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THEORY OF NEWFORMS OF HALF-INTEGRAL WEIGHT

MURUGESAN MANICKAM, JABAN MEHER

AND BALAKRISHNAN RAMAKRISHNAN

We set up the theory of newforms of half-integral weight on 00(8N) and
00(16N), where N is odd and squarefree. Further, we extend the definition
of the Kohnen plus space in general for trivial character and also study the
theory of newforms in the plus spaces on 00(8N), 00(16N), where N is odd
and squarefree. Finally, we show that the Atkin–Lehner W-operator W4

acts as the identity operator on Snew
2k (4N), where N is odd and squarefree.

This proves that S−2k(4)= S2k(4).

1. Introduction

Let k,M be positive integers, k ≥ 2. Write M = 2αN , α ≥ 0, N ≥ 1, N odd.
Let χ0 be a Dirichlet character modulo N with ε = χ0(−1) and let χ1 be an
even Dirichlet character modulo 2α+2. Let χ =

( 4ε
·

)
χ1χ0. Let Sk+1/2(4M, χ) be

the space of cusp forms of half-integral weight k+ 1
2 for 00(4M) with character

χ , and let S2k(2M, χ2) be the space of cusp forms of weight 2k, level 2M with
character χ2. By the work of G. Shimura [1973] and S. Niwa [1975], there exist
linear operators St,4M,χ indexed by squarefree integers t , ε(−1)k t > 0, which
commute with the action of Hecke operators T (n2), (n, 2M) = 1, and map the
space Sk+1/2(4M, χ) into the space S2k(2M, χ2). If M is an odd integer, W.
Kohnen [1980; 1982] introduced a canonical subspace S+k+1/2(4M, χ), called the
Kohnen plus space, in the full space Sk+1/2(4M, χ). He defined modified Shimura
lifts S+D,4M,χ , called Shimura–Kohnen lifts, indexed by fundamental discriminants
D, ε(−1)k D > 0, which commute with the action of Hecke operators T (n2),
(n,M) = 1, where T (4) = T+(4) is the Hecke operator introduced by Kohnen
on the plus space. He proved that the linear operator S+D,4M,χ maps the space
S+k+1/2(4M, χ) into the space S2k(M, χ2). The idea of characterising the spaces of
half-integral weight forms Hecke-equivalent to a fixed integral weight newform is
important, and establishing Hecke equivariant isomorphisms via trace identities is
certainly a powerful tool. These isomorphisms often give hints as to how to further
decompose these eigenspaces to obtain multiplicity-one results. The first such work
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was by Kohnen, who achieved that goal by introducing the plus space, which we
now wish to generalise. Kohnen [1980; 1982] initiated the study of the theory of
newforms for the plus space S+k+1/2(4M, χ) along the lines of Atkin and Lehner
[1970], where M is odd and squarefree and χ2

= 1. Using the trace identities proved
by Niwa [1977], M. Manickam, B. Ramakrishnan and T. C. Vasudevan [Manickam
et al. 1990] set up the theory of newforms for the full space Sk+1/2(4M, χ), where
M is odd and squarefree and χ2

= 1. If M is even and squarefree, this theory is
known on the full space Sk+1/2(4M, χ) by the work of Manickam [1980; 2011].
For similar theories we refer to [Serre and Stark 1977; Shemanske 1996; Ueda
1988; 1991; 1993; 1998; 2001].

Kohnen introduced the plus space in Sk+1/2(4M, χ) when M is odd by letting

S+k+1/2(4M, χ)={ f ∈ Sk+1/2(4M, χ) :a f (n)=0 unless ε(−1)kn≡0, 1 (mod 4)}.

Ueda and Yamana [2010] extended the definition of the plus space for Sk+1/2(4M)
(M is even and squarefree) by using the same condition on the Fourier coefficients.
If M is even, let

S+k+1/2(4M)= { f ∈ Sk+1/2(4M) : a f (n)= 0 unless (−1)kn ≡ 0, 1 (mod 4)}.

In the case where M is odd, the Kohnen plus space S+k+1/2(4M) is an eigensubspace
of Sk+1/2(4M) under a hermitian operator U (4)W (4) [Kohnen 1982; Manickam
et al. 1990], whereas in all other cases it is the image of the projection operator P+
on Sk+1/2(4M) (M even) given by

P+ :
∑
n≥0

a(n)qn
−→

∑
n≥0

(−1)k n≡0,1 (mod 4)

a(n)qn.

This operator P+ was introduced by Kohnen and considered by Ueda and Yamana
[2010]. If M is even, P+ preserves the space Sk+1/2(4M). This phenomenon is
striking and it allows us to define the plus space for an even integer M by

S+k+1/2(4M)= Sk+1/2(4M)|P+.

In this paper we generalise the theory of newforms for the Kohnen plus space
and the full space whenever the traces of Hecke operators acting on the spaces of
integral and half-integral weight modular forms are equal. We also consider the
space Sk+1/2(16N ), N odd and squarefree, and develop the theory of newforms by
computing the dimension, since Ueda’s trace formula is known for the case where
the character of the space is nontrivial. In this case, we prove that the newform
spaces Snew

k+1/2(16N ) and S+,new
k+1/2(16N ) contain only the zero function.

Let us now explain the results of this paper. Let M = 2αN , α = 1, 2, N odd and
squarefree, χ2

= 1 and χ = χ8 when α= 2, where χ8 is the real quadratic primitive
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even character modulo 8 defined by χ8(n)=
( 2

n

)
. Then there is a Hecke-equivariant

isomorphism [Ueda 1988]

ψ : Sk+1/2(4M, χ)−→ S2k(2M).

We define the space of newforms in the full space as

Snew
k+1/2(4M, χ)=

⊕
F

Snew
k+1/2(4M, χ; F),

where the sum varies over an orthogonal basis of normalised Hecke eigenforms in
Snew

2k (2M), and for each such F let

Snew
k+1/2(4M; F)= { f ∈ Sk+1/2(4M, χ) : f |T (n2)= aF (n) f,∀n ≥ 1, (n, 2M)= 1}.

Then, Snew
k+1/2(4M, χ) is the inverse image of Snew

2k (2M) under the isomorphism ψ ,
so the “multiplicity-one” result is valid for Snew

k+1/2(4M, χ).
Consider the plus space S+k+1/2(8N ). Since P+ preserves the space Sk+1/2(8N )

and P+T (n2)= T (n2)P+, (n, 2N )= 1, we define S+,new
k+1/2(8N )= Snew

k+1/2(8N )|P+,
and as such the plus space S+,new

k+1/2(8N ) is a subspace of Snew
k+1/2(8N ). For a nonzero

Hecke eigenform f ∈ Snew
k+1/2(8N ; F), the form f |P+ is also a nonzero Hecke

eigenform belonging to the same space having the same eigenvalues (for almost
all Hecke operators) as that of f . Since N is odd and squarefree, a multiplicity-
one result holds for the space Snew

k+1/2(8N ) and hence f |P+ = f . This proves the
equality S+,new

k+1/2(8N )= Snew
k+1/2(8N ). To get f |P+ 6= 0, we use the multiplicity-one

result along with the fact that F |S∗t 6= 0 for some squarefree integer t ≡ 1 (mod 4),
(−1)k t > 0. Here S∗t is the Shintani lifting, which is the adjoint of the Shimura
map St with respect to the Petersson scalar product (St maps Sk+1/2(8N ) into
S2k(4N )) — see [Manickam et al. 1989; Shintani 1975]. The nonvanishing of F |S∗t
follows from the fact that the |t |-th Fourier coefficient of F |S∗t is (up to a nonzero
constant) equal to the special value L(F, t, k) and, for some choice of squarefree
integer t , (t, 2N )= 1, this special value is nonzero — see [Murty and Murty 1997].
Thus, we get F |S∗t |P+ 6= 0, since t ≡ 1 (mod 4).

Now, we let M = 4N and χ be trivial. Through the dimension formula we
observe that Snew

k+1/2(16N ) = S+,new
k+1/2(16N ) = {0}. Further, we develop the theory of

newforms on Sk+1/2(16N , χ), where χ is trivial or χ = χ8. Thus, in this paper we
consider the above assumptions on M :

M =
{

2N χ trivial,
4N χ trivial or χ = χ8,

with N odd and squarefree, and set up the theory of newforms. We observe that the
Shimura–Kohnen lifts map the space S+,new

k+1/2(8N ) into the space Snew
2k (4N ) instead

of Snew
2k (2N ).
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Finally, as an application of the theory of newforms of half-integral weight, we get
explicit eigenvalues for the W-operators on S2k(2M) (see [Gun et al. 2010], for exam-
ple). More precisely, if M=2N or 4N (N odd and squarefree), and if F ∈ Snew

2k (2M)
is a normalised newform with associated newform f ∈ Snew

k+1/2(4M, χ) (8| condχ
if M = 4N ), then we have

f |wp =

(D
p

)
f

for all p|N , where D is a fundamental discriminant, (−1)k D> 0, (D,M)= 1 with
a f (|D|) 6= 0. To get this, we use f |wp = λp f and the explicit Fourier expansion
of f |wp (see [Kohnen 1982]). Thus, for p|N , F |Wp =

( D
p

)
F . Now,

L∗(F, D, s) :=
(

2π
√

2M |D|

)−s

0(s)L(F, D, s)

satisfies

L∗(F, D, 2k− s)=
( D

2M

)
λ2M L∗(F, D, s),

( D
−1

)
= (−1)k,

where λ2M is the product of eigenvalues of the various W-operators Wpβ ,

β =

{
α+ 1 if p = 2,
1 otherwise.

Using λp =
( D

p

)
for all primes p|N in the above functional equation, we get( D

2β
)
· λ2β = 1, since L(F, D, k) is nonzero for some fundamental discriminant

D, (D, 2N ) = 1. From this we conclude that the eigenvalue of the W-operator
W2β on Snew

2k (2M) is equal to 1 when β is even. This proves that S2k(4)= S−2k(4),
where

S−2k(m)=
{

f ∈ S2k(m) : f
∣∣∣∣ (0 −1

m 0

)
= f

}
.

The above subspace was introduced by Skoruppa and Zagier [1988] in connection
with the theory of newforms for the space of Jacobi cusp forms.

2. Preliminaries

We begin by recalling some basic facts regarding modular forms of half-integral
weight. Let H denote the upper half-plane consisting of complex numbers τ ∈C with
Im(τ )>0. For complex numbers z 6=0, x , we let zx

= ex log z , log z= log |z|+i arg z,
−π < arg z ≤ π . Let ζ be a fourth root of unity. Let G denote the four-sheeted
covering of GL+2 (Q) defined as the set of all ordered pairs (α, φ(τ)), where
φ(τ) is a holomorphic function on H such that φ2(τ ) = ζ 2(cτ + d)/

√
detα and

α=
(a

c
b
d

)
∈GL+2 (Q). Then G is a group with multiplication (α, φ(τ))(β, ψ(τ))=

(αβ, φ(βτ)ψ(τ)). Let k ≥ 2 be a natural number. For a complex valued function f
defined on the upper half-plane H and an element (α, φ(τ)) ∈ G, define the stroke
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operator by f |k+1/2(α, φ(τ))(τ )= φ(τ)
−2k−1 f (ατ). We omit the subscript k+ 1

2
wherever there is no ambiguity. For 00(4) and its subgroups, we take the lifting
00(4)→ G as the collection {(α, j (α, τ ))}, where

α =

(
a b
c d

)
∈ 00(4) and j (α, τ )=

( c
d

)(
−4
d

)−1/2
(cτ + d)1/2.

Here
( c

d

)
denotes the generalised quadratic residue symbol and

(
−4
d

)1/2 is equal
to 1 or i according as d is 1 or 3 modulo 4. Let M be a natural number. A
holomorphic function f : H→ C is called a modular form of weight k + 1

2 for
00(4M) with character χ (modulo 4M) if f |k+1/2(γ, j (γ, τ ))(τ )= χ(d) f (τ ) for
all γ =

(a
c

b
d

)
∈00(4M) and f is holomorphic at all the cusps of 00(4M). If, further,

it vanishes at all the cusps, then it is called a cusp form. The set of cusp forms
defined as above forms a complex vector space denoted by Sk+1/2(4M, χ). If χ
is the trivial character, then the space is denoted by Sk+1/2(4M). We also denote
by Sk(M) the space of cusp forms of weight k on 00(M) with trivial character.
The Fourier expansion of a cusp form f at the cusp infinity is usually written as
f (τ )=

∑
n≥1 a f (n)qn , where q = e2π iτ . For a prime p, the p-th Hecke operator on

Sk+1/2(4M) is denoted by T (p2) if p -2M and U (p2) if p |2M ; and on S2k(M) is de-
noted by T (p) if p - M and U (p) if p|M . By a Hecke eigenform in Sk+1/2(4M, χ),
we mean a nonzero form in the space which is a simultaneous eigenform for all
Hecke operators T (n2), (n, 2M)= 1. For any positive integer n, the operators U (n)
and B(n) are defined on formal sums by U (n) :

∑
m≥1 a(m)qm

7→
∑

m≥1 a(mn)qm ,
B(n) :

∑
m≥1 a(m)qm

7→
∑

m≥1 a(m)qnm . The Petersson inner product for forms
f , g ∈ Sk+1/2(4M) is defined by

(1) 〈 f, g〉 = 1
i4M

∫
F

f (τ )g(τ )vk−3/2 du dv,

where F is a fundamental domain for the action of 00(4M) on H, i4M is the index
of 00(4M) in SL2(Z) and τ = u+ iv.

2.1. Shimura and Shintani liftings. Let t be a squarefree integer with (−1)k t > 0.
Then the t-th Shimura map on the space Sk+1/2(4M) is defined by

(2) f |St =
∑
n≥1

( ∑
d|n

(d,2M)=1

(4t
d

)
dk−1a f (|t |n2/d2)

)
qn.

We summarise the Shintani lifting [Manickam et al. 1989] when M = 2αN , N is
odd and α ≥ 1. If t is a squarefree integer, (−1)k t > 0, then for F ∈ S2k(2M) we
have F |S∗t ∈ Sk+1/2(4M) and it is given by
(3)
F |S∗t = (−1)[k/2]2k−1+(a+1)(−k+1/2)

∑
m≥1

(∑
r |N

µ(r)
( t

r

)
r−krk,2Mr (F;1mr2)

)
qm,
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where rk,2M(F;1m) is a certain cycle integral given by

(4) rk,2M(F;1m)=
∑

ωt(Q)
∫

CQ

F(z)(az2
+ bz+ c)k−1 dz.

In the above, the sum is over all 00(2M)-equivalent quadratic forms Q = [a, b, c]
with discriminant b2

− 4ac = 1m, 1 = 4α+1
|t | and a ≡ 0 (mod 22α+1 N ); CQ is

the image in 00(2M)\H of the semicircle a|z|2 + b<(z)+ c = 0 oriented from
(−b−

√
1m)/2a to (−b+

√
1m)/2a if a 6= 0, or of the vertical line b<(z)+c= 0

oriented from −c/b to i∞ if b > 0 and from i∞ to −c/b if b < 0, a = 0.
Let us compute rk,2M(F;1|t |). Since 1|t | = 4α+1t2, we take the representatives
{[0, 2α+1

|t |, µ]◦Wr :µ (mod 2α+1
|t |), r |2M, r > 0}, where Wr is the Atkin–Lehner

W-operator. Note that ωt(Qµ ◦Wr ) =
( t

r

)
ωt(Qµ) =

( t
r

)( t
µ

)
. Now, following the

arguments in [Kohnen 1985, p. 243] we get

(5) rk,2M(F; 4α+1t2)= 2ν(2M)(−1)[k/2](2π)−k0(k)(2α+1
|t |)k−1/2L(F, t, k),

where ν(2M) is the number of prime factors of 2M . From this we get that, when
F is a newform, the |t |-th Fourier coefficient of F |S∗t is (up to a nonzero constant)
the special value L(F, t, k).

2.2. W-operators and the projection operator P+. For p|2N , let Wp denote the
Atkin–Lehner W-operator on S2k(2N ). For p = 2, we define the analogous Atkin–
Lehner W-operators W (4) on Sk+1/2(4N ) and W (8) on Sk+1/2(8N ) as follows:

W (4)=
((

4a b
4Nc 4

)
, 21/2eiπ/4(Ncτ + 1)1/2

)
,

where a, b, c are integers satisfying 4a− Nbc = 1 and b ≡ 1 (mod 4);

(6) W (8)=
((

8x y
8Nw 8

)
, 81/4eiπ/4(Nwτ + 1)1/2

)
,

where x , y, w are integers such that y ≡ 1 (mod 8), 8x − Nwy = 1. We also let

W∗(4)=
((

4u v

4Nr 8

)
, 21/2eiπ/4(Nrτ + 2)1/2

)
,

where r , u, v are integers satisfying 8u− Nrv = 1 and v ≡ 1 (mod 8).

Remark 2.1. The W-operators defined above are independent of the choice of
the integers a, b, c, x , y, w, r , u, v with the given conditions. We note that
W∗(4)=W (4) on Sk+1/2(4N ); see [Manickam 1980; 2011] for details. The operator
W (8) maps Sk+1/2(8N ) into Sk+1/2(8N , χ8), and W (8)2 = I on Sk+1/2(8N , χ),
where χ is the principal character or χ = χ8 and I denotes the identity operator.
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We now define the projection operator P+ on Sk+1/2(4M) when M is even. Let
ξ =

(( 4
0

1
4

)
, eπ i/4

)
and ξ ′=

((4
0
−1
4

)
, e−π i/4

)
. Then a formal computation shows that

ξ (and hence ξ ′) preserves the space Sk+1/2(4M) if 4|M . Hence, if 4|M , we have

(7) ξ + ξ ′ : Sk+1/2(4M)−→ Sk+1/2(4M).

However, in the following we prove the above property for any even integer M . Let
M = 2N , where N is an odd positive integer. We write

ξ + ξ ′ = ξ +

(
1− 2N (N − 1)/2

8N 1− 2N

)∗
ξ

(
1 0
−8N 1

)∗
= ξ + ξ

(
1 0
−8N 1

)∗
= ξ Tr on Sk+1/2(8N ),

where Tr=
∑

ν=0,1
( 1
−4Nν

0
1

)∗ is adjoint to the inclusion Sk+1/2(8N ) ↪→ Sk+1/2(16N )
with respect to the Petersson scalar product. On formal Fourier series

∑
anqn , we

have

(8)
∑

anqn
|(ξ+ξ ′)=χ8(2k+1)

√
2
( ∑
(−1)kn≡0,1 (mod 4)

anqn
−

∑
(−1)kn≡2,3 (mod 4)

anqn
)
.

We define

(9) P+ :=
1
2

(
χ8(2k+ 1)
√

2
(ξ + ξ ′)+ I

)
.

Then
f |P+ =

∑
(−1)kn≡0,1 (mod 4)

a f (n)qn
∈ Sk+1/2(4M),

where f =
∑

n≥1 a f (n)qn
∈ Sk+1/2(4M).

3. Newforms on the plus space S+k+1/2(8N)

In the recent work of Ueda and Yamana [2010], the plus space for Sk+1/2(8N ) has
been introduced and they studied the theory of newforms. In this case each newform
in the full space Snew

k+1/2(8N ) (see [Manickam 1980; 2011]) satisfies f |P+ = f .
This follows by using that P+ maps Snew

k+1/2(8N ) into itself and the multiplicity-one
result obtained from Ueda’s trace formula, together with the nonvanishing of F |S∗t
for some squarefree t ≡ 1 (mod 4), where F ∈ Snew

2k (4N ) is a normalised newform
equivalent to f . Hence, the elements of Snew

k+1/2(8N ) also satisfies the same plus
space condition. Therefore, we consider the development of the theory of newforms
on S+k+1/2(8N ) and present the results in this section.
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Let us first state the results for the full space Sk+1/2(8N ), where N is odd
and squarefree. The following orthogonal decomposition of Sk+1/2(8N ) has been
obtained in [Manickam 1980; 2011]:

(10) Sk+1/2(8N )= Snew
k+1/2(8N )⊕ Sold

k+1/2(8N ),

where Snew
k+1/2(8N ) = S+,new

k+1/2(8N ) and the space of oldforms Sold
k+1/2(8N ) has the

decomposition

(11) Sold
k+1/2(8N )=

⊕
rd|N ,d<N

S+,new
k+1/2(8d)|U (r2)⊕

⊕
rd|N

Snew
k+1/2(4d)|U (r2)

⊕

⊕
rd|N

Snew
k+1/2(4d)U (r2)|P+⊕

⊕
d|N

rd|2N

S+,new
k+1/2(4d)|U (r2)

⊕

⊕
rd|N

S+,new
k+1/2(4d)|U (4r2)|P+.

We need to show only that, for a fixed divisor d|N , the sum

S+,new
k+1/2(4d)+ S+,new

k+1/2(4d)|U (4)+ S+,new
k+1/2(4d)|U (4)P+

is direct. For some constants α, β, γ and a newform f ∈ S+,new
k+1/2(4d), if we have

α f +β f |U (4)+ γ f |U (4)P+ = 0,

then, applying the operator U (4) we get

α f |U (4)=−(β + γ ) f |U (16),

from which we conclude that α= 0. Since S+,new
k+1/2(4d)|U (4)⊕ S+,new

k+1/2(4d)|U (4)P+
is a direct sum, it follows that β = γ = 0. This proves the required direct sum.

Thus, we get the following theorem regarding the plus space S+k+1/2(8N ):

Theorem 3.1. The plus space S+k+1/2(8N ) has the orthogonal decomposition

S+k+1/2(8N )= S+,new
k+1/2(8N )⊕ S+,old

k+1/2(8N ),
where

(12) S+,old
k+1/2(8N )=

⊕
rd|N ,d<N

S+,new
k+1/2(8d)|U (r2)⊕

⊕
rd|N

Snew
k+1/2(4d)U (r2)|P+

⊕

⊕
rd|N

S+,new
k+1/2(4d)|U (4r2)|P+.

The spaces S+,new
k+1/2(8N ) and S+,old

k+1/2(8N ) are mapped into the spaces Snew
2k (4N ) and

Sold
2k (4N ) respectively under the Shimura lifting. Moreover, the spaces of newforms

S+,new
k+1/2(8N ) and Snew

2k (4N ) are isomorphic under a linear combination of Shimura
lifts indexed by squarefree integers t ≡ 1 (mod 4), (−1)k t > 0.
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Remark 3.2. If f ∈ S+,new
k+1/2(8N )= Snew

k+1/2(8N ), then a f (n)=0 whenever (−1)kn is
not congruent to 1 modulo 4. Hence, the Shimura maps St,8N annihilate Snew

k+1/2(8N )
whenever t 6≡ 1 (mod 4), (−1)k t > 0.

4. Newform theory on Sk+1/2(16N)

In this section, we extend the theory of newforms to the space Sk+1/2(16N ), where
N is odd and squarefree. In this case, Ueda’s trace formula is not valid as condχ =1.
Also from the work of Manickam, Ramakrishnan and Vasudevan [Manickam et al.
1989] on the Shintani lifting, it seems that there exists no Shintani lift from Snew

2k (8N )
to Sk+1/2(16N ). But, such a lifting exists if we replace the trivial character by a
primitive character modulo 8 or 16 (see [Manickam et al. 1989]). This indicates the
nonexistence of a nontrivial space of newforms in Sk+1/2(16N ), which is mapped to
Snew

2k (8N ) under the Shimura lifting. To realise this, we compute the dimension of
the space Sk+1/2(16N ) and give a decomposition of the space of oldforms (which
turns out to be the full space).

Let us now compute the dimensions of the spaces S2k(4N ) and Sk+1/2(16N ).
Using [Martin 2005], we have

(13) dim S2k(4N )= 2k−1
12

4N
∏
p|2N

(
1+ 1

p

)
−

3
2

2ν(N )

=
(2k−1)

2

∏
p|N

(p+ 1)− 3 · 2ν(N )−1,

where ν(N ) is the number of prime factors of N . Now, using [Cohen and Oesterlé
1977], we get
(14)

dim Sk+1/2(16N )= 2k−1
24

16N
∏
p|2N

(
1+ 1

p

)
−
ζ(k, 16N , 1)

2

∏
p|N

λ(rp, sp, p)

= (2k− 1)
∏
p|N

(p+ 1)− 3 · 2ν(N ).

(In the above we have used the dimension formula as given in [Ono 2004, Theo-
rem 1.56, p. 16].) Equations (13), (14) imply that dim Sk+1/2(16N )= 2 dim S2k(4N ).

We now state the main theorem of this section.

Theorem 4.1. We have

(15) Snew
k+1/2(16N )= {0}

and
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(16) Sk+1/2(16N )

=

⊕
rd|N

(
S+,new

k+1/2(4d)⊕ S+,new
k+1/2(4d)|U (4)⊕ S+,new

k+1/2(4d)|U (4)P+

⊕S+,new
k+1/2(4d)|U (8)B(2)⊕ S+,new

k+1/2(4d)|B(4)

⊕S+,new
k+1/2(4d)|U (4)B(4)

)
|U (r2)

⊕

⊕
rd|N

(
Snew

k+1/2(4d)⊕ Snew
k+1/2(4d)|P+⊕ Snew

k+1/2(4d)|U (2)B(2)

⊕Snew
k+1/2(4d)|B(4)

)
|U (r2)

⊕

⊕
rd|N

(
Snew

k+1/2(8d)⊕ Snew
k+1/2(8d)|W (16)

)
|U (r2),

where W (16) is the W-operator corresponding to the prime p = 2 in Sk+1/2(16N ).

Proof. It is enough to show the direct sum in the respective eigensubspaces. First
consider the eigensubspace generated by S+,new

k+1/2(4d). By Theorem 3.1, the sum
S+,new

k+1/2(4d)+ S+,new
k+1/2(4d)|U (4)+ S+,new

k+1/2(4d)|U (4)P+ is direct and, assuming the
rest of the sum in the eigensubspace is not direct, then we have f ∈ S+,new

k+1/2(4d)
which is nonzero and such that all odd coefficients of f |U (8) are zero, by assuming
S+,new

k+1/2(4d)|U (8) ∩ (S+,new
k+1/2(4d)|B(2)+ S+,new

k+1/2(4d)|U (4)B(2)) is nonzero. That
is, f |U (4) ∈ Sk+1/2(4d) has the property that its n-th Fourier coefficient is zero
whenever n ≡ 2 (mod 4). This means that f |U (4) ∈ S+k+1/2(4d), a contradiction
since 0 6= f ∈ S+k+1/2(4d). Hence all the sums in the eigensubspace generated by
S+,new

k+1/2(4d) are direct. Next, consider the eigensubspace generated by Snew
k+1/2(4d).

Clearly Snew
k+1/2(4d)⊕ Snew

k+1/2(4d)|P+ is a direct sum in Sk+1/2(8N ). If there is a
nonzero element in the intersection of Snew

k+1/2(4d)|U (2)B(2) and Snew
k+1/2(4d)|B(4),

then the n-th Fourier coefficient of a nonzero form f ∈ Snew
k+1/2(4d) vanishes when-

ever n ≡ 2 (mod 4) and hence, by [Kohnen 1982, Lemma], 0 6= f ∈ S+k+1/2(4d), a
contradiction. So, the subspace Sk+1/2|U (2)B(2)⊕Snew

k+1/2(4d)|B(4) is a direct sum
in Sk+1/2(16N ). In order to prove that all the sum as above generated by Snew

k+1/2(4d)
is direct, we use the following fact. If f ∈ Sk+1/2(8N , χ8) and f |B(2)∈ Sk+1/2(8N ),
then f = 0, by [Serre and Stark 1977, Lemma 7]. Finally, applying U (2) on
the eigensubspace of Snew

k+1/2(8d), one component is mapped to zero and the other
component is Snew

k+1/2(8d)|W (8), which is nonzero. Hence, we get that the sum in this
eigensubspace is direct. This completes the proof for the direct sum decomposition
of Sold

k+1/2(16N ).
Since the spaces S+,new

k+1/2(4d), Snew
k+1/2(4d) and Snew

k+1/2(8d) are isomorphic (un-
der the Shimura correspondence) to the spaces Snew

2k (d), Snew
2k (2d) and Snew

2k (4d)
respectively, we see that

dim Sold
k+1/2(16N )=

∑
rd|N

(6 dim Snew
2k (d)+ 4 dim Snew

2k (2d)+ 2 dim Snew
2k (4d))

(17)
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= 2
∑
rd|N

(3 dim Snew
2k (d)+ 2 dim Snew

2k (2d)+ dim Snew
2k (4d))

= 2 dim S2k(4N )= dim Sk+1/2(16N )

from the above computation. Therefore, it follows that Snew
k+1/2(16N )= {0}. �

5. Newform theory on Sk+1/2(16N, χ8)

In this section, we study the theory of newforms on Sk+1/2(16N , χ8), where χ8 is
the even quadratic character modulo 8 defined in the introduction and N is odd
and squarefree. Since condχ8 = 8, by Ueda’s result [1988] there exists a Hecke
equivariant isomorphism between the spaces Sk+1/2(16N , χ8) and S2k(8N ). Define
the space of oldforms in Sk+1/2(16N , χ8) as follows:

(18) Sold
k+1/2(16N , χ8)

=

∑
rd|N

(S+,new
k+1/2(4d)|B(2)+ S+,new

k+1/2(4d)|U (2))U (r2)

+

∑
rd|N

(S+,new
k+1/2(4d)|U (8)+ S+,new

k+1/2(4d)|U (8)W (8)B(2))U (r2)

+

∑
rd|N

(Snew
k+1/2(4d)|U (2)+ Snew

k+1/2(4d)|B(2))U (r2)

+

∑
rd|N

Snew
k+1/2(4d)|U (2)W (8)B(2)U (r2)+

∑
rd|N

Snew
k+1/2(8d)|B(2)U (r2)

+

∑
rd|N

Snew
k+1/2(8d)|W (8)U (r2)+

∑
rd|N ,d<N

Snew
k+1/2(16d, χ8)|U (r2).

First consider the sum in the eigensubspace generated by S+,new
k+1/2(4d). Suppose

( f1|U (4)+ f2)|U (2)= f3|B(2), where fi ∈ S+,new
k+1/2(4d), i = 1, 2, 3. This implies

that f1|U (4)+ f2 ∈ Sk+1/2(4d) is such that all its Fourier coefficients which are
congruent to 2 modulo 4 are zero. Hence, by [Kohnen 1982, Lemma], we conclude
that f1|U (4)+ f2 ∈ S+k+1/2(4d). Thus, f1 = 0. Therefore, f2|U (2)= f3|B(2), i.e.,
f2 and f2|U (4) belong to S+k+1/2(4d), which implies that f2 and hence f3= 0. Now,
among the four components, the first three direct sums belong to Sk+1/2(8d, χ8).
But, the fourth one is in Sk+1/2(4d)|B(2) ∈ Sk+1/2(16, χ8). This shows that all the
four components form a direct sum. Next, consider the eigensubspaces generated
by Snew

k+1/2(4d) and Snew
k+1/2(8d). A similar argument as above together with the

following lemma shows that the respective sums are direct.

Lemma 5.1. The operator U (2)W (8) has the following mapping property:

U (2)W (8) : Sk+1/2(4N )−→ Sk+1/2(8N ).
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Moreover, if f ∈ Sk+1/2(4N ), then f |U (2)W (8) ∈ Sk+1/2(4N ) if and only if
f ∈ S+k+1/2(4N ).

Proof. The mapping property follows from a straightforward verification. Suppose
f |U (2)W (8)= g, where f , g ∈ Sk+1/2(4N ). Using

(19) W (8)W∗(4)= χ8(2k+ 1)
((

1 0
0 2

)
, 21/4

)
on Sk+1/2(8N , χ8)

and

(20) W∗(4)=W (4) on Sk+1/2(4N ),

we get

f |U (2)
∣∣∣∣((1 0

0 2

)
, 21/4

)
= χ8(2k+ 1) g|W (4).

Now, g|W (4) is invariant under
( 1

0
1
1

)∗. Hence, a f |U (2)(n) = 0 if n is odd and,
therefore, a f (n) = 0 whenever n ≡ 2 (mod 4). This proves that f ∈ S+k+1/2(4N ),
a contradiction. For a detailed proof of the identities (19) and (20), we refer to
[Manickam 2011]. �

Define the space of newforms in Sk+1/2(16N , χ8) to be the orthogonal com-
plement (with respect to the Petersson scalar product) of Sold

k+1/2(16N , χ8) in
Sk+1/2(16N , χ8). It is already known that the spaces S+,new

k+1/2(4d), Snew
k+1/2(4d)

and Snew
k+1/2(8d) are isomorphic (respectively) to Snew

2k (d), Snew
2k (2d) and Snew

2k (4d).
Using induction on the number of prime factors of N , it follows that the space
Snew

k+1/2(16d, χ8) is isomorphic to Snew
2k (8d) if d|N and d < N . Now, comparing

the dimension of the space Sold
2k (8N ), we see that the spaces Sold

k+1/2(16N , χ8) and
Sold

2k (8N ) have equal dimension. As mentioned at the beginning of this section,
Ueda [1988] has shown that the spaces Sk+1/2(16N , χ8) and S2k(8N ) are Hecke-
equivariantly isomorphic when N is odd and squarefree. Therefore, combining all
these facts, it follows that the space Snew

k+1/2(16N , χ8) is isomorphic to Snew
2k (8N ).

We summarise the results of this section in the following.

Theorem 5.2. Let N be an odd and squarefree natural number and let χ8 be the
primitive even quadratic Dirichlet character modulo 8. Then Sk+1/2(16N , χ8) has
an orthogonal decomposition

Sk+1/2(16N , χ8)= Snew
k+1/2(16N , χ8)⊕ Sold

k+1/2(16N , χ8),

and
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(21) Sold
k+1/2(16N , χ8)

=

⊕
rd|N

(
S+,new

k+1/2(4d)|B(2)⊕ S+,new
k+1/2(4d)|U (2)⊕ S+,new

k+1/2(4d)|U (8)

⊕S+,new
k+1/2(4d)|U (8)W (8)B(2)

)
U (r2)

⊕

⊕
rd|N

(
Snew

k+1/2(4d)|U (2)⊕ Snew
k+1/2(4d)|B(2)

⊕rd|N Snew
k+1/2(4d)|U (2)W (8)B(2)

)
U (r2)

⊕

⊕
rd|N

(
Snew

k+1/2(8d)|B(2)⊕ Snew
k+1/2(8d)|W (8)

)
U (r2)

⊕

⊕
rd|N ,d<N

Snew
k+1/2(16d, χ8)|U (r2).

The spaces Snew
k+1/2(16N , χ8) and Sold

k+1/2(16N , χ8) are mapped, respectively, into
the spaces Snew

2k (8N ) and Sold
2k (8N ) under the Shimura lifting. Moreover, the spaces

of newforms Snew
k+1/2(16N , χ8) and Snew

2k (8N ) are isomorphic under a linear combi-
nation of Shimura maps indexed by squarefree integers t ≡ 1 (mod 4), (−1)k t > 0.
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