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A COUNTEREXAMPLE TO THE ENERGY IDENTITY FOR
SEQUENCES OF ˛-HARMONIC MAPS

YUXIANG LI AND YOUDE WANG

We construct a closed Riemannian manifold .N; h/ and a sequence of ˛-
harmonic maps from S 2 into N with uniformly bounded energy such that
the energy identity for this sequence is not true.

1. Introduction

Let .†; g/ be a Riemann surface and .N; h/ be an n-dimensional smooth compact
Riemannian manifold which is embedded in RK . Usually, we denote the space of
Sobolev maps from † into N by W k;p.†;N /, which is defined by

W k;p.†;N /D fu 2W k;p.†;RK/ W u.x/ 2N for a.e. x 2†g:

For u 2W 1;2.†;N /, we define locally the energy density e.u/ of u at x 2† by

e.u/.x/D jrguj
2
D gij .x/h˛ˇ .u.x//

@u˛

@xi
@uˇ

@xj
:

The energy of u on †, denoted by E.u/ or E.u;†/, is defined by

E.u/D
1

2

Z
†

e.u/ dVg ;

and the critical points of E are called harmonic maps. We know that a harmonic
map u satisfies

�.u/D�uCA.u/.ru;ru/D 0;

where A is the second fundamental form of N in RK . Harmonic maps are related
very closely to minimal surface. It is well known that a harmonic map from S2

into N must be a branched conformal immersion in N .
Unfortunately,E does not satisfy the Palais–Smale condition. From the viewpoint

of calculus of variation, it is difficult to show the existence of harmonic maps from a
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surface. In order to obtain harmonic maps, Sacks and Uhlenbeck [1981] introduced
the so-called ˛-energy E˛, instead of L2 energy E, as

E˛.u/D
1

2

Z
†

f.1Cjruj2/˛ � 1g dVg ;

where we always assume that ˛ > 1. It is well known that this ˛-energy functional
E˛ satisfies the Palais–Smale condition. The critical points of E˛ in W 1;2˛.†;N /,
called ˛-harmonic maps, satisfy

(1-1) �gu˛C .˛� 1/
rg jrgu˛j

2rgu˛

1Cjrgu˛j2
CA.u˛/.du˛; du˛/D 0:

The strategy of Sacks and Uhlenbeck is to employ a sequence of ˛-harmonic maps
to approximate a harmonic map as ˛ tends to 1. Hence, to show the existence
of harmonic maps we need to study the convergence behavior of a sequence of
˛-harmonic maps u˛ with E˛.u˛/ < C from a compact surface .†; g/ into a
compact Riemannian manifold .N; h/without boundary. Generally, such a sequence
converges weakly to a harmonic map in W 1;2.†;N / and strongly in C1 away
from a finite set of points in †.

Concretely, let fu˛kg be a sequence of ˛-harmonic maps from † into N with
uniformly bounded ˛-energy, that is, E˛k .u˛k / < ƒ <1. We assume that the
sequence does not converge smoothly on †. By the theory of Sacks and Uhlenbeck,
there exists a subsequence of fu˛kg, still denoted by fu˛kg, and a finite set S�†

such that the subsequence converges to a harmonic map u0 in C1loc .†nS/. We
know that, at each point pi 2 S, the energy of the subsequence concentrates and
the blowup phenomena occurs. Moreover, there exist point sequences fxlikg in
† with limk!C1 xlik D pi and scaling constant number sequences f�likg with
limk!C1 �lik ! 0, l D 1; : : : ; n0, such that

u˛k .x
l
ik
C�likx/! vl in C jloc.R

2
nAi /;

where all vi are nontrivial harmonic maps from S2 into N , and Ai � R2 is a finite
set.

In order to explore and describe the asymptotic behavior of fu˛kg at each blowup
point, the following two problems arise naturally. The first is whether or not the
energy identity holds true:

lim
˛k!1

E˛k .u˛k ; B
†
r0
.pi //DE.u0; B

†
r0
.pi //C

n0X
lD1

E.vl/:

Here, B†r0.pi / is a geodesic ball in † which contains only one blowup point pi .
The other is whether or not the necks connecting bubbles are some geodesics of
finite length?
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Considerable progress has been made regarding these problems; let us now recall
some main results on them. Chen and Tian [1999] considered a special sequence
fu˛kg with uniformly bounded ˛-energy, for which every u˛k is a minimizing
˛k-harmonic map and all maps u˛k belong to a fixed homotopy class. They studied
the convergence behavior of such a special sequence and provided a proof on the
above energy identity. Later, for the same sequence, Li and Wang [2010a] gave
another constructing proof on the energy identity, which is completely different
from that given in [Chen and Tian 1999].

The energy identity for a minimax sequence of ˛-harmonic maps has also been
considered. Suppose that A is a parameter manifold. Let h0 W †�A! N be a
continuous map, and H be such a set of continuous maps h W†�A!N that every
h 2H is homotopic to h0 and satisfies h.t/ 2W 1;2˛.†;N / for any fixed t 2 A.
Set

ˇ˛.H/D inf
h2H

sup
t2A

E˛.h. � ; t //:

It is known that there is at least a sequence fu˛kg, each u˛k of which attains
ˇ˛k .H/, satisfies the energy identity as ˛k! 1. For more details, we refer to [Jost
1991; Lamm 2010].

On the other hand, it should be pointed out that some effective methods have been
established to successfully prove the energy identity and give a detailed description
of the connecting necks for the heat flow of harmonic maps from a Riemann surface,
or more generally, a sequence of maps from a Riemann surface with tension fields �
bounded in the sense of L2 [Ding 1998; Ding and Tian 1995; Qing 1995; Qing and
Tian 1997].

Recently, Li and Wang [2010b] studied the above problems on the sequences of
˛-harmonic maps and obtained some results which can be summarized as follows.
If the energy concentration phenomena appears for fu˛kg, one can prove a weak
energy identity and a direct convergence relation between the blowup radius and
the parameter ˛, which ensures the energy identity and no-neck property. Li and
Wang also showed that the necks converge to some geodesics and gave a length
formula for the neck in the case where only one bubble appears.

Motivated by an example given by Duzaar and Kuwert [1998], Li and Wang
[2010b] also constructed an ˛-harmonic map sequence with uniformly bounded
energy, for which the blowup phenomenon occurs and there exists at least a neck
(geodesic) of infinite length. This answers negatively the second problem on ˛-
harmonic map sequence.

Although some mathematicians think that the energy identity for the sequence
of ˛-harmonic maps should also be true, up to now it has been unclear in general
whether the energy identity for an ˛-harmonic map sequence with bounded energy
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holds true or not. In this short paper, we will modify the construction in [Li and
Wang 2010b] to show that the energy identity is also not true.

On the other hand, a natural problem is whether the set of the values of energy
for harmonic spheres in any given Riemannian manifold .N; h/ is discrete or not,
since the bubbles produced in the convergence of a sequence of ˛-harmonic maps
from .†; g/ are always harmonic spheres.

We denote this set by

E.N; h/D fE.u/ W u is a harmonic map from S2 into .N; h/g:

It is well known that if .N; h/ is the standard sphere S2, we have

E.N; h/D f4k� W k D 0; 1; : : : ; n; : : :g:

We also know from [Valli 1988] that if .N; h/ is the unitary group U.n/ with the
standard metric, then the energy of harmonic maps S2! U.n/ can take as values
only integral multiples of 8� . Some other energy gap phenomena on unitons were
discussed in [Anand 1995; Dong 2002; Uhlenbeck 1989]. Some mathematicians
conjectured that E.N; h/ is a discrete set. Here, we will also give a counterexample
to show that E.N; h/ is not discrete.

2. ˛-harmonic maps

Later, we will discuss the convergence behavior of some ˛-harmonic map sequences
with uniformly bounded ˛-energy or L2 energy. In fact, by discussing the conver-
gence of ˛-harmonic map sequences, Sacks and Uhlenbeck developed an existence
theory on minimal surfaces in [Sacks and Uhlenbeck 1981; 1982]. In particular, they
established the well-known �-regularity theorem on ˛-harmonic maps and removal
singularity theorem on harmonic maps [1981], which will be used repeatedly in the
present paper.

Theorem 2.1. Let D DD1.0/D fz W jzj < 1g � C be a disk with radius 1 and N
be a Riemannian manifold. Assume that u WD!N satisfies Equation (1-1). Then
there exists �0 > 0 and ˛0 > 1 such that if E.u;D/ < �0 and 1� ˛ � ˛0, then we
have

kr
kukL1.D1=2/ � C.k/E.u;D/:

Theorem 2.2. Assume that u WDnf0g !N is a harmonic map with E.u/ <C1.
Then u is a harmonic map from D into N .

The above theorem tells us that, if u is a harmonic map from Cnfpi 2 C W i D

1; 2; : : : ; l <1g into N with E.u/ <C1, then u can be viewed as a harmonic
map from S2 into N .
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Now, we can state more precisely the energy concentration of fu˛kg. Let B†t .x/
denote the geodesic ball of † which is centered at x and has geodesic radius t . By
Theorem 2.1, the finite singular set of fu˛kg can be defined precisely by

SD

�
x 2† W lim

t!0
lim

k!C1

Z
B†t .x/

jru˛k j
2
�
�0

2

�
:

For any Qx0 … S, there exists ı > 0 such that E.u˛k ; B
†
ı
. Qx0// < �0. Applying

Theorem 2.1, fu˛kg converges smoothly on any � b †nS. The limit map is a
harmonic map from †nS into N . Theorem 2.2 tells us that the singular points of
the limit map can be removed, in other words, it is a harmonic map from † into N .

If x0 2 S, it is easy to check that

kru˛kkC0.B†t .x0//
!C1

for any t . Choose x˛k 2 B
†
ı
.x0/ such that

jru˛k .x˛k /j D max
B†
ı
.x0/

jru˛k j;

and let

�˛k D
1

maxB†
ı
.x0/
jru˛k j

:

It is easy to see that x˛k! x0 as k!1. Then, in an isothermal coordinate system
around x0, we may define

vk.x/D u˛k .x˛k C�˛kx/:

It is well known that vk converges in C1.DR/ to a harmonic map v1 W C!N for
any fixed R, where DR DDR.0/D fz W jzj<Rg � C is a disk with radius R > 0.
We can regard v1 as a harmonic map from S2 into N . Usually, v1 is called the first
bubble. For the details on getting all the bubbles we refer to the appendix of [Li and
Wang 2010b]. Moreover, in [Li and Wang 2010a] (see also [Chen and Tian 1999;
Hong and Yin 2010]) we prove the following theorem which will be used later.

Theorem 2.3. Let .†; g/ be a closed Riemann surface and N a compact Riemann-
ian manifold. Suppose that H is a fixed homotopy class of maps from † into N
and u˛ is a minimizer of E˛ in the set W 1;2˛.†;N /\H . Then when ˛! 1 there
exists a subsequence fu˛g and harmonic map u0 such that fu˛g converges to u0
weakly in W 1;2.†;N / and blows up at finitely many points fpi W i D 1; 2; : : : ; mg.
Moreover, associated with each fpig there exist finitely many harmonic maps wij
from S2 into N , j D 1; 2; : : : ; i0, such that

lim
˛!1

E˛.u˛/DE.u0/C

mX
iD1

i0X
jD1

E.wij /:
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3. Construction of the counterexample

3A. Constructing the manifold .N; h/. Let h1 be the standard metric on

Y1 D T3 D S1 �S1 �S1 D R3=2�Z˚ 2�Z˚ 2�Z:

Let Br.p/ denote a geodesic ball in T3 with radius r and center p. Fix a point
p 2 Y1, and set

X1 D T3nBr.p/;

where r < �=.4
p
3C 2/. It is easy to see that the injective radius of Y1 at p is �

and B�.p/nBr.p/ is isometric to

T0 D
�
S2 � .�log�;�log r�; e�2t .ds2C dt2/

�
;

where gs D ds2 is the standard metric over S2. It is also easy to check that T0 is
isometric to

T00 D

�
S2 �

h
0; log �

r

�
; e2tC2 log r.ds2C dt2/

�
and

T000 D

�
S2 �

�
�log �

r
; 0
i
; e�2tC2 log r.ds2C dt2/

�
:

Let .X2; h2/D .X1; h1/. We consider the quotient space of X1[X2, obtained
by gluing every point x 2 @X1 with the same point x 2 @X2 together. In this way,
we get a closed compact manifold N and a projection map � WX1[X2!N . We
set

M D �.@Br.p//:

On N nM , the metric h0 D .��1/�.h1/[ .��1/�.h2/ is well defined and can
be extended to a metric g0 over N . However, g0 is not smooth and need to be
modified. Obviously, M has a neighborhood which is isometric to

T D
�
S2 �

�
�log �

r
; log �

r

�
; e2jt jC2 log r.ds2C dt2/

�
:

In fact, T is obtained by gluing T00 and T000 along S2 � f0g.
We let  be a smooth function defined on

�
�log �

r
; log �

r

�
which satisfies

(1)  D e2jt jC2 log r when jt j � log 2;

(2)  0 < 0 on .�log 2; 0/ and  0 > 0 on .0; log 2/.

Note that (2) implies that 0 is the only critical point of  on .�log 2; log 2/.
We define a new metric h on N which is h0 on N nT , and  .t/.ds2C dt2/

on T . It is easy to see that h is smooth on N . For convenience, we set

Q.a/D S2 �
�
�log a

r
; log a

r

�
� T:
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Obviously, we have

��1.Q.a//\X1 D Ba.p/nBr.p/� Y1:

Lemma 3.1. Let .N; h/, T and Q.a/ be defined as above. Assume that u W S2!
.N; h/ is a nontrivial harmonic map with u.S2/�Q.�/DT . Then u is a harmonic
map from S2 into M .

Proof. Let uD .v; f / W S2!Q.�/ be a harmonic map, where v 2 C1.S2; S2/
and f 2 C1.S2/. The energy can be written as

E.u/D
1

2

Z
S2
jruj2 dV D

1

2

Z
S2

�
jrvj2Cjrf j2

�
 .f / dV:

Here dV D dVgs is the standard volume form of S2. By a direct calculation, it is
easy to see that u satisfies

(3-1)
�r. .f /rv/C .f /jrvj2v D 0;

�r. .f /rf /C 1
2

�
jrvj2Cjrf j2

�
 0.f /D 0:

Multiplying both sides of the second equation of (3-1) by f and then integrating
the obtained identity over S2, we get the identityZ

S2

�
jrf j2 .f /C 1

2

�
jrvj2Cjrf j2

�
 0.f /f

�
dV D 0:

Noting that  0.f /f � 0 always holds true, we infer from the above identityZ
S2
jrf j2 .f / dsD

1

2

Z
S2

�
jrvj2Cjrf j2

�
 0.f /f dV D 0:

This implies that rf D 0 and f is a constant. Moreover, from the above identity
we also have

jrvj2 0f � 0:

Since u is nontrivial by assumption, there always exists a point x1 2 S2 such that
jrvj.x1/ ¤ 0. Hence we conclude that  0.f /f � 0 which implies f � 0. It
follows that v is a harmonic map from S2 into M . �

Lemma 3.2. Let .N; h/ and Q be the same as in Lemma 3.1. Assume that u is
a harmonic map from S2 into .N; h/ such that u.S2/\Q.2r/¤ ∅ and u.S2/\
@Q.�/¤∅. Then we have

E.u/� �.� � 2r/2:



114 YUXIANG LI AND YOUDE WANG

Proof. Without loss of generality, we assume p1 2X1 is such that p1 is in @B�.p/
in Y1 and �.p1/ is in u.S2/. First, u is a branched minimal surface since u is a
harmonic map from S2 into N . On the other hand, as h is flat on �.B��2r.p1//,
it is easy to check that u.S2/ \ �.B��2r.p1// is a stationary varifold. Denote
by �.u.S2/\B��2r.p1// the area of u.S2/\B��2r.p1/. By the monotonicity
inequality for stationary varifolds (see [Simon 1983]), we have

�.u.S2/\B��2r.p1//

�.� � 2r/2
� 1:

In light of this inequality and the fact E.u/� �.u.S2/\B��2r.p1//, we derive
the desired inequality

E.u/� �.� � 2r/2I

and the proof is complete. �

Since h is flat on N nQ.2r/, we have the following lemma.

Lemma 3.3. Let .N; h/ and Q be the same as in Lemma 3.1. Then there is no
nontrivial harmonic map u W S2! .N; h/ such that u.S2/\Q.2r/D∅.

By the definition of  , it is easy to check that

4� .0/� 16�r2 < 1
3
�.� � 2r/2

when r is small enough. Using Lemma 3.2 and Lemma 3.3, we get the following
result.

Corollary 3.4. Let .N; h/ and Q be the same as in Lemma 3.1. Assume that u is a
nontrivial harmonic map with E.u/ < �.� � 2r/2; then

E.u/D 4m� .0/

where m is a positive integer.

It is easy to check that

12� .0/ < 48�r2 < �.� � 2r/2;

if r < �

4
p
3C2

. Therefore we know that if E.u/ < 12� .0/ and u is a nontrivial
harmonic map, then E.u/D 4� .0/ or 8� .0/.

3B. The homotopy class Œuk�. We have �1.Y1/D �1.T3/D Z3. Let ˇ 2 �1.Y1/
which represents .1; 0; 0/. Let x1, x22M , and 
0 be a curve inM such that 
0.0/D
x2, and 
0.1/D x1. Let 
k W Œ0; 1�! X be a curve with 
k.0/D x1; 
k.1/D x2
and Œ
k C 
0� D kˇ. Let w0 be a diffeomorphism from S2 onto M satisfying
w0.0; 0; 1/D x1 and w0.0; 0;�1/D x2, where .0; 0; 1/ and .0; 0;�1/ are the north
and the south poles of S2 � R3, respectively.
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For the sake of convenience, we introduce the stereographic projection coordi-
nates on S2 with the south pole corresponding to1. Thus, w0 W S2!N can be
viewed as a map from C[f1g into N . For simplicity, we neglect the stereographic
projection map S W S2! C[f1g and still denote w0 ıS�1 by w0.

By the continuity of w0, there exists a small ı0 > 0 such that w0.Dı0/ is
contained in a small neighborhood of x1, where Dı0 D fz 2 C W jzj < ı0g, and a
large R0 > 0 such that w0.CnDR0/ is contained in a small neighborhood of x2,
where DR0 D fz 2 C W jzj<R0g.

In order to construct a sequence of maps, we need to define the following two
smooth nonnegative functions � and � on Œ0;1/:

(1) �.s/ W Œ0;1�! Œ0; 1� with �.s/� 0 as s 2 Œ0; ı0� and �.s/� 1 as s 2 Œ2ı0;1/.

(2) �.s/ W Œ0;1/! Œ0; 1� with �.s/� 1 as s 2 Œ0; R0�Rc0� and �.s/� 0 as s >R0,
where Rc0 is a small positive constant number.

Now we define a sequence of maps uk W S2!N by

uk D

8̂̂̂̂
<̂
ˆ̂̂:
w0.�.jzj/z/ jzj � ı0;


k

�
logjzj � logR0�0
log ı0� logR0�0

�
R0�0 < jzj< ı0;

w0

�
z

�.jzj=�0/�0

�
jzj � �0R0:

Here �0 > 0 is a fixed constant number such that R0�0 < ı0. By the arguments in
[Li and Wang 2010b], for any i ¤ j , ui is not homotopic to uj . For the sequence
fuig constructed above, we have the following lemma:

Lemma 3.5. Let uk be the maps from S2 into .N; h/ constructed above and Œuk� de-
note the class of maps inW 1;2.S2; N /\C.S2; N /, each map of which is homotopic
to uk . For any fixed k, we have

inf
u2Œuk�

E.u/D 8� .0/:

Moreover, infE.u/ cannot be attained by a harmonic map belonging to Œuk�.

Proof. First of all, we prove that for every fixed k

(3-2) inf
u2Œuk�

E.u/� 8� .0/:

Denote z1 D .0; 0; 1/ and z2 D .0; 0;�1/ 2 S2. Without loss of generality, we
assume w0 is a harmonic map from S2 into M with E.w0/ D 4� .0/ with
w0.z1/Dx1 andw0.z2/Dx2. Let S be the stereographic projection from S2nfz2g

to C and
Ou0.z/D w0.S

�1.z// W C[f1g!N:
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Choose a coordinate system .y1; y2; y3/ in a geodesic ball B�.x1/ around x1 2N
with x1 D .0; 0; 0/ and f.y1; y2; 0/ W .y1; y2; 0/ 2B�.x1/g �M . By the continuity
of w0, there exists a small ı > 0 such that w0.z/ 2B�.x1/ when jzj< ı. We define

u00 D �1 Ou0;

where �1 is a smooth nonnegative function which equals 1 outside D2ı , 0 on Dı ,
and satisfies jr�1j < C

ı
. Here D2ı � C denotes the disk centered at the origin.

Then we haveZ
D2ı

jru00j
2 dx2 � 2

Z
D2ı

�
jr�1j

2
j Ou0j

2
Cjr Ou0j

2
�
dx2 � Cı:

Thus u00 satisfies

distM .u00; Ou0/ < Cı; E.u00/ < 4� .0/CCı; and u00.Dı/D x1:

Since E is conformally invariant, Ou0.1=z/ is also a harmonic map from Cnf0g

into N with

E. Ou0.1=z/;C/DE. Ou0.z/;C/:

Thus, Ou0.1=z/ can be extended smoothly to f0g. Choose a coordinate system
.y1; y2; y3/ in a geodesic ball B�.x2/ around x2 2 N with x2 D .0; 0; 0/ and
f.y1; y2; 0/ W .y1; y2; 0/ 2 B�.x2/g �M . By the continuity of w0, there exists a
large R > 0 such that Ou0.z/ 2 B�.x2/ as jzj>R. Then we have

Ou0.1=z/DO.z/ and jr Ou0.1=z/j DO.1/; as z! 0:

Hence, we have

Ou0.z/DO.1=z/ and jz2r Ou0.z/j DO.1/; as z!1:

Let

u000.z/D �2.jzj/ Ou0.z/;

where �2.jzj/ is a smooth nonnegative function which equals 0 outside DR, 1 on
DR=2, and satisfies jr�1j< C

R
. Then we haveZ

CnDR=2

jru000j
2 dx2 � 2

Z
DRnDR=2

�
jr�2j

2
j Ou0j

2
Cjr Ou0j

2
�
dx2 �

C

R
:

Thus

distM .u000; u0/ <
C

R
; E.u000/ < 4� .0/C

C

R
; and u000.CnDR/D x2:
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We define

�k D

8̂̂̂<̂
ˆ̂:
u00.z/; jzj � ı;


k

�
logjzj � logR�
log ı� logR�

�
; R� < jzj< ı;

u000

�
z

�

�
; jzj � �R:

By a direct calculation, we obtainZ
DınDR�

jr�kj
2
D 2�

Z ı

R�

ˇ̌̌̌
@
k

@r

ˇ̌̌̌2
r dr

<
ck P
kk

2
L1

.�logR�C log ı/2

Z ı

R�

dr

r
D

ck P
kk
2
L1

log ı� logR�
:

Thus, for any �1 > 0, we can choose suitable ı, R and � such that

E.�k/ < 8� .0/C �1:

Obviously, 'k D �k.S�1/ is homotopic to uk , denoted by 'k � uk . Thus, we get
(3-2).

Next, we prove that infu2Œuk�E.u/ cannot be attained by a harmonic map. As-
sume it is attained by a harmonic map v0. Recall that

8� .0/ < 12� .0/ < 48�r2 < �.� � 2r/2;

where r >0 is small enough. By Lemma 3.2, v0.S2/�Q.�/. Thus v0 is a harmonic
map from S2 into M . This contradicts the fact v0 � uk . Hence infu2Œuk�E.u/
cannot be attained by a harmonic map.

Let u˛ be the ˛-harmonic map such that, for fixed k,

E˛.u˛/D inf
u2Œuk�\W 1;2˛.S2;N/

E˛.u/:

Then each map of fu˛g is minimizing and belongs to Œuk�. We claim that fu˛g does
not converge smoothly. Otherwise, the limit map is a harmonic map from S2 intoN ,
which is homotopic to uk . This contradicts the above fact that infu2Œuk�E.u/ cannot
be attained by a harmonic map. Hence, the bubbles must appear in the convergence
of u˛. If we denote the weak limit of fu˛g as u0 and the bubbles as v1; : : : ; vm,
then, by Theorem 2.3, we have

inf
u2Œuk�

E.u/D lim
˛!1

E˛.u˛/DE.u0/C

mX
iD1

E.vi /:

Since E.u0/ and E.vi / are smaller than �.� � 2r/2, E.u0/C
Pm
iD1E.v

i / can
only equal 8� .0/ or 4� .0/.



118 YUXIANG LI AND YOUDE WANG

Next, we will show that the following identity does not hold true:

E.u0/C

mX
iD1

E.vi /D 4� .0/:

If we assume this is true, then u0 is trivial and u˛ has only one bubble v1. To
derive a contradiction, we only need to prove u˛ � v1.

Let x0 2 S2 be a blowup point. Take an isothermal coordinate system around
x0 with x0 D .0; 0/ on S2 D C[f1g. Let v1 be the limit map of u˛.z˛C�1˛z/,
where z˛! 0, �1˛! 0. Then

v1˛.z/D u˛.z˛C�
1
˛z/

converges smoothly to v1 on any DR D DR.0/ � C. Moreover, u˛ converges
smoothly in C[ f1gnD1=R to a point y0 2 N . For us to prove u˛ � v1, it is
enough to check that for any � > 0, there exists an R > 0, such that

sup
t2ŒR�1˛;1=R�

osc@Dt .z˛/ u˛ < �:

Indeed, if this is not true then there exists a sequence of �2˛ with �2˛ ! 0 and
�2˛=�

1
˛!C1, such that

osc@D
�2˛
.z˛/ u˛! �1 ¤ 0:

Let
v2˛.z/D u˛.z˛C�

2
˛z/:

If the sequence fv2˛g has blowup points, then at each blowup point there exists at
least a bubble of fv2˛g which is also a bubble of u˛ and is different from the previous
bubble v1. However, this is impossible since there only exists one bubble for fu˛g.
Hence, we infer that as ˛! 1, fv2˛g converges smoothly on DR0 nD1=R0 � C for
any R0. It follows that

osc@D1v
2
˛! �1 ¤ 0:

This means that the limit map of fv2˛g is not trivial and the limit map is also a bubble
of fu˛g which is different from v1. This is a contradiction. Thus, we conclude

inf
u2Œuk�

E.u/DE.u0/C

mX
iD1

E.vi /D 8� .0/:

This completes the proof of the lemma. �

By the Sobolev embedding theorem, we know that for ˛ > 1,

W 1;2˛.S2; N /� C.S2; N /:
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For simplicity, let Œuk�˛ denote the class of maps belonging to W 1;2˛.S2; N /, each
map of which is homotopic to uk . In fact, it is easy to see that

Œuk�
˛
D Œuk�\W

1;2˛.S2; N /:

From now on, we will always denote the smooth map which attains infu2Œuk�˛ E˛.u/
by u˛;k:

E˛.u˛;k/D inf
u2Œuk�˛

E˛.u/:

Lemma 3.6. For any �0 > 8� .0/, there exists a sequence f˛kg with ˛k! 1 and
a sequence fikg such that E˛k .u˛k ;ik /D �0 for every k.

Proof. For ˛ 2 Œ1; ˛0/ where ˛0� 1 > 0 is small enough, we define the following
function

'k.˛/D inf
u2Œuk�˛

E˛.u/:

Firstly, we need to show that for any fixed ˛ 2 .1; ˛0/,

(3-3) lim
k!C1

'k.˛/DC1:

If this is false, then there exists a constant C such that 'k.˛/ � C as k is large
enough. We note that for any small ı and x 2 S2,
(3-4)

E.u˛;k; Bı.x//D
1

2

Z
Bı.x/

jru˛;kj
2
�
1

2

�Z
Bı.x/

jru˛;kj
2˛

�1=˛
jBı.x/j

.˛�1/=˛:

Hence, we can pick a fixed ı, which is small enough, such that

E.u˛;k; Bı.x// < �0:

Thus, by Theorem 2.1, there exists a subsequence of u˛;k which converges smoothly
to a smooth map u0 as k tends to1. Hence, we know that u˛;k are homotopic to
u0 for any k. This contradicts the fact that u˛;i is not homotopic to u˛;j as i ¤ j .

Next, we want to prove 'k is continuous on Œ1; ˛0/. Using (3-4) again, we can
prove that, for a fixed small � > 0,

kru˛;kkC0.S2/ <ƒ.�/

for any ˛ 2 .1C �; ˛0/. For any ˛, ˛0 2 .1C �; ˛0/, we have

'k.˛/�
1
2
.1CC 21 /

˛�˛0

Z
S2
.1Cjru˛;kj

2/˛
0

�
1
2

� .1CC 21 /
˛�˛0

'k.˛
0/C 1

2
.1CC 21 /

˛�˛0

�
1
2
;
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where

C1 D

�
0 when ˛ > ˛0;
ƒ.�/ when ˛ < ˛0:

It follows that
lim
˛!˛0

'k.˛/� 'k.˛
0/:

On the other hand, we also have

'k.˛
0/� 1

2
.1CC 22 /

˛0�˛

Z
S2
.1Cjru˛0;kj

2/˛ � 1
2
;

where

C2 D

�
0 when ˛0 > ˛;
kru˛0kkL1 when ˛0 < ˛:

It follows that

'k.˛
0/� .1CC 22 /

˛0�˛'k.˛/C
1
2
.1CC 22 /

˛0�˛
�
1
2
;

and
lim
˛!˛0

'k.˛/� 'k.˛
0/:

Therefore, we have
lim
˛!˛0

'k.˛/D 'k.˛
0/;

and we have shown the continuity of 'k.˛/ on .1; ˛0/.
Next, we want to prove that 'k.˛/ is left continuous at 1. Equivalently, we need

to show

(3-5) lim
˛&1

'k.˛/D 'k.1/:

Obviously, for any fixed u 2W 1;2.S2; N / and ˛1 > ˛2 > 1,

E˛1.u/�E˛2.u/�E.u/:

It follows that
'k.˛1/� 'k.˛2/� 'k.1/:

Hence, lim˛&1 'k exists and

lim
˛&1

'k.˛/� 'k.1/:

On the other hand, note that uk is a smooth map. Then for any � > 0, there
exists a smooth map u0

k
2 C1.S2; N / which is homotopic to uk (i.e., u0

k
� uk),

and satisfies
E.u0k/� 'k.1/C �:
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Since
lim
˛&1

E˛.u
0
k/DE.u

0
k/ and 'k.˛/�E˛.u

0
k/;

we have
lim
˛&1

'k.˛/� 'k.1/C �;

which implies (3-5), and shows that 'k.˛/ is continuous on Œ1; ˛0/ for any fixed k.
By (3-3), for any given sequence f˛0

k
g with ˛0

k
! 1, there exists a sequence fikg

such that E˛0
k
.u˛0

k
;ik
/ > �0, or equivalently, 'ik .˛

0
k
/ > �0. Lemma 3.5 tells us that

'ik .1/D 8� .0/ for any ik . By the assumption �0 > 8� .0/ we have

'ik .˛
0
k/ > �0 > 'ik .1/:

Since 'k.˛/ is continuous on Œ1; ˛0/, we conclude that for any fixed ik there exists
˛k 2 .1; ˛

0
k
/ such that

'ik .˛k/DE˛k .u˛k ;ik /D �0:

This completes the proof. �

3C. The counterexample. By Lemma 3.6, for given � 2 .8� .0/; 12� .0// there
exist a sequence f˛k W ˛k > 1; k 2 Ng with ˛k! 1 and a sequence of minimizing
˛k-harmonic maps vk 2W 1;2˛k .S2; N / with vk � uik such that

� DE˛k .vk/D inf
u2Œuik �

˛k

E˛k .u/ for all k 2 N:

Since vi and vj are not in the same homotopy class for any i ¤ j , vk must blow up
as k!C1. Let v0 be the weak limit of fvkg in W 1;2.S2; N /, and v1; : : : ; vm

be all the bubbles produced in the convergence of fvkg. Since E.vi / < 12� .0/,
it follows from Corollary 3.4 that E.vi /D 4� .0/ or 8� .0/. Hence,

1

4� .0/

�
E.v0/C

mX
iD1

E.vi /

�
is always an integer. However, certainly �

4� .0/
is not an integer by the previous

assumption. So the energy identity is not true for the sequence fvkg:

lim
k!1

E˛k .vk/¤E.v
0/C

mX
iD1

E.vi /:

Remark 3.7. By an argument in [Li and Wang 2010b], we also have

lim
k!1

E.vk/¤E.v
0/C

mX
iD1

E.vi /:
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4. An example of a manifold whose energy set is nondiscrete
for harmonic 2-spheres

In this section, we will construct a Riemannian manifold .N; h/ for which E.N; h/

is not discrete. In other words, E.N; h/ admits limit points.
Let  .t/ be a smooth positive function defined on .�1; 1/ satisfying

 .t/D e�1=t
2

sin 1
t
C 1; t 2 .�1

2
; 1
2
/:

It is easy to check that the critical point of  .t/ satisfies the equation

tan 1
t
D

t
2
:

Thus, we can find tk! 0, such that  0.tk/D 0,  .tk/¤ 1 and  .tk/! 1.
Let

hD  .t/.ds2C dt2/;

which is a metric over S2 � .�1; 1/. Let v be the identity map from S2 to S2 and

uk D .v; tk/ W S
2
! .N; h/� .S2 � .�1; 1/; h/:

By (3-1), it is easy to see that uk is a harmonic map from S2 into .S2� .�1; 1/; h/
with

E.uk/D 4� .tk/:

Thus, 4� is not a discrete number in E.S2 � .�1; 1/; h/.
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