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DIMENSION JUMPS
IN BOTT–CHERN AND AEPPLI COHOMOLOGY GROUPS

JIEZHU LIN AND XUANMING YE

Let X be a compact complex manifold, and let π :X→ B be a small deforma-
tion of X , the dimensions of the Bott–Chern cohomology groups H p,q

BC (X (t))
and Aeppli cohomology groups H p,q

A (X (t)) may vary under this deforma-
tion. In this paper, we will study the deformation obstructions of a ( p, q)
class in the central fiber X . In particular, we obtain an explicit formula for
the obstructions and apply this formula to the study of small deformations
of the Iwasawa manifold.

1. Introduction

Let X be a compact complex manifold and π : X→ B be a family of complex
manifolds such that π−1(0) = X , where X is a complex manifold and B is a
neighborhood of the origin. Let X t = π

−1(t) denote the fiber of π over the point
t ∈ B. In [Ye 2008], the author studied the jumping phenomenon of Hodge numbers
h p,q of X by studying the deformation obstructions of a (p, q) class in the central
fiber X . In particular, the author obtained an explicit formula for the obstructions
and applied it to the study of small deformations of the Iwasawa manifold. Besides
the Hodge numbers, the dimensions of Bott–Chern cohomology groups and the
dimensions of Aeppli cohomology groups are also important invariants of complex
structures. D. Angella [2013] studied the small deformations of the Iwasawa
manifold and found that the dimensions of Bott–Chern and Aeppli cohomology
groups are not deformation invariants.

In this paper, we will study the Bott–Chern and Aeppli cohomologies by study-
ing the hypercohomology of the complex B•p,q constructed in [Schweitzer 2007].
M. Schweitzer [2007] proved that

H p,q
BC (X)∼= Hp+q(X,B•p,q) and H p,q

A (X)∼= Hp+q+1(X,B•p+1,q+1).
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As in [Ye 2008], we will study the jumping phenomenons from the viewpoint
of obstruction theory. More precisely, for a certain small deformation X of X
parameterized by a base B and a certain class [θ ] of the hypercohomology group
Hl(X,B•p,q), we will try to find out the obstruction to extend it to an element of
the relative hypercohomology group Hl(X,B•p,q;X/B). We will call those elements
which have nontrivial obstruction the obstructed elements. And then we will see that
these elements will play an important role when we study the jumping phenomenon,
because we will see that the existence of obstructed elements is a sufficient condition
for the variation of the dimensions of Bott–Chern and Aeppli cohomologies.

In Section 2 we will summarize the results of M. Schweitzer about Bott–Chern
and Aeppli cohomologies, from which we can define the relative Bott–Chern and
Aeppli cohomologies on Xn , where Xn is the n-th order deformation of π : X→ B.
We will also introduce some important maps which will be used in the calculation
of the obstructions in Section 4. In Section 3 we will try to explain why we need to
consider the obstructed elements. The relation between the jumping phenomenon
of the dimensions of Bott–Chern and Aeppli cohomologies and the obstructed
elements is the following.

Theorem 3.1. Let π : X→ B be a small deformation of the central fiber compact
complex manifold X. Now we consider dim Hl(X (t),B•p,q;t) as a function of
t ∈ B. It jumps at t = 0 if there exists an element [θ ] either in Hl(X,B•p,q) or
in Hl−1(X,B•p,q) and a minimal natural number n ≥ 1 such that the n-th order
obstruction is nonzero:

on([θ ]) 6= 0.

In Section 4 we will get a formula for the obstruction to the extension we
mentioned above.

Theorem 4.4. Let π : X→ B be a deformation of π−1(0) = X , where X is a
compact complex manifold. Let πn : Xn→ Bn be the n-th order deformation of X.
For arbitrary [θ ] belongs to Hl(X,B•p,q), suppose we can extend [θ ] to order n− 1
in Hl(Xn−1,B•p,q;Xn−1/Bn−1). Denote such element by [θn−1]. The obstruction of the
extension of [θ ] to n-th order is given by

on([θ ])=−∂
∂,B
Xn−1/Bn−1

◦κnx◦∂
B,∂
Xn−1/Bn−1

([θn−1])−∂
∂,B
Xn−1/Bn−1

◦κnx◦∂
B,∂
Xn−1/Bn−1

([θn−1]),

where κn is the n-th order Kodaira–Spencer class and κn is the n-th order Kodaira–
Spencer class of the deformation π : X → B. The maps ∂∂,BXn−1/Bn−1

, ∂∂,BXn−1/Bn−1
,

∂
B,∂
Xn−1/Bn−1

and ∂B,∂
Xn−1/Bn−1

are defined in Section 2.

In Section 5 we will use this formula to study carefully the example given by Iku
Nakamura and D. Angella, that is, the small deformation of the Iwasawa manifold
and discuss some phenomena.
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2. The relative Bott–Chern and Aeppli cohomologies of Xn and the
representation of their cohomology classes

2A. The Bott–Chern and Aeppli cohomologies and hypercohomologies. All the
details of this subsection can be found in [Schweitzer 2007]. Let X be a compact
complex manifold. The Dolbeault cohomology groups H p,q

∂
(X), and more generally

the terms E p,q
r (X) in the Frölicher spectral sequence [Frölicher 1955], are well-

known finite dimensional invariants of the complex manifold X . On the other hand,
the Bott–Chern and Aeppli cohomologies define additional complex invariants of X
given, respectively, by [Bott and Chern 1965; Aeppli 1965]

H p,q
BC (X)=

ker{d : Ap,q(X)→Ap+q+1(X)}

im{∂∂ : Ap−1,q−1(X)→Ap,q(X)}
,

and

H p,q
A (X)=

ker{∂∂ : Ap,q(X)→Ap+1,q+1(X)}

im{∂ : Ap−1,q(X)→Ap,q(X)}+ im{∂ : Ap,q−1(X)→Ap,q(X)}
.

By the Hodge theory developed in [Schweitzer 2007], all these complex invariants
are also finite dimensional, and H p,q

A (X)∼= H n−q,n−p
BC (X). Notice that Hq,p

BC (X) is
isomorphic to H p,q

BC (X) by complex conjugation. For any r ≥ 1 and for any p, q,
there are natural maps

H p,q
BC (X)→ E p,q

r (X) and E p,q
r (X)→ H p,q

A (X).

Recall that E p,q
1 (X) is isomorphic to H p,q

∂
(X) and that the terms for r =∞ provide

a decomposition of the de Rham cohomology of X : H k
dR(X,C)∼=⊕p+q=k E p,q

∞ (X).
From now on we shall denote by h p,q

BC (X) the dimension of the cohomology group
H p,q

BC (X). The Hodge numbers will be denoted simply by h p,q(X) and the Betti
numbers by bk(X). For any given p ≥ 1, q ≥ 1, we define the complex of sheaves
L•p,q by

Lk
p,q =

⊕
r+s=k

r<p,s<q

Ar,s if k ≤ p+ q − 2, Lk−1
p−1,q−1 =

⊕
r+s=k

r≥p,s≥q

Ar,s if k ≥ p+ q,

and the differential

L0
p,q

pr
L1

p,q
◦ d

−→ L1
p,q

pr
L2

p,q
◦ d

−→ · · · −→ Lk−2
p,q

∂∂
−→ Lk−1

p,q
d
−→ Lk

p,q
d
−→ · · · ,

where Ar,s are the sheaves of smooth (r, s)-forms and pr is the projection operator.
Then by the above construction, we have the following isomorphisms:

H p,q
BC (X)= H p+q−1(L•p,q(X))∼= Hp+q−1(X,L•p,q),

H p,q
A (X)= H p+q(L•p+1,q+1(X))∼= Hp+q(X,L•p+1,q+1),
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because Lk
p,q are soft.

We define a sub complex S•p,q of L•p,q by

(S′
•

p , ∂) : O→�1
→ · · ·→�p−1

→ 0, (S′′
•

q , ∂) : O→�1
→ · · ·→�q−1

→ 0,

S•p,q=S′
•

p +S′′
•

q : O+O→�1
⊕�1
→· · ·→�p−1

⊕�p−1
→�p

→· · ·→�q−1
→0.

Note that the inclusion S• ⊂L• is a quasiisomorphism [Schweitzer 2007]. There is
another complex B•p,q used in [Schweitzer 2007], defined by

B•p,q :C
(+,−)
−→ O⊕O→�1

⊕�1
→· · ·→�p−1

⊕�p−1
→�p

→· · ·→�q−1
→ 0.

and the following morphism from B•p,q to S•p,q [1] is a quasiisomorphism [Schweitzer
2007]:

C
(+,−)
−→ O⊕O → �1

⊕�1
→ · · ·

↓ ↓ + ↓

0 −→ O+O → �1
⊕�1

→ · · · .

Therefore we have

H p,q
BC (X)∼= Hp+q(X,L•p,q [1])∼= Hp+q(X,S•p,q [1])∼= Hp+q(X,B•p,q),

and

H p,q
A (X)∼= Hp+q(X,L•p+1,q+1)∼= Hp+q(X,S•p+1,q+1)∼= Hp+q+1(X,B•p+1,q+1).

2B. The relative Bott–Chern and Aeppli cohomologies of Xn. Here we make
some definitions in order to construct the relative Bott–Chern and Aeppli coho-
mologies of Xn . Suppose X is a compact complex manifold.

• Let π : X→ B be a deformation of π−1(0)= X .
• For every integer n ≥ 0, set Bn = Spec OB,0/mn+1

0 — the n-th order infinitesimal
neighborhood of the closed point 0 of the base B.

• Let Xn ⊂ X be the complex space over Bn .
• Let πn : Xn→ Bn be the n-th order deformation of X , and denote π∗(m0) by M0.
• Complex conjugation gives another complex structure of the differential manifold

of X; we denote this manifold by X, and π induces a deformation π : X→ B of
X . Then we have Xn and πn : Xn→ Bn .

• Let CωB be the sheaf of C-valued real analytic functions on B.
• Set OωX = π

∗(CωB), OωX = π
∗(CωB); let mω

0 be the maximal ideal of CωB,0 and let
Mω

0 = π
∗(mω

0 ), Mω
0 = π

∗(mω
0 ).

• For any sheaf of OX- (resp. OX-) modules F, set Fω
= F⊗OX OωX (resp. Fω

=

F⊗OX
OωX).

• Let OωXn
= OωX,0/(M

ω
0 )

n+1 and Oω
Xn
= OωX,0/(M

ω

0 )
n+1.
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• For any sheaf of OXn (resp. OXn
) modules F, set Fω

= F⊗OXn
OωXn

(resp. Fω
=

F⊗OXn
Oω

Xn
).

• For any given p ≥ 1, q ≥ 1, we define the complex S•Xn/Bn
= S•p,q;Xn/Bn by

(S′
•

p;Xn/Bn
, ∂Xn/Bn ) : O

ω
Xn
→�

1;ω
Xn/Bn

→ · · · →�
p−1;ω
Xn/Bn

→ 0,

(S′′
•

q;Xn/Bn
, ∂ Xn/Bn ) : O

ω

Xn
→�

1;ω
Xn/Bn

→ · · · →�
q−1;ω
Xn/Bn

→ 0,

S•p,q;Xn/Bn
= S′

•

p;Xn/Bn
+S′′

•

q;Xn/Bn
: OωXn
+OωXn

→�
1;ω
Xn/Bn
⊕�

1;ω
Xn/Bn

→ · · ·

→�
p−1;ω
Xn/Bn

⊕�
p−1;ω
Xn/Bn

→�
p;ω
Xn/Bn

→ · · · →�
q−1;ω
Xn/Bn

→ 0.

• Finally, define B•p,q;Xn/Bn by

B•p,q;Xn/Bn : C
ω
Bn

(+,−)
−→ OωXn

⊕OωXn
→�

1;ω
Xn/Bn
⊕�

1;ω
Xn/Bn

→ · · ·

→�
p−1;ω
Xn/Bn

⊕�
p−1;ω
Xn/Bn

→�
p;ω
Xn/Bn

→ · · · →�
q−1;ω
Xn/Bn

→ 0,

where CωBn
= π−1(CωB,0/(m

ω
0 )

n+1).

Now we are ready to define the relative Bott–Chern and Aeppli cohomologies
of Xn:

H p,q
BC (Xn/Bn)∼= Hp+q(X,S•p,q;Xn/Bn [1])∼= Hp+q(Xn,B•p,q;Xn/Bn ),

and

H p,q
A (Xn/Bn)∼= Hp+q(X,S•p+1,q+1;Xn/Bn )

∼= Hp+q+1(Xn,B•p+1,q+1;Xn/Bn ).

2C. Representation of the relative Bott–Chern and Aeppli cohomology classes.
In this subsection we will follow [Schweitzer 2007] to construct a hypercocy-
cle in Ž p+q(X,B•p,q) to represent the relative Bott–Chern cohomology classes.
Let [θ ] be an element of H p,q

BC (X), represented by a closed (p, q)-form θ . It
is defined in Hp+q(X,Lp,q [1]•) by a hypercocycle, still denoted by θ and de-
fined by θ p,q

= θ |U j and θr,s
= 0 otherwise. For given p ≥ 1 and q ≥ 1, there

exists a hypercocycle w = (c; ur,0
; v0,s) ∈ Ž p+q(X,B•p,q) and an hypercochain

α = (αr,s) ∈ Č p+q−1(X,Lp,q [1]•) such that θ = δ̌α+w. We represent the data in
the following table:

θ←→


θ

0,q−1
v

... αr,s

θ0,0
v

θc θ0,0
u · · · θ

p−1,0
u

 .
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The equality θ = δ̌α+w corresponds to the relations

θ p,q
= ∂∂α p−1,q−1

(−1)r+s δ̌αr,s
= ∂αr,s−1

+ ∂αr−1,s

(−1)s δ̌α0,s
= ∂α0,s−1

+ θ0,s
v

(−1)r δ̌αr,0
= θr,0

u + ∂α
r−1,0

δ̌α0,0
= θ0,0

u + θ
0,0
v

δ̌θ0,0
u = θc,

where 1≤ r ≤ p− 1 and 1≤ s ≤ q − 1. Note that these relations involve relations
of the hypercocycles for θu and θv:

(−1)r δ̌θr,0
u = ∂θ

r−1,0
u , (−1)s δ̌θ0,s

v = ∂θ
0,s−1
v ,

with the same conditions on r and s. If q = 0, we simply have

θ←→
(
θc, θ

0,0
u , . . . , θ p−1,0

u
)

with the relations

θ p,0
= ∂θ p−1,0

u , (−1)r δ̌θr,0
u = ∂θ

r−1,0
u , δ̌θ0,0

u = θc,

for 1≤ r ≤ p− 1. Similarly, if p = 0, we have

θ←→
(
θc, θ

0,0
v , . . . , θ0,q−1

v

)
with the relations (where 1≤ s ≤ q − 1)

θ0,q
=−∂θ0,q−1

v , (−1)s δ̌θ0,s
v = ∂θ

0,s−1
v , −δ̌θ0,0

v = θc.

Similarly, let [θ ] be an element of H p,q
BC (Xn/Bn), then it can be represented by a

Čech hypercocycle θu , θv and θc of Ž p+q(X,B•p,q;Xn/Bn
) with the relations

(−1)r δ̌θr,0
u = ∂θ

r−1,0
u (−1)s δ̌θ0,s

v = ∂θ
0,s−1
v

δ̌θ0,0
u = θc, −δ̌θ0,0

v = θc,

where 1≤ r ≤ p−1 and 1≤ s ≤ q−1; while for an element [θ ] of H p,q
A (Xn/Bn), it

can be represented by a Čech hypercocycle θu and θv of Ž p+q+1(X,B•p+1,q+1;Xn/Bn )

with the relations

(−1)r δ̌θr,0
u = ∂θ

r−1,0
u (−1)s δ̌θ0,s

v = ∂θ
0,s−1
v

δ̌θ0,0
u = θc, −δ̌θ0,0

v = θc,

where 1≤ r ≤ p and 1≤ s ≤ q .
Before the end of this section, we will introduce some important maps which

will be used in the computation in Section 4.
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Define
∂
∂,B
Xn/Bn

: H •(Xn, �
p−1;ω
Xn/Bn

)→ H•+p(Xn,B•p,q;Xn/Bn )

as follows. Let [θ ] be an element of H •(Xn, �
p−1;ω
Xn/Bn

) then θ can be represented
by a cocycle of Ž •(X, �p−1;ω

Xn/Bn
), we define ∂∂,BXn/Bn

([θ ]) to be the cohomology class
associated to the hypercocycle in Ž p+•(X,B•p,q;Xn/Bn ) given by

θ p−1,0
u =θ, θr,0

u =0 for 0≤r≤ p−2 θ0,s
v =0 for 0≤ s≤q−1, and θc=0.

When •< 0, ∂∂,BXn/Bn
is defined to be 0.

Lemma 2.1. The map ∂∂,BXn/Bn
is well defined.

Proof. It is easy to check that the hypercochain given by θu , θv and θc is a hyper-
cocycle. On the other hand, suppose there exists a cochain α′ in Č •−1(X, �p−1;ω

Xn/Bn
)

such that δ̌α′ = θ . Then if we take a hypercochain α in Č p+•−1(X,B•p,q;Xn/Bn )

given by α p−1,0
u = (−1)p−1α′, αr,0

u = 0 for 0≤ r ≤ p−2, α0,s
v = 0 for 0≤ s ≤ q−1,

and αc = 0, we have δ̌α = ∂∂,BXn/Bn
([θ ]). Therefore ∂∂,BXn/Bn

([θ ])= 0. �

Similarly, we can define

∂
∂,B
Xn/Bn

: H •(Xn, �
q−1;ω
Xn/Bn

)→ H•+q(Xn,B•p,q;Xn/Bn )

as follows. Let [θ ] be an element of H •(Xn, �
q−1;ω
Xn/Bn

). Then θ can be represented
by a cocycle of Ž •(X , �q−1;ω

Xn/Bn
); we define ∂∂,BXn/Bn

([θ ]) to be the cohomology class
associated to the hypercocycle in Žq+•(X,B•p,q;Xn/Bn ) given by θ0,q−1

v = θ , θ0,r
v = 0

for all 0≤ r ≤ q−2, θr,0
u = 0 for all 0≤ r ≤ p−1, and θc = 0 (when •< 0, this map

is defined to be 0). This map is also well defined and the proof is just as Lemma 2.1.
Define

∂
B,∂
Xn/Bn

: H•+p(Xn,B•p,q;Xn/Bn )→ H •(Xn, �
p;ω
Xn/Bn

)

as follows. Let [θ ] be an element of H•+p(Xn,B•p,q;Xn/Bn ). Then θ can be rep-
resented by a hypercocycle of Ž p+•(X,B•p,q;Xn/Bn ), and we define ∂B,∂

Xn/Bn
([θ ])

to be the cohomology class associated to the cocycle in Ž •(X, �p;ω
Xn/Bn

) given by
∂Xn/Bnθ

p−1,0
u (when •< 0, this map is defined to be 0).

Lemma 2.2. The map ∂B,∂
Xn/Bn

is well defined.

Proof. First we check that the cochain given by ∂Xn/Bnθ
p−1,0

u is a cocycle. In fact,
since θ is a hypercocycle in Ž p+•(X,B•p,q;Xn/Bn

), we have

(−1)p−1δ̌θ p−1,0
u = ∂Xn/Bnθ

p−2,0
u ,

therefore
δ̌∂Xn/Bnθ

p−1,0
u = (−1)p∂Xn/Bn ◦ ∂Xn/Bnθ

p−2,0
u = 0.
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On the other hand, suppose there exists a hypercochain α∈ Č p+•−1(X,B•p,q;Xn/Bn )

such that δ̌α = θ . Then if we take a cochain α′ ∈ Č •−1(X, �p;ω
Xn/Bn

) given by

α′ = (−1)p∂Xn/Bnα
p−1,0
u , we have

δ̌α′ = (−1)p δ̌∂Xn/Bnα
p−1,0
u = (−1)p+1∂Xn/Bn δ̌α

p−1,0
u

= (−1)p+1+p−1∂Xn/Bnθ
p−1,0

u = ∂
B,∂,
Xn/Bn

([θ ]).

Therefore ∂∂,BXn/Bn
([θ ])= 0. �

Similarly, we can define

∂
B,∂
Xn/Bn

: H•+q(Xn,B•p,q;Xn/Bn )→ H •(Xn, �
q;ω
Xn/Bn

).

Let [θ ] be an element of H•+q(Xn,B•p,q;Xn/Bn ) then θ can be represented by a
hypercocycle of Žq+•(X,B•p,q;Xn/Bn ), we define ∂B,∂

Xn/Bn
([θ ]) to be the cohomology

class associated to the cocycle in Ž •(X, �q;ω
Xn/Bn

) given by ∂ Xn/Bnθ
0,q−1
u (when •< 0,

this map is defined to be 0). This map is also well defined and the proof is just as
Lemma 2.2.

Remark 2.3. The natural maps from H p,q
BC (Xn/Bn) to Hq(Xn, �

p;ω
Xn/Bn

) and from

Hq(Xn, �
p;ω
Xn/Bn

) to H p,q
A (Xn/Bn) mentioned in Section 2A respectively are exactly

the map

∂
B,∂
Xn/Bn

: Hq+p(Xn,B•p,q;Xn/Bn )(
∼= H p,q

BC (Xn/Bn))→ Hq(Xn, �
p;ω
Xn/Bn

),

∂
∂,B
Xn/Bn

: Hq(Xn, �
p;ω
Xn/Bn

)→ Hq+p+1(Xn,B•p+1,q+1;Xn/Bn )(
∼= H p,q

A (Xn/Bn)),

and we denote these maps by rBC,∂ and r∂,A.
We also denote the maps

∂
∂,B
Xn/Bn

: Hq(Xn, �
p−1;ω
Xn/Bn

)→ Hq+p(Xn,B•p,q;Xn/Bn )(
∼= H p,q

BC (Xn/Bn)),

∂
B,∂
Xn/Bn

: Hq+p+1(Xn,B•p+1,q+1;Xn/Bn )(
∼= H p,q

A (Xn/Bn))→ Hq(Xn, �
p+1;ω
Xn/Bn

)

by ∂∂,BC
Xn/Bn

and ∂ A,∂
Xn/Bn

.

The following lemma is an important observation which will be used for the
computation in Section 4.

Lemma 2.4. Let [θ ] be an element of Hl(Xn,B•p,q;Xn/Bn ) which is represented by
an element θ ∈ Ž l(X,B•p,q;Xn/Bn ) given by θu , θv and θc. Then ∂Xn/Bn (θ − θ

p−1,0
u )

is a hypercoboundary.

Proof. The hypercochain ∂Xn/Bn (θ−θ
p−1,0

u ) is given by (∂Xn/Bn (θ−θ
p−1,0

u ))r,0u =

∂Xn/Bnθ
r−1,0
u for 0<r≤ p−1, (∂Xn/Bn (θ−θ

p−1,0
u ))0,0u =0, (∂Xn/Bn (θ−θ

p−1,0
u ))0,sv =0

for 0 ≤ s ≤ q− 1, and (∂Xn/Bn (θ − θ
p−1,0

u ))c = 0. Let α be the hypercochain in
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Č l(X,B•p,q;Xn/Bn ) given by αr,0
u =−rθr,0

u for 0≤ r ≤ p−1, α0,s
v =0 for 0≤ s≤q−1,

and αc = 0. It is easy to see that

(δ̌α)r,0u = (−1)r δ̌αr,0
u + ∂Xn/Bnα

r−1,0
u

= (−1)r δ̌(−r)θr,0
u − ∂Xn/Bn (r − 1)θr−1,0

u

= ∂Xn/Bnθ
r−1,0
u

= ∂Xn/Bn (θ − θ
p−1,0

u )r,0u , for 0< r ≤ p− 1,

(δ̌α)0,0u = 0= ∂Xn/Bn (θ − θ
p−1,0

u )0,0u ,

(δ̌α)0,sv = 0= ∂Xn/Bn (θ − θ
p−1,0

u )0,sv , for 0≤ s ≤ q − 1 and

(δ̌α)c = 0= ∂Xn/Bn (θ − θ
p−1,0

u )c.

Therefore δ̌α= ∂Xn/Bn (θ−θ
p−1,0

u ), and ∂Xn/Bn (θ−θ
p−1,0

u ) is a hypercoboundary. �

The following lemma can be proven similarly.

Lemma 2.5. Let [θ ] be an element of Hl(Xn,B•p,q;Xn/Bn ) which is represented by
an element θ in Ž l(X,B•p,q;Xn/Bn ) given by θu , θv and θc, then ∂ Xn/Bn (θ − θ

0,q−1
v )

is a hypercoboundary.

3. The jumping phenomenon and obstructions

There is a Hodge theory also for Bott–Chern and Aeppli cohomologies, see
[Schweitzer 2007]. More precisely, for a fixed Hermitian metric on X ,

H •,•
BC(X)' ker 1̃BC and H •,•

A (X)' ker 1̃A,

where

1̃BC := (∂∂)(∂∂)
∗
+ (∂∂)∗(∂∂)+ (∂∗∂)(∂∗∂)∗+ (∂∗∂)∗(∂∗∂)+ ∂∗∂ + ∂∗∂,

1̃A := ∂∂
∗
+ ∂∂∗+ (∂∂)∗(∂∂)+ (∂∂)(∂∂)∗+ (∂∂∗)∗(∂∂∗)+ (∂∂∗)(∂∂∗)∗

are 4-th order elliptic self-adjoint differential operators. In particular,

dimC H •,•
] (X) <+∞ for ] ∈ {∂, ∂, BC, A}.

Let π :X→ B be a deformation of π−1(0)= X , where X is a compact complex
manifold and B is a neighborhood of the origin in C. Note that h p,q

BC (X (t)) and
h p,q

A (X (t)) are semicontinuous functions of t ∈ B where X (t)=π−1(t) [Schweitzer
2007]. Denote the 1̃BC operator and the 1̃A on X (t) by 1̃BC,t and 1̃A,t . From
the proof of the semicontinuity of h p,q

BC (X (t)) (resp. h p,q
A (X (t))) in [Schweitzer

2007], we can see that h p,q
BC (X (t)) (resp. h p,q

A (X (t))) does not jump at the point
t = 0 if and only if all the 1̃BC,0- (resp. 1̃A,0)-harmonic forms on X can be
extended to relative 1̃BC,t - (resp. 1̃A,t )-harmonic forms on a neighborhood of
0 ∈ B which are real analytic in the direction of B, since the 1̃BC,t (resp. 1̃A,t )
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varies real analytically on B. The above condition is equivalent to the following:
all the cohomology classes [θ ] in H p,q

BC (X) (resp. H p,q
A (X)) can be extended to

a relative dt − closed (resp. ∂t∂ t − closed) forms θ(t) such that [θ(t)] 6= 0 on a
neighborhood of 0 ∈ B which are real analytic on the direction of B. Therefore in
order to study the jumping phenomenon, we need to study the extension obstructions.
So we need to study the obstructions of the extension of the cohomology classes in
H•(X,B•p,q) to the relative cohomology classes in H•(Xn,B•p,q;Xn/Bn ). Set

Mω
0 /(M

ω
0 )

n+1
⊗B•p,q;Xn−1/Bn−1

= π−1(mω
0 /(m

ω
0 )

n+1)
(+,−)
→ Mω

0 /(M
ω
0 )

n+1
⊗OωXn

⊕Mω
0 /(M

ω
0 )

n+1
⊗OωXn

→Mω
0 /(M

ω
0 )

n+1
⊗�

1;ω
Xn/Bn
⊕Mω

0 /(M
ω
0 )

n+1
⊗�

1;ω
Xn/Bn

→ · · ·

→Mω
0 /(M

ω
0 )

n+1
⊗�

p−1;ω
Xn/Bn

⊕Mω
0 /(M

ω
0 )

n+1
⊗�

p−1;ω
Xn/Bn

→Mω
0 /(M

ω
0 )

n+1
⊗�

p;ω
Xn/Bn

→ · · · →Mω
0 /(M

ω
0 )

n+1
⊗�

q−1;ω
Xn/Bn

→ 0.

Now we consider the exact sequence

0→Mω
0 /(M

ω
0 )

n+1
⊗B•p,q;Xn−1/Bn−1 →B•p,q;Xn/Bn →B•p,q;X0/B0 → 0,

which induces a long exact sequence

0→ H0(Xn,Mω
0 /(M

ω
0 )

n+1
⊗B•p,q;Xn−1/Bn−1)→ H0(Xn,B•p,q;Xn/Bn )

→ H0(X,B•p,q;X0/B0)→ H1(Xn,Mω
0 /(M

ω
0 )

n+1
⊗B•p,q;Xn−1/Bn−1)→ · · · .

Let [θ ] be a cohomology class in Hl(X,B•p,q;X0/B0). The obstruction for the ex-
tension of [θ ] to a relative cohomology classes in Hl(Xn,B•p,q;Xn/Bn ) comes from
the nontrivial image of the connecting homomorphism δ∗ : Hl(X,B•p,q;X0/B0)→

Hl+1(Xn,Mω
0 /(M

ω
0 )

n+1
⊗B•p,q;Xn−1/Bn−1). We denote this obstruction by on([θ ]).

On the other hand, for a given real direction ∂/∂x on B, if there exits n ∈ N,
such that oi ([θ ]) = 0 for all i ≤ n and on([θ ]) 6= 0, then let θn−1 be a n − 1-st
order extension of θ to a relative cohomology class in Hl(Xn−1,B•p,q;Xn−1/Bn−1).
Then δ̌θn−1 = 0 up to order n − 1. Now, it is easy to check that δ̌θn−1/xn is an
extension of a nontrivial cohomology class [δ̌θn−1/xn(0)] in Hl+1(X,Bp,q), while
[δ̌θn−1/xn(x0)] is trivial in X (x0) as a cohomology classes in Hl+1(X (x0),Bp,q;x0)

if x0 6= 0. The above discussion leads to the following theorem.

Theorem 3.1. Let π : X→ B be a small deformation of the central fiber compact
complex manifold X. Now we consider dim Hl(X (t),B•p,q;t) as a function of t ∈ B.
This function jumps at t = 0 if there exists an element [θ ] either in Hl(X,B•p,q)

or in Hl−1(X,B•p,q) and a minimal natural number n ≥ 1 such that the n-th order
obstruction satisfies

on([θ ]) 6= 0.
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4. The formula for the obstructions

Since the obstructions we discussed in the previous section are so important when
we consider the problem of jumping phenomenon of Bott–Chern cohomology and
Aeppli cohomology, in this section we try to find an explicit calculation for such
obstructions. As in [Ye 2008, §3], we need some preparation. Cover X by open
sets Ui such that, for arbitrary i , Ui is small enough. More precisely, Ui is Stein
and the following exact sequence splits:

0→ π∗n (�Bn )
ω(Ui )→�ωXn

(Ui )→�ωXn/Bn
(Ui )→ 0,

0→ π∗n(�Bn
)ω(Ui )→�ωXn

(Ui )→�ωXn/Bn
(Ui )→ 0.

So we have a map ϕi :�
ω
Xn/Bn

(Ui )⊕�
ω
Xn/Bn

(Ui )→�ωXn
(Ui )⊕�

ω

Xn
(Ui ) such that

ϕi |�ωXn/Bn (Ui )(�
ω
Xn/Bn

(Ui ))⊕π
∗

n (�Bn )
ω(Ui )∼=�

ω
Xn
(Ui ),

ϕi |�ωXn/Bn (Ui )
(�ωXn/Bn

(Ui ))⊕π
∗

n(�Bn
)ω(Ui )∼=�

ω

Xn
(Ui ).

This decomposition determines a local decomposition of the exterior derivative ∂Xn

(resp. ∂ Xn ) in �•;ωXn
(resp. �•;ωXn

) on each Ui :

∂Xn = ∂
i
Bn
+ ∂ i

Xn/Bn
(resp. ∂Xn

= ∂ i
Bn
+ ∂ i

Xn/Bn
).

By definition, ∂Xn/Bn and ∂ Xn/Bn are given by ϕ−1
i ◦ ∂

i
Xn/Bn
◦ϕi and ϕ−1

i ◦ ∂
i
Xn/Bn
◦ϕi .

Denote the set of alternating q-cochains β with values in F by Čq(U,F), that
is, to each q + 1-tuple, i0 < i1 · · · < iq , β assigns a section β(i0, i1, . . . , iq) of F

over Ui0 ∩Ui1 ∩ · · · ∩Uiq . Let us still use ϕi to denote the map

ϕi : π
∗

n (�Bn )
ω
∧�

p;ω
Xn/Bn

(Ui )⊕π
∗

n(�Bn
)ω∧�

p;ω
Xn/Bn

(Ui )

→�
p+1;ω
Xn

(Ui )⊕�
p+1;ω
Xn

(Ui )

ω1∧βi1 ∧· · ·∧βi p+ω2∧β
′

j1 ∧· · ·∧β
′

jp
7→ ω1∧ϕi (βi1)∧· · ·∧ϕi (βi p)

+ω2∧ϕi (β
′

j1)∧· · ·∧ϕi (β
′

jp
).

Define

ϕ : Čq(U,π∗n (�Bn )
ω
∧�

p;ω
Xn/Bn
⊕π∗n(�Bn

)ω∧�
p;ω
Xn/Bn

)
→ Čq(U,�p+1;ω

Xn
⊕�

p+1;ω
Xn

)
by ϕ(β)(i0, i1, . . . , iq)= ϕi0(β(i0, i1, . . . , iq))

for all β ∈ Čq(U, π∗n (�Bn )
ω
∧�

p;ω
Xn/Bn
⊕π∗n(�Bn

)ω∧�
p;ω
Xn/Bn

),where i0< i1< · · ·< iq .
Define the total Lie derivative with respect to Bn:

L Bn : Č
q(U, �p;ω

Xn
⊕�

p;ω
Xn

)
→ Čq(U, �p+1;ω

Xn
⊕�ωXn

∧�
p;ω
Xn

)
by L Bn (β)(i0, i1, . . . , iq)= ∂

i0
Bn
(β(i0, i1, . . . , iq))

for β ∈ Čq(U, �p;ω
Xn
⊕�

p;ω
Xn
), where i0 < i1 < · · ·< iq (see [Katz and Oda 1968]).
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Define, for each Ui , the total interior product with respect to Bn

I i
:�

p;ω
Xn
(Ui )⊕�

p;ω
Xn
(Ui )→�

p;ω
Xn
(Ui )⊕�

p;ω
Xn
(Ui )

by

I i (µ1∂Xn g1 ∧ ∂Xn g2 ∧ · · · ∧ ∂Xn gp +µ2∂Xn
g′1 ∧ ∂Xn

g′2 ∧ · · · ∧ ∂Xn
g′p)

= µ1

p∑
j=1

∂Xn g1 ∧ · · · ∧ ∂Xn g j−1 ∧ ∂
i
Bn
(g j )∧ ∂Xn g j+1 ∧ · · · ∧ ∂Xn gp

+µ2

p∑
j=1

∂Xn
g′1 ∧ · · · ∧ ∂Xn

g′j−1 ∧ ∂
i
Bn
(g′j )∧ ∂Xn

g′j+1 ∧ · · · ∧ ∂Xn
g′p.

When p = 0, we put I i
= 0 (see [Katz and Oda 1968]). Finally, define

λ : Čq(U, �p;ω
Xn
⊕�

p;ω
Xn

)
→ Čq+1(U, �p;ω

Xn
⊕�

p;ω
Xn

)
by (λβ)(i0, · · · , iq+1)= (I i0 − I i1)β(i1, · · · , iq+1)

for all β ∈ Čq(U, �p;ω
Xn
⊕�

p;ω
Xn
).

This gives the following lemma, proved identically to [Ye 2008, Lemma 3.1].

Lemma 4.1. λ ◦ ϕ ≡ δ ◦ ϕ−ϕ ◦ δ.

With the above preparation, we are ready to study the jumping phenomenon
of the dimensions of Bott–Chern or Aeppli cohomology groups. Suppose we can
extend an arbitrary [θ ] ∈ Hl(X,Bp,q) to order n− 1 in Hl(Xn−1,B•p,q;Xn−1/Bn−1).
Denote such an element by [θn−1]. In what follows, we try to find the obstruction
of the extension of [θn−1] to n-th order. Consider the exact sequence

0→ (Mω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0 →B•p,q;Xn/Bn →B•p,q;Xn−1/Bn−1 → 0

which induces a long exact sequence

0→ H0(Xn, (M
ω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0

)
→ H0(Xn,B

•

p,q;Xn/Bn

)
→ H0(Xn−1,B

•

p,q;Xn−1/Bn−1

)
→ H1(Xn, (M

ω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0

)
→ ··· .

Let [θ ] be a cohomology class in Hl(X,B•p,q;X0/B0).
The obstruction for [θn−1] comes from the nontrivial image of the connecting

homomorphism

δ∗ : Hl(Xn−1,B•p,q;Xn−1/Bn−1

)
→ Hl+1(Xn, (M

ω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0

)
.

Now we are ready to calculate the formula for the obstructions. Let θ̃ be an
element of Č l(U,B•p,q;Xn/Bn ) such that its quotient image in Č l(U,B•p,q;Xn−1/Bn−1)

is θn−1. Then δ∗([θn−1])= [δ̌(θ̃)], which is an element of

Hl+1(Xn, (M
ω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0

)
∼= (mω

0 )
n/(mω

0 )
n+1
⊗Hl+1(X,B•p,q;X0/B0

)
.



DIMENSION JUMPS IN BOTT–CHERN AND AEPPLI COHOMOLOGY GROUPS 473

Let rXn be the restriction to the space Xω
n (the topological space X with structure

sheaf OωXn
) and set

π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧B•p,q;Xn−1/Bn−1,

= π−1(�ωBn |Bn−1
+�ωBn |Bn−1

)

(−,+)
−→ π∗n−1(�

ω
Bn |Bn−1

+�ωBn |Bn−1
)⊗OωXn−1

⊕π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)⊗OωXn−1

→ π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

1;ω
Xn−1/Bn−1

⊕π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

1;ω
Xn−1/Bn−1

→ · · ·

→ π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p−1;ω
Xn−1/Bn−1

⊕π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p−1;ω
Xn−1/Bn−1

→ π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p;ω
Xn−1/Bn−1

→ · · ·

→ π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

q−1;ω
Xn−1/Bn−1

→ 0,
where

π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)= π−1

n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)⊗π−1

n−1(C
ω
B)

OωXn−1
,

π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)= π−1

n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)⊗π−1

n−1(C
ω
B)

OωXn−1
.

In order to give the obstructions an explicit calculation, we need to consider the
map

ρ : Hl(Xn, (M
ω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0

)
→ Hl(Xn−1, π

∗

n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧B•p,q;Xn−1/Bn−1

)
which is defined by ρ[σ ] = [ϕ−1

◦ rXn−1 ◦ (L Bn + L Bn
) ◦ ϕ(σ)], where ϕ−1 is the

quotient map

Č •
(
U, π∗n−1(�

ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p;ω
Xn |Xn−1

⊕π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p;ω
Xn |Xn−1

)
→ Č •

(
U, π∗n−1(�

ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p;ω
Xn−1/Bn−1

⊕π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p;ω
Xn−1/Bn−1

)
.

And we have the following lemmas; the proofs are identical to those of [Ye 2008,
Lemma 3.2 and Lemma 3.3].

Lemma 4.2. The map ρ is well defined.

Lemma 4.3. Furthermore, ρ([δ̌(θ̃)]) is exactly on([θ ]) in Section 3.
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Now consider the following exact sequence. The connecting homomorphism
of the associated long exact sequence gives the Kodaira–Spencer class of order n
[Voisin 1996, §1.3.2];

0→ π∗n−1(�Bn |Bn−1)
ω
→�ωXn |Xn−1

→�ωXn−1/Bn−1
→ 0.

If we wedge the above exact sequence with�p−1;ω
Xn−1/Bn−1

, we get a new exact sequence.
The connecting homomorphism of such an exact sequence gives us a map from
Hq(Xn−1, �

p;ω
Xn−1/Bn−1

) to Hq+1(Xn−1, π
∗(�Bn |Bn−1)

ω
∧�

p−1;ω
Xn−1/Bn−1

).
Denote such a map by κnx, for it is simply the inner product with the Kodaira–

Spencer class of order n. With the above preparation, we are ready to prove the
main theorem of this section.

Theorem 4.4. Let π : X→ B be a deformation of π−1(0) = X , where X is a
compact complex manifold. Let πn : Xn → Bn be the n-th order deformation
of X. Suppose we can extend an arbitrary [θ ] ∈ Hl(X,B•p,q) to order n − 1 in
Hl(Xn−1,B•p,q;Xn−1/Bn−1). Denote such an element by [θn−1]. The obstruction of
the extension of [θ ] to n-th order is given by

on([θ ])=−∂
∂,B
Xn−1/Bn−1

◦κnx◦∂
B,∂
Xn−1/Bn−1

([θn−1])−∂
∂,B
Xn−1/Bn−1

◦κnx◦∂
B,∂
Xn−1/Bn−1

([θn−1]),

where κn is the n-th order Kodaira–Spencer class and κn is the n-th order Kodaira–
Spencer class of the deformation π : X → B. The maps ∂∂,BXn−1/Bn−1

, ∂∂,BXn−1/Bn−1
,

∂
B,∂
Xn−1/Bn−1

and ∂B,∂
Xn−1/Bn−1

are those defined in Section 2.

Proof. Note that on([θ ]) = ρ ◦ δ(θ̃) = [ϕ
−1
◦ rXn−1 ◦ (L Bn + L Bn

) ◦ ϕ ◦ δ(θ̃)].
Because (L Bn + L Bn

+ ∂Xn/Bn + ∂ Xn/Bn ) ◦ δ̌ =−δ̌ ◦ (L Bn + L Bn
+ ∂Xn/Bn + ∂ Xn/Bn ),

rXn−1 ◦ (L Bn + L Bn
) ◦ ϕ ◦ δ̌(θ̃)

≡ rXn−1 ◦ (L Bn + L Bn
) ◦ (δ̌ ◦ ϕ− λ ◦ ϕ)(θ̃)

≡ rXn−1 ◦ (L Bn + L Bn
) ◦ δ̌ ◦ ϕ(θ̃)

≡−rXn−1 ◦
(
∂•Xn/Bn

◦ δ̌+ δ̌ ◦ ∂•Xn/Bn
+ ∂•Xn/Bn

◦ δ̌+ δ̌ ◦ ∂•Xn/Bn

+ δ̌ ◦ (L Bn + L Bn
)
)
◦ ϕ(θ̃)

≡−rXn−1 ◦
(
∂•Xn/Bn

◦ δ̌+ δ̌ ◦ ∂•Xn/Bn
+ ∂•Xn/Bn

◦ δ̌+ δ̌ ◦ ∂•Xn/Bn

)
◦ ϕ(θ̃)

− δ̌ ◦ rXn−1 ◦ (L Bn + L Bn
) ◦ ϕ(θ̃).
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Therefore

[ϕ−1
◦ rXn−1 ◦ (L Bn+ L Bn

) ◦ ϕ ◦ δ(θ̃)]

= [−ϕ−1
◦ rXn−1 ◦ (∂

•

Xn/Bn
◦ δ̌+ δ̌ ◦ ∂•Xn/Bn

+∂•Xn/Bn
◦ δ̌+ δ̌ ◦ ∂•Xn/Bn

) ◦ ϕ(θ̃)]

= −[∂Xn−1/Bn−1 ◦ ϕ
−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃)+∂ Xn−1/Bn−1 ◦ ϕ

−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃)

+ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(

˜∂Xn−1/Bn−1(θn−1))+ϕ
−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(

˜∂ Xn−1/Bn−1(θn−1)).

Since, for 0≤ r ≤ p− 1,

(ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃))

p−1,0
u = (ϕ−1

◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃))
0,q−1
v

= δ̌(ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃))

r,0
u = 0,

and δ̌(ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃))

0,s
v = 0 for 0≤ s ≤ q − 1, we know that

∂Xn−1/Bn−1 ◦ ϕ
−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃)+ ∂ Xn−1/Bn−1 ◦ ϕ

−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃)

= δ̌ ◦ ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃).

Therefore, [∂Xn−1/Bn−1◦ϕ
−1
◦rXn−1◦ δ̌ ◦ϕ(θ̃)+∂ Xn−1/Bn−1◦ϕ

−1
◦rXn−1◦ δ̌ ◦ϕ(θ̃)]=0.

And from Lemma 2.4 and Lemma 2.5,

[ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(

˜∂Xn−1/Bn−1(θn−1))]

=
[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂Xn−1/Bn−1(θn−1− θ

p−1,0
n−1;u )+ ∂Xn−1/Bn−1θ

p−1,0
n−1;u

)]
=
[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂Xn−1/Bn−1θ

p−1,0
n−1;u

)]
and

[ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(

˜∂ Xn−1/Bn−1(θn−1))]

=
[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂ Xn−1/Bn−1(θn−1− θ

0,q−1
n−1;v )+ ∂ Xn−1/Bn−1θ

0,q−1
n−1;v

)]
=
[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂ Xn−1/Bn−1θ

0,q−1
n−1;v

)]
By the definition of the maps ∂∂,BXn−1/Bn−1

, ∂B,∂
Xn−1/Bn−1

and [Ye 2008, Lemma 3.4],[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂Xn−1/Bn−1θ

p−1,0
n−1;u

)]
= ∂

∂,B
Xn−1/Bn−1

◦ κnx ◦ ∂
B,∂
Xn−1/Bn−1

([θn−1])

and similarly, we have[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂ Xn−1/Bn−1θ

0,q−1
n−1;v

)]
= ∂

∂,B
Xn−1/Bn−1

◦ κnx ◦ ∂
B,∂
Xn−1/Bn−1

([θn−1]).

Finally,

[ϕ−1
◦ rXn−1 ◦ (L Bn+L Bn

) ◦ ϕ ◦ δ(θ̃)]

=−∂
∂,B
Xn−1/Bn−1

◦ κnx◦ ∂
B,∂
Xn−1/Bn−1

([θn−1])−∂
∂,B
Xn−1/Bn−1

◦ κnx◦ ∂
B,∂
Xn−1/Bn−1

([θn−1]). �
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We apply the above theorem and Theorem 3.1 in order to study the jumping
phenomenon of the dimensions of Bott–Chern(Aeppli) cohomology groups, and
obtain the following theorems.

Theorem 4.5. Let π : X→ B be a deformation of π−1(0) = X , where X is a
compact complex manifold. Let πn : Xn→ Bn be the n-th order deformation of X.
If there exists an element [θ1

] in H p,q
BC (X) or an element [θ2

] in H p−1,q−1
A (X) and

a minimal natural number n ≥ 1 such that the n-th order obstruction on([θ
1
]) 6= 0

or on([θ
2
]) 6= 0, then the hBC

p,q(X (t)) will jump at the point t = 0. The formulas for
the obstructions are given by

on([θ
1
])=−∂

∂,B
Xn−1/Bn−1

◦κnx◦rBC,∂([θ
1
n−1])−∂

∂,B
Xn−1/Bn−1

◦κnx◦rBC,∂([θ
1
n−1]);

on([θ
2
])=−∂

∂,BC
Xn−1/Bn−1

◦κnx◦∂
A,∂
Xn−1/Bn−1

([θ2
n−1])−∂

∂,BC
Xn−1/Bn−1

◦κnx◦∂
A,∂
Xn−1/Bn−1

([θ2
n−1]).

Theorem 4.6. Let π :X→ B be a deformation of π−1(0)= X , where X is a compact
complex manifold. Let πn : Xn→ Bn be the n-th order deformation of X. If there
exists an element [θ1

] in H p,q
A (X) or an element [θ2

] in Hp+q(X,B•p+1,q+1) and a
minimal natural number n ≥ 1 such that the n-th order obstruction on([θ

1
]) 6= 0 or

on([θ
2
]) 6= 0, then the hA

p,q(X (t)) will jump at the point t = 0. The formulas for the
obstructions are given by

on([θ
1
])=−∂

∂,BC
Xn−1/Bn−1

◦κnx◦∂
A,∂
Xn−1/Bn−1

([θ1
n−1])−∂

∂,BC
Xn−1/Bn−1

◦κnx◦∂
A,∂
Xn−1/Bn−1

([θ1
n−1]).

on([θ
2
])=−r∂,A ◦ κnx◦∂

B,∂
Xn−1/Bn−1

([θ2
n−1])−r∂,A ◦ κnx◦∂

B,∂
Xn−1/Bn−1

([θ2
n−1]).

By these theorems, we can deduce the following corollaries immediately.

Corollary 4.7. Let π : X→ B be a deformation of π−1(0)= X , where X is a com-
pact complex manifold. Suppose that up to order n, the maps rBC,∂ :H

p,q
BC (Xn/Bn)→

Hq(Xn, �
p;ω
Xn/Bn

) and rBC,∂ : H
p,q

BC (Xn/Bn)→ H p(Xn, �
q;ω
Xn/Bn

) are 0. Any element
[θ ] ∈ H p,q

BC (X) can be extended to order n+ 1 in H p,q
BC (Xn+1/Bn+1).

Proof. This result can be shown by induction on k.
Suppose that the corollary is proved for k − 1, then we can extend [θ ] to and

element [θk−1] in H p,q
BC (Xk−1/Bk−1). By Theorem 4.5 , the obstruction for the

extension of [θ ] to k-th order comes from:

ok([θ ])=−∂
∂,B
Xk−1/Bk−1

◦ κkx ◦ rBC,∂([θk−1])− ∂
∂,B
Xk−1/Bk−1

◦ κkx ◦ rBC,∂([θk−1]).

By the assumption, rBC,∂ : H
p,q

BC (Xk−1/Bk−1)→ Hq(Xk−1, �
p;ω
Xk−1/Bk−1

) and rBC,∂ :

H p,q
BC (Xk−1/Bk−1)→ H p(X k−1, �

q;ω
Xk−1/Bk−1

) are 0, where k ≤ n+ 1. So we have
rBC,∂([θk−1])= 0 and rBC,∂([θk−1])= 0. So the obstruction ok([θ ]) is trivial which
means [θ ] can be extended to k-th order. �
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Since
∂

A,∂
Xn/Bn

: H p,q
A (Xn/Bn)→ Hq(Xn, �

p+1;ω
Xn/Bn

)

is the composition of

∂
A,BC
Xn/Bn

: H p,q
A (Xn/Bn)→ H p+1,q

BC (Xn/Bn) and

rBC,∂ : H
p+1,q

BC (Xn/Bn)→ Hq(Xn, �
p+1;ω
Xn/Bn

).

With the same proof of the above corollary, we have the following result and we
omit the proof.

Corollary 4.8. Let π : X→ B be a deformation of π−1(0)= X , where X is a com-
pact complex manifold. Suppose, up to order n, the maps rBC,∂ : H

p+1,q
BC (Xn/Bn)→

Hq(Xn, �
p+1;ω
Xn/Bn

) and rBC,∂ : H p,q+1
BC (Xn/Bn)→ H p(Xn, �

q+1;ω
Xn/Bn

) is 0. Any [θ ]
that belongs to H p,q

A (X) can be extended to order n+ 1 in H p,q
A (Xn+1/Bn+1).

5. An example

In this section, we will use the formulas in Theorems 4.5 and 4.6 to study the jumping
phenomenon of the dimensions of Bott–Chern and Aeppli cohomology groups h p,q

BC
and h p,q

A , respectively, of small deformations of Iwasawa manifold. It was Kodaira
who first calculated small deformations of Iwasawa manifold [Nakamura 1975]. In
the first part of this section, let us recall his result.

Set

G =

{(1 z2 z3
0 1 z1
0 0 1

)
: zi ∈ C

}
∼= C3,

0 =

{(1 ω2 ω3
0 1 ω1
0 0 1

)
: ωi ∈ Z+Z

√
−1

}
.

The multiplication is defined by1 z2 z3

0 1 z1

0 0 1

1 ω2 ω3

0 1 ω1

0 0 1

=
1 z2+ω2 z3+ω1z2+ω3

0 1 z1+ω1

0 0 1

 .
X = G/0 is called the Iwasawa manifold. We may consider X = C3/0. The
element g ∈ 0 operates on C3 as follows:

z′1 = z1+ω1, z′2 = z2+ω2, z′3 = z3+ω1z2+ω3,

where g = (ω1, ω2, ω3) and z′ = z · g.
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There exist holomorphic 1-forms ϕ1, ϕ2, ϕ3 which are linearly independent at
every point on X and are given by

ϕ1 = dz1, ϕ2 = dz2, ϕ3 = dz3− z1dz2,

so that
dϕ1 = dϕ2 = 0, dϕ3 =−ϕ1 ∧ϕ2.

On the other hand we have holomorphic vector fields θ1, θ2, θ3 on X given by

θ1 =
∂

∂z1
, θ2 =

∂

∂z2
+ z1

∂

∂z3
, θ3 =

∂

∂z3
.

It is easily seen that

[θ1, θ2] = −[θ2, θ1] = θ3, [θ1, θ3] = [θ2, θ3] = 0.

In view of [Nakamura 1975, Theorem 3], H 1(X,OX ) is spanned by ϕ1, ϕ2. Since
2 is isomorphic to O3, H 1(X, TX ) is spanned by θiϕλ, i = 1, 2, 3, λ= 1, 2.

Consider the small deformation of X given by

ψ(t)=
3∑

i=1

2∑
λ=1

tiλθiϕλt − (t11t22− t21t12)θ3ϕ3t2.

We summarize the numerical characters of deformations. The deformations are
divided into the following three classes, which are characterized by the following
values of the parameters (all the details can be found in [Angella 2013]):

class (i): t11 = t12 = t21 = t22 = 0;

class (ii): D(t)= 0 and (t11, t12, t21, t22) 6= (0, 0, 0, 0);

class (ii.a): D(t)= 0 and rank S = 1;
class (ii.b): D(t)= 0 and rank S = 2;

class (iii): D(t) 6= 0;

class (iii.a): D(t) 6= 0 and rank S = 1;
class (iii.b): D(t) 6= 0 and rank S = 2;

where the matrix S is defined by

S :=
(
σ 11̄ σ 22̄ σ 12̄ σ 21̄
σ11̄ σ22̄ σ21̄ σ12̄

)
where σ11̄, σ12̄, σ21̄, σ22̄ ∈C and σ12 ∈C are complex numbers depending only on t
such that

dϕ3
t =: σ12ϕ

1
t ∧ϕ

2
t + σ11̄ϕ

1
t ∧ϕ

1
t + σ12̄ϕ

1
t ∧ϕ

2
t + σ21̄ϕ

2
t ∧ϕ

1
t + σ22̄ϕ

2
t ∧ϕ

2
t .
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H•dR b1 b2 b3 b4 b5

I3 and (i), (ii), (iii) 4 8 10 8 4

H••
∂

h1,0
∂

h0,1
∂

h2,0
∂

h1,1
∂

h0,2
∂

h3,0
∂

h2,1
∂

h1,2
∂

h0,3
∂

h3,1
∂

h2,2
∂

h1,3
∂

h3,2
∂

h2,3
∂

I3 and (i) 3 2 3 6 2 1 6 6 1 2 6 3 2 3
(ii) 2 2 2 5 2 1 5 5 1 2 5 2 2 2
(iii) 2 2 1 5 2 1 4 4 1 2 5 1 2 2

H••BC h1,0
BC h0,1

BC h2,0
BC h1,1

BC h0,2
BC h3,0

BC h2,1
BC h1,2

BC h0,3
BC h3,1

BC h2,2
BC h1,3

BC h3,2
BC h2,3

BC

I3 and (i) 2 2 3 4 3 1 6 6 1 2 8 2 3 3
(ii.a) 2 2 2 4 2 1 6 6 1 2 7 2 3 3
(ii.b) 2 2 2 4 2 1 6 6 1 2 6 2 3 3
(iii.a) 2 2 1 4 1 1 6 6 1 2 7 2 3 3
(iii.b) 2 2 1 4 1 1 6 6 1 2 6 2 3 3

H••A h1,0
A h0,1

A h2,0
A h1,1

A h0,2
A h3,0

A h2,1
A h1,2

A h0,3
A h3,1

A h2,2
A h1,3

A h3,2
A h2,3

A

I3 and (i) 3 3 2 8 2 1 6 6 1 3 4 3 2 2
(ii.a) 3 3 2 7 2 1 6 6 1 2 4 2 2 2
(ii.b) 3 3 2 6 2 1 6 6 1 2 4 2 2 2
(iii.a) 3 3 2 7 2 1 6 6 1 1 4 1 2 2
(iii.b) 3 3 2 6 2 1 6 6 1 1 4 1 2 2

Table 1. Dimensions of the cohomologies of the Iwasawa manifold
and of its small deformations [Angella 2013].

The first order asymptotic behavior of σ12, σ11̄, σ12̄, σ21̄, σ22̄ for t near 0 in classes
(i), (ii) or (iii) is

σ12 =−1+ o(|t |)t σ11̄ = t21+ o(|t |)t σ12̄ = t22+ o(|t |)t
σ21̄ =−t11+ o(|t |)t σ22̄ =−t12+ o(|t |)t.

From Table 1, we know that the jumping phenomenon happens in h2,0
BC, h0,2

BC and
h2,2

BC of the Bott–Chern cohomology and symmetrically happens in h3,1
A , h1,3

A and
h1,1

A of the Aeppli cohomology. Now let us explain the jumping phenomenon of
the dimensions of Bott–Chern and Aeppli cohomologies by using the obstruction
formula. From [Angella 2013, §4], it follows that the Bott–Chern cohomology
groups in bidegree (2, 0), (0, 2), (2, 2) are

H 2,0
BC (X)= SpanC{[ϕ1∧ϕ2], [ϕ2∧ϕ3], [ϕ3∧ϕ1]},

H 0,2
BC (X)= SpanC{[ϕ1∧ϕ2], [ϕ2∧ϕ3], [ϕ3∧ϕ1]},

H 2,2
BC (X)= SpanC

{
[ϕ2∧ϕ3∧ϕ1∧ϕ2], [ϕ3∧ϕ1∧ϕ1∧ϕ2],

[ϕ1∧ϕ2∧ϕ2∧ϕ3], [ϕ2∧ϕ3∧ϕ2∧ϕ3], [ϕ3∧ϕ1∧ϕ2∧ϕ3],

[ϕ1∧ϕ2∧ϕ3∧ϕ1], [ϕ2∧ϕ3∧ϕ3∧ϕ1], [ϕ3∧ϕ1∧ϕ3∧ϕ1]
}
,
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and the Aeppli cohomology groups in bidegree (3, 1), (1, 3), (1, 1) are

H 3,1
A (X)= SpanC{[ϕ1∧ϕ2∧ϕ3∧ϕ1], [ϕ1∧ϕ2∧ϕ3∧ϕ2], [ϕ1∧ϕ2∧ϕ3∧ϕ3]},

H 1,3
A (X)= SpanC{[ϕ1∧ϕ1∧ϕ2∧ϕ3], [ϕ2∧ϕ1∧ϕ2∧ϕ3], [ϕ3∧ϕ1∧ϕ2∧ϕ3]},

H 1,1
A (X)= SpanC

{
[ϕ1∧ϕ1], [ϕ1∧ϕ2], [ϕ1∧ϕ3], [ϕ2∧ϕ1],

[ϕ2∧ϕ2], [ϕ2∧ϕ3], [ϕ3∧ϕ1], [ϕ3∧ϕ2]
}
.

For example, let us first consider h2,0
BC under a class (ii) deformation. The Kodaira–

Spencer class of the this deformation is ψ1(t)=
∑3

i=1
∑2

λ=1 tiλθiϕλ, and ψ1(t)=∑3
i=1

∑2
λ=1 t iλθ iϕλ, with t11t22− t21t12 = 0. It is easy to check that

o1(ϕ1 ∧ϕ2)=−∂(int(ψ1(t))(ϕ1 ∧ϕ2))− ∂(int(ψ1(t))(ϕ1 ∧ϕ2))= 0,

o1(t11ϕ2 ∧ϕ3− t21ϕ1 ∧ϕ3)=−∂((t11t22− t21t12)ϕ3 ∧ϕ2)= 0,

o1(ϕ2 ∧ϕ3)= t21ϕ1 ∧ϕ2 ∧ϕ1+ t22ϕ1 ∧ϕ2 ∧ϕ2,

o1(ϕ1 ∧ϕ3)= t11ϕ1 ∧ϕ2 ∧ϕ1+ t12ϕ1 ∧ϕ2 ∧ϕ2.

Therefore, for an element of the subspace SpanC{[ϕ1∧ϕ2], [t11ϕ2∧ϕ3−t21ϕ1∧ϕ3]},
the first order obstruction is trivial, while, since (t11, t12, t21, t22) 6= (0, 0, 0, 0), at
least one of the obstructions o1(ϕ2 ∧ ϕ3), o1(ϕ1 ∧ ϕ3) is nontrivial. This partly
explains why the Hodge number h2,0

BC jumps from 3 to 2. For another example,
let us consider h1,1

A under a class (ii) deformation. It is easy to check that all the
first order obstructions of the cohomology classes are trivial. However, if we want
to study the jumping phenomenon, we also need to consider the obstructions that
come from H2(X,B•2,2). It is easy to check that

H2(X,B•2,2)= SpanC{[ϕ3], [ϕ3]},

o1(ϕ3)= t11ϕ2 ∧ϕ1+ t12ϕ2 ∧ϕ2− t21ϕ1 ∧ϕ1− t22ϕ1 ∧ϕ2,

o1(ϕ3)= t11ϕ2 ∧ϕ1+ t12ϕ2 ∧ϕ2− t21ϕ1 ∧ϕ1− t22ϕ1 ∧ϕ2.

Note that the first order of S is(
t21 −t12 t22 −t11

t21 −t12 −t11 t22

)
.

If the rank of the first order of S is 1, then there exist c1, c2 such that

o1(c1ϕ3+ c2ϕ3) 6= 0.

If the rank of the first order of S is 2, then for all c1, c2

o1(c1ϕ3+ c2ϕ3) 6= 0,

and exactly these obstructions make h1,1
A jump from 8 to 7 in class (ii.a) and from 8

to 6 in class (ii.b).
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To end the section, we give the following observation as an application of the
formulas in Theorems 4.5 and 4.6.

Proposition 5.1. Let X be a non-Kähler nilpotent complex parallelisable manifold
whose dimension is more than 2, and π : X→ B be the versal deformation family
of X. Then the number h1,1

A will jump in any neighborhood of 0 ∈ B.

Proof. Let ϕi , for i = 1, . . . ,m = dimC X , be the linearly independent holomorphic
1-forms of X . It is easy to check that ϕi are ∂∂-closed and therefore each ϕi

represents an element of H 0,1
A (X). On the other hand, by [Macrì 2013, Theorem 3],

we know that the dimension of H 0,1
A (X) is less than or equal to m. Therefore ϕi ,

i = 1, . . . , n, give us a base of H 0,1
A (X). So ∂ : H 0,1

A (X)→ H 1(X, �X ) is trivial.
Then we know that r∂,A : H

1(X, �X )→ H 1,1
A (X) is injective. From the proof of

[Ye 2008, Proposition 4.2], we know there exists an element [θ ] in H 0(X, �X )

whose o1([θ ]) 6= 0. Since ∂θ = 0, θ also represents an element in H2(X,B•2,2); let
us denote it by [θ ]B. By Theorem 4.6 one can see that o1([θ ]B)=−r∂,A(o1([θ ]))

in this case. From the injectivity of r∂,A, we know that o1([θ ]B) 6= 0. Therefore the
number h1,1

A will jump in any neighborhood of 0 ∈ B. �
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