.18. The gi are
asymptotically linear.

We have also plotted the quantities

X̃ i =
X i
√

di
and Ỹi =

Yi
√

d1

against t in Figures 2 and 3 for the cases m = 1 and m = 2 respectively. They all
converge quickly to 0.

In Figure 4 we plot the ratios X̃1/X̃2 and Ỹ1/Ỹ2. Note that the second ratio is
g2/g1, which tends to a positive constant. The first ratio is the ratio of the principal
curvatures, (ġ2/g2)

/
(ġ1/g1), and we see that it quickly approaches 1.

Similar numerical results hold for larger values of m.

Example 2. We next set

G = Sp(m+ 1)×Sp(1),

H = Sp(m)×Sp(1)×Sp(1),

K = Sp(m)×1Sp(1).
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Figure 2. Plots of X̃ i (left) and Ỹi (right) for i = 1 (blue) and i = 2
(red), in the case m = 1.
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Figure 3. Plots of X̃ i (left) and Ỹi (right) for i = 1 (blue) and i = 2
(red), in the case m = 2.

The principal orbit G/K is diffeomorphic to S4m+3 and the singular orbit G/H is
again HPm . So d1 = 3, d2 = 4m, and A2 = 4m(m + 2), A3 = 3m/4 (where b is
given by−2 tr(XY ) on both of the simple factors). The initial values of (z1, . . . , z6)

are given by (0, 1, h̄, 0, ū, 0), where h̄ > 0 and ū < 0.
For this case we obtain graphs very similar to those in Example 1.
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Figure 4. Plots of X̃1/X̃2 (lower curve) and Ỹ1/Ỹ2 (upper curve).

Based on the last two examples, we would conjecture that on the vector bundles
G ×H Rd1+1, where (G, H, K ) are as above, there is a 2-parameter family of
nonhomothetic complete expanding gradient Ricci solitons.
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