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ON SL2(R)

BENJAMIN SCHMIDT AND JON WOLFSON

A construction is described that associates to each positive smooth function
F : S1 → R a smooth Riemannian metric gF on SL2(R) ∼= R2 × S1 that is
complete and curvature homogeneous. The construction respects moduli:
positive smooth functions F and G lie in the same Diff(S1) orbit if and only
if the associated metrics gF and gG lie in the same Diff(SL2(R)) orbit.

The constructed metrics all have curvature tensor modeled on the same
algebraic curvature tensor. Moreover, the following are shown to be equiva-
lent: F is constant, gF is left-invariant, and (SL2(R), gF) Riemannian cov-
ers a finite volume manifold. Applications of the construction are discussed.

1. Introduction

Let (M, g) be a connected Riemannian manifold, ∇ its Levi-Civita connection, and
R its curvature tensor. Then (M, g) is said to be curvature homogeneous of order k
if for every p, q ∈ M there exists a linear isometry I : Tp M→ Tq M such that

I ∗(∇ i R)q = (∇ i R)p

for each i = 0, 1, . . . , k. When M is curvature homogeneous of order 0, M is
simply said to be curvature homogeneous. Locally homogeneous (M, g) are clearly
curvature homogeneous of all orders. I. M. Singer proved the converse in a seminal
paper:

Theorem 1.1 [Singer 1960]. A connected and complete d-dimensional Riemannian
manifold (M, g) that is curvature homogeneous of order at least d(d − 1)/2− 1
is locally homogeneous. If , in addition, M is simply connected, then (M, g) is
homogeneous.

While Singer’s theorem ensures that completeness and curvature homogeneity of
sufficiently large order implies local homogeneity, there exist examples of complete
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and curvature homogeneous Riemannian manifolds that are not locally homoge-
neous. We refer the reader to [Boeckx et al. 1996] for an extensive collection of
examples and additional references. In this note we prove:

Theorem 1.2. There is a construction that associates to each positive smooth
function F : S1

→ R a complete and curvature homogeneous Riemannian metric
gF on SL2(R). In this construction, the following are equivalent:

(1) F is constant.

(2) The metric gF is left-invariant.

(3) (SL2(R), gF ) Riemannian covers a finite volume manifold.

Theorem 1.2 is related to a conjecture attributed to Gromov by Berger [1988]
that we now describe. Let T denote a fixed algebraic curvature tensor on Euclidean
space En and let M denote a connected, smooth n-manifold. A Riemannian metric
h on M with curvature tensor R is said to be modeled on T if for each x ∈ M there
is a linear isometry I : Tx M → En such that I ∗(T ) = Rx . It is clear that such a
Riemannian metric h is curvature homogeneous and that Diff(M) acts on the space
of such metrics by pullback. Let M(M, T ) denote the space of Diff(M) orbits of
complete Riemannian metrics on M with curvature tensor modeled on T .

Conjecture 1.3 (Gromov). If M is compact, then the moduli space M(M, T ) is
finite-dimensional.

It is known that the assumption of compactness in Gromov’s conjecture cannot in
general be replaced by an assumption of completeness on the metrics under consid-
eration. For example, infinite-dimensional moduli spaces of complete metrics with
curvature tensors modeled on certain reducible symmetric spaces are constructed in
[Tricerri and Vanhecke 1989; Kowalski et al. 1992] (see also [Boeckx et al. 1996,
Propositions 4.15–4.16]).

Question [Tricerri and Vanhecke 1989, Problem 2]. Do the isometry classes of the
germs of Riemannian metrics which have the curvature tensor of a given “irreducible”
homogeneous Riemannian manifold depend on a finite number of parameters?

As explained in Section 3, the Riemannian metrics constructed in Theorem 1.2
all have curvature tensors modeled on a fixed algebraic curvature tensor that we will
call T throughout. The algebraic curvature tensor T is modeled on the curvature
tensor of an irreducible left-invariant metric on SL2(R). Our next theorem describes
the moduli space of these metrics.

Theorem 1.4. Let F and G be two positive smooth functions on the circle. Then
there exists a diffeomorphism 8 : SL2(R)→ SL2(R) such that 8∗(gG)= gF if and
only if there exists a diffeomorphism φ : S1

→ S1 such that F = φ∗(G).
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The space of Diff(S1) orbits of positive smooth functions on S1 is easily seen to
be infinite-dimensional. Hence, Theorems 1.2 and 1.4 yield the following negative
answer to Tricerri and Vanhecke’s problem:

Corollary 1.5. There is an algebraic curvature tensor T modeled on an irreducible
left-invariant metric on SL2(R) such that the moduli space M(SL2(R), T ) is infinite-
dimensional.

Our construction also has an application to the problem of finding isocurved
deformations of homogeneous Riemannian spaces. Let (M, g) be a homogeneous
Riemannian manifold. Kowalski [1999] defines an isocurved deformation of g to
be a family of smooth Riemannian metrics {gt | t ∈ [0, 1]} on M satisfying:

(1) Each (M, gt) is a curvature homogeneous space with curvature tensor modeled
on (M, g).

(2) The metrics gt depend smoothly on t and g0 = g.

(3) (M, gt1) is not locally isometric to (M, gt2) when t1 6= t2.

If, in addition, the metrics gt with t ∈ (0, 1) are not locally homogeneous, then
the isocurved deformation is said to be proper.

A proper isocurved deformation of an irreducible homogeneous metric g0 on the
three-dimensional Lie group E(1, 1) is constructed in [Kowalski 1999]. However,
the metric g1 in the deformation is not complete, and the completeness of the
intermediate metrics is not determined. Problem 1 in [Kowalski 1999] asks to find a
proper isocurved deformation of an irreducible homogenous Riemannian manifold
through complete Riemannian metrics.

Corollary 1.6. Let F : S1
→ R be a nonconstant smooth positive function with a

critical value not equal to one, and let Ft = (1− t)+ t F. Then the family of metrics

{gt = gFt | t ∈ [0, 1]}

is a proper isocurved deformation of the irreducible homogeneous Riemannian
manifold (SL2(R), g1) through complete Riemannian metrics.

Proof. As remarked above, each of the metrics gt is modeled on a fixed algebraic
curvature tensor T ; their smoothness in the parameter t will be evident from the
construction. The metric g0 is homogeneous, each of the metrics gt is complete,
and each of the metrics gt with t > 0 is not locally homogeneous by Theorem 1.2;
the irreducibility of the metric g0 is clear. It remains to check that the metrics
gt are pairwise nonisometric. This follows from Theorem 1.4 after checking that
the functions Ft pairwise lie in different Diff(S1) orbits. This is an immediate
consequence of the fact that the number of critical points and the associated critical
values of smooth functions on S1 are Diff(S1)-invariants. �



502 BENJAMIN SCHMIDT AND JON WOLFSON

Theorem 1.2 is also related to a classification result for constant vector curvature
three-manifolds contained in [Schmidt and Wolfson 2013] that will be used in
Section 3. A Riemannian manifold (M, g) has constant vector curvature ε if each
tangent vector v∈TM lies in a tangent plane of sectional curvature ε. This curvature
condition was introduced as a pointwise analogue of the higher rank condition for
Riemannian manifolds. Motivated by a number of results on rank-rigidity such
as [Ballmann 1985; Burns and Spatzier 1987; Connell 2002; Constantine 2008;
Hamenstädt 1991; Shankar et al. 2005], the present authors proved the following
rigidity result for constant vector curvature −1 three-manifolds:

Theorem 1.7 [Schmidt and Wolfson 2013, Theorem 1.1]. Suppose that M is a
finite volume three-manifold with constant vector curvature −1. If sec≤−1, then
M is real hyperbolic. If sec≥−1 and M is not real hyperbolic, then its universal
covering is isometric to a left-invariant metric on one of the Lie groups E(1, 1) or
S̃L2(R) with sectional curvatures having range [−1, 1].

As will be explained in Section 3, the metrics constructed in Theorem 1.2 all
have constant vector curvature −1 and sectional curvatures having range [−1, 1].
Therefore, it is not possible to remove the finite volume hypothesis in Theorem 1.7
in the case when sec≥−1.

2. SL2(R)

Let SL2(R) denote the Lie group consisting of 2×2 real matrices of determinant one
and let e ∈ SL2(R) denote the identity element. Its Lie algebra sl2(R)∼= Te SL2(R)

consists of 2× 2 real matrices with trace equal to zero. Consider the following
three one-parameter subgroups of SL2(R):

K =
{(

cos θ sin θ
−sin θ cos θ

) ∣∣ θ ∈ R

}
,

N =
{(

1 s
0 1

) ∣∣ s ∈ R

}
,

A =
{(

et/2 0
0 e−t/2

) ∣∣ t ∈ R

}
.

The multiplication map K × N × A→ SL2(R), (k, n, a) 7→ kna is a diffeomor-
phism, yielding the Iwasawa decomposition SL2(R)= K NA.

Define trace zero matrices E1, E2, E3 ∈ sl2(R) by

E1 =

(
0 1
−1 0

)
, E2 =

(
0 1
0 0

)
, and E3 =

(1
2 0
0 −1

2

)
.
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Then {E1, E2, E3} is a basis for the Lie algebra sl2(R). Moreover, E1, E2, and
E3 are the infinitesimal generators of the one-parameter subgroups K , N , and A,
respectively. This Lie algebra basis satisfies the bracket relations

(2-1) [E1, E2] = 2E3, [E2, E3] = −E2, [E1, E3] = E1− 2E2.

The vectors Ei have unique extensions to left-invariant vector fields on SL2(R)

that we also denote by Ei . Declaring the left-invariant framing {E1, E2, E3} of
SL2(R) to be orthonormal determines a left-invariant Riemannian metric on SL2(R).
Throughout the remainder of this paper, we let g1 denote this left-invariant metric.
The pullback of its curvature tensor via a linear isometry from Euclidean space
E3 to Te SL2(R) defines an algebraic curvature tensor that we denote by T in the
remainder of the paper. In the next section, we give the construction of Theorem 1.2.
The metrics constructed will all have curvature tensors modeled on the algebraic
curvature tensor T .

3. The construction

Note that the subgroup K of SL2(R) is diffeomorphic to S1. Throughout what
follows, we assume that a diffeomorphism between K and S1 has been fixed,
identifying positive smooth functions on K with those on S1. A positive smooth
function F : K → R determines a positive smooth function F : SL2(R)→ R as
follows. Given g ∈ SL2(R), there is a unique expression g= kna with k ∈ K , n ∈ N ,
and a ∈ A by the Iwasawa decomposition. Define F(g)= F(kna)= F(k).

Alternatively, the bracket relations (2-1) show that the left-invariant vector fields
E2 and E3 span an involutive plane distribution; the foliation of SL2(R) by integral
surfaces of this distribution coincides with the foliation of SL2(R) by left-cosets of
the subgroup NA. As NA is a closed subgroup of SL2(R), the natural projection
map to the space of left-cosets

π : SL2(R)→ SL2(R) /NA

is smooth. Note that the space of cosets SL2(R) /NA is diffeomorphic to K . Then
F = F ◦π is constant on the leaves of the foliation of SL2(R) by left-cosets of NA.
We summarize this in the following lemma.

Lemma 3.1. Smooth functions F : K→R lift to smooth functions F : SL2(R)→R

satisfying E2(F)= E3(F)= 0.

Let F : K → R be a smooth and positive function and F : SL2(R)→ R its
associated lift. Define a framing {e1, e2, e3} of SL2(R) by

(3-1) e1 = F E1, e2 = E2, e3 = E3.
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We call such a framing an F-framing. The bracket relations for an F-framing are
easy to deduce from (2-1) and the fact that E2(F)= E3(F)= 0. They are given by

(3-2) [e1, e2] = 2Fe3, [e2, e3] = −e2, [e1, e3] = e1− 2Fe2.

Definition 3.2. Given a smooth positive function F : K → R, the F-metric on
SL2(R) is the Riemannian metric denoted by gF which is defined by declaring the
associated F-framing to be gF orthonormal.

Note that for the function F which is identically one on K , the associated F-
metric is the left-invariant metric g1 described in Section 2. We remark that the
space of F-metrics is path connected. Indeed, given two positive functions F0 and
F1 on K , the metrics g(1−t)F0+t F1 with t ∈ [0, 1] define the path joining gF0 to gF1 .
As we shall show, all F-metrics have curvature tensors modeled on the algebraic
curvature tensor T .

In order to calculate the curvatures of an F-metric, we first calculate the Christof-
fel symbols. As an F-framing is by definition orthonormal for the metric gF ,
Koszul’s formula reads

(3-3) gF (∇ei e j , ek)=
1
2

{
gF ([ei , e j ], ek)− gF ([e j , ek], ei )+ gF ([ek, ei ], e j )

}
.

Combining (3-2) and (3-3) yields

(3-4)

∇e1e3 = e1− 2Fe2, ∇e2e3 =−e2,

∇e3e1 = 0, ∇e3e2 = 0,

∇e2e1 = 0, ∇e2e2 = e3,

∇e1e2 = 2Fe3, ∇e1e1 =−e3,

∇e3e3 = 0.

We let Ri jkl denote the component of the curvature tensor

R(ei , e j , ek, el)= gF (∇ei∇e j ek −∇e j∇ei ek −∇[ei ,e j ]ek, el).

Tedious but straightforward calculations using (3-2), (3-4), and the fact that
e2(F)= e3(F)= 0 show that

(3-5) R1221= 1, R1331=−1= R2332, Ri jkl = 0 if three indices are distinct.

The symmetries of the curvature tensor determine its remaining components.

Corollary 3.3. An F-metric gF is curvature homogeneous and has curvature tensor
modeled on the algebraic curvature tensor T . An F-framing diagonalizes the Ricci
tensor. If σ is a two-plane and v =

∑3
i=1 ci ei is a unit vector orthogonal to σ , then

sec(σ )= c2
3− c2

1− c2
2.
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Consequently, gF has constant vector curvature −1, e3 lies in the intersection of
all curvature −1 planes, and the range of sectional curvatures for an F-metric is
[−1, 1].

Proof. To prove the first claim, note that by (3-5), the curvatures of an F-metric
with respect to an F-framing do not depend on the function F : K → R. Therefore,
they all have curvature tensors modeled on the curvature tensor of the F-metric
corresponding to F ≡ 1 which is the left-invariant metric g1 constructed at the end
of the previous section.

The fact that an F-framing diagonalizes the Ricci tensor is immediate from (3-5).
This fact and [Schmidt and Wolfson 2013, Lemma 2.2] yield the curvature formula.
The curvature formula implies the last statement. �

Lemma 3.4. An F-metric gF is complete.

Proof. Let F : K → R be a positive smooth function and gF the associated F-
metric. As K is compact, there exists M > 1 such that 1/M < F < M . Consider
the Riemannian metrics M−2g1 and M2g1 obtained by scaling the left-invariant
metric g1. The induced norms satisfy

M−1
‖v‖g1 = ‖v‖M−2g1 < ‖v‖gF < ‖v‖M2g1 = M‖v‖g1

for each tangent vector v ∈ T SL2(R). Consequently, the induced path metrics
satisfy

M−1dg1(p, q)≤ dgF (p, q)≤ Mdg1(p, q)

for any pair of points p, q ∈ SL2(R). As dg1 Cauchy sequences converge, the same
is true of dgF Cauchy sequences. �

The following lemma may be of interest to some readers. It is not used in the
proof of our main results and may be skipped.

Lemma 3.5. For any F-metric gF , the foliation of SL2(R) by left-cosets of NA is
a foliation by totally geodesic hyperbolic planes.

Proof. Let F :K→R be a smooth positive function, gF the associated F-metric, and
{e1, e2, e3} the associated F-framing. The leaves of the foliation of SL2(R) by left
cosets of NA are precisely the integral surfaces of the involutive plane distribution
e2 ∧ e3. These leaves are totally geodesic since by (3-4), ∇e2e1 = ∇e3e1 = 0. By
(3-5), R2332 = −1, so that the leaves are hyperbolic. As NA is diffeomorphic to
R2, the leaves are hyperbolic planes. �

To complete the proof of Theorem 1.2 from the introduction, it remains to
establish the following proposition.

Proposition 3.6. For a positive smooth function F : K → R, the following are
equivalent:
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(1) F is constant.

(2) The metric gF is left-invariant.

(3) (SL2(R), gF ) Riemannian covers a finite volume manifold.

Proof. Let F : K→R be a positive smooth function and gF the associated F-metric
on SL2(R).

(1) =⇒ (2): Because F is constant, so is its lift F . The associated F-framing
{e1 = F E1, e2 = E2, e3 = E3} is easily seen to be left-invariant since the framing
{E1, E2, E3} is left-invariant. Therefore gF is a left-invariant metric.

(2) =⇒ (3): This is an easy consequence of the fact that SL2(R) admits lattice
subgroups.

(3) =⇒ (1): Let M denote the finite volume manifold Riemannian covered by
(SL2(R), gF ). We first claim that the metric gF is locally homogeneous. Indeed,
by Corollary 3.3, M has constant vector curvature −1 and sectional curvatures with
range [−1, 1]. By Theorem 1.7, the universal covering (S̃L2(R), g̃F ) is left-invariant
(and homogeneous), whence gF is locally homogeneous.

Let F denote the lift of F to SL2(R) and let {e1, e2, e3} be the associated F-
framing. Let p, q ∈ SL2(R) be two points. As gF is locally homogeneous, there is
an r > 0 and an isometry I between the balls of radius r centered at p and q with
I (p)= q:

I : B(p, r)→ B(q, r).

The derivative map dI : TB(p, r)→ TB(q, r) preserves the line field spanned by
e3 and the perpendicular plane field e1∧e2 by the curvature formula in Corollary 3.3.
Therefore, there exists a smooth map θ : B(q, r)→ R such that dI (e3)=±e3 and
such that the restriction of dI to the plane field e1 ∧ e2 has matrix representation
given by either (

cos θ −sin θ
sin θ cos θ

)
or

(
cos θ sin θ
sin θ −cos θ

)
with respect to the {e1, e2} framing.

By (3-2),

dIp([e1, e2]p)= dIp(2F(p)e3)=±2F(p)e3 ∈ Tq SL2(R),

where the sign is + if dI preserves the orientation of e3 and is − if the orientation
is reversed. A simple calculation yields

gF
(
[dIp(e1), dIp(e2)]q , e3

)
q =±[e1, e2]q =±2F(q),

where the sign is + if dI preserves the orientation of the plane field e1 ∧ e2 and is
− if the orientation is reversed.
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Since dIp([e1, e2]p) = [dIp(e1), dIp(e2)]q , we have F(p) = ±F(q). As F is
everywhere positive, it must be the case that F(p)= F(q). Therefore F is constant,
concluding the proof. �

We conclude the paper with a proof of Theorem 1.4, restated for the reader’s
convenience, followed by a conjecture.

Theorem 3.7. Let F and G be two positive smooth functions on the circle. Then
there exists a diffeomorphism 8 : SL2(R)→ SL2(R) such that 8∗(gG)= gF if and
only if there exists a diffeomorphism φ : S1

→ S1 such that F = φ∗(G).

Proof. Recall that a diffeomorphism between S1 and K has been fixed, identifying
positive smooth functions on these two spaces.

First, assume that there is a diffeomorphism φ : K → K such that φ∗(G)= F .
Define a diffeomorphism 8 : SL2(R) → SL2(R) as follows. By the Iwasawa
decomposition, each g ∈ SL2(R) has a unique expression g = kna; define 8(g)=
8(kna)= φ(k)na. It is routine to check that 8∗(gG)= gF .

Assume that8 : SL2(R)→ SL2(R) is a diffeomorphism satisfying8∗(gG)= gF .
Let F and G denote the lifts of F and G to SL2(R) and let {e1, e2, e3} and {ẽ1, ẽ2, ẽ3}

denote the associated F-framing and G-framing of T SL2(R), respectively. Since
e2 = ẽ2, e3 = ẽ3, and e1 and ẽ1 are positively parallel, these framings induce the
same orientation of SL2(R).

As 8 : (SL2(R), gF )→ (SL2(R), gG) is an isometry, it preserves the sectional
curvatures of planes. By Corollary 3.3, it follows that the derivative map

d8 : T SL2(R)→ T SL2(R)

satisfies d8(e3)=±ẽ3 and maps the plane field e1 ∧ e2 isometrically to the plane
field ẽ1 ∧ ẽ2. Therefore, there exists a smooth map

θ : (SL2(R), gG)→ R

such that the matrix representation of

d8|e1∧e2 : e1 ∧ e2→ ẽ1 ∧ ẽ2

with respect to the ordered framings {e1, e2} and {ẽ1, ẽ2} is given by(
cos θ −sin θ
sin θ cos θ

)
or

(
cos θ sin θ
sin θ −cos θ

)
depending on whether d8|e1∧e2 preserves or reverses orientation.

By (3-2),

d8([e1, e2])= d8(2Fe3)=±2Fẽ3.
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A simple calculation shows that

[d8(e1), d8(e2)] = ±(−ẽ1(θ)ẽ1− ẽ2(θ)ẽ2+ 2Gẽ3),

where the sign ± is + if and only if d8|e1∧e2 is orientation-preserving.
Since d8([e1, e2]) = [d8(e1), d8(e2)], comparing ẽ3 components, we have

F =±8∗(G). As both F and G are positive, we have

(3-6) F =8∗(G).

Consequently, d8(e3)= ẽ3 if and only if d8|e1∧e2 is orientation-preserving. In
particular, 8 is orientation-preserving.

Comparing ẽ1 and ẽ2 components yields

(3-7) ẽ1(θ)= ẽ2(θ)= 0.

By (3-2) and (3-7),

2Gẽ3(θ)= [ẽ1, ẽ2](θ)= (ẽ1ẽ2− ẽ2ẽ1)(θ)= 0.

As G is nonzero, it follows that ẽ3(θ) = 0, whence θ : (SL2(R), gG) → R is
globally constant. In what follows, we will consider the two cases d8(e3)= ẽ3 and
d8(e3)=−ẽ3 separately.

Case I: d8(e3) = ẽ3. As 8 is orientation-preserving, we have that d8|e1∧e2 is
orientation-preserving. Using (3-2) twice, we obtain successively

gG(d8([e2, e3]), ẽ1)= sin θ and gG([d8(e2), d8(e3)], ẽ1)=−sin θ.

As d8([e2, e3]) = [d8(e2), d8(e3)], it follows that sin θ = 0 and that θ is an
integral multiple of π .

As θ is an integral multiple of π , the derivative map d8 preserves the plane
distribution e2 ∧ e3. Consequently, the diffeomorphism 8 preserves the foliation of
SL2(R) by left-cosets of NA and descends to a diffeomorphism φ of K . By (3-6),
F = φ∗(G), concluding the proof in this case.

Case II: d8(e3)=−ẽ3. As 8 is orientation-preserving, we have that d8|e1∧e2 is
orientation-reversing. Using (3-2) twice, we obtain successively

gG(d8([e2, e3]), ẽ2)= cos θ and gG([d8(e2), d8(e3)], ẽ2)= 2G sin θ−cos θ.

As d8([e2, e3]) = [d8(e2), d8(e3)], it follows that cos θ = G sin θ . As θ is
constant, so is G. By (3-6), F = G are equal constants. Hence, F = G are equal
constants, concluding the proof. �

Conjecture 3.8. The metrics gF constructed in this paper describe all of the com-
plete Riemannian metrics on SL2(R) (up to isometry) that are modeled on the
curvature tensor T .
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