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TAUT FOLIATIONS IN SURFACE BUNDLES
WITH MULTIPLE BOUNDARY COMPONENTS

TEJAS KALELKAR AND RACHEL ROBERTS

Let M be a fibered 3-manifold with multiple boundary components. We
show that the fiber structure of M transforms to closely related transversely
oriented taut foliations realizing all rational multislopes in some open neigh-
borhood of the multislope of the fiber. Each such foliation extends to a taut
foliation in the closed 3-manifold obtained by Dehn filling along its bound-
ary multislope. The existence of these foliations implies that certain contact
structures are weakly symplectically fillable.

1. Introduction

Any closed, orientable 3-manifold can be realized by Dehn filling a 3-manifold
which is fibered over S1 [Alexander 1920; Myers 1978]. In other words, any closed
oriented 3-manifold can be realized by Dehn filling a 3-manifold M0, where M0

has the form of a mapping torus

M0 = S×[0, 1]/∼,

where S is a compact orientable surface with nonempty boundary and ∼ is an
equivalence relation given by (x, 1) ∼ (h(x), 0) for some orientation-preserving
homeomorphism h : S→ S which fixes the components of ∂S setwise. Although
we shall not appeal to this fact in this paper, it is interesting to note that it is
possible to assume that h is pseudo-Anosov [Colin and Honda 2008] and hence M0

is hyperbolic [Thurston 1988]. It is also possible to assume that S has positive
genus. Any nonorientable closed 3-manifold admits a double cover of this form.

Taut codimension-one foliations are topological objects which have proved very
useful in the study of 3-manifolds. The problem of determining when a 3-manifold
contains a taut foliation appears to be a very difficult one. A complete classification
exists for Seifert fibered manifolds [Brittenham 1993; Eisenbud et al. 1981; Jankins
and Neumann 1985; Naimi 1994], but relatively little is known for the case of
hyperbolic 3-manifolds. There are many partial results demonstrating existence

MSC2010: 57M50.
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(see, for example, [Calegari and Dunfield 2003; Delman and Roberts 1999; Gabai
1983; 1987a; 1987b; Li 2002; Li and Roberts 2013; Roberts 1995; 2001a; 2001b])
and partial results demonstrating nonexistence [Jun 2004; Kronheimer and Mrowka
2007; Kronheimer et al. 2007; Roberts et al. 2003]. In this paper, we investigate the
existence of taut codimension-one foliations in closed orientable 3-manifolds by
first constructing taut codimension-one foliations in corresponding mapping tori M0.
In contrast with [Roberts 2001a; 2001b], we consider the case that the boundary
of M0 is not connected. We obtain the following results. Precise definitions will
follow in Section 2.

Theorem 1.1. Given an orientable, fibered compact 3-manifold, a fibration with
fiber surface of positive genus can be modified to yield transversely oriented taut
foliations realizing a neighborhood of rational boundary multislopes about the
boundary multislope of the fibration.

As an immediate corollary for closed manifolds we therefore have:

Corollary 1.2. Let M = M̂0(r j ) be the closed manifold obtained from M0 by Dehn
filling M0 along the multicurve with rational multislope (r j )kj=1. When (r j ) is
sufficiently close to the multislope of the fibration, M admits a transversely oriented
taut foliation.

Dehn filling M0 along the slope of the fiber gives a mapping torus of a closed
surface with the fibration as the obvious taut foliation. This corollary shows that
Dehn filling M0 along slopes sufficiently close to the multislope of the fiber also
gives a closed manifold with a taut foliation.

When the surgery coefficients r j are all meridians, the description of M as a
Dehn filling of M0 gives an open book decomposition (S, h) of M . The foliations of
Corollary 1.2 can be approximated by a pair of contact structures, one positive and
one negative, both naturally related to the contact structure ξ(S,h) compatible with the
open book decomposition (S, h) [Eliashberg and Thurston 1998; Kazez and Roberts
2014]. It follows that the contact structure ξ(S,h) is weakly symplectically fillable.

Corollary 1.3. Let M have open book decomposition (S, h). Then M is obtained
by Dehn filling M0 along the multicurve with rational multislope (r j )kj=1, where
the r j are all meridians. When (r j ) is sufficiently close to the multislope of the
fibration, ξ(S,h) is weakly symplectically fillable and hence universally tight.

It is natural to ask whether the qualifier “sufficiently close” can be made precise.
Honda, Kazez, and Matić [Honda et al. 2008] proved that when an open book

with connected binding has monodromy with fractional Dehn twist coefficient c at
least one, it supports a contact structure which is close to a coorientable taut foliation.
Note that c ≥ 1 is sufficient but not always necessary to guarantee that ξ(S,h) is
close to a coorientable taut foliation.



TAUT FOLIATIONS IN SURFACE BUNDLES WITH BOUNDARY COMPONENTS 259

For an open book with multiple binding components, there is no such global lower
bound on the fractional Dehn twist coefficients sufficient to guarantee that ξ(S,h)
is close to a coorientable taut foliation. This was shown by Baldwin and Etnyre
[2013], who constructed a sequence of open books with arbitrarily large fractional
Dehn twist coefficients and disconnected bindings that support contact structures
which are not deformations of a taut foliation. So we cannot expect to obtain a
neighborhood around the slope of the fiber which would satisfy our criteria of
“sufficiently close” for every open book decomposition. At the end of the paper, in
Section 4, we explicitly compute a neighborhood around the multislope of the fiber
realizable by our construction for the Baldwin–Etnyre examples.

2. Preliminaries

In this section we introduce basic definitions and fix conventions used in the rest of
the paper.

Foliations. Roughly speaking, a codimension-one foliation F of a 3-manifold M
is a disjoint union of injectively immersed surfaces such that (M,F) looks locally
like (R3,R2

×R).

Definition 2.1. Let M be a closed C∞ 3-manifold and let r be a nonnegative integer
or infinity. A Cr codimension-one foliation F of (or in) M is a union of disjoint
connected surfaces L i , called the leaves of F, in M such that

(1)
⋃

i L i = M , and

(2) there exists a Cr atlas A on M which contains all C∞ charts and with respect
to which F satisfies the following local product structure: for every p ∈ M ,
there exists a coordinate chart (U, (x, y, z)) in A about p such that U ≈ R3

and the restriction of F to U is the union of planes given by z = constant.

When r = 0, we require also that the tangent plane field T F be C0.

A taut foliation [Gabai 1983] is a codimension-one foliation of a 3-manifold for
which there exists a transverse simple closed curve that has nonempty intersection
with each leaf of the foliation. Although every 3-manifold contains a codimension-
one foliation [Lickorish 1965; Novikov 1965; Wood 1969], it is not true that every
3-manifold contains a codimension-one taut foliation. In fact, the existence of a taut
foliation in a closed orientable 3-manifold has important topological consequences
for the manifold. For example, if M is a closed, orientable 3-manifold that has a
taut foliation with no sphere leaves then M is covered by R3 [Palmeira 1978], M
is irreducible [Rosenberg 1968] and has an infinite fundamental group [Haefliger
1962]. In fact, its fundamental group acts nontrivially on interesting 1-dimensional
objects (see, for example, [Thurston 1998; Calegari and Dunfield 2003; Palmeira
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Figure 1. Local model of a standard spine.

1978; Roberts et al. 2003]). Moreover, taut foliations can be perturbed to weakly
symplectically fillable contact structures [Eliashberg and Thurston 1998] and hence
can be used to obtain Heegaard–Floer information [Ozsváth and Szabó 2004].

Multislopes. Let F be a compact oriented surface of positive genus and with
nonempty boundary consisting of k components. Let h be an orientation-preserving
homeomorphism of F which fixes each boundary component pointwise. Let

M = F × I/(x, 1)∼ (h(x), 0),

and denote the k (toral) boundary components of ∂M by T 1, T 2, . . . , T k .
We use the given surface bundle structure on M to fix a coordinate system on each

of the boundary tori, as follows. (See, for example, [Rolfsen 1976, Section 9.G]
for a definition and description of this coordinate system.) For each j we choose
as longitude λ j

= ∂F ∩ T j , with orientation inherited from the orientation of F .
For each j , we then fix as meridian µ j an oriented simple closed curve dual to λ j .
Although, as described in [Kazez and Roberts 2014; Roberts 2001b], it is possible
to use the homeomorphism h to uniquely specify such simple closed curves µ j , we
choose not to do so in this paper, as all theorem statements are independent of the
choice of meridional multislope.

We say a taut foliation F in M realizes boundary multislope (m j )kj=1 if for
each j , 1≤ j ≤ k, F∩ T j is a foliation of T j of slope m j in the chosen coordinate
system of T j .

Spines and branched surfaces.

Definition 2.2. A standard spine [Casler 1965] is a space X locally modeled on
one of the spaces of Figure 1. The critical locus of X is the 1-complex of points
of X where the spine is not locally a manifold.

Definition 2.3. A branched surface (see [Williams 1974] and [Oertel 1984; 1988])
is a space B locally modeled on the spaces of Figure 2. The branching locus L of B
is the 1-complex of points of B where B is not locally a manifold. The components
of B \ L are called the sectors of B. The points where L is not locally a manifold
are called double points of L .
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Figure 2. Local model of a branched surface.

A standard spine X together with an orientation in a neighborhood of the critical
locus determines a branched surface B in the sense illustrated in Figure 3.

Example 2.4. Let F0 := F × {0} be a fiber of M = F × I/(x, 1) ∼ (h(x), 0).
Let αi , 1 ≤ i ≤ k, be pairwise disjoint, properly embedded arcs in F0, and set
Di = αi× I in M . Isotope the image arcs h(αi ) as necessary so that the intersection
(
⋃
αi )∩ (

⋃
i h(αi )) is transverse and minimal. Assign an orientation to F and to

each Di . Then X = F0 ∪
⋃

i Di is a transversely oriented spine. We will denote by
B =

〈
F;
⋃

i Di
〉

the transversely oriented branched surface associated with X .
Similarly,

〈⋃
i Fi ;

⋃
i, j D j

i

〉
will denote the transversely oriented branched surface

associated to the transversely oriented standard spine

X = F0 ∪ F1 ∪ · · · ∪ Fn−1 ∪
⋃

i, j
D j

i ,

where Fi = F × {i/n} and D j
i = α

j
i × [i/n, (i + 1)/n] for some set of arcs α j

i
properly embedded in F so that the intersection

(⋃
j α

j
i−1

)
∩
(⋃

j α
j
i

)
is transverse

and minimal.

Definition 2.5. A lamination carried by a branched surface B in M is a closed
subset λ of an I -fibered regular neighborhood N (B) of B, such that λ is a disjoint
union of injectively immersed 2-manifolds (called leaves) that intersect the I -fibers
of N (B) transversely.

Laminar branched surfaces. Li [2002; 2003] introduced the fundamental notions
of sink disk and half sink disk.

Definition 2.6 [Li 2002; 2003]. Let B be a branched surface in a 3-manifold M .
Let L be the branching locus of B and let X denote the union of double points of L .
Associate to each component of L \ X a vector (in B) pointing in the direction of
the cusp. A sink disk is a disk branch sector D of B for which the branch direction

+

+

+

−→

+

+

+

Figure 3. Oriented spine to oriented branched surface.
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Figure 4. A sink disk.

of each component of (L \ X)∩ D points into D (as shown in Figure 4). A half
sink disk is a sink disk which has nonempty intersection with ∂M .

Sink disks and half sink disks play a key role in Li’s notion of laminar branched
surface.

Definition 2.7 [Li 2002, Definition 1.3]. Let D1 and D2 be the two disk components
of the horizontal boundary of a D2

× I region in M \ int N (B). If the projection
π :N (B)→ B restricted to the interior of D1∪D2 is injective, that is, the intersection
of any I -fiber of N (B) with int D1 ∪ int D2 is either empty or a single point, then
we say that π(D1 ∪ D2) forms a trivial bubble in B.

Definition 2.8 [Li 2002, Definition 1.4]. A branched surface B in a closed 3-mani-
fold M is called a laminar branched surface if it satisfies the following conditions:

(1) ∂h N (B) is incompressible in M \ int N (B), no component of ∂h N (B) is a
sphere and M \ B is irreducible.

(2) There is no monogon in M \ int N (B), that is, no disk D ⊂ M \ int N (B) with
∂D = D∩N (B)= α∪β, where α⊂ ∂vN (B) is in an interval fiber of ∂vN (B)
and β ⊂ ∂h N (B)

(3) There is no Reeb component; that is, B does not carry a torus that bounds a
solid torus in M .

(4) B has no trivial bubbles.

(5) B has no sink disk or half sink disk.

Gabai and Oertel [1989] introduced essential branched surfaces and proved
that any lamination fully carried by an essential branched surface is an essential
lamination and, conversely, any essential lamination is fully carried by an essential
branched surface. In practice, to check if a manifold has an essential lamination, the
tricky part often is to verify that a candidate branched surface does in fact fully carry
a lamination. Li [2002] uses laminar branched surfaces to relax this requirement
and prove the following:

Theorem 2.9 [Li 2002, Theorem 1]. Suppose that M is a closed and orientable
3-manifold. Then:
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(1) Every laminar branched surface in M fully carries an essential lamination.

(2) Any essential lamination in M that is not a lamination by planes is fully carried
by a laminar branched surface.

Li [2003] noticed that if a branched surface has no half sink disk, then it can be
arbitrarily split in a neighborhood of its boundary train track without introducing
any sink disk (or half sink disk). He was therefore able to conclude the following.

Theorem 2.10 [Li 2003, Theorem 2.2]. Let M be an irreducible and orientable
3-manifold whose boundary is a union of incompressible tori. Suppose B is a
laminar branched surface and ∂M\∂B is a union of bigons. Then, for any multislope
(s1, . . . , sk) ∈ (Q∪ {∞})

k that can be realized by the train track ∂B, if B does not
carry a torus that bounds a solid torus in M̂(s1, . . . , sk), then B fully carries a
lamination λ(s1,...,sk) whose boundary consists of the multislope (s1, . . . , sk), and
λ(s1,...,sk) can be extended to an essential lamination in M̂(s1, . . . , sk).

We note that Li stated Theorem 2.2 only for the case that ∂M is connected.
However, as Li has observed and is easily seen, his proof extends immediately
to the case that ∂M consists of multiple toral boundary components. Key is the
fact that splitting B open, to a branched surface B ′ say, in a neighborhood of
its boundary, so that ∂B ′ consists of multislopes (s1, . . . , sk), does not introduce
sink disks. Therefore, capping B ′ off to B̂ ′ yields a laminar branched surface in
M̂(s1, . . . , sk).

Good oriented sequence of arcs. In this section we introduce some definitions that
will be used in the rest of the paper.

Definition 2.11. Let (α1, . . . , αk) be a tuple of pairwise disjoint simple arcs prop-
erly embedded in F with ∂α j

⊂ T j . Such a tuple will be called parallel if
F \ {α1, . . . , αk

} has k components, k − 1 of which are annuli {A j
} with ∂A j

containing {α j , α j+1
} and one of which is a surface S of genus g− 1 with ∂S con-

taining {α1, αk
}. Furthermore, all α j are oriented in parallel, that is, the orientation

of ∂A j agrees with {−α j , α j+1
} and the orientation of ∂S agrees with {−αk, α1

}.
Note that, in particular, each α j is nonseparating. See Figure 5 for an example of a
parallel tuple.

Definition 2.12. A pair of tuples (αi )i=1,...,k and (β j ) j=1,...,k will be called good if
both are parallel tuples and αi and β j have exactly one (interior) point of intersection
when i 6= j , while αi is disjoint from β j when i = j .

A sequence of parallel tuples

σ = ((α1
0, α

2
0, . . . , α

k
0), (α

1
1, α

2
1, . . . , α

k
1), . . . , (α

1
n, α

2
n, . . . , α

k
n)),

also shortened to
((α

j
0 ), (α

j
1 ), . . . , (α

j
n ))
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α1
α2 α3

A1 A2

Ak−1 αk−1

αk

c

S

Figure 5. A parallel tuple (αi ) on the surface F .

or
(α

j
0 )

σ
−→ (α j

n ),

will be called good if, for each fixed j , 1≤ j ≤ k, the pair ((α j
i ), (α

j
i+1)) is good.

Definition 2.13. We say a good pair ((α j ), (β j )) is positively oriented if for each
j ∈ {1, . . . , k} a neighborhood of the j-th boundary component in F is as shown
on the right in Figure 6. Similarly, we say a good pair ((α j ), (β j )) is negatively
oriented if for each j ∈ {1, . . . , k} a neighborhood of the j -th boundary component
in F is as shown on the left in Figure 6.

We say a good sequence σ = ((α j
0 ), (α

j
1 ), . . . , (α

j
n )) is positively oriented if each

pair ((α j
i ), (α

j
i+1)) is positively oriented. Similarly, σ = ((α j

1 ), (α
j
2 ), . . . , (α

j
n )) is

negatively oriented if each pair ((α j
i ), (α

j
i+1)) is negatively oriented. We say the

sequence σ is oriented if it is positively or negatively oriented. See Figure 7 for an
example of a negatively oriented good pair in F .

Preferred generators. Let

Hg,k = {η1, η2, . . . , η2g−2+k,, γ12, γ24, γ46, γ68, . . . ,

γ2g−4,2g−2, β, β1, β2, . . . , βg−1, δ1, δ2, . . . , δk−1}

α

β

α

β

α α

ββ

Figure 6. Left: a negatively oriented pair of arcs (α, β). Right: a
positively oriented pair of arcs (α, β).
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S

c
D1 D2 Dk

T 1

T k

T 2

α1 αkα2

β1

βk

β2

Figure 7. Neighborhood of F with a good negatively oriented pair
((α j ), (β j )) in the oriented spine X .

be the curves on F as shown in Figure 8. Then by [Gervais 2001, Proposition 1
and Theorem 1] the mapping class group MCG(F, ∂F) of F (fixing boundary) is
generated by Dehn twists about curves in Hg,k .

Theorem (Gervais). The mapping class group MCG(F, ∂F) of F is generated by
Dehn twists about the curves in Hg,k .

As Dehn twists about δi are isotopic to the identity via an isotopy that does not
fix the boundary, we have the following obvious corollary:

Corollary 2.14. The mapping class group MCG(F) of F (not fixing the boundary
pointwise) is generated by Dehn twists about the curves in

H′g,k =Hg,k \ {δ1, . . . , δk−1}.

3. Main theorem

Definition 3.1. Let (α1, . . . , αk) be a parallel tuple in F . Orient F so that the
normal vector n̂ induced by the orientation of M points in the direction of increasing
t ∈ [0, 1]. Let D j

= α j
×[0, 1] in Mh with the orientation induced by orientations

of α j and F ; that is, if v j is tangent to α j then (v j , n̂) gives the orientation of D j .
Let X = F ∪

⋃
j D j be an oriented standard spine and Bα =

〈
F;
⋃

j D j
〉

the
transversely oriented branched surface associated with X .

Notice that the multislope of the fibration is 0̄. In order to prove Theorem 1.1,
we shall prove the following:
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η1

η2g+k−2

η2g−1
η2g−2

η7

η6

η5

η4
η3

η2 γ12

γ2g−4,2g−2

γ68

γ46

γ24

α1

αk

αk−1

α2

β

β1

βg−1

β3

β2

η2g+2

δ1

δk

δk−1

δ2

Figure 8. Generators of the mapping class group.

Theorem 3.2. There is an open neighborhood U of 0̄∈Rk such that, for each point
(m1, . . . ,mk) ∈ U ∩Qk , there exists a lamination carried by Bα with boundary
multislope (m j ). These laminations extend to taut foliations which also intersect
the boundary in foliations with multislope (m j ).

This gives us the following corollary for closed manifolds.

Corollary 3.3. Let M̂(r j ) denote the closed manifold obtained from M by a Dehn
filling along a multicurve with rational multislope (r j )kj=1. For each tuple (r j )

in U∩Qk , the closed manifold M̂(r j ) also has a transversely oriented taut foliation.

We outline the proof of Theorem 3.2 with details worked out in the lemmas.

Proof. In Lemma 3.4 we show that there is a good positively oriented sequence
(α

j
0 )→ (h−1(α

j
0 )), or equivalently from (h(α j

n ))→ (α
j
n ). In Lemma 3.6 we show

that whenever there exists such a positive sequence there is a splitting of the branched
surface Bα to a branched surface Bσ that is laminar and that therefore carries
laminations realizing every multislope in some open neighborhood of 0̄∈Rk . Finally,
in Lemma 3.8 we show that these laminations extend to taut foliations on all of M . �
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Lemma 3.4. Let (α j ) be a parallel tuple in F and let h ∈ Aut+(F). Then there is
a good positively oriented sequence (α j )

σ
−→ (h(α j )).

Proof. By Corollary 2.14 to Gervais’s theorem, h ∼ hmhm−1 · · · h2h1 for twists hi

about curves in H′g,k . Set h′ = hmhm−1 · · · h2h1, and notice that Mh = Mh′ .
By changing the handle decomposition of F as necessary, we may assume that

the parallel tuple (α j ) is as shown in Figure 8. Let b denote the Dehn twist about
β ∈ H′g,k . Notice that any hi in the factorization of h′ is either b, b−1 or a twist
about a curve disjoint from all components of α j . Thus ((α j ), (hi (α

j )) is either a
good positive pair, a good negative pair, or a pair of equal tuples.

Now, if ((α j ), (β j )) is a good pair then so is ((hi (α
j )), (hi (β

j ))); therefore,
each of the pairs(

(α j ), hm(α
j )
)
,(

(hm(α
j )), (hmhm−1(α

j ))
)
,(

(hmhm−1(α
j )), (hmhm−1hm−2(α

j ))
)
,

...(
(hmhm−1 · · · h2(α

j )), (hmhm−1 · · · h2h1(α
j )= h(α j ))

)
,

is either a good oriented pair or a pair of equal tuples.
If at least one of the hi is b or b−1 then, ignoring the equal tuples, we get a good

oriented sequence ((α j
0 ), (α

j
1 ), . . . , (α

j
n−1), (α

j
n )= h((α j

0 ))) or (α j )
σ
−→ (h(α j )) as

required. The length of this sequence is equal to the number of times hi equals b
or b−1, that is, n = n++ n−, where n+ is the sum of the positive powers of b in
this expression of h′ and n− is the magnitude of the sum of negative powers of b.

If none of the hi are Dehn twists about β then (α j ) = (h(α j )). In this case,
σ = ((α j ), (b(α j )), (b−1b(α j )= (α j ))) is a good oriented sequence.

If ((α j ), (β j )) is a positively oriented good pair then ((α j ), (−β j ), (−α j ), (β j ))

is a negatively oriented good sequence. Performing n− such substitutions, we get a
positively oriented good sequence (α j )

σ
−→ (h(α j )). �

Definition 3.5. Let σ = (h(α j
n ) = α

j
0 , α

j
1 , . . . , α

j
n−1, α

j
n ) be a good oriented se-

quence. Let Fi = F ×{i/n} for 0≤ i < n and let D j
i = α

j
i ×[i/n, (i + 1)/n], for

0≤ i < n, in Mh . Let
X =

(⋃
i Fi

)
∪
(⋃

i, j D j
i

)
,

and orient Fi and D j
i as in Definition 3.1. Define

Bσ =
〈⋃

i Fi ;
⋃

i, j D j
i

〉
as the associated branched surface. Figure 7 shows the neighborhood of F in X ,
while Figure 9 shows a neighborhood of F in the associated branched surface.
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c

α1
i αk

iα3
iα2

i

α2
i−1

α1
i−1

α3
i−1

αk
i−1

Figure 9. A neighborhood of one of the fibers in the branched
surface B. The small circles along the diagonal represent longitudes
of the boundary tori. The vertical subarcs of the boundaries of the
vertical disk sectors lie on these boundary tori. Compare with
Figure 7.

Lemma 3.6. Let σ = (h(α j
n )= α

j
0 , α

j
1 , . . . , α

j
n−1, α

j
n ) be a good oriented sequence

in F and Bσ the associated branched surface in Mh . Then Bσ has no sink disk or
half sink disk.

Proof. As the sequence σ is good and oriented for each fixed i , the tuple of arcs
(α

j
i ) is parallel and |α j

i ∩α
k
i−1| = δ

k
j , so a neighborhood of Fi in Bσ is as shown in

Figure 9.
The sectors of Bσ consist of disks D j

i = α
j
i ×[i/n, (i + 1)/n] and components

of Fi \{α
j
i ∪α

j
i−1} j=1,...,k . As Fi−1 and Fi both have a coorientation in the direction

of increasing t for (x, t) ∈ Mh , so for any orientation of D j
i , ∂D j

i is the union of
two arcs in ∂Mh , together with one arc with the direction of the cusp pointing into
the disk and one arc with the direction of the cusp pointing outwards. Similarly, as
α

j
i and α j+1

i are oriented in parallel, each disk component of Fi \ {α
j
i , α

j
i−1} j=1,...,k

has a boundary arc with cusp direction pointing outwards. Therefore, no branch
sector in Bσ is a sink disk or a half sink disk. �
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Figure 10. The weighted boundary train track when n = 4.

Remark 3.7. Notice that Bσ =
〈⋃

i Fi ;
⋃

i, j D j
i

〉
is a splitting (see [Oertel 1988])

of the original branched surface Bα =
〈
F;
⋃

j D j
〉

and, equivalently, Bσ collapses
to Bα. So, in particular, laminations carried by Bσ are also carried by Bα.

Now consider the train tracks τ j
= Bσ ∩ T j . Focus on one of the τ j . Recall

that we fixed a coordinate system (λ j , µ j ) on T j . For simplicity of exposition, we
now make a second choice µ j

0 of meridian. This choice is dictated by the form of
τ j ; namely, we choose µ j

0 to be disjoint from the disks D j
i so that τ j has the form

shown in Figure 10. Notice that there is a change of coordinates homeomorphism
taking slopes in terms of the coordinate system (λ j , µ

j
0) to slopes in terms of the

coordinate system (λ j , µ j ). Since λ j is unchanged, this homeomorphism takes
an open interval about 0 to an open interval about 0. Assign to τ j the measure
determined by weights x, y shown in Figure 10. In terms of the coordinate system
(λ j , µ

j
0), τ

j carries all slopes realizable by

x − y
n(1+ y)

for some x, y > 0. Therefore, in terms of the coordinate system (λ j , µ
j
0), τ

j carries
all slopes in (−1/n,∞). Converting to the coordinate system (λ j , µ j ), τ j carries
all slopes in some open neighborhood of 0. Repeat for all j . By Theorem 2.10, we
see that the branched surface Bσ carries laminations λ(x̄,ȳ) realizing multislopes( x1− y1

n(1+ y1)
,

x2− y2

n(1+ y2)
, . . . ,

xk − yk

n(1+ yk)

)
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for any strictly positive values of x1, . . . , xk, y1, . . . , yk , and hence realizing all
rational multislopes in some open neighborhood of 0̄ ∈ Rk .

Lemma 3.8. Suppose the weights x̄, ȳ are distinct and have strictly positive coordi-
nates. Then each lamination λ(x̄,ȳ) contains only noncompact leaves. Furthermore,
each lamination λ(x̄,ȳ) extends to a taut foliation F(x̄,ȳ), which realizes the same
multislope.

Proof. Suppose that λ(x̄,ȳ) contains a compact leaf L . Such a leaf determines a
transversely invariant measure on B given by counting intersections with L .

Now focus on any i, j , where 0≤ i, j < n. By considering, for example, a simple
closed curve in Fi parallel to the arc α j

i , we see that there is an oriented simple
closed curve in Fi which intersects the branching locus of Bσ exactly k times and
which has orientation consistent with the branched locus. Since this is true for all
possible i, j , it follows that the only transversely invariant measure B can support
is the one with all weights on the branches D j

i necessarily 0. But this means that
λ(x̄,ȳ) realizes multislope 0̄ and hence that x̄ = ȳ.

The complementary regions to the lamination λ(x̄,ȳ) are product regions. Filling
these up with product fibrations, we get the required foliation F(x̄,ȳ), which also
has no compact leaves and is therefore taut. �

4. Example

As discussed in the introduction, an open book with connected binding and mon-
odromy with fractional Dehn twist coefficient more than one supports a contact
structure which is the deformation of a coorientable taut foliation [Honda et al. 2008].
However, for open books with disconnected binding there is no such universal lower
bound on the fractional Dehn twist coefficient. This was illustrated by Baldwin
and Etnyre [2013] who constructed a sequence of open books with arbitrarily large
fractional Dehn twist coefficients and disconnected binding that support contact
structures which are not deformations of a taut foliation. This shows, in particular,
that there is no global neighborhood about the multislope of the fiber of a surface
bundle such that Dehn filling along rational slopes in that neighborhood produces
closed manifolds with taut foliations.

The notion of “sufficiently close” in Corollary 1.2 can, however, be bounded
below for a given manifold. Deleting a neighborhood of the binding in the Baldwin–
Etnyre examples gives a surface bundle, and using the techniques developed in
the previous sections we now calculate a neighborhood of multislopes realized by
taut foliations around the multislope of the fiber in this fibration. In particular, we
observe that this neighborhood does not contain the meridional multislope. So
Dehn filling along these slopes does not give a taut foliation of the sequence of
Baldwin–Etnyre manifolds, as is to be expected.
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δ1 δ2

d c

b

a

180◦

Figure 11. The Baldwin–Etnyre examples.

The following is a description of the Baldwin–Etnyre examples [2013]. Let T
denote the genus one surface with two boundary components, B1 and B2. Let ψ be
the diffeomorphisms of T given by the product of Dehn twists,

ψ = Da D−1
b Dc D−1

d ,

where a, b, c and d are the curves shown in Figure 11 (reproduced from Figure 1
of [Baldwin and Etnyre 2013]). Then ψ is pseudo-Anosov by a well-known
construction of Penner [1988]. We define

ψn,k1,k2 = Dk1
δ1

Dk2
δ2
ψn,

where δ1 and δ2 are curves parallel to the boundary components B1 and B2 of T .
Let Mn,k1,k2 be the open book (T, ψn,k1,k2). Let N (B1), N (B2) be regular neigh-

borhoods of B1 and B2 in Mn,k1,k2 and let M ′n,k1,k2
= Mn,k1,k2 \ (N (B1)∪ N (B2)).

Let λ1, λ2 be the closed curves in T ∩ ∂M ′n,k1,k2
represented by B1, B2, with

induced orientation. The monodromy ψn,k1,k2 is freely isotopic to the pseudo-
Anosov map ψn . Let µ1, µ2 be the suspension flow of a point in λ1 and λ2,
respectively, under the monodromy ψn . As ψn is the identity on ∂T , µi = pi × S1

in ∂M ′n,k1,k2
= (B1× S1)∪ (B2× S1) for pi ∈ λi .

We use these pairs of dual curves (λ1, µ1) and (λ2, µ2) as coordinates to calculate
the slope of curves on the boundary tori of M ′n,k1,k2

, as detailed in Section 2.
If D1 is the meridional disk of a regular neighborhood N (B1) of B1 in Mn,k1,k2 ,

then ∂D1=µ1. Similarly, for D2 a meridional disk of a regular neighborhood of B2

in Mn,k1,k2 , ∂D2 = µ2.
In order to express the monodromy of the surface bundle in terms of the Gervais

generators we use the pseudo-Anosov monodromy ψn
= ψn,0,0 which is freely

isotopic to ψn,k1,k2 , with the observation that Dehn filling M ′n,0,0 along slopes−1/k1
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α1

α3

α2 γ1

γ2

γ3

β

Figure 12. The Gervais star-relation.

and−1/k2 gives the manifold Mn,k1,k1 . So for M ′n,0,0 we have slope(∂D1)=−1/k1,
slope(∂D2)=−1/k2.

As shown in Theorem 1.16 of [Baldwin and Etnyre 2013], for any N > 0 there
exist n, k1 > N such that the corresponding open book in Mn,k1,n has a compatible
contact structure that is not a deformation of the tangent bundle of a taut foliation.
We shall now show that the slope −1/n lies outside the interval of perturbation that
gives slopes of taut foliations via our construction. Hence, the manifolds Mn,k1,n

cannot be obtained by capping off the taut foliations realized by our interval of
boundary slopes around the fibration.

To obtain the branched surface required in our construction in the previous
sections we need a good sequence of arcs α j

→ φ−1(α j ), where φ = ψn , j = 1, 2.
These arcs are used to construct product disks which we then smooth along copies
of the fiber surface to get the required branched surface.

Following the method outlined in Lemma 3.4, we need to express φ−1 in terms
of the Gervais generators. The curves a, b and c correspond to the generating
curves η1, β and η2 among the Gervais generators, as can be seen in Figure 8. We
now need to express the curve d in terms of these generating curves.

Definition 4.1. Let Sg,n be a surface of genus g and n boundary components.
Consider a subsurface of Sg,n homeomorphic to S1,3. Then for curves αi , β, γi as
shown in Figure 12 (reproduced from Figure 2 of [Gervais 2001]), the star-relation is

(Dα1 Dα2 Dα3 Dβ)
3
= Dγ1 Dγ2 Dγ3,

where D represents Dehn-twist along the corresponding curves.

Let S be the component of T \ d which is homeomorphic to a once-punctured
torus. Let γ1 = d and γ2, γ3 be curves bounding disjoint disks D1 and D2 in S so
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that S \ (D1 ∪ D2) is homeomorphic to S1,3. As γ2, γ3 are trivial in T , γ1 = d and
α1 = α2 = α3 = a, so the star relation reduces to Dd = (D3

a Db)
3.

Hence, the monodromy ψ in terms of the Gervais generators is the word ψ =
Da D−1

b Dc(D3
a Db)

−3, which gives us ψ−1
= D3

a Db D3
a Db D3

a Db D−1
c Db D−1

a . Take
arcs α1, α2 as shown in Figure 8, where a = η1, b = β and c = η2. Then, as
(α j , Db(α j )) is a negatively oriented pair and α j = Da(α j ), α j = Dc(α j ) so we
have a negatively oriented good sequence (α1, α2)→ (ψ−1(α1), ψ

−1(α2)) obtained
by taking the sequence of arcs

σ =
(
α j , D3

a Db(α j ), D3
a Db D3

a Db(α j ), D3
a Db D3

a Db D3
a Db(α j ),

D3
a Db D3

a Db D3
a Db D−1

c Db D−1
a (α j )= ψ

−1(α j )
)

for j = 1, 2.

Let Bσ be the branched surface corresponding to this good oriented sequence, as
in Definition 3.5. The weighted train track τσ = Bσ ∩ ∂M ′n,0,0 on the boundary tori
is as shown in Figure 10.

The slope of this measured boundary lamination is (x − y)/(4(1+ y)), so the
interval of slopes that are realized by taut foliations is

(
−

1
4 ,∞

)
.

When the monodromy is ψn (instead of ψ), by a similar argument, we get the
slope of the measured lamination on the boundary as (x − y)/(4n(1+ y)) so that
the interval of slopes realized by taut foliations is (−1/4n,∞). And we observe
that the point (−1/k1,−1/n) does not lie in (−1/4n,∞)× (−1/4n,∞); that is,
the taut foliations from our construction cannot be capped off to give a taut foliation
of the Baldwin–Etnyre examples.
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compact surfaces with boundary, II”, Geom. Topol. 12:4 (2008), 2057–2094. MR 2009i:57057
Zbl 1170.57013

[Jankins and Neumann 1985] M. Jankins and W. D. Neumann, “Rotation numbers of products of
circle homeomorphisms”, Math. Ann. 271:3 (1985), 381–400. MR 86g:58082 Zbl 0543.57019

[Jun 2004] J. Jun, “(−2, 3, 7)-pretzel knot and Reebless foliation”, Topology Appl. 145:1-3 (2004),
209–232. MR 2005g:57015 Zbl 1090.57014

[Kazez and Roberts 2014] W. H. Kazez and R. Roberts, “Approximating C0-foliations”, preprint,
2014. To appear in Interactions between low-dimensional topology and mapping class groups
(Bonn, 2013), Geometry and Topology Monographs 19, Math. Sciences Publishers, Berkeley, 2015.
arXiv 1404.5919v2

[Kronheimer and Mrowka 2007] P. Kronheimer and T. Mrowka, Monopoles and three-manifolds, New
Mathematical Monographs 10, Cambridge University Press, 2007. MR 2009f:57049 Zbl 1158.57002

[Kronheimer et al. 2007] P. Kronheimer, T. Mrowka, P. Ozsváth, and Z. Szabó, “Monopoles and lens
space surgeries”, Ann. of Math. (2) 165:2 (2007), 457–546. MR 2008b:57037 Zbl 1204.57038

[Li 2002] T. Li, “Laminar branched surfaces in 3-manifolds”, Geom. Topol. 6 (2002), 153–194.
MR 2003h:57019 Zbl 1067.57011

[Li 2003] T. Li, “Boundary train tracks of laminar branched surfaces”, pp. 269–285 in Topology and
geometry of manifolds (Athens, GA, 2001), edited by G. Matić and C. McCrory, Proc. Sympos. Pure
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SOME RESULTS ON
ARCHIMEDEAN RANKIN–SELBERG INTEGRALS

JINGSONG CHAI

We use a notion of derivatives of smooth representations of moderate growth
of GL.n; R/ and exceptional poles to study local Rankin–Selberg integrals.
We obtain various results which are archimedean analogs of p-adic results
obtained by Cogdell and Piatetski-Shapiro.

1. Introduction

Let F be a p-adic field, � a smooth admissible representation of GL.n; F /. J. Bern-
stein and A. Zelevinsky [1977] defined the notion of derivatives for � , denoted
by �.k/, n� k � 0, which is a useful tool to study properties of � .

If � 0 is another smooth admissible representation of GL.n; F /, when both �
and � 0 are generic with associated Whittaker models W.�;  / and W.� 0;  �1/,
where  is a fixed nontrivial additive character of F, we have the following local
Rankin–Selberg integrals:

I.s;W;W 0; ˆ/D

Z
NnnGLn

W.g/W 0.g/ˆ.�ng/jdetgjs dg

for W 2W.�;  /, W 0 2W.� 0; N /, ˆ 2 S.F n/ a Schwartz function, s a complex
number, and �n D .0; 0; : : : ; 1/ 2 F n.

By the work of H. Jacquet, J. Shalika and Piatetski-Shapiro [1983], these integrals
converge in some right half-plane of s, and have a meromorphic continuation to the
whole plane. Suppose s0 is a pole with the expansion

I.s;W;W 0; ˆ/D
Bs0.W;W

0; ˆ/

.qs � qs0/d
C � � � :

Note that the Schwartz function space S.F n/ has a filtration

0� S0� S.F n/;
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where S0 D fˆ 2 S.F n/ W ˆ.0/ D 0g. Cogdell and Piatetski-Shapiro [� 2015]
defined s0 to be an exceptional pole if the leading coefficient Bs0.W;W

0; ˆ/ van-
ishes identically on S0, and used it together with derivatives to analyze the poles
of local Rankin–Selberg integrals. As a consequence, they can compute the local
L-factor for a pair of generic representations on general linear groups in terms of
L-functions of the inducing datum.

It is interesting to see if there is an analogous theory for GL.n;R/, and there is
in fact some work in this direction; for example, [Chang and Cogdell 1999]. In
this paper, we will take one more step towards such an archimedean theory, based
on results in that reference. There are a couple of difficulties in the archimedean
case. First of all, we need an appropriate theory of “derivatives”. In a recent
preprint, A. Aizenbud, D. Gourevitch and S. Sahi [Aizenbud et al. 2012] defined
the derivatives for smooth representations of moderate growth on GL.n;R/ as the
inverse limit of certain coinvariants. But this seems complicated for our applications
to local Rankin–Selberg integrals.

Here we simply take the naive analog of p-adic derivatives as our archimedean
derivatives. It is a component in the n-homology, where n is the nilradical of some
parabolic subalgebra. The advantages of this definition are that it is relatively easier
to deal with, and compatible with Rankin–Selberg integrals. But it is also interesting
to see if one can relate the derivatives defined in [ibid.] to integrals I.s;W;W 0; ˆ/
in some way.

For the exceptional poles, the situation again is a little more complicated. The
leading coefficients in the expansion of I.s;W;W 0; ˆ/ at a pole will involve a
finite-dimensional representation of GL.n;R/, due to the nature of the differences
between Schwartz functions on R and the p-adic field F. To be more precise, the
Schwartz function space Sn D Sn.R

n/ has a natural filtration. Let

Smn D ff 2 S W f vanishes to order at least m at zerog:

Then each Smn is a closed subspace, and we have a filtration

Sn D S0n � S1n � � � � � Smn � � � � ;

where Smn =SmC1n is isomorphic to the space of homogeneous polynomials on Rn

of degree m, denoted as Emn — a finite-dimensional representation of GL.n;R/.
At a pole s0, I.s;W;W 0; ˆ/ has an expansion

I.s;W;W 0; ˆ/D
Bs0.W;W

0; ˆ/

.qs � qs0/d
C � � � ;

and we say s0 is an exceptional pole of type 1 and levelm if Bs0 vanishes identically
on SmC1, but not on Sm.
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In general, we say s0 is an exceptional pole of type 2 and level m, for � and � 0,
if there exists a continuous trilinear form

l W V �V 0 �Emn ! C

such that, for g 2 GL.n;R/,

l.g �W;g �W 0; g �ˆn/D jdetgj�s0l.W;W 0; ˆn/:

It follows that an exceptional pole of type 1 is also of type 2.
We can now state our main results. We say � is in general position as in [Chang

and Cogdell 1999] (or see Section 2 for more details). We refer to page 294 for a
definition of depth of exceptional poles of type 1.

Theorem. Let � and � 0 be irreducible generic Casselman–Wallach representations
of GLn.R/ and GLm.R/ in general position.

Case m D n: Any pole of the Rankin–Selberg integrals for � and � 0 is an
exceptional pole of type 2 for a pair of components of �.k/ and � 0.k/, 0� k � n�1.
On the other hand, any exceptional pole of type 1 of depth 0 for a pair of components
of �.k/ and � 0.k/, 0 � k � n� 1, is a pole of the Rankin–Selberg integrals of �
and � 0.

Case m < n: Any pole of the Rankin–Selberg integrals for � and � 0 is an
exceptional pole of type 2 for a pair of components of �.n�k/ and � 0.m�k/, 1 �
k �m. On the other hand, any exceptional pole of type 1 of depth 0 for a pair of
components of �.n�k/ and � 0.m�k/, 1 � k � m, is a pole of the Rankin–Selberg
integrals of � and � 0. �

The first remark is that these are not the exact archimedean analog we are seeking.
We expect that the poles of Rankin–Selberg integrals are exactly exceptional poles
of type 1 for pairs of components of derivatives of � and � 0. A missing point here
is that we haven’t obtained the asymptotic results analogous to those in [Cogdell
and Piatetski-Shapiro � 2015, Section 1.4]; this will be addressed in the future.

We also remark here that the same ideas and techniques of this paper can also be
applied to local exterior square L-integrals in [Jacquet and Shalika 1990]; this will
appear in a forthcoming paper.

The paper is organized as follows. In Section 2 we review some preliminaries.
In Section 3 we define the derivatives and obtain some basic properties. Section 4 is
devoted to the study of exceptional poles. We obtain the main results in Section 5 for
GLn.R/�GLn.R/, and in Section 6 we discuss the case GLn.R/�GLm.R/,m<n.

2. Notations and preliminaries

In this section, we introduce some notations and results needed in this paper.
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Let GnDGLn.R/ be the general linear group of invertible n�n matrices over R,
andKDKnDO.n/ be the orthogonal subgroup ofGn, which is a maximal compact
subgroup of Gn. We use gD gn, kD kn to denote the complexified Lie algebras
of Gn and Kn respectively. Let Nn be the upper triangular unipotent subgroup
of Gn. Fix  as the additive character of R given by  .x/D exp.2�

p
�1x/, and

define a character on Nn, still denoted as  , by

 .u/D  
�X
i

ui;iC1

�
;

where uD .uij / 2Nn. Let � be the differential of  ; then � is a linear form on nn,
the Lie algebra of Nn, vanishing on Œnn; nn�.

A smooth representation .�; V / is called generic if it admits a nontrivial Whittaker
functional. A Whittaker functional ƒ with respect to � on .�; V / is a continuous
linear functional on V satisfying

ƒ.�.X/v/D �.X/ƒ.v/

for all X 2 nn, v 2 V.
If � is generic, let ƒ be the Whittaker functional on � , and for any v 2 V define

a function Wv WGn! C by Wv.g/Dƒ.�.g/v/. Then Wv is called the Whittaker
function on Gn corresponding to v, and the space W.�;  /DfWv W v 2V g is called
the Whittaker model of � .

Throughout the paper, we will work with smooth representations of moderate
growth. Suppose V is a Fréchet space. A smooth representation .�; V / is called
a representation of moderate growth if, for every seminorm � on V, there exists a
positive integer N and a seminorm � such that for every g 2Gn, v 2 V, we have

j�.g/vj� � kgk
N
jvj� ;

where kgk D Tr.g tg/CTr.g�1g�/ and g� D tg�1. If in addition every irreducible
representation of K has finite multiplicity in � , we will say � is admissible.

We have the following important result of Casselman and Wallach.

Theorem 2.1. For any finitely generated admissible .g; K/-module W, there exists
exactly one smooth representation of moderate growth on a Fréchet space V, up
to canonical topological isomorphism, such that the underlying .g; K/-module VK
is isomorphic to W. Moreover, the assignment W ! V is an exact functor from
the category of finitely generated admissible modules to the category of smooth
admissible finitely generated Fréchet representations of moderate growth.

Proof. See, for example, [Wallach 1992, Chapter 12]. �
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Remark. We refer to V in this theorem as the completion or globalization of W,
and we refer to smooth admissible finitely generated Fréchet representations of
moderate growth .�; V / as Casselman–Wallach representations.

For irreducible Casselman–Wallach representations, by results of J. Shalika
[1974], there exists at most one Whittaker functional with respect to a given
nontrivial  , unique up to a scalar.

For a given smooth representation V of Gn, and a nilpotent subalgebra n of g, we
use H0.n; V / to denote the quotient of V by the closure of the subspace spanned by
fX �v WX 2n; v2V g. WhenW is a .g; K/-module, useH0.n; W / to denoteW=nW.
Similarly, if N is a unipotent subgroup of Gn, denote by H0.N; V / the quotient
of V by the closure of the subspace spanned by vectors f�.u/v�v W u 2N; v 2 V g.

If .�; V / is an irreducible Casselman–Wallach representation of Gn, VK denotes
its K-finite vectors. If P is a standard parabolic subgroup of Gn, denote its Levi
decomposition by P DMN , where N is the unipotent subgroup of P and M is
the Levi component. Let p, m, n be their complexified Lie algebras, respectively.
It is a result of B. Casselman that H0.n; VK/ is nonzero. By results of Stafford
and N. Wallach it is an admissible .m; K \M/ module. Moreover, it is finitely
generated over U.m/; here U.m/ denotes the universal enveloping algebra of m.
See, for example, [Borel and Wallach 2000] for more details.

For H0.n; V /, M acts naturally on this quotient, which is also a Fréchet space.
This gives a smooth representation of M , which is also of moderate growth.

Naturally H0.n; VK/ embeds into H0.n; V /, sending vCnVK to vCnV for any
v 2 VK . Moreover, we have the following.

Proposition 2.2. H0.n; V / is a Casselman–Wallach representation of M , and its
K \M -finite vectors are exactly H0.n; VK/; so it is the completion of H0.n; VK/.

Proof. The image of the embedding H0.n; VK/ ! H0.n; V / is a .m; K \M/-
module, and is dense in H0.n; V /. Hence H0.n; VK/ can be identified with the
underlying .m; K \M/-module of H0.n; V /. As H0.n; VK/ is nonzero, finitely
generated and admissible, so is H0.n; V /. Hence H0.n; V / is the completion of
H0.n; VK/. �

Remark. According to an unpublished result of B. Casselman, H�.n; V / is the
completion of H�.n; VK/; see [Bunke and Olbrich 1997, Theorem 1.5].

For any two smooth representations of moderate growth .�; V / and .�;W / of
Gn and Gm, respectively, denote by .� y̋ �; V y̋W / the complete projective tensor
product. It is also a smooth representation of moderate growth on Gn �Gm.

Now if � (or � 0) is an irreducible admissible representation ofGn (orGm), by the
local Langlands correspondence � (or � 0) corresponds to an n- (or m-) dimensional
semisimple representation of the Weil groupWR, denoted as � (or �0). Now consider
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the tensor product �˝ �0, which defines a semisimple representation of WR with
dimensionmn. Then one can associate a local L-factor, denoted by L.s; ��� 0/, to
�˝ �0, which is a product of gamma functions. For more details, see, for example,
[Knapp 1994].

For any Wv 2W.�;  /, define zWv.g/DWv.!ng�/, where

!n D

0B@0 � � � 1: :
:

1 � � � 0

1CA
and g� D tg�1. Then by [Jacquet and Shalika 1981], it is known that f zWv W v 2 V g
is a Whittaker model for Q� with respect to N , the contragredient of � .

To introduce the local Rankin–Selberg integrals, assume .�; V / and .� 0; V 0/ are
generic irreducible Casselman–Wallach representations of Gn and Gm, respectively,
with Whittaker models W.�;  / and W.� 0; N /. Let S.Rn/ be the space of Schwartz
functions on Rn.

If mD n, set

I.s;W;W 0; ˆ/D

Z
NnnGn

W.g/W 0.g/ˆ.�ng/jdetgjs dg

for W 2W.�;  /, W 0 2W.� 0; N /, ˆ 2 S.Rn/, and �n D .0; 0; : : : ; 1/ 2 Rn.
If n > m, set

I.s;W;W 0/D

Z
NmnGm

W

�
g 0

0 In�m

�
W 0.g/jdetgjs�

n�m
2 dg:

In general, for 0� j � n�m� 1, set

Ij .s;W;W
0/

D

Z
M.m�j;R/

Z
NmnGm

W

0@g 0 0

X Ij 0

0 0 In�m�j

1AW 0.g/jdetgjs�
n�m

2 dg dX:

The following theorem is due to Jacquet and Shalika; see, for example, [Jacquet
2009].

Theorem 2.3. (1) These integrals converge for Re.s/� 0.

(2) Each integral has a meromorphic continuation to all s 2 C, which is a holo-
morphic multiple of L.s; � �� 0/.

(3) The following functional equations are satisfied:

Ij .1� s; zW ; zW
0/D !0.�1/n�1.s; � �� 0;  /In�m�1�j .s;W;W

0/

and
I.1� s; zW ; zW 0; b̂/D !0.�1/n�1I.s;W;W 0; ˆ/;
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where b̂ is the Fourier transform of ˆ, given by

b̂.X/D Z ˆ.Y / .�Tr. tXY // dY: �

Now we recall some results from [Cogdell and Piatetski-Shapiro 2004] which
are essential in Section 4, which studies exceptional poles.

The first result is an extension of the Dixmier–Malliavin theorem. Let .�; V / be
a continuous representation of Gn on a Fréchet space V. Still use � to denote the
smooth representation of Gn induced from � on the smooth vectors V1 of V.

Proposition 2.4 [Cogdell and Piatetski-Shapiro 2004, Proposition 1.1]. Let vk!
v0 be a convergent sequence in V1. Then there exists a finite set of functions
fj 2C1c .Gn/ and a collection of vectors vk;j 2 V1 such that vk D

P
j �.fj /vk;j

for all k � 0, and such that vk;j ! v0;j as k!1 for each j . �

The second result is about the continuity of archimedean Rankin–Selberg in-
tegrals. Let .�; V / and .� 0; V 0/ be generic irreducible Casselman–Wallach rep-
resentations of Gn and Gm, respectively. For W 2W.�;  /, W 0 2W.� 0;  �1/,
ˆ 2 S.Rn/, we have:

Theorem 2.5. The linear functionals

ƒs D
I.s;W;W 0/

L.� �� 0/
; n > m;

ƒs D
I.s;W;W 0; ˆ/

L.� �� 0/
; nDm;

are uniformly continuous in s on compact sets with respect to the topologies involved.

Proof. See [Cogdell and Piatetski-Shapiro 2004, Theorem 1.1]. �

Remark. As noted in [Cogdell and Piatetski-Shapiro 2004], here we claim the
result is true for all s.

To end this section, let’s explain irreducible representations in general position,
following [Chang and Cogdell 1999]. Let P D MN be a parabolic subgroup
of Gn, with M DGp1 �G

q
2 and pC 2q D n. Write C2 for the cyclic group f˙1g,

G1 ' R>0 �C2 and G2 ' R>0 � SL˙2 , where SL˙2 stands for the subgroup of G2
consisting of matrices with determinant ˙1. So M D .R>0/pCq �C

p
2 � .SL˙2 /

q .
Let Tm be the discrete series of SL˙2 with parameter m 2 Z>0. We will use

notation .s1; : : : ; sp/ to denote the character on .R>0/p sending .x1; : : : ; xp/ toQp
iD1 x

si
i . And let � be a character on C2. Then form the tensor product

� D .s1; : : : ; sp; 2t1; : : : ; 2tq/˝ .�1˝ � � �˝ �p˝Tm1
˝ � � �˝Tmq

/:
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This is a representation on M , and then we get the normalized parabolic induced
representation Ind.�/. We say � D Ind.�/ is a representation in general position if

si ; tj ; si � sj … Z for i ¤ j; ti � tj …
1
2

Z for i ¤ j; si � tj …
1
2

Z:

It is known that these induced representations are irreducible and generic, see
[Chang and Cogdell 1999] for more information.

3. Archimedean derivatives

In this section we introduce archimedean derivatives. First we need more notation.
For any 1 � l � n, let Un�lC1 be the unipotent radical of the standard parabolic
subgroup associated to the partition .n� l; 1; : : : ; 1/, that is, the subgroup of Nn
consisting of matrices having the form�

In�l x

0 u

�
;

where x is a .n� l/� l matrix and u 2 Nl is an upper triangular matrix with 1
on the diagonal. Note that U1 D Nn. Denote by un�lC1 the corresponding Lie
algebras. Define a linear form �n�lC1 on each un�lC1 by

�n�lC1.X/D �.Xn�lC1;n�lC2C � � �CXn�1;n/:

Now let .�; V / be a Casselman–Wallach representation of Gn, VK its underlying
.g; K/-module. For 1 � l � n, let Vl be the closure of the subspace spanned by
fX � v��n�lC1.X/v W v 2 V;X 2 un�lC1g.

Definition. For each integer 0� l � n, we define the l-th derivative of � , denoted
by .�.l/; V .l//, as follows:

(1) If l D 0, put .�.0/; V .0//D .�; V /.

(2) If 1� l � n, put V .l/ D V=Vl , and define the action �.l/ by

�.l/.g/ � .vCVl/D jdetgj�l=2�.g/vCVl for any g 2Gn�l :

To continue, we need more notation. Use Pn�l;l to denote the standard parabolic
subgroup of Gn associated to the partition .n� l; l/ of n. It has Levi decomposition
Pn�l;l DMn�l;lNn�l;l , with Levi component Mn�l;l isomorphic to Gn�l �Gl
and unipotent part Nn�l;l . Let pn�l;l , mn�l;l and nn�l;l be their complexified Lie
algebras, respectively.

Note that we have the decomposition�
In�l x

0 v

�
D

�
In�l 0

0 v

��
In�l x

0 Il

�
;
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so we can write Un�lC1D Vn�lC1Nn�l;l , where Vn�lC1 is the standard unipotent
subgroup Nl of Gl embedded in Gn in the right lower corner.

Let vn�lC1 be the complexified Lie algebra of Vn�lC1. Note that the character
�n�lC1 is trivial on nn�l;l . Let Yl be the closure of the space spanned by

fX � Nv��n�lC1.X/ Nv WX 2 vn�lC1; Nv 2H0.nn�l;l ; V /g:

Since V .l/ D V=Vl and

Vl D fX � v��n�lC1.X/v W v 2 V;X 2 un�lC1g;

note that un�lC1 D vn�lC1C nn�l;l . Then

H0.nn�l;l ;V /=Yl

D .V=nn�l;lV /
ı�
fX � v��n�lC1.X/v WX2un�lC1;v2V g=nn�l;lV

�
D V=Vl :

Thus, we have verified the following proposition.

Proposition 3.1. V .l/ DH0.nn�l;l ; V /=Yl : �

The following result states that the derivatives �.l/ belong to a nice class of
representations.

Proposition 3.2. For each l , �.l/ is a Casselman–Wallach representation of Gn�l .

Proof. This follows from the fact that the n-homology H0.n; V / is admissible. �

Now assume .�; V / is an irreducible smooth admissible generic representation
of moderate growth on Gn in general position as in Section 2. Denote by VK its K-
finite vectors, which is an irreducible admissible .g; K/-module. For the rest of this
section, unless otherwise stated, we will drop the subscript for the standard upper
triangular parabolic subgroup P DMN associated with the partition .n� k; k/
of n, to simplify notation.

By [Chang and Cogdell 1999, Theorem 4.2] the n-homology VK=nVK is nonzero
and is a semisimple .m; K \M/-module. By Proposition 2.2, V=nV is the smooth
completion of VK=nVK . It follows that V=nV is also semisimple, so we can write

V=nV D

rM
iD1

Ai ;

where each Ai is an irreducible smooth admissible representation of moderate
growth on M and hence, by results of D. Gourevitch and A. Kemarsky [2013],
isomorphic to �i y̋ �i , where each �i and �i are irreducible smooth representations
of moderate growth on Gn�k and Gk , respectively. Note that it is possible to have
Ai Š Aj for i ¤ j . We use �i;K and �i;K to denote the representations on the
underlying K-finite modules. Let pi be the natural projection from VK=nVK onto
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�i;K˝�i;K , and also be the projection from V=nV onto �i y̋ �i . We will also use p
to denote the projections V ! V=nV .

Lemma 3.3. For each i , �i and �i are generic representations.

Proof. This follows from [Chang and Cogdell 1999, Theorem 4.2]. See Remarks 4.3
there. �

Denote by W.�i ;  / the Whittaker model for �i .

Proposition 3.4. For every Wi 2 W.�i ;  / and every ˆ 2 S.Rn�k/, there is a
Whittaker function Wv 2W.�;  / such that

Wv

�
g 0

0 Ik

�
DWi .g/ˆ.�n�kg/:

Proof. The projection pi from VK=nVK onto �i;K ˝ �i;K induces an injective
intertwining map VK! Ind.jdetj�k=2�i;K˝jdetj.n�k/=2�i;K/. This extends to an
injective map

V ! Ind.jdetj�k=2�i y̋ jdetj.n�k/=2�i /:

Denote by Q its quotient; we have a short exact sequence of smooth representa-
tions of moderate growth

(1) 0 �! V �! Ind.jdetj�k=2�i y̋ jdetj.n�k/=2�i / �!Q �! 0:

The underlying .g; K/-modules also form a short exact sequence

(2) 0 �! VK �! Ind.jdetj�k=2�i;K ˝jdetj.n�k/=2�i;K/ �!QK �! 0:

By taking the dual (contragredient representation) of the short exact sequence (2),
we have

0 �!Q�K �!
�
Ind.jdetj�k=2�i;K ˝jdetj.n�k/=2�i;K/

��
�! V �K �! 0:

By [Wallach 1988, Lemma 4.5.2], we have

0 �!Q�K �! Ind
�
.jdetj�k=2�i;K/�˝ .jdetj.n�k/=2�i;K/�

�
�! V �K �! 0;

which induces a short exact sequence for their smooth completions:

(3) 0 �!Q� �! Ind
�
.jdetj�k=2�i /� y̋ .jdetj.n�k/=2�i /�

�
�! V � �! 0:

Now for any representation .�; U /, define representation .�s; U / by �s.g/ �uD
�. tg�1/ �u for any g 2Gn, u2U ; then �s is isomorphic to �� when � is irreducible,
by [Aizenbud et al. 2008, Theorem 2.4.2]. Note that we are working in the same
space, but simply changing the action. So if we have a short exact sequence

0 �! .�1; U1/ �! .�2; U2/ �! .�3; U3/ �! 0;
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applying the operation ‘s’, we then have a new exact sequence

0 �! .�s1 ; U1/ �! .�s2 ; U2/ �! .�s3 ; U3/ �! 0:

Now apply operation ‘s’ to the sequence (3); then we have

(4) 0�! .Q�/s�!
�
Ind..jdetj�k=2�i /� y̋ .jdetj.n�k/=2�i /�/

�s
�! .V �/s�!0:

It follows that the sequence (4) becomes

0 �! .Q�/s �! IndGn

P 0

�
.jdetj�k=2�i /�s y̋ .jdetj.n�k/=2�i /�s

�
�! .V �/s �! 0:

Since � , �i and �i are irreducible, the above is

0 �! .Q�/s �! IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i / �! V �! 0:

Let ƒ be the unique (up to a constant) continuous Whittaker functional on V.
Composed with the projection

IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i / �! V;

we get a nontrivial continuous Whittaker functional ƒ0 on

IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i /:

By the last conclusion of [Wallach 1992, Theorem 15.4.1], there is a linear
bijection between the space of Whittaker functionals on

IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i /

and the space of Whittaker functionals on

jdetj�k=2�i y̋ jdetj.n�k/=2�i :

By Lemma 3.3, the latter space has dimension 1, thus there is a unique (up to a
constant) continuous Whittaker functional on IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i /,
and it must be ƒ0. Then we can conclude that the space of Whittaker functions
W.�; V / for � and that for IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i /, are the same.
So in order to prove the existence of Wv in W.�; V / as in the proposition, it

suffices to find some Whittaker function for IndGn

P 0 .jdetj�k=2�i y̋ jdetj.n�k/=2�i /
with the required property. Now this follows from [Jacquet 2009, Proposition 14.1],
which finishes the proof. �

Corollary 3.5. For every Whittaker function Wi in any irreducible component
of �.k/, and any Schwartz function ˆ on Rn�k , we can always find some Wv 2
W.�;  / such that

Wv

�
g 0

0 Ik

�
DWi .g/ˆ.�n�kg/jdetgjk=2:
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Proof. This follows from the fact that �.k/ is isomorphic to jdetj�k=2
L
i �i . �

4. Exceptional poles

In this section, we will introduce two types of exceptional poles and discuss their
basic properties. Set

Smn D ff 2 S W f vanishes to order at least m at zerogI

then we have a filtration of closed subspaces for the Schwartz function space
Sn D Sn.R

n/:
Sn D S0n � S1n � � � � � Smn � � � � :

Smn =SmC1n is isomorphic to the space of homogeneous polynomials on Rn of
degreem, denoted byEmn . The groupGn acts on Sn from the right, which preserves
this filtration, and therefore induces an action on Emn .

Let � and � 0 be irreducible generic Casselman–Wallach representations on Gn.
The Rankin–Selberg integrals for � and � 0, are given by

I.s;W;W 0; ˆ/D

Z
NnnGn

W.g/W 0.g/ˆ.�ng/jdetgjs dg

for W 2W.�;  /, W 0 2W.� 0;  �1/,ˆ 2S, where �n D .0; 0; : : : ; 1/ 2Rn, s 2C.
By Theorem 2.3, these integrals converge when s is in some right half-plane, and
have a meromorphic continuation to the whole complex plane.

For any integer 1� k� n, for v 2� , v0 2� 0 andˆ2Sk , we define the following
family of integrals:

Ik.s;Wv;Wv0 ;ˆ/D

Z
NknGk

Wv

�
g 0

0 In�k

�
Wv0

�
g 0

0 In�k

�
ˆ.�kg/jdetgjs�nCk dg:

Lemma 4.1. The integrals Ik belong to the space of Rankin–Selberg integrals for
� and � 0.

Proof. This follows from [Jacquet 2009, Proposition 6.1 and Lemma 14.1]. �
Thus it follows that Ik converges when Re.s/ is large and has a meromorphic

continuation to the whole complex plane. Suppose s0 is a pole of order d for the
integral Ik.s;W;W 0; ˆ/, with Laurent expansion

Ik.s;W;W
0; ˆ/D

Bs0;k.W;W
0; ˆ/

.s� s0/d
C � � � ;

where Bs0;k.W;W
0; ˆ/ is a trilinear form on V �V 0�Sk satisfying the following

invariance property:

Bs0;k.g �W;g �W
0; g �ˆ/D jdetgj�s0Cn�kBs0;k.W;W

0; ˆ/
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for any g 2Gk , W 2W.�;  /, W 0 2W.� 0;  �1/, ˆ 2 Sk .

Proposition 4.2. The trilinear form Bs0;k is continuous with respect to the topolo-
gies involved.

Proof. When k D n, the continuity of Bs0;n follows from Theorem 2.5. When
k < n, we will use the constructions in the proof of [Jacquet 2009, Lemma 14.1] to
prove the continuity.

Now suppose vl ! v, v0
l
! v0 and ˆl !ˆ; then write

Ik.s;Wvl
; Wv0

l
; ˆl/D

Bs0;k.vl ; v
0
l
; ˆl/

.s� s0/d
C � � �

and

Ik.s;Wv; Wv0 ; ˆ/D
Bs0;k.v; v

0; ˆ/

.s� s0/d
C � � � :

Then we want to show that Bs0;k.vl ; v
0
l
; ˆl/! Bs0;k.v; v

0; ˆ/ as l!1.
Let ‰l and ‰ be Schwartz functions on Rk whose Fourier transforms are given

by b‰l D ˆl , b‰ D ˆ. Since Fourier transform is a topological isomorphism on
Schwartz function space, it follows that ‰l !‰. Now we set

ul D

Z
�

0@Ik x 0

0 1 0

0 0 In�k�1

1A vl‰l.x/ dx
and

uD

Z
�

0@Ik x 0

0 1 0

0 0 In�k�1

1A v‰.x/ dx:
Claim 1. If f is a Schwartz function on Rk , the map .f; v/ 7! �.f /v is a continu-
ous map from V �Sk to V, where

�.f /v D

Z
Rk

f .x/�.x/v dx:

Proof of Claim 1. Suppose fl ! f in Sk , vl ! v in V. We want to show that
�.fl/vl ! �.f /v.

Because .�; V / is of moderate growth, for any seminorm j � j1 on V there exists
a seminorm j � j2 on V, a positive integer N0, and a positive number C , such that
for any v 2 V and x 2 Rk , we have j�.x/vj1 � C.1C kxk2/N0 jvj2. Here we
identify x with 0@Ik x 0

0 1 0

0 0 In�k�1

1A 2Gn;
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and kxk denotes the usual Euclidean norm of x. Then we have

j�.fl/vl��.f /vj1 � j�.fl/vl ��.f /vl j1Cj�.f /vl ��.f /vj1

�

Z
jfl.x/�f .x/k�.x/vl j1dxC

Z
jf .x/k�.x/.vl �v/j1dx

� C jvl j2

Z
jfl.x/�f .x/j.1Ckxk

2/N0 dx

CC jvl �vj2

Z
jf .x/j.1Ckxk2/N0 dx:

Since vl ! v, jvl j2 is bounded for any l , and jvl �vj2! 0 as l!1. Because
fl ! f in Sk ,Z

jfl.x/�f .x/j.1Ckxk
2/N0 dx! 0 as l!1:

Hence �.fl/vl ! �.f /v as l!1, which proves the claim. �

So, by Claim 1, ul ! u. And by the first conclusion of [Jacquet 2009, Proposi-
tion 6.1], we have

Wul

�
g 0

0 In�k

�
DWvl

�
g 0

0 In�k

�
ˆl.�kg/

and

Wu

�
g 0

0 In�k

�
DWv

�
g 0

0 In�k

�
ˆ.�kg/:

Thus

Ik.s;Wvl
; Wv0

l
; ˆl/D

Z
Wul

�
g 0

0 In�k

�
Wv0

l

�
g 0

0 In�k

�
jdetgjs�nCk dg

and

Ik.s;Wv; Wv0 ; ˆ/D

Z
Wu

�
g 0

0 In�k

�
Wv0

�
g 0

0 In�k

�
jdetgjs�nCk dg:

We will view wl D ul˝v
0
l

as an element in � D� y̋� 0; consequently Wwl
.g/D

Wul
.g/Wv0

l
.g/ 2W.� y̋� 0;  ˝ �1/, and we have

(5) Ik.s;Wvl
; Wv0

l
; ˆl/D

Z
Wwl

��
g 0

0 In�k

�
;

�
g 0

0 In�k

��
jdetgjs�nCk dg:
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Similarly, write w D u˝ v02 � D � y̋� 0; then we have wl ! w and

(6) Ik.s;Wv; Wv0 ; ˆ/D

Z
Ww

��
g 0

0 In�k

�
;

�
g 0

0 In�k

��
jdetgjs�nCk dg:

Now by Proposition 2.41 applied to the group Rk�R�, there exists a finite set of
functions fj .x; h/ 2 C1c .R

k �R�/ and vectors wl;j 2 � y̋� 0 with l � 0 such that

wl D
X
j

�.fj /wl;j for all l � 1; w D
X
j

�.fj /w0;j ;

and wl;j ! w0;j for each j .
More precisely, we can write

wl D
X
j

Z
�

0@0@a�1.h/ 0 0

x h 0

0 0 In�k�1

1A;
0@a�1.h/ 0 0

x h 0

0 0 In�k�1

1A1Awl;jfj .x;h/dxd�h
and

wD
X
j

Z
�

0@0@a�1.h/ 0 0

x h 0

0 0 In�k�1

1A;
0@a�1.h/ 0 0

x h 0

0 0 In�k�1

1A1Aw0;jfj .x;h/dxd�h;
where a.h/D diag.h; 1; : : : ; 1/.

Then the integrals (5) and (6) now become

Ik.s;Wvl
; Wv0

l
; ˆl/

D

X
j

Z
Wwl;j

0@0@ga�1.h/ 0 0

x h 0

0 0 In�k�1

1A ;
0@ga�1.h/ 0 0

x h 0

0 0 In�k�1

1A1A
�fj .x; h/jdetgjs�nCk dg dx d�h;

and

Ik.s;Wv; Wv0 ; ˆ/

D

X
j

Z
Ww0;j

0@0@ga�1.h/ 0 0

x h 0

0 0 In�k�1

1A ;
0@ga�1.h/ 0 0

x h 0

0 0 In�k�1

1A1A
�fj .x; h/jdetgjs�nCk dg dx d�h:

1There is a change of topology for the convergence in Proposition 2.4 in general, but in our special
case considered here, the topologies involved are the same.
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Make the change of variable ga�1.h/! g; we have the integrals

(7) Ik.s;Wvl
; Wv0

l
; ˆl/

D

X
j

Z
Wwl;j

0@0@g 0 0

x h 0

0 0 In�k�1

1A ;
0@g 0 0

x h 0

0 0 In�k�1

1A1A
�fj .x; h/jdetgjs�nCkjhjsC1�nCk dg dx d�h

and

(8) Ik.s;Wv; Wv0 ; ˆ/

D

X
j

Z
Ww0;j

0@0@g 0 0

x h 0

0 0 In�k�1

1A ;
0@g 0 0

x h 0

0 0 In�k�1

1A1A
�fj .x; h/jdetgjs�nCkjhjsC1�nCk dg dx d�h:

Now we will view fj .x; h/ as Schwartz functions on RkC1 which vanish on
Rk � f0g. Then let

el;j D

Z
�

0@0@IkC1 y 0

0 1 0

0 0 In�k�2

1A ;
0@IkC1 y 0

0 1 0

0 0 In�k�2

1A1Awl;jfj .y/ dy
and

e0;j D

Z
�

0@0@IkC1 y 0

0 1 0

0 0 In�k�2

1A ;
0@IkC1 y 0

0 1 0

0 0 In�k�2

1A1Aw0;jfj .y/ dy;
where y D .x; h/ 2 RkC1.

Thus it follows that, el;j ! e0;j for each j , and we have

(9) Ik.s;Wvl
; Wv0

l
; ˆl/

D

X
j

Z
Wel;j

0@0@g 0 0

x h 0

0 0 In�k�1

1A ;
0@g 0 0

x h 0

0 0 In�k�1

1A1A
� jdetgjs�nCkjhjsC1�nCk dg dx d�h

and

(10) Ik.s;Wv; Wv0 ; ˆ/

D

X
j

Z
We0;j

0@0@g 0 0

x h 0

0 0 In�k�1

1A ;
0@g 0 0

x h 0

0 0 In�k�1

1A1A
� jdetgjs�nCkjhjsC1�nCk dg dx d�h:
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As in [Jacquet 2009, Lemma 14.1],

f !

Z
f

0@g 0 0

x h 0

0 0 In�k�1

1A dxjdetgj�1 d�h

gives an invariant measure on NkC1nGkC1. Thus, we can rewrite these integrals as

(11) Ik.s;Wvl
; Wv0

l
; ˆl/

D

X
j

Z
NkC1nGkC1

Wel;j

��
g 0

0 In�k�1

�
;

�
g 0

0 In�k�1

��
� jdetgjsC1�nCk dg

and

(12) Ik.s;Wv; Wv0 ; ˆ/

D

X
j

Z
NkC1nGkC1

We0;j

��
g 0

0 In�k�1

�
;

�
g 0

0 In�k�1

��
� jdetgjsC1�nCk dg;

which are the same type integrals as (5) and (6) belonging to IkC1.
So by induction, we may assume k D n� 1 in the integrals (5) and (6); then

integrals (7) and (8) now become

(13) Ik.s;Wvl
; Wv0

l
; ˆl/

D

X
j

Z
Wwl;j

��
g 0

x h

�
;

�
g 0

x h

��
fj .x; h/jdetgjs�1jhjs dg dx d�h

and

(14) Ik.s;Wv; Wv0 ; ˆ/

D

X
j

Z
Ww0;j

��
g 0

x h

�
;

�
g 0

x h

��
fj .x; h/jdetgjs�1jhjs dg dx d�h:

Write

g0 D

�
g 0

x h

�
2Gn;

and view fj .x; h/ as Schwartz functions on Rn which vanish on Rn�1 � f0g; then
the above integrals now become

Ik.s;Wvl
;Wv0

l
;ˆl/D

X
j

Z
Wwl;j

.g0;g0/fj .�ng
0/jdetg0jsjdetg0j�1dg0dxd�h
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and

Ik.s;Wv;Wv0 ;ˆ/D
X
j

Z
Ww0;j

.g0;g0/fj .�ng
0/jdetg0jsjdetg0j�1dg0dxd�h:

Again, as in [Jacquet 2009, Lemma 14.1],

f 7!

Z
f .g0/ dxjdetg0j�1 d�h

gives an invariant measure on Nn nGn. We can rewrite the above integrals as

(15) Ik.s;Wvl
; Wv0

l
; ˆl/D

X
j

Z
Gn

Wwl;j
.g0; g0/fj .�ng

0/jdetg0js dg0

and

(16) Ik.s;Wv; Wv0 ; ˆ/D
X
j

Z
Gn

Ww0;j
.g0; g0/fj .�ng

0/jdetg0js dg0:

It follows that

Bs0;k.vl ; v
0
l ; ˆl/D

X
j

Bs0;n.wl;j ; fj /;

and similarly
Bs0;k.v; v

0; ˆ/D
X
j

Bs0;n.w0;j ; fj /:

Since wl;j ! w0;j for each j , and the form Bs0;n is continuous, we conclude that
Bs0;k is continuous. This completes the proof. �

Definition. We say a pole s0 is an exceptional pole of type 1, with level m and
depth n � k, if the corresponding Bs0;k is zero on SmC1

k
, but not identically

zero on Sm
k

. In this case, we also say s0 is an exceptional pole for the integrals
Ik.s;Wv; Wv0 ; ˆ/.

Remark. If s0 is an exceptional pole of order m, then Bs0 defines a continuous
linear form on V �V 0 �Em

k
such that, for any g 2Gk ,

Bs0;k.g �W;g �W
0; g �ˆ/D jdetgj�s0Cn�kBs0;k.W;W

0; ˆ/:

Definition. We say a complex number s0 is an exceptional pole of type 2, with
level m, for � and � 0, if there exists a continuous trilinear form

l W V �V 0 �Emn ! C

such that for g 2Gn,

l.g �W;g �W 0; g �ˆn/D jdetgj�s0l.W;W 0; ˆn/:
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Remark. It follows that an exceptional pole of type 1 with level m and depth 0 is
also of type 2 with level m.

Next we want to relate the exceptional poles for the integrals Ik to the exceptional
poles of type 2 for the components of �.n�k/ and � 0.n�k/.

Lemma 4.3. If X D .Xij / 2 nk;n�k , then there exists a linear form PX on Rk such
that for any v 2 V we have

W�.X/�v

�
g 0

0 In�k

�
D PX .�kg/Wv

�
g 0

0 In�k

�
:

Proof. First, it is easy to see that

W�.X/�v

�
g 0

0 In�k

�
D
d

dt

ˇ̌̌
tD0

Wv

��
g 0

0 In�k

��
Ik tX

0 In�k

��

D 2�
p
�1

kX
jD1

gkjXj;kC1Wv

�
g 0

0 In�k

�
:

So define a linear form PX .a1; : : : ; ak/D 2�
p
�1

Pk
jD1Xj;kC1aj on Rk ; then

PX .�kg/D 2�
p
�1

Pk
jD1 gkjXj;kC1, which proves the lemma. �

Proposition 4.4. Let s0 be an exceptional pole of level m for the integrals Ik;
then the continuous trilinear form Bs0;k defines a continuous trilinear form on
V=nV �V 0=nV 0 �Em

k
.

Proof. It suffices to show that the form Bs0;k vanishes on nV and nV 0 when
restricted to Sm

k
.

For any W�.X/�v, X 2 n, any Wv0 and any ˆ 2 Sm
k

, by Lemma 4.3 we have

W�.X/�v

�
g 0

0 In�k

�
D PX .�kg/Wv

�
g 0

0 In�k

�
for some linear form PX on Rk .

It follows that

Ik.s;W�.X/�v; Wv0 ; ˆ/

D

Z
W�.X/�v

�
g 0

0 In�k

�
Wv0

�
g 0

0 In�k

�
ˆ.�kg/jdetgjs�kCn dg

D

Z
NknGk

Wv

�
g 0

0 In�k

�
Wv0

�
g 0

0 In�k

�
‰.�kg/jdetgjs�kCn dg;

where ‰k.�kg/D PX .�kg/ˆ.�kg/.
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Since ˆ 2Sm
k

, thus ‰DPXˆ 2SmC1
k

. Note that s0 is an exceptional pole with
level m, so

Bs0;k.W�.X/�v; Wv0 ; ˆ/D Bs0;k.W�v; Wv0 ; ‰k/D 0:

Similarly, Bs0;k vanishes when v0 2 nV 0. Thus the proposition follows. �

Theorem 4.5. If s0 is an exceptional pole of type 1 with level m and depth n� k,
then s0 is an exceptional pole of type 2 with level m for some components of �.n�k/

and � 0.n�k/.

Proof. Note that we have the decompositions

V=nV D
M

i
.�i ; Ai / y̋ .�i ; Bi /

and
V 0=nV 0 D

M
i
.�0i ; A

0
i / y̋ .�

0
i ; B
0
i /:

By Proposition 4.4, if s0 is an exceptional pole of level m for Ik , Bs0;k defines a
nontrivial continuous trilinear form on V=nV � V 0=nV 0 �Em

k
. Thus it has to be

nontrivial on some components

Bs0;k W .�i ; Ai / y̋ .�i ; Bi /� .�
0
j ; A

0
j / y̋ .�

0
j ; B

0
j /�E

m
k ! C;

which implies it is also nontrivial on the subspace Ai ˝Bi �A0i ˝B
0
i �E

m
k

.
Now fix v2 2Bi , v02 2B

0
i , so that Bs0;k is nontrivial on Ai˝v2�A0i˝v

0
2�E

m
k

.
Then the restriction ofBs0;k to this subspace induces a nontrivial continuous trilinear
form, still denoted as Bs0;k , on Ai �A0i �E

m
k

, with

Bs0;k.g � v1; g � v
0
1; g:ˆ/D jdetgj�s0Cn�kBs0;k.v1; v

0
1; ˆ/

for any v1 2 Ai , v01 2 A
0
i , ˆi 2 E

m
k

and g 2 Gk . Note that jdetj.n�k/=2�i is a
component for �.n�k/, thus we have proved the theorem. �

5. Rankin–Selberg integrals: Gn � Gn

Suppose a pole s0 is not exceptional for the integrals In, and that we have the
Laurent expansion

In.s;W;W
0; ˆ/D

Bs0.W;W
0; ˆ/

.s� s0/d
C � � � ;

and Bs0 is continuous on V �V 0 �Emn with the invariance property

Bs0;n.g �W;g �W
0; g �ˆ/D jdetgj�s0Bs0;n.W;W

0; ˆ/:

Since s0 is not exceptional, for any integer m, we can find some ˆ 2 Sm such
that the form Bs0;n.W;W

0; ˆ/ is nonzero for some choices of W and W 0. Because
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of the continuity of Bs0;n, we may further assume W and W 0 are both Kn-finite.
By Iwasawa decomposition, we have

In.s;W;W
0; ˆ/

D

Z
Kn

Z
NnnPn

W.pk/W 0.pk/jdetpjs�1
Z

R�
!.a/!0.a/jajnsˆ.�nak/ d

�a dp dk:

Take fWig to be some base vectors in the K-span subspace of W, and we write
W.gk/ D

P
i fi .k/Wi .g/, where fi are continuous functions on K. Similarly,

writeW 0.gk/D
P
i f
0
i .k/W

0
i .g/, where fW 0j g are some base vectors of theK-span

subspace ofW 0, and f 0i are continuous functions onK. Now I.s;W;W 0; ˆ/ equalsX
i;j

Z
NnnPn

Wi .p/Wj .p/jdetpjs�1
Z

R�
!.a/!0.a/jajns

�

Z
K

fi .k/f
0
j .k/ˆ.�nak/ dk d

�a dp:

Lemma 5.1. For any continuous function f .k/ on K, the function

‰.a/D

Z
K

f .k/ˆ.�nak/ dk

belongs to Sm.R/ if ˆ is in Sm.Rn/.

Proof. We will only check that ‰.a/ vanishes at least to order m around 0; other
verifications are routine and will be omitted. Since ˆ vanishes at 0 at least to
order m, by [Trèves 1967, Theorem 38.1] there exists a homogeneous polynomial
P.x1; : : : ; xn/ of degree m such that the Taylor expansion of ˆ at 0 has the form

ˆ.x1; : : : ; xn/D P.x1; : : : ; xn/C � � � :

Then

‰.a/D

Z
K

f .k/ˆ.�nak/dk D

Z
K

f .k/P.�nak/ dkC � � �

D am
Z
K

f .k/P.�nk/ dkC � � � :

This shows that ‰.a/ vanishes at least to order m at 0, which finishes the proof. �

Lemma 5.2. Ifˆ2Sm.R/ for somem>0, then as a function of s 2C, the functionZ 1
0

asˆ.a/ d�a

is holomorphic in the half-plane Re.s/ > �m.

Proof. Since ˆ is a Schwartz function, the integralZ 1
�

asˆ.a/ d�a
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is holomorphic in s, when � is away from 0.
In a neighborhood of 0, when Re.s/ >�m and ˆ2Sm.R/, the function asˆ.a/

is continuous. Thus Z �

0

asˆ.a/ d�a

is also holomorphic in s. �

By Lemma 5.1, as a function of a, the integralZ
K

fi .k/f
0
j .k/ˆ.�ak/ dk

belongs to Smn .R/, and by Lemma 5.2, when we choosem large enough, the functionZ
R�
!.a/!0.a/jajns

Z
K

fi .k/f
0
j .k/ˆ.�ak/ d

�a dk

is holomorphic in the half-plane containing s0. Hence the pole s0 has to occur in
the sum X

i;j

Z
NnnPn

Wi .p/W
0
j .p/jdetpjs�1 dp;

and we may assume one of the termsZ
NnnPn

Wi .p/W
0
j .p/jdetpjs�1 dp

contains the pole s0. But this integral descends to the integralZ
Nn�1nGn�1

Wi

�
g 0

0 1

�
W 0j

�
g 0

0 1

�
jdetgjs�1 dg

on Nn�1 nGn�1.
Each Wv

�
g
0
0
1

�
can be written as a finite sumX

i

Wi

�
g 0

0 1

�
ˆi .�n�1g/

for some functions Wi 2W.�;  / and Schwartz functions ˆi on Rn�1. Thus the
above integral becomesX

i

Z
Nn�1nGn�1

Wi

�
g 0

0 1

�
W 0

�
g 0

0 1

�
ˆi .�n�1g/jdetgjs�1 dg;

which are integrals belonging to In�1. So we have the following corollary.

Proposition 5.3. If a pole s0 of In of order d is not exceptional of type 1, then it
occurs as a pole of order d for the integrals In�1.
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In general, we have the following reduction result.

Proposition 5.4. If a pole s0 of Ik is not an exceptional pole for the integrals Ik ,
then it is a pole for Ik�1.

Proof. By [Jacquet and Shalika 1990, Proposition 2], there exists a finite set of func-
tions f�g on .R�/k , which have the form �.z1; : : : ; zk/D

Qk
jD1 �j .zj /.log jzj j/nj ,

where �j is a character on R�, and Schwartz functions �� on Rk �O.n/, such that

Wv.˛x/D
X
�

�.a1; : : : ; ak/��.a1; : : : ; ak; x/;

where x 2O.n/ and

˛ D diag.a1 � � � ak; a2 � � � ak; : : : ; ak�1ak; ak/;

which will be viewed as

diag.a1 � � � ak; a2 � � � ak; : : : ; ak�1ak; ak; 1; : : : ; 1/ 2Gn:

Since �� is a Schwartz function, for each x, it has a Taylor expansion around 0,

��.a1; : : : ; ak; x/D f .x/P�.a1; : : : ; ak/C � � � ;

where f .x/ is some continuous function of x, and P� denotes the sum of leading
coefficients in the Taylor expansion, which is a polynomial in a1; : : : ; ak .

It follows that, around 0, we can write

(17) Wv.˛x/D
X
�

ff .x/�.a1; : : : ; ak/P�.a1; : : : ; ak/C � � � g:

Similarly, around 0, we have

(18) Wv0.˛x/D
X
�0

ff 0.x/� 0.a1; : : : ; ak/P�0.a1; : : : ; ak/C � � � g:

By Iwasawa decomposition, we have

Ik D

Z
Wv

�
pax 0

0 In�k

�
Wv0

�
pax 0

0 In�k

�
�ˆ.�kax/jdetpjs�nCk�1jajk.s�nCk/ dp dx d�a;

with p 2Nk nPk , where Pk is the mirabolic subgroup in Gk , x 2O.k/, a 2 R�.
Note that Nk nPk DNk�1 nGk�1, so we can write pax D nk�1˛yx for some

nk�1 2Nk�1,

˛ D diag.a1 � � � ak�1a; : : : ; ak�1a; a; 1; : : : ; 1/;

and y 2O.k� 1/.
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Thus by (17), around 0 we have

Wv.pax/D  .nk/
X
�

ff .yx/�.a1; : : : ; ak�1; a/P�.a1; : : : ; ak�1; a/C � � � g

and

Wv0.pax/D 
�1.nk/

X
�0

ff 0.yx/� 0.a1; : : : ; ak�1; a/P�0.a1; : : : ; ak�1; a/C� � � g:

Note that the poles of Ik are caused by the integration around 0, and in a
neighborhood of 0, the integral isX
�;�0

Z
f .yx/f 0.yx/ dy dx

Z
.�P��

0P�0/.a1; : : : ; ak�1; a/

�ˆ.�kax/jaj
k.s�nCk/

ja1j
c1 � � � jak�1j

ck d�a � � � d�ak�1C � � � ;

where c1; : : : ; ck�1 are some complex numbers depending on s.
First, since s0 is a pole for this integral and O.k/;O.k � 1/ are compact, it

follows that this pole occurs as a pole for the integral with respect to the variables
a1; : : : ; ak1

; a, and the integrals with respect to x; y are nonzero.
Since s0 is not an exceptional pole, we can choose the Schwartz functionˆ so that

the integral on a in the above expression is holomorphic in a region containing s0.
Thus the pole is caused by the integration with respect to the variables a1; : : : ; ak�1.
This implies that the integralZ

Wv

�
g 0

0 In�kC1

�
W 0v

�
g 0

0 In�kC1

�
jdetgjs�nCk�1 dg

has the pole s0. This integral belongs to the integrals Ik�1, and the proposition
follows. �

Corollary 5.5. Any pole of the Rankin–Selberg integrals In for � and � 0 is an
exceptional pole of type 2 for some components of �.k/ and � 0.k/, 0� k < n.

For the other direction, suppose � and � 0 are a pair of components of �.k/ and
� 0.k/ respectively.

Proposition 5.6. Any Rankin–Selberg integral of � and � 0 can be written as a sum
of Rankin–Selberg integrals of � and � 0.

Proof. For any Wv1
2W.�;  /, Wv01 2W.� 0;  �1/, and ˆ 2 Sn�k , we have the

Rankin–Selberg integral for � and � 0:

I.s;Wv1
; Wv01

; ˆ/D

Z
Nn�knGn�k

Wv1
.g/Wv01

.g/ˆ.�n�kg/jdetgjs dg:
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By Corollary 3.5, there exists some Wv 2W.�;  / such that

Wv

�
g 0

0 Ik

�
DWv1

.g/ˆ.�n�kg/jdetgjk=2:

Thus, the above integral is

I.s;Wv1
; Wv01

; ˆ/D

Z
Nn�knGn�k

Wv

�
g 0

0 Ik

�
Wv01

.g/jdetgjs�k=2 dg;

which can be written as

Wv

�
g 0

0 Ik

�
D

X
j

Wj

�
g 0

0 Ik

�
ĵ .�n�kg/

with Wj 2W.�;  /, and Schwartz functions ĵ on Rn�k . So we have

I.s;Wv1
; Wv01

; ˆ/D
X
j

Z
Wj

�
g 0

0 Ik

�
Wv01

.g/ ĵ .�n�kg/jdetgjs�k=2 dg:

Using Corollary 3.5 again, we have

I.s;Wv1
; Wv01

; ˆ/D
X
j

Z
Wj

�
g 0

0 Ik

�
W 0j

�
g 0

0 Ik

�
jdetgjs�k dg

for some W 0j 2W.� 0;  �1/. Then by [Jacquet 2009, Lemma 14.1], each integral
on the right side can be written as a Rankin–Selberg integral for � and � 0. Thus
the proposition follows. �

Corollary 5.7. Any exceptional pole of type 1 of depth 0 for Rankin–Selberg inte-
grals of � and � 0 is a pole of the Rankin–Selberg integrals In for � and � 0.

Summarizing the above, we obtain the main result of this section.

Theorem 5.8. Let � and � 0 be irreducible generic Casselman–Wallach representa-
tions of Gn in general position. Then any pole of the Rankin–Selberg integrals for �
and � 0 is an exceptional pole of type 2 for a pair of components of �.k/ and � 0.k/,
0� k � n� 1. On the other hand, any exceptional pole of type 1 of depth 0 for a
pair of components of �.k/ and � 0.k/, 0� k� n�1, is a pole of the Rankin–Selberg
integrals of � and � 0.

6. Case Gn � Gm, m < n

This section is devoted to the case Gn �Gm, m < n, using the same ideas and
techniques as in the previous section. We will indicate the necessary changes and
omit details.
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Now suppose � and � 0 are generic irreducible Casselman–Wallach representa-
tions ofGn andGm in general position, respectively. Let W.�;  / and W.� 0;  �1/

be their Whittaker models. The family of integrals is given by

I.s;W;W 0/D

Z
NmnGm

W

�
g 0

0 In�m

�
W 0.g/jdetgjs�

n�m
2 dg;

and for 1� j � n�m� 1

I j .s;W;W 0/

D

Z
M.m�j;R/

Z
NmnGm

W

0@g 0 0

X Ij 0

0 0 In�m�j

1AW 0.g/jdetgjs�
n�m

2 dgdX;

with W 2 W.�;  / and W 0 2 W.� 0;  �1/. We will only consider the inte-
grals I.s;W;W 0/ since they have the same poles with the same multiplicities
as I j .s;W;W 0/ for each j .

For each 1� k �m, let ˆ be a Schwartz function on Rk , and introduce

Ik.s;W;W
0; ˆ/

D

Z
NknGk

W

�
g 0

0 In�k

�
W 0

�
g 0

0 Im�k

�
ˆ.�kg/jdetgjs�

nCm
2
Ck dg:

By [Jacquet 2009, Lemma 14.1], the integrals Ik belong to the family Im,
which implies that they are convergent when Re.s/ is large, and have meromorphic
continuations to the whole plane.

At a pole s0 for Ik.s;W;W 0; ˆ/, we have an expansion

Ik.s;W;W
0; ˆ/D

Bs0;k.W;W
0; ˆ/

.s� s0/d
C � � � ;

where Bs0;k.W;W
0; ˆ/ is a trilinear form on V �V 0�Sk satisfying the following

invariance property: for any g 2Gk ,

Bs0;k.g �W;g �W
0; g �ˆ/D jdetgj�s0C

nCm
2
�kBs0;k.W;W

0; ˆ/:

Similar to Proposition 4.2, we can showBs0;k is continuous.

Definition. We say a pole s0 is an exceptional pole of type 1, with level l and depth
m�k, if the corresponding Bs0;k is zero on SlC1

k
, but not identically zero on Sl

k
. In

this case, we also say s0 is an exceptional pole for the integrals Ik.s;Wv; Wv0 ; ˆ/.

Definition. We say a complex number s0 is an exceptional pole of type 2, with
level l , for � and � 0, if there exists a continuous trilinear form

l W V �V 0 �Elk! C
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such that

l.g �W;g �W 0; g �ˆ/D jdetgj�s0C
n�m

2 l.W;W 0; ˆ/:

Remark. If s0 is an exceptional pole of type 1 with level l and depth 0, then s0 is
also an exceptional pole of type 2 with level l for � and � 0.

Along the same lines, we have the following theorem.

Theorem 6.1. If s0 is an exceptional pole of type 1 with level l and depth m� k,
then s0 is an exceptional pole of type 2 with level l for some components of �.n�k/

and � 0.m�k/.

The main reduction step is the following analog to Proposition 5.4, with essen-
tially the same proof.

Proposition 6.2. If a pole s0 of Ik is not an exceptional pole for these integrals,
then it is a pole of Ik�1.

As a corollary, we have:

Corollary 6.3. Any pole of the Rankin–Selberg integrals Im for � and � 0 is an
exceptional pole of type 2 for some components of �.n�k/ and � 0.m�k/, 0� k < m.

A converse statement is also true.

Proposition 6.4. Any exceptional pole of type 1 of depth 0 for a pair of components
of �.n�k/ and � 0.m�k/ is a pole of the Rankin–Selberg integrals In for � and � 0.

The main result of this section is the following.

Theorem 6.5. Let � and � 0 be irreducible generic Casselman–Wallach represen-
tations of Gn and Gm in general position. Then any pole of the Rankin–Selberg
integrals for � and � 0 is an exceptional pole of type 2 for a pair of components of
�.n�k/ and � 0.m�k/, 1� k �m. On the other hand, any exceptional pole of type 1
of depth 0 for a pair of components of �.n�k/ and � 0.m�k/, 1� k �m, is a pole of
the Rankin–Selberg integrals of � and � 0.
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PRESCRIBING THE BOUNDARY GEODESIC CURVATURE
ON A COMPACT SCALAR-FLAT RIEMANN SURFACE

VIA A FLOW METHOD

ZHANG HONG

We study the problem of prescribing the boundary geodesic curvature on
a compact scalar-flat Riemann surface. We use the negative gradient flow
method. We prove the global existence and the convergence of the flow as
time goes to infinity under sufficient conditions on the prescribed function.

1. Introduction

Let (M, g0) be a compact Riemann surface with boundary equipped with a scalar-
flat metric g0. Given a function f on ∂M , does there exist a scalar-flat metric g
which is pointwise conformal to g0, i.e., a g = e2ug0 such that f is the geodesic
curvature of ∂M under the metric g? This problem is equivalent to solving the
boundary value problem

(1-1)
{
1g0u = 0 in M,
∂nu+ k0 = f eu on ∂M,

where ∂n is the outward-pointing normal derivative operator with respect to g0 and
k0 is the geodesic curvature of ∂M under the metric g0. We may assume without
loss of generality that k0 is a constant since there always exists such a metric in the
conformal class of g0. Let us first derive necessary conditions for (1-1) to have a
solution. By integrating (1-1), we obtain

(1-2)
∫
∂M

f eu dsg0 = k0L(∂M),

where L(∂M)= L(∂M, g0) is the arc length of ∂M , and

(1-3)
∫
∂M

f dsg0 =−

∫
M
|∇g0u|2e−u dAg0 + k0

∫
∂M

e−u dsg0 .

MSC2010: primary 53C44; secondary 35J65.
Keywords: prescribed geodesic curvature, negative gradient flow.
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Depending on the sign of k0, with the help of (1-2) and (1-3), we conclude that the
geodesic curvature candidate f should satisfy the conditions

(1-4)


(i) max

x∈∂M
f (x) > 0 when k0 > 0,

(ii) max
x∈∂M

f (x) > 0 and
∫
∂M

f dsg0 < 0 when k0 = 0,

(iii)
∫
∂M

f (x) dsg0 < 0 when k0 < 0.

Remark 1.1. Notice that for k0 = 0, it is not hard to see that if (1-1) has a solution,
then either f ≡ 0 or maxx∈∂M f (x) > 0 and

∫
∂M f dsg0 < 0. However, we do not

include the case f ≡ 0 in (ii). This is because (1-1) becomes trivial in that case.
Hence, we only consider the case f 6≡ 0 in this paper.

To the author’s knowledge, there are very few papers concerned with sufficient
conditions on f for the existence of a solution to problem (1-1). Cherrier [1984]
studied the regularity issue for (1-1), and for k0=0 he showed that if condition (ii) in
(1-4) holds then the equation has a nontrivial solution. This implies that condition (ii)
is necessary and sufficient for (1-1) to have a nontrivial solution. Kazdan and Warner
[1975] found the similar condition in the prescribed Gaussian curvature problem on
Riemann surfaces without boundary. For k0 < 0, Ho [2011] proved that (1-1) has
a solution provided the prescribed function f is strictly negative by using a flow
method. He considered the evolution problem

(1-5)


∂g
∂t
= (α(t) f − k)g in ∂M,

K = 0 on M,

where α(t)= 2πχ(M)/
(∫
∂M f dsg

)
, and k and K are the geodesic curvature and

Gaussian curvature of the time metric g(t). Such a flow has been used in many works;
see for instance [Brendle 2002a; 2003; Struwe 2005; Malchiodi and Struwe 2006;
Chen and Xu 2012] and the literature therein. When k0 > 0 and M = D (the unit
disc in the plane), Liu and Huang [2005] showed that there exists a solution of (1-1)
if f possesses some kind of symmetries, while for a more general smooth function,
Chang and Liu [1996] obtained an existence result through the Morse theory method.

In this paper, we will use the negative gradient flow introduced in [Baird et al.
2004; 2006] to investigate the problem of prescribing the geodesic curvature when
the candidate curvature function f is not necessarily of constant sign. This gradient
flow will be different from (1-5). To be precise, it is introduced in the following
way. Motivated by [Chang and Liu 1996], we consider the functional

J (u)=
∫
∂M

1
2
∂nu · u+ k0u dsg0
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on the Sobolev space H := {u ∈ H 1(M) :1g0u = 0 in M} under the constraint

u ∈ X :=
{

u ∈ H : L(u) :=
∫
∂M

eu f dsg0 = k0L(∂M)
}
.

Note that the set X is not empty, thanks to the conditions in (1-4). From the
Moser–Trudinger inequality with boundary [Li and Liu 2005, Theorem A]

(1-6)
∫
∂M

eu dsg0 ≤ C exp
{

1
4π

∫
M
|∇u|2 dAg0 +

1
L(∂M)

∫
∂M

u dsg0

}
,

where the constant C depends on M and g0, it follows that L is well-defined on H .
Since H is restricted to the set of harmonic functions, we may assume that H is
equipped with the scalar product

〈u, v〉 =
∫
∂M
∂nu · v+ u · v dsg0,

for u, v ∈ H . Hence the associated norm on H is given by

‖u‖2 =
∫
∂M
∂nu · u+ u2 dsg0 .

The functionals J and L are analytic, and their gradients are given by

(1-7) 〈∇ J (u), φ〉 =
∫
∂M
(∂nu+ k0)φ dsg0 for all φ ∈ H,

which implies that
∇ J (u)= (∂n + I )−1(∂nu+ k0),

and

(1-8) 〈∇L(u), φ〉 =
∫
∂M

eu f φ dsg0 for all φ ∈ H,

which implies that
∇L(u)= (∂n + I )−1(eu f ),

where I is the identity transformation.
Since ∇L(u) 6= 0 for all u ∈ X by the hypothesis (1-4), the set X is a regular

hypersurface of H . A unit normal field at a point u in X is given by

(1-9) N (u)=
∇L(u)
‖∇L(u)‖

.

The gradient of the functional J with respect to the hypersurface X is thus defined by

(1-10) ∇
X J (u)=∇ J (u)−〈∇ J (u), N (u)〉N (u).
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Then the negative gradient flow of J with respect to the hypersurface X is

(1-11)
{
∂t u =−∇X J (u),
u(0)= u0 ∈ X.

If the flow (1-11) exists for all time and converges at infinity, then the limit func-
tion u∞ produces a solution of (1-1) and so defines a metric of geodesic curvature f .
In this paper, we will show the long-time existence of a solution of (1-11) and its
convergence as t →∞ under sufficient conditions on the prescribed function f .
We also describe the asymptotic behavior of the flow at infinity.

2. Statement of the results

We will first show the long-time existence of the solution to (1-11).

Theorem 2.1. Let (M, g0) be a compact scalar-flat Riemann surface with boundary
and let f ∈C0(∂M) satisfy the appropriate condition in (1-4). Then for any u0 ∈ X ,
there exists a unique global solution u ∈ C∞([0,∞[, H) of (1-11). In addition, the
energy identity

(2-1)
∫ t

0
‖∂τu(τ )‖2 dτ + J (u(t))= J (u0),

holds for all t ≥ 0.

We will study the convergence of the global solution depending on the sign of k0.
When k0 > 0, we only consider the case M = D, the unit disc. Let u0 ∈ X and
u : [0,∞[→ X be the solution of (1-11) obtained in Theorem 2.1.

Theorem 2.2. Suppose that k0 = 0. Let f ∈ C0(∂M) satisfy the conditions

max
x∈∂M

f (x) > 0 and
∫
∂M

f (x) dsg0 < 0;

then u converges in H as t→∞ to a function u∞ ∈ H ∩Cα(∂M) with the property
that the function v∞ = u∞+ λ is a solution of{

1g0v∞ = 0 in M,
∂nv∞+ k0 = f ev∞ on ∂M,

for some constant λ. Moreover, there exist two constants β, δ > 0 such that

‖u(t)− u∞‖ ≤ β(1+ t)−δ

for all t ≥ 0.

Corollary 2.3. Suppose that k0 = 0. Let f ∈ C0(∂M) satisfy the conditions
maxx∈∂M f (x) > 0 and

∫
∂M f (x) dsg0 < 0; then there exists a metric conformal

to g0 with associated geodesic curvature f .

For the negative case, we have:
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Theorem 2.4. Suppose that k0 < 0 . Let f ∈ C0(∂M) satisfy the condition∫
∂M f (x) dsg0 < 0; then there exists a positive constant C depending only on

the function f −(x)=max(− f (x), 0), g0 and M , such that if u0 satisfies

(2-2) eξ‖u0‖
2

max
x∈∂M

f (x)≤ C,

where ξ > 1 is a constant depending only on g0 and M , then u converges in H
as t →∞ to a solution u∞ ∈ H ∩ Cα(∂M) of (1-1). Moreover, there exist two
constants β, δ > 0 such that

‖u(t)− u∞‖ ≤ β(1+ t)−δ

for all t ≥ 0. In particular, if f ≤ 0, then u converges in H as t→∞ to a solution
u∞ ∈ H ∩Cα(∂M) of (1-1) and ‖u(t)− u∞‖ ≤ β(1+ t)−δ for all t ≥ 0.

Corollary 2.5. Suppose that k0 < 0. Let f ∈ C0(∂M) satisfy the condition∫
∂M f (x) dsg0 < 0. There exists a positive constant C depending only on the

function f −, g0 and M , such that if f satisfies

max
x∈∂M

f (x)≤ C,

then (1-1) admits a solution u ∈ H ∩Cα(∂M). In particular, if f ≤ 0, then (1-1)
admits a solution u ∈ H ∩Cα(∂M).

We now consider the positive case. In this case, we assume that M = D, the
unit disc. Suppose that the function f is invariant under a group G of isometries of
∂D = S1 ( f is a G-invariant function). Then we can establish the convergence.

Recall that a function on S1 is said to be G-invariant if it satisfies

f (σ x)= f (x) for all x ∈ S1 and σ ∈ G.

Let 6 denote the set of fixed points of G, that is,

6 = {x ∈ S1
: σ x = x for all σ ∈ G};

we have the following result:

Theorem 2.6. Let f ∈ C0(∂M) be a function invariant under a group G of isome-
tries of S1 with maxx∈S1 f (x)>0, and let u0 ∈ X also be invariant under G. If either

(i) 6 =∅, or

(ii) maxp∈6 f (p)≤ e−J (u0)/2π ,

then u converges in H as t → ∞ to a G-invariant solution u∞ ∈ H ∩ Cα(S1)

of (1-1). Moreover, there exist two constants β, δ > 0 such that

‖u(t)− u∞‖ ≤ β(1+ t)−δ

for all t ≥ 0.
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Let a ∈ D and denote by 8a the Möbius transformation given by

8a =
z+ a

az+ 1
.

For a suitable choice of the initial data u0, we have the following:

Corollary 2.7. Let f ∈ C0(S1) be a function with maxx∈S1 f (x) > 0 which is
invariant under a group of isometries of S1. If either

(i) 6 =∅, or

(ii) there exists a0 ∈6 such that

(2-3) max
p∈6

f (p)≤max
(

0,−
∫

S1
f ◦8a0 dsg0

)
,

then (1-6) admits a G-invariant solution u ∈ H ∩Cα(S1). In particular, if

(2-4) max
p∈6

f (p)≤max
(

0,−
∫

S1
f dsg0

)
,

then (1-6) admits a G-invariant solution u ∈ H ∩Cα(S1).

3. Long-time existence

In this section, we first show that the solution of the flow (1-11) is well-defined
on [0,∞[. Then we show the convergence of the flow under the assumption of
uniform boundedness of the conformal factor u. To do so, we will first prove:

Lemma 3.1. The linear mapping (∂n + I )−1
: L2(∂M)→ H is compact.

Proof. Let S be a bounded set in L2(∂M). Then there exists a sequence (φi )i ⊂ S
that weakly converges to a function φ∞ in L2(∂M). Define ui = (∂n + I )−1φi and
u∞ = (∂n + I )−1φ∞. We then have

(∂n + I )(ui − u∞)= φi −φ∞.

Hence, ui weakly converges to u∞ in H . By the compact embedding H ↪→ L2(∂M),
ui strongly converges to u∞ in L2(∂M). Now, a simple calculation, Hölder’s
inequality and boundedness of φi and φ∞ in L2(∂M) yield

‖ui − u∞‖2 =
∫
∂M
(∂n + I )(ui − u∞) · (ui − u∞) dsg0

=

∫
∂M
(φi −φ∞) · (ui − u∞) dsg0 ≤ C‖ui − u∞‖L2(∂M)→ 0.

Hence, (∂n + I )−1φi strongly converges to (∂n + I )−1φ∞ in H . This implies that
(∂n+ I )−1(S) is relatively compact in H . Therefore, the linear mapping (∂n+ I )−1

is compact. �
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Proof of Theorem 2.1. Since the functionals J and L are C∞ on H and ∇L(u) 6= 0
for all u ∈ H , it follows that ∇X J is C∞ on H , and the short-time existence follows
from the classical Cauchy–Lipschitz theorem. We now extend this short-time
solution to [0,∞[.

Since ∇ J (u)=−(∂n+ I )−1(u−k0)+u and (∂n+ I )−1 is a bounded linear map
by Lemma 3.1, it follows that

‖∂t u‖ = ‖∇X J (u)‖ ≤ ‖∇ J (u)‖ ≤ C0‖u‖+C0.

From the inequality above, we deduce that, for all t < T ,

‖u(t)‖ ≤ (‖u0‖+ 1)eC0T ,

which ensures that the solution u is globally defined on [0,∞[.
Now, using (1-9)–(1-11) we can obtain

(3-1)
d J (u)

dt
= 〈∇ J (u), ∂t u〉 = 〈∇ J (u),−∇X J (u)〉

= −‖∇
X J (u)‖2 =−‖∂t u‖2.

Integrating the equality above from 0 to t yields the energy identity (2-1), which
completes the proof. �

Next, we wish to establish convergence at infinity under the assumption of
uniform boundedness of the global solution u in H . For this we will prove:

Lemma 3.2. Let u : [0,∞[→ H be the solution of (1-11). If u satisfies

(3-2) ‖u(t)‖ ≤ C

for all t > 0, where C is a positive constant independent of t , then u(t) converges
in H as t→∞ to a function u∞ ∈ H ∩Cα(∂M) (0< α < 1). If k0 6= 0, then u∞
is a solution of (1-1). If k0 = 0, then the function v∞ = u∞+ λ is a solution of

e−v∞(∂nv∞+ k0)= f,

for some constant λ. Moreover, there exist two constants β, δ > 0 such that

‖u(t)− u∞‖ ≤ β(1+ t)−δ

for all t ≥ 0.

Proof. The energy identity (2-1) and (3-2) imply that∫
∞

0
‖∂t u‖2 dt ≤ J (u0)+ c sup

t
‖u(t)‖ ≤ J (u0)+C1,
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where C1 > 0 is a constant depending on M , g0 and the constant C in (3-2). Thus,
there exists a sequence tk→∞ such that

(3-3) ‖∂t u(tk)‖ = ‖∇X J (u(tk))‖→ 0.

From (3-2), we have ‖u(tk)‖ ≤ C ; hence there exist a function u∞ ∈ H and a
subsequence of tk (again denoted by tk), such that

(3-4)
{

u(tk)→ u∞ weakly in H,
u(tk)→ u∞ strongly in L2(∂M).

It follows from (3-2) and (1-6) that for all p ∈ R, there exists a positive constant
C(p) such that

(3-5)
∫
∂M

epu(tk) dsg0 ≤ C(p).

A straightforward computation from (3-4) and (3-5) shows that for all p ≥ 1,

(3-6) lim
k→∞
‖ f eu(tk)− f eu∞‖L p(∂M) = 0.

Since u(tk) ∈ X , which means that∫
∂M

f eu(tk) dsg0 = k0 L(∂M),

we conclude from (3-6) that u∞ ∈ X .
Next, we show that ∇X J (u∞)= 0. Recall that

(3-7) ∇
X J (u(t))=∇ J (u(t))−

〈
∇ J (u(t)),∇L(u(t))

〉 ∇L(u(t))
‖∇L(u(t))‖2

with

(3-8) ∇L(u(t))= (∂n + I )−1( f eu(t))

and

(3-9) ∇ J (u(t))=−[(∂n + I )−1
− I ]u+ (∂n + I )−1k0

Since (∂n + I )−1
: L2(∂M)→ H is compact by Lemma 3.1, we deduce from (3-4)

and (3-6), as well as from (3-7)–(3-9) above, that ∇X J (u(tk)) weakly converges
in H to ∇X J (u∞). It follows from (3-3) that ∇X J (u∞)= 0. Therefore,

(∂n + I )−1(∂nu∞+ k0)= η(u∞)(∂n + I )−1( f eu∞),

where η(u∞) is a constant. Hence,

(3-10) ∂nu∞+ k0 = η(u∞) f eu∞ .
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From (3-6) , (3-10) and [Brendle 2002b, Lemma 3.2], it follows that ‖∇u∞‖L p(∂M)≤

C . Since u∞ ∈ H , we have, by the Sobolev embedding theorem, u∞ ∈ L p for all
2≤ p <∞. Hence u∞ ∈W 1,p(∂M) with 2≤ p <∞. By the Sobolev embedding
theorem again, we obtain u∞ ∈ H ∩Cα(∂M) for all 0< α < 1.

Suppose that k0 6= 0; then since u∞ ∈ X , by integrating (3-10), we deduce
that η(u∞) = 1 and u∞ is a solution of (1-1). On the other hand, for k0 = 0, if
η(u∞) = 0, then ∂nu∞ = 0 and hence u∞ is a constant, contradicting (1-4) and
the fact proved above that u∞ ∈ X ; if η(u∞) < 0, then v∞ = u∞+ log(−η(u∞))
is a solution of e−v∞∂nv∞ = − f . However, by integrating this equation, one
has

∫
M f dsg0 =

∫
M e−v∞ |∇v∞|2 dsg0 > 0, contradicting (1-4). Hence, the only

possibility is η(u∞) > 0, and for this case, one can see that v∞ = u∞+ log η(u∞)
is a solution of e−v∞(∂nv∞+ k0)= f .

In order to prove the asymptotic behavior of the flow, we need to show that

(3-11) lim
k→∞
‖u(tk)− u∞‖ = 0.

Since ∇X J (u∞)= 0, it follows from (3-7) and (3-9) that

‖u(tk)− u∞‖ ≤ ‖∇X J (u(tk))‖+‖(∂n + I )−1(u(tk)− u∞)‖

+C(‖(∂n + I )−1( f euk − f eu∞)‖+ |η(u(tk))− η(u∞)|).

At this point, (3-11) follows from (3-3), Lemma 3.1 and (3-6).
Finally, we will end the proof of the lemma by showing that there exist two

constants β, δ > 0 such that for all t ≥ 0,

(3-12) ‖u(t)− u∞‖ ≤ β(1+ t)−δ.

Before doing this, we will cite a version of the Łojasiewicz–Simon inequality:

Lemma 3.3 [Baird et al. 2004]. Let X be an analytic manifold modeled on a Hilbert
space H and suppose that J : X→ R is an analytic function on a neighborhood of
a point ũ ∈ X satisfying:

(i) ∇J(ũ)= 0.

(ii) ∇2J(ũ) : Tũ X→ Tũ X is a Fredholm operator.

Here, ∇J denotes the gradient in X of J and we consider the second derivative
∇

2J(ũ) as a linear map ∇2J(ũ) : Tũ X→ Tũ X by using the inner product on Tũ X.
Then there exist constants µ> 0 and 0<θ < 1

2 such that if u ∈ B(ũ, µ) (the geodesic
ball of radius µ centered on ũ), we have

‖∇J(u)‖ ≥ |J(u)−J(ũ)|1−θ .

Now we apply Lemma 3.3 to the functional J in a neighborhood of the point u∞.
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Since L is an analytic function on H , X is an analytic manifold. Moreover,
J : X ⊂ H → R is analytic and ∇X J (u∞) = 0. Let 5u∞ : H → Tu∞X be the
projection onto Tu∞X . From (3-7)–(3-9), it follows that for all v ∈ Tu∞X ,

∇
2 J (u∞)(v)= (I +5u∞ A)(v),

where A : H → H is defined by

A(v)=−(∂n + I )−1(v)−

〈
∇ J (u∞),

∇L(u∞)
‖∇L(u∞)‖2

〉
(∂n + I )−1( f eu∞v)

+

〈
∇ J (u∞),

∇L(u∞)
‖∇L(u∞)‖2

〉〈
v,
∇‖∇L(u∞)‖
‖∇L(u∞)‖

〉
∇L(u∞).

It is not difficult to check that A is a compact operator since (∂n + I )−1 is a
compact operator. Since 5u∞ is a continuous map, it follows that 5u∞ A is also
compact. Hence, we conclude that ∇2 J (u∞) is a Fredholm operator. It follows
from Lemma 3.3 that there exist constants µ > 0 and 0 < θ < 1

2 such that if
‖u(t)− u∞‖< µ, then

(3-13) ‖∇
X J (u(t))‖ ≥ (J (u(t))− J (u∞))1−θ .

We may assume that J (u(t)− J (u∞)) > 0 for all t ≥ 0. Otherwise, if there exists
t̃ ≥ 0 such that J (u(t̃ ))= J (u∞), then since J is nonincreasing and the solution
of (1-1) is unique, it follows that u(t) ≡ u∞ for all t ≥ t̃ . Therefore the solution
is stationary and the estimate (3-12) is trivial. In view of (3-1), we have

(3-14) −
d J (u(t))

dt
= ‖∇

X J (u(t))‖‖∂t u(t)‖.

From (3-11), we deduce that for all ε > 0, there exists N > 0 such that

‖u(tn)− u∞‖ ≤
ε

2
and 1

θ
(J (u(tn))− J (u∞))θ ≤

ε

2
for all n ≥ N .

Let ε = 1
2µ and t∗ = sup{t ≥ tN : ‖u(τ )− u∞‖ < µ for all τ ∈ [tN , t]}. Suppose

that t∗ <∞. It follows from (3-13) and (3-14) that

(3-15) −
d
dt
[(J (u(t))− J (u∞))θ ] ≥ θ‖∂t u(t)‖

for all t ∈ [tN , t∗]. Integrating (3-15) and using the monotonicity of J yields

‖u(t∗)− u(tN )‖ ≤

∫ t∗

tN

‖∂τu(τ )‖ dτ ≤ 1
θ
(J (u(tN ))− J (u∞))θ <

ε

2
.

Recalling that ε = 1
2µ, we have

‖u(t∗)− u∞‖ ≤ ‖u(t∗)− u(tN )‖+‖u(tN )− u∞‖<
µ

2
,
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which contradicts the definition of t∗. Hence t∗ =∞. This implies that estimate
(3-13) holds for all t ≥ tN . Now, set h(t) = J (u(t))− J (u∞). Then from (3-13)
and (3-14) again, it follows that

−
dh(t)

dt
= ‖∇

X J (u(t))‖2 ≥ h2(1−θ)(t),

or, equivalently,
d
dt

h2θ−1(t)≥ (1− 2θ),

for all t ≥ tN . Since 0< θ < 1
2 , we can deduce that

(3-16) h(t)≤ (h2θ−1(tN )+ (1− 2θ)(t − tN ))
1/(2θ−1)

≤ Ct−δ
′

,

where δ′ = 1/(1− 2θ) and C are positive constants. We fix t > tN and integrate
(3-15) from t to tn (with n sufficiently large) to obtain, by estimate (3-16),

‖u(t)− u(tn)‖ ≤
∫ tn

t
‖∂τu(τ )‖ dτ ≤ 1

θ
(J (u(t))− J (u∞))θ =

1
θ

hθ (t)≤ 1
θ

Ct−θδ
′

.

By letting n→∞, we obtain

‖u(t)− u∞‖ ≤
1
θ

Ct−θδ
′

for all t > tN . However, for t ≤ tN , ‖u(t)− u∞‖ is bounded, so there exist two
positive constants δ = θδ′ and β with

‖u(t)− u∞‖ ≤ β(1+ t)−δ

for all t ≥ 0. �

4. Convergence

In this section, we will apply Lemma 3.2 to obtain convergence. We thus only
need to prove uniform boundedness in H of the global solution u : [0,∞)→ H
in Theorem 2.1.

Proof of Theorem 2.2. Suppose that k0 = 0. Writing 1 for the constant function, in
view of (1-7) and (1-8) we have for u ∈ X that

〈∇ J (u), 1〉 =
∫
∂M
∂nu · 1 dsg0 = 0 and 〈∇L(u), 1〉 =

∫
∂M

eu f · 1 dsg0 = 0.

From this it follows that

0= 〈∂t u, 1〉 =
∫
∂M
(∂n∂t u+ ∂t u)1 dsg0,
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which implies that

∂t

∫
∂M

u(t) dsg0 = 0.

Hence,

(4-1)
∫
∂M

u(t, · ) dsg0 =

∫
∂M

u0 dsg0 .

From now on, we set ū = (1/L(∂M))
∫
∂M u dsg0 . Since k0 = 0, the energy identity

(2-1) yields

(4-2) J (u)= 1
2

∫
∂M
∂nu · u dsg0 ≤ J (u0).

In order to show that ‖u(t)‖ ≤ C , it remains to bound
∫
∂M u2 dsg0 . By Poincaré’s

inequality, we have

(4-3) ‖u− ū‖2L2 ≤ λ
−1
1

∫
∂M
∂nu · u dsg0,

where λ1 is the first nonzero Steklov eigenvalue. From (4-3) and (4-1), it follows that∫
∂M

u2 dsg0 ≤ λ
−1
1

∫
∂M
∂nu · u dsg0 +L(∂M)ū2

= λ−1
1

∫
∂M
∂nu · u dsg0 +L(∂M)u0

2.

Hence, we deduce from (4-2) that
∫
∂M u2 dsg0 is bounded. �

Proof of Theorem 2.4. Suppose that k0 < 0; without loss of generality we assume
that k0 =−1. We first prove that the solution u satisfies a nonconcentration lemma:

Lemma 4.1. Let K be a measurable subset of ∂M with L(K ) > 0. Then there exist
a constant α > 1 depending on M and g0 and a constant CK > 1 depending on M ,
g0 and L(K ) such that∫

∂M
eu dsg0 ≤ CK eα‖u0‖

2
max

((∫
K

eu dsg0

)α
, 1
)
.

Proof. Step 1. We claim that there exists a positive constant C depending on M
and g0 such that, for any measurable subset K of M with L(K ) > 0, we have

(4-4)
∫
∂M

u dsg0 ≤ |J (u0)| +
C

L(K )
+

2
√

2L(∂M)
L(K )

max
(∫

K
u dsg0, 0

)
.

Fix t > 0. Suppose that
∫
∂M u dsg0 > 0, otherwise estimate (4-4) is trivial. By the

energy identity (2-1), we have

(4-5) 1
2

∫
∂M
∂nu · u dsg0 ≤ J (u0)+

∫
∂M

u dsg0 .
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It follows from (4-5) and (4-3) that

(4-6)
∫
∂M

u2 dsg0 ≤
2
λ1

J (u0)+
2
λ1

∫
∂M

u dsg0 +
1

L(∂M)

(∫
∂M

u dsg0

)2

.

Now, we consider the following two cases:

Case (i):
∫

K u(t) dsg0 ≤ 0. Then(∫
∂M

u dsg0

)2

≤

(∫
K c

u dsg0

)2

≤ L(K c)

∫
∂M

u2 dsg0,

where K c denotes the compliment of K in ∂M . Plugging this inequality into (4-6)
yields

(4-7)
L(K )

L(∂M)

∫
∂M

u2 dsg0 ≤
2
λ1

J (u0)+
2
λ1

∫
∂M

u dsg0 .

On the other hand, by Young’s inequality, we have∣∣∣∣∫
∂M

u dsg0

∣∣∣∣≤ ε ∫
∂M

u2 dsg0 + (4ε)
−1L(∂M).

Taking ε = λ1L(K )/(4L(∂M)) and substituting into (4-7) gives

(4-8)
∫
∂M

u2 dsg0 ≤
4L(∂M)
λ1L(K )

J (u0)+
2L3(∂M)
λ2

1L2(K )
.

Since (∫
∂M

u dsg0

)2

≤ L(∂M)
∫
∂M

u2 dsg0,

it follows from (4-8) that(∫
∂M

u dsg0

)2

≤
4L2(∂M)
λ1L(K )

J (u0)+
2L4(∂M)
λ2

1L2(K )

≤ |J (u0)|
2
+

4L4(∂M)
λ2

1L2(K )
+

2L4(∂M)
λ2

1L2(K )
.

Therefore, ∫
∂M

u dsg0 ≤ |J (u0)| +
C

L(K )
,

where C is a constant depending on L(∂M) and g0. This establishes case (i).

Case (ii):
∫

K u dsg0 > 0. Rewrite (4-6) as∫
∂M

u2 dsg0 ≤
2
λ1

J (u0)+
2
λ1

∫
∂M

u dsg0

+
1

L(∂M)

{(∫
K

u dsg0

)2

+

(∫
K c

u dsg0

)2

+ 2
(∫

K
u dsg0

)(∫
K c

u dsg0

)}
.
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By Young’s inequality and the fact that(∫
K c

u dsg0

)2

≤ L(K c)

∫
∂M

u2 dsg0,

we have

2
(∫

K
u dsg0

)(∫
K c

u dsg0

)
≤

2L(K c)

L(K )

(∫
K

u dsg0

)2

+
L(K )

2

∫
∂M

u2 dsg0 .

Hence we arrive at

L(K )
2L(∂M)

∫
∂M

u2 dsg0 ≤
2
λ1

J (u0)+
2
λ1

∫
∂M

u dsg0 +
2

L(K )

(∫
K

u dsg0

)2

.

By Young’s inequality again, we obtain∣∣∣∣∫
∂M

u dsg0

∣∣∣∣≤ λ1L(K )
8L(∂M)

∫
∂M

u2 dsg0 +
2L2(∂M)
λ1L(K )

.

Therefore,∫
∂M

u2 dsg0 ≤
8L(∂M)
λ1L(K )

J (u0)+
16L3(∂M)
λ2

1L2(K )
+

8L(∂M)
L2(K )

(∫
K

u dsg0

)2

.

Since (∫
∂M

u dsg0

)2

≤ L(∂M)
(∫

∂M
u2 dsg0

)
,

it follows that(∫
∂M

u dsg0

)2

≤
8L2(∂M)
λ1L(K )

|J (u0)| +
16L4(∂M)
λ2

1L2(K )
+

8L2(∂M)
L2(K )

(∫
K

u dsg0

)2

,

which implies that∫
∂M

u dsg0 ≤ |J (u0)| +
C

L(K )
+

2
√

2L(∂M)
L(K )

∫
K

u dsg0,

for a constant C depending on M and g0. This establishes (4-4).

Step 2. We are in position to establish the lemma using the result in Step 1.
The energy identity (2-1) yields

1
2

∫
∂M
∂nu · u dsg0 ≤ J (u0)+

∫
∂M

u dsg0

= J (u0)+L(∂M)ū+
∫
∂M
(u− ū) dsg0 .
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From the Young and Poincaré inequalities, it follows that

1
2

∫
∂M
∂nu · u dsg0 ≤ J (u0)+L(∂M)ū+

1
4ε

L(∂M)+ ε
∫
∂M
(u− ū)2 dsg0

≤ J (u0)+L(∂M)ū+
1
4ε

L(∂M)+
ε

λ1

∫
∂M
∂nu · u dsg0 .

Taking ε = 1
4λ1 gives∫

∂M
∂nu · u dsg0 ≤ 4J (u0)+ 4L(∂M)ū+

4
λ1

L(∂M).

Using the inequality (1-6), we deduce that

(4-9)
∫
∂M

eu dsg0 ≤ C exp
{

J (u0)

π
+

L(∂M)
πλ1

+

(
1

L(∂M)
+

1
π

)∫
∂M

u dsg0

}
.

Notice that we have

J (u0)=

∫
∂M

(1
2
∂nu0− 1

)
u0 dsg0

≤

∫
∂M
∂nu0 · u0 dsg0 +

∫
∂M

u2
0 dsg0 +L(∂M)

= ‖u0‖
2
+L(∂M).

Plugging this inequality into (4-9) yields∫
∂M

eu dsg0 ≤ C exp
{
‖u0‖

2

π
+ B

∫
∂M

u dsg0

}
,

where B and C are positive constants depending on M and g0.
It follows from (4-4) that∫

∂M
eu dsg0 ≤ C ′K exp

{
A1‖u0‖

2
+

B1

L(K )
max

(∫
K

u dsg0, 0
)}
,

where A1, B1 depend on M and g0 and C ′K is a positive constant depending on M ,
L(K ) and g0. Moreover, we set α =max(A1, B1)+ 1. Then we have

(4-10)
∫
∂M

eu dsg0 ≤ C ′K exp
{
α‖u0‖

2
+

α

L(K )
max

(∫
K

u dsg0, 0
)}
.

By Jensen’s inequality, we have

exp
{

1
L(K )

∫
K

u dsg0

}
≤

1
L(K )

∫
K

eu dsg0 .

Hence

exp
{

α

L(K )

∫
K

u dsg0

}
≤

(
1

L(K )

∫
K

eu dsg0

)α
.
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But

exp
{

α

L(K )
max

(∫
K

u dsg0, 0
)}
=max

(
exp

{
α

L(K )

∫
K

u dsg0

}
, 1
)

≤max
((

1
L(K )

∫
K

eu dsg0

)α
, 1
)
.

Inequality (4-10) thus implies that∫
∂M

eu dsg0 ≤ C ′K eα‖u0‖
2

max
((

1
L(K )

)α
, 1
)
×max

((∫
K

eu dsg0

)α
, 1
)

≤ CK eα‖u0‖
2

max
((∫

K
eu dsg0

)α
, 1
)
,

where CK is a constant depending on L(K ), M and g0, which we can suppose to
be greater than 1. This completes the proof. �

The estimate of Lemma 4.1 will allow us to uniformly bound
∫
∂M eu dsg0 . Let

f + =max( f, 0) and K =
{

x ∈ ∂M : f (x)≤ 1
2 min

x∈∂M
f (x)

}
.

Notice that we have u0 ∈ X . Then

L(∂M)=
∫
∂M
− f eu0 dsg0 =

∫
∂M

f −eu0 dsg0 −

∫
∂M

f +eu0 dsg0

implies that

(4-11)
L(∂M)

−minx∈∂M f (x)
≤

∫
∂M

eu0 dsg0 .

However, ∫
∂M

u0 dsg0 ≤

∫
∂M

u2
0 dsg0 +L(∂M),

which, together with inequality (1-6), implies that

(4-12)
∫
∂M

eu0 dsg0 ≤ C1 exp
{

C1

(∫
∂M
∂nu0 · u0 dsg0 +

∫
∂M

u2
0 dsg0

)}
= C1eC1‖u0‖

2
,

where C1, which we may assume to be greater than 1, is a constant depending on
M and g0. Hence,

(4-13)
L(∂M)

−minx∈∂M f (x)
≤ C1eC1‖u0‖

2
.
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Now set γ =CK (8C1)
αe(C1+1)α‖u0‖

2
(CK >1 and α>1 are constants in Lemma 4.1).

Suppose that condition (2-2) of Theorem 2.4,

eξ‖u0‖
2

max
x∈∂M

f (x)≤ C,

holds, with C =−minx∈∂M f (x)/(8αCK Cα−1
1 ) and ξ = α(C1+ 1)−C1. We wish

to show that

(4-14)
∫
∂M

eu(t) dsg0 ≤ 2γ for all t ≥ 0.

Let

I =
{

t ≥ 0 :
∫
∂M

eu(τ ) dsg0 ≤ 2γ for all τ ∈ [0, t]
}
.

From (4-12), it follows that 0 ∈ I . Let T = sup I . Suppose T < ∞. Then by
continuity of the map t→

∫
∂M eu(t) dsg0 , we have

(4-15)
∫
∂M

eu(T ) dsg0 = 2γ.

We consider two cases:

Case (i):
∫
∂M

f +eu(T ) dsg0 ≤
1
2

∫
∂M

f −eu(T ) dsg0 .

Using the fact that u(T ) ∈ X , we get

(4-16)
∫
∂M

f −eu(T ) dsg0 ≤−2
∫
∂M

f eu(T ) dsg0 = 2L(∂M).

Since f −(x)≥ 1
2(−minx∈∂M f (x)) for all x ∈ K , it follows from (4-16) and (4-11)

that ∫
K

eu(T ) dsg0 ≤
4L(∂M)

−minx∈∂M f (x)
≤ 4C1eC1‖u0‖

2
.

We thus deduce from Lemma 4.1 that∫
∂M

eu(T ) dsg0 ≤ CK eα‖u0‖
2

max
((∫

K
eu(T ) dsg0

)α
, 1
)

≤ CK eα‖u0‖
2

max((2C1)
αeαC1‖u0‖

2
, 1)

= CK (2C1)
αe(C1+1)α‖u0‖

2
< γ,

which contradicts (4-15).
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Case (ii):
∫
∂M

f +eu(T ) dsg0 >
1
2

∫
∂M

f −eu(T ) dsg0 .

Since f −(x)≥ 1
2(−minx∈∂M f (x)) for all x ∈ K , it follows from (4-15) that

−
minx∈∂M f (x)

2

∫
K

eu(T ) dsg0 ≤

∫
∂M

f −eu(T ) dsg0

≤ 2
∫
∂M

f +eu(T ) dsg0 ≤ 4γ max
x∈∂M

f (x).

Then condition (2-2) of Theorem 2.4 implies that∫
K

eu(T ) dsg0 ≤ 8
γ maxx∈∂M f (x)
−minx∈∂M f (x)

≤ 8C1eC1‖u0‖
2
.

As before, by Lemma 4.1, we have∫
∂M

eu(T ) dsg0 ≤ γ,

which contradicts (4-15) again. We thus conclude that (4-14) holds.
Now from Jensen’s inequality, (4-14) implies that

(4-17) ū =
1

L(∂M)

∫
∂M

u(t) dsg0 ≤ C,

where C is a constant depending on M, g0, f and u0. The energy identity gives

(4-18) 1
2

∫
∂M
∂nu · u dsg0 −

∫
∂M
(u− ū) dsg0 −L(∂M)ū ≤ J (u0).

On the other hand, Young’s inequality gives

(4-19)
∣∣∣∣∫
∂M
(u− ū) dsg0

∣∣∣∣≤ ε‖u− ū‖2L2 +
1
4ε

L(∂M).

Setting ε = 1
4λ1 and using Poincaré’s inequality, we deduce from (4-18) and (4-19)

that

(4-20)
1
4

∫
∂M
∂nu · u dsg0 −L(∂M)ū ≤ J (u0)+

1
λ1

L(∂M).

Using (4-17), we have ∫
∂M
∂nu · u dsg0 ≤ C.

To show that ‖u(t)‖ ≤ C , it remains to bound
∫
∂M

u2 dsg0 . From (4-20), it follows
that

−L(∂M)ū ≤ C;
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hence, we deduce that ū ≥ C . Combining this with (4-17) yields

|ū| ≤ C.

Now Poincaré’s inequality implies that

‖u− ū‖2L2 ≤
1
λ1

∫
∂M
∂nu · u dsg0 ≤ C.

Thus,
∫
∂M u2 dsg0 ≤ C . �

Proofs of Theorem 2.6 and Corollary 2.7. Suppose that k0 > 0. In this case,
we consider M = D, the unit disc. Then k0 = 1. Hence, if u ∈ X , we have∫
∂M f eu dsg0 = 2π .

Proof of Theorem 2.6. Let va = u ◦ 8a + log |8′a|, where 8a is the Möbius
transformation. From [Chang and Liu 1996, Theorem 2.1] and (2-1), it follows that

(4-21) J (va)= J (u)≤ J (u0),

and since u ∈ X , we have

(4-22)
∫

S1
f ◦8aeva dsg0 =

∫
S1

f eu dsg0 = 2π.

From (4-22), we deduce that

(4-23)
∫

S1
eva dsg0 ≥

2π
maxx∈S1 f (x)

.

It is well-known that for all t > 0, there exists a(t) ∈ D such that

(4-24)
∫

S1
xi eva(t) dsg0 = 0 for i = 1, 2.

Set v(t)= va(t) and 8(t)=8a(t). From now on, we assume that C is a constant
only depending on u0 and supx∈S1 f (x). In view of (4-23) and (4-24), it follows
from the Osgood–Phillips–Sarnak inequality (see [Osgood et al. 1988]) that

(4-25) C ≤ −
∫

S1
ev(t) dsg0 ≤ exp

{
−

∫
S1

(1
4
∂nv(t)+ 1

)
v(t) dsg0

}
.

It follows from (4-21) and (4-25) that

(4-26) 1
2

∫
S1
∂nv(t) · v(t) dsg0 +

∫
S1
v(t) dsg0 ≤ C,

and

(4-27) 1
4

∫
S1
∂nv(t) · v(t) dsg0 +

∫
S1
v(t) dsg0 ≥ C.



326 ZHANG HONG

By taking the difference between (4-26) and (4-27), we obtain

(4-28)
∫

S1
∂nv(t) · v(t) dsg0 ≤ C.

Now, combining (4-26) and (4-27) yields

(4-29)
∣∣∣∣∫

S1
v(t) dsg0

∣∣∣∣≤ C.

Therefore, by the Lebedev–Milin inequality (see [Chang and Liu 1996, (1.12)]),
we deduce from (4-28) and (4-29) that for all p > 1,

(4-30)
∫

S1
e|pv(t)| dsg0 ≤ C(p).

It follows from (4-30) that ∫
S1
v2(t) dsg0 ≤ C,

which, together with (4-28), implies that

(4-31) ‖v(t)‖ ≤ C.

Next, we wish to prove that u is uniformly bounded in H . To do so, we first
establish the following lemma.

Lemma 4.2. Either:

(i) there exists a constant C such that ‖u(t)‖ ≤ C ; or,

(ii) there exists a sequence tn→∞ and a point a∞ ∈ S1 such that for all r > 0,

(4-32) lim
n→∞

∫
S(a∞,r)

f eu(tn) dsg0 = 2π,

where S(a∞, r) is an arc in S1 centered at a∞ and with radius r . Moreover,
for all q ∈ S1

\{a∞} and all 0< r < dist(q, a∞), we have

lim
n→∞

∫
S(q,r)

f eu(tn) dsg0 = 0.

Proof. There are two possibilities:

Case (i): lim supt→∞ |a(t)|< 1. Then we have for all t ≥ 0 that 0<C1≤ |8
′
| ≤C2.

Hence, it follows from (4-31) that

(4-33)
∫

S1
|u(t)| dsg0 ≤ C.
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Combining (4-33) with the energy identity (2-1) yields

(4-34)
∫

S1
∂nu(t) · u(t) dsg0 ≤ C.

Hence, using Poincaré’s inequality, we deduce from (4-33) and (4-34) that

‖u(t)‖ ≤ C.

Case (ii): there exist a sequence tn → ∞ and a∞ ∈ S1 such that a(tn)→ a∞.
From the estimate (4-31), it follows that there exist a subsequence of tn , still
denoted by tn , and a function v∞ ∈ H , such that{

v(tn)→ v∞ weakly in H,
v(tn)→ v∞ strongly in L2.

Let r > 0 and set Kn = (8(tn))−1(S(a∞, r)). Then we have∣∣∣∣∫
S1

f ◦8(tn)ev(tn) dsg0 −

∫
Kn

f ◦8(tn)ev(tn) dsg0

∣∣∣∣
≤max

x∈S1
f (x)

(
L(K c

n)

∫
S1

e|2v(tn)| dsg0

)1
2

.

Since limt→∞8(tn)(x)= a∞ a.e., it follows that limn→∞L(Kn)= 2π . Thus, we
deduce from (4-30) that

(4-35)
∫

S(a∞,r)
f eu(tn) dsg0 =

∫
Kn

f ◦8(tn)ev(tn) dsg0

=

∫
S1

f ◦8(tn)ev(tn) dsg0 + εn,

with lim
n→∞

εn = 0. In view of (4-22), we have∫
S1

f ◦8(tn)ev(tn) dsg0 = 2π.

Therefore, it follows from (4-35) that (4-32) holds. �

Now, we suppose that u(t) 6= u0 for all t > 0 (otherwise the solution is stationary
and the convergence is obvious). Since u0 is G-invariant, by using the uniqueness
of the solution u, it is not hard to conclude that u is also G-invariant. Again from
the uniqueness of u, we can see from the energy identity (2-1) that

(4-36) J (u(t)) < J (u(t ′)) for t > t ′.
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Case (i): 6=∅. Suppose that u is not uniformly bounded in H . So from Lemma 4.2,
there exists a point a∞ ∈ S1 satisfying (4-32) for all r > 0. Since 6 = ∅, there
exists σ ∈ G such that σ(a∞) 6= a∞. Now, for all r > 0, we have

lim
n→∞

∫
S(σ (a∞),r)

f eu(tn) dsg0 = lim
n→∞

∫
S(a∞,r)

f eu(tn) dsg0 = 2π,

which contradicts Lemma 4.2(ii).

Case (ii): 6 6= ∅. Suppose that u is not uniformly bounded in H . So from
Lemma 4.2, there exists a point a∞ ∈ S1 satisfying (4-32) for all r > 0. If a∞ 6∈6,
then in the same way as in case (i) above, we arrive at a contradiction. Otherwise,
we have for all r > 0 that

(4-37)
∫

S(a∞,r)
f eu(tn) dsg0 ≤ max

x∈S(a∞,r)
f (x)

∫
S(a∞,r)

eu(tn) dsg0

≤max
(

max
x∈S(a∞,r)

f (x), 0
) ∫

S(a∞,r)
eu(tn) dsg0

≤max
(

max
x∈S(a∞,r)

f (x), 0
) ∫

S1
eu(tn) dsg0 .

Now, we may write the Lebedev–Milin inequality as

−

∫
S1

eu(tn) dsg0 ≤ eJ (u(tn))/2π ,

which, together with (4-36), yields

(4-38) −

∫
S1

eu(tn) dsg0 ≤ eJ (u(tn))/2π ≤ eJ (u0)/2π .

Plugging (4-38) into (4-37) and letting n→∞, we obtain

(4-39) 2π ≤ 2π max
(

max
x∈S(a∞,r)

f (x), 0
)

eJ (u0)/2π .

Estimate (4-39) implies that f (a∞) > 0 so that

1≤ f (a∞)eJ (u0)/2π .

Hence

f (a∞) > e−J (u0)/2π ,

which contradicts assumption (ii) of the theorem. This establishes Theorem 2.6. �
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Proof of Corollary 2.7. If 6 =∅, then the result of Corollary 2.7 is a direct conse-
quence of Theorem 2.6. Suppose now that6 6=∅ and let f satisfy inequality (2-3): if∫

S1 f ◦8a0 dsg0 ≤ 0, then supp∈6 f (p)≤ 0; so condition (ii) of Theorem 2.6 is satis-
fied. Otherwise, if

∫
S1 f ◦8a0 dsg0 >0, we let u∗= log |8′a0

|. Then we have J (u∗)=
0 (see [Chang and Liu 1996]). Now set u0=u∗+C , where C is a constant satisfying

eC
∫

S1
f ◦8a0 dsg0 = 2π.

This implies that u0 ∈ X . Since a0 ∈6, it is not difficult to see that u0 is G-invariant.
Hence we conclude that condition (ii) of Theorem 2.6 is equivalent to

max
p∈6

f (p)≤−
∫

S1
f ◦8a0 dsg0 .

This completes the proof of Corollary 2.7. �
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−1-PHENOMENA FOR THE PLURI χ y-GENUS
AND ELLIPTIC GENUS

PING LI

Several independent articles have observed that the Hirzebruch χ y-genus
has an important feature, which we call −1-phenomenon and which tells
us that the coefficients of the Taylor expansion of the χ y-genus at y = −1
have explicit expressions. Hirzebruch’s original χ y-genus can be extended
towards two directions: the pluri-case and the case of elliptic genus. This
paper contains two parts, in which we investigate the −1-phenomena in
these two generalized cases and show that in each case there exists a −1-
phenomenon in a suitable sense. Our main results in the first part have an
application, which states that all characteristic numbers (Chern numbers
and Pontrjagin numbers) on manifolds can be expressed, in a very explicit
way, in terms of some rational linear combination of indices of some elliptic
operators. This gives an analytic interpretation of characteristic numbers
and affirmatively answers a question posed by the author several years ago.
The second part contains our attempt to generalize this −1-phenomenon to
the elliptic genus, a modern version of the χ y-genus. We first extend the el-
liptic genus of an almost-complex manifold to a twisted version where an ex-
tra complex vector bundle is involved, and show that it is a weak Jacobi form
under some assumptions. A suitable manipulation on the theory of Jacobi
forms will produce new modular forms from this weak Jacobi form, and
thus much arithmetic information related to the underlying manifold can be
obtained, in which the −1-phenomenon of the original χ y-genus is hidden.
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1. Introduction

The Hirzebruch χ y-genus and its−1-phenomenon. In his highly influential book,
Hirzebruch [1966] defined a polynomial with integral coefficients χy(M) given
a projective manifold M , which encodes the information of indices of Dolbeault
complexes and is now called the Hirzebruch χy-genus. After the discovery of the
general index theorem due to Atiyah and Singer, we know that χy( · ) can be defined
on compact almost-complex manifolds and computed in terms of Chern numbers
as follows.

Suppose (M2d , J ) is a compact connected almost-complex manifold with an
almost-complex structure J . The choice of an almost Hermitian metric on M
enables us to define the Hodge star operator ∗ and the formal adjoint ∂∗ =−∗ ∂∗
of the ∂-operator. For each pair 0≤ p, q ≤ d , we denote by

�p,q(M) := 0(3pT ∗M ⊗3q T ∗M)

the complex vector space which consists of smooth complex-valued (p, q)-forms.
Here T ∗M is the dual of the holomorphic tangent bundle TM in the sense of J .
Then for each 0≤ p ≤ d , we have the Dolbeault-type elliptic differential operator⊕

q even

�p,q(M)
(∂+∂̄∗)|p
−−−−−→

⊕
q odd

�p,q(M),

whose index is denoted by χ p(M) in the notation of [Hirzebruch 1966]. Then the
Hirzebruch χy-genus of M is nothing but the generating function of the indices
χ p(M) (0≤ p ≤ d):

χy(M) :=
d∑

p=0

χ p(M) · y p.

Let us denote by x1, . . . , xd the formal Chern roots of TM . This means that the
i-th elementary symmetric polynomial of x1, . . . , xd represents the i-th Chern class
ci of TM . Then the general form of the Hirzebruch–Riemann–Roch theorem (first
proved by Hirzebruch [1966] for projective manifolds, and in the general case by
Atiyah and Singer [1968]) tells us that

(1-1) χy(M)=
∫

M

d∏
i=1

xi (1+ ye−xi )

1− e−xi
.

Among other things, the Hirzebruch χy-genus has an important feature, which we
call the “−1-phenomenon” and has been noticed, implicitly or explicitly, in several
independent articles [Narasimhan and Ramanan 1975; Libgober and Wood 1990;
Salamon 1996]. This −1-phenomenon says that at y =−1, the coefficients of the
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Taylor expansion of χy(M) have explicit expressions. To be more precise, if we
write

(1-2) χy(M)=:
d∑

i=0

ai (M) · (y+ 1)i ,

then these ai (M) can be given explicit expressions in terms of Chern numbers of
(M2d , J ) as

(1-3)

a0(M)= cd ,

a1(M)=− 1
2 dcd ,

a2(M)= 1
12

[1
2 d(3d − 5)cd + c1cd−1

]
,

a3(M)=− 1
24

[1
2 d(d − 2)(d − 3)cd + (d − 2)c1cd−1

]
,

...

By definition, these ai (M) are integers. Thus, immediate consequences of their
expressions include divisibility properties of Chern numbers. The derivation of
these expressions is direct, i.e., by expanding the right-hand side of (1-1) at y =−1
and expressing the coefficients in terms of elementary symmetric polynomials of
x1, . . . , xd . The calculations of a0 and a1 are quite easy. The calculation of a2

appears implicitly in [Narasimhan and Ramanan 1975, p. 18] and explicitly in
[Libgober and Wood 1990, p. 141–143]. Narasimhan and Ramanan used a2 to
give a topological restriction on some moduli spaces of stable vector bundles on
smooth projective varieties. Libgober and Wood used a2 to prove the uniqueness
of the complex structure on Kähler manifolds of certain homotopy types. Inspired
by [Narasimhan and Ramanan 1975], Salamon applied a2 [1996, Corollary 3.4]
to obtain a restriction on the Betti numbers of hyper-Kähler manifolds [ibid.,
Theorem 4.1]. The expressions of a3 and a4 are also included in [ibid., p. 145].
Hirzebruch [1999] used a1, a2 and a3 to obtain a divisibility result on the Euler
characteristic of those almost-complex manifolds where c1cd−1 = 0. In particular,
those almost-complex manifolds with c1 = 0 satisfy this property.

Pluri-χ y-genus. Some acquaintance with index theory will lead to the observation
that χy(M) is the index of the Todd operator (whose index is the Todd genus)

(1-4) �0,even(M)
(∂+∂∗)|0
−−−−→�0,odd(M)

twisted by �y(M), with

�y(M) :=
d∑

p=0

3p(T ∗M) · y p
∈ K (M)[y],
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where 3p( · ) and K ( · ) denote the p-th exterior power and K -group. Therefore
χy(M) can be rewritten as

χy(M)= Ind
(
(∂ + ∂∗)|0⊗�y(M)

)
=: χ(M, �y(M)).

Here, for simplicity we denote by the standard notation χ(M, ( · )) the index of
the Todd operator (1-4) twisted by an element ( · ) ∈ K (M).

We can also consider, for an arbitrarily fixed positive integer g, the pluri χy-genus
χy(M) by using sufficiently many forms of the type

(1-5) �y(M) :=
∑

0≤p1,...,pg≤d

3p1(T ∗M)⊗ · · ·⊗3pg (T ∗M) · y p1
1 · · · y

pg
g

=�y1(M)⊗ · · ·⊗�yg (M) ∈ K (M)[y1, . . . , yg]

to twist (∂ + ∂̄∗)|0, i.e.,

χy(M) := Ind
(
(∂ + ∂∗)|0⊗�y(M)

)
= χ(M, �y(M)),

which specializes to Hirzebruch’s original χy-genus when g = 1.
Inspired by the above-mentioned −1-phenomenon of the χy-genus, we may ask

what the coefficients look like if we expand χy(M) at y1 = · · · = yg = −1. Our
first main observation in this article is that the coefficients of (y+1)p1 · · · (y+1)pg

in χy(M) can be divided into three parts, which is our main result in Section 3
(Theorem 2.2). Moreover, we can do a similar manipulation for signature operator
on closed smooth oriented manifolds, and their coefficients also have a similar
feature (Theorem 2.3). A direct corollary of these two theorems is that any Chern
number of (M2d , J ) or any Pontrjagin number of a closed smooth oriented manifold
can be written explicitly as a rational linear combination of indices of some elliptic
operators, which provides an analytic interpretation of characteristic numbers and
answers [Li 2011, Question 1.1] affirmatively.

Elliptic genus. Elliptic genera of oriented differentiable manifolds and almost-
complex manifolds were first constructed by Ochanine, Landweber, Stong and
Hirzebruch in a topological way; Witten gave it a geometric interpretation, in which
they can be viewed as the loop space analogues of the Hirzebruch L-genus and
χy-genus (see [Landweber 1988] and the references therein). The most remarkable
property of elliptic genera is their rigidity for spin manifolds and almost-complex
Calabi–Yau manifolds (in the very weak sense that c1 vanishes up to torsion, i.e.,
c1 = 0 ∈ H 2(M,R)), which was conjectured by Witten and generalizes the famous
rigidity property of the original L-genus, Â-genus [Atiyah and Hirzebruch 1970]
and χy-genus [Lusztig 1971]. The first rigorous proof was presented in [Bott
and Taubes 1989; Taubes 1989]. A quite simple, unified and enlightening proof
was discovered by Liu [1996], in which modular invariance of the four classical
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Jacobi theta functions and their various transformation laws play key roles. Later
on, this modular invariance property, its various remarkable extensions and relation
with vertex operator algebra were established by Liu and his coauthors from various
perspectives [Liu 1995a; 1995b; Liu and Ma 2000; Liu et al. 2001; 2003; Han and
Zhang 2004; Dong et al. 2005; Chen and Han 2009; Chen et al. 2011; Han et al.
2012; Han and Liu 2014].

We are concerned in this paper with the elliptic genus of almost-complex mani-
folds. The elliptic genus of a compact, almost-complex manifold (M2d , J ), which
we denote by Ell(M, τ, z), is defined as a function of two variables (τ, z) ∈ H×C,
where H is the upper half plane. To be more precise, Ell(M, τ, z) is defined to be
the index of the Todd operator (1-4) twisted by

y−d/2
⊗
n≥1

(3−yqn−1 T ∗⊗3−y−1qn T ⊗Sqn T ∗⊗Sqn T )=: Eq,y,

i.e., Ell(M, τ, z) :=χ(M,Eq,y), where q = e2π
√
−1τ , y= e2π

√
−1z and T (resp. T ∗)

is the holomorphic (resp. dual of the holomorphic) tangent bundle of M in the sense
of J . Here, for any complex vector bundle W ,

3t(W ) :=
⊕
i≥0

3i (W ) and St(W ) :=
⊕
i≥0

Si (W )

denote the generating series of the exterior and symmetric powers of W , respectively.
According to the Atiyah–Singer index theorem, we have

Ell(M, τ, z)

=

∫
M

td(M) ·ch(Eq,y)

= y−
1
2 dχ−y(M)+q · [y−

1
2 dχ−y(M, T ∗(1− y)+T (1− y−1))]+q2

·( · · · ),

where

td(M) :=
d∏

i=1

xi

1− e−xi

is the Todd class of M and ch( · ) is the Chern character.
Thus, the elliptic genus Ell(M, τ, z) can be viewed as a generalization of the

Hirzebruch χy-genus, in the sense that the q0-term of the Fourier expansion of
Ell(M, τ, z) is essentially χy(M). If (M2d , J ) is Calabi–Yau, the coefficients of q-
expansion of Ell(M, τ, z) are rigid for arbitrary y [Liu 1996, Theorem B]. Moreover,
in this case, Ell(M, τ, z) itself is a weak Jacobi form of weight 0 and index 1

2 d
[Gritsenko 1999b, Proposition 1.2; Borisov and Libgober 2000, Theorem 2.2].
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As we have mentioned above, the elliptic genus Ell(M, τ, z) can be viewed as a
generalization of χy(M), and also has a rigidity property when M is Calabi–Yau.
So we may ask in the Calabi–Yau case whether Ell(M, τ, z) has some kind of
arithmetic phenomenon which extends the original −1-phenomenon of χy(M).
Note that, strictly speaking, Ell(M, τ, z) is a generalization of χ−y(M) rather than
χy(M), as the q0-term of Ell(M, τ, z) is y−d/2χ−y(M). So if there exists some
kind of phenomenon which extends the original −1-phenomenon of χy(M), the
parameter y = e2π

√
−1z should correspond to 1 rather than −1. Thus the variable z

should correspond to 0. Indeed, there does exist such a kind of generalization, which
depends on some arithmetic properties of Jacobi forms and has been implicitly
used by Gritsenko [1999b]. Our aim in Section 3 is twofold. On the one hand,
given a compact almost-complex manifold (M2d , J ) and a rank-l complex vector
bundle W over it, we construct a generalized elliptic genus Ell(M,W, τ, z), which
is defined to be the index of the Todd operator (1-4) twisted by[ ∞∏

i=1

(1− q i )

]2(d−l)

· y−l/2
⊗
n≥1

(3−yqn−1 W ∗⊗3−y−1qn W ⊗Sqn T ∗⊗Sqn T ),

and show that it is a weak Jacobi form of weight d − l and index 1
2 l if the first

Pontrjagin classes p1(M) equals p1(W ) and the first Chern class c1(W ) is 0 in
H∗(M,R). On the other hand, we highlight a well-known manipulation in Jacobi
forms to obtain modular forms from Ell(M,W, τ, z), whose arithmetic information
will in turn give geometric results on M and W . Some examples are given to
illustrate this observation.

2. −1-phenomenon of the pluri-χ y-genus

Statements of the main results related to the pluri-χ y-genus. Let (M2n, J ) (resp.
X2n) be a compact almost-complex manifold of complex dimension n (resp. smooth,
closed oriented manifold of real dimension 2n). As before, we use (∂ + ∂∗)|0 to
denote the Todd operator on (M2n, J ), whose index is the Todd genus of M . We
denote by D the signature operator on X , whose index is the signature of X2n

[Atiyah and Singer 1968, Section 6]. By definition Ind(D) is zero unless n is even.
Let W be a complex vector bundle over M or X . By means of a connection on

W , the elliptic operator (∂+ ∂∗)|0 and D can be extended to a new elliptic operator
((∂+∂∗)|0)⊗W and D⊗W , whose indices via the Atiyah–Singer index theorem are

χ(M,W )= Ind
(
((∂ + ∂̄∗)|0)⊗W

)
=

∫
M
[td(M) · ch(W )]

=

∫
M

[ n∏
i=1

xi

1− e−xi
· ch(W )

]
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and

Ind((D⊗W ))=

∫
X

[( n∏
i=1

xi

tanh (xi/2)

)
· ch(W )

]
respectively. Here we use the i-th elementary symmetric polynomial of x1, . . . , xn

(resp. x2
1 , . . . , x2

n ) to denote the i-th Chern class (resp. Pontrjagin class) of (M2n, J )
(resp. X2n).

Definition 2.1. For an arbitrary fixed positive integer g, we define

�y(M) :=
∑

0≤p1,...,pg≤n

3p1(T ∗M)⊗ · · ·⊗3pg (T ∗M) · y p1
1 · · · y

pg
g

=�y1(M)⊗ · · ·⊗�yg (M) ∈ K (M)[y1, . . . , yg],

�R
y (X) :=

∑
0≤p1,...,pg≤2n

3p1(T ∗C X)⊗ · · ·⊗3pg (T ∗C X) · y p1
1 · · · y

pg
g

=�R
y1
(X)⊗ · · ·⊗�R

yg
(X) ∈ (KO(X)⊗C)[y1, . . . , yg],

where

�R
y (X) :=

2n∑
p=0

3p(T ∗C X) · y p

and T ∗
C

X is the dual of the complexified tangent bundle of X , and

χy(M) :=
∑

0≤p1,...,pg≤n

Ind
[
(∂ + ∂∗)|0⊗ (3

p1(T ∗M)⊗ · · ·⊗3pg (T ∗M))
]

· y p1
1 · · · y

pg
g

=

∫
M

[ n∏
i=1

xi

1− e−xi
· ch(�y(M))

]
Dy(X) :=

∑
0≤p1,...,pg≤2n

Ind
[
D⊗ (3p1(T ∗C X)⊗ · · ·⊗3pg (T ∗C X))

]
· y p1

1 · · · y
pg
g

=

∫
X

[( n∏
i=1

xi

tanh (xi/2)

)
· ch(�R

y (X))
]
.

Our main result in this section is:

Theorem 2.2. The coefficient of (1+ y1)
n−q1 · · · (1+ yg)

n−qg in χy(M) is equal to
0 if

∑g
i=1 qi > n,∫

M

g∏
i=1

cqi (M) if
∑g

i=1 qi = n,

a rational linear combination of Chern numbers of M if
∑g

i=1 qi < n.

We have a similar result for smooth manifolds.
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Theorem 2.3. If n is even, the coefficient of

(1+ y1)
2(n−q1) · · · (1+ yg)

2(n−qg)

in Dy(X) is equal to
0 if

∑g
i=1 qi >

1
2 n,

(−1)n/2 · 2n
·

∫
X

g∏
i=1

pqi (X) if
∑g

i=1 qi =
1
2 n,

a rational linear combination of Pontrjagin numbers of X if
∑g

i=1 qi <
1
2 n,

where pi (X) is the i-th Pontrjagin class of X.

Clearly, a direct corollary of this theorem is the following result, which gives an
affirmative answer to [Li 2011, Question 1.1].

Corollary 2.4. Any Chern number (resp. Pontrjagin number) on a compact almost-
complex manifold (resp. compact smooth manifold) can be expressed in an explicit
way in terms of the indices of some elliptic differential operators over this manifold.

Proofs of Theorems 2.2 and 2.3. Abusing notation, we use cq( · · · ) to denote
both the q-th Chern class of an almost-complex manifold and the q-th elementary
symmetric polynomial of the variables in the bracket.

The proofs of Theorems 2.2 and 2.3 depend on the following lemma:

Lemma 2.5. If we assign each xi (1≤ i ≤ n) the same degree, then we have:

(1) the coefficient of (1+ y)n−q (0≤ q ≤ n) in
n∏

i=1
(1+ ye−xi ) is

cq(x1, . . . , xn)+ higher-degree terms;

(2) the coefficient of (1+ y)2(n−q) (0≤ q ≤ n) in
n∏

i=1
(1+ ye−xi )(1+ yexi ) is

(−1)qcq(x2
1 , . . . , x2

n)+ higher-degree terms.

Proof. We have

n∏
i=1

(1+ ye−xi )=

n∏
i=1

[(1− e−xi )+ (1+ y)e−xi ] = e−c1

n∏
i=1

[(exi − 1)+ (1+ y)].

Thus the coefficient of (1+ y)n−q in
∏n

i=1(1+ ye−xi ) is

e−c1 · cq(ex1 − 1, . . . , exn − 1)= cq(x1, . . . , xn)+ higher-degree terms.
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Similarly,

n∏
i=1

(1+ ye−xi )(1+ yexi )=

n∏
i=1

[(exi − 1)+ (1+ y)][(e−xi − 1)+ (1+ y)],

and the coefficient of (1+ y)2n−q is

cq(ex1 − 1, . . . , exn − 1, e−x1 − 1, . . . , e−xn − 1)

= cq(x1, . . . , xn,−x1, . . . ,−xn)+ higher-degree terms.

Note that

cq(x1, . . . , xn,−x1, . . . ,−xn)=

{
0 if q is odd,
(−1)q/2cq/2(x2

1 , . . . , x2
n) if q is even.

This gives the desired property. �

Now we can prove Theorems 2.2 and 2.3.

Proof. If we use x1, . . . , xn (resp. x1, . . . , xn,−x1, . . . ,−xn) to denote the formal
Chern roots of TM (resp. TC X ), then we have (see [Hirzebruch et al. 1992, p. 11])

ch(�y(M))=
g∏

j=1

[ n∏
i=1

(1+ y j e−xi )

]
and

ch(�R
y (X))=

g∏
j=1

[ n∏
i=1

(1+ y j e−xi )(1+ y j exi )

]
.

Thus,

χy(M)=
∫

M

[( n∏
i=1

xi

1− e−xi

)
· ch(�y(M))

]

=

∫
M

{( n∏
i=1

xi

1− e−xi

)
·

g∏
j=1

[ n∏
i=1

(1+ y j e−xi )

]}
and

Ind
(
DR

y (X)
)
=

∫
X

[( n∏
i=1

xi

tanh(xi/2)

)
· ch(�R

y (X))
]

=

∫
X

{( n∏
i=1

xi

tanh(xi/2)

)
·

g∏
j=1

[ n∏
i=1

(1+ y j e−xi )(1+ y j exi )

]}
.
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Note that the constant terms of

xi

1− e−xi
= 1+ · · · and

xi

tanh(xi/2)
=

xi (1+ e−xi )

1− e−xi
= 2+ · · ·

are 1 and 2 respectively. So by Lemma 2.5, when considering the Taylor expansions
of Ind(Dy(M)) and Ind(DR

y (X)) at y1 = · · · = yg =−1, the coefficients before the
terms (1+ y1)

n−q1 · · · (1+ yg)
n−qg and (1+ y1)

2(n−q1) · · · (1+ yg)
2(n−qg) are∫

M

{
(1+ higher-degree terms) ·

g∏
j=1

[cq j (x1, . . . , xn)+ higher-degree terms]
}

=

∫
M

g∏
i=1

cqi (M)+
∫

M
(higher-degree terms)

and∫
X

{
(2n
+higher-degree terms)·

g∏
j=1

[(−1)q j cq j (x
2
1 , . . . , x2

n)+higher degree terms]
}

= 2n
· (−1)

∑g
j=1 q j

∫
X

g∏
j=1

pqi (X)+
∫

X
(higher degree terms),

respectively, which give the desired proofs of Theorems 2.2 and 2.3. �

3. The generalized elliptic genus and its −1-phenomenon

The generalized elliptic genus of almost-complex manifolds. In this subsection,
we extend the original definition of the elliptic genus of almost-complex manifolds
by considering an extra complex vector bundle and showing that it is a weak Jacobi
form. As before, let (M2d , J ) be a compact almost-complex manifold and W a
rank-l complex vector bundle over it.

Definition 3.1. The generalized elliptic genus of (M2d , J )with respect to W , which
we denote by Ell(M,W, τ, z), is defined to be the index of the Todd operator

�0,even(M)
(∂+∂∗)|0
−−−−→�0,odd(M)

twisted by

c2(d−l)
· y−l/2

⊗
n≥1

(3−yqn−1 W ∗⊗3−y−1qn W ⊗Sqn T ∗⊗Sqn T )=: E(W, q, y),

where
q = e2π

√
−1τ , y = e2π

√
−1z,

and for simplicity c :=
∏
∞

i=1(1− q i ). If W = T , this definition degenerates to the
original elliptic genus.
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Our first observation in this section is the following, which extends [Gritsenko
1999b, Proposition 1.2; Borisov and Libgober 2000, Theorem 2.2], in which W =T .

Theorem 3.2. The generalized elliptic genus Ell(M,W, τ, z) is a weak Jacobi form
of weight d− l and index 1

2 l provided that the first Pontrjagin classes p1(M) equals
p1(W ) and the first Chern class c1(W ) is 0 in H∗(M,R).

Remark 3.3. (1) A two-variable function ϕ(τ, z) for (τ, z)∈H×C is called a weak
Jacobi form of weight k and index m for k ∈ Z and m ∈ Z/2 if it is a holomorphic
function with respect to the two variables τ and z, has no negative powers of q
in its Fourier expansion in terms of q i y j and satisfies some transformation laws
involving k and m; the precise definition can be found in [Eichler and Zagier 1985,
p. 9, p. 104]. There, only the integral indices are considered. However, with minor
modifications of inserting a character, this notion can be easily extended to the case
where the index is allowed to be a half-integer (see [Gritsenko 1999b, p. 102]).

(2) Motivated by his ingenious proof of the rigidity theorem, Liu constructed a
two-variable function for (M, J ) and W and showed that it is a weak Jacobi form
under some assumptions, and the original Witten theorem exactly corresponds to
the case where the index is equal to zero [Liu 1995b, Theorem 3, Corollary 3.1].
This construction later was generalized to the family case by Liu and Ma [2000,
Theorem 3.1]. So our theorem has a similar flavor to their work.

(3) Gritsenko [1999a, Theorem 1.2] further extended the original elliptic genus to
another case where an extra complex bundle is involved. But his construction is
different from ours as it is still of weight zero.

The Atiyah–Singer index theorem tells us that

Ell(M,W, τ, z)=
∫

M
td(M) · ch(E(W, q, y)).

In particular, if J is integrable, Ell(M,W, τ, z) is the holomorphic Euler charac-
teristic of the (virtual) bundle E(W, q, y).

Let us recall one of the Jacobi-theta series [Chandrasekharan 1985, Chapter 5]:

θ(τ, z) :=
∑
n∈Z

(−1)nq(n+1/2)2/2 yn+1/2

= 2cq1/8 sin(π z)
∞∏

n=1

(1− qn y)(1− qn y−1)

= 2cq1/8 sinh(π
√
−1z)

∞∏
n=1

(1− qn y)(1− qn y−1)

= 2cq1/8 sinh(π
√
−1z)

∞∏
n=1

(1− qne2π
√
−1z)(1− qne−2π

√
−1z).
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The following lemma says that Ell(M,W, τ, z) can be expressed in terms of
θ(τ, z).

Lemma 3.4. If we denote by 2π
√
−1xi (1≤ i ≤ d) and 2π

√
−1wi (1≤ i ≤ l) the

Chern roots of TM and W , respectively, then we have

Ell(M,W, τ, z)

=

∫
M

[
exp

(
c1(M)−c1(W )

2

)
·(η(τ ))3(d−l)

·

d∏
i=1

2π
√
−1xi

θ(τ, xi )
·

l∏
j=1

θ(τ, w j− z)
]
,

where

η(τ) := q1/24
· c = q1/24

∞∏
i=1

(1− q i )

is the famous Dedekind eta function. In particular, Ell(M,W, τ, z) is a holomorphic
function with respect to the two variables τ and z and has no negative powers of q
in its Fourier expansion.

Proof. We have

ch(E(W, q, y))

= c2(d−l)y−l/2
l∏

j=1

(1− ye−2π
√
−1w j )

×

∞∏
n=1

∏l
j=1(1− yqne−2π

√
−1w j )(1− y−1qne2π

√
−1w j )∏d

i=1(1− qne−2π
√
−1xi )(1− qne2π

√
−1xi )

= c2(d−l)y−l/2
l∏

j=1

(1− ye−2π
√
−1w j )

×

l∏
j=1

θ(τ, w j − z)

2cq1/8 sinh(π
√
−1(w j − z))

d∏
i=1

2cq1/8 sinh(π
√
−1xi )

θ(τ, xi )

= exp
(

c1(M)− c1(W )

2

)
· (η(τ ))3(d−l)

·

d∏
i=1

1− e−2π
√
−1xi

θ(τ, xi )
·

l∏
j=1

θ(τ, w j − z).

The last equality is due to the fact that

c1(M)=
d∑

i=1

2π
√
−1xi and c1(W )=

l∑
j=1

2π
√
−1w j .
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Therefore,

Ell(M,W, τ, z)

=

∫
M

td(M) · ch(E(W, q, y))=
∫

M

d∏
i=1

2π
√
−1xi

1− e−2π
√
−1xi
· ch(E(W, q, y))

=

∫
M

[
exp

(
c1(M)− c1(W )

2

)
· (η(τ ))3(d−l)

·

d∏
i=1

2π
√
−1xi

θ(τ, xi )
·

l∏
j=1

θ(τ, w j − z)
]
.

The holomorphicity of Ell(M,W, τ, z) is now clear from this expression, as
the Jacobi theta function θ(τ, z) only has zeroes of order 1 along z = m1+m2τ

(m1,m2 ∈Z) [Chandrasekharan 1985, p. 59]. Also it is obvious from this expression
that Ell(M,W, τ, z) has no negative powers of q in its Fourier expansion. �

Proof of Theorem 3.2. SL2(Z) is generated by the two matrices(
0 −1
1 0

)
and

(
1 1
0 1

)
.

To verify that Ell(M,W, τ, z) satisfies the required transformation laws, it suffices
to show the four identities

Ell(M,W, τ + 1, z)= Ell(M,W, τ, z),(3-1)

Ell(M,W, τ, z+ 1)= (−1)l Ell(M,W, τ, z),(3-2)

Ell(M,W, τ, z+ τ)= (−1)l exp (−π
√
−1l(τ + 2z))Ell(M,W, τ, z),(3-3)

Ell(M,W,−1/τ, z/τ)= τ d−l exp(π
√
−1lz2/τ)Ell(M,W, τ, z).(3-4)

For Dedekind eta function η(τ) and Jacobi theta function θ(τ, z) we have trans-
formation laws [Chandrasekharan 1985]:

η3
(
−

1
τ

)
=

(
τ
√
−1

)3/2

η3(τ ),

η3(τ + 1)= exp
(
π
√
−1

4

)
η3(τ ),

θ(τ, z+ 1)=−θ(τ, z),

θ(τ, z+ τ)=−q−1/2 exp (−2π
√
−1z)θ(τ, z),

θ(τ + 1, z)= exp
(
π
√
−1

4

)
θ(τ, z),

θ

(
−

1
τ
, z
)
=−
√
−1
(

τ
√
−1

)1/2

exp(π
√
−1τ z2)θ(τ, τ z).
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The first three identities (3-1)–(3-3) are easy to verify by using the transformation
laws above. Here we only need to check (3-4) carefully. Indeed,

(3-5)
d∏

i=1

θ

(
−

1
τ
, xi

)
=

d∏
i=1

−
√
−1
(

τ
√
−1

)1/2

exp(π
√
−1τ x2

i )θ(τ, τ xi )

= exp
(
τp1(M)

4π
√
−1

) d∏
i=1

−
√
−1
(

τ
√
−1

)1/2

θ(τ, τ xi ).

Here, we use the assumption that

p1(M)=
d∑

i=1

(2π
√
−1xi )

2.

Similarly,

(3-6)
l∏

j=1

θ

(
−

1
τ
,wi −

z
τ

)

=

l∏
j=1

−
√
−1(

τ
√
−1
)1/2 exp

(
π
√
−1τ

(
w j −

z
τ

)2)
θ(τ, τw j − z)

= exp
(
τp1(W )

4π
√
−1
+
π
√
−1lz2

τ

) l∏
j=1

−
√
−1
(

τ
√
−1

)1/2

θ(τ, τw j − z).

In the last equality, we used the assumption that

c1(W )=

l∑
j=1

2π
√
−1w j = 0.

Combining the transformation law of η(τ), (3-5), (3-6) and the fact that p1(M)=
p1(W ) leads to

Ell
(
M,W,−1

τ
,

z
τ

)
=

∫
M

[
exp

(
c1(M)− c1(W )

2

)(
η

(
−

1
τ

))3(d−l)

×

d∏
i=1

2π
√
−1xi

θ(−1/τ, xi )

l∏
j=1

θ

(
−

1
τ
,w j −

z
τ

)]
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= τ d−l exp
(
π
√
−1lz2

τ

)
×

∫
M

[
exp

(
c1(M)− c1(W )

2

)
(η(τ ))3(d−l)

d∏
i=1

2π
√
−1xi

θ(τ, τ xi )

l∏
j=1

θ(τ, τw j − z)
]

= τ−l exp
(
π
√
−1lz2

τ

)
×

∫
M

[
exp

(
c1(M)− c1(W )

2

)
(η(τ ))3(d−l)

d∏
i=1

2π
√
−1(τ xi )

θ(τ, τ xi )

l∏
j=1

θ(τ, τw j − z)
]

= τ d−l exp
(
π
√
−1lz2

τ

)
×

∫
M

[
exp

(
c1(M)− c1(W )

2

)
(η(τ ))3(d−l)

d∏
i=1

2π
√
−1xi

θ(τ, xi )

l∏
j=1

θ(τ, w j − z)
]

= τ d−l exp
(
π
√
−1lz2

τ

)
Ell(M,W, τ, z)

The penultimate equality is due to the fact that in the integrand we are only
concerned with the homogeneous part of degree d (deg(xi )= deg(w j )= 1). This
completes the proof of Theorem 3.2. �

Algebraic preliminaries. Before discussing the arithmetic properties of the gener-
alized elliptic genus Ell(M,W, τ, z), we need to review a well-known manipulation
in algebraic number theory which helps derive modular forms from Jacobi forms.

Recall that the Eisenstein series G2k(τ ) are defined to be

G2k(τ ) := −
B2k

4k
+

∞∑
n=1

σ2k−1(n) · qn,

[Hirzebruch et al. 1992, p. 131], where

σk(n) :=
∑
m>0
m |n

mk

and the B2k are the Bernoulli numbers.
These G2k(τ ) carry rich arithmetic information. It is well-known that G2k(τ )

(k ≥ 2) are modular forms of weight 2k over the full modular group SL2(Z) and
the whole graded ring of modular forms over SL2(Z) are generated by G4(τ ) and
G6(τ ). However, G2(τ ) is not a modular form but a quasimodular form, as it
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transforms as [Hirzebruch et al. 1992, p. 138]

(3-7) G2

(
aτ + b
cτ + d

)
= (cτ + d)2G2(τ )−

c(cτ + d)

4π
√
−1

for all
(

a b
c d

)
∈ SL2(Z).

The next proposition, which is a well-known fact in algebraic number theory
and has been used implicitly by Gritsenko in the proof of [1999b, Lemma 1.6],
provides us with a method for deriving modular forms from Jacobi forms.

Proposition 3.5. Suppose a function ϕ(τ, z) : H×C→ C satisfies

(3-8) ϕ

(
aτ + b
cτ + d

,
z

cτ + d

)
= (cτ + d)k exp

(
2π
√
−1mcz2

cτ + d

)
·ϕ(τ, z),

for all
(a

c
b
d

)
∈ SL2(Z), i.e., ϕ(τ, z) transforms like a Jacobi form of weight k and

index m.
Then, if we define

8(τ, z) := exp(−8π2mG2(τ )z2)ϕ(τ, z),

we have

(3-9) 8

(
aτ + b
cτ + d

,
z

cτ + d

)
= (cτ + d)k8(τ, z).

This means that if we set

8(τ, z)=:
∑
n∈Z

an(τ ) · zn,

then

an

(
aτ + b
cτ + d

)
= (cτ + d)k+nan(τ ).

In particular, if ϕ(τ, z) is a weak Jacobi form of weight k and index m, then
these an(τ ) are modular forms of weight k+ n over SL2(Z).

Proof. Equation (3-9) can be verified directly by using the assumption (3-8) and
the transformation law (3-7). If, moreover, ϕ(τ, z) is a weak Jacobi form, then
ϕ(τ, z) and thus 8(τ, z) are holomorphic and have no negative powers of q when
considering their Fourier expansions in terms of q and y. This implies that these
an(τ ) are also holomorphic and have no negative powers of q when considering
the Fourier expansions of q , which gives the desired proof. �

With the assumptions in Theorem 3.2 understood, we know that Ell(M,W, τ, z)
is a weak Jacobi form of weight d − l and index 1

2 l. Then Proposition 3.5 tells us:
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Proposition 3.6. The series an(M,W, τ ) determined by

exp[l ·G2(τ ) · (2π
√
−1z)2] ·Ell(M,W, τ, z)=:

∑
n≥0

an(M,W, τ ) · (2π
√
−1z)n

are modular forms of weight d − l + n over SL2(Z). Furthermore, the first three
series of an(M,W, τ ) are of the form

a0(M,W,τ )= χ(M,3−1W ∗)
+q ·χ(M,3−1W ∗⊗(−2(d−l)−W−W ∗+T+T ∗))+q2

·( ·· ·),

a1(M,W,τ )=
l∑

p=0

(−1)p
(

p− l
2

)
χ(M,3pW ∗)+q ·(·· ·),

a2(M,W,τ )=−
l

24
χ(M,3−1W ∗)+ 1

2

l∑
p=0

(−1)p
(

p− l
2

)2
χ(M,3pW ∗)+q ·(·· ·).

Proof. The first statement is a direct application of Proposition 3.5 as Ell(M,W, τ, z)
is a weak Jacobi form of weight d − l and index 1

2 l. For the second one, if we set

exp[lG2(τ )(2π
√
−1z)2] =: A0(y)+ A1(y) · q + ( · · · ) · q2

and
Ell(M,W, τ, z)=: B0(y)+ B1(y) · q + ( · · · ) · q2,

we can easily deduce from their explicit expressions that

A0(y)= exp
[
−

l
24
(2π
√
−1z)2

]
= 1− l

24
(2π
√
−1z)2+ · · · ,

A1(y)= l(2π
√
−1z)2− l2

24
(2π
√
−1z)4+ · · · ,

B0(y)=
l∑

p=0

(−1)pχ(M,3pW ∗)y p−l/2

=

l∑
p=0

(−1)pχ(M,3pW ∗)

×

[
1+

(
p− l

2

)
(2π
√
−1z)+ 1

2

(
p− l

2

)2
(2π
√
−1z)2+ · · ·

]
,

B1(y)= χ
(
M,3−1W ∗⊗ (−2(d − l)−W −W ∗+ T + T ∗)

)
+ 2π
√
−1z( · · · ).

Note that∑
n≥0

an(M,W, τ )(2π
√
−1z)n= A0(y)B0(y)+[A0(y)B1(y)+A1(y)B0(y)]q+ · · · ;

then it is easy to deduce the expressions in Proposition 3.6 in terms of those of
A0(y), A1(y), B0(y) and B1(y). �
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−1-phenomenon of the generalized elliptic genus. Here, using Proposition 3.6,
presented in the last subsection, we investigate the arithmetic information of the
generalized elliptic genus Ell(M,W, τ, z), which can be viewed as an appropriate
−1-phenomenon of Ell(M,W, τ, z).

We will present one proposition and two examples related to a2(M,W, τ ),
a0(M,W, τ ) and a1(M,W, τ ), respectively, to illustrate an appropriate−1-phenom-
enon of the generalized elliptic genus Ell(M,W, τ, z).

Our next proposition related to a2(M,W, τ ) gives the “reason” why these
an(M,W, τ ) should be the −1-phenomenon of Ell(M,W, τ, z).

Proposition 3.7. a2(M,W, τ ) is a modular form of weight d − l + 2 over SL2(Z)

provided that p1(M)= p1(W ) and c1(W )= 0 in H∗(M,R). Consequently, if either
(i) d − l is odd, or (ii) d ≤ l but d − l 6= −2, we have

(3-10)
l∑

p=0

(−1)p
(

p− l
2

)2
χ(M,3pW ∗)= l

12
χ(M,3−1W ∗).

Moreover, if W = T and c1(M) = 0 in H∗(M,R), (3-10) is nothing but the
original −1-phenomenon of the Hirzebruch χy-genus.

Proof. If either (i) d−l is odd or (ii) d ≤ l but d−l 6=−2, a2(M,W, τ ) is a modular
form over SL2(Z) whose weight is either (i) odd or (ii) no more than 2 but not zero.
This means a2(M,W, τ )≡ 0; then its expression in Proposition 3.6 gives (3-10).

If W = T , then the right-hand side of (3-10) is

d
12
χ(M,3−1T ∗)= d

12
χy(M)

∣∣∣
y=−1
=

d
12

cd(M).

However, the left-hand side of (3-10) is

d∑
p=0

(−1)p
(

p− d
2

)2
χ p(M)

=

d∑
p=0

(−1)p
[

2·
p(p−1)

2
+(1−d)p+

d2

4

]
χ p(M)

= 2a2(M)−(1−d)a1(M)+
d2

4
a0(M)

=
d(3d−5)

12
cd(M)+

(1−d)d
2

cd(M)+
d2

4
cd(M) (via (1-3) and c1(M)= 0)

=
d
12

cd(M)= the right-hand side of (3-10). �

The next two examples, related to a0(M,W, τ ) and a1(M,W, τ ), give much
arithmetic information about M and W .
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Example 3.8. By Proposition 3.6, we know that a0(M,W, τ ) is a modular form
of weight d − l over SL2(Z) provided that p1(M) = p1(W ) and c1(M) = 0 in
H 2(M,R). Consequently:

(1) If either d − l is odd or d − l ≤ 2 but is nonzero, we have

χ(M,3−1W ∗)= χ
(
M,3−1W ∗⊗ (−2(d − l)−W −W ∗+ T + T ∗)

)
= 0.

(2) If d − l = 4, a0(M,W, τ ) is proportional to the Eisenstein series

G4(τ )=−
B4

8
+ q + · · · =

1
240
+ q + · · · ,

and so

χ
(
M,3−1W ∗⊗ (−2(d − l)−W −W ∗+ T + T ∗)

)
= 240χ(M,3−1W ∗).

(3) If d − l = 6, a0(M,W, τ ) is proportional to the Eisenstein series

G6(τ )=−
B6

12
+ q + · · · = −

1
504
+ q + · · · ,

and so

χ(M,3−1W ∗⊗ (−2(d − l)−W −W ∗+ T + T ∗))=−504χ(M,3−1W ∗).

(4) If d − l = 8, a0(M,W, τ ) is proportional to

[G4(τ )]
2
=

[
1

240
+ q + · · ·

]2

=
1

2402 +
1

120
q + · · · ,

and so

χ
(
M,3−1W ∗⊗ (−2(d − l)−W −W ∗+ T + T ∗)

)
= 480χ(M,3−1W ∗).

Example 3.9. By Proposition 3.6, we know that a1(M,W, τ ) is a modular form
of weight d − l + 1 over SL2(Z) provided that p1(M)= p1(W ) and c1(M)= 0 in
H 2(M,R). Consequently, if either d−l is even or d−l ≤ 1 but d−l 6=−1, we have

l∑
p=0

(−1)p
(

p− l
2

)
χ(M,3pW ∗)= 0.
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ON THE GEOMETRY OF PRÜFER INTERSECTIONS
OF VALUATION RINGS

BRUCE OLBERDING

Let F be a field, let D be a subring of F and let Z be an irreducible subspace
of the space of all valuation rings between D and F that have quotient
field F. Then Z is a locally ringed space whose ring of global sections is
A =

⋂
V∈Z V . All rings between D and F that are integrally closed in

F arise in such a way. Motivated by applications in areas such as mul-
tiplicative ideal theory and real algebraic geometry, a number of authors
have formulated criteria for when A is a Prüfer domain. We give geometric
criteria for when A is a Prüfer domain that reduce this issue to questions
of prime avoidance. These criteria, which unify and extend a variety of
different results in the literature, are framed in terms of morphisms of Z
into the projective line P1

D.

1. Introduction

A subring V of a field F is a valuation ring of F if for each nonzero x ∈ F , x or x−1

is in V ; equivalently, the ideals of V are linearly ordered by inclusion and V has
quotient field F . Although the ideal theory of valuation rings is straightforward, an
intersection of valuation rings in F can be quite complicated. Indeed, by a theorem
of Krull [Matsumura 1980, Theorem 10.4], every integrally closed subring of F is
an intersection of valuation rings of F . In this article, we describe a geometrical
approach to determining when an intersection A of valuation rings of F is a Prüfer
domain, meaning that for each prime ideal P of A, the localization AP is a valuation
ring of F . Whether an intersection of valuation rings is Prüfer is of consequence in
multiplicative ideal theory, where Prüfer domains are of central importance, and
real algebraic geometry, where the real holomorphy ring is a Prüfer domain that
expresses properties of fields involving sums of squares; see the discussion below.
Over the past eighty years, Prüfer domains have been extensively studied from
ideal-theoretic, homological and module-theoretic points of view; see, for example,
[Fontana et al. 1997; Fuchs and Salce 2001; Gilmer 1968; Knebusch and Zhang
2002; Larsen and McCarthy 1971].

MSC2010: primary 13F05, 13F30; secondary 13B22, 14A15.
Keywords: Prüfer domain, valuation ring, Zariski–Riemann space.
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Throughout the paper F denotes a field, D is a subring of F that need not have
quotient field F , and Z is a subspace of the Zariski–Riemann space X of F/D,
the space of all valuation rings of F that contain D. The topology on X is given
by declaring the basic open sets to be those of the form {V ∈ X : t1, . . . , tn ∈ V },
where t1, . . . , tn ∈ F . We assume for technical convenience that F ∈ Z . With this
notation fixed, the focus of this article is the holomorphy ring1 A =

⋂
V∈Z V of

the subspace Z . Such a ring is integrally closed in F , and, as noted above, every
ring between D and F that is integrally closed in F occurs as the holomorphy
ring of a subspace of X. In general it is difficult to determine the structure of A
from properties of Z , topological or otherwise; see [Olberding 2007; 2008; 2011],
where the emphasis is on the case in which D is a two-dimensional Noetherian
domain with quotient field F . In this direction, there are a number of results that
are concerned with when the holomorphy ring A is a Prüfer domain with quotient
field F . Geometrically, this is equivalent to Spec(A) being an affine scheme
in X. Moreover, by virtue of the valuative criterion for properness, A is a Prüfer
domain with quotient field F if and only if there are no nontrivial proper birational
morphisms into the scheme Spec(A), an observation that motivates Temkin and
Tyomkin’s notion [2013] of Prüfer algebraic spaces.

We show in this article that the morphisms of Z (viewed as a locally ringed
space) into the projective line P1

D determine whether the holomorphy ring A of Z
is a Prüfer domain. A goal in doing so is to provide a unifying explanation for an
interesting variety of results in the literature. By way of motivation, and because
we will refer to them later, we recall these results here.

(1) Perhaps the earliest result in this direction is due to Nagata [1962, (11.11)]:
When Z is finite, the holomorphy ring A of Z is a Prüfer domain with quotient
field F .

(2) Gilmer [1969, Theorem 2.2] shows that when f is a nonconstant monic poly-
nomial over D having no root in F and each valuation ring in Z contains the set
S := {1/ f (t) : t ∈ F}, then A is a Prüfer domain with torsion Picard group and
quotient field F . Rush [2001, Theorem 1.4] has since generalized this by allowing
the polynomial f to vary with the choice of t , but at the (necessary) expense of
requiring the rational functions in S to have certain numerators other than 1. Gilmer
was motivated by a special case of this theorem due to Dress [1965], which states
that when the field F is formally real (meaning that−1 is not a sum of squares), then
the subring of F generated by {(1+ t2)−1

: t ∈ F} is a Prüfer domain with quotient
field F whose set of valuation overrings is precisely the set of valuation rings of F

1This terminology is due to Roquette [1973, p. 362]. Viewing Z as consisting of places rather than
valuation rings, the elements of A are precisely the elements of F that have no poles (i.e., do not have
value infinity) at the places in Z .
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for which −1 is not a square in the residue field. In the literature of real algebraic
geometry, the Prüfer domain thus constructed is the real holomorphy ring of F/D.
The fact that such rings are Prüfer has a number of interesting consequences for
real algebraic geometry and sums of powers of elements of F ; see, for example,
[Becker 1982; Schülting 1982]. These rings are also the only known source of
Prüfer domains having finitely generated ideals that cannot be generated by two
elements, as was shown by Schülting [1979] and Swan [1984]; the related literature
on this aspect of holomorphy rings is discussed in [Olberding and Roitman 2006].
The notion of existential closure leads to more general results on Prüfer holomorphy
rings in function fields. For references on this generalization, see [Olberding 2006].

(3) Roquette [1973, Theorem 1] proves that when there exists a nonconstant monic
polynomial f ∈ A[T ] which has no root in the residue field of V for each valuation
ring V ∈ Z (i.e., the residue fields are “uniformly algebraically non-closed”), A is
a Prüfer domain with torsion Picard group and quotient field F . Roquette [1973,
p. 362] developed these ideas as a general explanation for his principal ideal theorem,
which states that the ring of totally p-integral elements of a formally p-adic field is
a Bézout domain; that is, every finitely generated ideal is principal. In particular,
if there is a bound on the size of the residue fields of the valuation rings in Z ,
then A is a Bézout domain [Roquette 1973, Theorem 3]. Motivated by just such
a situation, Loper [1994] independently proved similar results in order to apply
them to the ring of integer-valued polynomials of a domain R with quotient field
F : Int(R)= {g(T ) ∈ F[T ] : g(R)⊆ R}.

(4) In [Olberding and Roitman 2006] it is shown that if the holomorphy ring A of
Z contains a field of cardinality greater than that of Z , then A is a Bézout domain.

In this article we offer a geometric explanation for these results that reduces all
the arguments to a question of homogeneous prime avoidance in the projective line
P1

D := Proj(D[T0, T1]). Nagata’s theorem in (1) reduces to the observation that a
finite set of points of P1

D is contained in an affine open subset of P1
D . The example

in (4) is explained similarly by showing that a “small” enough set of points in P1
D

is contained in an affine open set. And finally, in cases (2) and (3), the condition
on the residue fields guarantees that the image of each D-morphism Z → P1

D is
contained in the open affine subset (P1

D)g, where g is the homogenization of f .
To frame things geometrically, we view Z as a locally ringed space. Its structure

sheaf OZ is defined for each nonempty open subset U of Z by OZ (U )=
⋂

V∈Z V ,
while the ring of sections of the empty set is defined to be the trivial ring with 0= 1;
thus OZ is the holomorphy sheaf of Z . The restriction maps on OZ off the empty
set are simply set inclusion, and the stalks of OZ are the valuation rings in Z . The
standing assumption that F is one of the valuation rings in Z guarantees that Z
is an irreducible space; irreducibility in turn guarantees that OZ is a sheaf. (Note
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that since we are interested in the ring A =
⋂

V∈Z V , the assumption F ∈ Z is no
limitation.) When considering irreducible subspaces Y of X, we similarly treat Y
as a locally ringed space with structure sheaf defined in this way.

By a morphism we always mean a morphism in the category of locally ringed
spaces. If X and Y are locally ringed spaces with fixed morphisms α : X→Spec(D)
and β : Y → Spec(D), then a morphism φ : X→ Y is a D-morphism if α = β ◦φ.
A scheme X is a D-scheme if a morphism φ : X → Spec(D) is fixed. There is a
morphism δ= (d, d#) : Z→Spec(D) defined by letting d be the continuous map that
sends a valuation ring in Z to its center in D, and by letting d#

: OSpec(D)→ d∗OZ

be the sheaf morphism defined for each open subset U of Spec(D) by the set
inclusion d#

U : OSpec(D)(U )→ OZ (d−1(U )). Thus when considering D-morphisms
from Z to X , with X a D-scheme, we always assume that the structure morphism
Z→ Spec(D) is the one defined above.

2. Morphisms into projective space

In this section we describe the D-morphisms of Z into projective space by proving
an analogue of the fact that morphisms from schemes into projective space are
determined by invertible sheaves. Our main technical device in describing such
morphisms is the notion of a projective model, as defined in [Zariski and Samuel
1975, Chapter VI, §17]. Let t0, . . . , tn be nonzero elements of F , and for each
i = 0, 1, . . . , n, define Di = D[t0/ti , . . . , tn/ti ] and Ui = Spec(Di ). Then the
projective model of F/D defined by t0, . . . , tn is

X = {(Di )P : P ∈ Spec(Di ), i = 0, 1, . . . , n}.

The projective model X is a topological space whose basic open sets are of the
form {R ∈ X : u0, . . . , um ∈ R}, where u0, . . . , um ∈ F , and which is covered by
the open subsets {(Di )P : P ∈Ui }, i = 0, 1, . . . , n. Define a sheaf OX of rings on
X for each nonempty open subset U of X by OX (U )=

⋂
R∈U R, and let the ring

of sections of the empty set be the trivial ring with 0= 1. Since X is irreducible,
OX is a sheaf and hence (X,OX ) is a scheme, and in light of the following remark,
it is a projective scheme.

Remark 2.1. If X is a projective model defined by n + 1 elements, then there
is a closed immersion X → Pn

D. For let X be the projective model defined by
t0, . . . , tn ∈ F . For each i = 0, 1, . . . , n, let bi : D[T0/Ti , . . . , Tn/Ti ] → Di be the
D-algebra homomorphism that sends T j/Ti to t j/ti , and let

ai : Spec(Di )→ Spec(D[T0/Ti , . . . , Tn/Ti ])

be the induced continuous map of topological spaces. Then the scheme morphisms
(ai , bi ) : Spec(Di ) → Spec(D[T0/Ti , . . . , Tn/Ti ]) glue together to a morphism
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φ : X→Pn
D [Hartshorne 1977, p. 88], which, by virtue of the way it is constructed,

is a closed immersion [de Jong et al. 2005–, Lemma 01QO].

Let t0, . . . , tn be nonzero elements of F , and let X be the projective model of F/D
defined by t0, . . . , tn . For each valuation ring V in Z , there exists i = 0, 1, . . . , n
such that t j/ti ∈ V for all j , and it follows that each valuation ring V in Z dominates
a unique local ring R in the model X , meaning that R ⊆ V and the maximal
ideal of R is contained in the maximal ideal of V . The domination morphism
δ = (d, d#) : Z → X is defined by letting d be the continuous map that sends
a valuation ring in Z to the local ring in X that it dominates, and by letting
d#
: OX → d∗OZ be the sheaf morphism defined for each open subset U of Z by

the set inclusion d#
U : OX (U )→ OZ (d−1(U )).

Let γ : X → Pn
D be the closed immersion defined in Remark 2.1, and let

δ : Z → X denote the domination morphism. Then we say that the D-morphism
γ ◦ δ is the morphism defined by t0, . . . , tn . We show in Proposition 2.3 that each
D-morphism Z→ Pn

D arises in this way. Our standing assumption F ∈ Z is used
in a strong way here, in that the proposition relies on a lemma which shows that
the D-morphisms from Z into projective space are calibrated by the inclusion
morphism Spec(F)→ Z .

Lemma 2.2. Let ι : Spec(F)→ Z be the canonical morphism, let φ = ( f, f #) :

Z→ X and γ = (g, g#) : Z→ X be morphisms of locally ringed spaces, where X
is a separated scheme, and let η = f (F). Then φ = γ if and only if φ ◦ ι= γ ◦ ι if
and only if η = f (F)= g(F) and f #

η = g#
η.

Proof. Suppose that η = f (F) = g(F) and f #
η = g#

η. Let U be an affine open
subset of X containing η, and let Y = f −1(U ). Then Y is a locally ringed space
with structure sheaf OY defined for each open set W in Y by OY (W ) = OZ (W ).
We claim that φ|Y = γ |Y . Since U is affine and Y is a locally ringed space, the
morphisms φ|Y and γ |Y are equal if and only if f #

U = g#
U [Holme 2012, Theorem

10.8, p. 200]. Now since OZ (Y )⊆ OZ ,F = F and the restriction maps on the sheaf
OZ are set inclusions, for each s ∈ OX (U ) we have f #

U (s)= f #
η (s)= g#

η(s)= g#
U (s).

Thus f #
U = g#

U , and hence φ|Y = γ |Y . Finally, let {Ui } be the collection of all affine
open subsets of X that contain η. Then { f −1(Ui )} is a cover of Z , and we have
shown that φ and γ restrict to the same morphism on each of these open sets, so
we conclude that φ = γ . It is straightforward to verify that φ ◦ ι= γ ◦ ι if and only
if f (F)= g(F) and f #

η = g#
η, so the lemma follows. �

Proposition 2.3. If φ : Z → Pn
D is a D-morphism, then there exist t0, . . . , tn ∈ F

such that φ is defined by t0, . . . , tn .

Proof. Write φ= ( f, f #), let η= f (F), and let S=Pn
D =Proj(D[T0, . . . , Tn]). For

each i = 0, . . . , n, let Ui be the open affine set STi , so that S =U0 ∪ · · · ∪Un . Let
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α = (a, a#) : Spec(F)→ S be the composition of φ with the canonical morphism
Spec(F) → Z , and note that for each i , we have a#

Ui
(s) = f #

S,η(s) for all s ∈
OS(Ui ). Since α is a morphism of schemes into projective n-space over D, there
exist t0, . . . , tn ∈ F such that f #

Ui
(T j/Ti ) = t j/ti for each i, j ; see the proof of

Theorem II.7.1 of [Hartshorne 1977, p. 150]. Let X be the projective model of
F/D defined by t0, . . . , tn . Then t0, . . . , tn can be viewed as global sections of an
invertible sheaf on X that is the image of the twisting sheaf O(1) of S. By the theorem
just cited and its proof, there is then a unique D-morphism γ = (g, g#) : X → S
such that g#

U = f #
U for each open set U of S and g : X → S is the continuous

map that for each i = 0, . . . , n sends the equivalence class of a prime ideal P in
Spec(D[t0/ti , . . . , tn/ti ])⊆ X to the equivalence class of the prime ideal ( f #

Ui
)−1(P)

in Ui =Spec(D[T0/Ti , . . . , Tn/Ti ]). Then, with δ= (d, d#) : Z→ X the domination
morphism, γ ◦δ : Z→ S is a D-morphism. Moreover, g(d(F))= g(F)= η= f (F)
and (viewing F as a point in both X and Z ), (d#

◦ g#)F = d#
F ◦ g#

η = f #
η . Therefore,

by Lemma 2.2, φ = γ ◦ δ. �

Corollary 2.4. Every D-morphism φ : Z → Pn
D lifts to a unique D-morphism

φ̃ : X→ Pn
D .

Proof. Let φ : Z→ Pn
D be a D-morphism. Then by Proposition 2.3, there exist a

projective model X of F/D and a D-morphism γ : X→ Pn
D such that φ = γ ◦ δ|Z ,

where δ : Z→ X is the domination map. Since X is a projective model of F/D, each
valuation ring in X dominates X , and hence δ : Z→ X extends to the domination
morphism δ̃ : X → X . Thus φ̃ = γ ◦ δ̃ lifts φ. If there is another morphism
ψ : X→ Pn

D that lifts φ, then with ι : Spec(F)→ Z the canonical morphism,
ψ ◦ ι= φ ◦ ι= φ̃ ◦ ι, so that by Lemma 2.2, ψ = φ̃. �

Remark 2.5. By Lemma 2.2, the D-morphisms Z→ Pn
D are determined by their

composition with the morphism Spec(F)→ Pn
D. Conversely, by Corollary 2.4,

each D-morphism Spec(F)→ Z lifts to a unique morphism Z → X. Thus the
D-morphisms Z→ Pn

D are in one-to-one correspondence with the F-valued points
of Pn

D .

3. A geometrical characterization of Prüfer domains

We show in this section that if Z has the property that the image of every D-
morphism Z→ P1

D of locally ringed spaces factors through an affine scheme, then
the holomorphy ring A of Z is a Prüfer domain. A special case in which this is
satisfied is when there is a homogeneous polynomial f (T0, T1) of positive degree
d such that the image of each such morphism is contained in (P1

D) f . In this case,
we show that the Prüfer domain A has torsion Picard group.
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Theorem 3.1. The ring A =
⋂

V∈Z V is a Prüfer domain with quotient field F if
and only if every D-morphism Z→ P1

D factors through an affine scheme.

Proof. Suppose A is a Prüfer domain, and let φ : Z → P1
D be a D-morphism.

By Proposition 2.3, there exist a projective model X of F/D and a D-morphism
γ : X → P1

D such that φ = γ ◦ δ, where δ : Z → X is the domination morphism.
Since A is a Prüfer domain with quotient field F , every localization of A is a
valuation domain and hence dominates a local ring in X . Since every valuation ring
in Z contains A, it follows that φ factors through the affine scheme Spec(A).

Conversely, suppose that every D-morphism Z→ P1
D factors through an affine

scheme. Let P be a prime ideal of A. To prove that AP is a valuation domain
with quotient field F , it suffices to show that for each 0 6= t ∈ F we have t ∈ AP

or t−1
∈ AP . Let 0 6= t ∈ F , and let X be the projective model of F/D defined

by 1, t . Then by Remark 2.1, there is a closed immersion of X into P1
D. Let

φ = ( f, f #) : Z→ P1
D be the D-morphism that results from composing this closed

immersion with the domination morphism Z→ X . In particular, with ν = f (F),
we have f #

ν (T1/T0)= t and f #
ν (T0/T1)= t−1.

By assumption, there are a ring R and D-morphisms δ = (d, d#) : Z→ Spec(R)
and γ = (g, g#) : Spec(R)→P1

D such that φ= γ ◦δ. By replacing R with its image
in F under d#

η , where η=d(F), we may assume by Lemma 2.2 that R is a subring of
F and that δ is the domination morphism. Then since R is the ring of global sections
of Spec(R) and A is the ring of global sections of Z , it follows that R⊆ A, and hence
Q= R∩ P is a prime ideal of R. Let x = g(Q). Then x ∈ (P1

D)T0 or x ∈ (P1
D)T1 . In

the former case, f #
x (T1/T0)= t , and in the latter, f #

x (T0/T1)= t−1. But f #
= d#
◦g#

and d# restricts on each nonempty open subset of Spec(R) to the inclusion mapping,
so either x ∈ (P1

D)T0 , so that t = f #
x (T1/T0)= g#

x(T1/T0)∈ RQ ⊆ AP , or x ∈ (P1
D)T1 ,

so that t−1
= f #

x (T0/T1)= g#
x(T0/T1) ∈ RQ ⊆ AP . This proves that A is a Prüfer

domain with quotient field F . �

Nagata’s theorem discussed in (1) follows then from prime avoidance:

Corollary 3.2 [Nagata 1962, (11.11)]. If Z is a finite set, then A is a Prüfer domain
with quotient field F.

Proof. Let φ : Z → P1
D be a D-morphism. Then the image of φ in P1

D is finite,
so by homogeneous prime avoidance [Bruns and Herzog 1993, Lemma 1.5.10],
there exists a homogeneous polynomial f (necessarily of positive degree) in the
irrelevant ideal (T0, T1) of D[T0, T1] such that f is not in the union of the finitely
many homogeneous prime ideals corresponding to the image of Z in P1

D; i.e., the
image of φ is contained in (P1

D) f . This subset is affine [Eisenbud and Harris 2000,
Exercise III.10, p. 99], so by Theorem 3.1, A is a Prüfer domain with quotient
field F . �
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In fact, when Z is finite, A is a Bézout domain: If M is a maximal ideal of A,
then AM is a valuation domain, but since Z is finite, AM =

⋂
V∈Z V AM , which,

since AM is a valuation domain, forces AM = V for some V ∈ Z . Therefore, A has
only finitely many maximal ideals, so that every invertible ideal is principal, and
hence A is a Bézout domain.

In Theorem 3.5, we give a criterion for when A is a Prüfer domain with torsion
Picard group. In this case, each D-morphism Z → P1

D not only factors through
an affine scheme, but has image in an affine open subscheme of P1

D . For lack of a
precise reference, we note the following standard observation.

Lemma 3.3. Let X be a projective model of F/D defined by t0, . . . , tn ∈ F , and
let f (T0, . . . , Tn) ∈ D[T0, . . . , Tn] be homogeneous of positive degree d such that
f (t0, . . . , tn) 6= 0. Let

R = {0} ∪
{

h(t0, . . . , tn)
f (t0, . . . , tn)e

: e ≥ 0 and h is a homogeneous form of degree de
}
.

Then {RP : P ∈ Spec(R)} is an open affine subset of X.

Proof. Let S = Pn
D. Then S f is an open affine subset of S [Eisenbud and Harris

2000, Exercise III.10, p. 99]. By Remark 2.1, there is a closed immersion γ =
(g, g#) : X→ S such that with η = g(F), we have g#

η(T j/Ti )= t j/ti for each i , j .
Since S f is an open affine subset of S and γ is a closed immersion, g−1(S f ) is an
open affine subset of X whose ring of sections is g#

η(OS(S f )) [de Jong et al. 2005–,
Lemma 01IN]. Now OS(S f ) is the ring consisting of 0 and the rational functions of
the form h/ f e, where e > 0 and h is a homogeneous form of degree de. Moreover,
for such a rational function, since f (t0, . . . , tn) 6= 0, we have that f (T0, . . . , Tn) is
a unit in OS,η and

g#
η

(
h(T0, . . . , Tn)

f (T0, . . . , Tn)e

)
=

h(t0, . . . , tn)
f (t0, . . . , tn)e

∈ R.

Thus g#
η(OS(S f ))= R, which proves the lemma. �

Lemma 3.4. Let t0, t1, . . . , tn be nonzero elements of F , and let f be a homoge-
neous polynomial in D[T0, . . . , Tn] of positive degree d. Then the following are
equivalent.

(1) td
0 , . . . , td

n ∈ f (t0, . . . , tn)A.

(2) (t0, . . . , tn)d A = f (t0, . . . , tn)A.

(3) The image of the morphism Z→ Pn
D defined by t0, . . . , tn is in (Pn

D) f .

Proof. Let u= f (t0, . . . , tn). First we claim that (1) implies (2). If V ∈ Z , then there
is i such that ti divides in V each of t0, . . . , tn . It follows that when

∑
i ei = d for
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nonnegative integers ei , we have te0
0 te1

1 . . . ten
n ∈ td

i V . Thus by (1), te0
0 te1

1 . . . ten
n ∈ uV ,

so that te0
0 te1

1 . . . ten
n ∈ u A. Statement (2) now follows.

To see that (2) implies (3), let γ = (g, g#) : Z→ Pn
D be the morphism defined

by t0, . . . , tn . By (2), u = f (t0, . . . , tn) is nonzero. Define

R = {0} ∪
{

h(t0, . . . , tn)
ue : e ≥ 0 and h is a homogeneous form of degree de

}
,

S = {0} ∪
{

h(T0, . . . , Tn)

f (T0, . . . , Tn)e
: e ≥ 0 and h is a homogeneous form of degree de

}
,

so that (Pn
D) f = Spec(S). Let α = (a, a#) : Spec(R)→ Spec(S) be the morphism

induced by the ring homomorphism a#
: S→ R given by evaluation at t0, . . . , tn .

Observe that R⊆ A, since if h is a homogeneous form in D[T0, . . . , Tn] of degree de,
then by (2), h(t0, . . . , tn) ∈ (t0, . . . , tn)de A= ue A, so that R ⊆ A. Now let β : Z→
Spec(R) be the induced domination morphism. We claim that γ = α ◦β. Indeed,
by Lemma 3.3, Spec(R) is an affine submodel of the projective model X of F/D
defined by t0, . . . , tn , and γ factors through X . Since β is the domination mapping,
it follows that γ =α◦β, and hence the image of γ is contained in Spec(S)= (Pn

D) f .
Finally, to see that (3) implies (1), let U = (Pn

D) f and let γ = (g, g#) : Z→ Pn
D

be the morphism defined by t0, . . . , tn . By (3), Z ⊆ g−1(U ), so S, the ring of
sections of U , is mapped via g#

U into the holomorphy ring A of Z . But the image
of g#

U is R, so R ⊆ A, and hence every element of F of the form td
i /u is an element

of A, from which (1) follows. �

Theorem 3.5. The ring A=
⋂

V∈Z V is a Prüfer domain with torsion Picard group
and quotient field F if and only if for each A-morphism φ : Z → P1

A there is a
homogeneous polynomial f ∈ A[T0, T1] of positive degree such that the image of φ
is in (P1

A) f .

Proof. The choice of the subring D of F was arbitrary, so for the sake of this
proof we may assume without loss of generality that D = A and apply then the
preceding results to A. Suppose that for each A-morphism φ : Z → P1

A there
exists a homogeneous polynomial f ∈ A[T0, T1] of positive degree such that the
image of φ is in the affine subset (P1

A) f . By Theorem 3.1, A is a Prüfer domain
with quotient field F . Thus, to prove that A has torsion Picard group, it suffices
to show that for each two-generated ideal (t0, t1)A of A, there exists e > 0 such
that (t0, t1)e A is a principal ideal (see, for example, the proof of Theorem 2.2 of
[Gilmer 1969]). Let t0, t1 ∈ F , and let φ : Z → P1

A be the morphism defined by
t0, t1. Then by assumption, there exists a homogeneous polynomial f ∈ A[T0, T1]

of positive degree d such that the image of Z in P1
A is contained in (P1

A) f . Thus
by Lemma 3.4, (t0, t1)d A is a principal ideal.
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Conversely, let φ : Z→ P1
A be an A-morphism. Then by Proposition 2.3, there

exist t0, t1 ∈ F such that φ is defined by t0, t1. Since A has torsion Picard group and
quotient field F , there exists d > 0 such that (t0, t1)d A= u A for some u ∈ (t0, t1)d A.
Since u is an element of (t0, t1)d A, there exists a homogeneous polynomial f ∈
A[T0, T1] of degree d such that f (t0, t1)= u, and hence by Lemma 3.4, the image
of the morphism φ is contained in (P1

A) f . �

For applications such as those discussed in (2) and (3) of the introduction, one
needs to work with D-morphisms into the projective line over D, rather than A.
This involves a change of base, but causes no difficulties when verifying that A is a
Prüfer domain. However, the converse of Theorem 3.5 (which is not needed in the
applications in (2) and (3) of the introduction) is lost in the base change.

Corollary 3.6. If for each D-morphism φ : Z → P1
D there exists a homogeneous

polynomial f ∈ D[T0, T1] of positive degree such that the image of Z is contained
in (P1

D) f , then A is a Prüfer domain with torsion Picard group and quotient field F.

Proof. Let φ : Z→P1
A be a D-morphism, and let α :P1

A→P1
D be the change of base

morphism. By assumption, there exists a homogeneous polynomial f ∈ D[T0, T1]

such that the image of α◦φ is contained in (P1
D) f . Then the image of φ is contained

in (P1
A) f , and the corollary follows from Theorem 3.1. �

Let n be a positive integer. An abelian group G is an n-group if each element of
G has finite order and this order is divisible by only such primes that also appear as
factors of n. If A is a Prüfer domain with quotient field F , then the Picard group of
A is an n-group if and only if for each t ∈ F there exists k > 0 such that (A+ t A)n

k

is a principal fractional ideal of A [Roquette 1973, Lemma 1].

Remark 3.7. If each homogeneous polynomial f arising as in the statement of
the corollary can be chosen with degree ≤ n (n fixed), then the Picard group of
the Prüfer domain A is an n-group. For when t ∈ F and φ : Z → P1

D is the
D-morphism defined by 1, t , then with f the polynomial of degree ≤ n given
by the corollary, Lemma 3.4 shows that (A+ t A)n is a principal fractional ideal
of A. In particular, when for each D-morphism φ : Z → P1

D there exists a linear
homogeneous polynomial f ∈ A[T0, T1] such that the image of φ is contained in
(P1

A) f , the ring A is a Bézout domain with quotient field F .

The next corollary is a stronger version of statement (4) in the introduction.

Corollary 3.8. If D is a local domain and Z has cardinality less than that of the
residue field of D, then A is a Bézout domain with quotient field F.

Proof. Let φ : Z → P1
D be a D-morphism. For each P ∈ Proj(D[T0, T1]), let

1P = {d ∈ D : T0+ dT1 ∈ P}. Then all the elements of 1P have the same image
in the residue field of D. Indeed, if d1, d2 ∈1P , then
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(d1− d2)T1 = (T0+ d1T1)− (T0+ d2T1) ∈ P.

If T1 ∈ P , then since T0+d1T1 ∈ P , this forces (T0, T1)⊆ P , a contradiction to the
fact that P ∈ Proj(D[T0, T1]). Therefore, T1 6∈ P , so that d1− d2 ∈ P ∩ D ⊆m :=

maximal ideal of D, which shows that all the elements of1P have the same image in
the residue field of D. Let X denote the image of φ in P1

D . Then since |X |< |D/m|,
there exists d ∈ D \

⋃
P∈X 1P , and hence f (T0, T1) := T0+dT1 6∈ P for all P ∈ X .

Thus the image of φ is in (P1
D) f , and by Corollary 3.6 and Remark 3.7, A is a

Bézout domain with quotient field F . �

The following corollary is a small improvement of a theorem of Rush [2001,
Theorem 1.4]. Whereas the theorem of Rush requires that 1, t, t2, . . . , tdt ∈ ft(t)A,
we need only that 1, tdt ∈ ft(t)A.

Corollary 3.9. The ring A is a Prüfer domain with torsion Picard group and
quotient field F if and only if for each 0 6= t ∈ F , there is a polynomial ft(T )∈ A[T ]
of positive degree dt such that 1, tdt ∈ ft(t)A.

Proof. If A is a Prüfer domain with torsion Picard group and quotient field F , then
for each 0 6= t ∈ F , there is dt > 0 such that (1, t)dt A is a principal fractional ideal
of A. Since A is a Prüfer domain, local verification shows that (1, t)dt A= (1, tdt )A,
and it follows that there is a polynomial ft(T ) ∈ A[T ] of positive degree dt such
that 1, tdt ∈ ft(t)A.

To prove the converse, we use Theorem 3.5. Let φ : Z→ P1
D be a D-morphism.

Then by Proposition 2.3, there exists 0 6= t ∈ F such that φ is defined by 1, t . By
assumption, there is a polynomial ft(T ) ∈ A[T ] of positive degree dt such that
1, tdt ∈ ft(t)A. Set gt(T0, T1)= ft(T0/T1)T

dt
1 , so that gt(T0, T1) is a homogeneous

form of positive degree. Then 1, tdt ∈ gt(t, 1)A, and by Lemma 3.4, the image of
φ is in (P1

A)g. By Theorem 3.5, A is a Prüfer domain with torsion Picard group
and quotient field F . �

Rush [2001, Theorem 2.2] proves that when f is a monic polynomial of positive
degree in A[T ], then (a) {1/ f (t) : t ∈ F} ⊆ A if and only if (b) the image of f in
(V/MV )[T ] has no root in V/MV for each V ∈ Z if and only if (c) A is a Prüfer
domain and f (a) is a unit in A for each a ∈ A. As Rush points out, Gilmer’s
theorem discussed in (2) of the introduction follows quickly from the equivalence
of (a) and (b) and Corollary 3.9; see the discussion on pp. 314–315 of [Rush 2001].
Similarly, the results of Loper and Roquette described in (3) of the introduction
also follow from Corollary 3.9 and the equivalence of (a) and (b). Thus all the
constructions in (1)–(4) of the introduction are recovered by the results in this
section.
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4. The case where D is a local ring

This section focuses on the case where D is a local ring that is integrally closed
in F . (By a local ring, we mean a ring that has a unique maximal ideal; in particular,
we do not require local rings to be Noetherian.) In such a case, as is noted in the
proof of Theorem 4.2, every proper subset of closed points of P1

D is contained
in an affine open subset of P1

D, a fact which leads to a stronger result than could
be obtained in the last section. To prove the theorem, we need a coset version of
homogeneous prime avoidance. The proof of the lemma follows Gabber, Liu and
Lorenzini [Gabber et al. 2013] but involves a slight modification to permit cosets.

Lemma 4.1. (cf. [Gabber et al. 2013, Lemma 4.11]) Let R =
⊕
∞

i=0 Ri be a graded
ring, and let P1, . . . , Pn be incomparable homogeneous prime ideals not contain-
ing R1. Let I =

⊕
∞

i=0 Ii be a homogeneous ideal of R such that I 6⊆ Pi for each
i = 1, . . . , n. Then there exists e0 > 0 such that for all e ≥ e0 and r1, . . . , rn ∈ R,
Ie 6⊆

⋃n
i=1(Pi + ri ).

Proof. The proof is by induction on n. For the case n = 1, let s be a homogeneous
element in I \ P1, let e0 = deg s, let e ≥ e0 and let t ∈ R1 \ P1. Suppose that
r1 ∈ R and Ie ⊆ P1 + r1. Then since 0 ∈ Ie, this forces r1 ∈ P1 and hence
ste−e0 ∈ Ie ⊆ P1, a contradiction to the fact that neither s nor t is in P1. Thus
Ie 6⊆ P1+ r1. Next, let n > 1, and suppose that the lemma holds for n− 1. Then
since the Pi are incomparable, IP1 . . . Pn−1 6⊆ Pn , and by the case n= 1, there exists
f0 > 0 such that for all f ≥ f0 and rn ∈ R we have (IP1 . . . Pn−1) f 6⊆ (Pn + rn).

Also, by the induction hypothesis, there exists g0 > 0 such that for all g ≥ g0

and r1, . . . , rn−1 ∈ R we have (IPn)g 6⊆
⋃n−1

i=1 (Pi + ri ). Let e0 = max{ f0, g0},
let e ≥ e0 and let r1, . . . , rn ∈ R. Then in light of the above considerations, we
may choose a ∈ (IP1 . . . Pn−1)e \ (Pn + rn) and b ∈ (IPn)e \

⋃n−1
i=1 (Pi + ri ). Then

a+ b ∈ Ie \
⋃n

i=1(Pi + ri ). �

Theorem 4.2. Suppose D is local and integrally closed in F and only finitely many
valuation rings in Z do not dominate D. If no D-morphism Z → P1

D has every
closed point of P1

D in its image, then A =
⋂

V∈Z V is a Prüfer domain with torsion
Picard group and quotient field F.

Proof. Let S = D[T0, T1]. By Corollary 3.6, it suffices to show that for each
D-morphism φ : Z→ P1

D, there is a homogeneous polynomial f ∈ S of positive
degree such that the image of φ is in (P1

D) f . To this end, let φ : Z → P1
D be a

D-morphism. By assumption, there is a closed point x ∈ P1
D not in the image of φ.

Let π : P1
D→ Spec(D) be the structure morphism. Since π is a proper morphism,

π is closed and hence π(x) is a closed point in Spec(D). Thus since D is local,
π(x) is the maximal ideal m of D. Let k be the residue field of D. Then, with
Q the homogeneous prime ideal in S corresponding to x , we must have m ⊆ Q,
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and hence Proj(k[T0, T1]) is isomorphic to a closed subset of P1
D containing Q.

Since a homogeneous prime ideal in Proj(k[T0, T1]) is generated by a homogeneous
polynomial in k[T0, T1], it follows that there is a homogeneous polynomial g ∈ S
of positive degree d such that Q = (m, g)S. Since, as noted above, every prime
ideal in P1

D = Proj(S) corresponding to a closed point in P1
D contains m, it follows

that every closed point in P1
D distinct from x is contained in (P1

D)g. Thus if every
valuation ring in Z other than F dominates D, then the image of φ is contained in
(P1

D)g, which proves the theorem.
It remains to consider the case where Z also contains, in addition to the valuation

ring F , valuation rings V1, . . . , Vn that are not centered on the maximal ideal m
of D. Let P1, . . . , Pn be the homogeneous prime ideals of S that are the images
under φ of V1, . . . , Vn , respectively. Let I = mS. No Vi dominates D, so since
φ is a morphism of locally ringed spaces, I 6⊆ Pi for all i = 1, . . . , n. We may
assume P1, . . . , Pk are the prime ideals that are maximal in the set {P1, . . . , Pn}.
Then by Lemma 4.1, there exists e > 0 such that Ide 6⊆

⋃k
i=1(Pi + ge). Let h be

a homogeneous element in Ide \
⋃k

i=1(Pi + ge). Since P1, . . . , Pk are maximal in
{P1, . . . , Pn}, it follows that h ∈ Ide \

⋃n
i=1(Pi + ge). Set f = h− ge. Then f 6∈ Pi

for all i . In particular, f 6= 0, and hence f is homogeneous of degree de. Since
f 6∈ P1 ∪ · · · ∪ Pn , we have P1, . . . , Pn ∈ (P

1
D) f .

Finally we show that every closed point of P1
D distinct from x is in (P1

D) f . Let
L be a prime ideal in Proj(S) corresponding to a closed point distinct from x . Then
L 6= Q, and to finish the proof, we need only show that f 6∈ L . As noted above,
m⊆ L , so if f ∈ L , then since h ∈mS, we have ge

∈ L . But then Q = (m, g)S⊆ L ,
forcing Q = L since Q is maximal in Proj(S). This contradiction implies that
f 6∈ L , and hence every closed point of P1

D distinct from x is in (P1
D) f , which

completes the proof. �

Remark 4.3. When the valuation rings in Z do not dominate D, the theorem can
still be applied if there exists Y ⊆ X containing F such that (a) each valuation
ring in Y other than F dominates D, (b) each valuation ring in Z specializes to a
valuation ring in Y , and (c) no D-morphism φ : Y → P1

D has every closed point in
its image. For by the theorem, the holomorphy ring of Y is a Prüfer domain with
torsion Picard group and quotient field F . As an overring of the holomorphy ring
of Y , the holomorphy ring of Z has these same properties also.

The following corollary shows how the theorem can be used to prove that real
holomorphy rings can be intersected with finitely many nondominating valuation
rings and the result remains a Prüfer domain with quotient field F . In general
an intersection of a Prüfer domain and a valuation domain need not be a Prüfer
domain. For example, when D is a two-dimensional local Noetherian UFD with
quotient field F and f is an irreducible element of D, then D f is a PID and D( f )
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is a valuation ring, but D = D f ∩ D( f ), so that the intersection is not Prüfer. This
example can be modified to show more generally that for this choice of D, there
exist quasicompact schemes in X that are not affine.

Corollary 4.4. Suppose D is essentially of finite type over a real-closed field and
that F and the residue field of D are formally real. Let H be the real holomorphy
ring of F/D. Then for any valuation rings V1, . . . , Vn ∈ X not dominating D, the
ring H ∩ V1 ∩ · · · ∩ Vn is a Prüfer domain with torsion Picard group and quotient
field F.

Proof. Each formally real valuation ring in X specializes to a formally real val-
uation ring dominating D (this can be deduced, for example, from Theorem 23
of [Kuhlmann 2004]). Let Y be the set of all the formally real valuation rings
dominating D, let Z = Y ∪{F, V1, . . . , Vn}, and let φ : Z→P1

D be a D-morphism.
Then the image of Y under φ is contained in (P1

D) f , where f (T0, T1)= T 2
0 + T 2

1 .
Because V1, . . . , Vn do not dominate D, they are not mapped by φ to closed points
of P1

D . Thus the corollary follows from Theorem 4.2. �

We include the last corollary as more of a curiosity than an application. Suppose
that D has quotient field F . A valuation ring V in X admits local uniformization if
there exists a projective model X of F/D such that V dominates a regular local
ring in X . Thus if Spec(D) has a resolution of singularities, then every valuation
ring in X admits local uniformization. If D is essentially of finite type over a field
k of characteristic 0, then D has a resolution of singularities by the theorem of
Hironaka, but when k has positive characteristic, it is not known in general whether
local uniformization holds in dimension greater than 3; see, for example, [Cutkosky
2004; Temkin 2013].

Corollary 4.5. Suppose that D is a quasiexcellent integrally closed local Noether-
ian domain with quotient field F. If there exists a valuation ring in X that dominates
D but does not admit local uniformization, and Y consists of all such valuation
rings, then the holomorphy ring of Y is a Prüfer domain with torsion Picard group.

Proof. Let Z = Y ∪ {F}, and let φ : Z → P1
D be a D-morphism. Then by

Proposition 2.3, φ factors through a projective model X of F/D. Since Y is
nonempty, the projective model X has a singularity, and thus since D is quasiex-
cellent, the singular points of X are contained in a proper nonempty closed subset
of X . In particular, there are closed points of X that are not in the image of the
domination map Z→ X , and hence there are closed points of P1

D that are not in the
image of φ. Therefore, by Theorem 4.2, A is a Prüfer domain with torsion Picard
group and quotient field F . �

In particular, all the valuation rings that dominate D and do not admit local
uniformization lie in an affine scheme in X.
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NON-KÄHLER EXPANDING RICCI SOLITONS,
EINSTEIN METRICS, AND EXOTIC CONE STRUCTURES

MARIA BUZANO, ANDREW S. DANCER,
MICHAEL GALLAUGHER AND MCKENZIE WANG

We consider complete multiple warped product type Riemannian metrics
on manifolds of the form R2 × M2 × · · · × Mr , where r ≥ 2 and Mi are
arbitrary closed Einstein spaces with positive scalar curvature. We con-
struct on these spaces a family of non-Kähler, non-Einstein, expanding gra-
dient Ricci solitons with conical asymptotics as well as a family of Einstein
metrics with negative scalar curvature. The 2-dimensional Euclidean space
factor allows us to obtain homeomorphic but not diffeomorphic examples
which have analogous cone structure behaviour at infinity. We also produce
numerical evidence for complete expanding solitons on the vector bundles
whose sphere bundles are the twistor or Sp(1) bundles over quaternionic
projective space.

0. Introduction

In [Buzano et al. 2013] we constructed complete steady gradient Ricci soliton
structures (including Ricci-flat metrics) on manifolds of the form R2

×M2×· · ·×Mr ,
where Mi , 2 ≤ i ≤ r , are arbitrary closed Einstein manifolds with positive scalar
curvature. We also produced numerical solutions of the steady gradient Ricci soliton
equation on certain nontrivial R3 and R4 bundles over quaternionic projective spaces.
In the current paper we will present the analogous results for the case of expanding
solitons on the same underlying manifolds.

Recall that a gradient Ricci soliton is a manifold M together with a smooth
Riemannian metric g and a smooth function u, called the soliton potential, which
give a solution to the equation

(0.1) Ric(g)+Hess(u)+ ε
2

g = 0

for some constant ε. The soliton is then called expanding, steady, or shrinking
according to whether ε is greater than, equal to, or less than zero.
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A gradient Ricci soliton is called complete if the metric g is complete. The
completeness of the vector field ∇u follows from that of the metric; see [Zhang
2009]. If the metric of a gradient Ricci soliton is Einstein, then either Hess u = 0
(i.e., ∇u is parallel) or we are in the case of the Gaussian soliton; see [Petersen and
Wylie 2009; Pigola et al. 2011].

At present most examples of non-Kählerian expanding solitons arise from left-
invariant metrics on nilpotent and solvable Lie groups (resp. nilsolitons, solvsoli-
tons), as a result of work by J. Lauret [2001; 2011], M. Jablonski [2013], and many
others (see the survey [Lauret 2009]). These expanders are however not of gradient
type, i.e., they satisfy the more general equation

(0.2) Ric(g)+ 1
2
LX g+ ε

2
g = 0,

where X is a vector field on M and L denotes Lie differentiation.
A large class of complete, non-Einstein, non-Kählerian expanders of gradient

type (with dimension ≥ 3) consists of an r-parameter family of solutions to (0.1)
on Rk+1

×M2×· · ·×Mr where k > 1 and Mi are positive Einstein manifolds. The
special case r = 1 (i.e., no Mi ) is due to R. Bryant [2005] and the solitons have
positive sectional curvature. The r = 2 case is due to Gastel and Kronz [2004],
who adapted Böhm’s construction of complete Einstein metrics with negative scalar
curvature to the soliton case. The case of arbitrary r was treated in [Dancer and
Wang 2009a] via a generalization of the dynamical system studied by Bryant. The
soliton metrics in this family are all of multiple warped product type. In other
words, the manifold is thought of as being foliated by hypersurfaces of the form
Sk
×M2×· · ·×Mr each equipped with a product metric depending smoothly on a

real parameter t . As k ≥ 2 in these works, the hypersurfaces and the asymptotic
cones have finite fundamental group.

More recently, Schulze and Simon [2013] constructed expanding gradient Ricci
solitons with nonnegative curvature operator in arbitrary dimensions by studying
the scaling limits of the Ricci flow on complete open Riemannian manifolds with
nonnegative bounded curvature operator and positive asymptotic volume ratio.

As pointed out in [Buzano et al. 2013], the situation of multiple warped products
on nonnegative Einstein manifolds is rather special because of the automatic lower
bound on the scalar curvature of the hypersurfaces. This leads, in the case where
all factors have positive scalar curvature, k > 1, to definiteness of certain energy
functionals occurring in the analysis of the dynamical system arising from (0.1),
and hence to coercive estimates on the flow. In the present case, where one factor is
a circle, i.e., k = 1, we can pass, as in [Buzano et al. 2013], to a subsystem where
coercivity holds, and this is enough for the analysis to proceed. The new solitons
obtained, like those of [Dancer and Wang 2009a], have conical asymptotics and are
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not of Kähler type (Theorem 2.14). We note that the lowest-dimensional solitons we
obtain form a 2-parameter family on R2

× S2. The special case r = 1 was analysed
earlier by the physicists Gutperle, Headrick, Minwalla and Schomerus [Gutperle
et al. 2003].

As in [Buzano et al. 2013], we also obtain a family of solutions to our soli-
ton equations that yield complete Einstein metrics of negative scalar curvature
(Theorem 3.1). These are analogous to the metrics discovered by Böhm [1999].
Recall that for Böhm’s construction the fact that the hyperbolic cone over the
product Einstein metric on the hypersurface acts as an attractor plays an important
role in the convergence proof for the Einstein trajectories. When k = 1, however, no
product metric on the hypersurface can be Einstein with positive scalar curvature,
so the hyperbolic cone construction cannot be exploited directly. It turns out that
the analysis of the soliton case already contains most of the analysis required for
the Einstein case. The new Einstein metrics we obtain have exponential volume
growth.

The fact that k = 1 (rather than k > 1) allows for some new phenomena displayed
by the asymptotic cones of some of our expander and Einstein examples. This
is a consequence of the striking observation of Kwasik and Schultz [2002] that
for an exotic sphere 6 and the standard sphere S of the same dimension, R2

×6

is not diffeomorphic to R2
× S, but if we replace R2 by R3 in the products the

resulting spaces do become diffeomorphic. In fact, the open cones R+×S1
×6 and

R+× S1
× S are also homeomorphic but not diffeomorphic. As a result, we obtain

examples of pairs of expanders and negative Einstein manifolds whose asymptotic
cones are also homeomorphic but not diffeomorphic. These results are described in
greater detail at the end of Section 3; see Corollary 3.2 and Proposition 3.3.

To make further progress in the search for expanders, we need to consider more
complicated hypersurface types where the scalar curvature may not be bounded
below. In [Buzano et al. 2013] we carried out numerical investigations of steady
solitons where the hypersurfaces are the total spaces of Riemannian submersions
for which the hypersurface metric involves two functions, one scaling the base and
one the fibre of the submersion. We now look numerically at expanding solitons
with such hypersurface types, in particular where the hypersurfaces are S2 or S3

bundles over quaternionic projective space. We produce numerical evidence of
complete expanding gradient Ricci soliton structures in these cases.

Before undertaking our theoretical and numerical investigations, we first prove
some general results about expanding solitons of cohomogeneity one type. Some
of the results follow from properties of general expanding gradient Ricci solitons.
However, the proofs are much simpler and sometimes the statements are sharper,
which is helpful in numerical studies. The results include monotonicity and con-
cavity properties for the soliton potential similar to those proved in [Buzano et al.
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2013] in the steady case, as well as an upper bound for the mean curvature of the
hypersurfaces. To derive this bound, we need to know that complete non-Einstein
expanding gradient Ricci solitons have infinite volume. We include a proof of this
fact here (Proposition 1.22) since we were not able to find an explicit statement in
the literature. Finally we derive an asymptotic lower bound for the gradient of the
soliton potential, which is in turn used to exhibit a general Lyapunov function for
the cohomogeneity one expander equations.

1. Background on cohomogeneity one expanding solitons

We briefly review the formalism [Dancer and Wang 2011] for Ricci solitons of
cohomogeneity one. We work on a manifold M with an open dense set foliated by
equidistant diffeomorphic hypersurfaces Pt of real dimension n. The dimension
of M , the manifold where we construct the soliton, is therefore n+ 1. The metric
is then of the form ḡ = dt2

+ gt , where gt is a metric on Pt and t is the arclength
coordinate along a geodesic orthogonal to the hypersurfaces. This set-up is more
general than the cohomogeneity one ansatz, as it allows us to consider metrics with
no symmetry provided that appropriate additional conditions on Pt are satisfied;
see the following as well as [Dancer and Wang 2011, Remarks 2.18, 3.18]. We will
also suppose that u is a function of t only.

We let rt denote the Ricci endomorphism of gt , defined by Ric(gt)(X, Y ) =
gt(rt(X), Y ) and viewed as an endomorphism via gt . Also let L t be the shape
operator of the hypersurfaces, defined by the equation ġt = 2gt L t where gt is
regarded as an endomorphism with respect to a fixed background metric Q. The
Levi-Civita connections of ḡ and gt will be denoted by ∇ and ∇ respectively. The
relative volume v(t) is defined by dµgt = v(t) dµQ

We assume that the scalar curvature St = tr(rt) and the mean curvature tr(L t)

(with respect to the normal ν = ∂/∂t) are constant on each hypersurface. These
assumptions hold, for example, if M is of cohomogeneity one with respect to an
isometric Lie group action. They are satisfied also when M is a multiple warped
product over an interval.

The gradient Ricci soliton equation now becomes the system

− tr L̇ − tr(L2)+ ü+ 1
2ε = 0,(1.1)

r − (tr L)L − L̇ + u̇L + 1
2ε I= 0,(1.2)

d(tr L)+ δ∇L = 0.(1.3)

The first two equations represent the components of the equation in the directions
normal and tangent to the hypersurfaces P , respectively. The third equation repre-
sents the equation in mixed directions — here δ∇L denotes the codifferential for
T P-valued 1-forms.



NON-KÄHLER EXPANDING RICCI SOLITONS, EINSTEIN METRICS 373

In the warped product case the final equation involving the codifferential automat-
ically holds. This is also true for cohomogeneity one metrics that are monotypic, i.e.,
when there are no repeated real irreducible summands in the isotropy representation
of the principal orbits; see [Bérard-Bergery 1982, Proposition 3.18].

There is a conservation law

(1.4) ü+ (−u̇+ tr L) u̇− εu = C

for some constant C . Using our equations we may rewrite this as

(1.5) S+ tr(L2)− (u̇− tr L)2− εu+ 1
2(n− 1)ε = C.

where S := tr(rt) is the scalar curvature S of the principal orbits. If R denotes the
scalar curvature of the ambient metric ḡ, then

R =−2 tr L̇ − tr(L2)− (tr L)2+ S.

We can deduce the equality

(1.6) R+ u̇2
+ εu =−C − ε

2
(n+ 1).

We let ξ denote the dilaton mean curvature

ξ := −u̇+ tr L .

This is the mean curvature of the dilaton volume element e−udµḡ. It is often useful
to define a new independent variable s by

(1.7) d
ds
:=

1
ξ

d
dt
,

and use a prime to denote d/ds. We note that (1.1) implies that ξ̇ =− tr(L2)+ ε/2.
It is also useful, following [Dancer et al. 2013], to introduce the quantity

E := C + εu.

The conservation law may now be rewritten (for nonzero ε) as

(1.8) Ë + ξ Ė − εE = 0.

Note that, for a function t 7→ f (t), the quantity f̈ + ξ ḟ is just the u-Laplacian in
the sense of metric measure spaces.

Another useful quantity is the normalised mean curvature

H= tr L
ξ
= 1+ u̇

ξ
= 1+ u′,

which was introduced in [Dancer and Wang 2009a; Dancer et al. 2013].
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We now specialise to the case of expanding solitons, that is,

ε > 0.

We shall consider complete noncompact expanding solitons with one special orbit.
We may take the interval I over which t ranges to be [0,∞) with the special orbit
placed at t = 0. Let k denote the dimension of the collapsing sphere at t = 0. We
will moreover assume in this section that u(0)= 0, since adding a constant to the
soliton potential does not affect the equations.

A basic result of B.-L. Chen [2009] together with the strong maximum principle
says that for a non-Einstein expanding gradient Ricci soliton R >− ε2(n+ 1). So
we deduce from (1.6) that

E < 0 and (u̇)2 <−E := −(C + εu).

Using the first inequality and the smoothness conditions at t = 0, we find as in the
steady case that ü(0)=C/(k+1) < 0, so completeness imposes restrictions on our
initial conditions.

Integrating the second inequality and using the initial conditions yield

(1.9) 0≤−u(t) < ε

4
t2
+
√
−Ct

and

(1.10) |u̇|< ε

2
t +
√
−C .

These are just the cohomogeneity one versions of general estimates of the potential
due to Z.-H. Zhang [2009].

Proposition 1.11. For a non-Einstein, complete, expanding gradient Ricci soliton of
cohomogeneity one with a special orbit, the soliton potential u is strictly decreasing
and strictly concave on (0,∞).

Proof. The conservation law (1.8) and the fact that E is negative and ε is positive
show that u is strictly concave on a neighbourhood of each critical point t0. As
we noted above, we also have concavity at the special orbit t = 0. Now, as in the
steady case [Buzano et al. 2013], we see there are no critical points of u in (0,∞).
As u̇(0)= 0, we see u is strictly decreasing on (0,∞).

Now set y = u̇ and differentiate (1.4); using (1.1) we obtain

ÿ+ ξ ẏ−
(
ε

2
+ tr(L2)

)
y = 0.

In particular, ÿ+ ξ ẏ < 0, since y is negative. Integrating shows ve−u ẏ is strictly
decreasing, where we recall that v is the relative volume. As t tends to 0, the
smoothness conditions imply that ve−u ẏ tends to 0, so ẏ = ü is negative, as
required. �
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Our next result is inspired by the work of Munteanu and Sesum [2013] for the
case of steady solitons.

Proposition 1.12. For a non-Einstein, complete, expanding gradient Ricci soliton
of cohomogeneity one with a special orbit, the volume growth is at least logarithmic.

Proof. Let Mt = π
−1([0, t]), where π is the projection of M onto the orbit space I .

We consider the integral

f (t) :=
∫

Mt

(
R+ ε

2
(n+ 1)

)
dµḡ

As we are considering non-Einstein solitons the integrand is positive.
Let t0 > 0 and let b := f (t0). Using the trace of the soliton equation and also

the divergence theorem we have, for t ≥ t0,

0< b ≤ f (t)=−
∫

Mt

4u dµḡ

=

∫
∂Mt

(∇u) ·
(
−
∂

∂t

)
dµḡ

∣∣
∂Mt

= |u̇| v(t)

<
(
ε

2
t +
√
−C

)
v(t)

where we use (1.10) in the last line. Hence v(t) > b/
(
ε
2 t +
√
−C

)
, and integrating

yields

vol(Mt) > vol(Mt0)−
2b
ε

log
(
ε

2
t0+
√
−C

)
+

2b
ε

log
(
ε

2
t +
√
−C

)
. �

Proposition 1.13. Let (M, ḡ, u) be a non-Einstein, complete, expanding gradient
Ricci soliton of cohomogeneity one with a special orbit. Then there exists t1 > 0
such that on (t1,∞) we have tr L <

√
nε/2.

Proof. By Cauchy–Schwartz and the concavity result, we have

(1.14) d
dt
(tr L) < ε

2
− tr(L2)≤

ε

2
−

1
n
(tr L)2.

Note that by the smoothness conditions tr L is strictly decreasing near t = 0, and
its limit as t tends to zero from above is +∞.

(i) First let us assume that d(tr L)/dt is nonnegative at some t1. The inequality
above shows that |tr L|2 < ε

2 n at t = t1.
Let us consider the solutions of the equation

(1.15) ḣ = ε
2
−

1
n

h2.

These are the family of increasing functions
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h(t)=
√
εn
2

a exp(t
√

2ε/n)− 1
a exp(t

√
2ε/n)+ 1

,

where a is a positive constant, as well as the constant functions ±
√
εn/2 which

form the bounding envelope for this family. Hence tr L ≤ h∗(t) <
√
εn/2, where

h∗(t) is the solution to (1.15) which agrees with tr L at t1.

(ii) Next suppose that d(tr L)/dt is always negative. Now if tr L is ever zero then it is
negative and bounded away from zero on some semi-infinite interval. Recalling that
tr L= v̇/v and integrating, we see that the soliton volume is finite, which contradicts
Proposition 1.12. So tr L is positive on (0,∞) and, using Proposition 1.11, we
see ξ is also positive on this interval. By [Pigola et al. 2011, Theorem 11], ξ tends
to infinity as t tends to∞. But ξ also tends to infinity as t tends to zero, so we
have a minimum t1 where ξ̇ vanishes. Now (1.1) shows tr(L2) = ε/2 at t1 and
Cauchy–Schwartz shows (tr L)2 ≤ nε/2 at t1. As tr L is decreasing, we have the
desired result. �

Remark 1.16. This bound on tr L is best possible, at least if we allow the solitons
to be Einstein. Indeed, the negative scalar curvature Einstein metrics of Böhm
[1999] give exactly this bound, as tr L is asymptotic to nε/2.

Next we consider properties of the Lyapunov function F0, which was introduced
by Böhm [1999] for the Einstein case and was subsequently studied in [Dancer
et al. 2013; Buzano et al. 2013] for the soliton case. Note that this function was
denoted by F in [Dancer et al. 2013].

Proposition 1.17. Let F0 denote the function v2/n
(
S+ tr((L(0))2)

)
defined on the

velocity phase space of the cohomogeneity one expanding gradient Ricci soliton
equations, with L(0) representing the trace-free part of L. Then along the trajectory
of a complete smooth non-Einstein expanding soliton, F0 is nonincreasing for
sufficiently large t.

Proof. The formula for dF0/dt in [Dancer et al. 2013, Proposition 2.17] shows
that the proposition would follow if, for sufficiently large t , one can show that

ξ −
1
n

tr L =−u̇+ n−1
n

tr L ≥ 0.

We first note that tr L is eventually bounded below by −
√
εn/2. Otherwise, at

some t = t1 > 0, tr L ≤ −
√
εn/2 and (1.14) shows that this inequality continues

to hold from t1 onwards. But this would imply that the soliton has finite volume,
contradicting Proposition 1.12.

We are now done since part (i) of the next proposition shows that |u̇| = −u̇
grows at least linearly for sufficiently large t . In particular, for large enough t , F0

fails to be strictly decreasing iff the shape operator of the hypersurfaces become
diagonal. �
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Proposition 1.18. Let (M, ḡ, u) be a complete, non-Einstein, expanding gradient
Ricci soliton of cohomogeneity one with a special orbit. Suppose t1 > 2

√
5/ε and

on [t1,+∞) we have an upper bound λ0 > 0 for tr L. Set a := λ0+
√
−C. Then on

[t1,+∞) we have

(i) |∇u| = −u̇(t) > 9
10

(
−u̇(t1)
ε
2 t1+ a

)(
ε

2
t + a

)
,

(ii) ü+ ε
2
=−Ricḡ

(
∂

∂t
,
∂

∂t

)
≤
ε

2

(
1+ 9

10
u̇(t1)
ε
2 t1+ a

)
.

Proof. By assumption and the upper bound (1.10) we have ξ < ε
2 t + a. Since

ẏ = ü < 0 and y = u̇ < 0 by Proposition 1.11, we see that y satisfies the differential
inequality

ÿ+
(
ε

2
t + a

)
ẏ− ε

2
y < 0.

We will now compare y with solutions of the corresponding equation

(1.19) ẍ +
(
ε

2
t + a

)
ẋ − ε

2
x = 0,

which can be solved explicitly. This is because, if we differentiate this equation,
we obtain

d3x
dt3 +

(
ε

2
t + a

)
ẍ = 0,

from which we can solve for ẍ . Accordingly, upon integration and using (1.19), we
obtain

(1.20) x(t)=−
(
ε

2
t + a

)( c0
ε
2 t1+ a

− c1e(ε/4)t
2
1+at1

∫ t

t1

e−(ε/4)τ
2
−aτ(

ε
2τ + a

)
2

dτ
)
,

where c0 and c1 are arbitrary constants.
In order to apply [Protter and Weinberger 1984, Theorem 13, p. 26], we must

choose x(t1)≥ y(t1)= u̇(t1) and ẋ(t1)≥ ẏ(t1)= ü(t1). Since x(t1)=−c0, we can
maximize c0 by choosing x(t1)= u̇(t1). It follows that

c1 =−ẍ(t1)=−
ε

2
x(t1)+

(
ε

2
t1+ a

)
ẋ(t1)≥−

ε

2
u̇(t1)+

(
ε

2
t1+ a

)
ü(t1).

In particular, an admissible choice for c1 is c1 =
ε
2 c0 > 0. With this choice, it

remains to find an upper bound for the integral in (1.20).
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To do this, we integrate by parts three times and then throw away the resulting
term involving integration (this term is negative). Specifically, we have∫ λ

λ1

e−σ
2/ε

σ 2 dσ

≤
ε

2

(
e−λ

2
1/ε

λ3
1

)(
1− 3

2
ε

λ2
1
+

15
λ4

1

(
ε

2

)2
−

(
λ1

λ

)3

e−(λ
2
−λ2

1)/ε

(
1− 3

2
ε

λ2 +
15
λ4

(
ε

2

)2
))
.

Using the change of independent variable λ := ε
2 t + a and the fact that

1− 3ε
2

x + 15
4
ε2x2
=

(
1− 3ε

4
x
)2
+

51
16
ε2x2
≥

17
20
,

we obtain

e(ε/4)t
2
1+at1

∫ t

t1

e−(ε/4)τ
2
−aτ(

ε
2τ + a

)
2

dτ

≤
1(

ε
2 t1+ a

)
3

(
1− ε

2
3(

ε
2 t1+ a

)
2
+

(
ε

2

)2 15(
ε
2 t1+ a

)
4
−

17
20

( ε
2 t1+ a
ε
2 t + a

)3 e(ε/4)t
2
1+at1

e(ε/4)t2+at

)
.

If we substitute the information above together with the choice c1 =
ε
2 c0 in the

comparison inequality u̇(t)≤ x(t) (for t ≥ t1), we obtain

−u̇(t)

≥−
u̇(t1)
ε
2 t1+ a

(
ε

2
t + a

)(
1− ε

2
1(

ε
2 t1+ a

)
2

(
1− ε

2
3(

ε
2 t1+ a

)
2
+

(
ε

2

)2 15(
ε
2 t1+ a

)
4

))
≥−

u̇(t1)
ε
2 t1+ a

(
ε

2
t + a

)(
1− ε

2
1(

ε
2 t1+ a

)
2

)
>

9
10

(
−

u̇(t1)
ε
2 t1+ a

)(
ε

2
t + a

)
where for the last inequality we used the hypothesis that t1 > 2

√
5/ε, so that

ε
2 t1+ a >

√
5ε. This completes the proof of (i).

The proof of (ii) follows by applying the same estimates to the comparison
inequality ü(t) = ẏ(t) ≤ ẋ(t) for t ≥ t1. Note that by [Dancer and Wang 2000,
(2.2)] and (1.2), the quantity ü+ ε

2 is precisely the negative of the Ricci curvature
of the soliton metric in the direction ∂/∂t . �

Remark 1.21. In the above proof we can of course take λ0 to be
√
εn/2 by

Proposition 1.13. Notice, however, that in part (ii) of the proof of Proposition 1.13
one automatically has an upper bound on tr L . So one can apply Proposition 1.18
instead of [Pigola et al. 2011, Theorem 11] to obtain a self-contained proof for
Proposition 1.13.
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Note also that neither Proposition 1.13 nor 1.18 requires any curvature bounds.

We end this section with a simple generalization of Proposition 1.12 which, as far
as we know, has not been explicitly observed in the literature. An analogous result
for steady gradient Ricci solitons is [Munteanu and Sesum 2013, Theorem 5.1].

Proposition 1.22. A complete non-Einstein expanding gradient Ricci soliton has at
least logarithmic volume growth.

We shall give a sketch of the proof only since the basic outline is the same as that
for the cohomogeneity one case. One replaces Mt in the proof of Proposition 1.12
by the metric ball Bp(t) of radius t from an arbitrary but fixed point p ∈ M . The
integrand in the boundary integral that is left after applying Stokes’ theorem can be
bounded by c̃ (t + 2) voln−1(∂Bp(t)) where c̃ is a positive constant which depends
only on n and ε; see [Zhang 2009]. One then obtains the inequality

b
c̃(t + 2)

≤ voln−1(∂Mp(t)).

Integrating this inequality and applying the coarea formula, one deduces that the
volume of Bp(t) grows at least logarithmically in t .

The main technical point in the above is to justify the use of Stokes’ theorem as
the distance function from p is only Lipschitz continuous. For this one can use the
well-known fact that Stokes’ theorem holds for Lipschitz domains (see [McLean
2000, Theorem 3.34]), or one can use the approximation arguments of Gaffney
[1954] as in [Yau 1976, p. 660] to get a compact exhaustion of the underlying
manifold with sufficiently good properties for applying the usual version of Stokes’
theorem (see the version of this paper at arXiv:1311.5097).

Remark 1.23. Of course there are noncompact negative Einstein manifolds with
finite volume. It is quite probable though that for nontrivial expanders the above
volume lower bound is not sharp. Most lower bounds for the volume in the literature
involve additional assumptions on the curvature. For example, in [Carrillo and
Ni 2009, Proposition 5.1(b)] or [Chen 2012, Theorem 1] a lower bound on the
(average) scalar curvature is assumed.

2. Multiple warped product expanders

In this section, we specialise to multiple warped products, that is, metrics of the
form

(2.1) ḡ = dt2
+

r∑
i=1

g2
i (t) hi

on I ×M1× · · ·×Mr , where I is an interval in R, r ≥ 2 and (Mi , hi ) are Einstein

http://arxiv.org/abs/1311.5097
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manifolds with real dimensions di and Einstein constants λi . We observe that
n =

∑
i di is greater than or equal to 3 as long as some Mi is nonflat.

The Ricci endomorphism is now diagonal with components given by blocks
(λi/g2

i )Idi , where i = 1, . . . , r and Im denotes the identity matrix of size m. We
work with the variables

X i =

√
di

ξ

ġi

gi
,(2.2)

Yi =

√
di

ξ

1
gi
,(2.3)

W =
1
ξ
:=

1
−u̇+ tr L

,(2.4)

for i = 1, . . . , r . The definition of Yi in [Dancer and Wang 2009a; 2009b] differs
from that above by a scale factor of

√
λi . This choice reflects the fact that we are

now allowing one of the λi to be zero. As in [Buzano et al. 2013] we have
r∑

j=1

X2
j =

tr(L2)

ξ 2 and
r∑

j=1

λ j Y 2
j =

tr(rt)

ξ 2 .

As mentioned earlier, we shall introduce the new independent variable s defined
by (1.7) and use a prime to denote differentiation with respect to s.

In these new variables the Ricci soliton system (1.1)–(1.2) becomes

X ′i = X i

( r∑
j=1

X2
j − 1

)
+

λi
√

di
Y 2

i +
ε

2
(
√

di − X i )W 2,(2.5)

Y ′i = Yi

( r∑
j=1

X2
j −

X i
√

di
−
ε

2
W 2
)
,(2.6)

W ′ =W
( r∑

j=1

X2
j −

ε

2
W 2
)
,(2.7)

for i = 1, . . . , r . Note that, in the warped product situation, (1.3) is automatically
satisfied.

As in [Buzano et al. 2013] we use G to denote
∑r

i=1 X2
i . The quantity H=W tr L

becomes
∑r

i=1
√

di X i in our new variables. We further have the equation

(H− 1)′ = (H− 1)
(
G− 1− ε

2
W 2
)
+Q,

where

(2.8) Q=
r∑

i=1

(X2
i + λi Y 2

i )+
ε(n− 1)

2
W 2
− 1.
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As explained in [Dancer and Wang 2009a], Q serves as an energy functional in the
expanding case, modifying the Lyapunov functional

(2.9) L :=
r∑

i=1

(X2
i + λi Y 2

i )− 1,

which plays a key role in the steady case; see [Dancer and Wang 2009b; Buzano
et al. 2013]. The general conservation law (1.5) then becomes Q= (C + εu)W 2.

Note that, in our situation, the quantity Q is no longer a Lyapunov function.
However, we do have the equations

(H− 1)′ = f1(H− 1)+ f2Q
Q′ = f3(H− 1)+ f4Q,

where f1 = G− 1− ε
2 W 2, f2 = 1, f3 = εW 2, and f4 = 2

(
G− ε

2 W 2
)
. The crucial

point for us is that in the expanding case both f2 and f3 are positive, so the phase
plane diagram in the (H− 1,Q)-plane shows that the regions {H< 1,Q< 0} and
{H> 1,Q> 0} are both flow-invariant. Furthermore, the region {Q= 0,H= 1} of
phase space corresponds to Einstein metrics of negative Einstein constant and is of
course also flow-invariant.

The above observations are in fact valid for the general monotypic cohomogeneity
one expanding soliton equations, not just for the warped product case, provided we
make the general definition

Q :=W 2E =W 2(C + εu) and H :=W tr L .

(The conservation law shows that this is consistent with the earlier formula for Q
that we gave in the warped product case; see [Dancer et al. 2013, (4.6)].) We refer
to [Dancer et al. 2013] for a discussion of this topic as well as the qualitatively
different situation of shrinking solitons, where ε is negative. However, apart from
the multiple warped product case, these formulae for Q involve polynomial or
rational expressions in the X i and Yi variables which need not be definite, so the
estimates obtained are not coercive.

In the warped product case with all λi positive, which was the situation examined
in [Dancer and Wang 2009a], Q is, as explained above, a positive definite form
(up to an additive constant) in the X i , Yi , so we obtained coercive estimates which
allowed us to analyse the flow. For the rest of this section, we shall look at the case
where the collapsing factor M1 is S1, so d1 = 1, λ1 = 0, and the remaining Einstein
constants λi are positive. Then the equation for X1 becomes

X ′1 = X1

( r∑
j=1

X2
j − 1

)
+
ε

2
(1− X1)W 2.
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As Q now does not include a Y1 term, the region Q< 0 is no longer precompact.
However, we will see by using similar ideas to those in [Buzano et al. 2013] that
we can still analyse the flow.

It is clear that we can recover t and gi from a solution X , Y , W of the above
system via the relation dt =W ds and the formulae (2.2), (2.3), (2.4). As usual we
choose t = 0 to correspond to s = −∞. The soliton potential u is recovered by
integrating

(2.10) u̇ = tr L −
1
W
=

H− 1
W
=

∑r
i=1
√

di X i − 1
W

.

We next compute the critical points of the soliton system (2.5)–(2.7).

Lemma 2.11. Let d1= 1 and di > 1 for i > 1, so that λi = 0 iff i = 1. The stationary
points of (2.5), (2.6), (2.7) in X, Y,W -space consist of

(i) the origin

(ii) points with W = 0, Yi = 0 for all i , and
∑r

i=1 X2
i = 1

(iii) points given by

W = 0, X i =
√

diρA, Y 2
i =

di

λi
ρA(1− ρA), i ∈ A

and X i = Yi = 0 for i /∈ A, where A is any nonempty subset of {2, . . . , r},
and ρA =

(∑
j∈A d j

)−1

(iv) the line where W = 0, X i = 0 for all i , and Yi = 0 for i > 1

(v) the line where W = 0, X1 = 1, and X i , Yi = 0 for i > 1.

(vi) the points E± with coordinates

X i =

√
di

n
, Yi = 0, W =±

√
2

nε
. �

Note that L equals −1 in case (i) and (iv), equals 0 in case (ii), (iii) and (v), and
equals (1− n)/n in case(vi). Also Q is −1 in cases (i) and (iv) and 0 otherwise.
Cases (i)–(v) arose in [Buzano et al. 2013] in the steady case. Case (vi) is special
to the expanding case and arose in [Dancer and Wang 2009a]. Again the origin is
no longer an isolated critical point.

The analysis of the equations is quite similar to that in [Dancer and Wang 2009a],
with appropriate changes as in [Buzano et al. 2013] to reflect the fact that one
factor M1 of the product hypersurface is flat. Accordingly, we shall be brief in our
discussion.

We look for solutions where the flat factor M1 = S1 collapses at the end cor-
responding to t = 0 (that is, s = −∞). In our new variables, this translates into
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considering trajectories in the unstable manifold of the critical point P of (2.5)–(2.7)
(of type (v)) given by

W = 0, X1 = 1, Y1 = 1, X i = Yi = 0 (i > 1).

Note that at this critical point we have L=Q= 0 and G =H= 1.
The linearisation about this critical point is the system

x ′1 = 2x1,

y′1 = x1,

x ′i = 0 (i ≥ 2),

y′i = yi (i ≥ 2),

w′ = w

with eigenvalues 2, 1 (r times), and 0 (r times).

The results of [Buzano 2011] now show we have an r-parameter family of
trajectories γ (s) emanating from P and pointing into the region {Q< 0,H < 1}.
Moreover, by the arguments above, such trajectories stay in this region. We can
choose the trajectories to have W , Yi positive for all time, as the loci {Yi = 0} or
{W = 0} are flow-invariant and the equations are invariant under changing the sign
of W and/or of any Yi .

As mentioned above, as M1 is flat and Y1 does not appear in Q, the region
{Q< 0} is no longer precompact. However, since the variable Y1 only enters into
the equations through the equation for Y ′1, we may follow [Buzano et al. 2013]
and consider the subsystem obtained by omitting the i = 1 equation in (2.6). The
result is a system of equations in W , X i (i = 1, . . . , r) and Yi (i = 2, . . . , r), and
on this 2r -dimensional phase space the locus {Q< 0} is precompact. Once we have
a long-time solution to the subsystem, Y1 may be recovered via

Y1(s)= Y1(s0) exp
(∫ s

s0

r∑
j=1

X2
j − X1−

ε

2
W 2
)
,

where s0 is a fixed but arbitrary constant.
The critical points of the subsystem are obtained by removing the Y1-coordinate

from those of the full system. In particular, the origin becomes an isolated critical
point, and case (v) of Lemma 2.11 gives rise to the special critical point P̂ with
W = 0, X1 = 1, X i = 0 (i > 1), Yi = 0 (i = 2, . . . , r), from which emanates an
r -parameter family of local solutions lying in the region

{W > 0, Yi > 0 (i > 1),Q< 0,H< 1}.

The r parameters may be thought of as gi (0), i > 1, and the constant C in the
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conservation law (which has to be negative under the assumption that u(0) = 0).
Homothetic solutions are eliminated by fixing the value of ε.

Precompactness of the region where the subsystem flow lives shows that the
variables are bounded, so that the flow exists for all s. Hence the same is true for the
original flow also. As in [Dancer and Wang 2009a, Lemma 2.2] we can show that
the X i are positive for all s. It follows that H> 0 and X i < 1/

√
di . Furthermore,

we still have the equation (
W
Yi

)′
=

X i
√

di

(
W
Yi

)
,

including the possibility i = 1. So W/Yi increases monotonically to a limit
σi ∈ (0,∞]. (We shall presently show that the σi must all be equal to +∞.)

As the trajectories of interest lie in a precompact set, each of them has a nonempty
ω-limit set �, where we suppressed the dependence on the trajectory. Moreover,
each � is compact, connected, and invariant under both forward and backward
flows.

As in [Dancer and Wang 2009a, p. 1115] we can show that � lies in the locus
{Yi =0, 2≤ i ≤ r}. Now, on this locus the flow is just the same as that in [Dancer and
Wang 2009a], and the arguments there (see pp. 1116–1120) show as before that �
contains the origin (in the phase space for the subsystem). The centre manifold
argument in [Dancer and Wang 2009a, pp. 1121–1122] then shows the origin is a
nonlinear sink, so in fact the trajectory converges to the origin.

Now we can follow the arguments of for Lemma 3.13 in [Dancer and Wang
2009a] to show that

(2.12) lim
s→∞

X i

W 2 =3i :=
λi

σ 2
i
√

di
+
ε

2

√
di ,

where 3i > 0. This is valid in particular for i = 1, in which case 31 =
ε
2 . In fact,

the proof of [Dancer and Wang 2009a, Lemma 3.15] shows that σi cannot be finite,
and so 3i/

√
di =

ε
2 for all i . Applying this fact to the relation

ġi

gi
=

1
√

di

X i

W
=

1
√

di

X i

W 2 W,

it follows that the hypersurfaces have asymptotically decaying principal curvatures.
The limits (2.12) also imply that, for sufficiently large s, there exist a1, a2>0 such

that a1W 4
≤G≤a2W 4, from which we deduce completeness of the soliton metric by

using the relation dt =W ds and the equation (from (2.7)) W ds = dW/(G− ε
2 W 2).

We further have W ∼ 1/
√
εs and s ∼ 1

4εt2.
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The asymptotics for gi , i > 1, are deduced as in [Dancer and Wang 2009a]. As
for g1, the equation (

W
Y1

)′
=

X i
√

di

(
W
Y1

)
and X1 ∼

ε
2 W 2
∼ 1/(2s) show that g1 = W/Y1 is also asymptotically linear in t ,

so we have conical asymptotics for all factors.

Remark 2.13. This contrasts with the steady case, where the asymptotic geometry
for n = 1, r = 1 (the cigar) is different from the paraboloid asymptotics for the
Bryant solitons with n> 1, r = 1. In the steady case with r > 1 our work in [Buzano
et al. 2013] yielded solitons of mixed asymptotic type, where g1 tends to a positive
constant and gi behaves like

√
t for i > 1.

In the expanding case, both the n = 1, r = 1 case (due to [Gutperle et al. 2003])
and the n > 1, r = 1 case (due to R. Bryant) have conical asymptotics, and our
solutions here for the r > 1 case also exhibit conical behaviour.

We summarise the discussion in this section by the following:

Theorem 2.14. Let M2, . . . ,Mr be closed Einstein manifolds with positive scalar
curvature. There is an r-parameter family of nonhomothetic complete smooth
expanding gradient Ricci soliton structures on the trivial rank 2 vector bundle over
M2× · · ·×Mr , with conical asymptotics in the sense given above. �

Remark 2.15. As in [Dancer and Wang 2009a] we can see directly from the
equations that the soliton potential u is concave, in accordance with Proposition 1.11.
We can similarly deduce directly that Ric(ḡ)+ ε

2 ḡ is positive semidefinite, so −u
is subharmonic.

Next we note that when r ≥ 2 the sectional curvatures κ(X∧Y ), for X , Y tangent
to different Einstein factors, satisfy −c1/t2

≤ κ(X ∧ Y )≤−c2/t2 < 0 for certain
positive constants c1, c2. This shows that the hypothesis of limt→∞ t2

|sect| = 0
in many results in [Chen 2012] is not satisfied by our examples. In particular,
the simplest hypersurface type in our examples is S1

× Sn−1; see [Chen 2012,
Theorem 4].

Furthermore, all sectional curvatures decay faster than t−2+δ for an arbitarily
small δ > 0. Hence the ambient scalar curvature R tends to zero. Finally we note
that none of the hypotheses (topological or metric) in the recent rigidity theorem of
Chodosh [2014] are satisfied by our examples.

3. Complete Einstein metrics with negative scalar curvature

We may also consider the flow of equations (2.5)–(2.7) in the variety {Q= 0,H= 1}.
Such solutions of course correspond to Einstein metrics with negative scalar curva-
ture, the soliton potential now being constant. In the case when di > 1 for all i , such
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metrics were constructed earlier in [Böhm 1999] by dynamical systems methods as
well. In [Dancer and Wang 2009a, Remark 4.13] we pointed out that a simpler proof
of Böhm’s result can be obtained using our special variables and the embedding of
the Einstein system within the soliton system.

In the present situation, where d1 = 1, the hypersurfaces in the multiple warped
product no longer admit a positive Einstein product metric whose hyperbolic cone
acts as an attractor for the Einstein system. Nevertheless our setup allows us easily
to deduce the following:

Theorem 3.1. Let M2, . . . ,Mr be compact Einstein manifolds with positive scalar
curvature. There is an r−1-parameter family of nonhomothetic complete smooth
Einstein metrics on the trivial rank 2 vector bundle over M2× · · ·×Mr .

To prove the theorem, we consider the r−1-parameter family of trajectories
emanating from the critical point P and lying in the variety {Q= 0, H= 1}. Note
that this variety is smooth.

As in the previous section, we see that the flow is defined for all s by first
restricting to the subsystem obtained by omitting the equation for Y1 and observing
that the locus {Q = 0} is compact. As usual we can take Yi , W positive on our
trajectories, and we can show the X i are positive also. In the following we will
work with the subsystem.

The ω-limit set � of a fixed trajectory lies within the locus {Yi = 0 : i = 2, . . . , r}
by the same argument as in the soliton case. However, the difference now is that no
point in � can have W -coordinate equal to 0. Otherwise, G = 1 and such a point
is a critical point of type (ii) in Lemma 2.11. The argument in the last part of the
proof of [Dancer and Wang 2009a, Proposition 3.6] then leads to a contradiction.
This in particular implies that the only critical point of the flow lying in � is E+
(since W > 0 along our trajectory).

We next consider the trajectory starting from a noncritical point in �.
Recall from [Dancer and Wang 2009a] that on the locus {Q= 0,H= 1, Y = 0},

the quantity J := G− ε
2 W 2 satisfies 0≤ J ≤ 1 and the equation

J ′ = 2J (J − 1).

Moreover, J = 1 exactly when W = 0 and G = 1, and J = 0 exactly at the critical
points E± (of type (vi) in Lemma 2.11). Points with W > 0 (resp. W < 0) flow to
E+ (resp. E−) and flow backwards to W = 0.

For our trajectory, W is necessarily positive, so we obtain a contradiction since
� is compact, flow-invariant, and contains no point with zero W -coordinate. We
therefore deduce that � is {E+}. Now it was observed in [Dancer and Wang 2009a,
Lemma 3.8] that for the flow on {Q = 0,H = 1} the point E+ is a sink, so our
(original) trajectory converges to E+.
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As dt =W ds and W is converging to a positive constant we deduce the metric
is complete. Using (2.2) we see that the metric components g2

i grow exponentially
fast asymptotically.

We end this section with some consequences of combining our existence theorems
with a study of the differential topology of some of our examples.

We will focus on the case where r = 2 and M2 is a homotopy sphere. Recall that
Boyer, Galicki and Kollár [Boyer et al. 2005a; 2005b] have constructed Sasakian
Einstein metrics with positive scalar curvature on all Kervaire spheres (with di-
mension 4m + 1) and those homotopy spheres of dimension 7, 11 or 15 which
bound parallelizable manifolds. As in [Buzano et al. 2013] we can take these
Einstein manifolds or the standard sphere as M2 in our constructions in Section 2
and Section 3. Since it follows from the independent work of K. Kawakubo [1969]
and R. Schultz [1969] that the manifolds R2

×M2 and R2
×Sq are not diffeomorphic

if M2 is an exotic sphere (see [Kwasik and Schultz 2002]), we deduce the following:

Corollary 3.2. In dimensions 9, 13, 17 and all dimensions 4m+3 with m 6= 0, 1, 3,
7, 15, 31, there exist pairs of homeomorphic but not diffeomorphic manifolds both
of which admit non-Einstein, complete, expanding gradient Ricci soliton structures.
The same holds for complete Einstein metrics with negative scalar curvature. �

Note also that our expanding gradient Ricci solitons and negative Einstein man-
ifolds exhibit conical asymptotics. The corresponding cones are differentially of
the form R+ × S1

× M2, where R+ is the set of positive real numbers. We are
indebted to Ian Hambleton for providing an outline of the proof of the following
consequence of the above-mentioned work of Kawakubo and Schultz.

Proposition 3.3. Let 6q and Sq be, respectively, a nonstandard homotopy sphere
and the standard q-sphere. Then the open cones R+× S1

×6 and R+× S1
× Sq

are not diffeomorphic.

Proof (I. Hambleton). Let

φ : R+× S1
×6q

→ R+× S1
× Sq

be an orientation-preserving diffeomorphism. For convenience, let

X = S1
×6q , Xa = {a}× X,

Y = S1
× Sq , Yb = {b}× Y.

By compactness, φ(X1)⊂ (a, b)×Y for some 0< a < b. Moreover, by Alexander
duality (applied to (a, b)× Y with the ends capped off by attaching D2

±
× Y , for

example), φ(X1) is a two-sided hypersurface that separates (a, b)× Y into two
path-connected open submanifolds of R+× Y .
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Let W± denote the closures of these path components. Then, using the diffeomor-
phism φ, which has to preserve the ends of R+×X and R+×Y , one easily sees that
W− (resp. W+) is a compact manifold whose boundary consists of Ya and φ(X1)

(resp. φ(X1) and Yb). Moreover, by composition with suitable retractions and the
restrictions of φ or φ−1 to suitable subsets, one also sees easily that the inclusion
of the boundary components into W− are homotopy equivalences, i.e., W− is an
h-cobordism between its boundary components. Noting that the Whitehead group
of π1(S1

× Sq) = Z is trivial and applying the s-cobordism theorem, we get a
contradiction to the result of Kawakubo and Schultz that S1

×6q and S1
× Sq are

not diffeomorphic. �

Hence we obtain for the dimensions given in Corollary 3.2 pairs of non-Einstein,
complete, expanding gradient Ricci solitons (or complete negative Einstein mani-
folds) whose asymptotic cones are homeomorphic but not diffeomorphic.

4. Numerical examples

We shall now look at some numerical solutions of the equations (1.1)–(1.3). The
Ricci soliton equation in the cohomogeneity one setting has an irregular singular
point at t = 0. We therefore follow the procedure in [Dancer et al. 2013, § 5;
Buzano et al. 2013]. That is, we first find a series solution in a neighbourhood
of the singular orbit satisfying the appropriate smoothness conditions. We then
truncate the series and use the values of the resulting functions at some small t0 > 0
as initial values to generate solutions of the equations for t > t0 via a fourth-order
Runge–Kutta scheme. Because the manifolds we are considering are noncompact,
we check the numerics obtained against the general asymptotic properties given in
Section 1.

The explicit cases that we shall look at are those where the hypersurface is the
twistor space of quaternionic projective space and the total space of the correspond-
ing Sp(1) bundle. For these examples, the estimates Q< 0 and H< 1 do not give
coercive estimates, and we do not yet have analytical existence proofs. However the
numerics give a strong indication that complete expanding solitons exist in these
cases.

Let us recall the equations that will be analysed numerically, following [Buzano
et al. 2013]. We consider cohomogeneity one manifolds with principal orbits
G/K whose isotropy representation consists of two inequivalent Ad(K )-invariant
irreducible real summands. We assume that K ⊂ H ⊂ G, where H , K are closed
subgroups of the compact Lie group G such that H/K is a sphere. A G-invariant
background metric b is chosen on G/K such that it induces the constant curvature 1
metric on H/K . The cohomogeneity one manifolds are then the vector bundles
G×H Rd1+1 where H/K ⊂ Rd1+1 is regarded as the unit sphere.
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Let g = k⊕ p be an Ad(K )-invariant decomposition of the Lie algebra of G,
so that p is identified with the tangent space of G/K at the base point. We can
further decompose p into irreducible K -modules, thus p= p1⊕ p2, where p1 and
p2 are respectively the tangent spaces (at the base point) to the sphere H/K and
the singular orbit G/H . Their respective dimensions are denoted by d1 and d2.

The metrics of cohomogeneity one take the form

ḡ = dt2
+ g1(t)2 b|p1+ g2(t)2 b|p2.

Letting (z1, . . . , z6) := (g1, ġ1, g2, ġ2, u, u̇), the gradient Ricci soliton equations
become

ż1 = z2,

ż2 =−(d1− 1)
z2

2

z1
− d2

z2z4

z3
+ z2z6+

d1− 1
z1
+

A3

d1

z3
1

z4
3
+
ε

2
z1,

ż3 = z4,

ż4 =−d1
z2z4

z1
− (d2− 1)

z2
4

z3
+ z4z6+

A2

d2

1
z3
− 2

A3

d2

z2
1

z3
3

+
ε

2
z3,

ż5 = z6,

ż6 =−z6

(
d1

z2

z1
+ d2

z4

z3

)
+ z2

6+ εz5+C,

where the Ai are positive constants which appear in the scalar curvature function
of the principal orbit. Note that, because of the backgound metric chosen, the
coefficient A1/d1 of the 1/z1 term in the second equation becomes d1− 1, and for
expanding solitons we have ε > 0.

Recall also the general relation (d1 + 1) ü(0) = C + εu, which follows from
the conservation law and the smoothness conditions at t = 0. In generating the
numerics, we find it convenient to eliminate homothetic solutions by choosing ε to
be 1. Furthermore, rather than setting u(0)= 0, as was done throughout Section 1,
we now set the constant C to be zero. It then follows from the necessary condition
E < 0 that in the series solution we must arrange for ü(0) = u(0)/(d1 + 1) < 0,
with u(0) as an otherwise arbitrary parameter.

Example 1. We set G = Sp(m+ 1), H = Sp(m)×Sp(1), and K = Sp(m)×U(1).
The principal orbit G/K is diffeomorphic to CP2m+1 and the singular orbit G/H
is HPm . So d1 = 2, d2 = 4m, and A2 = 2m(m + 2), A3 = m/2 (with b chosen
to be −2 tr(XY )). The initial values of (z1, . . . , z6) are given by (0, 1, h̄, 0, ū, 0),
where h̄ > 0 and ū < 0. These give rise to a 2-parameter family of numerical
solutions.

In Figure 1 on the next page we plot the functions gi and u for the cases m = 1
and m = 2, with parameter values h̄ = 6 and ū =−1.
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Figure 1. Plots of g1 (blue), g2 (red) and u (green) for m = 1 (top)
and m = 2 (bottom).

Note that the soliton potential is concave down and becomes approximately
quadratic, in accordance with Proposition 1.11 and Proposition 1.18. The gi are
asymptotically linear.

We have also plotted the quantities

X̃ i =
X i
√

di
and Ỹi =

Yi
√

d1

against t in Figures 2 and 3 for the cases m = 1 and m = 2 respectively. They all
converge quickly to 0.

In Figure 4 we plot the ratios X̃1/X̃2 and Ỹ1/Ỹ2. Note that the second ratio is
g2/g1, which tends to a positive constant. The first ratio is the ratio of the principal
curvatures, (ġ2/g2)

/
(ġ1/g1), and we see that it quickly approaches 1.

Similar numerical results hold for larger values of m.

Example 2. We next set

G = Sp(m+ 1)×Sp(1),

H = Sp(m)×Sp(1)×Sp(1),

K = Sp(m)×1Sp(1).
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Figure 2. Plots of X̃ i (left) and Ỹi (right) for i = 1 (blue) and i = 2
(red), in the case m = 1.
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Figure 3. Plots of X̃ i (left) and Ỹi (right) for i = 1 (blue) and i = 2
(red), in the case m = 2.

The principal orbit G/K is diffeomorphic to S4m+3 and the singular orbit G/H is
again HPm . So d1 = 3, d2 = 4m, and A2 = 4m(m + 2), A3 = 3m/4 (where b is
given by−2 tr(XY ) on both of the simple factors). The initial values of (z1, . . . , z6)

are given by (0, 1, h̄, 0, ū, 0), where h̄ > 0 and ū < 0.
For this case we obtain graphs very similar to those in Example 1.
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Figure 4. Plots of X̃1/X̃2 (lower curve) and Ỹ1/Ỹ2 (upper curve).

Based on the last two examples, we would conjecture that on the vector bundles
G ×H Rd1+1, where (G, H, K ) are as above, there is a 2-parameter family of
nonhomothetic complete expanding gradient Ricci solitons.
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A NOTE ON L-PACKETS AND ABELIAN VARIETIES
OVER LOCAL FIELDS

JEFFREY D. ACHTER AND CLIFTON CUNNINGHAM

A polarized abelian variety (X, λ) of dimension g and good reduction over a
local field K determines an admissible representation of GSpin2g+1(K ). We
show that the restriction of this representation to Spin2g+1(K ) is reducible
if and only if X is isogenous to its twist by the quadratic unramified exten-
sion of K . When g = 1 and K = Q p, we recover the well-known fact that
the admissible GL2(K )-representation attached to an elliptic curve E with
good reduction is reducible upon restriction to SL2(K ) if and only if E has
supersingular reduction.

Introduction

Consider an elliptic curve E/Qp with good reduction. Let πE be the unramified
principal series representation of GL2(Qp) with the same Euler factor as E . Al-
though πE is irreducible, the restriction of πE from GL2(Qp) to its derived group,
SL2(Qp), need not be irreducible. In fact, it is not hard to show that πE |SL2(Qp) is
reducible if and only if the reduction of E is supersingular; see [Anandavardhanan
and Prasad 2006, 2.1], for example.

This note generalizes the observation above, as follows. Let K be a non-
Archimedean local field with finite residue field and let (X, λ) be a polarized
abelian variety over K of dimension g with good reduction. Fix a rational prime `
invertible in the residue field of K . Then the associated Galois representation on the
rational `-adic Tate module of X takes values in GSp(V`X, 〈 · , · 〉λ) ∼= GSp2g(Q`).
The eigenvalues of the image of Frobenius under this unramified representation
determine an irreducible principal series representation πX,λ of GSpin2g+1(K ) with
the same Euler factor as X . Note that the dual group to GSpin2g+1 is GSp2g; note
also that GSpin3

∼= GL2 and GSpin5
∼= GSp4, accidentally. In this note we show

that the restriction of πX,λ from GSpin2g+1(K ) to its derived group Spin2g+1(K )
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is reducible if and only if X is isogenous to its twist by the quadratic unramified
extension of K .

Furthermore, we identify the Langlands parameter φX,λ for πX,λ and then show
that the corresponding L-packet 5X,λ contains the equivalence class of πX,λ only.
Then we show that we can detect when X is isogenous to its quadratic unramified
twist directly from the local L-packet5der

X,λ determined by transferring the Langlands
parameter φX,λ to the derived group Spin2g+1(K ) of GSpin2g+1(K ).

1. Abelian varieties

In this section, we collect some useful facts about abelian varieties, especially
over finite fields. Many of the attributes discussed here are isogeny invariants.
We write X ∼ Y if X and Y are isogenous abelian varieties, and End0(X) for the
endomorphism algebra End(X)⊗ZQ of X .

1A. Base change of abelian varieties. Let X/Fq be an abelian variety of dimen-
sion g. Associated to it are the characteristic polynomial PX/Fq (T ) and minimal
polynomial MX/Fq (T ) of Frobenius. Then PX/Fq (T ) ∈ Z[T ] is monic of degree 2g,
and MX/Fq (T ) is the radical of PX/Fq (T ).

The isogeny class of X is completely determined by PX/Fq (T ) [Tate 1966]. It is
thus possible to detect from PX/Fq (T ) whether X is simple, but even easier to decide
if X is isotypic, which is to say, isogenous to the self-product of a simple abelian
variety. Indeed, let ZEnd0(X) ⊂ End0(X) be the center of the endomorphism
algebra of X . Then

(1-1) ZEnd0(X) ∼= Q[T ]/(MX/Fq (T )),

and X is isotypic if and only if MX/Fq (T ) is irreducible. While it is possible for a
simple abelian variety to become reducible after extension of scalars of the base
field, isotypicality is preserved by base extension (see [Oort 2008, Claim 10.8], for
example).

For a monic polynomial g(T )=
∏

1≤ j≤N (T − τ j ) and a natural number r , set
g(r)(T )=

∏
1≤ j≤N (T − τ

r
j ). It is not hard to check that

PX/Fqr (T )= P (r)X/Fq
(T ).

Lemma 1.1. Suppose X/Fq is isotypic, and let Fqr /Fq be a finite extension. Let Y
be a simple factor of XFqr . Then there exists some m | r such that

M (r)
X/Fq

(T )= MY/Fqr (T )m and dim ZEnd0(X)= m dim ZEnd0(XFqr ).
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Proof. Write XFqr ∼ Y n with Y simple. Then we have two different factorizations
of PX/Fqr (T ):

PX/Fqr (T )= (M
(r)
X/Fq

(T ))d ,

PX/Fqr (T )= (MY/Fqr (T ))e.

Since MY/Fqr (T ) is irreducible (and all polynomials considered here are monic),
there exists some integer m such that

M (r)
X/Fq

(T )= MY/Fqr (T )m .

Note that

m =
deg MX/Fq (T )
deg MY/Fqr (T )

= [ZEnd0(X) : ZEnd0(XFqr )].

Let τ be a root of MX/Fq (T ). Then τ r is a root of M (r)
X/Fq

(T ), and thus of MY/Fq (T );
and the inclusion of fields ZEnd0(XFqr )⊆ ZEnd0(X) is isomorphic to the inclusion
of fields Q(τ r ) ⊆ Q(τ ), under (1-1). In particular, m = [Q(τ ) : Q(τ r )]. Since τ
satisfies the equation Sr

− τ r over Q(τ r ), its degree over Q(τ r ) divides r . �

1B. Even abelian varieties. Call an abelian variety X/Fq even if its characteristic
polynomial is even:

PX/Fq (T )= PX/Fq (−T ).

If X is simple, then it admits a unique nontrivial quadratic twist X ′/Fq . For an
arbitrary X/Fq , let X ′/Fq be the quadratic twist associated to the cocycle

Gal(Fq)→ Aut(X), Frq 7→ [−1]

corresponding to a nontrivial quadratic twist of all simple factors of X .
For future use, we record the following elementary observation:

Lemma 1.2. Let X/Fq be an abelian variety. Then X is even if and only if X and
X ′ are isogenous.

Proof. Use the (canonical, given our construction) isomorphism XFq2
∼= X ′Fq2 to

identify V`X and V`X ′. Then one knows (see [Serre and Tate 1968, p. 506], for
example) that ρX ′/Fq (Frq)=−ρX/Fq (Frq), and thus that

PX ′/Fq (T )= PX/Fq (−T ).

The asserted equivalence now follows from Tate’s theorem [1966, Theorem 1]. �

To a large extent, evenness of X is captured by the behavior of the center of
End0(X) upon quadratic base extension.

Lemma 1.3. If X/Fq is even, then

dim ZEnd0(X)= 2 dim ZEnd0(XFq2 ).
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Proof. Suppose X/Fq is even. Then the multiset {τ1, . . . , τ2g} of eigenvalues of
Frobenius of X is stable under multiplication by −1, and in particular the set of
distinct eigenvalues of Frobenius is stable under multiplication by −1. Moreover,
this action has no fixed points; and thus {τ 2

1 , . . . , τ
2
2g}, the set of eigenvalues of

X/Fq2 , has half as many distinct elements as the original set. The claim now follows
from characterization (1-1) of ZEnd0(X). �

The converse is almost true.

Proposition 1.4. Suppose X is isotypic. Then X is even if and only if

dim ZEnd0(X)= 2 dim ZEnd0(XFq2 ).

Proof. Suppose dim ZEnd0(X)= 2 dim ZEnd0(XFq2 ) and let Y be a simple factor
of XFq2 . By Lemma 1.1,

(1-2) M (2)
X/Fq

(T )= MY/Fq2 (T )
2.

Factor the minimal polynomials of X and Y as

MX/Fq (T )=
∏

1≤ j≤2h

(T − τ j ),

MY/Fq2 (T )=
∏

1≤ j≤h

(T −β j ).

By (1-2), we may order the roots of MX/Fq (T ) so that, for each 1≤ j ≤ h, we have

τ 2
j = τ

2
h+ j = β j ,

so that τh+ j = ±τ j . In fact, τh+ j = −τ j ; for otherwise, MX/Fq (T ) would have
a repeated root, which contradicts the known semisimplicity of Frobenius. Now,
PX/Fq (T )= MX/Fq (T )

d for some d . The multiset of eigenvalues of Frobenius of X
is thus stable under multiplication by −1, and X/Fq is even. �

Note that evenness is an assertion about the multiset of eigenvalues of Frobe-
nius, while the calculation of dim ZEnd0(XFqe ) only detects the set of eigenvalues.
Consequently, if one drops the isotypicality assumption in Proposition 1.4, it is
easy to write down examples of abelian varieties which are not even but satisfy the
criterion on dimensions of centers of endomorphism rings.

Example 1.5. Let E/Fq be an ordinary elliptic curve; then E is not isogenous to
E ′ over Fq but End0(E) ∼= End0(E ′) ∼= L , a quadratic imaginary field. Set X =
E × E × E ′. Then X is not even, since X ′ ∼= E ′× E ′× E , but ZEnd0(X) ∼= L× L
while ZEnd0(XFq2 )

∼= L . Therefore, X/Fq satisfies the dimension criterion of
Proposition 1.4 but is not even.
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Example 1.6. Consider a supersingular elliptic curve E/Fq , where q is an odd
power of the prime p. Then End0(E) ∼= Q(

√
−p), while End0(EFq2 ) is the quater-

nion algebra ramified at p and∞. In particular, ZEnd0(E) is a quadratic imaginary
field, while ZEnd0(EFq2 )

∼= Q. Therefore, E/Fq is even.

Example 1.7. In contrast, if X/Fq is an absolutely simple ordinary abelian variety,
then End0(X)=End0(XFq2 ). (This is a consequence of Theorem 7.2 of [Waterhouse
1969], which unfortunately omits the necessary hypothesis of absolute simplicity.)

Example 1.8. Now consider an arbitrary abelian variety X/Fq and its preferred
quadratic twist X ′. Then the sum X × X ′ is visibly isomorphic to its own quadratic
twist, and thus even.

Example 1.9. Let X/Fq be an abelian variety of dimension g. Suppose there is an
integer N ≥ 3, relatively prime to q , such that X [N ](Fq) ∼= (Z/N )2g . Then X is not
even. Indeed, if an abelian variety Y over a field k has maximal k-rational N -torsion
for N ≥ 3 and N is invertible in k, then End0(Y ) ∼= End0(Yk̄) [Silverberg 1992,
Theorem 2.4]. By the criterion of Lemma 1.3, if X/Fq satisfies the hypotheses of
the present lemma, then X cannot be even.

1C. Abelian varieties over local fields. Now let K be a local field with residue
field Fq and let X/K be an abelian variety with good reduction X0/Fq . As in 1B,
we define a canonical quadratic twist X ′ of X , associated to the unique nontrivial
character

Gal(K/K )→ Gal(K unram/K )→ {[±1]} ⊂ Aut(X).

Proposition 1.10. Let X/K be an abelian variety with good reduction X0/Fq . The
following are equivalent:

(a) X and X ′ are isogenous;

(b) X0/Fq and X ′0/Fq are isogenous;

(c) X0/Fq is even.

Proof. By hypothesis, X spreads out to an abelian scheme X/OK (its Néron model)
with special fiber X0/Fq ; the automorphism [−1] ∈ End(X) extends to an automor-
phism of X and the corresponding twist X′ has generic and special fibers X ′ and
(X0)

′/Fq , respectively. This compatibility explains the equivalence of (a) and (b);
the equivalence of (b) and (c) is Lemma 1.2. �

Call X/K even if X has good reduction and satisfies any of the equivalent
statements in Proposition 1.10.
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2. L-packets attached to abelian varieties

2A. Polarizations. Let X/k be an abelian variety over an arbitrary field k. Let λ
be a polarization on X , i.e., a symmetric isogeny X → X̂ which arises from an
ample line bundle on X . Fix a rational prime ` invertible in k. The polarization λ on
X induces a nondegenerate skew-symmetric pairing 〈 · , · 〉λ on the Tate module T`X
and on the rational Tate module V`X . Let GSp(V`X, 〈 · , · 〉λ) be the group of sym-
plectic similitudes of V`X with respect to this pairing; note that GSp(V`X, 〈 · , · 〉λ)
comes with a representation rλ,` : GSp(V`X, 〈 · , · 〉λ) ↪→ GL(V`X). Let ρX,` :

Gal(k) → GL(V`X) be the representation on the rational Tate module and let
ρλ,` : Gal(k)→ GSp(V`X, 〈 · , · 〉λ) be the continuous homomorphism such that
ρX,` = rλ,` ◦ ρλ,`.

(2-1)

Gal(k̄/k)
ρX,` //

ρX,λ,` ((

GL(V`X)

GSp(V`X, 〈 · , · 〉λ)

rλ,`

66

2B. Admissible representations attached to abelian varieties with good reduction.
Let K be a local field. Fix a rational prime ` invertible in the residue field of K ,
and thus in K . It will be comforting, though not even remotely necessary, to fix an
isomorphism Q`

∼= C. We will indicate the corresponding complex-valued versions
of ρX,`, ρλ,`, and rλ,` from Section 2A by eliding the subscript `.

In the rest of the paper we will commonly employ the notation G := GSpin2g+1;
note that the dual group to G is Ǧ = GSp2g. The derived group Gder = Spin2g+1,
which is semisimple and simply connected, will play a role below, as will its dual
Ǧad = PGSp2g, which is of adjoint type.

Proposition 2.1. Let X/K be an abelian variety of dimension g with good reduction
and let λ be a polarization on X. There is an irreducible unramified principal series
representation πX,λ of GSpin2g+1(K ), unique up to equivalence, such that

L(z, ρX )= L(z, πX,λ, rλ).

Moreover, | |−1/2
K ⊗πX,λ is unitary.

Proof. This is a very small and well-known part of the local Langlands correspon-
dence for G =GSpin2g+1 over K which, in this case, matches unramified principal
series representations of G(K ) = GSpin2g+1(K ) with unramified Langlands pa-
rameters taking values in Ǧ(C) = GSp2g(C). For completeness and to introduce
notation for later use, we include the details here.

We begin by describing L(z, ρX ). By [Serre and Tate 1968], the Galois represen-
tation ρX,` is unramified and the characteristic polynomial of ρX,`(Frq) has rational
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coefficients. Accordingly, the Euler factor for ρX,` takes the form

L(s, ρX )=
(qs)2g

PX0/Fq (qs)
.

Let {τ1, . . . , τ2g} be the (complex) roots of PX0/Fq (T ). Also by [Serre and Tate
1968], the `-adic realization ρX,`(Frq) ∈GL(V`X) of the Frobenius endomorphism
of X is semisimple of weight 1, so each eigenvalue satisfies |τ j | =

√
q. Label

the roots in such a way that, for each 1 ≤ j ≤ g, we have τg+ j = qτ−1
j ; and

τ j =
√

qe2π iθ j , where 1> θ1 ≥ θ2 ≥ · · · ≥ θg ≥ 0.
Let T be a K -split maximal torus in G; let Ť be the dual torus. Then the Lie

algebra of the torus Ť (C) may be identified with X∗(T )⊗C through the function

exp : X∗(T )⊗C→ Ť (C)

defined by α̌(exp(x))= e2π i〈α̌,x〉 for each root α̌ for Ǧ with respect to Ť . The Lie
algebra of the compact part of Ť (C), denoted by Ť (C)u below, is then identified
with X∗(T )⊗R under exp. We pick a basis {e0, . . . , eg} for X∗(T ) that identifies
e0 with the similitude character for Ǧ and write { f0, . . . , fg} for the dual basis for
X∗(T ) ∼= X∗(Ť ). Set θ0 := 0 and set θ :=

∑g
j=0 θ j e j ; note that θ ∈ X∗(T )⊗R, so

exp(θ) lies in Ť (C)u. Then ρX,λ(Frq)=
√

q exp(θ).
Let WK be the Weil group for K . The L-group for T is LT = Ť (C)×WK since

T is K -split. Consider the Langlands parameter

φ :WK →
LT

defined by φ(Frq) = ρX,λ(Frq) =
√

q exp(θ)× Frq . Let χ : T (K )→ C× be the
quasicharacter of T (K ) matching φ under the local Langlands correspondence
for algebraic tori [Yu 2009]. The character χu

:= | |
−1/2
K ⊗ χ corresponds to the

unramified Langlands parameter

φu
:WK →

LT

defined by φu(Frq)= exp(θ)×Frq .
Now pick a Borel subgroup B ⊂ G over K with reductive quotient T and set

πX,λ := IndG(K )
B(K ) χ.

Then πX,λ is an irreducible, unramified principal series representation of G(K ).
In the same way, the unitary character χu

: K×→ C× determines the irreducible
principal series representation

πu
X,λ := IndG(K )

B(K ) χ
u.
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This admissible representation πu
X,λ is unitary and enjoys

πu
X,λ = | |

−1/2
K ⊗πX,λ,

as promised.
Having identified the irreducible principal series representation πX,λ of G(K )

attached to (X, λ), we turn to the L function L(s, πX,λ, rλ). For this it will be helpful
to go back and say a few words about the representation rλ,` :GSp(V`X, 〈 · , · 〉λ) ↪→
GL(V`X).

Let S be a maximal torus in GSp(V`X, 〈 · , · 〉λ) containing ρX,`(Frq) and let S′

be a maximal torus in GL(V`X) containing rλ,`(S). Let F` be the splitting extension
of S′ in Q`; observe that this contains the splitting extension of PX0/Fq (T ) ∈Q[T ]
in Q`. Passing from Q` to F`, we may choose bases { f0, f1, f2, . . . , fg} for X∗(S)
and { f ′1, f ′2, . . . , f ′2g} for X∗(S′) such that the map X∗(S′)� X∗(S) induced by
the representation rλ,` is given, for j = 1, . . . , g, by

(2-2) X∗(S′)→ X∗(S), f ′j 7→ f j , f ′g+ j 7→ f0− fg− j+1.

Note that this determines a basis for V`X ⊗Q`
F`.

Passing from F` to C, we have now identified a basis for V`X ⊗Q`
C which

defines

GSp(V`X ⊗Q`
C, 〈 · , · 〉λ)

∼= GSp2g(C)= Ǧ(C)

inducing S⊗Q`
C ∼= Ť and also gives

GL(V`X ⊗Q`
C) ∼= GL2g(C).

Now (2-1) extends to

(2-3)

Gal(K/K )
ρX //

ρX,λ %%

GL2g(C)

Ǧ(C)

rλ

::

It follows immediately that

L(s, πX,λ, rλ)=
2g∏

i=1

1
1− τi q−s =

2g∏
i=1

qs

qs − τi
=

(qs)2g

PX0/Fq (qs)
= L(s, ρX ),

concluding the proof of Proposition 2.1. �
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2C. R-groups. The irreducible representation πX,λ of G(K ) in Proposition 2.1
is obtained by parabolic induction from an unramified quasicharacter of a split
maximal torus T (K ). In Section 2E we will use the restriction of this represen-
tation to the derived group Gder(K )= Spin2g+1(K ) of G(K )= GSpin2g+1(K ) to
study X . While the resulting representation of Gder(K ) is again an unramified
principal series representation, it need not be irreducible; in fact, we will glean
information about X from the components of this representation of Gder(K ). With
this application in mind, here we review some basic facts about reducible principal
series representations of Gder(K ).

As in the proof of Proposition 2.1, let B be a Borel subgroup of G with reductive
quotient T , a split maximal torus in G. Set Bder=Gder∩B. This is a Borel subgroup
of Gder with reductive quotient Tder= T ∩Gder, a split maximal torus in Gder. Let σ
be a character of Tder(K ). The component structure of the admissible representation
IndGder(K )

Bder(K ) σ is governed by the commuting algebra End(IndGder(K )
Bder(K ) σ), which, in

turn, is given by the group algebra C[R(σ )], where R(σ ) is the Knapp–Stein R-
group; see [Keys 1982, Introduction] for a summary and references to original
sources, including [Silberger 1979].

The Knapp–Stein R-group R(σ ) is determined as follows, as explained in [Keys
1982, §3]. Let R be the root system for G with respect to T and let W be the
corresponding Weyl group for G. The root system for Gder may be identified
with R; see Table 1. Set Wσ = {w ∈ W | wσ = σ }. For each root α ∈ R, let σα
be the restriction of σ to the rank-1 subtorus Tα ⊆ T . Consider the root system
Rσ = {α ∈ R | σα = 1}. Then R(σ )= {w ∈Wσ |w(Rσ )= Rσ }. The exact sequence

1→W ◦σ →Wσ → R(σ )→ 1

determines R(σ ), with W ◦σ := {wα |α ∈ Rσ }, the Weyl group of the root system Rσ ;
see [Keys 1982, §3].

We will need the following alternate characterization of R(σ ). Let s ∈ Ťad(C) be
the semisimple element of Ǧad(C) corresponding to the character σ of Tder(K ). By
Proposition 4 of [Steinberg 1974, §3.5] (see also [Humphreys 1995, §2.2, Theorem]),
ZǦad(C)(s) is a reductive group with root system Řs := {α̌ ∈ Ř | α̌(s) = 1}. The
bijection between R and Ř which comes with the root datum for G restricts to a
bijection between Rσ and Řs . Moreover, by that same Proposition 4, the component
group of the reductive group ZǦad(C)

(s) is Ws/W ◦s , where W ◦s is the Weyl group
for the root system Řs and Ws = {w ∈W |w(s)= s}:

1→W ◦s →Ws→ π0(ZǦad(C)
(s))→ 1.

Here we have identified the Weyl group W for R with the Weyl group for Ř. Under
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that identification, Ws =Wσ and W ◦σ =W ◦s , so

R(σ ) ∼= π0(ZǦad(C)
(s)),

canonically,

2D. Component group calculations. Now we calculate the group π0(ZǦad(C)
(s)).

Proposition 2.2. Suppose t ∈ GSp2g(C) is semisimple and all eigenvalues have
complex modulus 1. Let s ∈ PGSp2g(C) be the image of t under GSp2g(C)→

PGSp2g(C). Then, if and only if the characteristic polynomial of rλ(t) is even,

π0(ZPGSp2g(C)
(s)) ∼= Z/2Z;

otherwise, π0(ZPGSp2g(C)
(s)) is trivial.

Proof. Using the notation in the proof of Proposition 2.1, pick x ∈ X∗(T )⊗R with
exp(x) = t ; of course, x is not uniquely determined by t , as the kernel of exp :
X∗(T )⊗R→ Ť (C) is the weight lattice for T , which, in this case, is the character
lattice X∗(T ) itself; see Table 1. Let v ∈ X∗(Tder)⊗R be the image of x under the
map X∗(T )⊗R→ X∗(Tder)⊗R induced from X∗(T )→ X∗(Tder); see Table 1.
Note that exp(v) = s, where now exp refers to the map exp : X∗(Tder)→ Ť (C)
defined as above. Using this map we may identify Lie Ťad(C) with X∗(Tder)⊗C;
under this identification, the Lie algebra of the compact subtorus of Ťad(C) may be
identified with X∗(Tder)⊗R, henceforth denoted by V .

Let Rder be the root system for Gder and let 〈Rder〉 be the lattice generated by
Rder. By [Reeder 2010, §2.2],

(2-4) π0(ZǦad(C)
(s)) ∼=

{
γ ∈ X∗(Tder)/〈Rder〉 | γ (v)= v

}
,

for a canonical action of X∗(Tder)/〈Rder〉 on V , which we will use to calculate
π0(ZǦad(C)

(s)). Even before describing this action, however, we remark that (2-4),
together with the calculation of X∗(Tder)/〈Rder〉 in Table 1, already gives us good
information about π0(ZǦad(C)

(s)): this component group is trivial or Z/2Z, and in
particular, abelian.

In order to describe the action of X∗(Tder)/〈Rder〉 on V and calculate the right-
hand side of (2-4), we must introduce yet more notation. Adapting [Bourbaki
1968, VI, §2], let Waff := 〈Rder〉 o W be the affine Weyl group for Ǧad and let
Wext := X∗(Tder)oW be the extended affine Weyl group for Ǧad. (Here we use the
coincidence of the weight lattice for Gder with the character lattice for Gder.) Then
Wext is a semidirect product of the Coxeter group Waff by X∗(Tder)/〈Rder〉.

(2-5) 1→Waff→Wext→ X∗(Tder)/〈Rder〉 → 1.

The quotient X∗(Tder)/〈Rder〉 coincides with the fundamental group π1(Ǧad) of Ǧad
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Semisimple,
simply connected Type: Bg Adjoint

Gder= Spin2g+1

Tder=G
g
m

Z(Gder)=µ2

�

�

�

G= GSpin2g+1

T =G
g+1
m

Z(G)=Gm

�

�

�

Gad= SO2g+1

Tad=G
g
m

Z(Gad)= 1

X∗(Tder)=〈e1, . . . ,eg〉 0←[ e0 X∗(T )=〈e0,e1, . . . ,eg〉 � X∗(Tad)=〈α1, . . . ,αg〉

Rder := R(Gder,Tder)

=〈α1, . . . ,αg〉

R := R(G,T )
=〈α1, . . . ,αg〉

Rad := R(Gad,Tad)

=〈α1, . . . ,αg〉

α1= e1− e2
α2= e2− e3

...

αg−1= eg−1− eg
αg = eg

α1= e1− e2
α2= e2− e3

...

αg−1= eg−1− eg
αg = eg

X∗(Tder)/〈Rder〉=Z/2Z

weight lattice=X∗(Tder)

X∗(T )/〈R〉=Z

weight lattice= X∗(T )

X∗(Tad)=〈Rad〉

X∗(Tad)

weight lattice
=Z/2Z

Semisimple,Adjoint Type: Cg simply connected

Ǧad=PGSp2g

Ťad=G
g
m

Z(Ǧad)= 1

�

�

�

Ǧ=GSp2g

Ť =G
g+1
m

Z(Ǧ)=Gm

�

�

�

Ǧder=Sp2g

Ťder=G
g
m

Z(Ǧder)=µ2

X∗(Ťad)=〈α̌1, . . . , α̌g〉 � X∗(Ť )=〈 f0, f1, . . . , fg〉 f0 7→ 0 X∗(Ťder)=〈 f1, . . . , fg〉

Řad := R(Ǧad, Ťad)

=〈α̌1, . . . , α̌g〉

Ř := R(Ǧ, Ť )
=〈α̌1, . . . , α̌g〉

Řder := R(Ǧder, Ťder)

=〈α̌′1, . . . , α̌
′
g〉

α̌1= f1− f2
α̌2= f2− f3

...

α̌g−1= fg−1− fg
α̌g = 2 fg − f0

α̌′1= f1− f2
α̌′2= f2− f3

...

α̌′g−1= fg−1− fg

α̌′g = 2 fg

X∗(Ťad)=〈Řad〉

X∗(Ťad)

weight lattice
=Z/2Z

X∗(Ť )/〈Ř〉=Z

weight lattice=〈Ř〉

X∗(Ťder)/〈Řder〉=Z/2Z

weight lattice=X∗(Ťder)

Table 1. Based root data for GSpin2g+1, Spin2g+1 and SO2g+1.

(see [Steinberg 1968, p. 45] for a table of these finite abelian groups by type). By
[Bourbaki 1968, VI, §2.4, Corollary], the minuscule coweights for Ǧad determine a
set of representatives for X∗(Tder)/〈Rder〉. The basis in Table 1 for the root system
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Řad determines the alcove

C := {v ∈ V | 〈α̌i , v〉> 0, 0≤ i ≤ n}

in V , where α̌0 is the affine root for which 1− α̌0 is the longest root with respect
to the given basis for Řad; see [Bourbaki 1968, VI, §2.3]. The closure C of C is
a fundamental domain for the action of Waff on V . The affine Weyl group Waff

acts freely and transitively on the set of alcoves in V . The extended affine Weyl
group Wext acts transitively on the set of alcoves, but generally not freely. Since
minuscule coweights for Ǧad determine a set of representatives for X∗(Tder)/〈Rder〉,
and since each such coweight may be identified with a vertex of C (not all vertices
arise this way), we have

(2-6) {w ∈Wext |w(C)= C} ∼= X∗(Tder)/〈Rder〉,

canonically. This describes the action of X∗(Tder)/〈Rder〉 on V .
The calculation of {γ ∈ X∗(Tder)/〈Rder〉 | γ (v)= v} now follows easily. Let

{$1, . . . ,$g}

be the basis of weights for X∗(Tder) dual to the basis Řad = {α̌1, . . . , α̌g} for
X∗(Ťad)= X∗(Tder); set $0 = 0. The closure C of the alcove C is the convex hull
of the vertices {v0, v1, . . . , vg} defined by v j = (1/b j )$ j , where b0=1 and the other
integers b j are determined by the longest root in Řad according to α̌ =

∑g
j=1 b j α̌ j .

In the case at hand, the longest root is α̌ = 2α̌1 + 2α̌2 + · · · + 2α̌g−1 + α̌g, so
b1 = 2, . . . , bg−1 = 2, bg = 1. Note that exactly two vertices in {v0, v1, . . . , vg} are
hyperspecial: v0 and vg. Since Wext acts transitively on the alcoves in V and since
exp : V → Ťad(C) is Wext-invariant, we may now suppose v ∈ C . Express v ∈ V in
the basis of weights for X∗(Tder):

(2-7) v =

g∑
j=1

x j$ j ;

note that the coefficients in this expansion are precisely the root values x j = α̌ j (v).
Then v∈C exactly means x j ≥0. Set b0=1 and define x0≥0 so that

∑
j=0 b j x j =1;

in other words,

v =

g∑
j=0

x j$ j , x0+ 2x1+ · · ·+ 2xg−1+ xg = 1.

Under the isomorphism (2-6), the nontrivial element of X∗(Tder)/〈Rder〉 corresponds
to ρ ∈ Wext defined by v j 7→ vg− j for j = 0, . . . , g. In terms of the fundamental
weights {$0,$1, . . . ,$g}, this affine transformation is defined by $ j 7→ $g− j

for j = 0, . . . , g. Thus, {γ ∈ X∗(Tder)/〈Rder〉 | γ (v)= v} is nontrivial if and only
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if ρ(v)= v, which is to say,

(2-8) x j ≥ 0, j = 1, . . . , g

and
x1+ · · ·+ xg−1+ xg =

1
2 ,

x j = xg− j , j = 1, . . . , g− 1.

It only remains to translate the conditions above into conditions on the eigenvalues
of t ∈ G(C). To do that we pass from root values x j = 〈α̌ j , x〉 to character values
y j := 〈 f j , x〉. Again using Table 1, we see that these conditions are equivalent to

(2-9) y1 ≥ y2 ≥ · · · ≥ yg ≥
1
2 y0

and
y1+ yg =

1
2 + y0,

y j − y j+1 = yg− j − yg− j+1, j = 1, . . . , g− 1.

When combined, these last two conditions take a very simple form:

(2-10) y0− y j =
1
2
+ yg− j+1, j = 1, . . . , g− 1.

Finally, we calculate the characteristic polynomial of rλ(t). Observe that rλ(t)=
rλ(exp(x)) = exp(drλ(x)), where drλ : X∗(T )→ X∗(G2g

m ) is given by (2-2). Set
t j = e2π iy j for j = 0, . . . , g. Then constraint (2-10) is equivalent to

(2-11) t0t−1
j =−tg− j+1, j = 1, . . . , g− 1.

The characteristic polynomial of rλ(t) is

(2-12) Prλ(t)(T ) :=
g∏

j=1

(T − t j )

g∏
j=1

(T − t0t−1
j ).

When combined with (2-11), it is clear that Prλ(t)(T ) is even:

Prλ(t)(T )=
g∏

j=1

(T − t j )

g∏
j=1

(T + tg− j+1), (2-11)

=

g∏
j=1

(T − t j )

g∏
i=1

(T + ti ), j 7→ g− j + 1

=

g∏
j=1

(T 2
− t2

j ).

We have now seen that if π0(ZPGSp2g(C)
(s)) is nontrivial, then Prλ(t)(T ) is even.

To see the converse, suppose Prλ(t)(T ) (2-12) is even. Without loss of generality,
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we may assume the similitude factor t0 is trivial. Then, after relabeling if necessary,
the symplectic characteristic polynomial Prλ(t)(T ) is even if and only if it takes the
form Prλ(t)(T ) =

∏g
j=1(T

2
− r2

j ), with r−1
j = −rσ( j) for some permutation σ of

{1, . . . , g}. Since the roots are the eigenvalues of t , which are unitary by hypothesis,
we can order them by angular components, as in (2-9), while replacing σ with the
permutation j 7→ g− j + 1, thus bringing us back to (2-10). This concludes the
proof of Proposition 2.2. �

2E. Restriction to the derived group. In this section we show how to recognize
when X/K is even through a simple property of the admissible representation πX,λ

of G(K ).

Theorem 2.3. Let X/K be an abelian variety of dimension g with good reduction
and let λ be a polarization on X. The restriction of πX,λ from GSpin2g+1(K ) to
Spin2g+1(K ) is reducible if and only if X is even.

Proof. With reference to notation from the proof of Proposition 2.1, set t = exp(θ)
and let s ∈ Ťad be the image of t under Ť→ Ťad. The restriction of πX,λ from G(K )
to Gder(K ) decomposes into irreducible representations indexed by the component
group π0(ZǦad(C)

(s)). Indeed, the irreducible representations of Gder(K ) that arise
in this way are precisely the irreducible representations appearing in IndGder(K )

Bder(K )χder,
where Bder(K ) is a Borel subgroup containing Tder(K ) and χder is the unramified
quasicharacter of Tder(K ) corresponding to tad ∈ Ť ad(C). The R-group for this
unramified principal series representation is π0(ZǦad

(s)). By Proposition 2.2, this
group is either trivial or a group of order 2, so either πX,λ|Gder(K ) is irreducible or
contains two irreducible admissible representations; also by Proposition 2.2, the
latter case occurs if and only if the characteristic polynomial PX0/Fq (T ) is even, in
which case X/K itself is even (Proposition 1.10). �

2F. L-packet interpretation. In this section we show how to recognize even abelian
varieties over local fields through associated L-packets.

As discussed in Section 2A, every polarized abelian variety (X, λ) over K
determines an `-adic Galois representation ρX,λ,` :Gal(K/K )→GSp(V`X, 〈 · , · 〉λ).
Let W ′K be the Weil–Deligne group for K [Tate 1979, §4.1]. Let φX,λ,` : W ′K →
Gal(K/K )→GSp(V`X, 〈 · , · 〉λ) be the Weil–Deligne homomorphism obtained by
applying [Deligne 1973, Theorem 8.2] to ρX,λ,`. We note that LG = Ǧ(C)oWK =

GSp2g(C)×WK . Let

φX,λ :W ′K → Gal(K/K )→ LG

be the admissible homomorphism determined by φX,λ,` and the basis for V`X⊗Q`
C

identified in the proof of Proposition 2.1. The equivalence class of the admissible
homomorphism φX,λ is the Langlands parameter for the polarized abelian variety
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(X, λ) over K . We remark that this recipe is valid for all polarized abelian varieties
over K , not just those of good reduction. But here we are interested in the case
when X has good reduction, in which case ρX,λ is unramified in the strongest sense:
the local monodromy operator for the Langlands parameter φX,λ is trivial (φX,λ

factors through W ′K →WK ) and φX,λ is trivial on the inertia subgroup IK of WK .
Although the full local Langlands correspondence for G = GSpin2g+1 is not

yet known, the part which pertains to unramified principal series representations
is, allowing us to consider the L-packet 5X,λ for the Langlands parameter φX,λ.
Indeed, we have seen that this L-packet contains the equivalence class of πX,λ,
only.

Theorem 2.3 shows that we can detect when X is K -isogenous to its twist over
the quadratic unramified extension of K by restricting πX,λ from G(K ) to Gder(K ).
On the Langlands parameter side, this restriction corresponds to post-composing
φX,λ with LG→ LGad. Let φder

X,λ be the Langlands parameter for Gder/K defined
by the diagram below and let 5der

X,λ be the corresponding L-packet.

(2-13)

W ′K
φX,λ //

φder
X,λ ""

LG

}}}}
LGad

Corollary 2.4. Let X/K be an abelian variety of dimension g with good reduc-
tion and let λ be a polarization on X. The L-packet 5der

X,λ for Spin2g+1(K ) has
cardinality 2 exactly when X is even; otherwise, it has cardinality 1.

Proof. This follows directly from the fact that the R-group for any representation
in the restriction of πX,λ to Gder(K ) coincides with the Langlands component
group attached to φder

X,λ. (See [Ban and Goldberg 2012] for more instances of this
coincidence.) Namely, equivalence classes of representations that live in 5der

X,λ are
parametrized by irreducible representations of the group

Sφder
X,λ
:= ZǦad

(φder
X,λ)/ZǦad

(φder
X,λ)

0 (ZǦad)
WK .

Since Gder is K -split, the action of WK on Ǧad is trivial, and since φder
X,λ is unramified,

ZǦad
(φder

X,λ)= ZǦad
(tad), where tad = φ

der
X,λ(Frq); thus,

Sφder
X,λ
= π0(ZǦad

(tad)),

which is precisely the R-group for πX,λ|Gder(K ) calculated in Theorem 2.3. �
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3. Concluding remarks

It is natural to ask how the story above extends to include abelian varieties X over
local fields which do not necessarily have good reduction, keeping track of the
relation between the `-adic Tate module T`X and the associated Weil–Deligne
representations, generalizing [Rohrlich 1994], and the corresponding L-packets.
For this it would be helpful to know the full local Langlands correspondence
for GSpin2g+1(K ), not just the part which pertains to unramified principal series
representations. Since the full local Langlands correspondence for GSpin2g+1(K )
is almost certainly within reach by an adaptation of Arthur’s work [2013] on the
endoscopic classification of representations, following [Arthur 2004], we have, for
the moment, postponed looking into such questions until Arthur’s ideas have been
adapted to general spin groups.

At the heart of this note we have used a very simple instance of what is, according
to a conjecture of Arthur [1989], a very general phenomenon: the coincidence of
Knapp–Stein R-groups with the component groups attached to Langlands parame-
ters, sometimes known as Arthur R-groups, as in [Ban and Zhang 2005]. While
most known cases of this coincidence appear or are summarized in [Ban and
Goldberg 2012], as remarked at the end of the introduction to that paper, there is
work remaining for general spin groups.

When some of these missing pieces are available, we intend to use the local results
in this note to explore the connection between abelian varieties over number fields
and global L-packets of automorphic representations of spin groups and general
spin groups, generalizing the results of [Anandavardhanan and Prasad 2006, §2].
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ROTATING DROPS WITH HELICOIDAL SYMMETRY

BENNETT PALMER AND OSCAR M. PERDOMO

It is known that, if we ignore gravitational forces, the shape of an equi-
librium drop in R3 rotating about the z-axis is a surface that satisfies the
equation 2H = 30 −

1
2 aR2, where H is the mean curvature and R is the

distance from a point in the surface to the z-axis. We consider helicoidal
immersions in R3 that satisfy the rotating drop equation. We prove the
existence of properly immersed solutions that contain the z-axis. We also
show the existence of several families of embedded examples. We describe
the set of possible solutions and we show that most of these solutions are
not properly immersed and are dense in the region bounded by two concen-
tric cylinders. We show that all properly immersed solutions, besides being
invariant under a one-parameter helicoidal group, are invariant under a
cyclic group of rotations of the variables x and y.

The second variation of energy for the volume constrained problem with
Dirichlet boundary conditions is also studied.

1. Introduction

In this paper we study the equilibrium shape of a rotating liquid drop or liquid film
which is invariant under a helicoidal motion of the three dimensional Euclidean
space. The subject of rotating drops has been studied by many authors, including
Chandrasekhar [1965], Brown and Scriven [1980], Solonnikov [2004]. Our main
objective here is to use a new construction, recently developed in [Perdomo 2012],
to construct an abundant supply of examples. This construction is closely related to
Delaunay’s classical construction of the axially symmetric constant mean curvature
surfaces whose generating curves are produced by rolling a conic section. A special
case of the type of surface which we study here occurs when the rotating drop is a
cylinder over a plane curve. We treat that case in detail in [Palmer and Perdomo
2014].

If a rigid object is moved from one position in space to another, this repositioning
can be realized via a helicoidal motion of R3. If this motion is then successively
repeated, one arrives at a configuration which is invariant under a helicoidal motion.

MSC2000: 53C43, 53C42, 53C10.
Keywords: rotating drops, mean curvature, helicoidal surfaces.
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Figure 1. A rotating helicoidal drop.

The simple idea that helicoidal motions give all repeated motions of a rigid object,
known in the physical sciences as Pauling’s theorem [Cahill 2005; Pauling et al.
1951], is behind many of the occurrences of helicoidal symmetry in nature [Barros
and Ferrández 2009], since it allows for extensive growth with a minimal amount
of information.

We will consider the equilibrium shape of a liquid drop rotating in a zero gravity
environment with a constant angular velocity � about a vertical axis. The surface
of the drop, which we denote by 6, is represented as a smooth surface. The bulk of
the drop is assumed to be occupied by an incompressible liquid of a constant mass
density ρ1, while the drop is surrounded by a fluid of constant mass density ρ2.
Since the drop is liquid, its free surface energy is proportional to its surface area A,
and we take the constant of proportionality to be one. The downward gravitational
force is neglected. This is justified if the volume of the drop is sufficiently small
compared to the other parameters. The rotation contributes a second energy term
of the form −�21I, where 1I is difference of moments of inertia about the
vertical axis:

1I := (ρ1− ρ2)

∫
U

R2 dv.

This term represents twice the rotational kinetic energy.
The total energy is thus of the form

(1-1) E :=A−
�2

2
1I+30V,

where V denotes the volume of the drop and 30 is a Lagrange multiplier. Let
1ρ := ρ1 − ρ2; then by introducing a constant a := (1ρ)�2, we can write the
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functional in the form

Ea,30 =A−
a
2

∫
U

R2 dV +30V,

where U is the three-dimensional region occupied by the bulk of the drop and
R :=
√

x2
1 + x2

2 .
Since we want to consider both embedded and immersed surfaces, we will

precisely define the last two terms in the energy in the following way. First, define
vector fields on R3 by

W =∇ ′ R
4

16
=

R2

4
(x1, x2, 0), W0 =∇

′ R2

4
=

1
2(x1, x2, 0).

If∇ ′· denotes the divergence operator on R3, then it is easily checked that∇ ′ ·W0=1
and ∇ ′ ·W = R2 hold. We then define

V :=

∫
6

W0 · ν d6,
∫

U
R2 dv :=

∫
6

W · ν d6.

The definitions are valid as long as 6 is immersed and oriented.
We will next derive the first variation of the functional given above. Let

Xε = X + ε(ψν+ T )+ · · ·

be a variation of X , where ψ is a smooth function, ν is the unit normal to the
surface and T is a tangent vector field along 6. The first variation formula for the
area gives

δA=−

∫
6

2Hψ d6+
∮
∂6

T · n ds =−
∫
6

2Hψ d6+
∮
∂6

dX × ν · T .

We will show in the Appendix that

(1-2) δ

∫
�

R2 dV =
∫
6

ψR2 d6+
∮
∂6

dX ×W · δX,

where W is a vector field satisfying ∇ ′ ·W = R2 on R3, and it is well known that
the first variation of volume is

(1-3) δV=

∫
6

ψ d6+
∮
∂6

dX ×W0 · δX.

By combining the last three formulas, we arrive at

(1-4) δEa,30 =

∫
6

(
−2H−

a
2

R2
+30

)
ψ d6+

∮
∂61

dX×
(
ν−

a
2

W+30W0

)
·δX.
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Regardless of the boundary conditions, a necessary condition for an equilibrium
is that the equation

(1-5) 2H =−a
2

R2
+30

holds in the interior of 6.
If we assume that the surface has free boundary contained in a supporting

surface S having outward unit normal N , then the admissible variations must satisfy
the condition δX ·N ≡ 0 on ∂6. In order for the boundary integral in (1-4) to vanish
for all admissible variations, dX × ν must be parallel to N along the boundary,
which means that the surface 6 meets the supporting surface S in a right angle.

We now assume that an equilibrium surface 6, i.e., a surface satisfying (1-5), is
invariant under a helicoidal motion

(1-6) (x1+ i x2, x3) 7→ (e−iωt(x1+ i x2), x3+ t),

and we will derive a conservation law which characterizes the equilibrium surfaces.
We do not assume that the angular velocity ω which determines the pitch of the
helicoidal surface is the same as the angular velocity � appearing above.

Let 61 denote the compact region in 6 bounded on the sides by two integral
curves C1 and C2 of the Killing field

K(X) := −ωE3× X + E3

and bounded below and above by the horizontal planes x3 = 0 and x3 = 2π/ω.
Then 61 is a compact surface with oriented boundary C1+α1−C2−α2, where α1

and α2 are congruent arcs in the planes x3 = 2π/ω and x3 = 0, respectively. By the
calculations in the Appendix, we have, using (1-5),

(1-7) δE[60] =

∮
∂61

dX ×
(
ν−

a
2

W +30W0

)
· δX.

If we take the variation with δX = E3 then, since E3 generates a translation, the
first variation will vanish. Consequently, we obtain

(1-8) 0=
∮
∂61

dX ×
(
ν−

a
2
∇
′
R4

16
+30∇

′
R2

4

)
· E3.

Note that the integration over the 1-chain α1−α2 yields zero since the two arcs
are congruent and are traversed in opposite directions. On Ci , i = 1, 2, we have
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dX
dt
= (−1)i+1K. Hence

dX ×
(
ν−

a
2
∇
′
R4

16
+30∇

′
R2

4

)
· E3

= (−1)i+1(−ωE3× X + E3)×

(
ν−

a
2
∇
′
R4

16
+30∇

′
R2

4

)
· E3 dt

= (−1)i (−ωE3× X + E3)× E3 ·

(
ν−

a
2
∇
′
R4

16
+30∇

′
R2

4

)
dt

= (−1)i+1ω(x1, x2, 0) ·
(
ν−

a
8

R2(x1, x2, 0)+
30

2
(x1, x2, 0)

)
dt

= (−1)i+1ω

(
(Q− x3ν3)−

a
8

R4
+
30 R2

2

)
dt,

where Q = X · ν is the support function of the surface. Setting Q̂ := Q− x3ν3, we
can conclude from this that the integral∫

Ci

(
Q̂−

a
8

R4
+
30 R2

2

)
dt

is independent of i . Also, it is easily checked that the integrand is, in fact, constant
on each helix Ci , and we obtain the result that

(1-9) 2Q̂+30 R2
− a

R4

4
≡ constant.

Proposition 1.1. Let6 be a helicoidal surface. A necessary and sufficient condition
that 6 is a critical point for the functional Ea,30 is that (1-9) holds.

Proof. The necessity was shown above, so we now show that the condition is
sufficient. We can assume that the helicoidal symmetry group of the surface fixes
the vertical axis.

Any helicoidal surface arises as the orbit of a planar “generating curve” α under
a helicoidal motion. We let s be the arc-length coordinate of α and we let t denote
a coordinate for the helices which are the orbits of points in α. Local calculations
which can be found in [Perdomo 2012] show that the mean curvature H and the
third component of the normal ν3 are functions of s alone. Also, it is clear that the
function R2 only depends on s.

It is easy to see that if ν3 vanishes on any arc of α, then this arc is necessarily
circular. It is clear that the orbit of a circular arc satisfying (1-9) is an equilibrium
surface for the functional Ea,30 . Now consider a connected arc η ⊂ α on which
(say) ν3 > 0 holds almost everywhere. If (1-5) does not hold on α, we can assume,
by replacing α with a subarc if necessary, that −2H − a R2/2+30 > 0 also holds
almost everywhere on α. Let 61 denote the compact domain consisting of the orbit
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of the arc α for 0≤ t ≤ 2π/ω. The boundary of 61 consists of two helices C1, C2

together with two arcs α1, α2, both congruent to α.
We take the first variation of Ea,30 with the variation field being the constant

vector E3. Since E3 is the generator of a one-parameter family of isometries, this
first variation vanishes. We express the first variation as in (1-4). Taking into
account (1-9), the contribution to the boundary integral is zero since it is given by
the right-hand side of (1-8), which vanishes. Also, the integrals over α1 and α2

cancel each other since these arcs are congruent and are traversed in opposite
directions. We then obtain from the calculations given above that

0=
∫
61

(
−2H − 1

2a R2
+30

)
ν3 d6,

which is a contradiction since the integrand is positive almost everywhere on 61. �

This result can easily be modified for axially symmetric surfaces. In that case,
the Killing field used is simply E3× X , and the helices are replaced by circles and
(1-9) still holds.

2. Treadmill sled coordinates analysis

We will be considering immersions of the form

φ(s, t)=
(
x(s) cosωt + y(s) sinωt,−x(s) sinωt + y(s) cosωt, t

)
,

with the curve α(s)= (x(s), y(s)) parametrized by arc length. We will refer to the
curve α as the profile curve of the surface. The surface given as the image of φ is
the orbit of α under the helicoidal motion (1-6). For θ(s) defined by

x ′(s)= cos θ(s) and y′(s)= sin θ(s),

following [Perdomo 2012] we define the treadmill sled coordinates ξ1(s), ξ2(s) by

(2-1) ξ1(s)= x(s) cos θ(s)+y(s) sin θ(s), ξ2(s)= x(s) sin θ(s)−y(s) cos θ(s).

The Gauss map of the immersion φ is given by

ν =
1

√

1+w2ξ 2
1

(sin(θ −ωt),− cos(θ −ωt),−ωξ1),

and so, by a direct calculation, we obtain Q̂ = ξ2/
√

1+ω2ξ 2
1 . Finally, using that

R2
= x2

+ y2
= ξ 2

1 + ξ
2
2 , we see from (1-9) that the immersion φ represents a

rotating helicoidal drop if and only if there holds

(2-2) G(ξ1, ξ2) :=
2ξ2

√

1+ω2ξ 2
1

+30(ξ
2
1 + ξ

2
2 )−

a
4
(ξ 2

1 + ξ
2
2 )

2
≡ constant=: C.
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A direct computation shows that the equation 2H =30−
1
2a R2 reduces to

θ ′(s)=
2w2ξ2− 230(1+w2ξ 2

1 )
3/2
+ a(ξ 2

1 + ξ
2
2 )(1+w

2ξ 2
1 )

3/2

1+w2(ξ 2
1 + ξ

2
2 )

.(2-3)

From the definitions of ξ1, ξ2 and θ , we get that ξ ′1 = 1− ξ2θ
′ and ξ ′2 = ξ1θ

′.
Using (2-3), we conclude that ξ1 and ξ2 must satisfy

ξ ′1 = f1(ξ1, ξ2)=
(1+w2ξ 2

1 )
(
2+
√

1+w2ξ 2
1 ξ2(230− a(ξ 2

1 + ξ
2
2 ))
)

2(1+w2(ξ 2
1 + ξ

2
2 ))

,

(2-4)

ξ ′2 = f2(ξ1, ξ2)=
ξ1
(
2w2ξ2− 230(1+w2ξ 2

1 )
3/2
+ a(ξ 2

1 + ξ
2
2 )(1+w

2ξ 2
1 )

3/2
)

2(1+w2(ξ 2
1 + ξ

2
2 ))

.

(2-5)

This system of ordinary differential equations for ξ1 and ξ2 provides a different
proof of the fact that the G(ξ1(s), ξ2(s)) must be constant, because we can check
directly that

∂G
∂ξ1
=−

2+ 2w2(ξ 2
1 + ξ

2
2 )

(1+w2ξ 2
1 )

3/2
f2 and

∂G
∂ξ2
=

2+ 2w2(ξ 2
1 + ξ

2
2 )

(1+w2ξ 2
1 )

3/2
f1.

Remark 2.1. The level sets of G are symmetric with respect to the ξ2-axis. There-
fore, in order to understand the level set of G, it is enough to understand those
points in the level set with ξ1 ≥ 0.

In order to study the level sets of the function G we replace the variables ξ1 and
ξ2 with the variables r and ξ2, where

r = ξ 2
1 + ξ

2
2 .

Making this change, we obtain that the equation G = C reduces to

2ξ2
√

1+ω2r −ω2ξ 2
2

+30r − a
4

r2
= C.

In fact, this equation is exactly the one appearing in (1-9).
We have

ξ2 =
(4C + r(−430+ ar))

√
1+ rω2√

64+ (4C + r(−430+ ar))2 ω2
.

By Remark 2.1, it is enough to consider those points with ξ1 ≥ 0. Since ξ1 =√

r − ξ 2
2 , we get that

ξ1 =

√
p(r, a,3,C)√

64+ (4C + r(−430+ ar))2 ω2
,
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where

(2-6) p(r, a,3,C)=−16C2
+64r+32C30r−1632

0r2
−8aCr2

+8a30r3
−a2r4.

Remark 2.2. Since p(r, a,3,C) is a polynomial in r of degree 4 with negative
leading coefficient when a 6= 0 and p is a polynomial of degree two when a = 0,
we get that the values of r for which p(r, a,3,C) is positive are bounded. Since
r = ξ 2

1 + ξ
2
2 = x2

+ y2, we conclude that the profile curve of any helicoidal rotating
drop is bounded.

Definition 2.3. Let r1 and r2 be nonnegative values such that p(r1) = p(r2) = 0
and p(r) > 0 for all r ∈ (r1, r2). We define ρ : [r1, r2] → R2 by

ρ(r)=
( √

p(r, a,3,C)√
64+ (4C + r(−430+ ar))2 ω2

,
(4C + r(−430+ ar))

√
1+ rω2√

64+ (4C + r(−430+ ar))2 ω2

)
.

Remark 2.4. As pointed out before, all the level sets of the function G are bounded.
The map ρ parametrizes half of the level set G = C .

Definition 2.5. In the case that the level set G = C is a regular closed curve or a
union of regular closed curves, we define a fundamental piece of the profile curve as
a simple connected part of the profile curve such that the parametrized curve (ξ1, ξ2),
given by (2-1), corresponds to exactly one closed curve in the level set of G = C .

Remark 2.6. From the definition of treadmill sled given in [Perdomo 2012], we
obtain that the profile curve of the solutions of the helicoidal rotational drop equation
are characterized by the property that their treadmill sleds are the level sets of G.
In other words, using the notation of [ibid.], we have T S(α) = β, where β is a
parametrization of a connected component of the level set of G = C and α is the
profile curve of the helicoidal rotating drop. We will see that, for a few exceptional
examples, the profile curve is a bounded complete curve having a circle as a limit
cycle. For the nonexceptional examples we can define an initial and final point of the
fundamental piece, and the whole profile curve is the union of rotated fundamental
pieces. If R1 = min{|m| : m ∈ T S(α)} and R2 = max{|m| : m ∈ T S(α)} and
1θ̃ is the variation of the angle between −→0p1 and −→0p2, where p1 and p2 are the
initial and final points of a fundamental piece, then, the profile curve is properly
immersed if 1θ̃/π is a rational number, otherwise the profile curve is dense in the
set {(x, y) ∈ R2

: R1 ≤ |(x, y)| ≤ R2}.

We compute the variation 1θ̃ in terms of the parameter r . We assume that α(s)
is the profile curve of a helicoidal rotational drop. Recall that we are assuming
that s is the arc-length parameter for the curve α. If β(s) = (ξ1(s), ξ2(s)), then
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Figure 2. Top left: a helicoidal rotational drop. Top right: the
corresponding profile curve, emphasizing the fundamental piece.
Here c = 0.5, a = 1, 30 = 1 and ω = 1.1805. Bottom left: the
(algebraic) level set G = C , i.e., the solution set to the equation

2ξ2
√

1+ 1.1805ξ 2
1

+ (ξ 2
1 + ξ

2
2 )−

1
4(ξ

2
1 + ξ

2
2 )

2
=

1
2 .

Bottom right: how treadmill sled of the profile curve produces the
level set G = C . In this example the treadmill sled of the profile
curve will go over the level set G = C two times.

β(σ(r))= ρ(r) for some function s = σ(r). By the chain rule, we have

(2-7)
ds
dr

Y =
dσ
dr
=
|ρ ′(s)|
|β ′(s)|

=

√
|ρ ′(r)|2

f 2
1 (s)+ f 2

2 (s)

=
1
2

√
64+ (4C + r(−430+ ar))2ω2

p(r, a,C)
.

If θ̃ denotes the polar angle of the profile curve, that is, if θ̃ (s) satisfies the equation
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α(s)= (x(s), y(s))= R(s)(cos θ̃ (s), sin θ̃ (s)), then θ̃ ′(s)= ξ2(s)/r , and

(2-8)
dθ̃
dr
=

dθ̃
ds

ds
dr
=

1
2
(4C + ar2

− 430r)
√

1+ rω2

r
√

p(r, a,C)
.

Since the map ρ : [r1, r2] → R2 parametrizes half of the treadmill sled of the
fundamental piece of the profile curve, we obtain the following expression for
function 1θ̃ defined in Remark 2.6:

(2-9) 1θ̃ =1θ̃(C, a, ω, r1, r2)=

∫ r2

r1

(4C + ar2
− 430r)

√
1+ rω2

r
√

p(r, a,C)
dr.

Remark 2.7. If we have a helicoidal rotational drop 6 and we multiply every
point by a positive fixed number λ, that is, if we consider the surface λ6, then
this new surface satisfies the equation of the rotating drop for some other values
of 30 and a. If we change the orientation of the profile curve of a surface 6
that satisfies the equation of the rotating drop with values 30, a and H , then the
reparametrized surface satisfies the equation with values −30, −a and −H . With
these two observations in mind, in order to consider all the helicoidal rotational
drops, up to parametrizations, rigid motions and dilations, it is enough to consider
two cases: (I) 30 = 0 and a =−1, and (II) 30 = 1 and a is any real number.

Case I: 30 = 0 and a =−1. In this case, the polynomial p(r, a,3,C) reduces to

q = q(r,C)=−16C2
+ 64r + 8Cr2

− r4.

Recall that we are interested in finding two consecutive positive roots of the
polynomial q . Notice that when C is a negative large number then the polynomial q
has no roots, and when C is a positive large number then the polynomial q has more
than one root. In every case, q(0)=−16C2

≤ 0, and the limit when r→∞ of q(r)
is negative infinity. The following lemma was proven in [Palmer and Perdomo
2014] and provides the number of possible roots of q(r,C) in terms of the values
of C . For completeness reasons we will present the proof in this paper as well.

Lemma 2.8. For any C > C0 =−3/22/3, the polynomial q(r,C) has exactly two
nonnegative real roots. When C =C0, 3

√
4 is the only real root of q(r,C), and when

C < C0, q(r,C) has no real roots.

Proof. We have q ′(r)= 64+16Cr−4r3. A direct computation shows that the only
real solution of the system

q(r,C)= 0 and q ′(r,C)= 0

is C =−3/22/3 and r = 22/3. This also follows from the fact that a Gröbner basis
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of the polynomials {q, q ′} is the set {27+ 4C3,−4C2
+ 9r}. Since

q ′′(22/3)=−48 3
√

2< 0,

the polynomial q has either 0, 1 or 2 real roots for values of (C, r) near (−3/ 3
√

4, 3
√

4).
A direct computation shows that the only roots of q when C = 0 are r = 0 and
r = 4, and that q has no real roots when C =−2. By continuity, we conclude that
the lemma holds. Recall that q(0)=−16C2 and q(r)→−∞ as r→∞. Notice
that, if for some value of C the polynomial q(r,C) has more than 2 roots, there
should exist another solution of the equations {q(r,C)= 0, q ′(r,C)= 0}, which is
impossible. �

Now we will compute the limit of 1θ̃ when C goes to C0. We will use the
following lemma from [Perdomo 2010].

Lemma 2.9. Let f (c, r) and g(r, c) be smooth functions such that

g(r0,C0)=
∂g
∂r
(r0,C0)= 0 and ∂2g

∂r2 (C0, r0)=−2A,

where A > 0. If {Cn}, {un} and {vn} are sequences such that

Cn→ C0, un, vn→ r0,

with

un < r0 < vn, g(un, cn)= g(vn, cn)= 0 and g(r, cn) > 0 for all r ∈ (un, vn),

then ∫ vn

un

f (c, r) dr
√

g(c, r)
−→ f (C0, r0)

π
√

A
as n −→∞.

Notice that helicoidal rotating drops are defined when C takes values from
C0 =−3/ 3

√
4 to∞. When C = C0, the only root of the polynomial q is r0 =

3
√

4.
If we apply Lemma 2.9 with

f (r, c)=
(4C − r2)

√
1+ rω2

r
and g(r, c)= q(r,C)

to the integral given in (2-9), we obtain that

(2-10) lim
C→C+0

1θ̃ = B(ω)=−
2π
√

3

√
1+ 3
√

4ω2.

Remark 2.10. Recall that whenever 1θ̃ = n2π/m for some pair of integers m
and n, then the entire profile curve is properly immersed and it is invariant under
the group Zm .
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3/22/3−

w

C

Figure 3. Moduli space of the helicoidal drops with a = −1 and
3 = 0. All points on the vertical red line correspond to a single
surface, a round cylinder. Points on the vertical yellow line correspond
to helicoidal rotational drops that contain the axis of symmetry. Points
on the horizontal blue line correspond to cylindrical rotational drops.

Remark 2.11. Up to dilations and rigid motions, the moduli space for all helicoidal
rotating drops with 30 = 0 is the plane region

{(C, ω) : C ≥ C0 =−3/ 3
√

4, ω > 0}.

Moreover, for any ω > 0, the surface associated with the point (C, ω)= (C0, ω) is
a round cylinder of radius 3

√
2, because it can be easily checked that when C = C0,

then, for any ω, the level set G = C reduces to the point {(0,−
√

2)}.

Case II: 30 = 1. First note that the case a = 0 corresponds to a helicoidal surface
with constant mean curvature. These surfaces were studied using similar techniques
in [Perdomo 2012], and for this reason we will assume here that a 6= 0. In this case,
the polynomial p(r, a,3,C) reduces to

(2-11) q = q(r,C, a)=−16C2
+ 64r + 32Cr − 16r2

− 8aCr2
+ 8ar3

− a2r4.

Recall that we are interested in finding two consecutive positive roots of the
polynomial q. The roots of the polynomial q given in (2-11) were analyzed in
[Palmer and Perdomo 2014]. In order to describe the roots of q we need to define
the following functions.

Definition 2.12. Let h(R)= 2(R−1)/R3, and define the functions R1 :R\{0}→R,
R2 :

(
0, 8

27

]
→ R and R3 :

(
0, 8

27

]
→ R by
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Ri (a)= R such that h(R)= a, with


R < 1 if i = 1,
1< R ≤ 3

2 if i = 2,
3
2 ≤ R <∞ if i = 3.

We also define the functions r1 :R\{0}→R, r2 :
(
0, 8

27

]
→R and r3 :

(
0, 8

27

]
→R by

r1(a)= R2
1(a), r2(a)= R2

2(a), r3(a)= R2
3(a).

The following lemma was proven in [Palmer and Perdomo 2014] and provides
the number of roots of q depending on the values a and C .

Lemma 2.13. Let r1, r2 and r3 be as in Definition 2.12 and for i = 1, 2, 3 define

Ci =
16− 8ri + 6ari

2
− a2ri

3

4(−2+ ari )

and

q = q(r, a,C)=−16C2
+ 64r + 32Cr − 16r2

− 8aCr2
+ 8ar3

− a2r4.

Recall that the domain of Ci is the same domain of ri . That is, the domain of C1(a)
is R \ {0} and the domain of C2(a) and C3(a) is the interval

(
0, 8

27

]
. For any a 6= 0

and any C , the polynomial q has nonnegative real roots whose multiplicities are as
follows. Let N(q) denote the number of distinct real roots of q. There are four cases
to consider:

Case 1: If a < 0, then C1(a) < 0, and

N(q)=


0 if C < C1(a),
1 if C = C1(a),
2 if C > C1(a).

Case 2: If 0< a < 8
27 , then

C2(a) < 0, C1(a) > 0, C2(a) < C3(a) < C1(a),

and

N(q)=



0 if C > C1(a),
1 if C = C1(a),
2 if C3(a) < C < C1(a),
3 if C = C3(a),
4 if C2(a) < C < C3(a),
3 if C = C2(a),
3 if C < C2(a).

When C = C3(a), the second root has multiplicity two. When C = C2(a), the first
root has multiplicity two.
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Case 3: If a = 8
27 , then

C1(a)= 9, C2(a)= C3(a)=− 9
8 ,

and

N(q)=



2 if C <− 9
8 ,

2 if C =− 9
8 ,

2 if − 9
8 < C < 9,

1 if C = 9,
0 if C > 9.

When C =− 9
8 , the roots are 9

4 with multiplicity three and 81
4 with multiplicity one.

When C = 9, the only real root is 9, with multiplicity two.

Case 4: If a > 8
27 , then C1(a) > 0, and

N(q)=


0 if C > C1(a),
1 if C = C1(a),
2 if C < C1(a).

Now that we have discussed the roots of the polynomial q we can describe the
moduli space of all helicoidal rotating drops with 3= 1.

Theorem 2.14. Let 30 = 1 and let 1θ̃ be the function defined in (2-9). Let

�1 = {(a,C, ω) : C > C1(a), a < 0, w > 0},

�2 =
{
(a,C, ω) : C2(a) < C < C3(a), 0< a < 8

27 , ω > 0
}
,

�3 = {(a,C, ω) : C < C1(a), a > 0, ω > 0},

�=�1 ∪�3 \�2

β1 = {(a,C, ω) : C = C1(a), a 6= 0, ω > 0},

β2 =
{
(a,C, ω) : C = C2(a), 0< a < 8

27 , ω > 0
}
,

β3 =
{
(a,C, ω) : C = C3(a), 0< a < 8

27 , ω > 0
}
.

Under the convention that a point (a,C, ω) represents a helicoidal rotating drop if
the treadmill sled of its profile curve is contained in the level set G = C , we have:

(i) Every point (a,C, ω) in the interior of � represents a helicoidal rotating drop
with its fundamental piece having finite length. The treadmill sleds of the
profile curves of these surfaces are parametrized by ρ defined for values of r
between the only two roots of the polynomial q(r, a,C).

(ii) Every point in �2 represents two helicoidal rotating drops, both having funda-
mental pieces of finite length. The treadmill sleds of the profile curves of these
surfaces are parametrized by ρ defined for those values of r that lie between
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the first and second root of the polynomial q(r, a,C) and the third and fourth
root of the polynomial q(r, a,C) respectively.

(iii) Every point (a,C, ω) in the set β1 represents a circular helicoidal rotating
drop. This cylinder is the same for all values of ω.

(iv) Every point (a,C, ω) in the set β2 represents two helicoidal rotating drops:
a circular cylinder and a noncircular cylinder with bounded length of its
fundamental piece. The circular cylinder is the same for all values of w.

(v) Every point in the set β3 represents three helicoidal rotating drops. One is a
circular cylinder, which is the same for all values of w. The second one has a
treadmill sled parametrized by ρ defined for those values of r that lie between
the first and second root of the polynomial q(r, a,C). Recall that the second
root has multiplicity two. The third surface has a treadmill sled parametrized
by ρ defined for those values of r that lie between the second and third root
of the polynomial q(r, a,C). The second and third surfaces are not properly
immersed and their profile curves have a circle as a limit cycle and they have
infinite winding number with respect to a point interior to this circle. Solutions
whose profile curves possess a circle as a limit cycle will be called helicoidal
drops of exceptional type.

(vi) Points of the form (a,C, ω) =
( 8

27 ,−
9
8 , ω

)
represent two helicoidal rotating

drops: a circular cylinder, which is the same for all values of ω, and one
helicoidal drop of exceptional type.

(vii) Up to a rigid motion, every helicoidal drop falls into one of the cases above.

(viii) Every helicoidal drop that is not exceptional is either properly immersed (when
1θ̃(a,C, ω)/π is a rational number) or it is dense in the region bounded by
two round cylinders (when 1θ̃(a,C, ω)/π is an irrational number).

Proof. We already know that the treadmill sled of the profile curve of any helicoidal
rotating drop satisfies the equation

G(ξ1, ξ2)=
2ξ2

√

1+ω2ξ 2
1

+30(ξ
2
1 + ξ

2
2 )−

a
4
(ξ 2

1 + ξ
2
2 )

2
= C.

We also know that, up to rigid motions, the treadmill sled of a curve determines
the curve; see [Perdomo 2012]. Since any level set of G can be parametrized using
the map ρ given in Definition 2.3, and every parametrization of a level set of G
is defined for values of r where the polynomial q is positive, it then follows from
Lemma 2.13 that every helicoidal rotating drop can be represented as one of the
cases (i), (ii), (iii), (iv), (v) and (vi). It is worth recalling (see Remark 2.4) that the
parametrization ρ only covers half of the level set of the map G. Each one of these
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y=C  (a)3

Figure 4. Graphs of the functions C1, C2 and C3; these functions
are used in Theorem 2.14 to describe the moduli space of all
helicoidal rotational drops with 30 = 1.

level sets is symmetric with respect to the ξ2-axis, and the parametrization ρ covers
the half on the right.

Notice that when the profile curve is a circle, the level set G = C reduces to a
point. In this case we will take the parametrization ρ to be defined just in a point, a
root with multiplicity two of the polynomial q .

When case (i) occurs, q has only two simple roots, x1 and x2, with x1 < x2. We
can check that the derivative of q at x1 is positive while the derivative of q at x2 is
negative, so the length of the fundamental piece, according to (2-7), reduces to∫ x2

x1

√
64+ (4C + r(−430+ ar))2ω2

q(r, a,C)
dr,

which converges. Therefore the length of the fundamental piece is finite.
For values of C , ω and a that fall into case (ii), the polynomial q has four roots

x1 < x2 < x3 < x4, and q is positive from x1 to x2 and from x3 to x4. Also, the level
set of G has two connected components. Half of each connected component of
G =C can be parametrized using the map ρ. One half of the connected component
of G = C uses the domain (x1, x2) for ρ and the half of the other connected
component of G = C uses the domain (x3, x4) for ρ. The proof that the length of
the fundamental piece of each surface is finite follows as in the proof in case (i).

For values of (a,C, ω) that satisfy the case (iii), the polynomial q has only one
root x1 = r1 with multiplicity two. We take R =

√
x1. A direct calculation shows

that if a > 0, then R1(a)=−R and if we consider the profile curve

α(s)=
(

R sin s
R
,−R cos s

R

)
,
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then

ξ1 = 0, ξ2 = R and G(ξ1, ξ2)= 2R+30 R2
−

1
4a R4.

Using the definition of C1 and the fact that R1(a) = −R, we can check that the
expression G(ξ1, ξ2) reduces to C = C1(a), which was our goal in order to show
that the point (a,C, ω) represents a round cylinder. Similarly, a direct verification
shows that if a < 0, then R1(a)= R and if we consider the profile curve

α(s)=
(

R sin s
R
, R cos s

R

)
,

then ξ1= 0, ξ2=−R and G(ξ1, ξ2)=−2R+30 R2
−

1
4a R4. Using the definition of

C1 and the fact that R1(a)= R, we can check that the expression G(ξ1, ξ2) reduces
to C = C1(a). Since r1 is independent of w these cylinders are independent of the
value of w. This finish the proof of part (iii).

For values of (a,C, ω) that fall into case (iv), the polynomial q has three roots
x1 < x2 < x3, where x1 = r1 has multiplicity two and x2 and x3 are simple. The
polynomial q is positive for r ∈ (x2, x3). In this case the level set G=C is the union
of the point (0,−

√
x1) and a closed curve. If we consider the cylinder of radius

√
x1 oriented by the inward-pointing normal, then a direct computation shows that

its mean curvature is 2H = 1− 1
2ar1. Therefore this circular cylinder is a helicoidal

rotating drop for the given parameters. Note that this cylinder is independent of w.
The treadmill sled of the profile curve of the other rotating drop is the level closed
curve component of G = C ; half of this part can be parametrized by the map ρ
with domain (x2, x3).

For values of (a,C, ω) in case (v), the polynomial q has only three roots
x1 < x2 < x3, where x2 = r2 has multiplicity two and x1 and x3 are simple. The
polynomial q is positive for r ∈ (x1, x2)∪ (x2, x3). In this case the level set G = C
is connected but it self-intersects at the point (0,−

√
x2). Any part of a curve that

crosses the ξ2-axis nonhorizontally cannot be the treadmill sled of a regular curve
(see Proposition 2.11 in [Perdomo 2013]). Therefore the correct way to view the
level set G = C in this case is not as a connected closed curve that self-intersects
but as the union of two curves and a point. Figure 5 shows one of these level sets.

One can check that the circular cylinder with radius
√

r2, oriented by the inward-
pointing normal, satisfies the equation 2H =1− 1

2ar2; therefore this circular cylinder
is a helicoidal rotating drop for the given parameters. The treadmill sled associated
with the profile curve of this round cylinder reduces to the point (0,−

√
x2). The

set G = C \ {(0,−
√

x2)} has two connected components. One of these connected
components can be parametrized using the map ρ with r ∈ (x1, x2) and the other
using the map ρ with r ∈ (x2, x3). Each of these connected components is the
treadmill sled of the fundamental curve for a rotating helicoidal drop whose length



430 BENNETT PALMER AND OSCAR M. PERDOMO

6

4

2

0

− 2

− 4

− 6
− 6 − 4 − 2 0 2 4 6

Figure 5. The level set G = C when a = 0.2, ω = 3, 30 = 1 and
C =C3(0.2). For helicoidal drops in case (v) of Theorem 2.14, the
level set of G should be regarded as the union of two curves and a
point. Each curve is the treadmill sled of an exceptional helicoidal
rotating drop and the point is the treadmill sled of a circular cylinder.

is unbounded. Specifically, their lengths are given by the divergent integrals∫ x2

x1

√
64+ (4C + r(−430+ ar))2ω2

q(r, a,C)
dr

and ∫ x3

x2

√
64+ (4C + r(−430+ ar))2ω2

q(r, a,C)
dr,

respectively. Moreover, using the definition of treadmill sled, we notice that the
function giving the distance to the origin of the profile curve, |(x(s), y(s)|, agrees
with the function giving the distance to the origin of the level set G = C given
by |(ξ1(s), ξ2(s))| = |ρ(σ−1(s))|. Therefore, as r approaches r2, s = σ(r) goes
to −∞ and the function |(x(s), y(x)| approaches

√
r2. Since polar angle of the

profile curve can be calculated by integrating the expression in (2-8), we conclude
that θ̃ (r) also goes to −∞ as r approaches r2. We conclude that the profile curve
has a circle of radius

√
r2 as a limit cycle and it has infinite winding number with

respect to a point interior to this circle.
For values of (a,C, w) that satisfy the case (vi), the polynomial q has only

two roots x1 < x2, where x1 =
9
4 has multiplicity three and x2 =

81
4 is simple.

The polynomial q is positive for r ∈ (x1, x2). In this case the level set G = C
is connected but it has a singularity at the point

(
0,−3

2

)
. We can check that the

circular cylinder with radius 3
2 oriented by the inward-pointing normal satisfies the

equation 2H = 1− 1
2ar1; therefore this circular cylinder is a helicoidal rotating drop.
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The treadmill sled associated to the profile curve of this round cylinder reduces to
the point

(
0,−3

2

)
. The set G = C minus the point

(
0,− 3

2

)
is connected and half of

it can be parametrized using the map ρ with r ∈
( 9

4 ,
81
4

)
This part of the set G = C

is the treadmill sled of the fundamental curve of a rotating helicoidal drop whose
length is not bounded.

Since we know that the profile curve of every rotating helicoidal drop satisfies
the integral equation G = C and cases (i)–(vi) cover all the possibilities for the
level sets of G, then every rotating helicoidal drop falls into one of the first six
cases of this proposition. This proves (vii).

In order to prove (viii) we notice that when a helicoidal rotating drop is not
exceptional, it has a fundamental piece with finite length whose treadmill sled is a
closed regular curve (a connected component of the set G = C). By the properties
of the treadmill sled operator (in particular, the one that states that the treadmill sled
inverse is unique up to rotations about the origin), we have that the whole profile
curve is a union of rotations of the fundamental piece. The angle of rotation is
given by 1θ̃ =1θ̃(C, a, ω, x1, x2). The profile curve is invariant under the group
G of rotations of the form

(2-12) (y1, y2) 7→ (cos(n1θ̃)y1+ sin(n1θ̃)y2,− sin(n1θ̃)y1+ cos(n1θ)y2),

where n ∈ Z. It is clear that if 1θ̃/π is a rational number then the group G is
finite and the helicoidal surface is properly immersed. Moreover, if 1θ̃/π is not a
rational number, then the group G is not finite and the helicoidal drop is dense in
the region bounded by the two cylinders of radius

√
r1 and

√
r2. A more detailed

explanation of this last statement can be found in [Perdomo 2012]. �

Embedded and properly embedded examples. In this subsection we will find some
embedded examples and we will show their profile curves. As pointed out before,
when the helicoidal drop is not exceptional, its profile curve is a union of rotations
of fundamental pieces that ends up being invariant under the group G of rotations
defined by (2-12). It is not difficult to see that a necessary condition for the helicoidal
drop to be embedded is that 1θ̃ = 2π/m for some integer m. We will show that
this condition is not sufficient. In order to catch the potentially embedded examples
we need to understand the function 1θ̃(C, a, ω, x1, x2). As a very elementary
technique to solve the equation 1θ̃ = 2π/m, we will use the intermediate value
theorem. We know that for any a, there is a first (or last) value of C , C0(a, x1, x2),
for which the function 1θ̃ is defined. We will compute the limit of 1θ̃ when C
goes to C0 using Lemma 2.9. The graphs shown in this paper were generated using
the software Mathematica 8.
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Figure 6. Top left, top right, bottom left: graphs of 1θ̃ in terms of
C when a =−1, 30 = 1; ω = 0, ω = 1, and ω = 1.5, respectively.
Bottom right: graph of B in terms of ω when a = −1, 30 = 0.
This shows how the beginnings of the other three graphs change
when ω changes. The highlighted points in this graph (ω= 0, 1 and
1.5) correspond to the highlighted points in the other three graphs.
For ω = 0 there is no solution of the equation 1θ̃ = −2π/m
with negative values of C . We see that, for some values of ω,
the equation 1θ̃ =−2π has a solution with C negative, which is
responsible for the existence of embedded examples with 30 = 0
and a =−1.

Embedded examples with 30 = 0 and a = −1. From Lemma 2.8 we know that
the polynomial p has two nonnegative roots if and only if C > C0 = −3/ 3

√
4. A

direct application of Lemma 2.9 shows:

Proposition 2.15. If 30 = 0, a = −1 and for any C > C0, x1 and x2 denote the
two roots of the polynomial q(r,C)=−16C2

+ 64r + 8Cr2
− r4, then

lim
C→C+0

1θ(C, ω, x1, x2)=

∫ x2

x1

(4C − r2)
√

1+ rω2

r
√

q(r,C)
dr

= B(ω)=−
2π
√

1+ 3
√

4ω2
√

3
.

Using the intermediate value theorem, we can numerically solve the equation
1θ̃ =−2π for values of w and C . The images in Figures 7 and 8 show some of
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Figure 7. Profile curves of some embedded helicoidal rotating
drops when 30 = 0 and a = −1. Left: C = −1.5, ω = 1.17684.
Middle: C = 0.6, ω = 3.04646. Right: C = 0.735, ω = 4.65615.
When C is close to the critical value C0, the embedded examples
are close to a round cylinder. As C increases, the shape develops a
self-intersection.

the resulting profile curves and the corresponding surfaces. They also show the
values of C and w that solve the equation 1θ̃ =−2π .

Embedded examples with 30 = 1 and a 6= 0. We now show some embedded
examples in this case. Again, the intermediate value theorem is used to numerically
solve the equation 1θ̃ = 2π/m. A direct application of Lemma 2.9 shows:

Proposition 2.16. Let r1, r2 and r3 be as in Definition 2.12 and let C1, C2 and C3

be as in Lemma 2.13. Let us define the two bounds

bi (a, w)=
π(4Ci + ar2

i − 4ri )
√

1+ riw2

ri
√

16+ 8a(C − 3ri )+ 6a2r2
i

, i = 1, 2.

(a) If a < 0 then limC→C1(a)+ 1θ̃(C, a, x1, x2)= b1(a), where x1 and x2 are the
first two roots of the polynomial q(r,C, a)

(b) If a > 0 then limC→C1(a)− 1θ̃(C, a, x1, x2)= b1(a), where x1 and x2 are the
first two roots of the polynomial q(r,C, a)
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Figure 8. Surfaces associated with the profile curve in Figure 7.
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Figure 9. The graph of the function1θ̃ when a=0.2 andω=0.15.
In this case C2 ≈−1.065, b2 ≈−7.66, C3 ≈−0.698, C1 ≈ 11.76
and b1 ≈ 2.23. The points (C2, b2) and (C1, b1) have been high-
lighted.

(c) If a > 0 then limC→C2(a)+ 1θ̃(C, a, x1, x2)= b2(a), where x1 and x2 are the
first two roots of the polynomial q(r,C, a).

Proof. Since

1θ̃ =

∫ x2

x1

(4C + ar2
− 4r)

√
1+ rω2

r
√

q
dr,

in every case, when C approaches the limit value, the two roots approach ri (i=1, 2),
which is a root of q with multiplicity two. Therefore Lemma 2.9 applies and the
proposition follows. Notice that the value A in Lemma 2.9 is given by

A =− 1
2q ′′(ri )= 16+ 8a(C − 3ri )+ 6a2r2

i . �

Remark 2.17. When 0< a < 8
27 , the domain of 1θ̃ is (C2(a),C1(a)), and

lim
C→C2(a)+

1θ̃(C)= b2(a, w), lim
C→C1(a)−

1θ̃(C)= b1(a, w).

There is a vertical asymptote at C = C3(a) and a jump discontinuity at C = 0.

Taking a look at Figure 9, we notice that, when ω = 0.15 and a = 0.2, and for
any integer m > 2, the equation 1θ̃ = 2π/m has a solution. We have numerically
solved this equation for m = 4 and m = 8. Figures 10 and 11 provides a picture of
the profile curves of the properly immersed examples.

If we decrease the value of a while keeping the value of ω constant, we can
again solve the equation 1θ̃ = π/4, but this time the helicoidal rotational drop is
embedded. See Figure 12.

Finally, we would like to show that if we increase ω then it is possible to solve
the equation 1θ̃ = 2π (see Figure 13).
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Figure 10. The embedded helicoidal rotational drop obtained by
solving the equation 1θ̃ = π

2 when a = 0.2 and ω = 0.15. In the
middle graph, 30 = 1 and C = 4.72283.
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Figure 11. The properly immersed helicoidal rotational drop ob-
tained by solving the equation 1θ̃ = π

4 when a= 0.2 and ω= 0.15.
In the graph on the right, 30 = 1 and C = 1.7453.
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Figure 12. The embedded helicoidal rotational drop obtained by
solving the equation 1θ̃ = π

4 when a = 0.05 and ω = 0.15. In the
graph on the right, 30 = 1 and C = 15.3877.
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Figure 13. The embedded helicoidal rotational drop obtained by
solving the equation 1θ̃ = 2π when a = 0.2 and ω = 2. In the
middle graph, 30 = 1 and C = 4.0134.

3. Second variation

For any sufficiently smooth surface, we define an invariant `= 2H + 1
2a R2. The

first variation formula (1-4) restricted to compactly supported variations can then
be expressed as

δEa,30 =−

∫
6

(`−30)ψ d6,

where ψ := δX ·ν. We assume that the surface is in equilibrium, so that `−30 ≡ 0
holds. The second variation is thus

δ2Ea,30 =−

∫
6

ψ(δ`) d6.

A well-known formula for the pointwise variation of the mean curvature is

(3-1) 2δH = L̂[ψ] + 2∇H · δX,

where L̂ =1+ |dν|2. Also

δR2
= 2

∑
i=1,2

xiδX · Ei = 2
∑

i=1,2

xi
(
ψνi + (δX)T · Ei

)
= 2ψ Q̂+ 2∇ ′R2

· (δX)T,

where Q̂ = x1ν1+ x2ν2. Combining this with (3-1), we have

(3-2) δ`= L[ψ] +∇` · T,

where L[ψ] =1ψ + (|dν|2+ aQ̂)ψ . Since we are assuming `≡30 = constant,
the second term above vanishes and the second variation formula for variations
vanishing on ∂6 then reads

(3-3) δEa,30 =−

∫
6

ψL[ψ] d6 =−
∫
6

ψ
(
1ψ + (|dν|2+ aQ̂ψ)

)
d6

=

∫
6

|∇ψ |2− (|dν|2+ aQ̂)ψ2 d6.
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This formula can be found in [López 2010]. As usual, an equilibrium surface will
be called stable if the second variation is nonnegative for all compactly supported
variations satisfying the additional condition

(3-4)
∫
6

ψ d6 = 0.

This is just the first-order condition which is necessary and sufficient for the variation
to be volume-preserving.

For a part of the surface of the form α×[−h/2, h/2], this can be written

(3-5) δ2Ea,30 =

∫
α

∫ h/2

−h/2

(
1

√

1+ω2ξ 2
1

(
[1+ω2 R2

]ψ2
s − 2ωξ2ψsψt +ψ

2
t
)

− (4H 2
− 2K + aξ2)

√
1+ω2ξ 2

1 ψ
2
)

dt ds,

where K denotes the Gaussian curvature. Choosing ψ = sin(2π t/h) gives∫
6

|∇ψ |2 d6 = 2π2

h

∫
α

1
√

1+ω2ξ 2
1

ds.

In addition, for this choice of ψ , we have ψ ≡ 0 on the boundary and the mean
value of ψ on α×[−h/2, h/2] is zero.

Lemma 3.1. We have ∫
α

K
√

1+ω2ξ 2
1 ds = 0,

and hence ∫
α×[−h/2,h/2]

K d6 = 0.

Proof. From calculations found in [Perdomo 2012], one finds

K =
−ω2(1+ κξ2)

(1+ω2ξ 2
1 )

2
=
−ω2(ξ1)s

(1+ω2ξ 2
1 )

2
,

so ∫
α

K
√

1+ω2ξ 2
1 ds =

∫
α

−ω2(ξ1)s

(1+ω2ξ 2
1 )

3/2
ds = 0,

since the last integrand is the s-derivative of a function of ξ1. �

Proposition 3.2. A necessary condition for the stability of α×[−h/2, h/2] for the
fixed boundary problem is that

(3-6)
2π2

h2

∫
α

1
√

1+ω2ξ 2
1

ds ≥
∫
α

4H 2
√

1+ω2ξ 2
1 ds+ aA
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holds. Equivalently, this can be expressed as

(3-7)
2π2

h2

∫
α

1
√

1+ω2ξ 2
1

ds ≥
∫
α×[−h/2,h/2]

4H 2 d6+ aV(α×[−h/2, h/2]).

Proof. We choose ψ = sin(2π t/h) in the second variation formula. For this choice
of ψ , we have ψ ≡ 0 on the boundary and the mean value of ψ on α×[−h/2, h/2]
is zero. The result then follows directly from (3-5) and the previous lemma. �

The bound (3-6) gives a condition on the maximum height of a stable helicoidal
surface in terms of the geometry of the generating curve.

There is no possible way to obtain a positive lower bound for the right-hand side
of (3-6). For a round cylinder of radius R, the equation

2ξ2
√

1+ω2ξ 2
1

+30 R2
−

a R4

4
= c

becomes

2R+30 R2
−

a R4

4
= c,

so for arbitrary a, we can simply define c by this equation, and hence the cylinder
will be an equilibrium surface. For a cylinder, the potential in the second variation
formula is

4H 2
− 2K + aQ̂ =

1
R2 + a R,

so for a � 0 the potential is nonpositive and the cylinder is stable for arbitrary
heights.

We will now give an upper bound for the height of a stable helicoidal equilibrium
surface which is valid for any such surface which is not a cylinder over a planar
curve. This upper bound will only depend on the generating curve. In [Palmer and
Perdomo 2014], this estimate is modified so that it applies to noncircular cylindrical
equilibrium surfaces as well.

Theorem 3.3. For a helicoidal surface which is not a round cylinder, a necessary
condition for the stability of the part of the surface between horizontal planes
separated by a distance h is that

(3-8)
4π2e4

h2 ≥

ω2
∮
α

(1+ω2 R2)(1+ κξ2)
2

(1+ω2ξ 2
1 )

7/2
ds∮

α

1
1+ω2ξ 2

1
ds

(≥ ω2).

The result also holds true if a = 0, i.e., if the surface has constant mean curvature.

Remark. In [Palmer and Perdomo 2014] a similar estimate is given for cylindrical
surfaces which are not round cylinders.
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Proof. To begin, note that the third component of the normal ν3 satisfies L[ν3] = 0
since vertical translation is a symmetry of the normal. Also, this function will
vanish identically if and only if the surface is a cylinder.

The function ν3 can be written as [Perdomo 2012]

ν3 =
ωξ1

√

1+ω2ξ 2
1

,

so ν3 is a function of s only. Using local coordinate expressions found in [Perdomo
2012], we can write

0= L[ν3] =
1
√

g
(
√

g g11(ν3)s)s + (|dν|2+ aξ2)ν3

=
1

√

1+ω2ξ 2
1

[
1+ω2 R2
√

1+ω2ξ 2
1

(ν3)s

]
s
+ (|dν|2+ aξ2)ν3 =: L[ν3].

Note that (|dν|2 + aξ2) only depends on s. For any smooth function u = u(s),
there holds

L[eu
] = eu(L[u] + g11u2

s )= eu(L[u] + (1+ωR2)u2
s ).

If we now take ψ = eν3(s) sin(2π t/h), then (3-4) holds, and from (3-5) we get

δ2Ea,30 =
2π2

h

∮
α

e2ν3

1+ω2ξ 2
1

ds− h
2

∮
α

e2ν3(1+ω2 R2)
√

1+ω2ξ 2
1

((ν3)s)
2 ds.

Using −1≤ ν3 ≤ 1 and using

(ν3)s = (ωξ1(1+ω2ξ 2
1 )
−1/2)s = (ξ1)sω(1+ω2ξ 2

1 )
−3/2
=ω(1+κξ2)(1+ω2ξ 2

1 )
−3/2

yields the result. �

Appendix

We assume that 6 is contained in a three-dimensional region � and that ∂6 is
contained in a supporting surface S which is part of ∂�. We assume that there is a
(not necessarily connected) domain S1 ⊂ S such that 6 ∪ S1 bounds a subregion
�1 ⊂�. The volume of �1 will be denoted by V.

Let φ be a solution of 1′φ = 1 in � with ∇ ′φ · N = 0 on S, where N is the
outward-pointing normal to S. This boundary value problem is underdetermined
and is solvable provided S is not closed.

We subject the surface to a variation that keeps ∂6 on S. We write δX =:
T +ψν ⊥ N along ∂6, and

V=

∫
6

∇
′φ · ν d6.
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We have

δV=

∫
6

∇
′

T+ψν∇
′φ · ν+∇ ′φ · δν d6+

∫
6

∇
′φ · ν(∇ · T − 2Hψ) d6

=

∫
6

ψ∇ ′ν∇
′φ · ν− 2Hψ∇ ′φ · ν−∇φ · ∇ψ d6+

∮
∂6

(∇ ′φ · ν)T · n ds

=

∫
6

ψ∇ ′ν∇
′φ · ν− 2Hψ∇ ′φ · ν+ψ1φ d6+

∮
∂6

((∇ ′φ · ν)T −ψ∇φ) · n ds.

A well-known formula relating the Laplacian on a submanifold to the Laplacian on
the ambient space gives 1′φ =∇ ′ν∇

′φ · ν− 2H∇ ′φ+1φ. Therefore we obtain

δV=

∫
6

ψ d6+
∮

dX ×∇ ′φ · δX.

However, all of dX , ∇ ′φ and δX are perpendicular to N on ∂6, so the line integral
above vanishes.

To obtain (1-2), we let W be a vector field on � satisfying ∇ ′ ·W = R2 and
W ·N = 0 along S. This boundary value problem is underdetermined and is solvable
provided S is not closed. Then, by the divergence theorem,∫

�1

R2 d3x =
∫
6

W · ν d6,

so that

δ

∫
�1

R2 d3x =
∫
6

∇
′

T+ψνW · ν+W · δν d6+
∫
6

W · ν(∇ · T − 2Hψ) d6

=

∫
6

ψ∇ ′νW · ν−W · ∇ψ − 2HψW · ν d6+
∮
∂6

(W · ν)T · n ds

=

∫
6

ψ∇ ′ ·W d6+
∮
∂6

((W · ν)T −ψW ) · n ds

=

∫
6

ψR2 d6+
∮
∂6

dX ×W · δX.

Again, all of dX , W and δX are perpendicular to N along ∂6 so the line integral
will vanish.

If the pair (φ,W ) used above are replaced by another pair (φ,W ) satisfying the
same equations (1′φ = 1 and ∇ ′W = R2), the divergence theorem yields∫

6

∇
′φ · ν d6 = V+ c1 and

∫
6

W · ν d6 =
∫
�1

R2 d3x + c2

for constants c1 and c2. Thus, these replacements will not affect the variational
formulas for these integrals.
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THE BIDUAL OF A RADICAL OPERATOR ALGEBRA
CAN BE SEMISIMPLE

CHARLES JOHN READ

The paper of Sidney (Denny) L. Gulick (“Commutativity and ideals in the
biduals of topological algebras”, Pacific J. Math. 18, 1966) contains some
good mathematics, but it also contains an error. It claims that for a Banach
algebra A, the intersection of the Jacobson radical of A∗∗ with A is precisely
the radical of A (this is claimed for either of the Arens products on A∗∗). In
this paper we begin with a simple counterexample to that claim, in which A
is a radical operator algebra, but not every element of A lies in the radical
of A∗∗. We then develop a more complicated example A, which, once again,
is a radical operator algebra, but A∗∗ is semisimple. So rad A∗∗ ∩A is zero,
but rad A=A. We conclude by examining the uses Gulick’s paper has been
put to since 1966 (at least 8 subsequent papers refer to it), and we find that
most authors have used the correct material from that paper, and avoided
using the wrong result. We reckon, then, that we are not the first to suspect
that the result rad A∗∗ ∩ A = rad A was wrong; but we believe we are the
first to provide “neat” counterexamples as described.

1. Introduction

The theorem in which Gulick [1966] makes the claim rad A∗∗ ∩ A = rad A is
Theorem 4.6. We believe that the place where his proof breaks down is nearby, in
the proof of Lemma 4.5, the seventh line: “note that ME is once again a maximal
regular left ideal in E”. We could not see why this should be so, and Theorem 4.6
is definitely false; this introductory section contains a counterexample.

We shall always be working with operator algebras (norm-closed subalgebras of
the algebra B(H) of all operators on a Hilbert space H ), so the question of which
Arens product is involved need never be addressed, for as is well known, every
operator algebra is Arens regular — the two products coincide.

Let us conclude this introduction with the simpler counterexample mentioned in
the abstract.

Read is grateful for support from UK Research Council grant EP/K019546/1, and for helpful sugges-
tions from David Blecher.
MSC2010: 46H05, 47L50.
Keywords: radical Banach algebra, bidual operator algebra.
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Let H be a Hilbert space with orthonormal basis (ei )i∈N. Let T0 : H → H be
the operator with

(1) T0ei =

{
ei+1 if i is odd,
0 if i is even.

For n ∈ N, let Tn : H → H be the rank-1 operator with

(2) Tnei =

{
ei+1 if i = 2n,

0 otherwise.

Let A denote the operator algebra (the norm-closed subalgebra of B(H)) generated
by {Tn : n ∈ N0}.

Lemma 1.1. A is radical.

Proof. First, T 2
0 = 0 and each Tn (n ≥ 1) has rank 1, so everything in A is of

form λT0+ K , where λ ∈ C and K is a compact operator. Second, the subspaces
Ek = lin{ei : i > k} ⊂ H are invariant for every Tn (and hence for every T ∈ A);
indeed, every T ∈ A maps Ek into Ek+1 (k ∈ N0). So, let T = λT0+ K ∈ A, with
λ ∈ C and K ∈ K (H). It is enough to show that T is quasinilpotent. Since K
is compact, the norms εn =

∥∥K |En

∥∥ tend to zero as n→∞. Furthermore, since
T 2

0 = 0, we have

(3)
∥∥T 2
|En

∥∥= ∥∥λT0K + λK T0+ K 2
|En

∥∥≤ 2|λ|εn + ε
2
n = δn,

with δn→ 0 as n→∞. Now T 2k
= T 2
|E2k−2 T 2

|E2k−4 . . . T
2
|E2 T 2

|E0 ; hence

‖T 2k
‖ ≤

k−1∏
j=0
δ2 j ,

so ‖T 2k
‖

1/k
→ 0. Plainly T 2, and hence T itself, is quasinilpotent. �

Theorem 1.2. T0 /∈ rad A∗∗, so A = rad A ( A∩ rad A∗∗.

Proof. Now A ⊂ B(H), and B(H) is of course a dual Banach algebra, so there is a
natural projection from B(H)∗∗ (the third dual of the Banach space of trace class
operators on H ) onto B(H). This projection is an algebra homomorphism, so when
we restrict it to A∗∗ ⊂ B(H)∗∗, we get a representation of A∗∗ acting on H , such
that the canonical image A⊂ A∗∗ acts on H in its usual way, and the representation
of A∗∗ consists of the weak-* closure of A in B(H).

Among the operators in this weak-* closure is the weak-* convergent sum
T =

∑
∞

n=1Tn , with

(4) T ei =

{
ei+1 if i is even,
0 if i is odd.
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The product T T0 has T T0ei = ei+2 (if i is odd) or T T0ei = 0 (if i is even); so
‖(T T0)

k
‖ = 1 for all k, and indeed 1 is in the spectrum of T T0. If τ ∈ A∗∗ is any

element represented as T by this representation, then 1 ∈ Sp(τT0). So T0 does
not lie in the Jacobson radical of A∗∗, by a well-known characterization of that
radical. �

Note that the proof given above does not depend on the faithfulness (injectiv-
ity) of the natural representation of A∗∗ in B(H). However, when we give the
more complicated counterexample — when we make the claim that the bidual of
our radical algebra A is semisimple — we will have to show that the analogous
representation for the bidual of that algebra is indeed faithful.

2. The main construction

We now seek to develop the example given in the introduction into an example A

where A is radical but A∗∗ is semisimple.

Definition 2.1. Let S denote the free unital semigroup on two generators g, h. If
s ∈ S with s = γnγn−1 . . . γ2γ1 =

∏n−1
j=0γn− j , and each γi ∈ {g, h}, we define the

length l(s) = n and the depth ρ(s) = #{i : 1 ≤ i ≤ n, γi = h}; and if n > 0 (that
is, if s 6= 1, the unit), we define the predecessor p(s) =

∏n−1
j=1γn− j . We define

S− = S \ {1}.

We define the Cayley graph G of S to be an abstract directed graph with vertex
set S, and a directed edge p(s)→ s for each s ∈ S−.

Note that G is an infinite tree with root vertex 1, such that every vertex s ∈ S has
two outward edges leaving it (the edges s→ gs and s→ hs) and every vertex s ∈ S−

has a single edge entering it (the edge p(s)→ s). If l(s)=k, the unique directed path
from 1 to s consists of k+1 vertices 1→ pk−1(s)→ pk−2(s)→· · ·→ p(s)→ s.

Definition 2.2. For s ∈ S we define the weight w(s) = 2−ρ(s), and if l(s) = l we
define

(5) W (s)=
l−1∏
j=0

w(p j s).

We define a Hilbert space H = l2(S,W ) to be the collection of all formal sums
x =

∑
s∈S xs · s with xs ∈ C and

(6) ‖x‖2 =
∑
s∈S

W (s)2|xs |
2 <∞.

We define a particular subset C⊂ S−, the colour set

(7) C= {gk
: k ∈ N} ∪ {gkhs : k ∈ N0, s ∈ S, 1+ l(s) | k}
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(here and elsewhere we use “1+ l(s) | k” for “1+ l(s) divides k”).

We define a colour map µ : S−→ C recursively as follows:
(8)

µ(s)=
{

s if s ∈ C,

µ(pn−k′ y) if s = gkhy, y ∈ S, l(y)= n, 1≤ k ′ ≤ n, k ≡ k ′ mod n+ 1.

Note that (8) really “works” as a recursive definition, because if s /∈C, we necessarily
have s = gkhy for some k ∈N such that 1+ l(y) - k; so writing n = l(y), there is a
unique k ′ ∈ [1, n] such that k ′≡ k (mod n+1). The iterated predecessor pn−k′ y will
not be equal to 1 because k ′ > 0 and l(y)= n, so µ(pn−k′ y) will be (recursively)
defined. Note that for s ∈ S, the colour µ(hs) is always equal to hs, while the
colour µ(gs) is either gs itself, or one of the iterated predecessors of gs. So we
never have µ(gs)= µ(hs) for any s ∈ S.

Definition 2.3. For each colour c ∈ C, we define a linear map Tc ∈ B(H) by its
action on the basis S: for each s ∈ S, we define

(9) Tc(s)=


gs if µ(gs)= c,

hs if µ(hs)= c,

0 otherwise.

Each Tc is a weighted shift operator (for S is an orthogonal, though not an
orthonormal, basis of H ). Writing es = W (s)−1

· s (s ∈ S) for the corresponding
orthonormal basis, and giving due regard to the fact that W (s)/W (p(s))= w(s)
for each s ∈ S−, we have

(10) Tc(es)=


w(gs)egs if µ(gs)= c,

w(hs)ehs if µ(hs)= c,

0 otherwise.

This implies that for each c ∈ C,

(11) ‖Tc‖ =max{w(x) : µ(x)= c} = w(c)= 2−ρ(c).

Definition 2.4. We define two families of coordinatewise orthogonal projections
on H. For n ∈ N0, Pn is the orthogonal projection onto lin{s ∈ S : ρ(s)= n}, and
Pn =

∑n
i=0 Pi ; while πn is the orthogonal projection onto lin{s ∈ S : l(s)= n}, and

πn =
∑n

i=0πn .
We also define, for n ∈ N0, a subgraph G(n) of G, obtained from G by deleting

some of the edges. Specifically, G(n) is a graph with vertex set S and a directed
edge p(s)→ s for every s ∈ S such that the colour depth ρµ(s) is no greater than
n. (Equivalently, we obtain G(n) by deleting from G every edge p(s)→ s such that



THE BIDUAL OF A RADICAL OPERATOR ALGEBRA CAN BE SEMISIMPLE 447

the colour depth ρµ(s) is greater than n). If K ⊂ G(n) is a connected component,
we define the coordinatewise projection Qn,K by

(12) Qn,K (s)=
{

s if s ∈ K ,
0 otherwise

(s ∈ S).

We define Hn,K = Qn,K (H).

Note that while πn has finite rank 2n , the projection Pn always has infinite rank
(even when n = 0, when it is the orthogonal projection onto lin{gk

: k ≥ 0}).

Definition 2.5. We define an algebra A0 ⊂ B(H). A0 is the nonunital subalgebra
of B(H) generated by the operators Tc (c ∈ C). We define the operator algebra
A= A0, the norm closure of A0 in B(H). We define A(n)

⊂A0 to be the linear span
of products T = Tck Tck−1 . . . Tc2 Tc1 =

∏k−1
i=0 Tck−i such that ci ∈ C and max{ρ(ci ) :

1 ≤ i ≤ k} = n. We define A(n)
=
∑n

r=0A(r), the subalgebra of A0 generated by
maps Tc (c ∈ C) with ρ(c)≤ n.

For n, r ≥ 0, let Sn,r ={s ∈ S : the path from 1 to s in G contains exactly r edges
p(u)→ u with colour depth ρµ(u) > n}. Let Pn,r be the orthogonal projection
onto lin(Sn,r ), and let Pn,r =

∑r
t=0 Pn,t .

Note that Sn,0 = {s ∈ S : ρ(s)≤ n}, so Pn,0 = Pn for each n ∈ N0.

Lemma 2.6. (a) For each n ∈ N0, the subspaces ker Pn , kerπn ⊂H are invariant
for A. Further, A maps kerπn into kerπn+1 for each n.

(b) For each component K of G(n), the subspace Hn,K is invariant for A(n) and also
for the hermitian conjugate (A(n))∗. The component of G(n) containing 1 is Sn,0,
and the associated projection is Pn .

(c) Every map Tc with ρ(c) > n maps H into ker Pn .

(d) For T ∈A0, the decomposition T =
∑
∞

n=1T (n), with T (n)
∈A(n), is unique and

continuous; writing T (n)
=
∑n

i=0T (i), we have ‖T (n)
‖ ≤ ‖T ‖ for every n and T ;

in fact T (n)
=
∑
∞

r=0 Pn,r T Pn,r in the strong operator topology, while T − T (n)
=∑

∞

r=0(1− Pn,r )T Pn,r .

(e) For all s ∈ S we have ρµ(s)≤ ρ(s), with equality if s ∈ hS.

Proof. (a) is obvious because the generating maps Tc all map an element s ∈ S
to gs, hs, or zero; and we have ρ(gs)≥ ρ(s), ρ(hs)≥ ρ(s) and l(gs)= l(s)+ 1,
l(hs)= l(s)+ 1 for all s ∈ S.

For c ∈C, we have 〈Tcs, t〉 6= 0 (s, t ∈ S) only when there is an edge s→ t in G,
and µ(t)= c. So if T is in A(n), the algebra generated by maps Tc with ρ(c)≤ n,
and if 〈T s, t〉 6= 0, then there is a path from s to t in G, and each edge p(u)→ u
in that path has ρµ(u) ≤ n, so the edge p(u)→ u is present in the graph G(n).
Thus s, t belong to the same component of G(n). So for a connected component
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K ⊂ G(n), the associated subspace Hn,K is invariant for both A(n) and (A(n))∗,
establishing the first part of (b).

The component of G(n) containing 1 is the set of s ∈ S such that the path from
1 to s in G contains only edges p(u)→ u with ρµ(u) ≤ n. Now for any u ∈ S,
µ(u) is either u itself or one of the iterated predecessors pi (u); taking predecessors
cannot increase the depth ρ(u), so ρµ(u)≤ ρ(u) for all u. If s ∈ S with ρ(s)≤ n,
then every edge p(u)→ u in the path from 1 to s has colour depth ρµ(u)≤ n also,
so s lies in the component of G(n) containing 1. Conversely, if ρ(s) > n then we
have s = gkht for some t ∈ S and k ∈N0; the edge t→ ht is part of the path from 1
to s, and ht ∈C by (7), so the colour depth satisfies ρµ(ht)=ρ(ht)=ρ(s)> n, and
therefore s is not in the connected component of G(n) containing 1. Therefore that
component is precisely {s : ρ(s)≤ n}, and the associated coordinatewise projection
is Pn . Thus we have established the second part of (b), and also part (e).

For part (c), note that Tc maps H into lin{x ∈ S :µ(x)= c}; if ρ(c) > n then this
subspace is contained in lin{x ∈ S : ρµ(x) > n} ⊂ lin{x ∈ S : ρ(x) > n} ⊂ ker Pn ,
where the first ⊂ depends on part (e).

To prove part (d), we note that the edges of G(n) include the edge p(u)→ u only
if ρµ(u)≤ n; hence the set Sn,r is a union of some of the components K of G(n).
So by part (b) of this lemma, each image Pn,r H is A(n)-invariant; but for c ∈C with
ρ(c) > n, Tc maps Pn,r H into Pn,r+1H because 〈Tcs, t〉 6= 0 (s, t ∈ S) only when
s = p(t) and the colour depth ρµ(t) is greater than n. Now take any T ∈A0 and
write T =

∑
i T (i) with each T (i)

∈A(i). We have T (n)
=
∑n

i=0T (i)
∈A(n), so each

Pn,r H is a T (n)-invariant subspace; but T − T (n) maps Pn,r H into
⊕
∞

i=r+1 Pn,i H.
Therefore we have

(13) T (n)
=

∞∑
r=0

T (n)Pn,r =

∞∑
r=0

Pn,r T (n)Pn,r =

∞∑
r=0

Pn,r T Pn,r ,

while T − T (n)
=
∑
∞

r=1(1− Pn,r )T Pn,r as required by the lemma. This shows that
the decomposition T =

∑
∞

i=0T (i) is indeed unique, and furthermore the compression
T (n) as given by (13) plainly satisfies ‖T (n)

‖ ≤ ‖T ‖. Thus the lemma is proved. �

Definition 2.7. Let us write B(n) (B(n)) for the norm closure of A(n) (A(n)) in
B(H). Let us write 1n for the map A0→ A(n) with 1n(T ) the unique element
T (n)
∈A(n) such that T =

∑
∞

n=0T (n); and let 1n :A0→A(n) be the map
∑n

i=01i .

The maps 1n,1n are uniformly norm-bounded by part (d) of the previous
lemma; so they extend continuously to maps 1n :A→B(n) and 1n :A→B(n);
and because of the uniform bound on ‖1n‖ (each 1n is contractive), we have
T =

∑
∞

n=01nT =
∑
∞

n=0T (n), with T (n)
∈ B(n), for all T ∈ A. The formulae

1nT = T (n)
=
∑
∞

r=0 Pn,r T Pn,r and T − T (n)
=
∑
∞

r=0(1− Pn,r )T Pn,r remain true
in the strong operator topology.
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3. A is radical

In order to prove that our algebra A is radical, the main theorem we need is the
following:

Theorem 3.1. Every T ∈A(n), or the norm closure thereof , satisfies

(14) (1−π k)PnT → 0 as k→∞.

Indeed, PnT is a compact operator. Furthermore, every T ∈A(n) satisfies

(15) ‖T ‖ = ‖PnT Pn‖.

Proof of Theorem 3.1, first part. From Definition 2.2, we find that if s 6= c but
µ(s)= c, then we must have s = gkhyc for some k ∈ N0 and y ∈ S. In particular,
ρ(s) > ρ(c). So if ρ(c) = n, then the map PnTc in fact has rank 1; it maps p(c)
to c, and all other s ∈ S to zero. Any product T =

∏k−1
i=0 Tck−i with ci ∈ C and

max{ρ(ci ) : 1 ≤ i ≤ k} = n accordingly satisfies PnT =
∏k−1

i=0 PnTck−i (because
ker Pn is an invariant subspace for each Tc j ) so the rank of PnT is at most 1. A(n)

is the linear span of such maps, so any T ∈ A(n), or its norm closure, will have
PnT a compact operator; hence ‖(1−π k)PnT ‖→ 0 as k→∞. �

To prove the second part of the theorem, we need certain preliminaries, which
we give in the following two lemmas, the first of which is rather elementary:

Lemma 3.2. Let M ∈ Mm+1(C) be a strictly lower triangular matrix, and let
‖ · ‖ and ‖ · ‖′ be two norms on Cm+1, with ‖λ0, λ1, . . . , λm‖ =

(∑m
i=0ω

2
i |λi |

2
)1/2

and ‖λ0, λ1, . . . , λm‖
′
=
(∑m

i=0(ω
′

i )
2
|λi |

2
)1/2 for positive constants ωi , ω

′

i (with
i = 1, . . . ,m). Suppose we have

(16)
ω′i+1

ω′i
≤

1
2
·
ωi+1

ωi

for each i = 0, . . . ,m− 1. Then

(17) ‖M‖′ ≤ ‖M‖.

Proof. Let (ei )
m
i=0 be the unit vectors of Cm+1, and write Mei =

∑
j>i M j,i e j . We

may assume ‖M‖ = 1, in which case |M j,i | ≤ ‖ei‖/‖e j‖ = ωi/ω j for all i and j .
For k ∈ [1,m], the weighted shift matrix M (k) with

(18) M (k)ei =

{
Mi+k,i ei+k if i + k ≤ m,
0 if i + k > m

satisfies

‖M (k)
‖
′
= max

i∈[0,m−k]

∣∣Mi+k,i
∣∣ω′i+k

ω′i
≤ max

i∈[0,m−k]

(
ωi

ωi+k

)
·
ω′i+k

ω′i
≤ 2−k,
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by (16). Then M =
m∑

k=1
M (k), so ‖M‖′ ≤

m∑
k=1

2−k < 1. �

Lemma 3.3. (a) Let K be a connected component of G(n). Then either K equals
Sn,0, the component which contains 1, or K consists of a path

y→ gy→ g2 y→ · · · → gm y

for some y ∈ S and m ∈ N such that the colour depths satisfy ρµ(y) > n and
ρµ(gm+1 y) > n, but ρµ(gi y)≤ n for i ∈ [1,m]. Furthermore, there is a path s0→

s1→ · · · → sm in the component Sn,0 such that the colours satisfy µ(si )= µ(gi y)
for each i ∈ [1,m].

(b) For every T ∈A, we have ‖(1− Pn)T ‖→ 0 as n→∞.

Proof. (a) Suppose K 6= Sn,0. Since K cannot meet Sn,0, every vertex x ∈ K must
have ρ(x) > n. But if x → x ′ is an edge in K , we must have ρµ(x ′) ≤ n, and
therefore µ(x ′) 6= x ′, so x ′ /∈ C, so x ′ = gkhz for some z ∈ S and k > 0 with
ρ(hz) = ρ(x ′) > n. Indeed, we must have 1+ l(z) - k. Every edge of K must be
of form x→ gx rather than x→ hx , so K does indeed consist of a path (finite or
infinite) of form gr hz→ gr+1hz→ gr+2hz→ · · · , for some r ≥ 0. But we have
the condition 1+ l(z) - k for any k such that k > r and gkhz is in the path; so the
path is finite. Its last vertex must be gt hz for some t with t − r ≤ 1+ l(z). Writing
m = t − r and y = gr hz, we see that K = {gi y : i = 0, . . . ,m}.

If r > 0, we must have ρµ(y)= ρµ(gr hz) > n or we could continue the path in
K backwards to include the vertex gr−1hy. If r = 0, we have µ(y)= µ(hz)= hz,
so ρµ(y)> n anyway. Also, we must have ρµ(gt+1hy)> n or we could include the
vertex gt+1hy in our component K . For i ∈ (r, t] we have ρµ(gi hy)≤ n because
the edge gi−1hy→ gi hy lies in K . Thus the component K is as described in part
(a) of this lemma.

To complete the proof of part (a), we claim that there is a sequence s0→ s1→

· · · → sm ∈ Sn,0 such that µ(si ) = µ(gi y) for each i ∈ [1,m]. This is proved by
induction on l(y)=min{l(u) : u ∈ K }. If l(y)≤ n, there is nothing to prove because
the component is Sn,0 after all. If the component K is not Sn,0, write K = {gi hz :
r ≤ i ≤ r +m}. We return to (8) to compute the colours µ(gi hz) for i ∈ (r, r +m].
Writing l = l(z) and z =

∏l−1
i=0zl−i (z j ∈ {g, h}), we find that if i ′ ∈ [1, l] is the

unique integer with i ′ ≡ i (mod 1+ l), then µ(gi hz)= µ
(∏i ′−1

j=0 zi ′− j
)
= µ(pl−i ′z).

If r0 ∈ [0, l] satisfies r0 ≡ r (mod l + 1), then the sequence µ(gi y) (i = 1, . . . ,m)
is the sequence µ(pl−r0−i z) (i = 1, . . . ,m). The vertices (pl−r0−i z)mi=0 form a path
in G which, since it involves the same colours for i > 0, is also a path in G(n). So
this path is part of a component K ′ of G(n). If K ′ = Sn,0 we are done; if not, we
note that the minimum length of an element of K ′ is strictly less than l(y), so the
result follows by induction hypothesis.
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(b) Let c ∈ C. From (10), for s ∈ S we have

(1− Pn)Tces =


w(gs)egs if µ(gs)= c and ρ(gs) > n,

w(hs)ehs if µ(hs)= c and ρ(hs) > n,

0 otherwise.

But w(x)= 2−ρ(x), so ‖(1− Pn)Tc‖≤ 2−n−1. We will also have ‖(1− Pn)T ‖→ 0
for any operator T in the norm-closed right ideal generated by the operators Tc.
But this right ideal is the entire algebra A. �

Proof of Theorem 3.1, second part. By Lemma 2.6(b), when T ∈ A(n) we have
T =

∑
K Qn,K TQn,K , where the sum is taken over the connected components K

of G(n). So

(19) ‖T ‖ = sup
K
‖Qn,K TQn,K‖.

If K equals Sn,0, the component containing 1, then the norm ‖Qn,K TQn,K‖ equals
‖PnT Pn‖. If K is any other component, we claim that the norm is at most ‖PnT Pn‖.
By Lemma 3.3(a), we can write K = {gi y : 0 ≤ i ≤ m} for suitable y ∈ S and m;
writing γi for the colour µ(gi y), there is also a set κ = {si : 0 ≤ i ≤ m} ⊂ Sn,0

such that the colour µ(si ) equals γi for i ∈ [1,m]. Let q denote the orthogonal
(coordinatewise) projection onto lin(κ). If c1, c2, . . . , cr ∈ C, then the compression
τ1 = Qn,K Tcr Tcr−1 . . . Tc1 Qn,K sends gi y to gi+r y, if i + r ≤ m and ci = γr+i for
each i = 1, . . . , r ; otherwise, we have τ1gi y = 0. Similarly, the compression τ2 =

qTcr Tcr−1 . . . Tc1q sends si to si+r if i + r ≤ m and ci = γr+i for each i = 1, . . . , r ;
otherwise, we have τ2si = 0. So the compressions τ1 and τ2 are intertwined by
the map η sending gi y to si for each i . Indeed, if T ∈ A(n), the compressions
τ = Qn,K TQn,K and τ ′ = qT q are intertwined, with ητ = τ ′η. So τ has the same
(m+1)× (m+1) matrix M with respect to the basis (gi y)mi=0 of Qn,K H, as τ ′ has
with respect to the basis (si )

m
i=0 of qH. M is strictly lower triangular, because all

such compressions qT q map si into lin{s j : j > i} for each i . The norm on qH is
given by

∥∥∑m
i=0λi si

∥∥= (∑m
i=0ω

2
i |λi |

2
)1/2, where ωi =W (si ). The norm on Qn,K H

is likewise given by
∥∥∑m

i=0λi gi y
∥∥ = (∑m

i=0(ω
′

i )
2
|λi |

2
)1/2, where ω′i = W (gi y).

For 0≤ i <m, the ratio ωi+1/ωi equals W (si+1)/W (si )=w(si+1) because there is
an edge si→ si+1 in G; and w(si+1)≥ 2−n because si+1 ∈ Sn,0 so ρ(si+1)≤ n. On
the other hand, the ratio ω′i+1/ω

′

i equals W (gi+1 y)/W (gi y)= w(gi+1 y)≤ 2−n−1,
because gi+1 y /∈ Sn,0 so ρ(gi+1 y)≥n+1. We deduce thatω′i+1/ω

′

i ≤
1
2 ·ωi+1/ωi . By

Lemma 3.2, we have ‖Qn,K TQn,K‖= ‖τ‖≤ ‖τ
′
‖, and of course ‖τ ′‖≤ ‖PnT Pn‖

because the orthogonal projection satisfies q ≤ Pn . By (19), the norm of T is
the supremum of ‖PnT Pn‖ and the norms ‖Qn,K TQn,K‖ for all other connected
components K ⊂ G(n); so ‖T ‖ = ‖PnT Pn‖ as claimed by the theorem. �
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We can now prove the main theorem of this section:

Theorem 3.4. A is radical.

Proof. If not, let T ∈ A have spectral radius at least 1. By Lemma 3.3, there
is an n ∈ N such that ‖(1− Pn)T ‖ ≤ 1

2 . We claim that the spectral radius of
the compression PnT Pn is at least 1. For by Lemma 2.6(a), for each k ∈ N we
have T k

= PnT k Pn + (1 − P̄n)T k (any k ∈ N) because ker Pn is an invariant
subspace for A; indeed, T k

= (PnT Pn)
k
+ (1− Pn)T k , because the compression

map T → PnT Pn is an algebra homomorphism on A. So for all k > 0, T k
=

(PnT Pn)
k
+ (1− Pn)T · T k−1, and hence

‖T k
‖ ≤ ‖(PnT Pn)

k
‖+

1
2 · ‖T

k−1
‖

≤ ‖(PnT Pn)
k
‖+

1
2 · ‖(PnT P̄n)

k−1
‖+

1
4 · ‖T

k−2
‖

≤ · · · ≤ 2−k
+

k−1∑
j=0

2− j
‖(PnT Pn)

k− j
‖.

If the spectral radius of PnT Pn is less than 1, we can find r < 1 and C > 0 such that
‖(PnT Pn)

j
‖≤Cr j for all j ∈N, so we have 1≤‖T k

‖≤ 2−k
+
∑k−1

j=0C ·2− j
·r k− j

≤ 2−k
+ kC max

( 1
2 , r

)k for all k ∈ N. This is a contradiction for large k, so the
spectral radius of the compression PnT Pn must be at least 1.

It is thus sufficient to show that for each T ∈ A and n ∈ N, the compression
PnT Pn is quasinilpotent. Let us prove this by induction on n, beginning with the
not-quite-trivial case n = 0.

By Lemma 2.6(d) (and its generalisation to T ∈A rather than T ∈A0 as discussed
after Definition 2.7), we have P0T P0= P0T (0)P0= P0T (0)P0 for any T ∈A; and
T (0)
∈B(0). By Theorem 3.1, we have (1−π k)P0T (0)

→ 0, and by Lemma 2.6(a),
T (0) maps kerπ k into kerπ k+1 for every k. Writing εk = ‖(1−π k)P0T (0)

‖, we
have εk→ 0, and

(P0T P0)
k
= (P0T (0)P0)

k

= (1−π k−1)P0T (0)(1−π k−2)P0T (0)(1−π k−3)

. . . P0T (0)(1−π0)P0T (0)P0,

so ‖(P0T P0)
k
‖ ≤

∏k−1
j=0ε j , and hence P0T P0 is indeed quasinilpotent.

Proceeding to the case of a general n ∈ N, we note that for T ∈ A, PnT Pn =

PnT (n)Pn = Pn(T (n)
+ T (n−1))Pn , where T (n)

∈B(n) and T (n−1)
∈B(n−1).

Writing τ = T (n−1), we have τ k
∈B(n−1) for all k, so by Theorem 3.1, ‖τ k

‖ =

‖Pn−1τ
k Pn−1‖ for all k. But ker Pn−1 is an invariant subspace for A, so

Pn−1τ
k Pn−1 = (Pn−1τ Pn−1)

k
;
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and our induction hypothesis tell us that Pn−1τ Pn−1 is quasinilpotent. Thus
‖τ k
‖

1/k
→ 0 as k→∞, and also ‖(Pnτ Pn)

k
‖

1/k
= ‖Pnτ

k Pn‖
1/k
→ 0 as k→∞.

So PnT (n−1) is quasinilpotent.
Meanwhile σ = PnT (n) is a compact operator by Theorem 3.1, satisfying εk =

‖(1−π k)σ‖→ 0 as k→∞; and both σ and τ map kerπ k into kerπ k+1 for each k.
Let us pick an arbitrary δ > 0 and choose C > 0 such that ‖(PnT (n−1))k‖≤C ·δk

for all k ∈ N0. Then for any k ∈ N, we have

(PnT Pn)
k
= (PnT (n−1)

+ σ)k Pn

=

k∑
r=0

∑
i0+i1+···+ir=k−r

i j∈N0

(PnT (n−1))i0 ·

r∏
j=1

σ · (PnT (n−1))i j · Pn,

and writing u j =
∑r

t= j (1 + it) − 1, the product from j = 1 to r is equal to∏r
j=1(1−πu j )σ (PnT (n−1))i j ; so

‖(PnT Pn)
k
‖ ≤

k∑
r=0

∑
i0+i1+···+ir=k−r

i j∈N0

Cr+1δk−r
·

r∏
j=1

εu j .

Now u j ≥ j − 1 in all cases, so writing η j =
∏r

j=1ε j−1, we have

‖(PnT Pn)
k
‖ ≤

k∑
r=0

∑
i0+i1+···+ir=k−r

i j∈N0

Cr+1δk−rηr =

k∑
r=0

(
k
r

)
Cr+1δk−rηr .

But η1/r
r →0, so we can choose D>0 such that ηr ≤D·(δ/C)r for all r ; substituting

this in the previous equation, we find that ‖(PnT Pn)
k
‖ ≤

∑k
r=0
(k

r

)
CDδk

= CD ·
(2δ)k . So the spectral radius of PnT Pn is at most 2δ; but δ > 0 was arbitrary, so
PnT Pn is quasinilpotent. Therefore every T ∈A is quasinilpotent; A is a radical
Banach algebra. �

4. Aw∗ is semisimple

We wish to prove the second half of our main result, namely that the bidual A∗∗

is semisimple. We shall do this by showing that the weak-* closure Aw∗ of A in
B(H) is semisimple, and then show that the natural representation θ :A∗∗→ B(H),
whose image is Aw∗, is faithful, so that A∗∗ itself is semisimple. (Our “natural
representation” is the restriction to A∗∗ of the natural projection T∗∗∗→T∗, where
T are the trace-class operators on H, and T∗ = B(H), T∗∗∗ = B(H)∗∗).

In this section, we show that Aw∗, very unlike A itself, is semisimple.
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Definition 4.1. Let C<∞ be the collection of all finite sequences (c1, c2, . . . , cm)

of colours ci ∈ C, for m ∈N (we exclude m = 0). For c= (c1, c2, . . . , cm) ∈ C<∞,
let Tc denote the operator

∏m
i=1Tci ∈A0. Let SA ⊂ C<∞ be the set of c ∈ C such

that Tc 6= 0.

We think of SA as the “support” of A, because clearly every T ∈A0 is equal to
a sum

(20) T =
∑
c∈SA

λc · Tc,

the coefficients λc ∈ C being finitely nonzero.

Lemma 4.2. Given T ∈A0, the coefficients λc(T ) such that T =
∑

c∈SA
λc(T ) · Tc

are unique, and they are weak-* continuous linear functionals of T .

Proof. For c ∈ C, (10) tells us that 〈Tces, et 〉 6= 0 if and only if s = p(t) and the
colour µ(t) = c, in which case it is equal to w(t). Any easy induction then tells
us that for c= (c1, c2, . . . , cm) ∈ SA, 〈Tces, et 〉 6= 0 if and only if s = pm(t) and,
for each i = 1, . . . ,m, the colour µ(pi−1t) equals ci . In that case, 〈Tces, et 〉 =∏m−1

i=0 w(p
i t)=W (t)/W (s). So for fixed s, t , the colour sequence c∈ SA such that

〈Tces, et 〉 6= 0 is unique if it exists; and since Tc 6= 0 for c ∈ SA, for fixed c ∈ SA

there is at least one pair s, t ∈ S such that 〈Tces, et 〉 6= 0.
Given T ∈A0, T =

∑
c∈SA

λc · Tc, we therefore have

(21) λc = λc(T )=
W (s)
W (t)

〈T es, et 〉,

where s, t is any pair such that 〈Tces, et 〉 6= 0. Now λc is indeed uniquely determined
by T , and it is indeed a weak-* continuous function of T ; (21) even equates
λc ∈ B(H)∗ with an element of T of rank 1. �

Given two elements c= (c1, . . . , cm), d = (d1, . . . dn) in C, we can define the
product c · d to be the sequence (c1, . . . , cm, d1, . . . , dn). From (20), we see that
for T, T ′ ∈A0, we have

(22) λc(T T ′)=
∑

d,e∈SA,
d�e=c

λd(T ) · λe(T ′),

where the product d� e denotes concatenation of sequences. The sum is always
finite (it has m− 1 terms when c= (c1, . . . , cm)), so (22) remains true even when
we extend λc to the weak-* closure Aw∗ of A0.

Now for each c ∈ C, (10) tells us that the left support projection l(Tc) for the
operator Tc is the orthogonal projection onto lin{et : t ∈ S−, µ(t)= c}. We also have
‖Tc‖ = w(c)= 2−ρ(c) ≤ 1. These left support projections are mutually orthogonal
for different colours c. The corresponding right support projection r(Tc) is the
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projection onto lin{es : s ∈ S, s = p(t), µ(t)= c}. These right support projections
are not mutually orthogonal, but nevertheless, for each s ∈ S there are only two
t ∈ S− such that s = p(t), so the norm of any sum

∑
c∈SA

λcr(Tc) is at most
2 · sup{|λc| : c ∈ SA}. Hence for any sequence x ∈ l∞(SA), the formal sum

(23) T =
∑
c∈SA

xc

wc
· Tc

satisfies

T ∗T =
∑

c,d∈SA

x∗c xd

wcwd
T ∗c l(Tc)l(Td)Td =

∑
c∈SA

|xc|
2

w2
c

T ∗c Tc ≤
∑
c∈SA

|xc|
2r(Tc),

in particular ‖T ∗T ‖ ≤ 2 · ‖x‖2
∞

. So the sum T in fact converges in the weak-*
topology to an element of Aw∗ of norm at most

√
2 · ‖x‖∞.

Theorem 4.3. Aw∗ is semisimple.

Proof. Let T ∈ Aw∗, T 6= 0. We claim that T /∈ rad Aw∗. Let us choose s, t ∈ S
such that 〈T es, et 〉 6= 0.

Suppose first that s 6= 1. Let l0 = l(s) > 0, and for i = 1, . . . , l0, write di =

µ(pi−1s)=µ(pi+m−1t). Writing d= (d1, . . . , dl0)∈C<∞, we will have Td(1)= s,
so d ∈ SA and the product T ′= T ·Td satisfies 〈T ′e1, et 〉 6= 0. Furthermore, in order
to show T /∈ rad Aw∗ it is enough to show that T ′ /∈ rad Aw∗, because the radical is
an ideal. So, we can replace T with T ′ if necessary, and assume that 〈T e1, et 〉 6= 0.

Then λc(T ) 6= 0, where c= (c1, c2, . . . , cl) ∈ SA is the unique sequence such
that l = l(t) (so 1 = pl t), and the colours µ(pi−1t) (i = 1, . . . , l) are ci . Write
ξm = g(m−1)(l+1)ht , and let E ⊂ C be the collection {ξm : m ∈N0} (noting from (7)
that these elements are truly elements of the colour set C). Let us also note that the
weight wξm = 2−ρ(ξm) = 2−(1+ρ(t)) is independent of m. So U =

∑
c∈E Tc ∈ Aw∗

(for U is a weak-* convergent sum like T in (23)). We claim that the product
U · T ∈ Aw∗ is not quasinilpotent, so UT and T itself are not in the radical of
Aw∗. To prove this, we compute the inner product 〈(UT )me1, eξm 〉 for every m ∈N.
Obviously λd(U )= 1 (if d ∈ E) or zero otherwise.

Now the length L equals l(ξm)= m(1+ l), and the colour sequence µ(pi−1ξm)

(with i = 1, . . . , L) is obtained from (8) as follows: if 1+l | i−1, we have pi−1ξm=

g(m−1−r)(l+1)ht (with r = (i − 1)/(1+ l) ∈ [0,m)), and µ(pi−1ξm) = pi−1ξm =

ξm−r ∈ E . But if 1+ l - i−1, then writing i−1= r(l+1)+ j (with r ∈ [0,m), j ∈
[1, l]), if r = m − 1 we have pi−1ξm = p j ht = p j−1t , so µ(p j−1ξm) = c j ; but if
r <m− 1 we have pi−1ξm = g(m−2−r)(l+1)+l+1− j ht and the recursive definition in
(8) tells us that µ(pi−1ξm) = µ(pl−(l+1− j)t) = µ(p j−1t) = c j also. So for all i ,
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1≤ i ≤ L , we have

(24) µ(pi−1ξm)=

{
ξm−r ∈ E if i − 1= r(1+ l),
c j /∈ E if i − 1≡ j (mod l + 1), 1≤ j ≤ l.

The full sequence (µ(pi−1ξm))
L
i=1 ∈ SA is the concatenation

⊙m−1
r=0 (ξm−r � c),

where we slightly abuse notation by writing ξm−r for the sequence of length 1 in
C<∞. Now from (21), we have the inner product

(25) 〈(UT )me1, eξm 〉 =W (ξm) · λξm ((UT )m);

and using (22) 2m times, we have

λξm ((UT )m)=
∑

d(1),c(1),...,d(m),c(m)∈SA,⊙m
i=1(d

(i)�c(i))=
⊙m−1

r=0 (ξm−r�c)

m∏
i=1

λd(i)(U )λc(i)(T ).

But the coefficient λd(U ) can only be nonzero if the sequence d has length 1 and
consists of one of the colours ξ j ∈ E (in which case the coefficient is equal to 1).
There are only m such colours in the sequence

⊙m
r=1(ξm−r � c), and the rest of the

sequence consists precisely of m copies of c, so in fact

(26) λξm ((UT )m)= λc(T )m .

Equation (26) makes the rest of the proof rather straightforward. Substituting it
in (25), we have ‖(UT )m‖ ≥ |〈(UT )me1, eξm 〉| = |λc(T )|m ·W (ξm); where writing
L =m(1+l) as usual, we have W (ξm)=

∏L
j=1w(p

j−1ξm)= 2−
∑L

j=1ρ(p
j−1ξm), from

Definition 2.2. But ξm = g(m−1)(l+1)ht , so ρ(ξm)= 1+ρ(t). And ρ(piξm)≤ ρ(ξm)

for all i ≥ 0, so for all m ∈ N,

‖(UT )m‖ ≥ |λc(T )|m · 2−L(1+ρ(t))
= |λc(T )|m · 2−m(1+l)(1+ρ(t)).

Accordingly UT ∈Aw∗ is not a quasinilpotent operator, and T /∈ rad Aw∗. �

5. A∗∗ is semisimple

Let θ0 : T
∗∗∗
→ T∗ = B(H) be the natural projection, which is an algebra homo-

morphism, and let θ = θ0|A∗∗ be the restriction, which is a representation of A∗∗. If
τ ∈ A∗∗ is a weak-* limit of operators Tα in A, then for each η, ζ ∈ H, we have
〈θ(τ )η, ζ 〉= limα〈Tαη, ζ 〉, so θ(τ ) is the σ(B(H),T)-limit of the operators Tα , and
the image θ(A∗∗) is contained in the weak-* closure Aw∗ of A in B(H). Conversely,
the image of the unit ball of A∗∗, being the weak-* continuous image of a weak-*
compact set, is weak-* compact, and therefore contains the weak-* closure Bw∗ of
the unit ball of A. It is a consequence of the Hahn–Banach theorem that Aw∗ is
equal to the union

⋃
∞

n=1n · Bw∗, so we have θ(A∗∗)=Aw∗, which by Theorem 4.3
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is semisimple. To deduce that A∗∗ is semisimple, we need only prove that θ is a
faithful (injective) representation.

Theorem 5.1. The representation θ :A∗∗→ B(H) is faithful.

Proof. Let τ ∈ A∗∗ with ‖τ‖ = 1. We claim that θ(τ ) 6= 0. To establish this, we
first prove the following lemma:

Lemma 5.2. If τ ∈ A∗∗ with ‖τ‖ = 1, then for every ε > 0, there are n ∈ N and
φ ∈ B(H)∗ with ‖φ‖ = 1, such that the compression φn = Pn · φ · Pn satisfies
|〈τ, φn〉|> 1− ε.

Proof. If a, b ∈ B(H) and Q is an orthogonal projection, then simple calculations
yield the inequalities

‖aQ+ b(1− Q)‖ ≤
√
‖aQ‖2+‖b(1− Q)‖2,

‖Qa+ (1− Q)b‖ ≤
√
‖Qa‖2+‖(1− Q)b‖2.

When these are dualized, the directions of the inequalities are reversed: if φ,ψ ∈
B(H)∗, then

‖φ · Q+ψ · (1− Q)‖ ≥
√
‖φ · Q‖2+‖ψ · (1− Q)‖2,

‖Q ·φ+ (1− Q) ·ψ‖ ≥
√
‖Q ·φ‖2+‖(1− Q) ·ψ‖2.(27)

For every η > 0 there is a φ ∈ A∗ such that ‖φ‖ = 1 and 〈τ, φ〉 > 1 − η.
There is also a witness T ∈ A such that ‖T ‖ = 1 and 〈φ, T 〉 > 1 − η. By
Lemma 3.3(b) there is an n ∈N such that ‖(1− Pn)T ‖<η. Hence, |〈φ−φn, T 〉|≤
‖(1− Pn)T ‖+‖PnT (1− Pn)‖ = ‖(1− Pn)T ‖ < η also (because ker Pn is an in-
variant subspace for A), and so ‖φn‖≥|〈φn, T 〉|>1−2η. By (27) we therefore have
‖(1− Pn) ·φ‖, ‖φ · (1− Pn)‖ <

√
1− (1− 2η)2 < 2

√
η, and hence ‖φ−φn‖ <

4
√
η. Since 〈τ, φ〉> 1− η, we have |〈τ, φn〉|> 1− η−‖φ−φn‖ ≥ 1− η− 4

√
η.

Appropriate choice of η > 0 yields |〈τ, φn〉|> 1− ε as required. �

We now prove Theorem 5.1. Let τ ∈A∗∗ with ‖τ‖ = 1, and assume towards a
contradiction that θ(τ )=0. Write γn= sup{|〈Pn ·φ · Pn, τ 〉| :φ ∈ B(H)∗, ‖φ‖=1}.
The sequence γn is nondecreasing, and by Lemma 5.2 we have γn→ 1. Pick then
N ∈N such that γN > 0, and let n≤ N be the least natural number such that γn= γN .
For each ε > 0 we can find φ ∈ B(H)∗, ‖φ‖= 1 such that 〈Pn ·φ · Pn, τ 〉 ≥ γN −ε.

Given such an ε > 0 and φ, we write φ1 for a weak-* accumulation point
of the functionals π k · φ; but actually, we claim that φ1 is the norm-convergent
limit of π k · φ. For the norms ‖π k ·φ‖ are a nondecreasing sequence tending to
a limit l; (27), with Q = π k and ψ = πm · φ, tells us that for m > k we have
‖π k ·φ‖

2
+‖(πm −π k) ·φ‖

2
≥ ‖πm ·φ‖

2, so ‖(πm −π k) ·φ‖→ 0 as k,m→∞;
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so the sequence (π k ·φ)k∈N satisfies the Cauchy criterion and is norm-convergent.
Each projection π k is of finite rank, so π k ·φ belongs to the trace-class operators T.
Therefore, φ1 ∈T. But the difference φ−φ1 = limk(1−π k) ·φ will annihilate any
compact operator.

We therefore claim that n> 1. For by Theorem 3.1, whenever T ∈A the operator
P1T = P1T (1) is a compact operator, so 〈P1T P1, φ〉=〈P1T P1, φ1〉. We may write τ
as a weak-* convergent limit τ = limw∗ Tα for Tα ∈A with ‖Tα‖= 1. Then γN−ε≤

〈P1 ·φ · P1, τ 〉 = limα〈Tα, P1 ·φ · P1〉 = limα〈P1TαP1, φ〉 = limα〈P1TαP1, φ1〉 =

limα〈Tα, P1 ·φ1 · P1〉=〈τ, P1 ·φ1 · P1〉. For small ε this implies 〈τ, P1 ·φ1 · P1〉 6=0.
But P1·φ1·P1∈T= B(H)∗, so θ(τ ) is not the zero operator in B(H), a contradiction.
Therefore we have n > 1.

Given n > 1, we again pick ε > 0 and find φ ∈ B(H)∗, ‖φ‖ = 1 such that

(28) 〈Pn ·φ · Pn, τ 〉 ≥ γN − ε > 0.

The norm limit φ1= limk π k ·φ is again in T. However, the difference φ−φ1 will not
necessarily annihilate PnT Pn for T ∈A, because though φ−φ1 annihilates K (H),
the operator PnT Pn need not be compact. Rather, for T ∈A we have PnT Pn =

PnT (n)Pn , where T (n)
= 1n(T ) as in Definition 2.7; and T (n)

= T (n−1)
+ T (n),

where the operator PnT (n) is compact by Theorem 3.1. So 〈PnT (n) P̄n, φ−φ1〉 =

0 for all T ∈ A. Writing τ = limα Tα for a suitable net (Tα) in A, we have
〈T (n)
α , Pn(φ−φ1)Pn〉 = 0 for all α. Because φ1 ∈ T and θ(τ )= 0 by hypothesis,

if we write β = limα〈T
(n−1)
α , Pn(φ−φ1)Pn〉, we will have 0 = 〈Pnφ1 Pn, τ 〉 =

〈Pnφ P̄n, τ 〉 − limα〈Pn(φ−φ1)Pn, Tα〉 = 〈PnφPn, τ 〉 − β. By (28), we have
|β| ≥ γN − ε.

For each T ∈ A and n > 1, the norms of T (n−1) and Pn−1T (n−1)Pn−1 =

Pn−1T Pn−1 are the same by (15). Thus there is a unique map η : Pn−1 ·A · P̄n−1→

A(n−1) which is a right inverse to the compression p :A→ Pn−1 ·A · Pn−1 with
p(T ) = Pn−1T Pn−1 (T ∈ A); and ‖η‖ = 1. We will have η · p = 1n−1. Let us
write ψ = (Pn(φ−φ1)Pn) ◦ η. Then ψ ∈ (Pn−1 ·A · Pn−1)

∗ with ‖ψ‖ ≤ 1.
By the Hahn–Banach theorem, we can extend ψ to Pn−1 · B(H) · Pn−1 with the

same norm; and then extend to all of B(H) so that ψ = ψ ◦ p (where we abuse
notation slightly by writing p for the compression B(H)→ Pn−1 · B(H) · Pn−1

also).
Then for T ∈A we have ψ(T )= ψ ◦ ηp(T )= ψ(1n−1(T )); so

|〈ψ, τ 〉| = lim
α
|〈ψ, 1̄n−1Tα〉| = lim

α
|〈Pn(φ−φ1)Pn, T̄ (n−1)

α 〉| = |β| ≥ γN − ε.

Since ψ = ψ ◦ p = Pn−1 ·ψ · Pn−1, we find that

γn−1 = sup{|〈Pn−1 ·φ · Pn−1, τ 〉| : φ ∈ B(H)∗, ‖φ‖ = 1}
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is at least γN − ε. But ε > 0 is arbitrary, so γn−1 = γN , and n was not the minimal
integer with γn = γN , contrary to hypothesis. This contradiction proves the theorem.

�

6. References to Gulick’s paper

Having established that the result rad A∗∗ ∩ A = rad A of Gulick is wrong, let us
look at papers which have referenced [Gulick 1966] and try to establish that no
further damage has been done.

The lengthy paper of Dales and Lau [2005] refers to [Gulick 1966], but does
not use the false Theorem 4.6; private communication with my colleague Garth
Dales reveals a history of previous suspicion about that result, but no actual coun-
terexamples as presented here. The paper of Daws, Haydon, Schlumprecht and
White [Daws et al. 2012] refers to (the proof of) Theorem 3.3 of [Gulick 1966],
which we believe to be completely correct. Likewise the paper of Bouziad and
Filali [2011] quotes the proof, given by Gulick [1966, Lemma 5.2], that the radical
of L∞(G)∗ is nonseparable for any nondiscrete locally compact group G. This
proof also is perfectly valid. The earlier paper of Granirer [1973] makes reference
to that same, correct, lemma. Tomiuk [1981] likewise refers to Gulick’s untainted
Theorem 5.5. A. Ülger [1987] solves one of the problems posed by Gulick [1966].
Finally, Tomiuk and Wong [1970] make a passing reference to [Gulick 1966] in
their paper on Arens products.

We have not found a case in which another author has used the false Theorem
4.6 from Gulick’s paper, or anything tainted by it. This chimes with our reckoning
that more than one author apart from ourselves has suspected that that theorem is
false. So, the general literature on Banach algebras is not seriously harmed; but it
was nonetheless high time that these counterexamples were made known so that
such errors will not occur in the future.
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DIMENSION JUMPS
IN BOTT–CHERN AND AEPPLI COHOMOLOGY GROUPS

JIEZHU LIN AND XUANMING YE

Let X be a compact complex manifold, and let π :X→ B be a small deforma-
tion of X , the dimensions of the Bott–Chern cohomology groups H p,q

BC (X (t))
and Aeppli cohomology groups H p,q

A (X (t)) may vary under this deforma-
tion. In this paper, we will study the deformation obstructions of a ( p, q)
class in the central fiber X . In particular, we obtain an explicit formula for
the obstructions and apply this formula to the study of small deformations
of the Iwasawa manifold.

1. Introduction

Let X be a compact complex manifold and π : X→ B be a family of complex
manifolds such that π−1(0) = X , where X is a complex manifold and B is a
neighborhood of the origin. Let X t = π

−1(t) denote the fiber of π over the point
t ∈ B. In [Ye 2008], the author studied the jumping phenomenon of Hodge numbers
h p,q of X by studying the deformation obstructions of a (p, q) class in the central
fiber X . In particular, the author obtained an explicit formula for the obstructions
and applied it to the study of small deformations of the Iwasawa manifold. Besides
the Hodge numbers, the dimensions of Bott–Chern cohomology groups and the
dimensions of Aeppli cohomology groups are also important invariants of complex
structures. D. Angella [2013] studied the small deformations of the Iwasawa
manifold and found that the dimensions of Bott–Chern and Aeppli cohomology
groups are not deformation invariants.

In this paper, we will study the Bott–Chern and Aeppli cohomologies by study-
ing the hypercohomology of the complex B•p,q constructed in [Schweitzer 2007].
M. Schweitzer [2007] proved that

H p,q
BC (X)∼= Hp+q(X,B•p,q) and H p,q

A (X)∼= Hp+q+1(X,B•p+1,q+1).

This work was supported by National Natural Science Foundation of China (Grant No. 11201491
and 11201090), Doctoral Fund of Ministry of Education of China (Grant No. 20124410120001 and
20120171120009 ) and the Foundation of Research Funds for Young Teachers Training Project (Grant
No. 34000-31610248).
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Keywords: Bott–Chern cohomology, Aeppli cohomology, deformation, obstruction, Kodaira–Spencer
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As in [Ye 2008], we will study the jumping phenomenons from the viewpoint
of obstruction theory. More precisely, for a certain small deformation X of X
parameterized by a base B and a certain class [θ ] of the hypercohomology group
Hl(X,B•p,q), we will try to find out the obstruction to extend it to an element of
the relative hypercohomology group Hl(X,B•p,q;X/B). We will call those elements
which have nontrivial obstruction the obstructed elements. And then we will see that
these elements will play an important role when we study the jumping phenomenon,
because we will see that the existence of obstructed elements is a sufficient condition
for the variation of the dimensions of Bott–Chern and Aeppli cohomologies.

In Section 2 we will summarize the results of M. Schweitzer about Bott–Chern
and Aeppli cohomologies, from which we can define the relative Bott–Chern and
Aeppli cohomologies on Xn , where Xn is the n-th order deformation of π : X→ B.
We will also introduce some important maps which will be used in the calculation
of the obstructions in Section 4. In Section 3 we will try to explain why we need to
consider the obstructed elements. The relation between the jumping phenomenon
of the dimensions of Bott–Chern and Aeppli cohomologies and the obstructed
elements is the following.

Theorem 3.1. Let π : X→ B be a small deformation of the central fiber compact
complex manifold X. Now we consider dim Hl(X (t),B•p,q;t) as a function of
t ∈ B. It jumps at t = 0 if there exists an element [θ ] either in Hl(X,B•p,q) or
in Hl−1(X,B•p,q) and a minimal natural number n ≥ 1 such that the n-th order
obstruction is nonzero:

on([θ ]) 6= 0.

In Section 4 we will get a formula for the obstruction to the extension we
mentioned above.

Theorem 4.4. Let π : X→ B be a deformation of π−1(0) = X , where X is a
compact complex manifold. Let πn : Xn→ Bn be the n-th order deformation of X.
For arbitrary [θ ] belongs to Hl(X,B•p,q), suppose we can extend [θ ] to order n− 1
in Hl(Xn−1,B•p,q;Xn−1/Bn−1). Denote such element by [θn−1]. The obstruction of the
extension of [θ ] to n-th order is given by

on([θ ])=−∂
∂,B
Xn−1/Bn−1

◦κnx◦∂
B,∂
Xn−1/Bn−1

([θn−1])−∂
∂,B
Xn−1/Bn−1

◦κnx◦∂
B,∂
Xn−1/Bn−1

([θn−1]),

where κn is the n-th order Kodaira–Spencer class and κn is the n-th order Kodaira–
Spencer class of the deformation π : X → B. The maps ∂∂,BXn−1/Bn−1

, ∂∂,BXn−1/Bn−1
,

∂
B,∂
Xn−1/Bn−1

and ∂B,∂
Xn−1/Bn−1

are defined in Section 2.

In Section 5 we will use this formula to study carefully the example given by Iku
Nakamura and D. Angella, that is, the small deformation of the Iwasawa manifold
and discuss some phenomena.



DIMENSION JUMPS IN BOTT–CHERN AND AEPPLI COHOMOLOGY GROUPS 463

2. The relative Bott–Chern and Aeppli cohomologies of Xn and the
representation of their cohomology classes

2A. The Bott–Chern and Aeppli cohomologies and hypercohomologies. All the
details of this subsection can be found in [Schweitzer 2007]. Let X be a compact
complex manifold. The Dolbeault cohomology groups H p,q

∂
(X), and more generally

the terms E p,q
r (X) in the Frölicher spectral sequence [Frölicher 1955], are well-

known finite dimensional invariants of the complex manifold X . On the other hand,
the Bott–Chern and Aeppli cohomologies define additional complex invariants of X
given, respectively, by [Bott and Chern 1965; Aeppli 1965]

H p,q
BC (X)=

ker{d : Ap,q(X)→Ap+q+1(X)}

im{∂∂ : Ap−1,q−1(X)→Ap,q(X)}
,

and

H p,q
A (X)=

ker{∂∂ : Ap,q(X)→Ap+1,q+1(X)}

im{∂ : Ap−1,q(X)→Ap,q(X)}+ im{∂ : Ap,q−1(X)→Ap,q(X)}
.

By the Hodge theory developed in [Schweitzer 2007], all these complex invariants
are also finite dimensional, and H p,q

A (X)∼= H n−q,n−p
BC (X). Notice that Hq,p

BC (X) is
isomorphic to H p,q

BC (X) by complex conjugation. For any r ≥ 1 and for any p, q,
there are natural maps

H p,q
BC (X)→ E p,q

r (X) and E p,q
r (X)→ H p,q

A (X).

Recall that E p,q
1 (X) is isomorphic to H p,q

∂
(X) and that the terms for r =∞ provide

a decomposition of the de Rham cohomology of X : H k
dR(X,C)∼=⊕p+q=k E p,q

∞ (X).
From now on we shall denote by h p,q

BC (X) the dimension of the cohomology group
H p,q

BC (X). The Hodge numbers will be denoted simply by h p,q(X) and the Betti
numbers by bk(X). For any given p ≥ 1, q ≥ 1, we define the complex of sheaves
L•p,q by

Lk
p,q =

⊕
r+s=k

r<p,s<q

Ar,s if k ≤ p+ q − 2, Lk−1
p−1,q−1 =

⊕
r+s=k

r≥p,s≥q

Ar,s if k ≥ p+ q,

and the differential

L0
p,q

pr
L1

p,q
◦ d

−→ L1
p,q

pr
L2

p,q
◦ d

−→ · · · −→ Lk−2
p,q

∂∂
−→ Lk−1

p,q
d
−→ Lk

p,q
d
−→ · · · ,

where Ar,s are the sheaves of smooth (r, s)-forms and pr is the projection operator.
Then by the above construction, we have the following isomorphisms:

H p,q
BC (X)= H p+q−1(L•p,q(X))∼= Hp+q−1(X,L•p,q),

H p,q
A (X)= H p+q(L•p+1,q+1(X))∼= Hp+q(X,L•p+1,q+1),
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because Lk
p,q are soft.

We define a sub complex S•p,q of L•p,q by

(S′
•

p , ∂) : O→�1
→ · · ·→�p−1

→ 0, (S′′
•

q , ∂) : O→�1
→ · · ·→�q−1

→ 0,

S•p,q=S′
•

p +S′′
•

q : O+O→�1
⊕�1
→· · ·→�p−1

⊕�p−1
→�p

→· · ·→�q−1
→0.

Note that the inclusion S• ⊂L• is a quasiisomorphism [Schweitzer 2007]. There is
another complex B•p,q used in [Schweitzer 2007], defined by

B•p,q :C
(+,−)
−→ O⊕O→�1

⊕�1
→· · ·→�p−1

⊕�p−1
→�p

→· · ·→�q−1
→ 0.

and the following morphism from B•p,q to S•p,q [1] is a quasiisomorphism [Schweitzer
2007]:

C
(+,−)
−→ O⊕O → �1

⊕�1
→ · · ·

↓ ↓ + ↓

0 −→ O+O → �1
⊕�1

→ · · · .

Therefore we have

H p,q
BC (X)∼= Hp+q(X,L•p,q [1])∼= Hp+q(X,S•p,q [1])∼= Hp+q(X,B•p,q),

and

H p,q
A (X)∼= Hp+q(X,L•p+1,q+1)∼= Hp+q(X,S•p+1,q+1)∼= Hp+q+1(X,B•p+1,q+1).

2B. The relative Bott–Chern and Aeppli cohomologies of Xn. Here we make
some definitions in order to construct the relative Bott–Chern and Aeppli coho-
mologies of Xn . Suppose X is a compact complex manifold.

• Let π : X→ B be a deformation of π−1(0)= X .
• For every integer n ≥ 0, set Bn = Spec OB,0/mn+1

0 — the n-th order infinitesimal
neighborhood of the closed point 0 of the base B.

• Let Xn ⊂ X be the complex space over Bn .
• Let πn : Xn→ Bn be the n-th order deformation of X , and denote π∗(m0) by M0.
• Complex conjugation gives another complex structure of the differential manifold

of X; we denote this manifold by X, and π induces a deformation π : X→ B of
X . Then we have Xn and πn : Xn→ Bn .

• Let CωB be the sheaf of C-valued real analytic functions on B.
• Set OωX = π

∗(CωB), OωX = π
∗(CωB); let mω

0 be the maximal ideal of CωB,0 and let
Mω

0 = π
∗(mω

0 ), Mω
0 = π

∗(mω
0 ).

• For any sheaf of OX- (resp. OX-) modules F, set Fω
= F⊗OX OωX (resp. Fω

=

F⊗OX
OωX).

• Let OωXn
= OωX,0/(M

ω
0 )

n+1 and Oω
Xn
= OωX,0/(M

ω

0 )
n+1.
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• For any sheaf of OXn (resp. OXn
) modules F, set Fω

= F⊗OXn
OωXn

(resp. Fω
=

F⊗OXn
Oω

Xn
).

• For any given p ≥ 1, q ≥ 1, we define the complex S•Xn/Bn
= S•p,q;Xn/Bn by

(S′
•

p;Xn/Bn
, ∂Xn/Bn ) : O

ω
Xn
→�

1;ω
Xn/Bn

→ · · · →�
p−1;ω
Xn/Bn

→ 0,

(S′′
•

q;Xn/Bn
, ∂ Xn/Bn ) : O

ω

Xn
→�

1;ω
Xn/Bn

→ · · · →�
q−1;ω
Xn/Bn

→ 0,

S•p,q;Xn/Bn
= S′

•

p;Xn/Bn
+S′′

•

q;Xn/Bn
: OωXn
+OωXn

→�
1;ω
Xn/Bn
⊕�

1;ω
Xn/Bn

→ · · ·

→�
p−1;ω
Xn/Bn

⊕�
p−1;ω
Xn/Bn

→�
p;ω
Xn/Bn

→ · · · →�
q−1;ω
Xn/Bn

→ 0.

• Finally, define B•p,q;Xn/Bn by

B•p,q;Xn/Bn : C
ω
Bn

(+,−)
−→ OωXn

⊕OωXn
→�

1;ω
Xn/Bn
⊕�

1;ω
Xn/Bn

→ · · ·

→�
p−1;ω
Xn/Bn

⊕�
p−1;ω
Xn/Bn

→�
p;ω
Xn/Bn

→ · · · →�
q−1;ω
Xn/Bn

→ 0,

where CωBn
= π−1(CωB,0/(m

ω
0 )

n+1).

Now we are ready to define the relative Bott–Chern and Aeppli cohomologies
of Xn:

H p,q
BC (Xn/Bn)∼= Hp+q(X,S•p,q;Xn/Bn [1])∼= Hp+q(Xn,B•p,q;Xn/Bn ),

and

H p,q
A (Xn/Bn)∼= Hp+q(X,S•p+1,q+1;Xn/Bn )

∼= Hp+q+1(Xn,B•p+1,q+1;Xn/Bn ).

2C. Representation of the relative Bott–Chern and Aeppli cohomology classes.
In this subsection we will follow [Schweitzer 2007] to construct a hypercocy-
cle in Ž p+q(X,B•p,q) to represent the relative Bott–Chern cohomology classes.
Let [θ ] be an element of H p,q

BC (X), represented by a closed (p, q)-form θ . It
is defined in Hp+q(X,Lp,q [1]•) by a hypercocycle, still denoted by θ and de-
fined by θ p,q

= θ |U j and θr,s
= 0 otherwise. For given p ≥ 1 and q ≥ 1, there

exists a hypercocycle w = (c; ur,0
; v0,s) ∈ Ž p+q(X,B•p,q) and an hypercochain

α = (αr,s) ∈ Č p+q−1(X,Lp,q [1]•) such that θ = δ̌α+w. We represent the data in
the following table:

θ←→


θ

0,q−1
v

... αr,s

θ0,0
v

θc θ0,0
u · · · θ

p−1,0
u

 .
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The equality θ = δ̌α+w corresponds to the relations

θ p,q
= ∂∂α p−1,q−1

(−1)r+s δ̌αr,s
= ∂αr,s−1

+ ∂αr−1,s

(−1)s δ̌α0,s
= ∂α0,s−1

+ θ0,s
v

(−1)r δ̌αr,0
= θr,0

u + ∂α
r−1,0

δ̌α0,0
= θ0,0

u + θ
0,0
v

δ̌θ0,0
u = θc,

where 1≤ r ≤ p− 1 and 1≤ s ≤ q − 1. Note that these relations involve relations
of the hypercocycles for θu and θv:

(−1)r δ̌θr,0
u = ∂θ

r−1,0
u , (−1)s δ̌θ0,s

v = ∂θ
0,s−1
v ,

with the same conditions on r and s. If q = 0, we simply have

θ←→
(
θc, θ

0,0
u , . . . , θ p−1,0

u
)

with the relations

θ p,0
= ∂θ p−1,0

u , (−1)r δ̌θr,0
u = ∂θ

r−1,0
u , δ̌θ0,0

u = θc,

for 1≤ r ≤ p− 1. Similarly, if p = 0, we have

θ←→
(
θc, θ

0,0
v , . . . , θ0,q−1

v

)
with the relations (where 1≤ s ≤ q − 1)

θ0,q
=−∂θ0,q−1

v , (−1)s δ̌θ0,s
v = ∂θ

0,s−1
v , −δ̌θ0,0

v = θc.

Similarly, let [θ ] be an element of H p,q
BC (Xn/Bn), then it can be represented by a

Čech hypercocycle θu , θv and θc of Ž p+q(X,B•p,q;Xn/Bn
) with the relations

(−1)r δ̌θr,0
u = ∂θ

r−1,0
u (−1)s δ̌θ0,s

v = ∂θ
0,s−1
v

δ̌θ0,0
u = θc, −δ̌θ0,0

v = θc,

where 1≤ r ≤ p−1 and 1≤ s ≤ q−1; while for an element [θ ] of H p,q
A (Xn/Bn), it

can be represented by a Čech hypercocycle θu and θv of Ž p+q+1(X,B•p+1,q+1;Xn/Bn )

with the relations

(−1)r δ̌θr,0
u = ∂θ

r−1,0
u (−1)s δ̌θ0,s

v = ∂θ
0,s−1
v

δ̌θ0,0
u = θc, −δ̌θ0,0

v = θc,

where 1≤ r ≤ p and 1≤ s ≤ q .
Before the end of this section, we will introduce some important maps which

will be used in the computation in Section 4.
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Define
∂
∂,B
Xn/Bn

: H •(Xn, �
p−1;ω
Xn/Bn

)→ H•+p(Xn,B•p,q;Xn/Bn )

as follows. Let [θ ] be an element of H •(Xn, �
p−1;ω
Xn/Bn

) then θ can be represented
by a cocycle of Ž •(X, �p−1;ω

Xn/Bn
), we define ∂∂,BXn/Bn

([θ ]) to be the cohomology class
associated to the hypercocycle in Ž p+•(X,B•p,q;Xn/Bn ) given by

θ p−1,0
u =θ, θr,0

u =0 for 0≤r≤ p−2 θ0,s
v =0 for 0≤ s≤q−1, and θc=0.

When •< 0, ∂∂,BXn/Bn
is defined to be 0.

Lemma 2.1. The map ∂∂,BXn/Bn
is well defined.

Proof. It is easy to check that the hypercochain given by θu , θv and θc is a hyper-
cocycle. On the other hand, suppose there exists a cochain α′ in Č •−1(X, �p−1;ω

Xn/Bn
)

such that δ̌α′ = θ . Then if we take a hypercochain α in Č p+•−1(X,B•p,q;Xn/Bn )

given by α p−1,0
u = (−1)p−1α′, αr,0

u = 0 for 0≤ r ≤ p−2, α0,s
v = 0 for 0≤ s ≤ q−1,

and αc = 0, we have δ̌α = ∂∂,BXn/Bn
([θ ]). Therefore ∂∂,BXn/Bn

([θ ])= 0. �

Similarly, we can define

∂
∂,B
Xn/Bn

: H •(Xn, �
q−1;ω
Xn/Bn

)→ H•+q(Xn,B•p,q;Xn/Bn )

as follows. Let [θ ] be an element of H •(Xn, �
q−1;ω
Xn/Bn

). Then θ can be represented
by a cocycle of Ž •(X , �q−1;ω

Xn/Bn
); we define ∂∂,BXn/Bn

([θ ]) to be the cohomology class
associated to the hypercocycle in Žq+•(X,B•p,q;Xn/Bn ) given by θ0,q−1

v = θ , θ0,r
v = 0

for all 0≤ r ≤ q−2, θr,0
u = 0 for all 0≤ r ≤ p−1, and θc = 0 (when •< 0, this map

is defined to be 0). This map is also well defined and the proof is just as Lemma 2.1.
Define

∂
B,∂
Xn/Bn

: H•+p(Xn,B•p,q;Xn/Bn )→ H •(Xn, �
p;ω
Xn/Bn

)

as follows. Let [θ ] be an element of H•+p(Xn,B•p,q;Xn/Bn ). Then θ can be rep-
resented by a hypercocycle of Ž p+•(X,B•p,q;Xn/Bn ), and we define ∂B,∂

Xn/Bn
([θ ])

to be the cohomology class associated to the cocycle in Ž •(X, �p;ω
Xn/Bn

) given by
∂Xn/Bnθ

p−1,0
u (when •< 0, this map is defined to be 0).

Lemma 2.2. The map ∂B,∂
Xn/Bn

is well defined.

Proof. First we check that the cochain given by ∂Xn/Bnθ
p−1,0

u is a cocycle. In fact,
since θ is a hypercocycle in Ž p+•(X,B•p,q;Xn/Bn

), we have

(−1)p−1δ̌θ p−1,0
u = ∂Xn/Bnθ

p−2,0
u ,

therefore
δ̌∂Xn/Bnθ

p−1,0
u = (−1)p∂Xn/Bn ◦ ∂Xn/Bnθ

p−2,0
u = 0.
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On the other hand, suppose there exists a hypercochain α∈ Č p+•−1(X,B•p,q;Xn/Bn )

such that δ̌α = θ . Then if we take a cochain α′ ∈ Č •−1(X, �p;ω
Xn/Bn

) given by

α′ = (−1)p∂Xn/Bnα
p−1,0
u , we have

δ̌α′ = (−1)p δ̌∂Xn/Bnα
p−1,0
u = (−1)p+1∂Xn/Bn δ̌α

p−1,0
u

= (−1)p+1+p−1∂Xn/Bnθ
p−1,0

u = ∂
B,∂,
Xn/Bn

([θ ]).

Therefore ∂∂,BXn/Bn
([θ ])= 0. �

Similarly, we can define

∂
B,∂
Xn/Bn

: H•+q(Xn,B•p,q;Xn/Bn )→ H •(Xn, �
q;ω
Xn/Bn

).

Let [θ ] be an element of H•+q(Xn,B•p,q;Xn/Bn ) then θ can be represented by a
hypercocycle of Žq+•(X,B•p,q;Xn/Bn ), we define ∂B,∂

Xn/Bn
([θ ]) to be the cohomology

class associated to the cocycle in Ž •(X, �q;ω
Xn/Bn

) given by ∂ Xn/Bnθ
0,q−1
u (when •< 0,

this map is defined to be 0). This map is also well defined and the proof is just as
Lemma 2.2.

Remark 2.3. The natural maps from H p,q
BC (Xn/Bn) to Hq(Xn, �

p;ω
Xn/Bn

) and from

Hq(Xn, �
p;ω
Xn/Bn

) to H p,q
A (Xn/Bn) mentioned in Section 2A respectively are exactly

the map

∂
B,∂
Xn/Bn

: Hq+p(Xn,B•p,q;Xn/Bn )(
∼= H p,q

BC (Xn/Bn))→ Hq(Xn, �
p;ω
Xn/Bn

),

∂
∂,B
Xn/Bn

: Hq(Xn, �
p;ω
Xn/Bn

)→ Hq+p+1(Xn,B•p+1,q+1;Xn/Bn )(
∼= H p,q

A (Xn/Bn)),

and we denote these maps by rBC,∂ and r∂,A.
We also denote the maps

∂
∂,B
Xn/Bn

: Hq(Xn, �
p−1;ω
Xn/Bn

)→ Hq+p(Xn,B•p,q;Xn/Bn )(
∼= H p,q

BC (Xn/Bn)),

∂
B,∂
Xn/Bn

: Hq+p+1(Xn,B•p+1,q+1;Xn/Bn )(
∼= H p,q

A (Xn/Bn))→ Hq(Xn, �
p+1;ω
Xn/Bn

)

by ∂∂,BC
Xn/Bn

and ∂ A,∂
Xn/Bn

.

The following lemma is an important observation which will be used for the
computation in Section 4.

Lemma 2.4. Let [θ ] be an element of Hl(Xn,B•p,q;Xn/Bn ) which is represented by
an element θ ∈ Ž l(X,B•p,q;Xn/Bn ) given by θu , θv and θc. Then ∂Xn/Bn (θ − θ

p−1,0
u )

is a hypercoboundary.

Proof. The hypercochain ∂Xn/Bn (θ−θ
p−1,0

u ) is given by (∂Xn/Bn (θ−θ
p−1,0

u ))r,0u =

∂Xn/Bnθ
r−1,0
u for 0<r≤ p−1, (∂Xn/Bn (θ−θ

p−1,0
u ))0,0u =0, (∂Xn/Bn (θ−θ

p−1,0
u ))0,sv =0

for 0 ≤ s ≤ q− 1, and (∂Xn/Bn (θ − θ
p−1,0

u ))c = 0. Let α be the hypercochain in
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Č l(X,B•p,q;Xn/Bn ) given by αr,0
u =−rθr,0

u for 0≤ r ≤ p−1, α0,s
v =0 for 0≤ s≤q−1,

and αc = 0. It is easy to see that

(δ̌α)r,0u = (−1)r δ̌αr,0
u + ∂Xn/Bnα

r−1,0
u

= (−1)r δ̌(−r)θr,0
u − ∂Xn/Bn (r − 1)θr−1,0

u

= ∂Xn/Bnθ
r−1,0
u

= ∂Xn/Bn (θ − θ
p−1,0

u )r,0u , for 0< r ≤ p− 1,

(δ̌α)0,0u = 0= ∂Xn/Bn (θ − θ
p−1,0

u )0,0u ,

(δ̌α)0,sv = 0= ∂Xn/Bn (θ − θ
p−1,0

u )0,sv , for 0≤ s ≤ q − 1 and

(δ̌α)c = 0= ∂Xn/Bn (θ − θ
p−1,0

u )c.

Therefore δ̌α= ∂Xn/Bn (θ−θ
p−1,0

u ), and ∂Xn/Bn (θ−θ
p−1,0

u ) is a hypercoboundary. �

The following lemma can be proven similarly.

Lemma 2.5. Let [θ ] be an element of Hl(Xn,B•p,q;Xn/Bn ) which is represented by
an element θ in Ž l(X,B•p,q;Xn/Bn ) given by θu , θv and θc, then ∂ Xn/Bn (θ − θ

0,q−1
v )

is a hypercoboundary.

3. The jumping phenomenon and obstructions

There is a Hodge theory also for Bott–Chern and Aeppli cohomologies, see
[Schweitzer 2007]. More precisely, for a fixed Hermitian metric on X ,

H •,•
BC(X)' ker 1̃BC and H •,•

A (X)' ker 1̃A,

where

1̃BC := (∂∂)(∂∂)
∗
+ (∂∂)∗(∂∂)+ (∂∗∂)(∂∗∂)∗+ (∂∗∂)∗(∂∗∂)+ ∂∗∂ + ∂∗∂,

1̃A := ∂∂
∗
+ ∂∂∗+ (∂∂)∗(∂∂)+ (∂∂)(∂∂)∗+ (∂∂∗)∗(∂∂∗)+ (∂∂∗)(∂∂∗)∗

are 4-th order elliptic self-adjoint differential operators. In particular,

dimC H •,•
] (X) <+∞ for ] ∈ {∂, ∂, BC, A}.

Let π :X→ B be a deformation of π−1(0)= X , where X is a compact complex
manifold and B is a neighborhood of the origin in C. Note that h p,q

BC (X (t)) and
h p,q

A (X (t)) are semicontinuous functions of t ∈ B where X (t)=π−1(t) [Schweitzer
2007]. Denote the 1̃BC operator and the 1̃A on X (t) by 1̃BC,t and 1̃A,t . From
the proof of the semicontinuity of h p,q

BC (X (t)) (resp. h p,q
A (X (t))) in [Schweitzer

2007], we can see that h p,q
BC (X (t)) (resp. h p,q

A (X (t))) does not jump at the point
t = 0 if and only if all the 1̃BC,0- (resp. 1̃A,0)-harmonic forms on X can be
extended to relative 1̃BC,t - (resp. 1̃A,t )-harmonic forms on a neighborhood of
0 ∈ B which are real analytic in the direction of B, since the 1̃BC,t (resp. 1̃A,t )
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varies real analytically on B. The above condition is equivalent to the following:
all the cohomology classes [θ ] in H p,q

BC (X) (resp. H p,q
A (X)) can be extended to

a relative dt − closed (resp. ∂t∂ t − closed) forms θ(t) such that [θ(t)] 6= 0 on a
neighborhood of 0 ∈ B which are real analytic on the direction of B. Therefore in
order to study the jumping phenomenon, we need to study the extension obstructions.
So we need to study the obstructions of the extension of the cohomology classes in
H•(X,B•p,q) to the relative cohomology classes in H•(Xn,B•p,q;Xn/Bn ). Set

Mω
0 /(M

ω
0 )

n+1
⊗B•p,q;Xn−1/Bn−1

= π−1(mω
0 /(m

ω
0 )

n+1)
(+,−)
→ Mω

0 /(M
ω
0 )

n+1
⊗OωXn

⊕Mω
0 /(M

ω
0 )

n+1
⊗OωXn

→Mω
0 /(M

ω
0 )

n+1
⊗�

1;ω
Xn/Bn
⊕Mω

0 /(M
ω
0 )

n+1
⊗�

1;ω
Xn/Bn

→ · · ·

→Mω
0 /(M

ω
0 )

n+1
⊗�

p−1;ω
Xn/Bn

⊕Mω
0 /(M

ω
0 )

n+1
⊗�

p−1;ω
Xn/Bn

→Mω
0 /(M

ω
0 )

n+1
⊗�

p;ω
Xn/Bn

→ · · · →Mω
0 /(M

ω
0 )

n+1
⊗�

q−1;ω
Xn/Bn

→ 0.

Now we consider the exact sequence

0→Mω
0 /(M

ω
0 )

n+1
⊗B•p,q;Xn−1/Bn−1 →B•p,q;Xn/Bn →B•p,q;X0/B0 → 0,

which induces a long exact sequence

0→ H0(Xn,Mω
0 /(M

ω
0 )

n+1
⊗B•p,q;Xn−1/Bn−1)→ H0(Xn,B•p,q;Xn/Bn )

→ H0(X,B•p,q;X0/B0)→ H1(Xn,Mω
0 /(M

ω
0 )

n+1
⊗B•p,q;Xn−1/Bn−1)→ · · · .

Let [θ ] be a cohomology class in Hl(X,B•p,q;X0/B0). The obstruction for the ex-
tension of [θ ] to a relative cohomology classes in Hl(Xn,B•p,q;Xn/Bn ) comes from
the nontrivial image of the connecting homomorphism δ∗ : Hl(X,B•p,q;X0/B0)→

Hl+1(Xn,Mω
0 /(M

ω
0 )

n+1
⊗B•p,q;Xn−1/Bn−1). We denote this obstruction by on([θ ]).

On the other hand, for a given real direction ∂/∂x on B, if there exits n ∈ N,
such that oi ([θ ]) = 0 for all i ≤ n and on([θ ]) 6= 0, then let θn−1 be a n − 1-st
order extension of θ to a relative cohomology class in Hl(Xn−1,B•p,q;Xn−1/Bn−1).
Then δ̌θn−1 = 0 up to order n − 1. Now, it is easy to check that δ̌θn−1/xn is an
extension of a nontrivial cohomology class [δ̌θn−1/xn(0)] in Hl+1(X,Bp,q), while
[δ̌θn−1/xn(x0)] is trivial in X (x0) as a cohomology classes in Hl+1(X (x0),Bp,q;x0)

if x0 6= 0. The above discussion leads to the following theorem.

Theorem 3.1. Let π : X→ B be a small deformation of the central fiber compact
complex manifold X. Now we consider dim Hl(X (t),B•p,q;t) as a function of t ∈ B.
This function jumps at t = 0 if there exists an element [θ ] either in Hl(X,B•p,q)

or in Hl−1(X,B•p,q) and a minimal natural number n ≥ 1 such that the n-th order
obstruction satisfies

on([θ ]) 6= 0.



DIMENSION JUMPS IN BOTT–CHERN AND AEPPLI COHOMOLOGY GROUPS 471

4. The formula for the obstructions

Since the obstructions we discussed in the previous section are so important when
we consider the problem of jumping phenomenon of Bott–Chern cohomology and
Aeppli cohomology, in this section we try to find an explicit calculation for such
obstructions. As in [Ye 2008, §3], we need some preparation. Cover X by open
sets Ui such that, for arbitrary i , Ui is small enough. More precisely, Ui is Stein
and the following exact sequence splits:

0→ π∗n (�Bn )
ω(Ui )→�ωXn

(Ui )→�ωXn/Bn
(Ui )→ 0,

0→ π∗n(�Bn
)ω(Ui )→�ωXn

(Ui )→�ωXn/Bn
(Ui )→ 0.

So we have a map ϕi :�
ω
Xn/Bn

(Ui )⊕�
ω
Xn/Bn

(Ui )→�ωXn
(Ui )⊕�

ω

Xn
(Ui ) such that

ϕi |�ωXn/Bn (Ui )(�
ω
Xn/Bn

(Ui ))⊕π
∗

n (�Bn )
ω(Ui )∼=�

ω
Xn
(Ui ),

ϕi |�ωXn/Bn (Ui )
(�ωXn/Bn

(Ui ))⊕π
∗

n(�Bn
)ω(Ui )∼=�

ω

Xn
(Ui ).

This decomposition determines a local decomposition of the exterior derivative ∂Xn

(resp. ∂ Xn ) in �•;ωXn
(resp. �•;ωXn

) on each Ui :

∂Xn = ∂
i
Bn
+ ∂ i

Xn/Bn
(resp. ∂Xn

= ∂ i
Bn
+ ∂ i

Xn/Bn
).

By definition, ∂Xn/Bn and ∂ Xn/Bn are given by ϕ−1
i ◦ ∂

i
Xn/Bn
◦ϕi and ϕ−1

i ◦ ∂
i
Xn/Bn
◦ϕi .

Denote the set of alternating q-cochains β with values in F by Čq(U,F), that
is, to each q + 1-tuple, i0 < i1 · · · < iq , β assigns a section β(i0, i1, . . . , iq) of F

over Ui0 ∩Ui1 ∩ · · · ∩Uiq . Let us still use ϕi to denote the map

ϕi : π
∗

n (�Bn )
ω
∧�

p;ω
Xn/Bn

(Ui )⊕π
∗

n(�Bn
)ω∧�

p;ω
Xn/Bn

(Ui )

→�
p+1;ω
Xn

(Ui )⊕�
p+1;ω
Xn

(Ui )

ω1∧βi1 ∧· · ·∧βi p+ω2∧β
′

j1 ∧· · ·∧β
′

jp
7→ ω1∧ϕi (βi1)∧· · ·∧ϕi (βi p)

+ω2∧ϕi (β
′

j1)∧· · ·∧ϕi (β
′

jp
).

Define

ϕ : Čq(U,π∗n (�Bn )
ω
∧�

p;ω
Xn/Bn
⊕π∗n(�Bn

)ω∧�
p;ω
Xn/Bn

)
→ Čq(U,�p+1;ω

Xn
⊕�

p+1;ω
Xn

)
by ϕ(β)(i0, i1, . . . , iq)= ϕi0(β(i0, i1, . . . , iq))

for all β ∈ Čq(U, π∗n (�Bn )
ω
∧�

p;ω
Xn/Bn
⊕π∗n(�Bn

)ω∧�
p;ω
Xn/Bn

),where i0< i1< · · ·< iq .
Define the total Lie derivative with respect to Bn:

L Bn : Č
q(U, �p;ω

Xn
⊕�

p;ω
Xn

)
→ Čq(U, �p+1;ω

Xn
⊕�ωXn

∧�
p;ω
Xn

)
by L Bn (β)(i0, i1, . . . , iq)= ∂

i0
Bn
(β(i0, i1, . . . , iq))

for β ∈ Čq(U, �p;ω
Xn
⊕�

p;ω
Xn
), where i0 < i1 < · · ·< iq (see [Katz and Oda 1968]).



472 JIEZHU LIN AND XUANMING YE

Define, for each Ui , the total interior product with respect to Bn

I i
:�

p;ω
Xn
(Ui )⊕�

p;ω
Xn
(Ui )→�

p;ω
Xn
(Ui )⊕�

p;ω
Xn
(Ui )

by

I i (µ1∂Xn g1 ∧ ∂Xn g2 ∧ · · · ∧ ∂Xn gp +µ2∂Xn
g′1 ∧ ∂Xn

g′2 ∧ · · · ∧ ∂Xn
g′p)

= µ1

p∑
j=1

∂Xn g1 ∧ · · · ∧ ∂Xn g j−1 ∧ ∂
i
Bn
(g j )∧ ∂Xn g j+1 ∧ · · · ∧ ∂Xn gp

+µ2

p∑
j=1

∂Xn
g′1 ∧ · · · ∧ ∂Xn

g′j−1 ∧ ∂
i
Bn
(g′j )∧ ∂Xn

g′j+1 ∧ · · · ∧ ∂Xn
g′p.

When p = 0, we put I i
= 0 (see [Katz and Oda 1968]). Finally, define

λ : Čq(U, �p;ω
Xn
⊕�

p;ω
Xn

)
→ Čq+1(U, �p;ω

Xn
⊕�

p;ω
Xn

)
by (λβ)(i0, · · · , iq+1)= (I i0 − I i1)β(i1, · · · , iq+1)

for all β ∈ Čq(U, �p;ω
Xn
⊕�

p;ω
Xn
).

This gives the following lemma, proved identically to [Ye 2008, Lemma 3.1].

Lemma 4.1. λ ◦ ϕ ≡ δ ◦ ϕ−ϕ ◦ δ.

With the above preparation, we are ready to study the jumping phenomenon
of the dimensions of Bott–Chern or Aeppli cohomology groups. Suppose we can
extend an arbitrary [θ ] ∈ Hl(X,Bp,q) to order n− 1 in Hl(Xn−1,B•p,q;Xn−1/Bn−1).
Denote such an element by [θn−1]. In what follows, we try to find the obstruction
of the extension of [θn−1] to n-th order. Consider the exact sequence

0→ (Mω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0 →B•p,q;Xn/Bn →B•p,q;Xn−1/Bn−1 → 0

which induces a long exact sequence

0→ H0(Xn, (M
ω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0

)
→ H0(Xn,B

•

p,q;Xn/Bn

)
→ H0(Xn−1,B

•

p,q;Xn−1/Bn−1

)
→ H1(Xn, (M

ω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0

)
→ ··· .

Let [θ ] be a cohomology class in Hl(X,B•p,q;X0/B0).
The obstruction for [θn−1] comes from the nontrivial image of the connecting

homomorphism

δ∗ : Hl(Xn−1,B•p,q;Xn−1/Bn−1

)
→ Hl+1(Xn, (M

ω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0

)
.

Now we are ready to calculate the formula for the obstructions. Let θ̃ be an
element of Č l(U,B•p,q;Xn/Bn ) such that its quotient image in Č l(U,B•p,q;Xn−1/Bn−1)

is θn−1. Then δ∗([θn−1])= [δ̌(θ̃)], which is an element of

Hl+1(Xn, (M
ω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0

)
∼= (mω

0 )
n/(mω

0 )
n+1
⊗Hl+1(X,B•p,q;X0/B0

)
.
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Let rXn be the restriction to the space Xω
n (the topological space X with structure

sheaf OωXn
) and set

π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧B•p,q;Xn−1/Bn−1,

= π−1(�ωBn |Bn−1
+�ωBn |Bn−1

)

(−,+)
−→ π∗n−1(�

ω
Bn |Bn−1

+�ωBn |Bn−1
)⊗OωXn−1

⊕π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)⊗OωXn−1

→ π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

1;ω
Xn−1/Bn−1

⊕π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

1;ω
Xn−1/Bn−1

→ · · ·

→ π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p−1;ω
Xn−1/Bn−1

⊕π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p−1;ω
Xn−1/Bn−1

→ π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p;ω
Xn−1/Bn−1

→ · · ·

→ π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

q−1;ω
Xn−1/Bn−1

→ 0,
where

π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)= π−1

n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)⊗π−1

n−1(C
ω
B)

OωXn−1
,

π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)= π−1

n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)⊗π−1

n−1(C
ω
B)

OωXn−1
.

In order to give the obstructions an explicit calculation, we need to consider the
map

ρ : Hl(Xn, (M
ω
0 )

n/(Mω
0 )

n+1
⊗B•p,q;X0/B0

)
→ Hl(Xn−1, π

∗

n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧B•p,q;Xn−1/Bn−1

)
which is defined by ρ[σ ] = [ϕ−1

◦ rXn−1 ◦ (L Bn + L Bn
) ◦ ϕ(σ)], where ϕ−1 is the

quotient map

Č •
(
U, π∗n−1(�

ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p;ω
Xn |Xn−1

⊕π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p;ω
Xn |Xn−1

)
→ Č •

(
U, π∗n−1(�

ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p;ω
Xn−1/Bn−1

⊕π∗n−1(�
ω
Bn |Bn−1

+�ωBn |Bn−1
)∧�

p;ω
Xn−1/Bn−1

)
.

And we have the following lemmas; the proofs are identical to those of [Ye 2008,
Lemma 3.2 and Lemma 3.3].

Lemma 4.2. The map ρ is well defined.

Lemma 4.3. Furthermore, ρ([δ̌(θ̃)]) is exactly on([θ ]) in Section 3.
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Now consider the following exact sequence. The connecting homomorphism
of the associated long exact sequence gives the Kodaira–Spencer class of order n
[Voisin 1996, §1.3.2];

0→ π∗n−1(�Bn |Bn−1)
ω
→�ωXn |Xn−1

→�ωXn−1/Bn−1
→ 0.

If we wedge the above exact sequence with�p−1;ω
Xn−1/Bn−1

, we get a new exact sequence.
The connecting homomorphism of such an exact sequence gives us a map from
Hq(Xn−1, �

p;ω
Xn−1/Bn−1

) to Hq+1(Xn−1, π
∗(�Bn |Bn−1)

ω
∧�

p−1;ω
Xn−1/Bn−1

).
Denote such a map by κnx, for it is simply the inner product with the Kodaira–

Spencer class of order n. With the above preparation, we are ready to prove the
main theorem of this section.

Theorem 4.4. Let π : X→ B be a deformation of π−1(0) = X , where X is a
compact complex manifold. Let πn : Xn → Bn be the n-th order deformation
of X. Suppose we can extend an arbitrary [θ ] ∈ Hl(X,B•p,q) to order n − 1 in
Hl(Xn−1,B•p,q;Xn−1/Bn−1). Denote such an element by [θn−1]. The obstruction of
the extension of [θ ] to n-th order is given by

on([θ ])=−∂
∂,B
Xn−1/Bn−1

◦κnx◦∂
B,∂
Xn−1/Bn−1

([θn−1])−∂
∂,B
Xn−1/Bn−1

◦κnx◦∂
B,∂
Xn−1/Bn−1

([θn−1]),

where κn is the n-th order Kodaira–Spencer class and κn is the n-th order Kodaira–
Spencer class of the deformation π : X → B. The maps ∂∂,BXn−1/Bn−1

, ∂∂,BXn−1/Bn−1
,

∂
B,∂
Xn−1/Bn−1

and ∂B,∂
Xn−1/Bn−1

are those defined in Section 2.

Proof. Note that on([θ ]) = ρ ◦ δ(θ̃) = [ϕ
−1
◦ rXn−1 ◦ (L Bn + L Bn

) ◦ ϕ ◦ δ(θ̃)].
Because (L Bn + L Bn

+ ∂Xn/Bn + ∂ Xn/Bn ) ◦ δ̌ =−δ̌ ◦ (L Bn + L Bn
+ ∂Xn/Bn + ∂ Xn/Bn ),

rXn−1 ◦ (L Bn + L Bn
) ◦ ϕ ◦ δ̌(θ̃)

≡ rXn−1 ◦ (L Bn + L Bn
) ◦ (δ̌ ◦ ϕ− λ ◦ ϕ)(θ̃)

≡ rXn−1 ◦ (L Bn + L Bn
) ◦ δ̌ ◦ ϕ(θ̃)

≡−rXn−1 ◦
(
∂•Xn/Bn

◦ δ̌+ δ̌ ◦ ∂•Xn/Bn
+ ∂•Xn/Bn

◦ δ̌+ δ̌ ◦ ∂•Xn/Bn

+ δ̌ ◦ (L Bn + L Bn
)
)
◦ ϕ(θ̃)

≡−rXn−1 ◦
(
∂•Xn/Bn

◦ δ̌+ δ̌ ◦ ∂•Xn/Bn
+ ∂•Xn/Bn

◦ δ̌+ δ̌ ◦ ∂•Xn/Bn

)
◦ ϕ(θ̃)

− δ̌ ◦ rXn−1 ◦ (L Bn + L Bn
) ◦ ϕ(θ̃).
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Therefore

[ϕ−1
◦ rXn−1 ◦ (L Bn+ L Bn

) ◦ ϕ ◦ δ(θ̃)]

= [−ϕ−1
◦ rXn−1 ◦ (∂

•

Xn/Bn
◦ δ̌+ δ̌ ◦ ∂•Xn/Bn

+∂•Xn/Bn
◦ δ̌+ δ̌ ◦ ∂•Xn/Bn

) ◦ ϕ(θ̃)]

= −[∂Xn−1/Bn−1 ◦ ϕ
−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃)+∂ Xn−1/Bn−1 ◦ ϕ

−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃)

+ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(

˜∂Xn−1/Bn−1(θn−1))+ϕ
−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(

˜∂ Xn−1/Bn−1(θn−1)).

Since, for 0≤ r ≤ p− 1,

(ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃))

p−1,0
u = (ϕ−1

◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃))
0,q−1
v

= δ̌(ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃))

r,0
u = 0,

and δ̌(ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃))

0,s
v = 0 for 0≤ s ≤ q − 1, we know that

∂Xn−1/Bn−1 ◦ ϕ
−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃)+ ∂ Xn−1/Bn−1 ◦ ϕ

−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃)

= δ̌ ◦ ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(θ̃).

Therefore, [∂Xn−1/Bn−1◦ϕ
−1
◦rXn−1◦ δ̌ ◦ϕ(θ̃)+∂ Xn−1/Bn−1◦ϕ

−1
◦rXn−1◦ δ̌ ◦ϕ(θ̃)]=0.

And from Lemma 2.4 and Lemma 2.5,

[ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(

˜∂Xn−1/Bn−1(θn−1))]

=
[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂Xn−1/Bn−1(θn−1− θ

p−1,0
n−1;u )+ ∂Xn−1/Bn−1θ

p−1,0
n−1;u

)]
=
[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂Xn−1/Bn−1θ

p−1,0
n−1;u

)]
and

[ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ(

˜∂ Xn−1/Bn−1(θn−1))]

=
[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂ Xn−1/Bn−1(θn−1− θ

0,q−1
n−1;v )+ ∂ Xn−1/Bn−1θ

0,q−1
n−1;v

)]
=
[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂ Xn−1/Bn−1θ

0,q−1
n−1;v

)]
By the definition of the maps ∂∂,BXn−1/Bn−1

, ∂B,∂
Xn−1/Bn−1

and [Ye 2008, Lemma 3.4],[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂Xn−1/Bn−1θ

p−1,0
n−1;u

)]
= ∂

∂,B
Xn−1/Bn−1

◦ κnx ◦ ∂
B,∂
Xn−1/Bn−1

([θn−1])

and similarly, we have[
ϕ−1
◦ rXn−1 ◦ δ̌ ◦ ϕ

( ˜
∂ Xn−1/Bn−1θ

0,q−1
n−1;v

)]
= ∂

∂,B
Xn−1/Bn−1

◦ κnx ◦ ∂
B,∂
Xn−1/Bn−1

([θn−1]).

Finally,

[ϕ−1
◦ rXn−1 ◦ (L Bn+L Bn

) ◦ ϕ ◦ δ(θ̃)]

=−∂
∂,B
Xn−1/Bn−1

◦ κnx◦ ∂
B,∂
Xn−1/Bn−1

([θn−1])−∂
∂,B
Xn−1/Bn−1

◦ κnx◦ ∂
B,∂
Xn−1/Bn−1

([θn−1]). �
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We apply the above theorem and Theorem 3.1 in order to study the jumping
phenomenon of the dimensions of Bott–Chern(Aeppli) cohomology groups, and
obtain the following theorems.

Theorem 4.5. Let π : X→ B be a deformation of π−1(0) = X , where X is a
compact complex manifold. Let πn : Xn→ Bn be the n-th order deformation of X.
If there exists an element [θ1

] in H p,q
BC (X) or an element [θ2

] in H p−1,q−1
A (X) and

a minimal natural number n ≥ 1 such that the n-th order obstruction on([θ
1
]) 6= 0

or on([θ
2
]) 6= 0, then the hBC

p,q(X (t)) will jump at the point t = 0. The formulas for
the obstructions are given by

on([θ
1
])=−∂

∂,B
Xn−1/Bn−1

◦κnx◦rBC,∂([θ
1
n−1])−∂

∂,B
Xn−1/Bn−1

◦κnx◦rBC,∂([θ
1
n−1]);

on([θ
2
])=−∂

∂,BC
Xn−1/Bn−1

◦κnx◦∂
A,∂
Xn−1/Bn−1

([θ2
n−1])−∂

∂,BC
Xn−1/Bn−1

◦κnx◦∂
A,∂
Xn−1/Bn−1

([θ2
n−1]).

Theorem 4.6. Let π :X→ B be a deformation of π−1(0)= X , where X is a compact
complex manifold. Let πn : Xn→ Bn be the n-th order deformation of X. If there
exists an element [θ1

] in H p,q
A (X) or an element [θ2

] in Hp+q(X,B•p+1,q+1) and a
minimal natural number n ≥ 1 such that the n-th order obstruction on([θ

1
]) 6= 0 or

on([θ
2
]) 6= 0, then the hA

p,q(X (t)) will jump at the point t = 0. The formulas for the
obstructions are given by

on([θ
1
])=−∂

∂,BC
Xn−1/Bn−1

◦κnx◦∂
A,∂
Xn−1/Bn−1

([θ1
n−1])−∂

∂,BC
Xn−1/Bn−1

◦κnx◦∂
A,∂
Xn−1/Bn−1

([θ1
n−1]).

on([θ
2
])=−r∂,A ◦ κnx◦∂

B,∂
Xn−1/Bn−1

([θ2
n−1])−r∂,A ◦ κnx◦∂

B,∂
Xn−1/Bn−1

([θ2
n−1]).

By these theorems, we can deduce the following corollaries immediately.

Corollary 4.7. Let π : X→ B be a deformation of π−1(0)= X , where X is a com-
pact complex manifold. Suppose that up to order n, the maps rBC,∂ :H

p,q
BC (Xn/Bn)→

Hq(Xn, �
p;ω
Xn/Bn

) and rBC,∂ : H
p,q

BC (Xn/Bn)→ H p(Xn, �
q;ω
Xn/Bn

) are 0. Any element
[θ ] ∈ H p,q

BC (X) can be extended to order n+ 1 in H p,q
BC (Xn+1/Bn+1).

Proof. This result can be shown by induction on k.
Suppose that the corollary is proved for k − 1, then we can extend [θ ] to and

element [θk−1] in H p,q
BC (Xk−1/Bk−1). By Theorem 4.5 , the obstruction for the

extension of [θ ] to k-th order comes from:

ok([θ ])=−∂
∂,B
Xk−1/Bk−1

◦ κkx ◦ rBC,∂([θk−1])− ∂
∂,B
Xk−1/Bk−1

◦ κkx ◦ rBC,∂([θk−1]).

By the assumption, rBC,∂ : H
p,q

BC (Xk−1/Bk−1)→ Hq(Xk−1, �
p;ω
Xk−1/Bk−1

) and rBC,∂ :

H p,q
BC (Xk−1/Bk−1)→ H p(X k−1, �

q;ω
Xk−1/Bk−1

) are 0, where k ≤ n+ 1. So we have
rBC,∂([θk−1])= 0 and rBC,∂([θk−1])= 0. So the obstruction ok([θ ]) is trivial which
means [θ ] can be extended to k-th order. �
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Since
∂

A,∂
Xn/Bn

: H p,q
A (Xn/Bn)→ Hq(Xn, �

p+1;ω
Xn/Bn

)

is the composition of

∂
A,BC
Xn/Bn

: H p,q
A (Xn/Bn)→ H p+1,q

BC (Xn/Bn) and

rBC,∂ : H
p+1,q

BC (Xn/Bn)→ Hq(Xn, �
p+1;ω
Xn/Bn

).

With the same proof of the above corollary, we have the following result and we
omit the proof.

Corollary 4.8. Let π : X→ B be a deformation of π−1(0)= X , where X is a com-
pact complex manifold. Suppose, up to order n, the maps rBC,∂ : H

p+1,q
BC (Xn/Bn)→

Hq(Xn, �
p+1;ω
Xn/Bn

) and rBC,∂ : H p,q+1
BC (Xn/Bn)→ H p(Xn, �

q+1;ω
Xn/Bn

) is 0. Any [θ ]
that belongs to H p,q

A (X) can be extended to order n+ 1 in H p,q
A (Xn+1/Bn+1).

5. An example

In this section, we will use the formulas in Theorems 4.5 and 4.6 to study the jumping
phenomenon of the dimensions of Bott–Chern and Aeppli cohomology groups h p,q

BC
and h p,q

A , respectively, of small deformations of Iwasawa manifold. It was Kodaira
who first calculated small deformations of Iwasawa manifold [Nakamura 1975]. In
the first part of this section, let us recall his result.

Set

G =

{(1 z2 z3
0 1 z1
0 0 1

)
: zi ∈ C

}
∼= C3,

0 =

{(1 ω2 ω3
0 1 ω1
0 0 1

)
: ωi ∈ Z+Z

√
−1

}
.

The multiplication is defined by1 z2 z3

0 1 z1

0 0 1

1 ω2 ω3

0 1 ω1

0 0 1

=
1 z2+ω2 z3+ω1z2+ω3

0 1 z1+ω1

0 0 1

 .
X = G/0 is called the Iwasawa manifold. We may consider X = C3/0. The
element g ∈ 0 operates on C3 as follows:

z′1 = z1+ω1, z′2 = z2+ω2, z′3 = z3+ω1z2+ω3,

where g = (ω1, ω2, ω3) and z′ = z · g.
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There exist holomorphic 1-forms ϕ1, ϕ2, ϕ3 which are linearly independent at
every point on X and are given by

ϕ1 = dz1, ϕ2 = dz2, ϕ3 = dz3− z1dz2,

so that
dϕ1 = dϕ2 = 0, dϕ3 =−ϕ1 ∧ϕ2.

On the other hand we have holomorphic vector fields θ1, θ2, θ3 on X given by

θ1 =
∂

∂z1
, θ2 =

∂

∂z2
+ z1

∂

∂z3
, θ3 =

∂

∂z3
.

It is easily seen that

[θ1, θ2] = −[θ2, θ1] = θ3, [θ1, θ3] = [θ2, θ3] = 0.

In view of [Nakamura 1975, Theorem 3], H 1(X,OX ) is spanned by ϕ1, ϕ2. Since
2 is isomorphic to O3, H 1(X, TX ) is spanned by θiϕλ, i = 1, 2, 3, λ= 1, 2.

Consider the small deformation of X given by

ψ(t)=
3∑

i=1

2∑
λ=1

tiλθiϕλt − (t11t22− t21t12)θ3ϕ3t2.

We summarize the numerical characters of deformations. The deformations are
divided into the following three classes, which are characterized by the following
values of the parameters (all the details can be found in [Angella 2013]):

class (i): t11 = t12 = t21 = t22 = 0;

class (ii): D(t)= 0 and (t11, t12, t21, t22) 6= (0, 0, 0, 0);

class (ii.a): D(t)= 0 and rank S = 1;
class (ii.b): D(t)= 0 and rank S = 2;

class (iii): D(t) 6= 0;

class (iii.a): D(t) 6= 0 and rank S = 1;
class (iii.b): D(t) 6= 0 and rank S = 2;

where the matrix S is defined by

S :=
(
σ 11̄ σ 22̄ σ 12̄ σ 21̄
σ11̄ σ22̄ σ21̄ σ12̄

)
where σ11̄, σ12̄, σ21̄, σ22̄ ∈C and σ12 ∈C are complex numbers depending only on t
such that

dϕ3
t =: σ12ϕ

1
t ∧ϕ

2
t + σ11̄ϕ

1
t ∧ϕ

1
t + σ12̄ϕ

1
t ∧ϕ

2
t + σ21̄ϕ

2
t ∧ϕ

1
t + σ22̄ϕ

2
t ∧ϕ

2
t .
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H•dR b1 b2 b3 b4 b5

I3 and (i), (ii), (iii) 4 8 10 8 4

H••
∂

h1,0
∂

h0,1
∂

h2,0
∂

h1,1
∂

h0,2
∂

h3,0
∂

h2,1
∂

h1,2
∂

h0,3
∂

h3,1
∂

h2,2
∂

h1,3
∂

h3,2
∂

h2,3
∂

I3 and (i) 3 2 3 6 2 1 6 6 1 2 6 3 2 3
(ii) 2 2 2 5 2 1 5 5 1 2 5 2 2 2
(iii) 2 2 1 5 2 1 4 4 1 2 5 1 2 2

H••BC h1,0
BC h0,1

BC h2,0
BC h1,1

BC h0,2
BC h3,0

BC h2,1
BC h1,2

BC h0,3
BC h3,1

BC h2,2
BC h1,3

BC h3,2
BC h2,3

BC

I3 and (i) 2 2 3 4 3 1 6 6 1 2 8 2 3 3
(ii.a) 2 2 2 4 2 1 6 6 1 2 7 2 3 3
(ii.b) 2 2 2 4 2 1 6 6 1 2 6 2 3 3
(iii.a) 2 2 1 4 1 1 6 6 1 2 7 2 3 3
(iii.b) 2 2 1 4 1 1 6 6 1 2 6 2 3 3

H••A h1,0
A h0,1

A h2,0
A h1,1

A h0,2
A h3,0

A h2,1
A h1,2

A h0,3
A h3,1

A h2,2
A h1,3

A h3,2
A h2,3

A

I3 and (i) 3 3 2 8 2 1 6 6 1 3 4 3 2 2
(ii.a) 3 3 2 7 2 1 6 6 1 2 4 2 2 2
(ii.b) 3 3 2 6 2 1 6 6 1 2 4 2 2 2
(iii.a) 3 3 2 7 2 1 6 6 1 1 4 1 2 2
(iii.b) 3 3 2 6 2 1 6 6 1 1 4 1 2 2

Table 1. Dimensions of the cohomologies of the Iwasawa manifold
and of its small deformations [Angella 2013].

The first order asymptotic behavior of σ12, σ11̄, σ12̄, σ21̄, σ22̄ for t near 0 in classes
(i), (ii) or (iii) is

σ12 =−1+ o(|t |)t σ11̄ = t21+ o(|t |)t σ12̄ = t22+ o(|t |)t
σ21̄ =−t11+ o(|t |)t σ22̄ =−t12+ o(|t |)t.

From Table 1, we know that the jumping phenomenon happens in h2,0
BC, h0,2

BC and
h2,2

BC of the Bott–Chern cohomology and symmetrically happens in h3,1
A , h1,3

A and
h1,1

A of the Aeppli cohomology. Now let us explain the jumping phenomenon of
the dimensions of Bott–Chern and Aeppli cohomologies by using the obstruction
formula. From [Angella 2013, §4], it follows that the Bott–Chern cohomology
groups in bidegree (2, 0), (0, 2), (2, 2) are

H 2,0
BC (X)= SpanC{[ϕ1∧ϕ2], [ϕ2∧ϕ3], [ϕ3∧ϕ1]},

H 0,2
BC (X)= SpanC{[ϕ1∧ϕ2], [ϕ2∧ϕ3], [ϕ3∧ϕ1]},

H 2,2
BC (X)= SpanC

{
[ϕ2∧ϕ3∧ϕ1∧ϕ2], [ϕ3∧ϕ1∧ϕ1∧ϕ2],

[ϕ1∧ϕ2∧ϕ2∧ϕ3], [ϕ2∧ϕ3∧ϕ2∧ϕ3], [ϕ3∧ϕ1∧ϕ2∧ϕ3],

[ϕ1∧ϕ2∧ϕ3∧ϕ1], [ϕ2∧ϕ3∧ϕ3∧ϕ1], [ϕ3∧ϕ1∧ϕ3∧ϕ1]
}
,
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and the Aeppli cohomology groups in bidegree (3, 1), (1, 3), (1, 1) are

H 3,1
A (X)= SpanC{[ϕ1∧ϕ2∧ϕ3∧ϕ1], [ϕ1∧ϕ2∧ϕ3∧ϕ2], [ϕ1∧ϕ2∧ϕ3∧ϕ3]},

H 1,3
A (X)= SpanC{[ϕ1∧ϕ1∧ϕ2∧ϕ3], [ϕ2∧ϕ1∧ϕ2∧ϕ3], [ϕ3∧ϕ1∧ϕ2∧ϕ3]},

H 1,1
A (X)= SpanC

{
[ϕ1∧ϕ1], [ϕ1∧ϕ2], [ϕ1∧ϕ3], [ϕ2∧ϕ1],

[ϕ2∧ϕ2], [ϕ2∧ϕ3], [ϕ3∧ϕ1], [ϕ3∧ϕ2]
}
.

For example, let us first consider h2,0
BC under a class (ii) deformation. The Kodaira–

Spencer class of the this deformation is ψ1(t)=
∑3

i=1
∑2

λ=1 tiλθiϕλ, and ψ1(t)=∑3
i=1

∑2
λ=1 t iλθ iϕλ, with t11t22− t21t12 = 0. It is easy to check that

o1(ϕ1 ∧ϕ2)=−∂(int(ψ1(t))(ϕ1 ∧ϕ2))− ∂(int(ψ1(t))(ϕ1 ∧ϕ2))= 0,

o1(t11ϕ2 ∧ϕ3− t21ϕ1 ∧ϕ3)=−∂((t11t22− t21t12)ϕ3 ∧ϕ2)= 0,

o1(ϕ2 ∧ϕ3)= t21ϕ1 ∧ϕ2 ∧ϕ1+ t22ϕ1 ∧ϕ2 ∧ϕ2,

o1(ϕ1 ∧ϕ3)= t11ϕ1 ∧ϕ2 ∧ϕ1+ t12ϕ1 ∧ϕ2 ∧ϕ2.

Therefore, for an element of the subspace SpanC{[ϕ1∧ϕ2], [t11ϕ2∧ϕ3−t21ϕ1∧ϕ3]},
the first order obstruction is trivial, while, since (t11, t12, t21, t22) 6= (0, 0, 0, 0), at
least one of the obstructions o1(ϕ2 ∧ ϕ3), o1(ϕ1 ∧ ϕ3) is nontrivial. This partly
explains why the Hodge number h2,0

BC jumps from 3 to 2. For another example,
let us consider h1,1

A under a class (ii) deformation. It is easy to check that all the
first order obstructions of the cohomology classes are trivial. However, if we want
to study the jumping phenomenon, we also need to consider the obstructions that
come from H2(X,B•2,2). It is easy to check that

H2(X,B•2,2)= SpanC{[ϕ3], [ϕ3]},

o1(ϕ3)= t11ϕ2 ∧ϕ1+ t12ϕ2 ∧ϕ2− t21ϕ1 ∧ϕ1− t22ϕ1 ∧ϕ2,

o1(ϕ3)= t11ϕ2 ∧ϕ1+ t12ϕ2 ∧ϕ2− t21ϕ1 ∧ϕ1− t22ϕ1 ∧ϕ2.

Note that the first order of S is(
t21 −t12 t22 −t11

t21 −t12 −t11 t22

)
.

If the rank of the first order of S is 1, then there exist c1, c2 such that

o1(c1ϕ3+ c2ϕ3) 6= 0.

If the rank of the first order of S is 2, then for all c1, c2

o1(c1ϕ3+ c2ϕ3) 6= 0,

and exactly these obstructions make h1,1
A jump from 8 to 7 in class (ii.a) and from 8

to 6 in class (ii.b).
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To end the section, we give the following observation as an application of the
formulas in Theorems 4.5 and 4.6.

Proposition 5.1. Let X be a non-Kähler nilpotent complex parallelisable manifold
whose dimension is more than 2, and π : X→ B be the versal deformation family
of X. Then the number h1,1

A will jump in any neighborhood of 0 ∈ B.

Proof. Let ϕi , for i = 1, . . . ,m = dimC X , be the linearly independent holomorphic
1-forms of X . It is easy to check that ϕi are ∂∂-closed and therefore each ϕi

represents an element of H 0,1
A (X). On the other hand, by [Macrì 2013, Theorem 3],

we know that the dimension of H 0,1
A (X) is less than or equal to m. Therefore ϕi ,

i = 1, . . . , n, give us a base of H 0,1
A (X). So ∂ : H 0,1

A (X)→ H 1(X, �X ) is trivial.
Then we know that r∂,A : H

1(X, �X )→ H 1,1
A (X) is injective. From the proof of

[Ye 2008, Proposition 4.2], we know there exists an element [θ ] in H 0(X, �X )

whose o1([θ ]) 6= 0. Since ∂θ = 0, θ also represents an element in H2(X,B•2,2); let
us denote it by [θ ]B. By Theorem 4.6 one can see that o1([θ ]B)=−r∂,A(o1([θ ]))

in this case. From the injectivity of r∂,A, we know that o1([θ ]B) 6= 0. Therefore the
number h1,1

A will jump in any neighborhood of 0 ∈ B. �
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FIXED-POINT RESULTS AND THE HYERS–ULAM STABILITY
OF LINEAR EQUATIONS OF HIGHER ORDERS

BING XU, JANUSZ BRZDĘK AND WEINIAN ZHANG

We present a general method for investigation of the Hyers–Ulam stability
of linear equations (differential, difference, functional, integral) of higher
orders. It is shown that in many cases, that kind of stability for such equa-
tions is a consequence of a similar property of the corresponding first-order
equations. Some particular examples of applications for differential, in-
tegral, difference and functional equations are described. The method is
based on some fixed-point results that are proved in this paper.

1. Introduction

Sometimes we have to deal with functions that satisfy some equations only approx-
imately. One of the possible ways to treat them is just to replace such functions by
suitably corresponding exact solutions to those equations. Therefore it seems to be
important to know when, why and to what extent we can do this, and what errors
we thus commit. Some tools for evaluation of that issue are offered by the theory
of Ulam-type stability.

Some information on that theory and further references concerning it are given
in Section 3. The following definition somehow describes the main ideas of that
kind of stability (N stands for the set of positive integers, R+ := [0,∞), and C D

denotes the family of all functions mapping a set D 6=∅ into a set C 6=∅):

Definition 1.1. Let n ∈ N, A be a nonempty set, (X, d) be a metric space, E ⊂

C⊂ R+
An

be nonempty, T be an operator (not necessarily linear) mapping C into
R+

A, and F1, F2 be operators (not necessarily linear) mapping a nonempty D⊂ X A

into X An
. We say that the operator equation

(1) F1ϕ(x1, . . . , xn)= F2ϕ(x1, . . . , xn)

is (E,T)-stable, provided for every ε ∈ E and ϕ0 ∈ D with

(2) d(F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn))≤ ε(x1, . . . , xn), x1, . . . , xn ∈ A,

Bing Xu has been supported by NSFC (China) Grant No. 11101295. Weinian Zhang has been
supported by NSFC Grant No. 11231001, SRFDP 20120181110062 and PCSIRT IRT1273.
MSC2010: primary 39B82, 47A63, 47J99; secondary 34K20, 39B12, 47H10.
Keywords: fixed point, Hyers–Ulam stability, linear equation, linear operator, operator equation.
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there exists a solution ϕ ∈ D of (1) such that

(3) d(ϕ(x), ϕ0(x))≤ Tε(x), x ∈ A.

Roughly speaking, (E,T)-stability of (1) means that every approximate (in the
sense of (2)) solution of (1) is always close (in the sense of (3)) to an exact solution
to (1).

In the particular case when E contains only all constant functions, (E,T)-stability
is called Hyers–Ulam stability. In this paper we describe (in the terms of fixed
points) a general method for investigation of the Hyers–Ulam stability of various
higher-order linear (differential, integral, difference or functional) equations in a
single variable, that is, for n = 1. In this way we show how to generalize and easily
extend numerous results given in, e.g., [Takahasi et al. 2002; Miura et al. 2003a;
2003b; 2004; 2012; Jung 2004; 2005; 2006; Popa 2005b; Trif 2006; Wang et al.
2008; Brzdȩk et al. 2008; 2010; 2011b; Li and Shen 2009; Brzdȩk and Jung 2010].

In what follows, R and C denote the sets of real and complex numbers, respec-
tively. Also, X is a Banach space over a field K ∈ {R,C}, m ∈ N is fixed and in
general we assume that m > 1 (unless explicitly stated otherwise), S is a nonempty
set, and a0, . . . , am−1 ∈ K. Additionally, U is a linear subspace of X S (the linear
space over K of all the functions mapping S into X ), F ∈U is fixed, L :U→ X S is
a linear operator, Pm : C→ C is a polynomial given by Pm(z) := zm

+
∑m−1

j=0 a j z j

and r1, . . . , rm ∈ C are the roots of the equation

(4) Pm(z)= 1.

Moreover, we write Um := { f ∈U :Li f ∈U for i = 1, . . . ,m−1} and define a
linear operator Pm(L) :Um→ X S by Pm(L) :=Lm

+
∑m−1

j=0 a j L
j , where L0

:= I

is the identity operator (i.e., I f = f for f ∈ X S) and Lk
:=L◦Lk−1 for any k ∈N.

In the next section we present some fixed-point results for the operator

PF
m := Pm(L)+ F

(i.e., PF
m(ϕ)= Pm(L)(ϕ)+ F for ϕ ∈Um).

2. Fixed-point results

For the sake of simplicity we use the notion ‖ f ‖ := supx∈S ‖ f (x)‖ for f ∈ X S ,
which can be considered as an extension (because it admits an infinite value) of the
usual supremum norm ‖ · ‖∞ defined on the linear space (over K) of all bounded
functions from X S . In this section, we write

(5) Lv
i := L+ (1− ri )I− v, v ∈ X S, i ∈ {1, . . . ,m}
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(i.e., Lv
i (ϕ) :=L(ϕ)+ (1−ri )ϕ−v for ϕ ∈U), provided r1, . . . , rm ∈K. The next

two fixed-point theorems are the main tools in this paper; we present their proofs at
the end of the paper.

Theorem 2.1. Let r1, . . . , rm ∈K and ξi :R+→R+ for i =1, . . . ,m. Suppose that

(6) δ := ‖PF
mϕs −ϕs‖<∞

for some ϕs ∈Um and that the following fixed-point property holds for i = 1, . . . ,m:

(Li ) For every ψ, v ∈ U such that δ := ‖Lv
i ψ −ψ‖ <∞, there is a fixed point

φ ∈U of Lv
i such that ‖ψ −φ‖ ≤ ξi (δ).

Then there exists a fixed point ϕ ∈Um of PF
m such that

(7) ‖ϕs −ϕ‖ ≤ ξm ◦ · · · ◦ ξ1(δ).

Moreover, if L(U)⊂U and there is an L ∈R+ with |ri |> L for i = 1, . . . ,m and
‖L f ‖ ≤ L‖ f ‖ for f ∈U, then there is exactly one fixed point ϕ ∈U of PF

m with

(8) ‖ϕs −ϕ‖<∞.

Remark 2.2. From the proof of Theorem 2.1 (see Section 5), ϕ is equal to φm ,
with φm obtained, step by step, by the following procedure.

Write φ0=−F , ψm = ϕs , and ψ j (z)=Lψ j+1−r j+1ψ j+1 for j = 1, . . . ,m−1.
Then, for i = 1, . . . ,m, φi ∈U is a fixed point of the operator L+ (1−ri )I−φi−1

with ‖ψi−φi‖≤ ξi ◦· · ·◦ξ1(δ). By (Li ), such a φi ∈U exists for each i ∈{1, . . . ,m}.
In many cases such a φi can be described quite precisely (see, e.g., Remark 2.4).

Concerning operators satisfying (Li ), some recent results can be found in, e.g.,
[Brzdȩk and Jung 2011, Theorem 5.1; Badora and Brzdȩk 2012, Theorem 2.1].

In what follows, we say that U is closed in the norm ‖ · ‖∞ if U contains every
function f ∈ X S for which there is a sequence of functions ( fn) in U that is
uniformly convergent to f (i.e., limn→∞‖ f − fn‖∞ = 0).

Theorem 2.3. Let L(U)⊂U and let U be closed in the norm ‖ · ‖∞. Suppose that
there are κ ∈ R+ and ϕs ∈U such that (6) holds, that

(9) ‖L f ‖ ≤ κ‖ f ‖, f ∈U,

and that one of the following two conditions is valid:

(α) ri ∈ K and |ri |> κ for i = 1, . . . ,m;

(β) |ri |> 2κ for i = 1, . . . ,m.

Then there is a unique fixed point ϕ ∈U of PF
m such that ‖ϕs−ϕ‖<∞; moreover,

(10) ‖ϕs −ϕ‖ ≤
δ

(|r1| − ρκ) · · · (|rm | − ρκ)
,
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where

ρ :=

{
1 if (α) holds,
2 if (β) holds.

Remark 2.4. From the proof of Theorem 2.3 (see Section 6) and Remark 2.2, we
can deduce that the function ϕ can be described analogously to Remark 2.2, with
the functions φi (denoted in (Li ) by φ) given by φi (x) := limn→∞Ti

nψi (x) for
i = 1, . . . ,m, x ∈ S, where Ti is defined by (32).

3. Hyers–Ulam stability

Let b0, . . . , bm ∈K, with bm 6= 0, let Qm :C→C be given by Qm(z) :=
∑m

j=0 b j z j ,
and let q1, . . . , qm ∈ C be the roots of the equation

(11) Qm(z)= 0.

We define a linear operator Qm(L) :Um→ X S by Qm(L) :=
∑m

j=0 b j L
j . In this

section, we describe some direct consequences of Theorems 2.1 and 2.3 concerning
the Hyers–Ulam stability of the operator equation

(12) Qm(L)ϕ = G

(for functions ϕ ∈Um and with a fixed G ∈ X S), under the assumption

(G) G ∈U or (12) has a solution ϕ̂ ∈Um .

Let us mention that Hyers–Ulam stability is related to the notions of shadowing
and controlled chaos (see, e.g., [Pilyugin 1999; Palmer 2000; Hayes and Jackson
2005; Stević 2008]) as well as the theories of perturbation (see, e.g., [Chang and
Howes 1984; Lin and Zhou 1995]) and optimization. At the moment it is a very popu-
lar subject of investigation (for more details, references and examples of some recent
results, see, e.g., [Hyers 1941; Ulam 1964; Forti 1995; 2007; Hyers et al. 1998; Jung
2001; 2011; Agarwal et al. 2003; Popa 2005a; Jabłoński and Reich 2006; Bahyrycz
2007; Jung and Rassias 2007; 2008; Moszner 2009; Paneah 2009; Ciepliński 2010;
2011; 2012b; Sikorska 2010; Forti and Sikorska 2011; Piszczek 2013a; 2013b]).

Under suitable assumptions, we have the following natural examples of (12):

• The linear differential equation

(13) bmϕ
(m)(z)+ bm−1ϕ

(m−1)(z)+ · · ·+ b1ϕ
′(z)+ b0ϕ(z)= G(z).

• The linear recurrence (or difference) equation

(14) bmϕ(n+m)+ bm−1ϕ(n+m− 1)+ · · ·+ b1ϕ(n+ 1)+ b0ϕ(n)= G(n).

• The well-known linear functional equation

(15) bmϕ( f m(z))+ bm−1ϕ( f m−1(z))+ · · ·+ b1ϕ( f (z))+ b0ϕ(z)= G(z).
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For results on the Hyers–Ulam stability of (13) see [Miura et al. 2003b] (with
G(z)≡ 0). Equation (14) is a discrete case of (15); its Hyers–Ulam stability was
discussed in [Popa 2005a; 2005b; Brzdȩk et al. 2006; 2010]. Equation (15) is one
of the most important functional equations, and many results on its solutions can
be found in [Kuczma 1968; Kuczma et al. 1990] (see also the references therein);
its Hyers–Ulam stability was discussed, e.g., in [Kim 2000; Trif 2002] for m = 1
and in [Trif 2006; Brzdȩk et al. 2008; 2011b; Brzdȩk and Jung 2010] for m > 1.

The fixed-point approach has been already applied in the investigation of the
Hyers–Ulam stability [Baker 1991; Jung and Chang 2005; Jung and Kim 2006;
Mirzavaziri and Moslehian 2006; Jung 2007; Brzdȩk et al. 2011a; Brzdȩk and
Ciepliński 2011; Ciepliński 2012a]. In this section we continue this direction and
present two corollaries on such stability, obtained from Theorems 2.1 and 2.3. The
first one corresponds to the results in [Brzdȩk et al. 2008]. Namely, it states that, in
some cases, the Hyers–Ulam stability of (12) can be derived from the analogous
properties of the corresponding first-order operator equations, which we express in
the form of the following hypothesis:

(Hi ) ρi : R+→ R+ is a function such that, for every ϕs, η ∈U and δ ∈ R+ with
‖Lϕs − qiϕs − η‖ ≤ δ, there is ϕ ∈U such that ‖ϕs −ϕ‖ ≤ ρi (δ) and

(16) Lϕ = qiϕ+ η.

For examples of operators satisfying (Hi ) see [Brzdȩk et al. 2010; 2011b] and
Section 4.

Corollary 3.1. Suppose that G ∈ X S , (G) and (Hi ) hold for i = 1, . . . ,m, δ ∈ R+,
and ϕs ∈Um satisfies

(17) ‖Qm(L)ϕs −G‖ ≤ δ.

Then there exists a solution ϕ ∈Um of (12) such that

(18) ‖ϕs −ϕ‖ ≤ ρm ◦ · · · ◦ ρ1

(
δ

|bm |

)
.

Moreover, if L(U)⊂U, and there is L ∈ R+ with ‖L f −Lg‖ ≤ L‖ f − g‖ for
f, g ∈U and |qi |> L for i = 1, . . . ,m, then there is exactly one solution ϕ ∈U of

(12) with

(19) ‖ϕs −ϕ‖<∞.

Proof. Assume first that G ∈U. Let

F =−
1

bm
G, a0 =

b0

bm
+ 1, and ai =

bi

bm
for i = 1, . . . ,m− 1.
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Then (17) implies that ‖P F
m (L)ϕs − ϕs‖ ≤ δ/|bm |. Further, it is easily seen that

q1, . . . , qm are the roots of (4) and (Hi ) yields (Li ) for i = 1, . . . ,m with ξi = ρi .
So, by Theorem 2.1, there is a fixed point ϕ ∈Um of P F

m (L) such that (18) holds.
Clearly ϕ is a solution to (12).

Now consider the case where (12) has a solution ϕ̂ ∈Um . Let ζs := ϕs− ϕ̂. Then
ζs ∈Um and ‖Qm(L)ζs −G0‖ = ‖Qm(L)ζs‖ ≤ δ, where G0 ∈ X S and G0(x)≡ 0.
Clearly G0 ∈U. Hence, by the first part of the proof, there exists a solution ζ ∈Um

of (12) (with G = G0) such that

‖ζs − ζ‖ ≤ ρm ◦ · · · ◦ ρ1

(
δ

|bm |

)
.

Now, it is easily seen that ϕ := ζ + ϕ̂ is a solution of (12), and (18) holds.
It remains to show the statement concerning the uniqueness of ϕ. So, suppose

that there is an L ∈ R+ such that ‖L f ‖ ≤ L‖ f ‖ for f ∈ U and |qi | > L for
i = 1, . . . ,m. Then such a ϕ is the unique fixed point of PF

m satisfying (19), and
therefore it is also the unique solution of (12) such that (19) is valid. �

It is easily seen that [Brzdȩk et al. 2008, Theorem 1] is a particular case of our
Corollary 3.1.

Remark 3.2. In the case where |qi |< L for some i ∈ {1, . . . ,m}, it follows from
[Brzdȩk et al. 2010, Theorem 3(c)] that in the general situation we may not have
uniqueness of ϕ in Corollary 3.1.

Corollary 3.3. Let L(U)⊂U, G ∈ X S , (G) be valid, U be closed in the supremum
norm ‖ · ‖∞, δ, κ ∈ R+, ϕs ∈U, (17) hold, and

(20) ‖L f −Lg‖ ≤ κ‖ f − g‖, f, g ∈U.

Assume that one of the following two conditions is valid:

(α) qi ∈ K and |qi |> κ for i = 1, . . . ,m;

(β) |qi |> 2κ for i = 1, . . . ,m.

Then there is a unique solution ϕ ∈U of (12) with ‖ϕs −ϕ‖<∞; moreover,

(21) ‖ϕs −ϕ‖ ≤
δ

|bm |(|q1| − ρκ) · · · (|qm | − ρκ)
,

where

ρ :=

{
1 if (α) holds,
2 if (β) holds.
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Proof. Arguing analogously as in the proof of Corollary 3.1, we deduce the statement
from Theorem 2.3. �

If σ : S→ K is bounded, f : S→ S, and Lg := σg ◦ f for g ∈ U, then (20)
holds with κ := supt∈S |σ(t)|. So, Corollary 3.3 yields the following result, which
complements (and generalizes to a certain extent) some results in [Trif 2006; Brzdȩk
et al. 2008; 2011b]:

Corollary 3.4. Let one of the conditions (α), (β) of Corollary 3.3 hold, and let
σ : S→K, G ∈ X S , f : S→ S, δ ∈ R+, ϕs : S→ X , κ := supt∈S |σ(t)|< |q j | for
j = 1, . . . ,m, and

(22) sup
t∈S

∥∥∥∥ m∑
j=0

b jσ j (t)ϕs( f j (t))−G(t)
∥∥∥∥≤ δ,

where σ0(t) = 1 and σ j (t) = σ j−1(t)σ ( f j−1(t)) for t ∈ S, j = 1, . . . ,m. Then
there is a unique solution ϕ : S→ X of the functional equation

(23)
m∑

j=0

b jσ j (t)ϕ( f j (t))= G(t)

such that (21) holds. Moreover, if S is endowed with a topology and σ1, . . . , σm

and f are continuous, then the following two statements are valid:

(i) If ϕs and G are continuous, then ϕ is continuous.

(ii) If X = K and ϕs and G are Borel measurable, then ϕ is Borel measurable.

Proof. It is enough to take Lξ = σ ξ ◦ f for ξ ∈ X S in Corollary 3.3. Moreover, if
S is endowed with a topology and σ1, . . . , σm and f are continuous, then taking
U := {ξ ∈ X S

: ξ is continuous} or U := {ξ ∈ X S
: ξ is Borel measurable} we obtain

that ϕ is continuous or Borel measurable, respectively. �

Remark 3.5. The form of σ j seems to be a bit complicated for greater m, but for
instance with m = 2, (23) has the simple and quite general form

b2σ(t)σ ( f (t))ϕ( f 2(t))+ b1σ(t)ϕ( f (t))+ b0ϕ(t)= G(t).

4. Some further consequences

Let I be an open real interval, let C1(I, X) denote the space of strongly differentiable
functions mapping I into X , and let U = C1(I, X) and L = d/dt . In the next
remark we show that, in view of [Miura et al. 2004, Remark 1, Corollaries 2, 3]
(see also [Takahasi et al. 2002]), hypothesis (Hi ) holds for each i ∈ {1, . . . ,m} such
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that <qi 6= 0, where <z denotes the real part of the complex number z for K = C

and <z = z for K = R, with

(24) ρi (δ) :=
δ

|<qi |
, δ ∈ R+.

Moreover, in the case where I is finite and<qi=0, (Hi ) holds for each i ∈{1,. . .,m},
with

(25) ρi (δ) := d(I )δ, δ ∈ R+,

where d(I ) denotes the diameter of I ; see [Miura et al. 2004, Remark 1, Corollary 4].

Remark 4.1. For i ∈ {1, . . . ,m} and δ ∈ R+, we write

(26) ρi (δ)=

{
d(I )δ if <qi = 0 and d(I ) <∞,
δ/|<qi | if <qi 6= 0.

Let L = d/dt and η ∈ U. Take ϕs ∈ U, i ∈ {1, . . . ,m}, and δ ∈ R+ with
‖Lϕs − qiϕs − η‖ ≤ δ. There is a solution ϕ0 ∈U of the equation Lϕ0 = qiϕ0+ η.
Write ϕ1= ϕs−ϕ0. Then ‖Lϕ1−qiϕ1‖= ‖Lϕs−qiϕs−η‖≤ δ. Hence, according
to the results in [Miura et al. 2004], there is ϕ̂ ∈ U such that ‖ϕ1 − ϕ̂‖ ≤ ρi (δ)

and Lϕ̂ = qi ϕ̂. Now, it is easily seen that ϕ := ϕ̂ + ϕ0 satisfies (16) and that
‖ϕs −ϕ‖ = ‖ϕ1− ϕ̂‖ ≤ ρi (δ).

If d(I )=∞, then (Hi ) may not be valid for i ∈ {1, . . . ,m} with <qi = 0 (see,
e.g., [Takahasi et al. 2002, Theorem 2.1(iii)]).

In view of Remark 4.1, from Theorem 2.1 we can deduce the following corollary,
which generalizes the main result obtained in [Miura et al. 2003b], although it was
proved in that paper by a different method.

Corollary 4.2. Let I be an open real interval, and let G ∈ C0(I, X), qi ∈ K for
i = 1, . . . ,m, δ ∈ R+ and ϕs ∈ Cm(I, X) satisfy

(27) ‖bmϕ
(m)
s + · · ·+ b1ϕ

′

s + b0ϕs −G‖ ≤ δ.

Suppose that d(I ) <∞ or <qi 6= 0 for i = 1, . . . ,m. Then there exists a solution
ϕ ∈ Cm(I, X) of (13) such that

(28) ‖ϕs −ϕ‖ ≤
δ

|bm |

m∏
i=1

Di ,

where

(29) Di =

{
d(I ) if <qi = 0 and d(I ) <∞,
1/|<qi | if <qi 6= 0.
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Proof. There is a function ϕ0 ∈ Cm(I, X) satisfying the equation

bmϕ
(m)
0 (x)+ bm−1ϕ

(m−1)
0 (x)+ · · ·+ b1ϕ

′

0(x)+ b0ϕ0(x)= G(x).

Let ζs := ϕs −ϕ0. Then, by (27),

‖bmζ
(m)
s + bm−1ζ

(m−1)
s + · · ·+ b1ζ

′

s + b0ζs‖ ≤ δ,

i.e., (17) is valid with G(x) ≡ 0. As we have already observed in Remark 4.1,
hypothesis (Hi ) holds for i = 1, . . . ,m with U=C1(I, X), L= d/dt and ρi given
by (26). So, by Corollary 3.1, there is a solution ζ ∈ Cm(I, X) of the equation

bmζ
(m)(x)+ bm−1ζ

(m−1)(x)+ · · ·+ b1ζ
′(x)+ b0ζ(x)= 0

such that

‖ζs − ζ‖ ≤
δ

|bm |

m∏
i=1

Di ,

where Di is given by (29). Now, it is easily seen that ϕ := ζ +ϕ0 is a solution of
(13), and (28) holds. �

Similar results for integral equations can be derived from [Miura et al. 2012] in
analogous ways. It seems that so far that no paper has been published containing
stability results (of the type discussed in this paper) for linear integral equations
of higher orders.

5. Proof of Theorem 2.1

This proof proceeds via induction with respect to m. The case m=1 is a consequence
of (L1) with v = −F . Assume that the theorem is true for m = k. Let ϕs ∈ Um

satisfy (6) with m = k+ 1, which in view of the Viète formulas can be written in
the form

δ = ‖PF
k+1ϕs −ϕs‖ =

∥∥∥∥Lk+1ϕs +

k∑
j=0

a j L
jϕs + F −ϕs

∥∥∥∥
=

∥∥∥∥Lk+1ϕs + (−1)
(k+1∑

j=1

r j

)
Lkϕs + · · ·+ (−1)k+1r1 · · · · · rk+1ϕs + F

∥∥∥∥.
Let ψs := Lϕs − rk+1ϕs . Since L :U→ X S is a linear operator, we have

Lpψs = Lp+1ϕs − rk+1Lpϕs
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for p = 1, . . . , k, whence∥∥∥∥Lkψs + (−1)
( k∑

j=1

r j

)
Lk−1ψs + · · ·+ [(−1)kr1 · · · rk + 1]ψs + F −ψs

∥∥∥∥
=

∥∥∥∥Lkψs + (−1)
( k∑

j=1

r j

)
Lk−1ψs + · · ·+ (−1)kr1 · · · rkψs + F

∥∥∥∥
=

∥∥∥∥Lk+1ϕs − rk+1Lkϕs + (−1)
( k∑

j=1

r j

)
(Lkϕs − rk+1Lk−1ϕs)

+ · · ·+ (−1)kr1 · · · rk(Lϕs − rk+1ϕs)+ F
∥∥∥∥

=

∥∥∥∥Lk+1ϕs + (−1)
(k+1∑

j=1

r j

)
Lkϕs + · · ·+ (−1)k+1r1 · · · rk+1ϕs + F

∥∥∥∥≤ δ.
Since, by the Viète formulas, r1, . . . , rk are the roots of the equation

1= (z− r1)(z− r2) · · · (z− rk)+ 1

= zk
+ (−1)

( k∑
j=1

r j

)
zk−1
+ · · ·+ [(−1)kr1 · · · rk + 1]z0,

by the inductive assumption, there is ψ ∈Uk such that

(30) ψ = Lkψ + (−1)
( k∑

j=1

r j

)
Lk−1ψ + · · ·+ [(−1)kr1 · · · rk + 1]ψ + F

and ‖Lψ

k+1ϕs −ϕs‖ = ‖Lϕs − rk+1ϕs −ψ‖ = ‖ψs −ψ‖ ≤ ξk ◦ · · · ◦ ξ1(δ). Hence,
in view of (Lk+1), there is a fixed point ϕ ∈U of L

ψ

k+1 with

‖ϕs −ϕ‖ ≤ ξk+1(ξk ◦ · · · ◦ ξ1(δ)).

Note that Lϕ = ψ + rk+1ϕ, whence Lϕ ∈U, which means that ϕ ∈U 2. Analo-
gously, step by step, finally we get ϕ ∈Uk+1. Consequently, (30) yields

0= Lk+1ϕ− rk+1Lkϕ+ (−1)
( k∑

j=1

r j

)
(Lkϕ− rk+1Lk−1ϕ)

+ · · ·+ (−1)kr1 · · · rk(Lϕ− rk+1ϕ)+ F

= Lk+1ϕ+ (−1)
(k+1∑

j=1

r j

)
Lkϕ+ · · ·+ (−1)k+1r1 · · · rk+1ϕ+ F

= Pm(L)ϕ+ F −ϕ.
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It remains to prove the statement of the uniqueness of ϕ. Notice that if ϕ1, ϕ2 ∈U

are both fixed points of PF
m with ‖ϕs −ϕi‖<∞ for i = 1, 2, then ‖ϕ1−ϕ2‖<∞.

So, it suffices to prove that ϕ1 = ϕ2 if ϕ1, ϕ2 ∈U are fixed points of PF
m such that

(31) M := ‖ϕ1−ϕ2‖<∞.

The proof of uniqueness proceeds via induction with respect to m. For m = 1 we
have r1= 1−a0 and, therefore, for arbitrary fixed points ϕ1, ϕ2 ∈U of PF

m satisfying
(31), we have |r1|

n
‖ϕ1−ϕ2‖= ‖L

nϕ1−Lnϕ2‖≤ Ln M for n ∈N, whence ϕ1= ϕ2,
because |r1|> L . We further assume that the fact is true for m = k. Consider fixed
points ϕ1, ϕ2 ∈U of PF

k+1 satisfying (31), and write φi :=Lϕi−rk+1ϕi for i = 1, 2.
Then, arguing analogously as before for ψs , we see that φ1, φ2 ∈U are fixed points
of PF

m with m = k and appropriate (possibly different) a0, . . . , ak−1. Moreover,
‖φ1−φ2‖≤ (L+|rk+1|)M . Hence, according to the inductive assumption, φ1= φ2

and, analogously to the case m = 1, finally we obtain that ϕ1 = ϕ2. �

6. Proof of Theorem 2.3

First, consider the case of (α). In view of Theorem 2.1, it is enough to show that
(Li ) holds for i = 1, . . . ,m. Fix i ∈ {1, . . . ,m}, v ∈U and ψ ∈U and assume that
δ0 := ‖L

v
i ψ −ψ‖<∞. Write

(32) Ti :=
1
ri
(L− v).

In view of (5), ‖Tiψ −ψ‖ ≤ δ0/ |ri |, and, for every f, g ∈U,

‖Ti f −Ti g‖ =
∥∥∥∥ 1

ri
L f −

1
ri

Lg
∥∥∥∥≤ κ

|ri |
‖ f − g‖.

Define a generalized metric (i.e., admitting an infinite value) d in X S by d( f, g)=
‖ f −g‖ for f, g ∈ X S (see [Luxemburg 1958]). Applying the fixed-point alternative
of J. B. Diaz and B. Margolis [1968, p. 306–307], we see that (for the generalized
metric d) the limit φ := limn→∞Ti

nψ exists in X S and φ is the unique fixed point
of Ti with

‖ψ −φ‖ ≤
δ0

|ri |

1
1− κ/|ri |

=
δ0

|ri | − κ
.

Since the sequence (Ti
nψ) converges to φ uniformly and U is closed in the norm

‖·‖∞, φ belongs to U. Next, Lv
i φ=Lφ+(1−ri )φ−v=ri Tiφ+v+(1−ri )φ−v=φ,

implying that (Li ) is valid, which completes the proof in the case of (α).
Now, consider the case when (β) is valid and K = R. As is well-known

(see, e.g., [Fabian et al. 2001, p. 39; Ferrera and Muñoz 2003] or [Kadison and
Ringrose 1997, p. 66, Exercise 1.9.6]), X2 is a complex Banach space with lin-
ear structure defined by the operations (x, y) + (z, w) := (x + z, y + w) and
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(α + iβ)(x, y) := (αx − βy, βx + αy) and the Taylor norm ‖ · ‖T given by
‖(x, y)‖T := sup0≤θ≤2π‖(cos θ)x+(sin θ)y‖ for x, y, z, w ∈ X , α, β ∈R. Clearly,

(33) max{‖x‖, ‖y‖} ≤ ‖(x, y)‖T ≤ ‖x‖+‖y‖, x, y ∈ X.

We write pi (w1, w2) :=wi forw1, w2∈ X, i=1, 2 and ‖µ‖T := supx∈S ‖µ(x)‖T

for µ ∈ (X2)S . Let U0 := {µ : S→ X2
: pi ◦µ ∈ U, i ∈ {1, 2}} and L0µ(x) :=(

L(p1 ◦µ)(x),L(p2 ◦µ)(x)
)

for µ ∈U0, x ∈ S. Since L is linear and U is a linear
subspace of X over K = R, we see that U0 is a linear subspace of X2 over C and
L0 is a linear operator (also over C) such that L0(U0)⊂U0.

Choose µ ∈ (X2)S and consider a sequence (µn) in U0 which is uniformly
convergent to µ (in the Taylor norm). Then, by (33),

max{‖p1 ◦µn − p1 ◦µ‖, ‖p2 ◦µn − p2 ◦µ‖} ≤ ‖µn −µ‖T , n ∈ N,

which means that pi ◦µn is uniformly convergent to pi ◦µ for i =1, 2. Consequently,
p1 ◦µ, p2 ◦µ ∈ U, whence µ ∈ U0. Thus, U0 is closed in the supremum norm
connected with the norm ‖ · ‖T . Further, according to (9) and (33), we have

‖L0µ‖T = ‖(L(p1 ◦µ),L(p2 ◦µ))‖T ≤ ‖L(p1 ◦µ)‖+‖L(p2 ◦µ)‖

≤ κ‖p1 ◦µ‖+ κ‖p2 ◦µ‖ ≤ 2κ max{‖p1 ◦µ‖, ‖p2 ◦µ‖} ≤ 2κ‖µ‖T

for every µ ∈U0. We write χ := (ϕs, 0) and v0 = (v, 0) for v ∈U. Then we have
‖L0χ + (1− ri )χ − v0− χ‖T = ‖Lϕs + (1− ri )ϕs − v− ϕs‖ = δ <∞, because
p2◦χ(x)=0 for x ∈ S. So, we have again the case of (α), where L, κ , ϕs , F , U, PF

m
are replaced with L0, 2κ , χ , F0 := (F, 0), U0 and P̂F

m := Pm(L0)+F0, respectively.
So, by the first part of the proof, there is a fixed point H ∈U0 of P̂F

m with

(34) ‖χ − H‖T ≤
δ

(|r1| − 2κ) · · · (|rm | − 2κ)
.

Observe that ϕ := p1 ◦ H is a fixed point of PF
m . Moreover, by (34), (10) holds

with ρ = 2.
It remains to prove the statement of the uniqueness of ϕ. Let ϕ0 ∈U be a fixed

point of PF
m such that ‖ϕs −ϕ0‖<∞. Write H0(x) := (ϕ0(x), 0) for x ∈ S. Note

that H0 ∈U0 is a fixed point of P̂F
m . Moreover, ‖χ − H0‖T = ‖ϕs −ϕ‖<∞. By

Theorem 2.1 (with L = 2κ), we deduce that H0 = H , whence ϕ0 = p1 ◦ H0 =

p1 ◦ H = ϕ. �
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COMPLETE CURVATURE HOMOGENEOUS METRICS
ON SL2(R)

BENJAMIN SCHMIDT AND JON WOLFSON

A construction is described that associates to each positive smooth function
F : S1 → R a smooth Riemannian metric gF on SL2(R) ∼= R2 × S1 that is
complete and curvature homogeneous. The construction respects moduli:
positive smooth functions F and G lie in the same Diff(S1) orbit if and only
if the associated metrics gF and gG lie in the same Diff(SL2(R)) orbit.

The constructed metrics all have curvature tensor modeled on the same
algebraic curvature tensor. Moreover, the following are shown to be equiva-
lent: F is constant, gF is left-invariant, and (SL2(R), gF) Riemannian cov-
ers a finite volume manifold. Applications of the construction are discussed.

1. Introduction

Let (M, g) be a connected Riemannian manifold, ∇ its Levi-Civita connection, and
R its curvature tensor. Then (M, g) is said to be curvature homogeneous of order k
if for every p, q ∈ M there exists a linear isometry I : Tp M→ Tq M such that

I ∗(∇ i R)q = (∇ i R)p

for each i = 0, 1, . . . , k. When M is curvature homogeneous of order 0, M is
simply said to be curvature homogeneous. Locally homogeneous (M, g) are clearly
curvature homogeneous of all orders. I. M. Singer proved the converse in a seminal
paper:

Theorem 1.1 [Singer 1960]. A connected and complete d-dimensional Riemannian
manifold (M, g) that is curvature homogeneous of order at least d(d − 1)/2− 1
is locally homogeneous. If , in addition, M is simply connected, then (M, g) is
homogeneous.

While Singer’s theorem ensures that completeness and curvature homogeneity of
sufficiently large order implies local homogeneity, there exist examples of complete

Schmidt was partially supported by NSF grant DMS-1207655.
MSC2010: primary 53C21; secondary 22F30.
Keywords: curvature homogeneous space, homogeneous space, constant vector curvature.
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and curvature homogeneous Riemannian manifolds that are not locally homoge-
neous. We refer the reader to [Boeckx et al. 1996] for an extensive collection of
examples and additional references. In this note we prove:

Theorem 1.2. There is a construction that associates to each positive smooth
function F : S1

→ R a complete and curvature homogeneous Riemannian metric
gF on SL2(R). In this construction, the following are equivalent:

(1) F is constant.

(2) The metric gF is left-invariant.

(3) (SL2(R), gF ) Riemannian covers a finite volume manifold.

Theorem 1.2 is related to a conjecture attributed to Gromov by Berger [1988]
that we now describe. Let T denote a fixed algebraic curvature tensor on Euclidean
space En and let M denote a connected, smooth n-manifold. A Riemannian metric
h on M with curvature tensor R is said to be modeled on T if for each x ∈ M there
is a linear isometry I : Tx M → En such that I ∗(T ) = Rx . It is clear that such a
Riemannian metric h is curvature homogeneous and that Diff(M) acts on the space
of such metrics by pullback. Let M(M, T ) denote the space of Diff(M) orbits of
complete Riemannian metrics on M with curvature tensor modeled on T .

Conjecture 1.3 (Gromov). If M is compact, then the moduli space M(M, T ) is
finite-dimensional.

It is known that the assumption of compactness in Gromov’s conjecture cannot in
general be replaced by an assumption of completeness on the metrics under consid-
eration. For example, infinite-dimensional moduli spaces of complete metrics with
curvature tensors modeled on certain reducible symmetric spaces are constructed in
[Tricerri and Vanhecke 1989; Kowalski et al. 1992] (see also [Boeckx et al. 1996,
Propositions 4.15–4.16]).

Question [Tricerri and Vanhecke 1989, Problem 2]. Do the isometry classes of the
germs of Riemannian metrics which have the curvature tensor of a given “irreducible”
homogeneous Riemannian manifold depend on a finite number of parameters?

As explained in Section 3, the Riemannian metrics constructed in Theorem 1.2
all have curvature tensors modeled on a fixed algebraic curvature tensor that we will
call T throughout. The algebraic curvature tensor T is modeled on the curvature
tensor of an irreducible left-invariant metric on SL2(R). Our next theorem describes
the moduli space of these metrics.

Theorem 1.4. Let F and G be two positive smooth functions on the circle. Then
there exists a diffeomorphism 8 : SL2(R)→ SL2(R) such that 8∗(gG)= gF if and
only if there exists a diffeomorphism φ : S1

→ S1 such that F = φ∗(G).
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The space of Diff(S1) orbits of positive smooth functions on S1 is easily seen to
be infinite-dimensional. Hence, Theorems 1.2 and 1.4 yield the following negative
answer to Tricerri and Vanhecke’s problem:

Corollary 1.5. There is an algebraic curvature tensor T modeled on an irreducible
left-invariant metric on SL2(R) such that the moduli space M(SL2(R), T ) is infinite-
dimensional.

Our construction also has an application to the problem of finding isocurved
deformations of homogeneous Riemannian spaces. Let (M, g) be a homogeneous
Riemannian manifold. Kowalski [1999] defines an isocurved deformation of g to
be a family of smooth Riemannian metrics {gt | t ∈ [0, 1]} on M satisfying:

(1) Each (M, gt) is a curvature homogeneous space with curvature tensor modeled
on (M, g).

(2) The metrics gt depend smoothly on t and g0 = g.

(3) (M, gt1) is not locally isometric to (M, gt2) when t1 6= t2.

If, in addition, the metrics gt with t ∈ (0, 1) are not locally homogeneous, then
the isocurved deformation is said to be proper.

A proper isocurved deformation of an irreducible homogeneous metric g0 on the
three-dimensional Lie group E(1, 1) is constructed in [Kowalski 1999]. However,
the metric g1 in the deformation is not complete, and the completeness of the
intermediate metrics is not determined. Problem 1 in [Kowalski 1999] asks to find a
proper isocurved deformation of an irreducible homogenous Riemannian manifold
through complete Riemannian metrics.

Corollary 1.6. Let F : S1
→ R be a nonconstant smooth positive function with a

critical value not equal to one, and let Ft = (1− t)+ t F. Then the family of metrics

{gt = gFt | t ∈ [0, 1]}

is a proper isocurved deformation of the irreducible homogeneous Riemannian
manifold (SL2(R), g1) through complete Riemannian metrics.

Proof. As remarked above, each of the metrics gt is modeled on a fixed algebraic
curvature tensor T ; their smoothness in the parameter t will be evident from the
construction. The metric g0 is homogeneous, each of the metrics gt is complete,
and each of the metrics gt with t > 0 is not locally homogeneous by Theorem 1.2;
the irreducibility of the metric g0 is clear. It remains to check that the metrics
gt are pairwise nonisometric. This follows from Theorem 1.4 after checking that
the functions Ft pairwise lie in different Diff(S1) orbits. This is an immediate
consequence of the fact that the number of critical points and the associated critical
values of smooth functions on S1 are Diff(S1)-invariants. �
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Theorem 1.2 is also related to a classification result for constant vector curvature
three-manifolds contained in [Schmidt and Wolfson 2013] that will be used in
Section 3. A Riemannian manifold (M, g) has constant vector curvature ε if each
tangent vector v∈TM lies in a tangent plane of sectional curvature ε. This curvature
condition was introduced as a pointwise analogue of the higher rank condition for
Riemannian manifolds. Motivated by a number of results on rank-rigidity such
as [Ballmann 1985; Burns and Spatzier 1987; Connell 2002; Constantine 2008;
Hamenstädt 1991; Shankar et al. 2005], the present authors proved the following
rigidity result for constant vector curvature −1 three-manifolds:

Theorem 1.7 [Schmidt and Wolfson 2013, Theorem 1.1]. Suppose that M is a
finite volume three-manifold with constant vector curvature −1. If sec≤−1, then
M is real hyperbolic. If sec≥−1 and M is not real hyperbolic, then its universal
covering is isometric to a left-invariant metric on one of the Lie groups E(1, 1) or
S̃L2(R) with sectional curvatures having range [−1, 1].

As will be explained in Section 3, the metrics constructed in Theorem 1.2 all
have constant vector curvature −1 and sectional curvatures having range [−1, 1].
Therefore, it is not possible to remove the finite volume hypothesis in Theorem 1.7
in the case when sec≥−1.

2. SL2(R)

Let SL2(R) denote the Lie group consisting of 2×2 real matrices of determinant one
and let e ∈ SL2(R) denote the identity element. Its Lie algebra sl2(R)∼= Te SL2(R)

consists of 2× 2 real matrices with trace equal to zero. Consider the following
three one-parameter subgroups of SL2(R):

K =
{(

cos θ sin θ
−sin θ cos θ

) ∣∣ θ ∈ R

}
,

N =
{(

1 s
0 1

) ∣∣ s ∈ R

}
,

A =
{(

et/2 0
0 e−t/2

) ∣∣ t ∈ R

}
.

The multiplication map K × N × A→ SL2(R), (k, n, a) 7→ kna is a diffeomor-
phism, yielding the Iwasawa decomposition SL2(R)= K NA.

Define trace zero matrices E1, E2, E3 ∈ sl2(R) by

E1 =

(
0 1
−1 0

)
, E2 =

(
0 1
0 0

)
, and E3 =

(1
2 0
0 −1

2

)
.
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Then {E1, E2, E3} is a basis for the Lie algebra sl2(R). Moreover, E1, E2, and
E3 are the infinitesimal generators of the one-parameter subgroups K , N , and A,
respectively. This Lie algebra basis satisfies the bracket relations

(2-1) [E1, E2] = 2E3, [E2, E3] = −E2, [E1, E3] = E1− 2E2.

The vectors Ei have unique extensions to left-invariant vector fields on SL2(R)

that we also denote by Ei . Declaring the left-invariant framing {E1, E2, E3} of
SL2(R) to be orthonormal determines a left-invariant Riemannian metric on SL2(R).
Throughout the remainder of this paper, we let g1 denote this left-invariant metric.
The pullback of its curvature tensor via a linear isometry from Euclidean space
E3 to Te SL2(R) defines an algebraic curvature tensor that we denote by T in the
remainder of the paper. In the next section, we give the construction of Theorem 1.2.
The metrics constructed will all have curvature tensors modeled on the algebraic
curvature tensor T .

3. The construction

Note that the subgroup K of SL2(R) is diffeomorphic to S1. Throughout what
follows, we assume that a diffeomorphism between K and S1 has been fixed,
identifying positive smooth functions on K with those on S1. A positive smooth
function F : K → R determines a positive smooth function F : SL2(R)→ R as
follows. Given g ∈ SL2(R), there is a unique expression g= kna with k ∈ K , n ∈ N ,
and a ∈ A by the Iwasawa decomposition. Define F(g)= F(kna)= F(k).

Alternatively, the bracket relations (2-1) show that the left-invariant vector fields
E2 and E3 span an involutive plane distribution; the foliation of SL2(R) by integral
surfaces of this distribution coincides with the foliation of SL2(R) by left-cosets of
the subgroup NA. As NA is a closed subgroup of SL2(R), the natural projection
map to the space of left-cosets

π : SL2(R)→ SL2(R) /NA

is smooth. Note that the space of cosets SL2(R) /NA is diffeomorphic to K . Then
F = F ◦π is constant on the leaves of the foliation of SL2(R) by left-cosets of NA.
We summarize this in the following lemma.

Lemma 3.1. Smooth functions F : K→R lift to smooth functions F : SL2(R)→R

satisfying E2(F)= E3(F)= 0.

Let F : K → R be a smooth and positive function and F : SL2(R)→ R its
associated lift. Define a framing {e1, e2, e3} of SL2(R) by

(3-1) e1 = F E1, e2 = E2, e3 = E3.
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We call such a framing an F-framing. The bracket relations for an F-framing are
easy to deduce from (2-1) and the fact that E2(F)= E3(F)= 0. They are given by

(3-2) [e1, e2] = 2Fe3, [e2, e3] = −e2, [e1, e3] = e1− 2Fe2.

Definition 3.2. Given a smooth positive function F : K → R, the F-metric on
SL2(R) is the Riemannian metric denoted by gF which is defined by declaring the
associated F-framing to be gF orthonormal.

Note that for the function F which is identically one on K , the associated F-
metric is the left-invariant metric g1 described in Section 2. We remark that the
space of F-metrics is path connected. Indeed, given two positive functions F0 and
F1 on K , the metrics g(1−t)F0+t F1 with t ∈ [0, 1] define the path joining gF0 to gF1 .
As we shall show, all F-metrics have curvature tensors modeled on the algebraic
curvature tensor T .

In order to calculate the curvatures of an F-metric, we first calculate the Christof-
fel symbols. As an F-framing is by definition orthonormal for the metric gF ,
Koszul’s formula reads

(3-3) gF (∇ei e j , ek)=
1
2

{
gF ([ei , e j ], ek)− gF ([e j , ek], ei )+ gF ([ek, ei ], e j )

}
.

Combining (3-2) and (3-3) yields

(3-4)

∇e1e3 = e1− 2Fe2, ∇e2e3 =−e2,

∇e3e1 = 0, ∇e3e2 = 0,

∇e2e1 = 0, ∇e2e2 = e3,

∇e1e2 = 2Fe3, ∇e1e1 =−e3,

∇e3e3 = 0.

We let Ri jkl denote the component of the curvature tensor

R(ei , e j , ek, el)= gF (∇ei∇e j ek −∇e j∇ei ek −∇[ei ,e j ]ek, el).

Tedious but straightforward calculations using (3-2), (3-4), and the fact that
e2(F)= e3(F)= 0 show that

(3-5) R1221= 1, R1331=−1= R2332, Ri jkl = 0 if three indices are distinct.

The symmetries of the curvature tensor determine its remaining components.

Corollary 3.3. An F-metric gF is curvature homogeneous and has curvature tensor
modeled on the algebraic curvature tensor T . An F-framing diagonalizes the Ricci
tensor. If σ is a two-plane and v =

∑3
i=1 ci ei is a unit vector orthogonal to σ , then

sec(σ )= c2
3− c2

1− c2
2.
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Consequently, gF has constant vector curvature −1, e3 lies in the intersection of
all curvature −1 planes, and the range of sectional curvatures for an F-metric is
[−1, 1].

Proof. To prove the first claim, note that by (3-5), the curvatures of an F-metric
with respect to an F-framing do not depend on the function F : K → R. Therefore,
they all have curvature tensors modeled on the curvature tensor of the F-metric
corresponding to F ≡ 1 which is the left-invariant metric g1 constructed at the end
of the previous section.

The fact that an F-framing diagonalizes the Ricci tensor is immediate from (3-5).
This fact and [Schmidt and Wolfson 2013, Lemma 2.2] yield the curvature formula.
The curvature formula implies the last statement. �

Lemma 3.4. An F-metric gF is complete.

Proof. Let F : K → R be a positive smooth function and gF the associated F-
metric. As K is compact, there exists M > 1 such that 1/M < F < M . Consider
the Riemannian metrics M−2g1 and M2g1 obtained by scaling the left-invariant
metric g1. The induced norms satisfy

M−1
‖v‖g1 = ‖v‖M−2g1 < ‖v‖gF < ‖v‖M2g1 = M‖v‖g1

for each tangent vector v ∈ T SL2(R). Consequently, the induced path metrics
satisfy

M−1dg1(p, q)≤ dgF (p, q)≤ Mdg1(p, q)

for any pair of points p, q ∈ SL2(R). As dg1 Cauchy sequences converge, the same
is true of dgF Cauchy sequences. �

The following lemma may be of interest to some readers. It is not used in the
proof of our main results and may be skipped.

Lemma 3.5. For any F-metric gF , the foliation of SL2(R) by left-cosets of NA is
a foliation by totally geodesic hyperbolic planes.

Proof. Let F :K→R be a smooth positive function, gF the associated F-metric, and
{e1, e2, e3} the associated F-framing. The leaves of the foliation of SL2(R) by left
cosets of NA are precisely the integral surfaces of the involutive plane distribution
e2 ∧ e3. These leaves are totally geodesic since by (3-4), ∇e2e1 = ∇e3e1 = 0. By
(3-5), R2332 = −1, so that the leaves are hyperbolic. As NA is diffeomorphic to
R2, the leaves are hyperbolic planes. �

To complete the proof of Theorem 1.2 from the introduction, it remains to
establish the following proposition.

Proposition 3.6. For a positive smooth function F : K → R, the following are
equivalent:
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(1) F is constant.

(2) The metric gF is left-invariant.

(3) (SL2(R), gF ) Riemannian covers a finite volume manifold.

Proof. Let F : K→R be a positive smooth function and gF the associated F-metric
on SL2(R).

(1) =⇒ (2): Because F is constant, so is its lift F . The associated F-framing
{e1 = F E1, e2 = E2, e3 = E3} is easily seen to be left-invariant since the framing
{E1, E2, E3} is left-invariant. Therefore gF is a left-invariant metric.

(2) =⇒ (3): This is an easy consequence of the fact that SL2(R) admits lattice
subgroups.

(3) =⇒ (1): Let M denote the finite volume manifold Riemannian covered by
(SL2(R), gF ). We first claim that the metric gF is locally homogeneous. Indeed,
by Corollary 3.3, M has constant vector curvature −1 and sectional curvatures with
range [−1, 1]. By Theorem 1.7, the universal covering (S̃L2(R), g̃F ) is left-invariant
(and homogeneous), whence gF is locally homogeneous.

Let F denote the lift of F to SL2(R) and let {e1, e2, e3} be the associated F-
framing. Let p, q ∈ SL2(R) be two points. As gF is locally homogeneous, there is
an r > 0 and an isometry I between the balls of radius r centered at p and q with
I (p)= q:

I : B(p, r)→ B(q, r).

The derivative map dI : TB(p, r)→ TB(q, r) preserves the line field spanned by
e3 and the perpendicular plane field e1∧e2 by the curvature formula in Corollary 3.3.
Therefore, there exists a smooth map θ : B(q, r)→ R such that dI (e3)=±e3 and
such that the restriction of dI to the plane field e1 ∧ e2 has matrix representation
given by either (

cos θ −sin θ
sin θ cos θ

)
or

(
cos θ sin θ
sin θ −cos θ

)
with respect to the {e1, e2} framing.

By (3-2),

dIp([e1, e2]p)= dIp(2F(p)e3)=±2F(p)e3 ∈ Tq SL2(R),

where the sign is + if dI preserves the orientation of e3 and is − if the orientation
is reversed. A simple calculation yields

gF
(
[dIp(e1), dIp(e2)]q , e3

)
q =±[e1, e2]q =±2F(q),

where the sign is + if dI preserves the orientation of the plane field e1 ∧ e2 and is
− if the orientation is reversed.
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Since dIp([e1, e2]p) = [dIp(e1), dIp(e2)]q , we have F(p) = ±F(q). As F is
everywhere positive, it must be the case that F(p)= F(q). Therefore F is constant,
concluding the proof. �

We conclude the paper with a proof of Theorem 1.4, restated for the reader’s
convenience, followed by a conjecture.

Theorem 3.7. Let F and G be two positive smooth functions on the circle. Then
there exists a diffeomorphism 8 : SL2(R)→ SL2(R) such that 8∗(gG)= gF if and
only if there exists a diffeomorphism φ : S1

→ S1 such that F = φ∗(G).

Proof. Recall that a diffeomorphism between S1 and K has been fixed, identifying
positive smooth functions on these two spaces.

First, assume that there is a diffeomorphism φ : K → K such that φ∗(G)= F .
Define a diffeomorphism 8 : SL2(R) → SL2(R) as follows. By the Iwasawa
decomposition, each g ∈ SL2(R) has a unique expression g = kna; define 8(g)=
8(kna)= φ(k)na. It is routine to check that 8∗(gG)= gF .

Assume that8 : SL2(R)→ SL2(R) is a diffeomorphism satisfying8∗(gG)= gF .
Let F and G denote the lifts of F and G to SL2(R) and let {e1, e2, e3} and {ẽ1, ẽ2, ẽ3}

denote the associated F-framing and G-framing of T SL2(R), respectively. Since
e2 = ẽ2, e3 = ẽ3, and e1 and ẽ1 are positively parallel, these framings induce the
same orientation of SL2(R).

As 8 : (SL2(R), gF )→ (SL2(R), gG) is an isometry, it preserves the sectional
curvatures of planes. By Corollary 3.3, it follows that the derivative map

d8 : T SL2(R)→ T SL2(R)

satisfies d8(e3)=±ẽ3 and maps the plane field e1 ∧ e2 isometrically to the plane
field ẽ1 ∧ ẽ2. Therefore, there exists a smooth map

θ : (SL2(R), gG)→ R

such that the matrix representation of

d8|e1∧e2 : e1 ∧ e2→ ẽ1 ∧ ẽ2

with respect to the ordered framings {e1, e2} and {ẽ1, ẽ2} is given by(
cos θ −sin θ
sin θ cos θ

)
or

(
cos θ sin θ
sin θ −cos θ

)
depending on whether d8|e1∧e2 preserves or reverses orientation.

By (3-2),

d8([e1, e2])= d8(2Fe3)=±2Fẽ3.
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A simple calculation shows that

[d8(e1), d8(e2)] = ±(−ẽ1(θ)ẽ1− ẽ2(θ)ẽ2+ 2Gẽ3),

where the sign ± is + if and only if d8|e1∧e2 is orientation-preserving.
Since d8([e1, e2]) = [d8(e1), d8(e2)], comparing ẽ3 components, we have

F =±8∗(G). As both F and G are positive, we have

(3-6) F =8∗(G).

Consequently, d8(e3)= ẽ3 if and only if d8|e1∧e2 is orientation-preserving. In
particular, 8 is orientation-preserving.

Comparing ẽ1 and ẽ2 components yields

(3-7) ẽ1(θ)= ẽ2(θ)= 0.

By (3-2) and (3-7),

2Gẽ3(θ)= [ẽ1, ẽ2](θ)= (ẽ1ẽ2− ẽ2ẽ1)(θ)= 0.

As G is nonzero, it follows that ẽ3(θ) = 0, whence θ : (SL2(R), gG) → R is
globally constant. In what follows, we will consider the two cases d8(e3)= ẽ3 and
d8(e3)=−ẽ3 separately.

Case I: d8(e3) = ẽ3. As 8 is orientation-preserving, we have that d8|e1∧e2 is
orientation-preserving. Using (3-2) twice, we obtain successively

gG(d8([e2, e3]), ẽ1)= sin θ and gG([d8(e2), d8(e3)], ẽ1)=−sin θ.

As d8([e2, e3]) = [d8(e2), d8(e3)], it follows that sin θ = 0 and that θ is an
integral multiple of π .

As θ is an integral multiple of π , the derivative map d8 preserves the plane
distribution e2 ∧ e3. Consequently, the diffeomorphism 8 preserves the foliation of
SL2(R) by left-cosets of NA and descends to a diffeomorphism φ of K . By (3-6),
F = φ∗(G), concluding the proof in this case.

Case II: d8(e3)=−ẽ3. As 8 is orientation-preserving, we have that d8|e1∧e2 is
orientation-reversing. Using (3-2) twice, we obtain successively

gG(d8([e2, e3]), ẽ2)= cos θ and gG([d8(e2), d8(e3)], ẽ2)= 2G sin θ−cos θ.

As d8([e2, e3]) = [d8(e2), d8(e3)], it follows that cos θ = G sin θ . As θ is
constant, so is G. By (3-6), F = G are equal constants. Hence, F = G are equal
constants, concluding the proof. �

Conjecture 3.8. The metrics gF constructed in this paper describe all of the com-
plete Riemannian metrics on SL2(R) (up to isometry) that are modeled on the
curvature tensor T .
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BING XU, JANUSZ BRZDĘK and WEINIAN ZHANG

499Complete curvature homogeneous metrics on SL2(R)

BENJAMIN SCHMIDT and JON WOLFSON

Pacific
JournalofM

athem
atics

2015
Vol.273,N

o.2


	 vol. 273, no. 2, 2015
	Masthead and Copyright
	Tejas Kalelkar and Rachel Roberts
	1. Introduction
	2. Preliminaries
	3. Main theorem
	4. Example
	References

	Jingsong Chai
	1. Introduction
	2. Notations and preliminaries
	3. Archimedean derivatives
	4. Exceptional poles
	5. Rankin–Selberg integrals: GnGn
	6. Case GnGm, m<n
	Acknowledgements
	References

	Hong Zhang
	1. Introduction
	2. Statement of the results
	3. Long-time existence
	4. Convergence
	Acknowledgements
	References

	Ping Li
	1. Introduction
	2. -1-phenomenon of the pluri-y-genus
	3. The generalized elliptic genus and its -1-phenomenon
	Acknowledgements
	References

	Bruce Olberding
	1. Introduction
	2. Morphisms into projective space
	3. A geometrical characterization of Prüfer domains
	4. The case where D is a local ring
	References

	Maria Buzano and Andrew S. Dancer and Michael Gallaugher and McKenzie Wang
	0. Introduction
	1. Background on cohomogeneity one expanding solitons
	2. Multiple warped product expanders
	3. Complete Einstein metrics with negative scalar curvature
	4. Numerical examples
	References

	Jeffrey D. Achter and Clifton Cunningham
	Introduction
	1. Abelian varieties
	1A. Base change of abelian varieties
	1B. Even abelian varieties
	1C. Abelian varieties over local fields

	2. L-packets attached to abelian varieties
	2A. Polarizations
	2B. Admissible representations attached to abelian varieties with good reduction
	2C. R-groups
	2D. Component group calculations
	2E. Restriction to the derived group
	2F. L-packet interpretation

	3. Concluding remarks
	Acknowledgements
	References

	Bennett Palmer and Oscar M. Perdomo
	1. Introduction
	2. Treadmill sled coordinates analysis
	3. Second variation
	Appendix
	References

	Charles John Read
	1. Introduction
	2. The main construction
	3. A is radical
	4. 3mu-3mu A-1mu1muw* is semisimple
	5. A** is semisimple
	6. References to Gulick's paper
	References

	Jiezhu Lin and Xuanming Ye
	1. Introduction
	2. The relative Bott–Chern and Aeppli cohomologies of Xn and the representation of their cohomology classes
	2A. The Bott–Chern and Aeppli cohomologies and hypercohomologies
	2B. The relative Bott–Chern and Aeppli cohomologies of Xn
	2C. Representation of the relative Bott–Chern and Aeppli cohomology classes

	3. The jumping phenomenon and obstructions
	4. The formula for the obstructions
	5. An example
	References

	Bing Xu and Janusz Brzdek and Weinian Zhang
	1. Introduction
	2. Fixed-point results
	3. Hyers–Ulam stability
	4. Some further consequences
	5. Proof of 0=thm.91=Theorem 2.1
	6. Proof of 0=thm.141=2.3
	References

	Benjamin Schmidt and Jon Wolfson
	1. Introduction
	2. SL2(R)
	3. The construction
	References

	Index
	Guidelines for Authors
	Table of Contents

