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UNIVERSALLY TIGHT SUTURED CONTACT SOLID TORI

ROMAN GOLOVKO

We calculate the sutured version of cylindrical contact homology of a su-
tured contact solid torus (S1 × D2, 0, ξ), where 0 consists of 2n parallel
sutures of arbitrary slope and ξ is a universally tight contact structure. In
particular, we show that it is nonzero. This computation is one of the first
computations of the sutured version of cylindrical contact homology and
does not follow from computations in the closed case.

1. Introduction

The cylindrical contact homology of a (closed) contact manifold was introduced
by Eliashberg and Hofer and is the simplest version of the symplectic field theory
of Eliashberg, Givental and Hofer [Eliashberg et al. 2000]. It is the homology of
a differential graded module whose differential counts genus zero holomorphic
curves in the symplectization with one positive puncture and one negative puncture.

In the early 1980s, Gabai [1983] developed the theory of sutured manifolds,
which became a powerful tool in studying 3-manifolds with boundary. It turns out
that there is a way to generalize cylindrical contact homology to sutured manifolds.
This is possible by imposing a certain convexity condition on the contact form. This
construction is described in the paper of Colin, Ghiggini, Honda and Hutchings
[Colin et al. 2011] and will be summarized in Section 2.

In this paper, we construct a sutured contact solid torus with 2n parallel sutures of
slope −k/ l using the gluing method of [Colin et al. 2011], and calculate the sutured
cylindrical contact homology of it. Here n ∈N, (k, l)= 1 and k > l > 0. In order to
define the slope, we choose an oriented identification ∂(S1

× D2)' T 2
= (R/Z)2

as follows: map {pt} × ∂D2 (the meridian) to (1, 0) (slope is 0) and S1
× {pt}

(a longitude) to (0, 1).
This calculation, together with the calculation of the sutured cylindrical contact

homology of the sutured contact solid torus with 2n parallel longitudinal sutures,
where n ≥ 2, that has been done in [Golovko 2011], finishes the calculation of the
cylindrical contact homology of (S1

× D2, 0, ξ), where 0 consists of 2n parallel
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sutures of arbitrary slope, ξ is a universally tight contact structure and such that
if one cuts along the meridian disk, the sutures on the disk are ∂-parallel. In
particular, this gives a complete calculation of the cylindrical contact homology of
(S1
× D2, 0, ξ), where 0 consists of 2 parallel sutures of arbitrary slope and ξ is

a universally tight contact structure (observe that in this situation there are only
two isomorphic (but not isotopic) universally tight contact structures; see [Honda
2002, Section 2]). These are not all the universally tight contact structures on the
solid torus, but all of them can be obtained from the #0 = 2 case by successively
applying the folding operation.

Our goal is to prove the following theorem:

Theorem 1.1. Let (S1
× D2, 0) be a sutured manifold, where 0 is a set of 2n

parallel closed curves of slope −k/ l, where (k, l)= 1, k > l > 0 and n ∈ N. Then
there is a contact form α which makes (S1

× D2, 0, α) a sutured contact manifold
with a universally tight contact structure ξ =ker α, HCcyl(S1

×D2, 0, α) is defined,
is independent of the contact form α for ξ = ker α and the almost complex structure
J and

HCcyl,h(S1
× D2, 0, ξ)'


Q for k - h > 0,
Qn−1 for k | h > 0,
0, otherwise.

Here h corresponds to the homological grading.

2. Background

The goal of this section is to review definitions of sutured contact manifold and the
relative version of cylindrical contact homology. This section can be considered as
a summary of [Colin et al. 2011].

2A. Review of sutured contact manifolds. In this section, we recall some defini-
tions and describe some constructions from [Colin et al. 2011]. We first start with
the notion of a Liouville manifold.

Definition 2.1. A Liouville manifold (often also called a Liouville domain) is a
pair (W, β) consisting of a compact, oriented 2n-dimensional manifold W with
boundary and a 1-form β on W , where ω = dβ is a positive symplectic form on W
and the Liouville vector field Y given by iY (ω)= β is positively transverse to ∂W .
It follows that the 1-form β0 = β|∂W (this notation means β pulled back to ∂W ) is
a positive contact form with kernel ζ .

We now recall the definition of a sutured contact manifold.

Definition 2.2. A compact oriented 2n+1-dimensional manifold M with boundary
and corners is a sutured contact manifold if it comes with an oriented, not necessarily
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connected submanifold 0 ⊂ ∂M of dimension 2n− 1 (called the suture), together
with a neighborhood U (0) = [−1, 0] × [−1, 1] × 0 of 0 = {0} × {0} × 0 in M ,
with coordinates (τ, t) ∈ [−1, 0]× [−1, 1], such that the following holds:

(1) U ∩ ∂M = ({0}× [−1, 1]×0)∪ ([−1, 0]× {−1}×0)∪ ([−1, 0]× {1}×0).

(2) ∂M \ ({0} × (−1, 1)× 0) = R−(0) t R+(0), where the orientation of ∂M
agrees with that of R+(0) and is opposite that of R−(0) and the orientation
of 0 agrees with the boundary orientation of R+(0).

(3) The corners of M are precisely {0}× {±1}×0.

In addition, M is equipped with a contact structure ξ , which is given by the kernel
of a positive contact 1-form α such that

(i) (R±(0), β± = α|R±(0)) is a Liouville manifold;

(ii) α = C dt +β inside U (0), where C > 0 and β is independent of t and does
not have a dt-term;

(iii) ∂τ = Y±, where Y± is a Liouville vector field for β±.

Such a contact form α is said to be adapted to (M, 0,U (0)).

Here we briefly describe the way to glue sutured contact manifolds. This proce-
dure was first described by Colin and Honda [2005] and then generalized by Colin
et al. [2011].

Let (M ′, 0′,U (0′), ξ ′) be a sutured contact 3-manifold with an adapted contact
form α′. We denote by π the projection along ∂t defined on U (0′).

Take 2-dimensional submanifolds P± ⊂ R±(0′) such that ∂P± is the union of
(∂P±)∂ ⊂ ∂R±(0′), (∂P±)int⊂ int(R±(0′)) and ∂P± is positively transversal to the
Liouville vector field Y ′

±
on R±(0′). Whenever we refer to (∂P±)int and (∂P±)∂ , we

assume that closures are taken as appropriate. Moreover we make the assumption
that π((∂P−)∂)∩π(∂P+)∂)=∅.

Let ϕ be a diffeomorphism which sends (P+, β ′+|P+) to (P−, β ′−|P−) and takes
(∂P+)int to (∂P−)∂ and (∂P+)∂ to (∂P−)int. Note that, since dim M = 3, we only
need β ′

+
|P+ and ϕ∗(β ′

−
|P−) to match up on ∂P+, since we can linearly interpolate

between primitives of positive area forms on a surface.
Topologically, we construct the sutured manifold (M, 0) from (M ′, 0′) and the

gluing data (P+, P−, ϕ) as follows: Let M = M ′/∼, where

• x ∼ ϕ(x) for all x ∈ P+;

• x ∼ x ′ if x, x ′ ∈ π−1(0′) and π(x)= π(x ′) ∈ 0′.

Then

R±(0)=
R±(0′) \ P±
(∂P±)int

∼ π±((∂P∓)∂)
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and

0 =
0′ \π(∂P+ t ∂P−)
π((∂P+)int ∩ (∂P+)∂)

∼ π((∂P−)int ∩ (∂P−)∂).

For a detailed description of the gluing procedure, see [Colin et al. 2011].
Finally, we describe the way to complete sutured contact manifold (M, α) to a

noncompact contact manifold (M∗, α∗). This construction was first described in
[Colin et al. 2011].

Let (M, 0,U (0), ξ) be a sutured contact manifold with an adapted contact
form α. The form α is then given by

C dt +β±

on collar neighborhoods [1−ε, 1]× R+(0) and [−1,−1+ε]× R−(0) of R+(0)=
{1} × R+(0) and R−(0) = {−1} × R−(0), where t ∈ [−1,−1+ ε] ∪ [1− ε, 1]
extends the t-coordinate on U . On U we have α = C dt + β, β = β+ = β− and
∂τ is a Liouville vector field Y for β. We first extend α to [1,∞)× R+(0) and
(−∞,−1]× R−(0) by taking C dt +β± as appropriate. The boundary of this new
manifold is {0}×R×0. Notice that since ∂τ = Y , the form dβ|[−1,0]×{t}×0 is the
symplectization of β|{0}×{t}×0 in the positive τ -direction. We glue [0,∞)×R×0

with the form C dt + eτβ0, where β0 is the pullback of β to {0}× {t}×0.
We denote by M∗ the noncompact extension of M described above and by α∗

the extension of α to M∗.

2B. Review of cylindrical contact homology. In this section, we review the defi-
nition of cylindrical contact homology for sutured manifolds. We refer to [Colin
et al. 2011] for more details of this construction.

Let (M, 0,U (0), ξ) be a sutured contact manifold with an adapted contact form
α and (M∗, α∗) be its completion.

The Reeb vector field Rα∗ that is associated to a contact form α∗ is given by
dα∗(Rα∗, · )= 0 and α∗(Rα∗)= 1. We assume that Rα∗ is nondegenerate, i.e., the
first return map along each (not necessarily simple) periodic orbit does not have 1
as an eigenvalue. Observe that nondegeneracy can always be achieved by a small
perturbation.

Remark 2.3. Every periodic orbit of Rα∗ lies in M . Hence, the set of periodic
Reeb orbits of Rα∗ coincides with the set of periodic Reeb orbits of Rα.

A Reeb orbit γ is called elliptic or positive (respectively negative) hyperbolic if
the eigenvalues of Pγ are on the unit circle or the positive (resp. negative) real line
respectively.

If τ is a trivialization of ξ over γ , we can then define the Conley–Zehnder index.
In 3-dimensional situation, we can explicitly describe the Conley–Zehnder index
and its behavior under multiple covers as follows:
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Proposition 2.4 [Hutchings 2002]. If γ is elliptic, then there is an irrational number
φ ∈ R such that Pγ is conjugate in SL2(R) to a rotation by angle 2πφ and

µτ (γ
k)= 2bkφc+ 1,

where 2πφ is the total rotation angle with respect to τ of the linearized flow around
the orbit.

If γ is positive (respectively negative) hyperbolic, then there is an even (re-
spectively odd) integer r such that the linearized flow around the orbit rotates the
eigenspaces of Pγ by angle πr with respect to τ and

µτ (γ
k)= kr.

A closed orbit of Rα∗ is said to be good if it does not cover a simple orbit γ an
even number of times, where the first return map ξγ (0)→ ξγ (T ) has an odd number
of eigenvalues in the interval (−1, 0). Here T is the period of the orbit γ . An orbit
that is not good is called bad.

We now recall the notion of an almost complex structure on R× M∗ that is
tailored to (M∗, α∗).

Let (W, β) be a Liouville manifold and ζ be the contact structure given on ∂W
by ker(β0), where β0 = β|∂W . In addition, An almost complex structure J0 on Ŵ is
β̂- adapted if J0 is β0-adapted on [0,∞)×∂W ; and dβ(v, J0v) > 0 for all nonzero
tangent vectors v on W .

Definition 2.5. Let (M, 0,U (0), ξ) be a sutured contact manifold, α be an adapted
contact form and (M∗, α∗) be its completion. We say that an almost complex
structure J on R×M∗ is tailored to (M∗, α∗) if the following conditions hold:

(1) J is α∗-adapted, i.e., J is R-invariant, J (ξ)= ξ , dα(v, Jv) > 0 for nonzero
v ∈ ξ and J (∂s)= Rα∗ , where s denotes the R-coordinate.

(2) J is ∂t -invariant in a neighborhood of M∗ \ int(M).

(3) The projection of J to T R̂±(0) is a β̂±-adapted almost complex structure
J0 on the completion (R̂+(0), β̂+)t (R̂−(0), β̂−) of the Liouville manifold
(R+(0), β+)t(R−(0), β−). Moreover, the flow of ∂t identifies J0|R̂+(0)\R+(0)
and J0|R̂−(0)\R−(0)

.

Given a sutured contact manifold (M, 0,U (0), α) and an α∗-adapted almost
complex structure J , we define the sutured cylindrical contact homology group
HCcyl(M, 0, α, J ) to be the cylindrical contact homology of (M∗, α∗, J ). The
cylindrical contact homology chain complex C(α, J ) is a Q-module freely generated
by all good Reeb orbits, where the grading | · | and the boundary map ∂ are defined
as in [Bourgeois 2009] with respect to the α∗-adapted almost complex structure
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J . The homology of C(α, J ) is the sutured cylindrical contact homology group
HCcyl(M, 0, α, J ).

For our calculations we need the following construction of a “global” symplectic
trivialization described in [Bourgeois 2009]. Assume that all the Reeb orbits of Rα
are good. Let us now choose trivializations τ(γ ) consistently for all Reeb orbits
γ . Assume that H1(M;Z) is a free module. We pick representatives C1, . . . ,Cs

in H1(M;Z) for a basis of H1(M;Z), together with a trivialization of ξ along
each representative Ci , i = 1, . . . , s. Now for a Reeb orbit γ , we distinguish the
following cases:

(1) [γ ] = 0 ∈ H1(M;Z). Choose a spanning surface Sγ and use it to trivialize ξ
along γ .

(2) 0 6= [γ ] ∈ H1(M;Z). We choose a surface Sγ realizing a homology between
γ and a linear combination of the representatives Ci , i = 1, . . . , s. We then
use Sγ to extend the chosen trivializations of ξ along the Ci to γ .

We denote the obtained trivialization by τ .
To a J -holomorphic cylinder in MJ (γ ; γ ′), we can glue the chosen surfaces Sγ

and Sγ ′ and obtain a closed surface in M (here MJ (γ ; γ ′) is a moduli space of
J -holomorphic cylinders considered in cylindrical contact homology theory). Let
A ∈ H2(M;Z) be its homology class; we can use it to decorate the corresponding
connected component M J

A(γ ; γ
′) of the moduli space. Using τ we can write

(2B.1) ind(u)= |γ | − |γ ′| + 2〈c1(ξ), A〉

for u ∈MJ
A(γ ; γ

′), where |γ | is the Conley–Zehnder grading of γ defined by

(2B.2) |γ | := µτ (γ )− 1.

We will use (2B.1) and (2B.2) for our calculations.
In addition, we will need the following fact, which is a consequence of Lemma 5.4

in [Bourgeois et al. 2003]:

Fact 2.6. Let (M, α) be a closed, oriented contact manifold with nondegenerate
Reeb orbits and u ∈MJ (γ ; γ ′), where γ and γ ′ are good Reeb orbits and J is an
α-adapted almost complex structure on R×M. Then A(γ ) :=

∫
γ
α≥

∫
γ ′
α=:A(γ ′)

with equality if and only if γ = γ ′ and in this case the moduli space consists of a
single element R× γ .

Theorem 2.7 [Bourgeois 2009]. Let (M, α) be a closed, oriented contact manifold
with nondegenerate Reeb orbits. Let Ch

m(M, α) be the cylindrical contact homology
complex, where h is a homotopy class of Reeb orbits and m corresponds to the
Conley–Zehnder grading. If C0

k (M, α)= 0 for k =−1, 0, 1, we have for every free
homotopy class h:
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(1) ∂2
= 0.

(2) H(Ch
∗
(M, α), ∂) is independent of the contact form α for ξ , the almost complex

structure J and the choice of perturbation for the moduli spaces.

When M is closed and R× M is 4-dimensional, the following transversality
result has been proven by Momin [2011, Proposition 2.10]:

Theorem 2.8 [Momin 2011]. Let u ∈MJ (γ ; γ ′) be such that ind(u)= 1. Then the
linearization of the Cauchy–Riemann operator is surjective at u.

Remark 2.9. Theorem 2.8 does not require J to be generic. In addition, note that
Theorem 2.8 can be considered as a consequence of the automatic transversality
result of Wendl [2010, Theorem 0.1].

Finally, we recall the following result of Colin, Ghiggini, Honda and Hutchings:

Theorem 2.10 [Colin et al. 2011]. Let (M, 0,U (0), ξ) be a sutured contact 3-
manifold with an adapted contact form α, (M∗, α∗) be its completion and J be
an almost complex structure on R× M∗ which is tailored to (M∗, α∗). Then the
contact homology algebra HC(M, 0, ξ) is defined and independent of the choice
of contact 1-form α with ker(α) = ξ , adapted almost complex structure J , and
abstract perturbation.

Remark 2.11. Fact 2.6, Theorems 2.7 and 2.8 and formulas (2B.1) and (2B.2) hold
for J -holomorphic curves in the symplectization of the completion of a sutured
contact manifold, provided that we choose the almost complex structure J on
R×M∗ to be tailored to (M∗, α∗).

Remark 2.12. Theorem 2.10 and Remark 2.11 rely on the assumption that the
machinery, needed to prove the analogous properties for contact homology and
cylindrical contact homology in the closed case, works.

3. Construction

The goal of this section is to construct the sutured contact solid torus (S1
×D2, 0̃, α̃δ),

where 0̃ consists of 2n parallel sutures of slope −k/ l, (k, l) = 1, k > l > 0 and
n ∈ N. Here α̃δ is a contact form such that ξ = ker α̃δ is a universally tight contact
structure and the set of embedded orbits of Rα̃δ consists of an elliptic orbit γ and
hyperbolic orbits γ1, . . . , γn with

[γ ] = 1, µτ (γ
s
i )=−2ls, A(γ k) >A(γi ),

[γi ] = k ∈ Z' H1(S1
× D2

;Z), µτ (γ
t)=−2ml + 1,

where (m − 1)k < t ≤ mk, for some “global” symplectic trivialization τ . Here
i = 1, . . . , n, t ≤ Nδ, s ≤ Nδ/k, Nδ � 0.
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3A. Gluing map. First we construct H ∈ C∞(R2). The time-1 flow of the Hamil-
tonian vector field associated to H composed with an appropriate rotation will play
a role of the gluing map when we will apply the gluing construction described in
Section 2A to the sutured contact solid cylinder constructed in Section 3B.

We fix p ∈ R2 and consider Hsing : R
2
→ R given by Hsing = µr2 cos(nkθ) in

polar coordinates (r, θ) about p, where µ > 0, n ≥ 1 and k ∈ N \ {1}. Note that
Hsing is singular only at p.

Lemma 3.1. There exists a function H ∈ C∞(R2) which satisfies the following
properties:

• H = Hsing on R2
\ D(rsing) for some rsing > 0.

• H is 2π
nk -symmetric with respect to θ .

• The set of critical points of H consists of equally spaced saddle points p1, . . . , pnk

and a critical point p.

• There exists a neighborhood Us of ps with coordinates (x, y) such that H = axy
on Us with a > 0, and such that 2π

nk -rotation about p that we call Rnk maps
Us with the corresponding coordinate system to Us+1 with the corresponding
coordinate system for s = 1, . . . , nk.

• There exists a neighborhood U of p such that H = B̃r2
− C̃ on U , where C̃ > 0

and B̃ is a small positive number.

Proof. We construct H ∈C∞(R2) from Hsing by perturbing Hsing on a disk D(rsing)

about p in such a way that H has nk equally spaced saddle points, critical point at p
and interpolates with no other critical points with Hsing. In other words, H = Hsing

on R2
\ D(rsing) for some rsing > 0. For the level sets of Hsing and H in the case

n = 1, k = 3 we refer to Figure 1.
The construction of H is a modification of the construction described in [Cotton-

Clay 2009].
We proceed in four steps.

(1) We consider

H1 = Hsing+ f (r, θ)= Hsing+ fexp(r, θ)+ g(r, θ)

= µr2 cos(nkθ)− Ae−mr2
+ g(r, θ),

where A and m are positive constants, and g(r, θ) is a smooth function to be chosen
later. We are interested in the critical points of H1 away from the origin.

We calculate

∂H1

∂r
= 2µr cos(nkθ)+ 2mr Ae−mr2

+
∂g
∂r
,

∂H1

∂θ
=−nkµr2 sin(nkθ).
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Figure 1. The level sets of Hsing (left) and the level sets of H
(right) in the case n = 1, k = 3.

Thus, at the critical points of H1 we must have sin(nkθ) = 0. In this case,
cos(nkθ) = ±1. If cos(nkθ) = 1, then ∂H1/∂r − ∂g/∂r cannot be zero. When
cos(nkθ) = −1, ∂H1/∂r − ∂g/∂r = −2µr + 2mr Ae−mr2

. For r > 0, ∂H1/∂r −
∂g/∂r = 0 when emr2

= m A/µ, i.e., when

r = rc :=

√
1
m

ln
m A
µ
.

We impose the restriction that m A > µ. By making m large, we can make rc

arbitrarily small. When cos(nkθ)=−1, H1− g(r, θ)=−µ
m

(
ln(m A/µ)+ 1

)
. Let

g(r) be equal to µ
m

(
ln(m A/µ)+1

)
on the annular neighborhood of r = rc. For such

g, H1 is 0 at the critical points, i.e., at the points (rc, θ), where cos(nkθ)=−1.
In summary, we get critical points at one value of r at the values of θ when

cos(nkθ)=−1, that is, for nk values of θ . These are our nk saddle points (it’s not
hard to see they are saddle points; alternatively, we can deduce that they must be
for index reasons).

(2) Keeping fexp solely a function of r and keeping g constant, we cut off fexp

smoothly starting at some point past rc to give a Hamiltonian H2 which agrees
with Hsing+ g outside a ball. As long as ∂ fexp/∂r < 2µr , there are no new critical
points.

Note that fexp(rc) = −µ/m. Keeping ∂ fexp/∂r near µrc (which, using, e.g.,
A = eµ/m, is 1/

√
m), we can bring fexp to zero in a radial distance of a constant

times 1/
√

m; that is, for m large we can make H2 agree with Hsing+ g outside an
arbitrarily small ball.

For A = eµ/m, g = 2µ/m. Then keeping g solely a function of r , we cut off
g(r, θ) smoothly starting at some point past the point where H2 = Hsing+ g to give
Hamiltonian H3. As long as ∂g/∂r >−2µr , there are no new critical points. We
can make it in such a way that H3 agrees with Hsing outside a small ball.
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(3) Recall that H3= Hsing+ fexp+g near the origin and g(r, θ)= 2µm > 0. Note that
g(r, θ) is small for large m. Now keeping g constant we modify Hsing+ fexp+ g
near the origin to give us H4 which is Br2

−C near the origin (for B > 0), which
corresponds to the Hamiltonian flow rotating at a constant angular rate. Since

∂H3

∂r
=
∂(Hsing+ fexp)

∂r
> 0 for r < rc,

we can patch together Br2
− C near the origin with H2 outside a small ball of

radius less than rc in a radially symmetric manner to get H4 such that ∂H4/∂r > 0
for r < rc (we do this by choosing C sufficiently large). Note that H4 has a critical
point at the origin.

(4) Finally, to ensure no fixed points of the time-1 flow of the Hamiltonian vector
field of H , we let H be H4 multiplied by a radially symmetric function which is
ε for r < R (for ε sufficiently small that the only fixed points of the time-1 flow
inside radius R are the critical points and for R large enough that H4 agrees with
Hsing for r > R) and 1 for r > 2R. This creates no new fixed points in the region
R < r < 2R because H4 and ∂H4/∂r have the same sign there. Now there are no
fixed points of the time-1 flow of the Hamiltonian vector field of H , except for the
nk + 1 critical points of H because outside radius R there are no compact flow
lines.

Let p1, . . . , pnk denote the equally spaced saddle points of H ordered counter-
clockwise, i.e., Rnk(pi )= pi+1, where Rnk corresponds to the 2π

nk -rotation around
p. We note that H(ps)= 0 for s = 1, . . . , nk. Hence, by Morse lemma (arguing the
same way as in Lemma 3.2 in [Golovko 2011]) we get that there is a neighborhood
Us of ps such that H = axy on Us , where s = 1, . . . , nk and a > 0. In addition,
observe that H is 2π

nk -symmetric with respect to θ . Therefore, the Us together with
coordinates (x, y) are 2π

nk -symmetric with respect to θ , i.e., Rnk(Us) = Us+1 and
coordinates on Us maps to the coordinate on Us+1. Finally, note that H = B̃r2

− C̃
on a neighborhood of the center of D(rsing), which we call U , where C̃ > 0 and B̃
is a small positive number and hence Hamiltonian flow rotates at a constant rate
near the origin. �

3B. Sutured contact solid cylinder. In this section, we construct the sutured con-
tact solid cylinder that we later will glue to get the sutured contact solid torus with
2n sutures of slope −k/ l, where n ∈ N, (k, l)= 1 and k > l > 0.

Let γp,ps be an embedded curve in R2 which starts at p and ends at ps for
s = 1, . . . , nk. For the time being, we can think about γp,ps as about the segment
connecting p and ps .
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Lemma 3.2. There exists a 1-form β on R2 satisfying the following:

(1) dβ > 0.

(2) Its singular foliation given by ker β has isolated singularities and no closed
orbits.

(3) β = 1
2εcr2dθ on U with respect to the polar coordinates whose origin is

at the center of D(rsing); β = 1
2εsym(x dy − y dx) on Us with respect to the

coordinates from Lemma 3.1, where s∈{1, . . . , nk}; β= 1
2r2dθ on R2

\D(rsing)

with respect to the polar coordinates whose origin is at the center of D(rsing);
here 0< εc� εsym� 1.

(4) The set of hyperbolic points of the singular foliation of β is given by {qs}
nk
s=1

such that qs lies on γp,ps outside of Us and U.

(5) β is 2π
nk -symmetric, i.e., R∗nk(β)= β.

Proof. Consider a singular foliation F on R2 which satisfies the following:

(1) F is Morse–Smale and has no closed orbits.

(2) The singular set of F consists of elliptic points and hyperbolic points. The
elliptic points are the equally spaced saddle points of H and the center of D(rsing).
The set of hyperbolic points of the singular foliation of β is given by {qs}

nk
s=1 such

that qs lies on γp,ps outside of Us and U .

(3) F is oriented and for one choice of orientation the flow is transverse to and
exits from ∂D(rsing).

(4) F is 2π
nk -symmetric with respect to θ .

Next, we modify F near each of the singular points so that F is given by
β0 =

1
2(x dy− y dx) on Us with respect to the coordinates from Lemma 3.1 and

β0 = 2x dy + y dx near a hyperbolic point. On R2
\ D(rsing), β0 =

1
2r2dθ with

respect to the polar coordinates whose origin is at the center of D(rsing). In addition,
on U , β0=

1
2r2dθ with respect to the polar coordinates whose origin is at the center

of D(rsing). From Lemma 3.1 it follows that we can do it in such a way that the
modification of F is still 2π

nk -symmetric. Finally, we get F given by β0, which
satisfies dβ0 > 0 near the singular points and on R2

\ D(rsing). Now let β = gβ0,
where g is a positive function with dg(X)� 0 outside of

U ∪
(⋃nk

s=1 Us
)
∪ (R2

\ D(rsing)),

g|⋃nk
s=1 Us

= εsym, g|U = εc, g|R2\D(rsing) = 1 and X is an oriented vector field for
F (nonzero away from the singular points). Here 0 < εc � εsym � 1. Since
dβ = dg∧β0+ g∧ dβ0, dg(X)� 0 guarantees that dβ > 0. �
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Figure 2. The level sets of H (left) and the characteristic foliation
of β (right) in the case n = 1, k = 3.

For the comparison of the level sets of H with the singular foliation of β in the
case n = 1, k = 3 we refer to Figure 2.

Lemma 3.3. Let β be a 1-form from Lemma 3.2. The Hamiltonian vector field X H

of H with respect to the area form dβ satisfies β(X H )= H on(⋃nk
s=1 Us

)
∪ (R2

\ D(rsing)).

In addition, the Hamiltonian vector field X H of H with respect to the area form dβ
satisfies β(X H )− H = C̃ on U.

Proof. First, Lemmas 3.1 and 3.2 imply that β = 1
2εcr2dθ , H = B̃r2

− C̃ on U

and εc is a small positive number. Now we show that X H =
2B̃
εc

∂
∂θ

is a solution of
β(X H )− H = C̃ on U . We calculate

iX H (dβ)=
(

2B̃
εc

∂

∂θ

)
y(εcr dr ∧ dθ)=−2B̃r dr =−d H

and

β(X H )− H = 1
2εcr2dθ

(
2B̃
εc

∂

∂θ

)
− B̃r2

+ C̃ = C̃ .

Next, we work on Us , where s = 1, . . . , nk. From Lemmas 3.1 and 3.2 it follows
that β = 1

2εsym(x dy− y dx) and H = axy on Us . Let X H be a Hamiltonian vector
field defined by iX H dβ =−d H .

We show that

X H =−
ax
εsym

∂

∂x
+

ay
εsym

∂

∂y

is a solution of the equation

(3B.1) β(X H )= H

on Us . We calculate

iX H (dβ)=
(
−

ax
εsym

∂

∂x
+

ay
εsym

∂

∂y

)
y(εsymdx ∧ dy)=−ax dy− ay dx =−d H
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and

β(X H )=
1
2εsym(x dy− y dx)

(
−

ax
εsym

∂

∂x
+

ay
εsym

∂

∂y

)
= axy = H.

Finally, Lemmas 3.1 and 3.2 say that β = 1
2r2dθ and H = µr2 cos(nkθ) on

R2
\ D(rsing). As in the previous case, we show that

X H = nkµr sin(nkθ)
∂

∂r
+ 2µ cos(nkθ)

∂

∂θ

is a solution of Equation (3B.1) on R2
\ D(rsing).

We calculate

iX H (dβ)= (nkµr sin(nkθ)∂r + 2µ cos(nkθ)∂θ )y(r dr ∧ dθ)

=−2µr cos(nkθ)dr + nkµr2 sin(nkθ) dθ =−d H,

and

β(X H )=
1
2r2dθ

(
nkµr sin(nkθ)

∂

∂r
+ 2µ cos(nkθ)

∂

∂θ

)
= µr2 cos(nkθ)= H. �

Let X H be the Hamiltonian vector field of H with respect to dβ and ϕs
X H

be the
time-s flow of X H . Now we introduce the following notations:

S :=
{

x ∈ R2
\ D(rsing) | ϕ

s
X H
(x) ∈ R2

\ D(rsing) for all s ∈ [0, 1]
}
,

V :=
{

x ∈U | ϕs
X H
(x) ∈U for all s ∈ [−1, 1]

}
,

Vi :=
{

x ∈Ui | ϕ
s
X H
(x) ∈Ui for all s ∈ [−1, 1]

}
.

For simplicity, let us denote ϕX H := ϕ
1
X H

.

Remark 3.4. Using the form of X H on Ui , where i = 1, . . . , nk, we may assume
that the curves γp,pi in Lemma 3.2 satisfy the following list of properties:

(1) γp,pi is an embedded curve which starts at p and ends at pi ;

(2) γp,pi is a part of one of the curves of the singular foliation given by ker β;

(3) γp,pi coincides with one of the level sets of H on Vi and near pi can be
presented as W s(ϕX H , pi )= {x | (ϕX H )

n(x)→ p as n→∞}.

Recall that the following claim was proven in [Golovko 2011]:

Claim 3.5. If (M, ω) is an exact symplectic manifold, i.e., ω = dβ, then the flow
ϕt

X H
of a Hamiltonian vector field X H consists of exact symplectic maps, i.e.,

(ϕt
X H
)∗β −β = d ft ,
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where
ft =

∫ t

0
(−H +β(X H )) ◦ϕ

s
X H

ds.

Remark 3.6. From Lemma 3.3 and Claim 3.5 it follows that

ϕ∗X H
(β)−β = dh,

where h := f1= 0 on S∪
⋃nk

i=1 Vi and h= C̃ > 0 on V . Hence, we get ϕ∗X H
(β)= β

on S ∪ V ∪
⋃nk

i=1 Vi .

Now we define ϕ−k/ l := R−k/ l ◦ ϕX H , where R−k/ l : R
2
→ R2 is a rotation by

−2πl/k around p.

Remark 3.7. Since R∗nk(β)= β, we get R∗
−k/ l(β)= β and hence

ϕ∗
−k/ l(β)= (R−k/ l ◦ϕX H )

∗(β)= ϕ∗X H
(R∗
−k/ l(β))= ϕ

∗

X H
(β).

Fix R∗� rsing such that there is an annular neighborhood VR∗ of ∂D(R∗) in R2

with VR∗ ⊂ S. Consider D(R∗) with

β0 := β|D(R∗) and β1 := ϕ
∗

X H
(β)|D(R∗)(= ϕ

∗

−k/ l(β)|D(R∗)).

Note that

(3B.2) dβ1 = d(ϕ∗X H
(β)|D(R∗))= ϕ

∗

X H
(dβ)|D(R∗) = (dβ)|D(R∗) = dβ0 > 0.

In addition, from the definitions of V (R∗) and D(R∗) it follows that

(3B.3) β0 = β1 on VR∗ ∩ D(R∗).

Now we recall the construction of the contact 1-form on [−1, 1]× D2.

Lemma 3.8 [Golovko 2011, Lemma 3.10]. Let β0 and β1 be two 1-forms on D2

such that β0 = β1 in a neighborhood of ∂D2 and dβ0 = dβ1 = ω > 0. Then
there exists a contact 1-form α and a Reeb vector field Rα on [−1, 1] × D2 with
coordinates (t, x), where t is a coordinate on [−1, 1] and x is a coordinate on D2,
with the following properties:

(1) α = dt + εβ0 in a neighborhood of {−1}× D2.

(2) α = dt + εβ1 in a neighborhood of {1}× D2.

(3) Rα is collinear to ∂/∂t on [−1, 1]× D2.

(4) Rα = ∂/∂t in a neighborhood of [−1, 1]× ∂D2.

Here ε is a small positive number.

In addition, recall that

(3B.4) α = (1+ εχ1(t)h) dt + ε((1−χ0(t))β0+χ0(t)β1),
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where h ∈ C∞(D2) such that β1−β0 = dh; χ0 : [−1, 1] → [0, 1] is a smooth map
for which χ0(t)= 0 for −1≤ t ≤−1+εχ0 , χ0(t)= 1 for 1−εχ0 ≤ t ≤ 1, χ ′0(t)≥ 0
for t ∈ [−1, 1] and εχ0 is a small positive number; χ1(t) := χ ′0(t); ε is a sufficiently
small positive number.

Remark 3.9. Note that dα = εω, where α is a 1-form given by (3B.4) and ω =
dβ0 = dβ1 > 0 on D2.

Observe that from (3B.2) and (3B.3) it follows that β0 and β1 described above
satisfy the conditions of Lemma 3.8. We now take [−1, 1]× D(R∗) equipped with
the contact 1-form α given by (3B.4). For simplicity, let us denote β− := εβ0 and
β+ := εβ1, where ε is a constant from Lemma 3.8 which makes α contact.

3C. Gluing. We now construct P+, P− and D in the way described in [Golovko
2011]. Recall that

P+, P−, D ⊂ D(R∗)⊂ R2

are surfaces with boundary which satisfy the following properties:

(1) P± ⊂ D.

(2) (∂P±)∂ ⊂ ∂D and (∂P±)int ⊂ int(D).

(3) ϕX H maps P+ to P− taking (∂P+)int onto (∂P−)∂ and (∂P+)∂ onto (∂P−)int.

(4) (∂P−)∂ ∩ (∂P+)∂ =∅.

Note that

• ∂P+ =
(⋃nk−1

s=0 a+s
)
∪
(⋃nk−1

s=0 b+s
)
,

• ∂P− =
(⋃nk−1

s=0 a−s
)
∪
(⋃nk−1

s=0 b−s
)
,

• ∂D =
(⋃nk−1

s=0 a+s
)
∪
(⋃nk−1

s=0 b−s
)
∪
(⋃nk−1

s=0 c+s
)
∪
(⋃nk−1

s=0 c−s
)
.

See Figure 3 for the schematic visualization of P+ (bounded by the bold line),
P− and D. For more details of this construction we refer to [Golovko 2011].

Remark 3.10. Note that the a±i , b±i and c±i are constructed in such a way that

a±i , b±i , c±i ⊂ D(R∗)∩ S

for i = 0, . . . , nk−1. Hence, we see that ∂P+, ∂P−, ∂D ⊂ D(R∗)∩ S. In addition,
Rnk(a±i )= a±i+1 and Rnk(b±i )= b±i+1, where i, i + 1 are considered modulo nk.

We take [−1, 1] × D with a contact form α := α|[−1,1]×D. Let 0 = {0} × ∂D
in [−1, 1] × D and U (0) := [0, 1] × [−1, 1] × 0 be a neighborhood of 0 with
coordinates (τ, t) ∈ [0, 1]×[−1, 1], where t is a usual t-coordinate on [−1, 1]×D.
From the definition of S and Remark 3.10 it follows that we may assume that
U (0)⊂ [−1, 1]× (S ∩ D).
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D(rsing)

a+0

a+1 a+2

b−0

b−1

b−2

c+0

c+1

c+2c−0

c−1

c−2

Figure 3. Construction of P+, P− and D in the case n = 1, k = 3.

Lemma 3.11. ([−1, 1]× D, 0,U (0), ξ) is a sutured contact manifold and α is an
adapted contact form.

Proof. First note that α|R− = β− and α|R+ = β+. Let us check that (R−, β−)
and (R+, β+) are Liouville manifolds. From the construction of β± it follows that
d(β−) = d(β+) > 0. Since β− = β+ on D ∩ S and by (3B.4), α = dt + β− on
U (0). Recall that β− = β+ = 1

2εr
2dθ on D ∩ S. Hence, α|U (0) = dt + 1

2εr
2dθ .

The calculation

iY±|R±∩U (0)(dβ±)=
(1

2r∂r
)
y(εr dr ∧ dθ)= 1

2εr
2dθ = β±

implies that the Liouville vector fields Y±|R±∩U (0) are equal to 1
2r∂r . From the

construction of D it follows that Y± is positively transverse to ∂R±. Thus, (R−, εβ0)

and (R+, εβ1) are Liouville manifolds. As already mentioned, we have α= dt+β−
on U (0). Finally, if we take τ such that ∂τ = 1

2r∂r , then ([−1, 1]×D, 0,U (0), ξ)
becomes a sutured contact manifold with an adapted contact form α. �

Then we use ϕ−k/ l for the gluing construction. Note that ϕX H maps a+s to a−s
and b+s to b−s . Hence, using Remark 3.10, we see that ϕ−k/ l maps a+s to a−s−nl and
b+s to b−s−nl . Then we follow the gluing procedure briefly described in Section 2A
and completely written in [Colin et al. 2011]. Finally, we get a sutured contact solid
torus (S1

× D2, 0̃,U (0̃)) with a contact form α̃δ, where 0̃ is a set of 2n parallel
closed curves of slope −k/ l, where n ∈N, (k, l)= 1, k > l > 0 and δ is the rotation
angle of the map ϕX H near p.

Remark 3.12. We have constructed (S1
×D2, 0̃,U (0̃)) using the gluing construc-

tion for sutured manifolds. However, since there is a close connection between
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sutured contact manifolds and contact manifolds with convex boundary, we ob-
serve that the gluing construction we used for the sutured contact solid cylinder
corresponds to the gluing construction for the contact 3-ball with convex boundary
and one dividing curve on the boundary. The corresponding gluing construction
for the contact 3-ball with convex boundary corresponds (is inverse) to the convex
decomposition of the contact solid torus S1

×D2 with convex boundary with respect
to the convex meridional disk {pt}×D2 with ∂-parallel dividing curves. Hence, the
constructed sutured contact solid tori are universally tight sutured contact manifolds
by the gluing/classification result from Section 2 in [Honda 2002] (more precisely,
Corollary 2.3, Theorem 2.5 and Corollary 2.6).

3D. Reeb orbits. Note that ϕ−k/ l |P+ has n orbits of period k obtained from the
equally spaced saddle points of H . Lemma 3.8 and the gluing procedure briefly
described in Section 2A imply that these orbits correspond to the Reeb orbits, which
we call γ1, . . . , γn such that

[γs] = [γt ] = k ∈ H1(S1
× D2

;Z)

for s, t = 1, . . . , n. In addition, ϕ−k/ l |P+ has a periodic point of period 1, which is p.
It corresponds to the Reeb orbit, which we call γ , such that [γ ]=1∈H1(S1

×D2
;Z).

Lemma 3.13.
∫
γs
α̃δ =

∫
γt
α̃δ and k

∫
γ
α̃δ >

∫
γs
α̃δ, where s, t = 1, . . . , n.

Proof. Let

M (0)
= (([−1, 1]× D)∪ (R+(0)×[1;∞))∪ (R+(0)× (−∞;−1])),

M̃ = M (0)
\ ((P+× (N ,∞)∪ (P−× (−∞,−N )).

In addition, let αM̃ denote the contact form on M̃ and let ξM̃ denote the contact
structure defined by αM̃ .

Consider [−1, 1]×D⊂ M̃ . From the construction of α it follows that β+=β− on
Vs and α|[−1,1]×Vs = dt +β− for s = 1, . . . , nk. Hence, since the contact structure
on [1,∞)× P+ is given by dt+β+ and the contact structure on (−∞,−1]× P− is
given by dt+β−, αM̃ |[−N ,N ]×Vs = dt+β− on [−N , N ]×Vs ⊂ M̃ for s= 1, . . . , nk.
Therefore, we get

(3D.1)
∫
[−N ,N ]×{ps}

αM̃ = 2N

for s = 1, . . . , nk. From the gluing construction and (3D.1) it follows that∫
γs

α̃δ = 2Nk

for s = 1, . . . , n. Note that
∫
γs
α̃δ does not depend on s. Hence,

∫
γs
α̃δ =

∫
γt
α̃δ for

s, t = 1, . . . , n.
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Now from the fact that α = (1+ εχ1(t)h) dt +β− on [−1, 1]× V , where h > 0
and χ1(t) > 0, we get that

Rα =
1

1+ εχ1(t)h
∂

∂t

on [−1, 1] × V . Hence, from the gluing construction we obtain k
∫
γ
α̃δ > 2Nk.

Thus, ∫
γs

α̃δ =

∫
γt

α̃δ and k
∫
γ

α̃δ >

∫
γs

α̃δ,

where s, t = 1, . . . , n. �

Lemma 3.14. All closed orbits of Rα̃δ are nondegenerate. Moreover, γ is an
elliptic orbit and γi is a hyperbolic orbit such that γ t and γ s

i are good orbits for
i = 1, . . . n; s, t ∈N. There exists a symplectic trivialization τ of ξ along γ and the
γi , constructed in the consistent way as described in Section 2B, and Nδ ∈ N such
that

µτ (γ
s
i )=−2ls,

µτ (γ
t)=−2ml + 1,

where (m− 1)k < t ≤ mk and i = 1, . . . , n, t ≤ Nδ, s ≤ Nδ/k.

Proof. For simplicity, assume that l = 1. The general calculation can be done in the
analogous way.

Fix i = 1, . . . , n. We first observe that H |Vi = axy, where a > 0 and hence

ϕX H |Vi =

(
λ 0
0 λ−1

)
,

where λ = ea
6= 1. Let the symplectic trivialization of ξM̃ along [−N , N ] × {pi }

be given by the framing (λ
−N−t

2N ∂x , λ
t+N
2N ∂y), where i = 1, . . . , nk and (x, y) are

coordinates on Vi which coincide with the coordinates on Ui from Lemma 3.1.
Since Lemma 3.1 implies that Rnk maps coordinates on Vi to the coordinate on
Vi+1, where i , i + 1 are considered modulo nk, we conclude that the symplectic
trivializations of ξM̃ along each [−N , N ]×{pi+nm} for m = 0, . . . , k−1 and fixed
i = 1, . . . , n give rise to the symplectic trivialization τγi of ξ̃ along γi . It is easy to
see that the linearized return map Pγi with respect to this trivialization is given by

Pγi =

(
λk 0
0 λ−k

)
.

Since the eigenvalues of Pγi are positive real numbers different from 1, γi is a
positive hyperbolic orbit. In addition, Pγ s

i
= Ps

γi
. Therefore, the eigenvalues of Pγ s

i

are different from 1. Hence, γ s
i is a nondegenerate orbit for s ∈N and i = 1, . . . , n.
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We now observe that the linearized Reeb flow around γi (with respect to τγi ) rotates
the eigenspaces of Pγi by angle −2π . Hence, we get

(3D.2) µτγi
(γ s

i )=−2s

for s ∈ N and i = 1, . . . , n.
Now let the symplectic trivialization of ξM̃ along [−N , N ] × {p} be given by

the framing(
cos(θδ,k,N (t))∂x + sin(θδ,k,N (t))∂y,− sin(θδ,k,N (t))∂x + cos(θδ,k,N (t))∂y

)
,

where θδ,k,N (t)= π(1−δk)(t+N )/(Nk) and t ∈ [−N , N ]. Note that R−k ◦ϕX H |V

is a rotation through 2π(−1/k+ δ), where R−k is a −2π/k-rotation about p and
δ is a small positive irrational number. It is easy to see that with respect to this
framing Pγ is a rotation by 2π(−1/k+ δ). Hence, since δ is irrational, we see that
γ is an elliptic orbit and γ t is nondegenerate for t ∈ N. Let

Nδ :=max
{
m ∈ N | mδ < 1/k

}
.

Note that we get

(3D.3) µτγ (γ
t)=−2m+ 1,

where (m−1)k < t ≤mk and t ≤ Nδ . Formulas (3D.2) and (3D.3) and the fact that
δ is irrational imply that the parity of µτγi

(γ s
i ) is independent of s for given i and

the parity of µτγ (γ
t) is independent of t . Hence, we conclude that the γ s

i and γ t

are good Reeb orbits for i = 1, . . . , n and s, t ∈ N.
It is not difficult to see that the symplectic trivialization τγ k (induced from τγ )

can be extended to the τγi (are consistent in terms of Section 2B) along the surfaces
obtained from (ϕ

(−N−t)/2N
X H

(γp,pi ))
nk
i=1 by gluing them with ϕ−k and gives rise to

the global symplectic trivialization that we call τ . �

4. Calculation

In this section, we calculate the sutured version of cylindrical contact homology of
the sutured contact solid torus that we have constructed in Section 3.

Remark 4.1. There are no contractible Reeb orbits. Hence, from Theorem 2.7,
Remark 2.11, and the fact that π1(S1

× D2
;Z) ' H1(S1

× D2
;Z) ' Z it follows

that for all h ∈ H1(S1
×D2
;Z), HCcyl,h

∗ (S1
×D2, 0̃, α̃δ, J ) is defined, i.e., ∂2

= 0,
and is independent of contact form α̃δ for the given contact structure ξ̃ and the
almost complex structure J .

For simplicity, assume that l = 1. The calculation for l > 1 can be made in the
completely analogous way.
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Lemma 3.14 implies that all Reeb orbits are good and

(4A.4) |γ s
i | = −2s− 1, |γ t

| = −2m,

where m− 1< t/k ≤ m and i = 1, . . . , n, s ≤ Nδ/k, t ≤ Nδ. Hence, we get

(4A.5)
Ch

m(α̃δ, J )=


Q〈γ h

〉 for h > 0 and m = 2
⌊

h(−1/k+ δ)
⌋
,

Q〈γ
h/k
1 , . . . , γ

h/k
n 〉 for k | h > 0 and m =−2h/k− 1,

0, otherwise,

for h ≤ Nδ.
Now, since by Lemma 3.13 A(γ k) >A(γi ) for i = 1, . . . , n, we can use Fact 2.6

and Remark 2.11 and conclude that ∂(γ s
i )= 0 for i = 1, . . . , n and s > 0. Then, we

prove that ∂(γ t)= 0 for k - t ≤ Nδ . Since [γi ] = k[γ ] in H1(S1
× D2

;Z)∼= Z, the
cylindrical contact homology differential at γ t counts only cylinders with negative
end at γ t . Then, similarly to the previous case, Fact 2.6 and Remark 2.11 imply
that ∂(γ t)= 0 for k - t ≤ Nδ.

We now consider the case when k | t and will show that ∂(γ t) 6= 0 for k | t ≤ Nδ .
Is this situation, by arguing in the same way as in the case when k - t , we get that
∂(γ t) counts only cylinders with negative end at γ t/k

i .
Now we note that

(4A.6) ind(u)= |γ t
| − |γ

t/k
i |

for any pseudoholomorphic curve u in the moduli space MJ (γ t
; γ

t/k
i ), where

k | t ≤ Nδ and J is an almost complex structure tailored to ((R× S1
× D2)∗, α̃∗δ ).

The index formula can be written in this way, since H2(S1
× D2
;Z)= 0 and hence

< c1(ξ), A >= 0 for all A ∈ H2(S1
× D2,Z). We now use (4A.4) and get

|γ t
| − |γ

t/k
i | = −2m− (−2t/k− 1)=−2(m− t/k)+ 1,

and m = t/k for i = 1, . . . , n; t ≤ Nδ. Hence, we can rewrite (4A.6) as

(4A.7) ind(u)= |γ t
| − |γ

t/k
i | = −2(t/k− t/k)+ 1= 1

for i = 1, . . . , n and t ≤ Nδ. Therefore, Theorem 2.8 and Remark 2.11 imply
that for every u ∈M(γ t , γ

t/k
i ) the linearization of the Cauchy–Riemann operator

is surjective at u; here k | t ≤ Nδ, J is any almost complex structure tailored to
((S1
× D2)∗, α̃∗δ ) and i = 1, . . . , n.

Let (S1
× D2, 0long,U (0long), α

long
δ ) be a sutured contact solid torus obtained

from ([−1, 1]× D, 0,U (0), α) by using ϕX H as a gluing map. Recall that we get
(S1
×D2, 0̃,U (0̃), α̃δ) from ([−1, 1]×D, 0,U (0), α) by using ϕ−k = R−k ◦ϕX H

as a gluing map. We now note that (S1
×D2, 0long,U (0long), α

long
δ ) is a universally

tight sutured contact solid torus with 2nk parallel longitudinal sutures, k > 1, and
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such that when one cuts it along the meridian disk the sutures on the disk are
boundary-parallel. This follows from the gluing/classification result for universally
tight contact structures on a sutured solid torus; see Section 2 in [Honda 2002]
(more precisely, Corollary 2.3, Theorem 2.5 and Corollary 2.6). The cylindrical
contact homology of this sutured contact manifold is computed in [Golovko 2011]
and is given by

(4A.8) HCcyl,h(S1
× D2, 0long, ξlong)'

{
Qnk−1 for h ≥ 1,
0, otherwise.

Here ξlong = ker αlong.
Note that (S1

× D2, 0long,U (0long), α
long
δ ) has nk hyperbolic orbits

γ
long
1 , . . . , γ

long
nk

and one elliptic orbit γ long. Here the γ long
i correspond to the equally spaced saddle

points of H and γ long corresponds to the critical point of H at the center of D(rsing).
In addition, observe that

(4A.9) [γ
long
i ] = [γ long

] = 1 ∈ H1(S1
× D2

;Z).

Finally, note that from Lemma 3.13 and from the construction of

γ long and γ
long
1 , . . . , γ

long
nk ,

it follows that

(4A.10) A(γ long) >A(γ
long
i ), A(γ

long
i )=A(γ

long
j )

for i, j = 1, . . . , nk. Hence, Theorem 2.7, Remark 2.11 together with Fact 2.6, and
(4A.8), (4A.9) and (4A.10) imply that ∂(γ long)s 6= 0 for s > 0; otherwise we arrive
at a contradiction with (4A.8) (since ∂(γ long)s = 0 implies that the exponent of Q

in (4A.8) must be nk+ 1). In addition, observe that < ∂(γ long)s, (γ
long
i )s >6= 0 for

some i and all s > 0.
We now take an almost complex structure J long tailored to ((S1

×D2)∗, (α
long
δ )∗)

such that as a map ξ long
→ ξ long it is obtained from some fixed J cyl

: ξ → ξ which
is defined on ([−1, 1]× D, 0,U (0), α) and satisfies the following properties:

(1) (J cyl)2 =−I , dα(J cyl
· , J cyl

· )= dα( · , · ), dα( · , J cyl
· ) > 0;

(2) J cyl
|{1}×D = ϕ

∗

X H
(J cyl
|{−1}×D) and J cyl is 2π

nk -symmetric, i.e., it is invariant
under 2π

nk -rotation with respect to the center of D.

Here ξ long
= ker αlong

δ and ξ = ker α. By saying that J long is obtained from J cyl we
simply mean that the gluing procedure with ϕX H applied to ([−1,1]×D, 0,U (0), α)
transforms J cyl to J long. Since ξ is 2π

nk -symmetric on ([−1, 1]×D, 0,U (0), α), we
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claim that J cyl, which satisfies Properties (1) and (2), exists and that Property (2) is
not a serious restriction on J cyl. The symmetry of ξ follows from the symmetry of
β and X H , and from the construction of α. From the symmetry of J long it follows
that < ∂(γ long)s, (γ

long
i )s >6= 0 for all i = 1, . . . , nk and s > 0.

Now we take J̃ on (S1
× D2, 0̃,U (0̃), α̃δ), which is obtained from the same

J cyl defined on ([−1, 1]× D, 0,U (0), α) by applying the gluing procedure with

ϕ−k = R−k ◦ϕX H to ([−1, 1]× D, 0,U (0), α),

and possibly modify it near the boundary of (S1
× D2, 0̃,U (0̃), α̃δ) (far from the

Reeb orbits) so that it becomes tailored to ((S1
×D2)∗, (α̃δ)

∗). Observe that we can
assume that J long= J̃ . From the symmetry of J cyl and the form of the gluing maps for
(S1
× D2, 0̃,U (0̃), α̃δ) and (S1

× D2, 0long,U (0long), α
long
δ ) it follows that every

J long-holomorphic curve u which contributes to < ∂(γ long)ks, (γ
long
i )ks >6= 0 can

be modified to a J̃ -holomorphic curve ũ from γ ks to γ s
i by modifying (composing)

it with the rotation about the center of a meridian disk, and hence < ∂γ ks, γ s
i >6= 0.

This choice of almost complex structures is possible since Theorem 2.8 and
Remark 2.11 imply that we do not need to require almost complex structures to be
generic. Finally, it follows from (4A.5) that

HCcyl,h
m (S1

× D2, 0̃, α̃δ)'


Q for h > 0 and m = 2

⌊
h(−1/k+ δ)

⌋
,

Qn−1 for k | h > 0 and m =−2h/k− 1,

0, otherwise.

for h ≤ Nδ.
We now note that ξ̃ = ker α̃δ is independent of δ. This follows from the glu-

ing/classification result for universally tight contact structures on a sutured solid
torus; see [Honda 2002, Corollary 2.3, Theorem 2.5 and Corollary 2.6]. Hence,
from Theorem 2.7 and Remark 2.11 it follows that

HCcyl,h(S1
× D2, 0̃, ξ̃ )= HCcyl,h(S1

× D2, 0̃, α̃δ)

for all h and hence for h ≤ Nδ, where δ is a small positive irrational number,

HCcyl,h(S1
× D2, 0̃, ξ̃ ) :=

⊕
m

HCcyl,h
m (S1

× D2, 0̃, ξ̃ ),

HCcyl,h(S1
× D2, 0̃, α̃δ) :=

⊕
m

HCcyl,h
m (S1

× D2, 0̃, α̃δ).

Now observe that Nδ→∞ when δ→ 0. In addition, we note that for fixed n, k and
two small positive irrational numbers δ1 6= δ2, the sets of closed orbits of Rα̃δ1 and
Rα̃δ2 are the same, and the corresponding orbits with the same first homology class
h ≤ min{Nδ1, Nδ2} have the same Conley–Zehnder gradings in the corresponding
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complexes. Therefore, for every 0< h ∈ Z= H1(S1
× D2

;Z), there exists δ such
that

HCcyl,h
m (S1

× D2, 0̃, ξ̃ )= HCcyl,h
m (S1

× D2, 0̃, α̃δ)

'


Q for h > 0 and m = 2

⌊
h(−1/k+ δ)

⌋
,

Qn−1 for k | h > 0 and m =−2h/k− 1,

0, otherwise.

for h ≤ Nδ and hence

(4A.11) HCcyl,h
m (S1

× D2, 0̃, ξ̃ )'


Q for h > 0 and m = 2

⌊
−h/k+ δk

⌋
,

Qn−1 for k | h > 0 and m =−2h/k− 1,

0, otherwise,

where 0< δk � 1/k. Finally, (4A.11) implies that

(4A.12) HCcyl,h(S1
× D2, 0, ξ)'


Q for k - h > 0,
Qn−1 for k | h > 0,
0, otherwise.

This completes the proof of Theorem 1.1 when l = 1.
For l > 1, one can use the same observations as in the case when l = 1 and show

that the only nonzero part of the cylindrical contact homology differential is given
by < ∂γ t , γ

t/k
i >6= 0 for k | t ≤ Nδ. This will lead to (4A.12) for all l such that

(k, l)= 1, k > l > 0.

Remark 4.2. Theorem 1.3 from [Golovko 2011] and Theorem 1.1 provide the
formula for the sutured version of cylindrical contact homology of (S1

× D2, 0, ξ),
where 0 consists of 2n parallel sutures of arbitrary slope, ξ is a universally tight
contact structure and such that if one cuts along the meridian disk, the sutures
on the disk are ∂-parallel. In particular, this gives a complete calculation of the
cylindrical contact homology of (S1

× D2, 0, ξ), where 0 consists of 2 parallel
sutures of arbitrary slope and ξ is a universally tight contact structure (observe that
in this situation there are only two isomorphic (but not isotopic) universally tight
contact structures; see Section 2 in [Honda 2002]). These are not all the universally
tight contact structures on the solid torus, but all of them can be obtained from the
#0 = 2 case by successively applying the folding operation.
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