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THE BIDUAL OF A RADICAL OPERATOR ALGEBRA
CAN BE SEMISIMPLE

CHARLES JOHN READ

The paper of Sidney (Denny) L. Gulick (“Commutativity and ideals in the
biduals of topological algebras”, Pacific J. Math. 18, 1966) contains some
good mathematics, but it also contains an error. It claims that for a Banach
algebra A, the intersection of the Jacobson radical of A∗∗ with A is precisely
the radical of A (this is claimed for either of the Arens products on A∗∗). In
this paper we begin with a simple counterexample to that claim, in which A
is a radical operator algebra, but not every element of A lies in the radical
of A∗∗. We then develop a more complicated example A, which, once again,
is a radical operator algebra, but A∗∗ is semisimple. So rad A∗∗ ∩A is zero,
but rad A=A. We conclude by examining the uses Gulick’s paper has been
put to since 1966 (at least 8 subsequent papers refer to it), and we find that
most authors have used the correct material from that paper, and avoided
using the wrong result. We reckon, then, that we are not the first to suspect
that the result rad A∗∗ ∩ A = rad A was wrong; but we believe we are the
first to provide “neat” counterexamples as described.

1. Introduction

The theorem in which Gulick [1966] makes the claim rad A∗∗ ∩ A = rad A is
Theorem 4.6. We believe that the place where his proof breaks down is nearby, in
the proof of Lemma 4.5, the seventh line: “note that ME is once again a maximal
regular left ideal in E”. We could not see why this should be so, and Theorem 4.6
is definitely false; this introductory section contains a counterexample.

We shall always be working with operator algebras (norm-closed subalgebras of
the algebra B(H) of all operators on a Hilbert space H ), so the question of which
Arens product is involved need never be addressed, for as is well known, every
operator algebra is Arens regular — the two products coincide.

Let us conclude this introduction with the simpler counterexample mentioned in
the abstract.
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Let H be a Hilbert space with orthonormal basis (ei )i∈N. Let T0 : H → H be
the operator with

(1) T0ei =

{
ei+1 if i is odd,
0 if i is even.

For n ∈ N, let Tn : H → H be the rank-1 operator with

(2) Tnei =

{
ei+1 if i = 2n,

0 otherwise.

Let A denote the operator algebra (the norm-closed subalgebra of B(H)) generated
by {Tn : n ∈ N0}.

Lemma 1.1. A is radical.

Proof. First, T 2
0 = 0 and each Tn (n ≥ 1) has rank 1, so everything in A is of

form λT0+ K , where λ ∈ C and K is a compact operator. Second, the subspaces
Ek = lin{ei : i > k} ⊂ H are invariant for every Tn (and hence for every T ∈ A);
indeed, every T ∈ A maps Ek into Ek+1 (k ∈ N0). So, let T = λT0+ K ∈ A, with
λ ∈ C and K ∈ K (H). It is enough to show that T is quasinilpotent. Since K
is compact, the norms εn =

∥∥K |En

∥∥ tend to zero as n→∞. Furthermore, since
T 2

0 = 0, we have

(3)
∥∥T 2
|En

∥∥= ∥∥λT0K + λK T0+ K 2
|En

∥∥≤ 2|λ|εn + ε
2
n = δn,

with δn→ 0 as n→∞. Now T 2k
= T 2
|E2k−2 T 2

|E2k−4 . . . T
2
|E2 T 2

|E0 ; hence

‖T 2k
‖ ≤

k−1∏
j=0
δ2 j ,

so ‖T 2k
‖

1/k
→ 0. Plainly T 2, and hence T itself, is quasinilpotent. �

Theorem 1.2. T0 /∈ rad A∗∗, so A = rad A ( A∩ rad A∗∗.

Proof. Now A ⊂ B(H), and B(H) is of course a dual Banach algebra, so there is a
natural projection from B(H)∗∗ (the third dual of the Banach space of trace class
operators on H ) onto B(H). This projection is an algebra homomorphism, so when
we restrict it to A∗∗ ⊂ B(H)∗∗, we get a representation of A∗∗ acting on H , such
that the canonical image A⊂ A∗∗ acts on H in its usual way, and the representation
of A∗∗ consists of the weak-* closure of A in B(H).

Among the operators in this weak-* closure is the weak-* convergent sum
T =

∑
∞

n=1Tn , with

(4) T ei =

{
ei+1 if i is even,
0 if i is odd.
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The product T T0 has T T0ei = ei+2 (if i is odd) or T T0ei = 0 (if i is even); so
‖(T T0)

k
‖ = 1 for all k, and indeed 1 is in the spectrum of T T0. If τ ∈ A∗∗ is any

element represented as T by this representation, then 1 ∈ Sp(τT0). So T0 does
not lie in the Jacobson radical of A∗∗, by a well-known characterization of that
radical. �

Note that the proof given above does not depend on the faithfulness (injectiv-
ity) of the natural representation of A∗∗ in B(H). However, when we give the
more complicated counterexample — when we make the claim that the bidual of
our radical algebra A is semisimple — we will have to show that the analogous
representation for the bidual of that algebra is indeed faithful.

2. The main construction

We now seek to develop the example given in the introduction into an example A

where A is radical but A∗∗ is semisimple.

Definition 2.1. Let S denote the free unital semigroup on two generators g, h. If
s ∈ S with s = γnγn−1 . . . γ2γ1 =

∏n−1
j=0γn− j , and each γi ∈ {g, h}, we define the

length l(s) = n and the depth ρ(s) = #{i : 1 ≤ i ≤ n, γi = h}; and if n > 0 (that
is, if s 6= 1, the unit), we define the predecessor p(s) =

∏n−1
j=1γn− j . We define

S− = S \ {1}.

We define the Cayley graph G of S to be an abstract directed graph with vertex
set S, and a directed edge p(s)→ s for each s ∈ S−.

Note that G is an infinite tree with root vertex 1, such that every vertex s ∈ S has
two outward edges leaving it (the edges s→ gs and s→ hs) and every vertex s ∈ S−

has a single edge entering it (the edge p(s)→ s). If l(s)=k, the unique directed path
from 1 to s consists of k+1 vertices 1→ pk−1(s)→ pk−2(s)→· · ·→ p(s)→ s.

Definition 2.2. For s ∈ S we define the weight w(s) = 2−ρ(s), and if l(s) = l we
define

(5) W (s)=
l−1∏
j=0

w(p j s).

We define a Hilbert space H = l2(S,W ) to be the collection of all formal sums
x =

∑
s∈S xs · s with xs ∈ C and

(6) ‖x‖2 =
∑
s∈S

W (s)2|xs |
2 <∞.

We define a particular subset C⊂ S−, the colour set

(7) C= {gk
: k ∈ N} ∪ {gkhs : k ∈ N0, s ∈ S, 1+ l(s) | k}
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(here and elsewhere we use “1+ l(s) | k” for “1+ l(s) divides k”).

We define a colour map µ : S−→ C recursively as follows:
(8)

µ(s)=
{

s if s ∈ C,

µ(pn−k′ y) if s = gkhy, y ∈ S, l(y)= n, 1≤ k ′ ≤ n, k ≡ k ′ mod n+ 1.

Note that (8) really “works” as a recursive definition, because if s /∈C, we necessarily
have s = gkhy for some k ∈N such that 1+ l(y) - k; so writing n = l(y), there is a
unique k ′ ∈ [1, n] such that k ′≡ k (mod n+1). The iterated predecessor pn−k′ y will
not be equal to 1 because k ′ > 0 and l(y)= n, so µ(pn−k′ y) will be (recursively)
defined. Note that for s ∈ S, the colour µ(hs) is always equal to hs, while the
colour µ(gs) is either gs itself, or one of the iterated predecessors of gs. So we
never have µ(gs)= µ(hs) for any s ∈ S.

Definition 2.3. For each colour c ∈ C, we define a linear map Tc ∈ B(H) by its
action on the basis S: for each s ∈ S, we define

(9) Tc(s)=


gs if µ(gs)= c,

hs if µ(hs)= c,

0 otherwise.

Each Tc is a weighted shift operator (for S is an orthogonal, though not an
orthonormal, basis of H ). Writing es = W (s)−1

· s (s ∈ S) for the corresponding
orthonormal basis, and giving due regard to the fact that W (s)/W (p(s))= w(s)
for each s ∈ S−, we have

(10) Tc(es)=


w(gs)egs if µ(gs)= c,

w(hs)ehs if µ(hs)= c,

0 otherwise.

This implies that for each c ∈ C,

(11) ‖Tc‖ =max{w(x) : µ(x)= c} = w(c)= 2−ρ(c).

Definition 2.4. We define two families of coordinatewise orthogonal projections
on H. For n ∈ N0, Pn is the orthogonal projection onto lin{s ∈ S : ρ(s)= n}, and
Pn =

∑n
i=0 Pi ; while πn is the orthogonal projection onto lin{s ∈ S : l(s)= n}, and

πn =
∑n

i=0πn .
We also define, for n ∈ N0, a subgraph G(n) of G, obtained from G by deleting

some of the edges. Specifically, G(n) is a graph with vertex set S and a directed
edge p(s)→ s for every s ∈ S such that the colour depth ρµ(s) is no greater than
n. (Equivalently, we obtain G(n) by deleting from G every edge p(s)→ s such that
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the colour depth ρµ(s) is greater than n). If K ⊂ G(n) is a connected component,
we define the coordinatewise projection Qn,K by

(12) Qn,K (s)=
{

s if s ∈ K ,
0 otherwise

(s ∈ S).

We define Hn,K = Qn,K (H).

Note that while πn has finite rank 2n , the projection Pn always has infinite rank
(even when n = 0, when it is the orthogonal projection onto lin{gk

: k ≥ 0}).

Definition 2.5. We define an algebra A0 ⊂ B(H). A0 is the nonunital subalgebra
of B(H) generated by the operators Tc (c ∈ C). We define the operator algebra
A= A0, the norm closure of A0 in B(H). We define A(n)

⊂A0 to be the linear span
of products T = Tck Tck−1 . . . Tc2 Tc1 =

∏k−1
i=0 Tck−i such that ci ∈ C and max{ρ(ci ) :

1 ≤ i ≤ k} = n. We define A(n)
=
∑n

r=0A(r), the subalgebra of A0 generated by
maps Tc (c ∈ C) with ρ(c)≤ n.

For n, r ≥ 0, let Sn,r ={s ∈ S : the path from 1 to s in G contains exactly r edges
p(u)→ u with colour depth ρµ(u) > n}. Let Pn,r be the orthogonal projection
onto lin(Sn,r ), and let Pn,r =

∑r
t=0 Pn,t .

Note that Sn,0 = {s ∈ S : ρ(s)≤ n}, so Pn,0 = Pn for each n ∈ N0.

Lemma 2.6. (a) For each n ∈ N0, the subspaces ker Pn , kerπn ⊂H are invariant
for A. Further, A maps kerπn into kerπn+1 for each n.

(b) For each component K of G(n), the subspace Hn,K is invariant for A(n) and also
for the hermitian conjugate (A(n))∗. The component of G(n) containing 1 is Sn,0,
and the associated projection is Pn .

(c) Every map Tc with ρ(c) > n maps H into ker Pn .

(d) For T ∈A0, the decomposition T =
∑
∞

n=1T (n), with T (n)
∈A(n), is unique and

continuous; writing T (n)
=
∑n

i=0T (i), we have ‖T (n)
‖ ≤ ‖T ‖ for every n and T ;

in fact T (n)
=
∑
∞

r=0 Pn,r T Pn,r in the strong operator topology, while T − T (n)
=∑

∞

r=0(1− Pn,r )T Pn,r .

(e) For all s ∈ S we have ρµ(s)≤ ρ(s), with equality if s ∈ hS.

Proof. (a) is obvious because the generating maps Tc all map an element s ∈ S
to gs, hs, or zero; and we have ρ(gs)≥ ρ(s), ρ(hs)≥ ρ(s) and l(gs)= l(s)+ 1,
l(hs)= l(s)+ 1 for all s ∈ S.

For c ∈C, we have 〈Tcs, t〉 6= 0 (s, t ∈ S) only when there is an edge s→ t in G,
and µ(t)= c. So if T is in A(n), the algebra generated by maps Tc with ρ(c)≤ n,
and if 〈T s, t〉 6= 0, then there is a path from s to t in G, and each edge p(u)→ u
in that path has ρµ(u) ≤ n, so the edge p(u)→ u is present in the graph G(n).
Thus s, t belong to the same component of G(n). So for a connected component
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K ⊂ G(n), the associated subspace Hn,K is invariant for both A(n) and (A(n))∗,
establishing the first part of (b).

The component of G(n) containing 1 is the set of s ∈ S such that the path from
1 to s in G contains only edges p(u)→ u with ρµ(u) ≤ n. Now for any u ∈ S,
µ(u) is either u itself or one of the iterated predecessors pi (u); taking predecessors
cannot increase the depth ρ(u), so ρµ(u)≤ ρ(u) for all u. If s ∈ S with ρ(s)≤ n,
then every edge p(u)→ u in the path from 1 to s has colour depth ρµ(u)≤ n also,
so s lies in the component of G(n) containing 1. Conversely, if ρ(s) > n then we
have s = gkht for some t ∈ S and k ∈N0; the edge t→ ht is part of the path from 1
to s, and ht ∈C by (7), so the colour depth satisfies ρµ(ht)=ρ(ht)=ρ(s)> n, and
therefore s is not in the connected component of G(n) containing 1. Therefore that
component is precisely {s : ρ(s)≤ n}, and the associated coordinatewise projection
is Pn . Thus we have established the second part of (b), and also part (e).

For part (c), note that Tc maps H into lin{x ∈ S :µ(x)= c}; if ρ(c) > n then this
subspace is contained in lin{x ∈ S : ρµ(x) > n} ⊂ lin{x ∈ S : ρ(x) > n} ⊂ ker Pn ,
where the first ⊂ depends on part (e).

To prove part (d), we note that the edges of G(n) include the edge p(u)→ u only
if ρµ(u)≤ n; hence the set Sn,r is a union of some of the components K of G(n).
So by part (b) of this lemma, each image Pn,r H is A(n)-invariant; but for c ∈C with
ρ(c) > n, Tc maps Pn,r H into Pn,r+1H because 〈Tcs, t〉 6= 0 (s, t ∈ S) only when
s = p(t) and the colour depth ρµ(t) is greater than n. Now take any T ∈A0 and
write T =

∑
i T (i) with each T (i)

∈A(i). We have T (n)
=
∑n

i=0T (i)
∈A(n), so each

Pn,r H is a T (n)-invariant subspace; but T − T (n) maps Pn,r H into
⊕
∞

i=r+1 Pn,i H.
Therefore we have

(13) T (n)
=

∞∑
r=0

T (n)Pn,r =

∞∑
r=0

Pn,r T (n)Pn,r =

∞∑
r=0

Pn,r T Pn,r ,

while T − T (n)
=
∑
∞

r=1(1− Pn,r )T Pn,r as required by the lemma. This shows that
the decomposition T =

∑
∞

i=0T (i) is indeed unique, and furthermore the compression
T (n) as given by (13) plainly satisfies ‖T (n)

‖ ≤ ‖T ‖. Thus the lemma is proved. �

Definition 2.7. Let us write B(n) (B(n)) for the norm closure of A(n) (A(n)) in
B(H). Let us write 1n for the map A0→ A(n) with 1n(T ) the unique element
T (n)
∈A(n) such that T =

∑
∞

n=0T (n); and let 1n :A0→A(n) be the map
∑n

i=01i .

The maps 1n,1n are uniformly norm-bounded by part (d) of the previous
lemma; so they extend continuously to maps 1n :A→B(n) and 1n :A→B(n);
and because of the uniform bound on ‖1n‖ (each 1n is contractive), we have
T =

∑
∞

n=01nT =
∑
∞

n=0T (n), with T (n)
∈ B(n), for all T ∈ A. The formulae

1nT = T (n)
=
∑
∞

r=0 Pn,r T Pn,r and T − T (n)
=
∑
∞

r=0(1− Pn,r )T Pn,r remain true
in the strong operator topology.
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3. A is radical

In order to prove that our algebra A is radical, the main theorem we need is the
following:

Theorem 3.1. Every T ∈A(n), or the norm closure thereof , satisfies

(14) (1−π k)PnT → 0 as k→∞.

Indeed, PnT is a compact operator. Furthermore, every T ∈A(n) satisfies

(15) ‖T ‖ = ‖PnT Pn‖.

Proof of Theorem 3.1, first part. From Definition 2.2, we find that if s 6= c but
µ(s)= c, then we must have s = gkhyc for some k ∈ N0 and y ∈ S. In particular,
ρ(s) > ρ(c). So if ρ(c) = n, then the map PnTc in fact has rank 1; it maps p(c)
to c, and all other s ∈ S to zero. Any product T =

∏k−1
i=0 Tck−i with ci ∈ C and

max{ρ(ci ) : 1 ≤ i ≤ k} = n accordingly satisfies PnT =
∏k−1

i=0 PnTck−i (because
ker Pn is an invariant subspace for each Tc j ) so the rank of PnT is at most 1. A(n)

is the linear span of such maps, so any T ∈ A(n), or its norm closure, will have
PnT a compact operator; hence ‖(1−π k)PnT ‖→ 0 as k→∞. �

To prove the second part of the theorem, we need certain preliminaries, which
we give in the following two lemmas, the first of which is rather elementary:

Lemma 3.2. Let M ∈ Mm+1(C) be a strictly lower triangular matrix, and let
‖ · ‖ and ‖ · ‖′ be two norms on Cm+1, with ‖λ0, λ1, . . . , λm‖ =

(∑m
i=0ω

2
i |λi |

2
)1/2

and ‖λ0, λ1, . . . , λm‖
′
=
(∑m

i=0(ω
′

i )
2
|λi |

2
)1/2 for positive constants ωi , ω

′

i (with
i = 1, . . . ,m). Suppose we have

(16)
ω′i+1

ω′i
≤

1
2
·
ωi+1

ωi

for each i = 0, . . . ,m− 1. Then

(17) ‖M‖′ ≤ ‖M‖.

Proof. Let (ei )
m
i=0 be the unit vectors of Cm+1, and write Mei =

∑
j>i M j,i e j . We

may assume ‖M‖ = 1, in which case |M j,i | ≤ ‖ei‖/‖e j‖ = ωi/ω j for all i and j .
For k ∈ [1,m], the weighted shift matrix M (k) with

(18) M (k)ei =

{
Mi+k,i ei+k if i + k ≤ m,
0 if i + k > m

satisfies

‖M (k)
‖
′
= max

i∈[0,m−k]

∣∣Mi+k,i
∣∣ω′i+k

ω′i
≤ max

i∈[0,m−k]

(
ωi

ωi+k

)
·
ω′i+k

ω′i
≤ 2−k,
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by (16). Then M =
m∑

k=1
M (k), so ‖M‖′ ≤

m∑
k=1

2−k < 1. �

Lemma 3.3. (a) Let K be a connected component of G(n). Then either K equals
Sn,0, the component which contains 1, or K consists of a path

y→ gy→ g2 y→ · · · → gm y

for some y ∈ S and m ∈ N such that the colour depths satisfy ρµ(y) > n and
ρµ(gm+1 y) > n, but ρµ(gi y)≤ n for i ∈ [1,m]. Furthermore, there is a path s0→

s1→ · · · → sm in the component Sn,0 such that the colours satisfy µ(si )= µ(gi y)
for each i ∈ [1,m].

(b) For every T ∈A, we have ‖(1− Pn)T ‖→ 0 as n→∞.

Proof. (a) Suppose K 6= Sn,0. Since K cannot meet Sn,0, every vertex x ∈ K must
have ρ(x) > n. But if x → x ′ is an edge in K , we must have ρµ(x ′) ≤ n, and
therefore µ(x ′) 6= x ′, so x ′ /∈ C, so x ′ = gkhz for some z ∈ S and k > 0 with
ρ(hz) = ρ(x ′) > n. Indeed, we must have 1+ l(z) - k. Every edge of K must be
of form x→ gx rather than x→ hx , so K does indeed consist of a path (finite or
infinite) of form gr hz→ gr+1hz→ gr+2hz→ · · · , for some r ≥ 0. But we have
the condition 1+ l(z) - k for any k such that k > r and gkhz is in the path; so the
path is finite. Its last vertex must be gt hz for some t with t − r ≤ 1+ l(z). Writing
m = t − r and y = gr hz, we see that K = {gi y : i = 0, . . . ,m}.

If r > 0, we must have ρµ(y)= ρµ(gr hz) > n or we could continue the path in
K backwards to include the vertex gr−1hy. If r = 0, we have µ(y)= µ(hz)= hz,
so ρµ(y)> n anyway. Also, we must have ρµ(gt+1hy)> n or we could include the
vertex gt+1hy in our component K . For i ∈ (r, t] we have ρµ(gi hy)≤ n because
the edge gi−1hy→ gi hy lies in K . Thus the component K is as described in part
(a) of this lemma.

To complete the proof of part (a), we claim that there is a sequence s0→ s1→

· · · → sm ∈ Sn,0 such that µ(si ) = µ(gi y) for each i ∈ [1,m]. This is proved by
induction on l(y)=min{l(u) : u ∈ K }. If l(y)≤ n, there is nothing to prove because
the component is Sn,0 after all. If the component K is not Sn,0, write K = {gi hz :
r ≤ i ≤ r +m}. We return to (8) to compute the colours µ(gi hz) for i ∈ (r, r +m].
Writing l = l(z) and z =

∏l−1
i=0zl−i (z j ∈ {g, h}), we find that if i ′ ∈ [1, l] is the

unique integer with i ′ ≡ i (mod 1+ l), then µ(gi hz)= µ
(∏i ′−1

j=0 zi ′− j
)
= µ(pl−i ′z).

If r0 ∈ [0, l] satisfies r0 ≡ r (mod l + 1), then the sequence µ(gi y) (i = 1, . . . ,m)
is the sequence µ(pl−r0−i z) (i = 1, . . . ,m). The vertices (pl−r0−i z)mi=0 form a path
in G which, since it involves the same colours for i > 0, is also a path in G(n). So
this path is part of a component K ′ of G(n). If K ′ = Sn,0 we are done; if not, we
note that the minimum length of an element of K ′ is strictly less than l(y), so the
result follows by induction hypothesis.
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(b) Let c ∈ C. From (10), for s ∈ S we have

(1− Pn)Tces =


w(gs)egs if µ(gs)= c and ρ(gs) > n,

w(hs)ehs if µ(hs)= c and ρ(hs) > n,

0 otherwise.

But w(x)= 2−ρ(x), so ‖(1− Pn)Tc‖≤ 2−n−1. We will also have ‖(1− Pn)T ‖→ 0
for any operator T in the norm-closed right ideal generated by the operators Tc.
But this right ideal is the entire algebra A. �

Proof of Theorem 3.1, second part. By Lemma 2.6(b), when T ∈ A(n) we have
T =

∑
K Qn,K TQn,K , where the sum is taken over the connected components K

of G(n). So

(19) ‖T ‖ = sup
K
‖Qn,K TQn,K‖.

If K equals Sn,0, the component containing 1, then the norm ‖Qn,K TQn,K‖ equals
‖PnT Pn‖. If K is any other component, we claim that the norm is at most ‖PnT Pn‖.
By Lemma 3.3(a), we can write K = {gi y : 0 ≤ i ≤ m} for suitable y ∈ S and m;
writing γi for the colour µ(gi y), there is also a set κ = {si : 0 ≤ i ≤ m} ⊂ Sn,0

such that the colour µ(si ) equals γi for i ∈ [1,m]. Let q denote the orthogonal
(coordinatewise) projection onto lin(κ). If c1, c2, . . . , cr ∈ C, then the compression
τ1 = Qn,K Tcr Tcr−1 . . . Tc1 Qn,K sends gi y to gi+r y, if i + r ≤ m and ci = γr+i for
each i = 1, . . . , r ; otherwise, we have τ1gi y = 0. Similarly, the compression τ2 =

qTcr Tcr−1 . . . Tc1q sends si to si+r if i + r ≤ m and ci = γr+i for each i = 1, . . . , r ;
otherwise, we have τ2si = 0. So the compressions τ1 and τ2 are intertwined by
the map η sending gi y to si for each i . Indeed, if T ∈ A(n), the compressions
τ = Qn,K TQn,K and τ ′ = qT q are intertwined, with ητ = τ ′η. So τ has the same
(m+1)× (m+1) matrix M with respect to the basis (gi y)mi=0 of Qn,K H, as τ ′ has
with respect to the basis (si )

m
i=0 of qH. M is strictly lower triangular, because all

such compressions qT q map si into lin{s j : j > i} for each i . The norm on qH is
given by

∥∥∑m
i=0λi si

∥∥= (∑m
i=0ω

2
i |λi |

2
)1/2, where ωi =W (si ). The norm on Qn,K H

is likewise given by
∥∥∑m

i=0λi gi y
∥∥ = (∑m

i=0(ω
′

i )
2
|λi |

2
)1/2, where ω′i = W (gi y).

For 0≤ i <m, the ratio ωi+1/ωi equals W (si+1)/W (si )=w(si+1) because there is
an edge si→ si+1 in G; and w(si+1)≥ 2−n because si+1 ∈ Sn,0 so ρ(si+1)≤ n. On
the other hand, the ratio ω′i+1/ω

′

i equals W (gi+1 y)/W (gi y)= w(gi+1 y)≤ 2−n−1,
because gi+1 y /∈ Sn,0 so ρ(gi+1 y)≥n+1. We deduce thatω′i+1/ω

′

i ≤
1
2 ·ωi+1/ωi . By

Lemma 3.2, we have ‖Qn,K TQn,K‖= ‖τ‖≤ ‖τ
′
‖, and of course ‖τ ′‖≤ ‖PnT Pn‖

because the orthogonal projection satisfies q ≤ Pn . By (19), the norm of T is
the supremum of ‖PnT Pn‖ and the norms ‖Qn,K TQn,K‖ for all other connected
components K ⊂ G(n); so ‖T ‖ = ‖PnT Pn‖ as claimed by the theorem. �
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We can now prove the main theorem of this section:

Theorem 3.4. A is radical.

Proof. If not, let T ∈ A have spectral radius at least 1. By Lemma 3.3, there
is an n ∈ N such that ‖(1− Pn)T ‖ ≤ 1

2 . We claim that the spectral radius of
the compression PnT Pn is at least 1. For by Lemma 2.6(a), for each k ∈ N we
have T k

= PnT k Pn + (1 − P̄n)T k (any k ∈ N) because ker Pn is an invariant
subspace for A; indeed, T k

= (PnT Pn)
k
+ (1− Pn)T k , because the compression

map T → PnT Pn is an algebra homomorphism on A. So for all k > 0, T k
=

(PnT Pn)
k
+ (1− Pn)T · T k−1, and hence

‖T k
‖ ≤ ‖(PnT Pn)

k
‖+

1
2 · ‖T

k−1
‖

≤ ‖(PnT Pn)
k
‖+

1
2 · ‖(PnT P̄n)

k−1
‖+

1
4 · ‖T

k−2
‖

≤ · · · ≤ 2−k
+

k−1∑
j=0

2− j
‖(PnT Pn)

k− j
‖.

If the spectral radius of PnT Pn is less than 1, we can find r < 1 and C > 0 such that
‖(PnT Pn)

j
‖≤Cr j for all j ∈N, so we have 1≤‖T k

‖≤ 2−k
+
∑k−1

j=0C ·2− j
·r k− j

≤ 2−k
+ kC max

( 1
2 , r

)k for all k ∈ N. This is a contradiction for large k, so the
spectral radius of the compression PnT Pn must be at least 1.

It is thus sufficient to show that for each T ∈ A and n ∈ N, the compression
PnT Pn is quasinilpotent. Let us prove this by induction on n, beginning with the
not-quite-trivial case n = 0.

By Lemma 2.6(d) (and its generalisation to T ∈A rather than T ∈A0 as discussed
after Definition 2.7), we have P0T P0= P0T (0)P0= P0T (0)P0 for any T ∈A; and
T (0)
∈B(0). By Theorem 3.1, we have (1−π k)P0T (0)

→ 0, and by Lemma 2.6(a),
T (0) maps kerπ k into kerπ k+1 for every k. Writing εk = ‖(1−π k)P0T (0)

‖, we
have εk→ 0, and

(P0T P0)
k
= (P0T (0)P0)

k

= (1−π k−1)P0T (0)(1−π k−2)P0T (0)(1−π k−3)

. . . P0T (0)(1−π0)P0T (0)P0,

so ‖(P0T P0)
k
‖ ≤

∏k−1
j=0ε j , and hence P0T P0 is indeed quasinilpotent.

Proceeding to the case of a general n ∈ N, we note that for T ∈ A, PnT Pn =

PnT (n)Pn = Pn(T (n)
+ T (n−1))Pn , where T (n)

∈B(n) and T (n−1)
∈B(n−1).

Writing τ = T (n−1), we have τ k
∈B(n−1) for all k, so by Theorem 3.1, ‖τ k

‖ =

‖Pn−1τ
k Pn−1‖ for all k. But ker Pn−1 is an invariant subspace for A, so

Pn−1τ
k Pn−1 = (Pn−1τ Pn−1)

k
;
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and our induction hypothesis tell us that Pn−1τ Pn−1 is quasinilpotent. Thus
‖τ k
‖

1/k
→ 0 as k→∞, and also ‖(Pnτ Pn)

k
‖

1/k
= ‖Pnτ

k Pn‖
1/k
→ 0 as k→∞.

So PnT (n−1) is quasinilpotent.
Meanwhile σ = PnT (n) is a compact operator by Theorem 3.1, satisfying εk =

‖(1−π k)σ‖→ 0 as k→∞; and both σ and τ map kerπ k into kerπ k+1 for each k.
Let us pick an arbitrary δ > 0 and choose C > 0 such that ‖(PnT (n−1))k‖≤C ·δk

for all k ∈ N0. Then for any k ∈ N, we have

(PnT Pn)
k
= (PnT (n−1)

+ σ)k Pn

=

k∑
r=0

∑
i0+i1+···+ir=k−r

i j∈N0

(PnT (n−1))i0 ·

r∏
j=1

σ · (PnT (n−1))i j · Pn,

and writing u j =
∑r

t= j (1 + it) − 1, the product from j = 1 to r is equal to∏r
j=1(1−πu j )σ (PnT (n−1))i j ; so

‖(PnT Pn)
k
‖ ≤

k∑
r=0

∑
i0+i1+···+ir=k−r

i j∈N0

Cr+1δk−r
·

r∏
j=1

εu j .

Now u j ≥ j − 1 in all cases, so writing η j =
∏r

j=1ε j−1, we have

‖(PnT Pn)
k
‖ ≤

k∑
r=0

∑
i0+i1+···+ir=k−r

i j∈N0

Cr+1δk−rηr =

k∑
r=0

(
k
r

)
Cr+1δk−rηr .

But η1/r
r →0, so we can choose D>0 such that ηr ≤D·(δ/C)r for all r ; substituting

this in the previous equation, we find that ‖(PnT Pn)
k
‖ ≤

∑k
r=0
(k

r

)
CDδk

= CD ·
(2δ)k . So the spectral radius of PnT Pn is at most 2δ; but δ > 0 was arbitrary, so
PnT Pn is quasinilpotent. Therefore every T ∈A is quasinilpotent; A is a radical
Banach algebra. �

4. Aw∗ is semisimple

We wish to prove the second half of our main result, namely that the bidual A∗∗

is semisimple. We shall do this by showing that the weak-* closure Aw∗ of A in
B(H) is semisimple, and then show that the natural representation θ :A∗∗→ B(H),
whose image is Aw∗, is faithful, so that A∗∗ itself is semisimple. (Our “natural
representation” is the restriction to A∗∗ of the natural projection T∗∗∗→T∗, where
T are the trace-class operators on H, and T∗ = B(H), T∗∗∗ = B(H)∗∗).

In this section, we show that Aw∗, very unlike A itself, is semisimple.
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Definition 4.1. Let C<∞ be the collection of all finite sequences (c1, c2, . . . , cm)

of colours ci ∈ C, for m ∈N (we exclude m = 0). For c= (c1, c2, . . . , cm) ∈ C<∞,
let Tc denote the operator

∏m
i=1Tci ∈A0. Let SA ⊂ C<∞ be the set of c ∈ C such

that Tc 6= 0.

We think of SA as the “support” of A, because clearly every T ∈A0 is equal to
a sum

(20) T =
∑
c∈SA

λc · Tc,

the coefficients λc ∈ C being finitely nonzero.

Lemma 4.2. Given T ∈A0, the coefficients λc(T ) such that T =
∑

c∈SA
λc(T ) · Tc

are unique, and they are weak-* continuous linear functionals of T .

Proof. For c ∈ C, (10) tells us that 〈Tces, et 〉 6= 0 if and only if s = p(t) and the
colour µ(t) = c, in which case it is equal to w(t). Any easy induction then tells
us that for c= (c1, c2, . . . , cm) ∈ SA, 〈Tces, et 〉 6= 0 if and only if s = pm(t) and,
for each i = 1, . . . ,m, the colour µ(pi−1t) equals ci . In that case, 〈Tces, et 〉 =∏m−1

i=0 w(p
i t)=W (t)/W (s). So for fixed s, t , the colour sequence c∈ SA such that

〈Tces, et 〉 6= 0 is unique if it exists; and since Tc 6= 0 for c ∈ SA, for fixed c ∈ SA

there is at least one pair s, t ∈ S such that 〈Tces, et 〉 6= 0.
Given T ∈A0, T =

∑
c∈SA

λc · Tc, we therefore have

(21) λc = λc(T )=
W (s)
W (t)

〈T es, et 〉,

where s, t is any pair such that 〈Tces, et 〉 6= 0. Now λc is indeed uniquely determined
by T , and it is indeed a weak-* continuous function of T ; (21) even equates
λc ∈ B(H)∗ with an element of T of rank 1. �

Given two elements c= (c1, . . . , cm), d = (d1, . . . dn) in C, we can define the
product c · d to be the sequence (c1, . . . , cm, d1, . . . , dn). From (20), we see that
for T, T ′ ∈A0, we have

(22) λc(T T ′)=
∑

d,e∈SA,
d�e=c

λd(T ) · λe(T ′),

where the product d� e denotes concatenation of sequences. The sum is always
finite (it has m− 1 terms when c= (c1, . . . , cm)), so (22) remains true even when
we extend λc to the weak-* closure Aw∗ of A0.

Now for each c ∈ C, (10) tells us that the left support projection l(Tc) for the
operator Tc is the orthogonal projection onto lin{et : t ∈ S−, µ(t)= c}. We also have
‖Tc‖ = w(c)= 2−ρ(c) ≤ 1. These left support projections are mutually orthogonal
for different colours c. The corresponding right support projection r(Tc) is the
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projection onto lin{es : s ∈ S, s = p(t), µ(t)= c}. These right support projections
are not mutually orthogonal, but nevertheless, for each s ∈ S there are only two
t ∈ S− such that s = p(t), so the norm of any sum

∑
c∈SA

λcr(Tc) is at most
2 · sup{|λc| : c ∈ SA}. Hence for any sequence x ∈ l∞(SA), the formal sum

(23) T =
∑
c∈SA

xc

wc
· Tc

satisfies

T ∗T =
∑

c,d∈SA

x∗c xd

wcwd
T ∗c l(Tc)l(Td)Td =

∑
c∈SA

|xc|
2

w2
c

T ∗c Tc ≤
∑
c∈SA

|xc|
2r(Tc),

in particular ‖T ∗T ‖ ≤ 2 · ‖x‖2
∞

. So the sum T in fact converges in the weak-*
topology to an element of Aw∗ of norm at most

√
2 · ‖x‖∞.

Theorem 4.3. Aw∗ is semisimple.

Proof. Let T ∈ Aw∗, T 6= 0. We claim that T /∈ rad Aw∗. Let us choose s, t ∈ S
such that 〈T es, et 〉 6= 0.

Suppose first that s 6= 1. Let l0 = l(s) > 0, and for i = 1, . . . , l0, write di =

µ(pi−1s)=µ(pi+m−1t). Writing d= (d1, . . . , dl0)∈C<∞, we will have Td(1)= s,
so d ∈ SA and the product T ′= T ·Td satisfies 〈T ′e1, et 〉 6= 0. Furthermore, in order
to show T /∈ rad Aw∗ it is enough to show that T ′ /∈ rad Aw∗, because the radical is
an ideal. So, we can replace T with T ′ if necessary, and assume that 〈T e1, et 〉 6= 0.

Then λc(T ) 6= 0, where c= (c1, c2, . . . , cl) ∈ SA is the unique sequence such
that l = l(t) (so 1 = pl t), and the colours µ(pi−1t) (i = 1, . . . , l) are ci . Write
ξm = g(m−1)(l+1)ht , and let E ⊂ C be the collection {ξm : m ∈N0} (noting from (7)
that these elements are truly elements of the colour set C). Let us also note that the
weight wξm = 2−ρ(ξm) = 2−(1+ρ(t)) is independent of m. So U =

∑
c∈E Tc ∈ Aw∗

(for U is a weak-* convergent sum like T in (23)). We claim that the product
U · T ∈ Aw∗ is not quasinilpotent, so UT and T itself are not in the radical of
Aw∗. To prove this, we compute the inner product 〈(UT )me1, eξm 〉 for every m ∈N.
Obviously λd(U )= 1 (if d ∈ E) or zero otherwise.

Now the length L equals l(ξm)= m(1+ l), and the colour sequence µ(pi−1ξm)

(with i = 1, . . . , L) is obtained from (8) as follows: if 1+l | i−1, we have pi−1ξm=

g(m−1−r)(l+1)ht (with r = (i − 1)/(1+ l) ∈ [0,m)), and µ(pi−1ξm) = pi−1ξm =

ξm−r ∈ E . But if 1+ l - i−1, then writing i−1= r(l+1)+ j (with r ∈ [0,m), j ∈
[1, l]), if r = m − 1 we have pi−1ξm = p j ht = p j−1t , so µ(p j−1ξm) = c j ; but if
r <m− 1 we have pi−1ξm = g(m−2−r)(l+1)+l+1− j ht and the recursive definition in
(8) tells us that µ(pi−1ξm) = µ(pl−(l+1− j)t) = µ(p j−1t) = c j also. So for all i ,
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1≤ i ≤ L , we have

(24) µ(pi−1ξm)=

{
ξm−r ∈ E if i − 1= r(1+ l),
c j /∈ E if i − 1≡ j (mod l + 1), 1≤ j ≤ l.

The full sequence (µ(pi−1ξm))
L
i=1 ∈ SA is the concatenation

⊙m−1
r=0 (ξm−r � c),

where we slightly abuse notation by writing ξm−r for the sequence of length 1 in
C<∞. Now from (21), we have the inner product

(25) 〈(UT )me1, eξm 〉 =W (ξm) · λξm ((UT )m);

and using (22) 2m times, we have

λξm ((UT )m)=
∑

d(1),c(1),...,d(m),c(m)∈SA,⊙m
i=1(d

(i)�c(i))=
⊙m−1

r=0 (ξm−r�c)

m∏
i=1

λd(i)(U )λc(i)(T ).

But the coefficient λd(U ) can only be nonzero if the sequence d has length 1 and
consists of one of the colours ξ j ∈ E (in which case the coefficient is equal to 1).
There are only m such colours in the sequence

⊙m
r=1(ξm−r � c), and the rest of the

sequence consists precisely of m copies of c, so in fact

(26) λξm ((UT )m)= λc(T )m .

Equation (26) makes the rest of the proof rather straightforward. Substituting it
in (25), we have ‖(UT )m‖ ≥ |〈(UT )me1, eξm 〉| = |λc(T )|m ·W (ξm); where writing
L =m(1+l) as usual, we have W (ξm)=

∏L
j=1w(p

j−1ξm)= 2−
∑L

j=1ρ(p
j−1ξm), from

Definition 2.2. But ξm = g(m−1)(l+1)ht , so ρ(ξm)= 1+ρ(t). And ρ(piξm)≤ ρ(ξm)

for all i ≥ 0, so for all m ∈ N,

‖(UT )m‖ ≥ |λc(T )|m · 2−L(1+ρ(t))
= |λc(T )|m · 2−m(1+l)(1+ρ(t)).

Accordingly UT ∈Aw∗ is not a quasinilpotent operator, and T /∈ rad Aw∗. �

5. A∗∗ is semisimple

Let θ0 : T
∗∗∗
→ T∗ = B(H) be the natural projection, which is an algebra homo-

morphism, and let θ = θ0|A∗∗ be the restriction, which is a representation of A∗∗. If
τ ∈ A∗∗ is a weak-* limit of operators Tα in A, then for each η, ζ ∈ H, we have
〈θ(τ )η, ζ 〉= limα〈Tαη, ζ 〉, so θ(τ ) is the σ(B(H),T)-limit of the operators Tα , and
the image θ(A∗∗) is contained in the weak-* closure Aw∗ of A in B(H). Conversely,
the image of the unit ball of A∗∗, being the weak-* continuous image of a weak-*
compact set, is weak-* compact, and therefore contains the weak-* closure Bw∗ of
the unit ball of A. It is a consequence of the Hahn–Banach theorem that Aw∗ is
equal to the union

⋃
∞

n=1n · Bw∗, so we have θ(A∗∗)=Aw∗, which by Theorem 4.3
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is semisimple. To deduce that A∗∗ is semisimple, we need only prove that θ is a
faithful (injective) representation.

Theorem 5.1. The representation θ :A∗∗→ B(H) is faithful.

Proof. Let τ ∈ A∗∗ with ‖τ‖ = 1. We claim that θ(τ ) 6= 0. To establish this, we
first prove the following lemma:

Lemma 5.2. If τ ∈ A∗∗ with ‖τ‖ = 1, then for every ε > 0, there are n ∈ N and
φ ∈ B(H)∗ with ‖φ‖ = 1, such that the compression φn = Pn · φ · Pn satisfies
|〈τ, φn〉|> 1− ε.

Proof. If a, b ∈ B(H) and Q is an orthogonal projection, then simple calculations
yield the inequalities

‖aQ+ b(1− Q)‖ ≤
√
‖aQ‖2+‖b(1− Q)‖2,

‖Qa+ (1− Q)b‖ ≤
√
‖Qa‖2+‖(1− Q)b‖2.

When these are dualized, the directions of the inequalities are reversed: if φ,ψ ∈
B(H)∗, then

‖φ · Q+ψ · (1− Q)‖ ≥
√
‖φ · Q‖2+‖ψ · (1− Q)‖2,

‖Q ·φ+ (1− Q) ·ψ‖ ≥
√
‖Q ·φ‖2+‖(1− Q) ·ψ‖2.(27)

For every η > 0 there is a φ ∈ A∗ such that ‖φ‖ = 1 and 〈τ, φ〉 > 1 − η.
There is also a witness T ∈ A such that ‖T ‖ = 1 and 〈φ, T 〉 > 1 − η. By
Lemma 3.3(b) there is an n ∈N such that ‖(1− Pn)T ‖<η. Hence, |〈φ−φn, T 〉|≤
‖(1− Pn)T ‖+‖PnT (1− Pn)‖ = ‖(1− Pn)T ‖ < η also (because ker Pn is an in-
variant subspace for A), and so ‖φn‖≥|〈φn, T 〉|>1−2η. By (27) we therefore have
‖(1− Pn) ·φ‖, ‖φ · (1− Pn)‖ <

√
1− (1− 2η)2 < 2

√
η, and hence ‖φ−φn‖ <

4
√
η. Since 〈τ, φ〉> 1− η, we have |〈τ, φn〉|> 1− η−‖φ−φn‖ ≥ 1− η− 4

√
η.

Appropriate choice of η > 0 yields |〈τ, φn〉|> 1− ε as required. �

We now prove Theorem 5.1. Let τ ∈A∗∗ with ‖τ‖ = 1, and assume towards a
contradiction that θ(τ )=0. Write γn= sup{|〈Pn ·φ · Pn, τ 〉| :φ ∈ B(H)∗, ‖φ‖=1}.
The sequence γn is nondecreasing, and by Lemma 5.2 we have γn→ 1. Pick then
N ∈N such that γN > 0, and let n≤ N be the least natural number such that γn= γN .
For each ε > 0 we can find φ ∈ B(H)∗, ‖φ‖= 1 such that 〈Pn ·φ · Pn, τ 〉 ≥ γN −ε.

Given such an ε > 0 and φ, we write φ1 for a weak-* accumulation point
of the functionals π k · φ; but actually, we claim that φ1 is the norm-convergent
limit of π k · φ. For the norms ‖π k ·φ‖ are a nondecreasing sequence tending to
a limit l; (27), with Q = π k and ψ = πm · φ, tells us that for m > k we have
‖π k ·φ‖

2
+‖(πm −π k) ·φ‖

2
≥ ‖πm ·φ‖

2, so ‖(πm −π k) ·φ‖→ 0 as k,m→∞;
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so the sequence (π k ·φ)k∈N satisfies the Cauchy criterion and is norm-convergent.
Each projection π k is of finite rank, so π k ·φ belongs to the trace-class operators T.
Therefore, φ1 ∈T. But the difference φ−φ1 = limk(1−π k) ·φ will annihilate any
compact operator.

We therefore claim that n> 1. For by Theorem 3.1, whenever T ∈A the operator
P1T = P1T (1) is a compact operator, so 〈P1T P1, φ〉=〈P1T P1, φ1〉. We may write τ
as a weak-* convergent limit τ = limw∗ Tα for Tα ∈A with ‖Tα‖= 1. Then γN−ε≤

〈P1 ·φ · P1, τ 〉 = limα〈Tα, P1 ·φ · P1〉 = limα〈P1TαP1, φ〉 = limα〈P1TαP1, φ1〉 =

limα〈Tα, P1 ·φ1 · P1〉=〈τ, P1 ·φ1 · P1〉. For small ε this implies 〈τ, P1 ·φ1 · P1〉 6=0.
But P1·φ1·P1∈T= B(H)∗, so θ(τ ) is not the zero operator in B(H), a contradiction.
Therefore we have n > 1.

Given n > 1, we again pick ε > 0 and find φ ∈ B(H)∗, ‖φ‖ = 1 such that

(28) 〈Pn ·φ · Pn, τ 〉 ≥ γN − ε > 0.

The norm limit φ1= limk π k ·φ is again in T. However, the difference φ−φ1 will not
necessarily annihilate PnT Pn for T ∈A, because though φ−φ1 annihilates K (H),
the operator PnT Pn need not be compact. Rather, for T ∈A we have PnT Pn =

PnT (n)Pn , where T (n)
= 1n(T ) as in Definition 2.7; and T (n)

= T (n−1)
+ T (n),

where the operator PnT (n) is compact by Theorem 3.1. So 〈PnT (n) P̄n, φ−φ1〉 =

0 for all T ∈ A. Writing τ = limα Tα for a suitable net (Tα) in A, we have
〈T (n)
α , Pn(φ−φ1)Pn〉 = 0 for all α. Because φ1 ∈ T and θ(τ )= 0 by hypothesis,

if we write β = limα〈T
(n−1)
α , Pn(φ−φ1)Pn〉, we will have 0 = 〈Pnφ1 Pn, τ 〉 =

〈Pnφ P̄n, τ 〉 − limα〈Pn(φ−φ1)Pn, Tα〉 = 〈PnφPn, τ 〉 − β. By (28), we have
|β| ≥ γN − ε.

For each T ∈ A and n > 1, the norms of T (n−1) and Pn−1T (n−1)Pn−1 =

Pn−1T Pn−1 are the same by (15). Thus there is a unique map η : Pn−1 ·A · P̄n−1→

A(n−1) which is a right inverse to the compression p :A→ Pn−1 ·A · Pn−1 with
p(T ) = Pn−1T Pn−1 (T ∈ A); and ‖η‖ = 1. We will have η · p = 1n−1. Let us
write ψ = (Pn(φ−φ1)Pn) ◦ η. Then ψ ∈ (Pn−1 ·A · Pn−1)

∗ with ‖ψ‖ ≤ 1.
By the Hahn–Banach theorem, we can extend ψ to Pn−1 · B(H) · Pn−1 with the

same norm; and then extend to all of B(H) so that ψ = ψ ◦ p (where we abuse
notation slightly by writing p for the compression B(H)→ Pn−1 · B(H) · Pn−1

also).
Then for T ∈A we have ψ(T )= ψ ◦ ηp(T )= ψ(1n−1(T )); so

|〈ψ, τ 〉| = lim
α
|〈ψ, 1̄n−1Tα〉| = lim

α
|〈Pn(φ−φ1)Pn, T̄ (n−1)

α 〉| = |β| ≥ γN − ε.

Since ψ = ψ ◦ p = Pn−1 ·ψ · Pn−1, we find that

γn−1 = sup{|〈Pn−1 ·φ · Pn−1, τ 〉| : φ ∈ B(H)∗, ‖φ‖ = 1}
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is at least γN − ε. But ε > 0 is arbitrary, so γn−1 = γN , and n was not the minimal
integer with γn = γN , contrary to hypothesis. This contradiction proves the theorem.

�

6. References to Gulick’s paper

Having established that the result rad A∗∗ ∩ A = rad A of Gulick is wrong, let us
look at papers which have referenced [Gulick 1966] and try to establish that no
further damage has been done.

The lengthy paper of Dales and Lau [2005] refers to [Gulick 1966], but does
not use the false Theorem 4.6; private communication with my colleague Garth
Dales reveals a history of previous suspicion about that result, but no actual coun-
terexamples as presented here. The paper of Daws, Haydon, Schlumprecht and
White [Daws et al. 2012] refers to (the proof of) Theorem 3.3 of [Gulick 1966],
which we believe to be completely correct. Likewise the paper of Bouziad and
Filali [2011] quotes the proof, given by Gulick [1966, Lemma 5.2], that the radical
of L∞(G)∗ is nonseparable for any nondiscrete locally compact group G. This
proof also is perfectly valid. The earlier paper of Granirer [1973] makes reference
to that same, correct, lemma. Tomiuk [1981] likewise refers to Gulick’s untainted
Theorem 5.5. A. Ülger [1987] solves one of the problems posed by Gulick [1966].
Finally, Tomiuk and Wong [1970] make a passing reference to [Gulick 1966] in
their paper on Arens products.

We have not found a case in which another author has used the false Theorem
4.6 from Gulick’s paper, or anything tainted by it. This chimes with our reckoning
that more than one author apart from ourselves has suspected that that theorem is
false. So, the general literature on Banach algebras is not seriously harmed; but it
was nonetheless high time that these counterexamples were made known so that
such errors will not occur in the future.
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