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F-ZIPS WITH ADDITIONAL STRUCTURE

RICHARD PINK, TORSTEN WEDHORN AND PAUL ZIEGLER

Let Fq be a fixed finite field of cardinality q. An F-zip over a scheme S over
Fq is a certain object of semilinear algebra consisting of a locally free sheaf
of OS-modules with a descending filtration and an ascending filtration and a
Frobq-twisted isomorphism between the respective graded sheaves. In this
article we define and systematically investigate what might be called “F-zips
with a G-structure”, for an arbitrary reductive linear algebraic group G
over Fq .

These objects come in two incarnations. One incarnation is an exact Fq-
linear tensor functor from the category of finite dimensional representations
of G over Fq to the category of F-zips over S. Locally any such functor has a
type χ , which is a cocharacter of Gk for a finite extension k of Fq that deter-
mines the ranks of the graded pieces of the filtrations. The other incarnation
is a certain G-torsor analogue of the notion of F-zips. We prove that both
incarnations define stacks that are naturally equivalent to a quotient stack
of the form [EG,χ\Gk] that was studied in our earlier paper (Doc. Math.
16 (2011), 253–300). By the results of this work they are therefore smooth
algebraic stacks of dimension 0 over k. Using our previous work we can
also classify the isomorphism classes of such objects over an algebraically
closed field, describe their automorphism groups, and determine which iso-
morphism classes can degenerate into which others.

For classical groups we can deduce the corresponding results for twisted
or untwisted symplectic, orthogonal, or unitary F-zips, a part of which
has been described before by Moonen and Wedhorn (Int. Math. Res. Not.
2004:72, 3855–3903). The results can be applied to the algebraic de Rham
cohomology of smooth projective varieties (or generalizations thereof) and
to truncated Barsotti–Tate groups of level 1. In addition, we hope that our
systematic group theoretical approach will help to understand the analogue
of the Ekedahl–Oort stratification of the special fibers of arbitrary Shimura
varieties.
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1. Introduction

1A. Background. Let X→ S be a smooth proper morphism of schemes in char-
acteristic p> 0 whose Hodge spectral sequence degenerates and is compatible with
base change. In [Moonen and Wedhorn 2004] it was shown that its relative De Rham
cohomology H •

DR(X/S) carries the structure of a so-called F-zip over S, namely: It
is a locally free sheaf of OS-modules of finite rank together with two filtrations (the
“Hodge” and the “conjugate” filtration) and a Frobenius linear isomorphism between
the associated graded vector spaces (the “Cartier isomorphism”). They showed that
the isomorphism classes of F-zips of fixed dimension n and with a fixed type of
Hodge filtration over an algebraically closed field are in natural bijection with the
orbits under GLn,k in a variant Z ′I of the varieties Z I studied by Lusztig [2004a;
2004b]. They studied the analogous varieties Z ′I for arbitrary reductive groups G
defined over a finite field and determined the G-orbits in them as analogues of the
G-stable pieces in Z I . By specializing G to classical groups they deduced from
this a classification of F-zips with certain additional structure, for example, with a
nondegenerate symmetric or alternating form.

In [Pink et al. 2011] the present authors showed that the quotient stack [G\Z ′I ]
is isomorphic to a quotient stack of the form [Eχ\G], where Eχ is certain linear
algebraic group depending on the choice of a cocharacter χ of G. We studied this
quotient stack in detail, classifying the Eχ-orbits in G by a subset of the Weyl
group of G and describing their closure relation using a variant of the Bruhat
order.

1B. Main idea. The aim of this paper is to define and investigate what might
be called “F-zips with a G-structure”, for an arbitrary reductive linear algebraic
group G.

As a guideline let us first review the analogous case of vector bundles. Recall that
giving a vector bundle E of constant rank n on a manifold or a scheme S over a field
k is equivalent to giving the associated GLn,k-torsor. For a subgroup G⊂GLn,k , the
choice of a G-torsor I within this GLn,k-torsor is called a G-structure on E . The
vector bundle E can be recovered as the pushout of I with the given n-dimensional
representation of G, so giving a vector bundle with a G-structure is really equivalent
to giving a G-torsor I .

At this point we can disregard the special role of the original representation
and form the pushout of I with all finite dimensional representations of G. This
yields an exact k-linear tensor functor from the Tannakian category G-Rep of finite
dimensional representations of G over k to the category of vector bundles on S,
which is known (for example by Nori [1976, Proposition 2.9]) to be again equivalent
to giving I . Altogether such a functor is therefore equivalent to giving a vector
bundle with a G-structure on S.
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These observations suggest that objects with a G-structure in a more general
exact k-linear tensor category T should be equivalent to, or might even be defined as,
exact k-linear tensor functors G-Rep→T, and that they should be equivalent to G-
torsor analogues of the objects in T. In the cases of graded or filtered vector bundles
equivalences of this kind were in fact derived in some cases in [Saavedra Rivano
1972, IV.1–2] and in general in [Ziegler 2011]. The principle was also applied to
F-isocrystals with additional structure by Rapoport and Richartz [1996].

The program for the present paper is therefore to develop this approach for the
category of F-zips and to classify the ensuing objects using the results of [Pink
et al. 2011].

1C. F-zips with a G-structure. Let Fq be a fixed finite field with q elements, and
consider a scheme S over Fq . Recall from [Moonen and Wedhorn 2004] that an
F-zip over S is a tuple M= (M,C •, D•, ϕ•) consisting of a locally free sheaf of OS-
modules of finite rank M on S, a descending filtration C • and an ascending filtration
D• of M, and an OS-linear isomorphism ϕi : (gri

C M)(q) ∼
−→ grD

i M for every i ∈ Z,
where ( )(q) denotes the pullback by the Frobenius morphism x 7→ xq . In a natural
way (see Section 6) the F-zips over S are the objects of an exact Fq-linear tensor
category F-Zip(S).

Let G be a reductive linear algebraic group over Fq , and let k be a finite extension
of Fq . In the body of the paper we consider not necessarily connected groups, but
to simplify notations in this introduction we stick to a connected group G. For
simplicity we also assume that G splits over k, so that every conjugacy class of
cocharacters of G over any extension field of k possesses a representative that is
defined over k. Let G-Rep denote the Fq-linear abelian tensor category of finite-
dimensional rational representations of G over Fq . The role of “F-zips with a
G-structure” is played by the following objects:

Definition 1.1 (cf. Definition 7.1). For any scheme S over k, a G-zip functor over S
is an exact Fq -linear tensor functor

z : G-Rep→ F-Zip(S).

As S varies, these objects form a category G-ZipFun fibered in groupoids over
the category of schemes over k. It is not hard to show that G-ZipFun is a stack
over k (see Proposition 7.2). It possesses a natural decomposition that is indexed
by conjugacy classes of cocharacters of G, defined as follows.

Let χ be a cocharacter of the group Gk obtained from G by base change. Then
χ induces a grading on Vk := V ⊗Fq k for every representation V of G and thus an
Fq -linear tensor functor γχ from G-Rep to the category of graded k-vector spaces.
On the other hand, any G-zip functor z over S induces an Fq -linear tensor functor
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from G-Rep to the category of graded locally free sheaves of OS-modules on S
which sends V to gr•C ◦ z(V ).

Definition 1.2 (cf. Definitions 5.3 and 7.3). A G-zip functor z over S is called of
type χ if the graded fiber functors gr•C ◦ z and γχ are fpqc-locally isomorphic. The
substack of G-ZipFun of G-zip functors of type χ is denoted G-ZipFunχ .

Theorem 1.3 (cf. Corollary 7.6). Every G-zip functor over a connected scheme has
a type. Each G-ZipFunχ is an open and closed substack of G-ZipFun.

In Section 8 we work out equivalent but simpler descriptions of G-zip functors
for certain classical groups. The rough idea in all cases is that any G-zip functor
is already determined up to unique isomorphism by its restriction to a certain
finite subcategory of G-Rep and that, conversely, any suitable functor from this
subcategory to the category of F-zips extends to a G-zip functor on all of G-Rep.
For instance, giving a GLn-zip functor is equivalent to giving an F-zip M of constant
rank n, and giving an SLn-zip functor is equivalent to giving an F-zip M of constant
rank n together with an isomorphism between its highest exterior power 3nM and
the unit object 1(0). Similarly, giving an Spn-zip, resp. On-zip functor is equivalent
to giving a symplectic, resp. orthogonal F-zip of constant rank n, by which we
mean an F-zip M of constant rank n together with an epimorphism of F-zips
32M� 1(0), resp. S2M� 1(0), whose underlying pairing of locally free sheaves
is nondegenerate everywhere. We also discuss the relation between Un-zip functors
and unitary F-zips, as well as twisted versions of these equivalences associated to
the groups of similitudes CSpn and COn and CUn .

1D. G-zips. To describe the stack of G-zip functors G-ZipFunχ in detail we use
the following G-torsor analogue of F-zips. Let G and χ be as above, and let
P± = L nU± be the associated pair of opposite parabolic subgroups of Gk .

Definition 1.4 (cf. Definition 3.1). A G-zip of type χ over a scheme S over k
is a tuple I = (I, I+, I−, ι) consisting of a right Gk-torsor I over S, a right P+-
torsor I+ ⊂ I , a right P (q)− -torsor I− ⊂ I , and an isomorphism of L(q)-torsors
ι : I (q)+ /U (q)

+
∼
−→ I−/U (q)

− .

As S varies, these objects form a category G-Zipχ fibered in groupoids over the
category of schemes over k. It is not hard to show that G-Zipχ is a stack over k
(see Proposition 3.2).

To G and χ we can also associate a natural algebraic zip datum in the sense
of [Pink et al. 2011] (see Definition 3.6). The associated zip group is the linear
algebraic group

EG,χ := {(`u+, `(q)u−) | ` ∈ L , u+ ∈U+, u− ∈U (q)
− } ⊂ P+×k P (q)−
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which acts from the left hand side on Gk by (p+, p−) · g := p+gp−1
− . We can thus

form the algebraic quotient stack [EG,χ\Gk].

Theorem 1.5 (cf. Proposition 3.11, Theorem 7.13, and Corollary 3.12). The stacks
G-ZipFunχ and G-Zipχ and [EG,χ\Gk] are naturally equivalent. They are smooth
algebraic stacks of dimension 0 over k.

In particular, it is equivalent to give a G-zip functor of type χ over S, or a G-zip
of type χ over S, or a morphism S→ [EG,χ\Gk] over k. The equivalences are in
fact obtained by explicit constructions (see Sections 3D and 7B).

1E. Classification. Using the results of [Pink et al. 2011] we can now describe the
stack of G-zips of type χ in detail. By Theorem 1.5, all the following statements
hold equivalently for G-zip functors of type χ . By the results of Section 8 they
also hold for symplectic, orthogonal, resp. unitary F-zips, and so on.

Let W be the Weyl group of G, let I ⊂ W be the subset of simple reflections
corresponding to P+, and let WI be the subgroup of W generated by I . Let I W be
the set of elements w ∈W that are of minimal length in their right coset WIw. We
endow I W with a certain partial order� which is somewhat complicated to describe
(and in general strictly finer than the Bruhat order; see (3.16) and Example 3.23).
This turns I W into a finite topological space (see Proposition 2.1), which we can
compare with the topological space underlying the algebraic stack G-Zipχ (see
Section 2B).

Theorem 1.6 (cf. Theorem 3.20). The topological space underlying G-Zipχ is
naturally homeomorphic to I W . In particular, there is a natural bijection between
the set of isomorphism classes of G-zips of type χ over an algebraically closed field
K containing k and the set I W .

For any G-zip I of type χ over a scheme S over k we thus obtain a finite
stratification of S by the isomorphism type of I . This generalizes the F-zip
stratification defined in [Moonen and Wedhorn 2004] in the case G = GLn,Fq ,
as well as the Ekedahl–Oort stratification of the moduli space of g-dimensional
principally polarized abelian varieties in the case G =CSp2g,Fq

. The partial order �
yields information on the closure relations between these strata (see (3.29) and
Proposition 3.30). Using a result from [Wedhorn and Yatsyshyn 2014] we can also
deduce a purity result (see Proposition 3.33). Furthermore, the description of point
stabilizers in EG,χ from [Pink et al. 2011, Theorem 8.1] yields information on
automorphism groups of G-zips; in particular:

Theorem 1.7 (cf. Proposition 3.34). The automorphism group scheme of the G-zip
of type χ over an algebraically closed field K containing k corresponding tow∈ I W
is an extension of a finite group (see Proposition 3.34 for its precise description) by
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a connected unipotent group of dimension dim(G/P+)− `(w), where `( ) denotes
the length function on the Coxeter group W .

1F. Applications. In Section 9 we study the de Rham cohomology of a smooth
proper Deligne–Mumford stack X→ S whose Hodge spectral sequence degenerates
and is compatible with arbitrary base change. For all d ≥ 0 we obtain an F-zip
H d

DR(X/S). If X is a scheme, the cup product induces for all d , e ≥ 0 a morphism
of F-zips

∪: H d
DR(X/S)⊗ H e

DR(X/S)−→ H d+e
DR (X/S).

If X→ S is a smooth proper morphism of schemes with geometrically connected
fibers of dimension n, the cup product turns H n

DR(X/S) into a twisted symplectic
or orthogonal F-zip, depending on the parity of n.

In Section 9C we attach an F-zip to any truncated Barsotti–Tate group of level 1
over a scheme S of characteristic p. This construction improves the one given in
[Moonen and Wedhorn 2004] where S was assumed to be perfect.

In addition, we hope that our results can be applied to the special fibers of
arbitrary Shimura varieties, where G is the reduction modulo p of the connected
reductive linear algebraic group over Q that gives rise to the Shimura variety. In that
case our systematic group theoretical approach should prove especially valuable.
For good reductions of Shimura varieties of Hodge type some progress has already
been made. C. Zhang [2013] has defined a smooth morphism from the special
fiber of Kisin’s integral model to the stack of G-zips of a certain type χ yielding
a description of Ekedahl–Oort strata for the special fiber. This has been used by
D. Wortmann [2013] to prove that the conjectured candidate for the generic Newton
stratum is indeed open and dense in the special fiber.

1G. Contents of the paper. As a preparation we begin by recalling some properties
of quotient stacks in Section 2.

In Section 3 we first introduce some general notation used throughout the rest
of the article. We mostly work with a not necessarily connected linear algebraic
group Ĝ over Fq whose identity component G is reductive. Besides a cocharacter
χ of Gk , the basic data also requires the choice of a subgroup 2 of the group of
connected components of the stabilizer of χ . We then define the general notion
of Ĝ-zips of type (χ,2) and prove that they form a smooth algebraic stack of
dimension 0 over k that is naturally isomorphic to a quotient stack of the form
[E Ĝ,χ,2\Ĝk] that was studied in [Pink et al. 2011]. The remainder of Section 3
contains an assortment of results on the topological space underlying this stack, on
the associated stratification, and on automorphisms.

We use Section 4 to collect some generalities concerning locally free sheaves,
gradings, filtrations, and alternating and symmetric powers. In Section 5 we recall
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some results of the third author on filtered and graded fiber functors on the Tannakian
category Ĝ-Rep.

In Section 6 we endow the category of F-zips over a scheme S with the structure
of an exact rigid tensor category. Section 7 then contains the definition of Ĝ-zip
functors. Here we use the results recalled in Section 5 to prove that every Ĝ-zip
functor over a connected scheme S has a type χ . With the unique maximal possible
choice of 2 we then establish a natural isomorphism between the stack of Ĝ-zip
functors of type χ and the stack of Ĝ-zips of type (χ,2). Consequently the stack
of Ĝ-zip functors of type χ is also a smooth algebraic stack of dimension 0 that is
naturally isomorphic to [E Ĝ,χ,2\Ĝk].

In Section 8 we go through a list of eight classical groups, in each case describing
an equivalence between Ĝ-zip functors and F-zips of a given rank with a certain
embellishment such as an alternating or symmetric or hermitian form within the
category of F-zips.

Finally, in Section 9 we discuss applications to the algebraic de Rham cohomology
of certain Deligne–Mumford stacks and to truncated Barsotti–Tate groups of level 1.

2. General properties of quotient stacks

As a preparation we discuss some general properties of algebraic group actions and
quotient stacks.

2A. Closure relation for an algebraic group action. First recall that a topological
space Z is called T0 (or Kolmogorov) if for any two distinct points, at least one of
them possesses a neighborhood that does not contain the other. Abbreviating the
closure of a subset by ( ), as usual, this is equivalent to saying that for any z′, z ∈ Z
we have z′= z if and only if both z′ ∈ {z} and z ∈ {z′}. On the other hand, recall that
a partial order � on a set Z is a transitive binary relation which is antisymmetric in
the sense that z′ = z if and only if both z′ � z and z � z′. With these observations
the following well-known fact is easy to prove:

Proposition 2.1. For any finite T0 topological space Z the relation z′ � z :⇔
z′ ∈ {z} is a partial order on Z. Conversely, any partial order on a finite set Z
arises in this way from a unique T0 topology on Z. Moreover, a map between finite
T0 spaces is continuous if and only if it preserves the associated partial orders.

Next consider a field k with an algebraic closure k̄ and the associated absolute
Galois group 0 := Aut(k̄/k). Let X be a scheme of finite type over k, and let H
be a linear algebraic group over k which acts on X from the left by a morphism
H ×k X → X . Then every H(k̄)-orbit O ⊂ X (k̄) is locally closed for the Zariski
topology on X (k̄). Moreover, its closure O is again H(k̄)-invariant and therefore a
union of orbits, and we have dim(Or O) < dim(O). From this it follows that the
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set of orbits
4 := H(k̄)\X (k̄)

with the induced quotient topology is a T0 space.
Assume now that 4 is finite. Then by Proposition 2.1 the topology on 4 corre-

sponds to the partial order � on 4 defined by O′ � O :⇔ O′ ⊂ O. Also, the Galois
group 0 acts on 4 preserving the topology and the partial order. Thus the quotient
set 0\4 again inherits a quotient topology which is T0 and corresponds to a partial
order described in the same fashion. The set 0\4 is in natural bijection with the
set of algebraic H -orbits in X , that is, with the set of nonempty H -invariant locally
closed reduced subschemes that do not possess nonempty H -invariant locally closed
proper subschemes.

2B. Quotient stacks. This article will require a certain familiarity with the notion
of stacks. Recall that a stack over a scheme S is a category fibered in groupoids
over the category ((Sch/S)) of schemes over S which satisfies effective descent
with respect to any fpqc morphism. The morphisms of stacks are functors, and
so instead of equality of morphisms one often only has isomorphisms of functors.
For the technical definition of an algebraic stack see [Laumon and Moret-Bailly
2000, Definition 4.1]. Let us recall only that every scheme can be considered as
an algebraic stack, and for every algebraic stack X there exists a smooth surjective
morphism from a scheme X→ X. Many concepts and properties of schemes and
morphisms of schemes have analogues for algebraic stacks. For example, there
exist natural fiber products and pullbacks of algebraic stacks, and many properties
of algebraic stacks and of morphisms of algebraic stacks are tested using pullbacks
to schemes.

Every algebraic stack X possesses an underlying topological space |X|, defined
in [Laumon and Moret-Bailly 2000, Section 5]. An element of |X| is an equivalence
class of morphisms Spec K →X for fields K , where two morphisms Spec K1→X

and Spec K2→X are equivalent if and only if there exists a common field extension
K such that the composite morphisms Spec K → Spec Ki → X are isomorphic.
The open subsets of |X| are the subsets |U| for all open substacks U⊂ X. If X is
represented by a scheme X , then |X| is homeomorphic to the topological space
underlying X .

Consider now the situation of Section 2A, where H acts from the left hand side
on a scheme X over k. The quotient stack [H\X ] is then defined as follows. For
any scheme S over k the category [H\X ](S) has as objects the pairs consisting
of a left H -torsor T → S and an H -equivariant morphism f : T → X over k. A
morphism (T, f )→ (T ′, f ′) in [H\X ](S) is a morphism g : T → T ′ of H -torsors
over S such that f ′◦g= f , and composition is defined in the obvious way. With the
evident notion of pullback under morphisms S′→ S this turns the whole collection
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of categories [H\X ](S) into a stack over k that is denoted [H\X ]. This is an
algebraic stack by [Laumon and Moret-Bailly 2000, Proposition 10.13.1], and it
possesses a natural surjective morphism X→ [H\X ].

Assume that the set4 of orbits over k̄ is finite, so that it and its quotient 0\4 carry
the natural topologies described in Section 2A. As a reformulation of [Wedhorn
2001, Section 4.4] we then have:

Proposition 2.2. There is a natural homeomorphism 0\4∼=
∣∣[H\X ]∣∣.

Now consider any algebraic H -orbit Y ⊂ X . Then Y is a locally closed reduced
subscheme of X , and so [H\Y ] is a locally closed reduced substack of [H\X ].
Varying Y we thus obtain a stratification

(2.3) [H\X ] “=”
⊔
0\4

[H\Y ]

in the sense that for any scheme S and any morphism S→ [H\X ] we obtain a
disjoint decomposition of S into locally closed subschemes S×[H\X ] [H\Y ].

Moreover, assume that k is perfect, and consider any point y ∈ Y (k̄). Then
Yk̄ is again reduced and hence the disjoint union of the reduced Hk̄-orbit O(y)
of y and a (possibly empty) finite collection of 0-conjugates thereof. Being a
reduced orbit O(y) is smooth over k̄; hence Y is smooth over k, and so [H\Y ] is a
smooth algebraic stack over k by definition (see [Laumon and Moret-Bailly 2000,
Définition 4.14]). Furthermore, as the smooth morphism X → [H\X ] preserves
codimension, we have

(2.4) codim([H\Y ], [H\X ])= codim(Y, X)= codim(O(y), X k̄).

Also, the automorphisms of an object of a quotient stack can be described as
follows. Consider a scheme S over k, a point x ∈ X (S), and let x̄ ∈[H\X ](S) denote
the image of x under the canonical morphism X→ [H\X ]. Denote by Aut(x̄) the
sheaf of groups on the category on schemes over S that attaches to S′→ S the
group of automorphisms of the base change x̄S′ in the category [H\X ](S′). On
the other hand let StabHS (x) denote the closed subgroup scheme of HS := H ×k S
whose S′-valued points consist of those h ∈ H(S′) which satisfy h · xS′ = xS′ .

Proposition 2.5. There is a natural isomorphism Aut(x̄)∼= StabHS (x).

Proof. In the construction of [H\X ], the point x̄ ∈ [H\X ](S) is represented by
the trivial H -torsor HS→ S together with the morphism HS→ X , h 7→ hx . The
automorphisms of the trivial left H -torsor HS′→ S′ are precisely the morphisms
h 7→ hg for all sections g ∈ H(S′). Thus Aut(x̄)(S′) = Aut[H\X ](S′)(x̄S′) is the
group of automorphisms h 7→ hg of HS′→ S′ with g ∈ H(S′), such that the two
morphisms HS′ → X given by h 7→ hx and h 7→ hg 7→ hgx coincide. But these
conditions are equivalent to g ∈ StabHS (x)(S

′). �
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3. Ĝ-zips

3A. General notation. Let Fq be a finite field of order q, and let k be a finite
overfield of Fq . By a linear algebraic group over k we mean a reduced affine
group scheme of finite type over k. We do not generally assume it to be connected.
Throughout we denote a linear algebraic group over k by Ĥ , its identity component
by H , and the finite étale group scheme of connected components by π0(Ĥ) :=
Ĥ/H ; and similarly for other letters of the alphabet. Note that the unipotent radical
Ru H of H is a normal subgroup of Ĥ . Any homomorphism of algebraic groups
ϕ̂ : Ĝ→ Ĥ restricts to a homomorphism ϕ : G→ H .

Let S be a scheme over k. By an Ĥ -torsor I over S we will mean a right Ĥ -torsor
over S for the fpqc-topology, unless mentioned otherwise. In other words I is a
scheme over S together with a right action I×k Ĥ→ I written (i, h) 7→ ih, such that
the morphism I ×k Ĥ→ I ×S I , (i, h) 7→ (i, ih) is an isomorphism and there exists
an fpqc-covering S′→ S such that I (S′) 6=∅. Any section in I (S′) then induces an
isomorphism Ĥ×k S′ ∼−→ I ×S S′ over S′. By faithfully flat descent for S′→ S we
can therefore deduce that every Ĥ -torsor over S is affine and faithfully flat over S.
Moreover, since k is perfect, the reduced group scheme Ĥ is automatically smooth,
and hence I is smooth over S. Thus by [Grothendieck 1967, Corollaire (17.16.3)]
there already exists a surjective étale morphism S′→ S such that I (S′) 6=∅.

Any scheme S over k possesses a natural q-th power Frobenius morphism S→ S,
which is the identity on the underlying topological space and the map x 7→ xq on
the structure sheaf. The pullback of a scheme or a sheaf or a morphism over S
under this Frobenius morphism is denoted by ( )(q). For example, the pullback of
a linear algebraic group Ĥ over k is a linear algebraic group Ĥ (q) over k, and the
pullback of an Ĥ -torsor I over S is an Ĥ (q)-torsor I (q) over S.

3B. The basic data. Let Ĝ be a linear algebraic group over Fq such that G is
reductive, and let Ĝk denote its base extension to k. Let χ : Gm,k → Gk be a
cocharacter over k, and let L denote its centralizer in Gk . There exist unique
opposite parabolic subgroups P± = L nU± ⊂ Gk with common Levi component
L and unipotent radicals U±, such that Lie U+ is the sum of the weight spaces of
weights > 0, and Lie U− is the sum of the weight spaces of weights < 0 in Lie Gk

under Ad ◦χ . Note that the groups L and P± and U± are all connected.
By definition we have L = CentĜk

(χ)∩Gk , and since L is connected, we have
a canonical inclusion π0(CentĜk

(χ)) = CentĜk
(χ)/L ↪→ π0(Ĝk). Let 2 be a

subgroup scheme of π0(CentĜk
(χ)), and L̂ denote its inverse image in CentĜk

(χ).
Then L is the identity component of L̂ , and π0(L̂)=2⊂ π0(Ĝk). Also, since χ
is centralized by L̂ , and the subgroups U± depend only on χ , these subgroups are
normalized by L̂ . Thus P̂± := L̂ nU± are algebraic subgroups of Ĝk with identity
components P± and π0(P̂±)∼= π0(L̂)=2.
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This data will remain fixed throughout the article.
For schemes S over k we are interested in (right) torsors over S with respect to the

above algebraic groups. Consider any Ĝk-torsor I over S. By a P̂±-torsor I± ⊂ I
we mean a subscheme which is a P̂±-torsor with respect to the induced action of P̂±.
For any P̂±-torsor I± over S, the quotient I±/U± is a P̂±/U±-torsor over S, which
we can view as an L̂-torsor under the canonical isomorphism L̂ ∼

−→ P̂±/U±.
On the other hand, the definition of Ĝk as a base extension from Fq induces a

natural isomorphism Ĝ(q)
k
∼= Ĝk . Via this isomorphism we can consider χ (q) again

as a cocharacter of Gk , with associated subgroups P̂ (q)± = L̂(q)nU (q)
± . Likewise, the

Ĝ(q)
k -torsor I (q) becomes a Ĝk-torsor in a natural way. Moreover, the pullback of a

P̂±-torsor I± ⊂ I is a P̂ (q)± -torsor I (q)± ⊂ I (q).

3C. The stack of Ĝ-zips.

Definition 3.1. Let S be a scheme over k.

(a) A Ĝ-zip of type (χ,2) over S is a tuple I = (I, I+, I−, ι) consisting of a
(right) Ĝk-torsor I over S, a P̂+-torsor I+ ⊂ I , a P̂ (q)− -torsor I− ⊂ I , and an
isomorphism of L̂(q)-torsors ι : I (q)+ /U (q)

+
∼
−→ I−/U (q)

− .

(b) A morphism (I, I+, I−, ι)→ (I ′, I ′
+
, I ′
−
, ι′) of Ĝ-zips of type (χ,2) over S

consists of equivariant morphisms I → I ′ and I±→ I ′
±

that are compatible
with the inclusions and the isomorphisms ι and ι′.

(c) The resulting category of Ĝ-zips of type (χ,2) over S is denoted Ĝ-Zipk
χ,2
(S).

If Ĝ is connected, we necessarily have2= 1 and drop it from the notation, speaking
simply of Ĝ-zips of type χ over S and denoting their category by Ĝ-Zipk

χ
(S).

With the evident notion of pullback the Ĝ-Zipk
χ,2
(S) form a fibered category

over the category ((Sch/k)) of schemes over k, which we denote Ĝ-Zipk
χ,2.

Proposition 3.2. Ĝ-Zipk
χ,2 is a stack.

Proof. Any morphism of Ĝ-zips is an isomorphism; hence Ĝ-Zipk
χ,2 is a category

fibered in groupoids. As Ĝk and P̂± are affine over k, the torsors I and I± are affine
over S, and so the data in a Ĝ-zip satisfy effective descent with respect to any fpqc
morphism S′→ S. �

Remark 3.3. For any finite field extension k ′/k the given data χ,2, L , P±, . . .
induces corresponding data χ k′,2k′, . . . over k ′ by base change. The definition of
Ĝ-zips then immediately implies that Ĝ-Zipk′

χ k′ ,2k′ is just the pullback of Ĝ-Zipk
χ,2

under Spec k ′→ Spec k. One can use this to deduce properties of Ĝ-Zipk
χ,2 from

the corresponding properties of Ĝ-Zipk′
χ k′ ,2k′ . In particular, one can apply this to a

finite extension k ′/k for which Gk′ splits and π0(Ĝk′) is a constant group scheme.
Thus over k ′ the added complexity induced by the Galois action in Sections 3E and
3F disappears.
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3D. Realization as a quotient stack.

Construction 3.4. Let S be a scheme over k. To any section g ∈ Ĝ(S) we associate
a Ĝ-zip of type (χ,2) over S, as follows. Let Ig := S×k Ĝk and Ig,+ := S×k P̂+⊂ Ig

be the trivial torsors. Then I (q)g ∼= S×k Ĝk = Ig canonically, and we define Ig,−⊂ Ig

as the image of S ×k P̂ (q)− ⊂ S ×k Ĝ− under left multiplication by g. Then left
multiplication by g induces an isomorphism of L̂(q)-torsors

ιg : I (q)g,+/U (q)
+ = S×k P̂ (q)+ /U (q)

+
∼= S×k P̂ (q)− /U (q)

−

∼
−→ g(S×k P̂ (q)− )/U (q)

− = Ig,−/U (q)
− .

We thus obtain a Ĝ-zip of type (χ,2) over S, which we denote by

I g := (Ig, Ig,+, Ig,−, ιg).

Lemma 3.5. Every Ĝ-zip of type (χ,2) is étale locally isomorphic to one of the
form I g.

Proof. Let I = (I, I+, I−, ι) be a Ĝ-zip of type (χ,2) over S. By Section 3A, after
replacing S by an étale covering there exist sections i± ∈ I±(S). These sections
induce two sections i−U (q)

− and ι(i (q)+ U (q)
+ ) in (I−/U (q)

− )(S); hence there exists a
unique section ` ∈ L̂(q)(S) such that i−U (q)

− · `= ι(i
(q)
+ U (q)

+ ). After replacing i− by
i−` we may therefore assume that the induced sections of I−/U (q)

− coincide. Then
i− and i+ induce two sections of I ; hence there exists a unique g ∈ Ĝ(S) such that
i− = i+g.

We claim that I ∼= I g. Indeed, using i+ to trivialize I+ and I , we may without loss
of generality assume that I+= Ig,+⊂ I = Ig and that i+ is the identity section. Then
i− = i+g corresponds to the section g of Ig. This implies that I− = i− P̂ (q)− = Ig,−.
Furthermore, since the L̂(q)-equivariant isomorphism ι : I (q)+ /U (q)

+
∼
−→ I−/U (q)

−

sends the section i (q)+ U (q)
+ = U (q)

+ to the section i−U (q)
− = g(S ×k U (q)

− ), it must
coincide with ιg. Thus we find that I = I g and are done. �

Definition 3.6. The algebraic zip datum associated to Ĝ and (χ,2) is the tuple
ZĜ,χ,2 := (Ĝk, P̂+, P̂ (q)− , ϕ̂) where ϕ̂ is the composite isogeny

P̂+/U+ ∼= L̂
Frobq

// L̂(q) ∼= P̂ (q)− /U (q)
− .

The associated zip group is the linear algebraic group over k

(3.7) E Ĝ,χ,2 := {(`u+, `(q)u−) : ` ∈ L̂, u+ ∈U+, u− ∈U (q)
− } ⊂ P̂+×k P̂ (q)− .

It acts from the left hand side on Ĝk by the formula

(3.8) (p+, p−) · g := p+gp−1
−
.
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If Ĝ is connected and thus 2 = 1, we abbreviate ZĜ,χ := ZĜ,χ,2 and E Ĝ,χ :=

E Ĝ,χ,2.

Remark 3.9. In [Pink et al. 2011, Definition 10.1], we defined algebraic zip data
over algebraically closed fields, whereas here k is finite. But the natural base
extension of the above tuple ZĜ,χ,2 to an algebraic closure k̄ of k is an algebraic
zip datum in the sense of loc. cit., and the base extension of the above zip group
E Ĝ,χ,2 and its action on Ĝ are those of [loc. cit.], so all the results there have direct
consequences here. For example, by [Pink et al. 2011, Proposition 7.3], the zip
datum over k̄ is orbitally finite, and so the group E Ĝ,χ,2 acts with only finitely
many orbits on Ĝk .

Lemma 3.10. For any two sections g, g′∈ Ĝ(S) there is a natural bijection between
the transporter

TranspE Ĝ,χ,2(S)(g, g′) := {(p+, p−) ∈ E Ĝ,χ,2(S) | p+gp−1
−
= g′}

and the set of morphisms of Ĝ-zips I g → I g′ over S, under which (p+, p−) cor-
responds to the morphisms Ig→ Ig′ and Ig,+→ Ig′,+ given by left multiplication
with p+ and the morphism Ig,−→ Ig′,− given by left multiplication with g′ p−g−1.

Proof. By definition a morphism I g→ I g′ consists of equivariant isomorphisms
f : Ig → Ig′ and f± : Ig,± → Ig′,± satisfying certain compatibilities, which we
analyze in turn. First, since Ig,+ = S×k P̂+ = Ig′,+, the isomorphism f+ must be
left multiplication by a unique section p+ ∈ P̂+(S). Next, since Ig = S×k Ĝ = Ig′ ,
the compatibility with f+ implies that f , too, is left multiplication by p+.

On the other hand, since Ig,− = g(S×k P̂ (q)− ) and Ig′,− = g′(S×k P̂ (q)− ) within
S×k Ĝ−, the isomorphism f− must be left multiplication by g′ p−g−1 for a unique
section p− ∈ P̂ (q)− (S). This isomorphism must be compatible with the isomorphism
f : Ig

∼
−→ Ig′ , which is left multiplication by p+. The compatibility thus amounts

to the equation g′ p−g−1
= p+.

The last compatibility is the commutativity of the diagram of isomorphisms

I (q)g,+/U (q)
+

p(q)+
//

g
��

I (q)g′,+/U (q)
+

g′

��

Ig,−/U (q)
−

g′ p−g−1

// Ig′,−/U (q)
− ,

where each arrow is defined as left multiplication by the indicated element. This
amounts to the equation p(q)+ U (q)

+ = p−U (q)
− in P̂ (q)+ /U (q)

+
∼= L̂(q)∼= P̂ (q)− /U (q)

− . That
in turn is equivalent to p+ = `u+ and p− = `(q)u− with ` ∈ L̂(S), u+ ∈ U+(S),
and u− ∈U (q)

− (S), or in other words to (p+, p−) ∈ E Ĝ,χ,2(S).
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Combined with the earlier relation g′ = p+gp−1
− this means that (p+, p−) lies in

the transporter TranspE Ĝ,χ,2(S)(g, g′). Thus the map in the lemma defines a bijection
between this transporter and the set of morphisms I g→ I g′ , as desired. �

Proposition 3.11. The stack Ĝ-Zipk
χ,2 of Ĝ-zips of type (χ,2) is isomorphic to

the algebraic quotient stack [E Ĝ,χ,2\Ĝk]. In particular, the isomorphism classes
of Ĝ-zips of type (χ,2) over any algebraically closed field K containing k are in
bijection with the E Ĝ,χ,2(K )-orbits on Ĝ(K ).

Proof. Consider the category X fibered in groupoids over ((Sch/k)) defined as
follows: For any scheme S over k the class of objects of X(S) is the set Ĝ(S), and
for any elements g, g′ ∈ Ĝ(S) the set of morphisms from g to g′ is the transporter
TranspE Ĝ,χ,2

(g, g′), with composition given by the multiplication in E Ĝ,χ,2. For
any morphism S′→ S of schemes over k, the pullback of objects and morphisms is
given by the canonical maps Ĝ(S)→ Ĝ(S′) and E Ĝ,χ,2(S)→ E Ĝ,χ,2(S′). Since
E Ĝ,χ,2 is a scheme, this is a prestack, that is, it satisfies effective descent for
morphisms. By [Laumon and Moret-Bailly 2000, 3.4.3], the stackification (for this
notion see [Laumon and Moret-Bailly 2000, 3.2]) of this prestack is the quotient
stack [E Ĝ,χ,2\Ĝk].

As can be verified directly from its description, the bijection in Lemma 3.10
is compatible with pullback and composition and sends 1 ∈ TranspE Ĝ,χ,2

(g, g) to
the identity morphism id : I g→ I g for all g ∈ Ĝ(S). Thus there is a fully faithful
morphism X→ Ĝ-Zipk

χ,2 which sends g ∈ X(S) = Ĝ(S) to I g and which acts
on morphisms by the bijection of Lemma 3.10. Lemma 3.5 is then equivalent to
saying that this morphism induces an isomorphism from the stackification of X to
Ĝ-Zipk

χ,2. Since the former is [E Ĝ,χ,2\Ĝk], the proposition follows. �

Corollary 3.12. Ĝ-Zipk
χ,2 is a smooth algebraic stack of dimension 0 over k.

Proof. The quotient stack [E Ĝ,χ,2\Ĝk] it is algebraic by [Laumon and Moret-Bailly
2000, Proposition 10.13.1], and the canonical morphism Ĝk→ [E Ĝ,χ,2\Ĝk] is a
torsor over the group scheme E Ĝ,χ,2. As Ĝk and E Ĝ,χ,2 are smooth of the same
dimension, this quotient stack is smooth of dimension 0 over k. The corollary thus
follows from Proposition 3.11. �

3E. The topological space underlying Ĝ-Zipk
χ,2. We recall some notation and

facts from [Pink et al. 2011], especially from Sections 2.2, 6, and 10.
Choose an algebraic closure k̄ of k and let 0 := Gal(k̄/k) be the corresponding

Galois group of k. Let T ⊂ B ⊂ G k̄ be a maximal torus, respectively a Borel
subgroup of G k̄ . Consider the finite groups

W := NormG(k̄)(T (k̄))/T (k̄), Ŵ := NormĜ(k̄)(T (k̄))/T (k̄),

� :=
(
NormĜ(k̄)(T (k̄))∩NormĜ(k̄)(B(k̄))

)
/T (k̄).
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The fact that W acts simply transitively on the set of Borel subgroups containing
Tk̄ implies that Ŵ =W o�, and the fact that G(k̄) acts transitively on the set of
all maximal tori of G k̄ implies that � ∼= Ŵ/W ∼= π0(Ĝ)(k̄). Also, let S ⊂ W be
the set of simple reflections associated to the pair (T, B). As this pair is unique
up to conjugation by G(k̄), and NormG(k̄)(T (k̄)) ∩NormG(k̄)(B(k̄)) = T (k̄), the
Coxeter system (W, S) and the groups Ŵ and � are, up to unique isomorphism,
independent of the choice of T and B. The inner automorphism of Ŵ induced by
an element x ∈ Ŵ will be denoted by int(x) : ŵ 7→ x

ŵ := xŵx−1.
Recall that the length of an element w ∈ W is the smallest number `(w) such

that w can be written as a product of `(w) simple reflections. For any subsets
K , K ′ ⊆ S, we denote by WK the subgroup of W generated by K and by K W (resp.
W K ′ , resp. K W K ′) the set of w ∈ W that are of minimal length in the left coset
WKw (resp. in the right coset wWK ′ , resp. in the double coset WKwWK ′). We let
w0 ∈W denote the unique element of maximal length in W , and w0,K the unique
element of maximal length in WK .

The Frobenius isogeny ϕ̂ : Ĝ→ Ĝ relative to Fq induces an automorphism ϕ̄ of
Ŵ which preserves W and �. Its restriction to W is an automorphism of Coxeter
systems (W, S) ∼

−→(W, S). Therefore ϕ̄ preserves the length of elements in W
and in particular satisfies ϕ̄(w0)= w0.

Let I ⊆ S be the type of the parabolic subgroup P+, and J ⊆ S the type of P (q)− .
The fact that P− is opposite to P+ implies that J = ϕ̄(w0 I )=w0 ϕ̄(I ). We write these
equations in the form J = ϕ̄(y I )= x ϕ̄(I ), where x ∈ J W ϕ̄(I ) is the unique element
of minimal length in WJw0Wϕ̄(I ) and y := ϕ̄−1(x). Then ψ̂ := int(x)◦ϕ̄= ϕ̄◦int(y)
is an automorphism of Ŵ which induces an isomorphism of Coxeter systems

(WI , I ) ∼
−→(WJ , J ).

From [Pink et al. 2011, Proposition 2.7] we can deduce that

(3.13) y = w0w0,I = w0,ϕ̄−1(J )w0.

Via the isomorphism π0(Ĝ)(k̄) ∼= � we can view 2(k̄) (resp. 2(q)(k̄)) as a
subgroup of �, which by abuse of notation we will again denote by 2 (resp. 2(q)).
Note that, since 2 ⊆ NormĜ(P+)/P+, conjugation by elements of 2 preserves
the type I of P+ and thus the subgroup WI . Therefore WI2 = WI o 2 is a
subgroup of Ŵ . Since 2(q) ⊆ NormĜ(P

(q)
− )/P (q)− , the same observation holds for

WJ2
(q)
= WJ o2(q), and the automorphism ψ̂ sends the subgroup 2 ⊆ � to

2(q) ⊆�. By [Pink et al. 2011, Lemma 10.4], the map

(3.14) (θ, ŵ) 7→ θŵψ̂(θ)−1

defines a left action of 2 on the subset I W�⊆ Ŵ .
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Recall that the Bruhat order ≤ on W is defined by w′ ≤ w if for some (and
equivalently for any) expression of w as a product of `(w) simple reflections, by
leaving out certain factors one can obtain an expression of w′ as a product of `(w′)
simple reflections. We extend the Bruhat order to Ŵ by setting

(3.15) w′ω′ ≤ wω if and only if w′ ≤ w and ω′ = ω

for any w,w′ ∈W and ω,ω′ ∈�. Also, for any ŵ, ŵ′ ∈ I W� we write

(3.16) ŵ′ � ŵ if and only if there exists v̂ ∈WI2 with v̂ŵ′ψ̂(v̂)−1
≤ ŵ.

By [Pink et al. 2011, Theorem 10.9], see also [He 2007], this defines a partial order
on I W�. We also extend the length function from W to Ŵ by setting

(3.17) `(wω) := `(w)

for any w ∈W and ω ∈�.

Lemma 3.18. The action (3.14) preserves the extended Bruhat order ≤ on Ŵ , the
partial order � on I W�, and the extended length function ` on Ŵ .

Proof. Consider any elements θ ∈2 and w′, w ∈W and ω′, ω ∈�. First assume
that w′ω′ ≤ wω, in other words, that w′ ≤ w and ω′ = ω. Then θw′θ−1

≤ θwθ−1

and θω′ψ̂(θ)−1
= θωψ̂(θ)−1, and the latter is again an element of �, because

2(q) = ψ̂(2)⊂�. By (3.15) we therefore find that

θw′ω′ψ̂(θ)−1
= θw′θ−1

· θω′ψ̂(θ)−1
≤ θwθ−1

· θωψ̂(θ)−1
= θwωψ̂(θ)−1.

Thus the action (3.14) preserves the extended Bruhat order ≤ on Ŵ .
Next, the last equality above and the fact that θωψ̂(θ)−1

∈� also imply that the
length of θwωψ̂(θ)−1 is equal to that of θwθ−1. Since θ ∈�, that length is equal
to the length of w and hence of wω, proving that the action (3.14) preserves the
extended length function on Ŵ .

Now assume that w ,w′ ∈ I W and w′ω′�wω, which means that v̂w′ω′ψ̂(v̂)−1
≤

wω for some v̂ ∈WI2. Then we have just shown that

θv̂θ−1
· θw′ω′ψ̂(θ)−1

· ψ̂(θ v̂θ−1)−1
= θv̂w′ω′ψ̂(v̂)−1ψ̂(θ)−1

≤ θwωψ̂(θ)−1.

Since θ normalizes WI , it follows that û := θv̂θ−1 is an element of WI2 which
satisfies û · θw′ω′ψ̂(θ)−1

· ψ̂(û)−1
≤ θwωψ̂(θ)−1 and thus by (3.16) shows that

θw′ω′ψ̂(θ)−1
� θwωψ̂(θ)−1. Therefore the action (3.14) preserves the partial

order � , and we are done. �

As a consequence of Lemma 3.18, the partial order � from (3.16) induces a
partial order on the set of 2-orbits

(3.19) 4
χ,2
:=2\I W�.
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By Proposition 2.1 this in turn defines a T0 topology on the finite set 4χ,2.
Now observe that since the subgroups P± ⊂Gk and P̂± ⊂ Ĝk are defined over k,

there is a natural continuous action of 0 := Gal(k̄/k) on everything discussed
above. In particular this action preserves the decomposition Ŵ = W o �, the
subsets S, I, J, I W, . . ., the partial orders ≤ and �, the length function `, the
subgroup 2 and its action on I W�, and so it induces an action on the topological
space 4χ,2.

Theorem 3.20. The topological space underlying Ĝ-Zipk
χ,2 is naturally homeo-

morphic to the quotient space 0\4χ,2.

Proof. By Proposition 3.11 the stack Ĝ-Zipk
χ,2 is isomorphic to [E Ĝ,χ,2\Ĝk]. By

[Pink et al. 2011, Proposition 7.3], (see also Remark 3.9) the zip datum ZĜ,χ,2,k̄
is orbitally finite, that is, the number of E Ĝ,χ,2(k̄)-orbits in Ĝ(k̄) is finite. We
can therefore apply Proposition 2.2. The description of the topological space now
follows from the description of E Ĝ,χ,2,k̄-orbits in Ĝ k̄ and their closures from [Pink
et al. 2011, Theorems 10.9 and 10.10]. �

Remark 3.21. If we replace k by a suitable finite extension k ′ within k̄, the Galois
group 0 is replaced by a subgroup which acts trivially on Ŵ and everything else
above. Then Theorem 3.20 asserts that the topological space underlying Ĝ-Zipk′

χ,2

is naturally homeomorphic to 4χ,2. In particular, for any algebraically closed
extension field K of k̄ we obtain a natural bijection

(3.22) 4
χ,2 ∼
−→

{isomorphism classes of Ĝ-zips
of type (χ,2) over K

}
.

By [Pink et al. 2011] this can be made more explicit, as follows. As the choice
of (T, B) was arbitary, we may without loss of generality assume that T ⊂ L K

and B ⊂ P−,K . Then we may identify W = NormG(T )(K )/T (K ) and Ŵ =
NormĜ(T )(K )/T (K ). Choose a representative g ∈ NormG(T )(K ) of the element
y = ϕ̄−1(x) ∈W . Then by [Pink et al. 2011, Lemma 12.11] the triple (B, T, g) is a
frame of the connected zip datum (G K , P+,K , P (q)

−,K , ϕ : L K → L(q)K ) in the sense
of [Pink et al. 2011, Definition 3.6]. Also, for every element ŵ ∈ I W� choose a
representative ˙̂w ∈ NormĜ(T )(K ), and let I g ˙̂w denote the Ĝ-zip of type (χ,2)
over K attached to g ˙̂w ∈ Ĝ(K ) by Construction 3.4. Combining the isomorphism
in Proposition 3.11 with [Pink et al. 2011, Theorem 10.10] then shows that the
bijection (3.22) sends the orbit of ŵ in 4χ,2 =2\I W� to the isomorphism class
of I g ˙̂w.

Example 3.23. Assume that Ĝ = G is a connected split reductive group over Fq .
Then 2 = � = 1, and 4χ,2 = I W with the trivial action of Gal(k̄/Fq). All the
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formulas then simplify accordingly. In particular, by Theorem 3.20 the topolog-
ical space underlying G-Zipχk is naturally homeomorphic to I W for every finite
extension k of Fq .

Moreover, the automorphism ϕ̄ induced by Frobenius is the identity on W . Thus
ψ̂ = int(x), where x ∈ J W I is the unique element of minimal length in WJw0WI .
The partial order � on I W is therefore given by

(3.24) w′ � w if and only if there exists v ∈WI with vw′xv−1x−1
≤ w.

If in addition the Dynkin diagram of G has no component of type An with n ≥ 2,
of type Dn with n ≥ 5 odd, or of type E6, then w0 is central in W , and so I = J .
Also, by (3.13) we then have x = w0w0,I , and since w0 is central and w−1

0,I = w0,I ,
the partial order can then be written equivalently in the form

(3.25) w′ � w if and only if there exists v ∈WI with vw′w0,Iv
−1w0,I ≤ w.

3F. The stratification of Ĝ-Zipk
χ,2. For any orbit in 0\4χ,2 = 0\(2\I W�)

represented by an element ŵ ∈ I W�, let [ŵ] denote the corresponding point in the
topological space underlying Ĝ-Zipk

χ,2 via the homeomorphism in Theorem 3.20.

Theorem 3.26. The point [ŵ] underlies a smooth locally closed substack of the
category Ĝ-Zipk

χ,2 of pure codimension dim(G/P+)− `(ŵ), where `( ) denotes
the extended length function from (3.17).

Proof. As in the proof of Theorem 3.20 this translates into an assertion for the
quotient stack [E Ĝ,χ,2\Ĝk]. Let Ĝŵ

k̄
denote the E Ĝ,χ,2,k̄-orbit in Ĝ k̄ corresponding

to ŵ by [Pink et al. 2011, Theorem 10.10]. Since k is perfect, by the remarks
following Proposition 2.2 this determines a smooth locally closed substack of
[E Ĝ,χ,2\Ĝk] with underlying point [ŵ]. By (2.4) the codimension of this substack
is equal to the codimension of Ĝŵ

k̄
in Ĝ k̄ , which by [Pink et al. 2011, Theorem 5.11

and Lemma 10.3] is given by the desired formula. �

Let S be a scheme over k, and let I be a Ĝ-zip of type (χ,2) over S. Then I
defines a classifying morphism

(3.27) ζ : S −→ Ĝ-Zipk
χ,2
.

Let SŵI denote the pullback under ζ of the substack corresponding to [ŵ]. This is
a locally closed subscheme of S. As [ŵ] varies, these subschemes form a finite
stratification of S, in other words S is the set-theoretic disjoint union

(3.28) S =
⊔

[ŵ]∈0\4χ,2

S[ŵ]I .
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The description of the topology in Theorem 3.20 implies that for any ŵ we have

(3.29) S[ŵ]I ⊂
⊔

[ŵ′]∈0\4
χ,2

ŵ′�ŵ

S[ŵ]I

For the next result recall that any open or flat morphism of schemes is generizing.

Proposition 3.30. If the morphism ζ in (3.27) is generizing, the inclusion (3.29) is
an equality. If in addition S is locally noetherian, then S[ŵ]I is of pure of codimension
dim(G/P+)− `(ŵ). If ζ is smooth, then S[ŵ]I is smooth as a scheme over k.

Proof. If ζ is generizing, then ζ−1(ϒ)= ζ−1(ϒ) for any locally closed substack
ϒ of Ĝ-Zipk

χ,2, so the first assertion follows from Theorem 3.20. If in addition
S is locally noetherian, the codimension is well defined and preserved by ζ ; so
the second assertion follows from Theorem 3.26. If ζ is smooth, then S[ŵ]I , being
the pullback of a smooth stack under a smooth morphism, is smooth as a scheme
over k, proving the third assertion. �

Instead of the above construction, the subscheme S[ŵ]I can also be characterized
by a construction directly involving I . For simplicity we discuss this only in a
special case (but compare Remark 3.3):

Proposition 3.31. Assume that G splits over k and that π0(Ĝk) is a constant group
scheme. Then a morphism of schemes f : S′→ S factors through S[ŵ]I if and only if
f ∗ I is locally for the fppf-topology on S′ isomorphic to the constant G-zip I g ˙̂w×k S
with I g ˙̂w as in Remark 3.21.

Proof. The assumptions imply that the E Ĝ,χ,2-orbit used to prove Theorem 3.26
is really defined over k; let us denote it by Ĝŵ

k . Define S′′ and g′ by the cartesian
diagram

S′′

��
��

g′
// Ĝk

��
��

S′
f
// S

ζ
// [E Ĝ,χ,2\Ĝk] ∼= Ĝ-Zipk

χ,2

where the vertical morphisms are fppf. Then by the definition of the quotient stack
and the construction of S[ŵ]I , the morphism f factors through S[ŵ]I if and only if
g′ factors through Ĝŵ

k . As the orbit Ĝŵ
k is smooth, the morphism E Ĝ,χ,2→ Ĝŵ

k ,
e 7→ e · g ˙̂w is fppf. Thus g′ factors through Ĝŵ

k if and only if there exists an fppf-
covering S′′′→ S′′ and an e : S′′′→ E Ĝ,χ,2 such that g′=e·g ˙̂w. By Lemma 3.10 the
latter condition is equivalent to saying that the Ĝ-zip I g′ is fppf-locally isomorphic
to I g ˙̂w, or again that f ∗ I is fppf-locally isomorphic to I g ˙̂w, as desired. �
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Remark 3.32. It is shown in [Wedhorn and Yatsyshyn 2014] that all E Ĝ,χ,2-orbits
in Ĝk are affine. This implies that the inclusion into Ĝ-Zipk

χ,2 of the substack
associated to [ŵ] is an affine morphism, and so the inclusion S[ŵ]I ↪→ S is an affine
morphism. In particular this implies the following purity result:

Proposition 3.33. Let S be a locally noetherian scheme over k, and let Z be a
closed subscheme of codimension ≥ 2. Assume that Z contains no embedded
component of S (which is automatic if S is reduced). Let I be a Ĝ-zip over S whose
restriction to S r Z is fppf-locally constant. Then I is fppf-locally constant.

Proof. By Proposition 3.31 there exists [ŵ] such that the open immersion SrZ ↪→ S
factors through the subscheme S[ŵ]I . By assumption S r Z and hence S[ŵ]I is
schematically dense in S; being locally closed S[ŵ]I is therefore an open subscheme
of S. On the other hand its complement Z ′ is of codimension ≥ 2. Since the
inclusion S[ŵ]I ↪→ S is affine, this implies that Z ′ =∅. �

3G. Automorphisms of G-zips. Let K be an algebraically closed extension field
of k̄, and let I be a Ĝ-zip of type (χ,2) over K . Let T, B, g, ˙̂w be as in Remark 3.21.
Then I is isomorphic to I g ˙̂w for some ŵ ∈ I W�. Its automorphism group scheme
is therefore Aut( I )∼= Aut( I g ˙̂w). By Proposition 2.5 the latter is isomorphic to the
stabilizer StabE Ĝ,χ,2,K

(g ˙̂w).
Since the results on stabilizers in [Pink et al. 2011] were formulated only for

connected zip data, we now assume that Ĝ = G is connected. Then 2=�= 1,
and we can write ŵ = w ∈ I W and ˙̂w = ẇ ∈ NormG(T )(K ). As in [Pink et al.
2011, Section 5.1], let Hw be the Levi subgroup of G K containing T whose set of
simple reflections is the unique largest subset Kw of J ∩ w

−1
I such that (int(x) ◦

ϕ̄ ◦ int(w))(Kw)= Kw.

Proposition 3.34. (a) The identity component of Aut( I gẇ) is a unipotent group
scheme of dimension dim(G/P+)− `(w).

(b) Let v be the unique element of minimal length in the double coset WIwWJ .
Then the Lie algebra of Aut( I gẇ) has dimension dim(G/P+)− `(v).

(c) The group of connected components of Aut( I gẇ) is isomorphic to the constant
group scheme over K associated to the finite group

5 := {h ∈ Hw(k̄) : h = ϕ(gẇh(gẇ)−1)}.

Proof. The group A := Aut( I gẇ)
∼= StabEG,χ,2,K

(gẇ) is isomorphic to a semidirect
product of the group 5 in (c) with a connected unipotent group scheme U [Pink
et al. 2011, Theorem 8.1]. As the zip datum is orbitally finite, the group 5 is
finite by [Pink et al. 2011, Proposition 7.1]. This shows (c) and that the identity
component of A is unipotent. Moreover, the orbit o(gẇ)⊂G K of gẇ has dimension
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dim P+ + `(w) by [Pink et al. 2011, Theorem 7.5]. As the definition of EG,χ,2

implies that dim EG,χ,2= dim G, it follows that

dim A = dim EG,χ,2,K − dim o(gẇ)= dim G− dim(P+)− `(w),

proving (a). Assertion (b) follows from [Pink et al. 2011, Theorem 8.5]. �

Remark 3.35. Since a group scheme is smooth if and only if its dimension is equal
to the dimension of its Lie algebra, Proposition 3.34 (a) and (b) imply that Aut( I gẇ)

is smooth if and only if w is of minimal length in its double coset WIwWJ . This
condition will often not be satisfied.

4. Generalities on filtrations

In this section we briefly review some standard definitions and notations for gradings
and filtrations of locally free sheaves of finite rank.

4A. Locally free sheaves of finite rank. Let S be a scheme over a ring k. The
category of locally free sheaves of OS-modules of finite rank on S with all OS-linear
homomorphisms between them is denoted LF(S). It is a k-linear additive category,
but in general not abelian. A homomorphism in LF(S) is called admissible if
its image in the category of sheaves of finite rank is a locally direct summand.
This notion turns LF(S) into an exact category in the sense of Quillen. It is also
idempotent complete, that is, any endomorphism f : M→M in LF(S) satisfying
f 2
= f is admissible and corresponds to a direct sum decomposition M= ker( f )⊕

im( f ) within LF(S).
For a useful overview of exact categories see [Bühler 2010]. Every admissible

homomorphism in an exact category has a kernel and a cokernel, and they satisfy a
number of axioms: see [Bühler 2010]. An additive functor between exact categories
is exact if it sends admissible homomorphisms to admissible homomorphisms and
commutes with their kernels and cokernels.

Endowed with the usual tensor product of sheaves of finite rank M⊗N, the usual
dual M∨ :=Hom(M,OS), and the usual associativity and commutativity constraints
LF(S) is a rigid tensor category in the sense of [Saavedra Rivano 1972, I.5.1].
Moreover, the tensor product and the dual define exact functors in the indicated
sense.

4B. Gradings. By a graded locally free sheaf of finite rank on S we mean a locally
free sheaf of finite rank M together with a decomposition M =

⊕
i∈Z Mi , whose

graded pieces Mi vanish for almost all i . A homomorphism of graded locally free
sheaves of finite rank f : M→ N is a homomorphism of the underlying sheaves
that satisfies f (Mi )⊂ Ni for all i ∈ Z. The category of graded locally free sheaves
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of finite rank on S is denoted GrLF(S). It is a k-linear additive category, but in
general not abelian.

A homomorphism in GrLF(S) is admissible if it is admissible in each degree.
This turns GrLF(S) into an exact category that is idempotent complete.

The tensor product of graded locally free sheaves of finite rank is the usual
tensor product of sheaves with the grading (M⊗N)i :=

⊕
j∈Z M j

⊗Ni− j . The
dual of a graded locally free sheaf of finite rank M is the usual dual sheaf with the
grading (M∨)i := (M−i )∨. These notions turn GrLF(S) into a rigid tensor category
together with a (forgetful) exact tensor functor forg : GrLF(S)→ LF(S) sending
graded locally free sheaves to their underlying locally free sheaves.

4C. Descending filtrations. By a descending filtration C • of a locally free sheaf
of finite rank M on S we mean a family of quasicoherent subsheaves C i M for i ∈ Z,
which are locally direct summands and satisfy C i+1M⊂C i M for all i and C i M= 0
for all i� 0 and C i M=M for all i� 0. A homomorphism of sheaves of finite rank
f : M→ N endowed with a descending filtration is compatible with the filtrations
if it satisfies f (C i M)⊂ C i N for all i ∈ Z. This defines a category of locally free
sheaves of finite rank on S endowed with a descending filtration, which we denote
FilLF•(S). It is a k-linear additive category, but in general not abelian. It possesses
an evident forgetful functor forg : FilLF•(S)→ LF(S).

The assumptions imply that the subquotients gri
C M := C i M/C i+1M are again

locally free sheaves of finite rank on S which vanish for almost all i . Also,
any homomorphism f : M→ N in FilLF•(S) induces natural homomorphisms
gri

C f : gri
C M→ gri

C N. Together this defines a natural functor gr•C : FilLF•(S)→
GrLF(S).

Reciprocally, any graded locally free sheaf of finite rank M carries a natu-
ral descending filtration C i M :=

⊕
j>i M j , which defines a natural functor fil• :

GrLF(S)→ FilLF•(S).
A homomorphism f : M→ N in FilLF•(S) is called admissible if for all i the

sheaf f (C i M) is equal to f (M)∩C i N and a locally direct summand of N. This
is equivalent to saying that locally on S, the morphism possesses a factorization
of the form M ∼= M′⊕L� L ↪→ L⊕N′ ∼= N in the category of filtered locally
free sheaves of finite rank. With this notion FilLF•(S) is an exact category that is
idempotent complete.

Descending filtrations of M and N induce a natural descending filtration of M⊗N

by the formula C i (M ⊗ N) :=
∑

j∈Z C j M ⊗ C i− j N. The graded subquotients
inherit natural isomorphisms gri

C(M⊗N)∼=
⊕

j∈Z gr j
C M⊗ gri− j

C N. Moreover, a
descending filtration of M induces a descending filtration of M∨ by the formula
C i (M∨) := (M/C1−i M)∨, and the graded subquotients possess natural isomor-
phisms gri

C(M
∨) ∼= (gr−i

C M)∨. These notions turn FilLF•(S) into a rigid tensor
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category, such that all three functors above are tensor functors. These functors, as
well as tensor product and dual, are also exact.

4D. Ascending filtrations. An ascending filtration D• of M is a family of sub-
sheaves Di M such that the D−i M form a descending filtration of M. Thus every-
thing in Section 4C has a direct analogue for ascending filtrations. Descending
filtrations are generally indexed by upper indices, ascending filtrations by lower
indices, while gradings can be indexed in both fashions. In particular the graded
subquotients of an ascending filtration are denoted grD

i M := Di M/Di−1M. The
category of locally free sheaves of OS-modules with an ascending filtration is denoted
FilLF•(S). There are natural exact tensor functors grD

•
: FilLF•(S)→ GrLF(S)

and fil• : GrLF(S) → FilLF•(S) and forg : FilLF•(S) → LF(S). The functors
introduced so far are summarized in the following diagram.

(4.1)

FilLF•(S)
gr•C

xx

forg

%%
GrLF(S)

fil•

88

forg
//

fil•

&&

LF(S)

FilLF•(S)
grD
•

ff forg
99

4E. Types. Let n = (ni )i∈Z be a family of nonnegative integers which vanish for
almost all i . We say that a graded locally free sheaf of finite rank M is of type n
if each Mi is locally free of constant rank ni . We call a locally free sheaf of finite
rank endowed with a descending or ascending filtration of type n if its associated
graded sheaf is of type n. In all these cases, the sheaf itself is then locally free of
constant rank

∑
i ni . If S is connected (and hence nonempty!), every graded or

filtered locally free sheaf of finite rank on S possesses a unique type.

4F. Pullback. All the above notions possess evident pullbacks under a morphism
S′→ S, which are compatible with all the given constructions. We generally denote
the pullback of f : M→N by fS′ : MS′→NS′ . This defines an exact tensor functor
FilLF•(S)→ FilLF•(S′) and similar functors on the other categories.

Many properties and invariants such as the rank of a locally free sheaf of finite
rank are local for the fpqc topology. In particular:

Lemma 4.2. For a homomorphism of graded, filtered, or naked locally free sheaves
of finite rank, the property of being admissible is local for the fpqc topology.

Proof. The subsheaf f (M) ⊂ N is a locally direct summand if and only if the
quotient N/ f (M) is locally free. Since the latter property is local for the fpqc
topology, so is the former, and the lemma follows for naked and graded locally free
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sheaves of finite rank. For filtered ones observe that the formation of f (C i M) and
f (M)∩C i N commutes with flat pullback and their equality is local for the fpqc
topology. By the same argument as before their being a locally direct summand is
local for the fpqc topology, too, and so the lemma follows in the filtered case. �

4G. Alternating and symmetric powers. Consider an object X of an exact additive
tensor category C. For any integer m > 0 let X⊗m denote the tensor product of m
copies of X with itself, which carries a natural action of the symmetric group Sm .
Thus there is a homomorphism

(4.3) Am(X) : X⊗m
−→ X⊗m, x 7→

∑
σ∈Sm

sgn(σ ) · σ(x).

If this homomorphism is admissible, its image 3m X := im Am(X) is called the
m-th alternating, or exterior, power of X . Likewise, there is a homomorphism

(4.4) Bm(X) :
⊕
σ∈Sm

X⊗m
−→ X⊗m, (xσ )σ 7→

∑
σ∈Sm

(σ − 1)(xσ ).

If this homomorphism is admissible, its cokernel Sm X := coker Bm(X) is called
the m-th symmetric power of X .

For any morphism f : X → Y in C the above constructions are compatible
with the induced morphism f ⊗m

: X⊗m
→ Y⊗m ; hence they induce morphisms

3m f : 3m X → 3mY and Sm f : Sm X → SmY whenever the respective powers
exist. Evidently this sends the identity on X to the identity on 3m X and Sm X and
commutes with composition, that is, it is functorial in X .

As a direct consequence of this construction, alternating and symmetric powers
commute with any exact tensor functor between exact additive tensor categories
F : C→D. More precisely, if 3m X exists, then 3m F(X) exists and is canonically
isomorphic to F(3m X), and similarly for Sm .

In each of the categories LF(S), GrLF(S), FilLF•(S), and FilLF•(S) above,
all alternating and symmetric powers exist and have the usual local descriptions,
essentially because every object is Zariski locally on S a direct sum of objects
of rank 1. Also, the m-th alternating power of an object of constant rank n has
constant rank

(n
m

)
, and the m-th symmetric power of an object of constant rank n

has constant rank
(n+m−1

m

)
. In particular, the n-th exterior power of an object X

of constant rank n is an object of constant rank 1, also called the highest exterior
power of X .

5. Filtered fiber functors and cocharacters

Let Ĝ be a (not necessarily connected) linear algebraic group over an arbitrary
field k0, and let Ĝ-Rep denote the tensor category of finite dimensional representa-
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tions of Ĝ over k0. As usual, by a fiber functor over a scheme S over k0 we mean
an exact k0-linear tensor functor Ĝ-Rep→ LF(S). Similarly, by a graded fiber
functor we mean an exact k0-linear tensor functor Ĝ-Rep→ GrLF(S), and by a
filtered fiber functor an exact k0-linear tensor functor Ĝ-Rep→ FilLF•(S). In this
section we collect some results from [Saavedra Rivano 1972] and [Ziegler 2011]
on graded and filtered fiber functors. We consider only descending filtrations; the
corresponding results for ascending filtrations follow directly by renumbering.

For any graded fiber functor γ : Ĝ-Rep→ GrLF(S) and any morphism S′→
S we let γS′ : Ĝ-Rep → GrLF(S′) denote the graded fiber functor obtained by
pullback. We call two graded fiber functors γ1, γ2 : Ĝ-Rep→ GrLF(S) fpqc-locally
isomorphic if their pullbacks under some fpqc morphism S′→ S are isomorphic. In
general we let Isom⊗(γ1, γ2) denote the fpqc-sheaf on ((Sch/S)) sending S′→ S to
the set of isomorphisms γ1,S′

∼
−→ γ2,S′ . By composition of isomorphisms it carries

a natural right action of the sheaf of groups Aut⊗(γ1) := Isom⊗(γ1, γ1). The same
notation will be used for filtered fiber functors ψ , ψ1, ψ2 : Ĝ-Rep→ FilLF•(S).

We first consider the special case that S = Spec k for an overfield k of k0. Since
a locally free sheaf of finite rank on Spec k is just a finite dimensional k-vector
space, we abbreviate

Vec(k) := LF(Spec k),

GrVec(k) := GrLF(Spec k),

FilVec•(k) := FilLF•(Spec k).

Let ω0,k : Ĝ-Rep→ Vec(k) denote the tautological fiber functor that sends each
representation V to the vector space Vk := V ⊗k0 k.

Consider a cocharacter χ : Gm,k→ Ĝk . Let L̂ denote its centralizer in Ĝk , let U
denote the unique connected smooth unipotent subgroup of Ĝk that is normalized
by L̂ and whose Lie algebra is the sum of the weight spaces of weights > 0 under
Ad ◦χ , and set P̂ := L̂ n U . (If the identity component of Ĝ is reductive, the
identity component of P̂ is a parabolic subgroup P and the identity component
of L̂ is a Levi subgroup of P .)

For any representation V ∈ Ĝ-Rep, the cocharacter χ determines a grading
Vk =

⊕
i∈Z V i

k . This grading is k0-linearly functorial in V , exact in short exact
sequences, and compatible with tensor product, and the same holds for the associated
descending filtration. Thus χ induces a graded fiber functor γχ and a filtered fiber
functor fil• ◦ γχ such that the composite

Ĝ-Rep
γχ
// GrVec(k)

fil•
// FilVec•(k)

forg
// Vec(k)

is equal to ω0,k .
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Proposition 5.1. (a) The action of L̂ on γχ induces a natural isomorphism

L̂ ∼
−→Aut⊗(γχ ).

(b) The action of P̂ on fil• ◦ γχ induces a natural isomorphism

P̂ ∼
−→Aut⊗(fil• ◦ γχ ).

Proof. Part (a) is [Ziegler 2011, Corollary 3.7]. Part (b) is a consequence of
[Saavedra Rivano 1972, 2.1.4 and 2.1.5]. �

Now let k̄0 be an algebraic closure of k0, and let ks
0 denote the separable closure

of k0 in k̄0. Let CĜ denote the set of Ĝ(k̄0)-conjugacy classes of cocharacters
Gm,k̄0

→ Ĝ k̄0
. The Galois group Gal(ks

0/k0) ∼= Aut(k̄0/k0) acts naturally on CĜ .
For any c ∈ CĜ we let kc ⊂ ks

0 denote the fixed field of the stabilizer of c in
Gal(ks

0/k0). The fact that c contains a cocharacter which is defined over a finite
separable extension of k0 implies that kc is finite separable over k0.

Definition 5.2. We call kc the field of definition of the conjugacy class c.

Next observe that conjugate cocharacters χ , χ ′ give rise to isomorphic functors
γχ , γ ′χ , so the following definition depends only on the conjugacy class of χ .

Definition 5.3. Let c ∈ CĜ and let S be a scheme over kc. A graded fiber functor
γ : Ĝ-Rep→ GrLF(S) is called of type c, or of type χ for any χ ∈ c, if the pullbacks
of the functors γ and γχ to S×kc k̄0 are fpqc-locally isomorphic. A filtered fiber
functor ψ : Ĝ-Rep→ FilLF•(S) is called of type c if the associated graded fiber
functor gr•C ◦ψ : G-Rep→ GrLF(S) is of type c.

Theorem 5.4 [Ziegler 2011, Theorem 3.25]. Let S be a connected scheme over k0,
and let γ be a graded fiber functor Ĝ-Rep→ GrLF(S). Then there exist a unique
c ∈ CĜ and a unique morphism S→ Spec kc over k0, such that γ is of type c. The
same assertion holds for any filtered fiber functor ψ : Ĝ-Rep→ FilLF•(S).

In general, a conjugacy class c ∈ CĜ does not have a representative which
is defined over kc. For the following results, we therefore fix a field extension
kc ⊂ k ⊂ k̄0 and a representative χ ∈ c that is defined over k. Let L̂ , U , and
P̂ = L̂ nU be the associated subgroups of Ĝk . Let S be a scheme over k.

Theorem 5.5 [Ziegler 2011, Theorem 3.27]. There is a natural equivalence of
categories from the category of graded fiber functors Ĝ-Rep→ GrLF(S) of type c
to the category of right L̂-torsors over S, given by

γ 7→ Isom⊗(γχ,S, γ ).
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Theorem 5.6 [Ziegler 2011, Theorem 4.43]. There is a natural equivalence of
categories from the category of filtered fiber functors Ĝ-Rep→ FilLF•(S) of type
c to the category of right P̂-torsors over S, given by

ψ 7→ Isom⊗(fil• ◦ γχ,S, ψ).

Theorem 5.7 [Ziegler 2011, Theorem 4.39]. For any filtered fiber functor ψ :
Ĝ-Rep→ FilLF•(S) of type c, the functor gr•C induces a natural isomorphism of
right L̂-torsors

Isom⊗(fil• ◦ γχ,S, ψ)/U ∼= Isom⊗(γχ,S, gr•C ◦ψ).

6. F-zips

Definition 6.1. (a) An F-zip over S is a tuple M = (M,C •, D•, ϕ•) consisting
of a locally free sheaf of OS-modules of finite rank M on S, a descending
filtration C • and an ascending filtration D• of M, and an OS-linear isomorphism
ϕi : (gri

C M)(q) ∼
−→ grD

i M for every i ∈ Z.

(b) A homomorphism f : M→ N of F-zips over S is a homomorphism of the
underlying sheaves of OS-modules M → N which for all i ∈ Z satisfies
f (C i M)⊂ C i N and f (Di M)⊂ Di N and makes the following diagram com-
mute:

(gri
C M)(q)

∼

ϕi
//

(gri
C f )(q)

��

grD
i M

grD
i f

��

(gri
C N)(q)

∼

ϕi
// grD

i N.

(c) The resulting category of F-zips over S is denoted F-Zip(S).

The category F-Zip(S) is additive, but due to the presence of the Frobenius
pullback it is only Fq -linear in general, not OS-linear. Easy examples show that it is
not abelian if S 6=∅.

Definition 6.2. A homomorphism of F-zips M→N is admissible if the underlying
morphisms of filtered locally free sheaves M→N for both filtrations C • and D• is
admissible.

This notion turns F-Zip(S) into an exact category that is idempotent complete.

Definition 6.3. An F-zip is called of rank n, or of height n, if its underlying sheaf of
OS-modules is of constant rank n. Let n= (ni )i∈Z be a family of nonnegative integers
which vanish for almost all i . An F-zip M is of type n if gri

C M, or equivalently
grD

i M, is locally free of constant rank ni for all i .
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Any F-zip of type n is of rank
∑

i ni . If its rank is 1 there exists an integer d
such that nd = 1 and ni = 0 for i 6= d . In this case we say briefly that the F-zip is
of type d. If S is connected, every F-zip over S possesses a unique type.

Definition 6.4. The tensor product of F-zips M and N over S is the F-zip M⊗N

consisting of the tensor product M⊗N with the induced descending filtration C •

and the induced ascending filtration D• of M⊗N and the induced isomorphisms

(gri
C(M⊗N))(q)

∼

∼=

��

⊕
j∈Z (gr j

C M)(q)⊗ (gri− j
C N)(q)

∼=

⊕
j (ϕ j⊗ϕi− j )

��

grD
i (M⊗N)

∼ ⊕
j∈Z grD

j M⊗ grD
i− j N.

There is also a straightforward definition of tensor product of morphisms of F-zips,
we leave it to the reader to verify that this is a homomorphism of F-zips. The
tensor product thus defines a functor F-Zip(S)× F-Zip(S)→ F-Zip(S), which
is Fq -bilinear and exact.

Comparing Definition 6.2 with the construction in Section 4G we find that all
symmetric powers SmM and all alternating powers 3mM of F-zips exist. They
have evident descriptions in terms of the symmetric and alternating powers of the
underlying filtered and graded locally free sheaves since symmetric and alternating
powers of filtered and graded locally free sheaves are compatible with pullbacks
under Frobenius and the functor gr.

Definition 6.5. The dual of an F-zip M over S is the F-zip M∨ consisting of the
dual sheaf of OS-modules M∨ equipped with the duals of the filtrations C •(M) and
D•(M) whose terms are given by gri

C(M
∨)= (gr−i

C M)∨ and grD
i (M

∨)= (grD
−i M)

∨,
and the induced isomorphisms

(gri
C(M

∨))(q)

∼=

��

((gr−i
C M)∨)(q)

∼= (ϕ−1
−i )
∨

��

grD
i (M

∨)
∼

(grD
−i M)

∨.

There is an evident notion of the dual of a homomorphism of F-zips, so that we
obtain a functor F-Zip(S)op

→ F-Zip(S), which is Fq -linear and exact.

As usual the tensor product and the dual yields the notion of an internal Hom of
two F-zips M and N over S by setting

Hom(M,N) :=M∨⊗N.
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Example 6.6. The Tate F-zip of weight d ∈ Z is 1(d) := (OS,C •, D•, ϕ•), where

C i
=

{
OS for i ≤ d;
0 for i > d;

Di =

{
0 for i < d;
OS for i ≥ d;

and ϕd is the identity on O
(q)
S = OS . Thus 1(d) is an F-zip of rank 1 and type d.

There are natural isomorphisms 1(d)⊗1(d ′)∼= 1(d+d ′) and 1(d)∨ ∼= 1(−d). The
d-th Tate twist of an F-zip M is defined as M(d) :=M⊗1(d), and there is a natural
isomorphism M(0)∼=M.

With the above tensor product and dual and the unit object 1(0) the category
F-Zip(S) is a rigid tensor category. It is endowed with the following natural exact
Fq -linear tensor functors:

forg : F-Zip(S)→ LF(S), M 7→M,

fil• : F-Zip(S)→ FilLF•(S),M 7→ (M,C •),

fil• : F-Zip(S)→ FilLF•(S),M 7→ (M, D•).

The isomorphism ϕ• : (gr•C M)(q) ∼
−→ grD

•
M that is part of an F-zip induces an

isomorphism of tensor functors ϕ ◦ ( )(q) : gr•C ◦ fil•→ grD
•
◦ fil•. Combined with

some of the functors from (4.1) we obtain the following diagram

(6.7)

FilLF•(S)

gr•Cxx

forg

))
GrLF(S) ϕ ◦ ( )(q) � F-Zip(S)

fil•

xx

fil•

ff

forg
// LF(S)

FilLF•(S),

grD
•

ff

forg

55

which is commutative except that the left hand side commutes only up to ϕ ◦ ( )(q).
Also, there is an evident notion of pullback of F-zips under morphisms S′→ S,

compatible with everything discussed above. Lemma 4.2 directly implies:

Lemma 6.8. For a homomorphism of F-zips, the property of being admissible is
local for the fpqc topology.

7. Ĝ-zip functors

Throughout this section we fix a (not necessarily connected) linear algebraic group
Ĝ over Fq . Let S be a scheme over Fq . It is known (for example by [Nori 1976,
Proposition 2.9]) that giving an exact Fq-linear tensor functor Ĝ-Rep→ LF(S)
is equivalent to giving a Ĝ-torsor over S. This suggests the idea that an exact
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Fq -linear tensor functor from Ĝ-Rep to an arbitrary exact Fq -linear tensor category
C may be viewed as a “Ĝ-torsor in C”, which underlies Section 8 of Deligne’s
article [1990]. In the present section we apply this point of view to the category
of F-zips and describe an equivalence between exact Fq-linear tensor functors
Ĝ-Rep→ F-Zip(S) and Ĝ-zips.

7A. The stack of Ĝ-zip functors.

Definition 7.1. (a) A Ĝ-zip functor over S is an exact Fq -linear tensor functor

z : Ĝ-Rep→ F-Zip(S).

(b) A morphism of Ĝ-zip functors over S is a natural transformation that is com-
patible with the tensor product.

(c) The resulting category of Ĝ-zip functors over S is denoted Ĝ-ZipFun(S).

With the evident notion of pullback the Ĝ-ZipFun(S) form a fibered category
over the category ((Sch/Fq)) of schemes over Fq , which we denote Ĝ-ZipFun.

Proposition 7.2. Ĝ-ZipFun is a stack.

Proof. Since Ĝ-Rep and F-Zip(S) are rigid tensor categories, any morphism of
Ĝ-zip functors is an isomorphism (see [Saavedra Rivano 1972, I.5.2.3]); hence
Ĝ-ZipFun is fibered in groupoids. It remains to prove that Ĝ-ZipFun satisfies
effective descent for morphisms and objects. For this let S′→ S be an fpqc covering
and set S′′ := S′×S S′.

First consider objects z1, z2 ∈ Ĝ-ZipFun(S) and a morphism λ′ : z1,S′ → z2,S′

whose two pullbacks to S′′ coincide. Since morphisms of F-zips satisfy effective
descent with respect to the fpqc topology, for any V ∈ Ĝ-Rep the homomorphism
λ′(V ) : z1(V )S′→ z2(V )S′ comes from a unique homomorphism λ(V ) : z1(V )→
z2(V ). In order for λ to be a tensor morphism, certain diagrams in F-Zip(S) need
to commute. But as λ′ is a tensor morphism, these diagrams commute after pullback
to S′; hence by descent they commute over S and thus λ is a tensor morphism.
Therefore Ĝ-ZipFun satisfies effective descent for morphisms.

Now consider an object z′ of Ĝ-ZipFun(S′) equipped with a descent datum. For
each V ∈ Ĝ-Rep this descent datum induces a descent datum on z′(V ); hence it
yields an object z(V ) of F-Zip(S) with z′(V )= z(V )S′ . Next, the descent datum
on z′(V ) depends functorially on V . Thus for each morphism f : V → V ′ in
Ĝ-Rep the two pullbacks of z′( f ) : z(V )S′→ z(V ′)S′ coincide and therefore come
from a unique morphism z( f ) : z(V )→ z(V ′). The uniquess of z( f ) implies that
z : Ĝ-Rep→ F-Zip(S) is a functor. Making z into a tensor functor requires functo-
rial isomorphisms z(1)∼=1 and z(V )⊗ z(V ′)∼= z(V ⊗ V ′) for all V , V ′ ∈ Ĝ-Rep
which are compatible with the associativity, commutativity and unit constraints
of the tensor category F-Zip(S). These are again obtained by descent from the
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corresponding isomorphisms for z′, and the compatibility with the constraints holds
because it holds after pullback to S′. Finally, by Lemma 6.8 the exactness of z
follows from the exactness of z′. Altogether z is an element of Ĝ-ZipFun(S) which
gives rise to z′ with its descent datum. Thus Ĝ-ZipFun satisfies effective descent
for objects and we are done. �

To analyze a zip functor we will compose it with the functors forg, fil•, and fil•
from (6.7). First we look at the numerical invariants obtained from the filtrations.
Let F̄q be an algebraic closure of Fq . As in Section 5 let CĜ denote the set of
Ĝ(F̄q)-conjugacy classes of cocharacters Gm,F̄q

→ Ĝ F̄q
, and let kc ⊂ F̄q denote the

field of definition of an element c ∈ CĜ , which is a finite extension of Fq .

Definition 7.3. Let c ∈ CĜ and let S be a scheme over kc.

(a) A Ĝ-zip functor z over S is called of type c, or of type χ ∈ c, if the asso-
ciated functor gr•C ◦ fil• ◦ z : Ĝ-Rep→ GrLF(S) is of type c in the sense of
Definition 5.3.

(b) The full subcategory of Ĝ-ZipFun(S) whose objects are the G-zip functors
of type c is denoted Ĝ-ZipFunc

kc
(S).

With the evident notion of pullback the categories Ĝ-ZipFunc
kc
(S) form a fibered

category over the category ((Sch/kc)), which we denote Ĝ-ZipFunc
kc

. Since
Definition 5.3 is local for the fpqc topology, Proposition 7.2 and Definition 7.3
directly imply:

Proposition 7.4. Ĝ-ZipFunc
kc

is a substack of Ĝ-ZipFunkc
.

The next result says that every zip functor over a connected scheme has a type.

Proposition 7.5. Let S be a connected scheme over Fq and z a Ĝ-zip functor over S.
Then there exist a unique c ∈CĜ and a unique morphism S→ Spec kc over Fq such
that z is of type c.

Proof. Direct consequence of Definition 7.3 and Theorem 5.4. �

Corollary 7.6. (a) Each Ĝ-ZipFunc
kc

, viewed as a stack over Fq by Grothendieck
restriction, is an open and closed substack of Ĝ-ZipFun.

(b) Ĝ-ZipFun is the disjoint union of the Ĝ-ZipFunc
kc

taken over all c ∈ CĜ .

Theorem 7.7 [Ziegler 2011, Theorem 3.32]. For any c ∈ CĜ there exists an inner
form

(Ĝ ′, τ : Ĝ ′k̄
∼
−→ Ĝ k̄)

of Ĝ defined over kc and a cocharacter χ : Gm,kc → Ĝ ′ such that τ ◦χ k̄ lies in c.
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Remark 7.8. From the Tannakian viewpoint, replacing Ĝ by an inner form does
not change the category Ĝ-Rep; it merely endows it with a different fiber functor. In
particular it does not change the stack of Ĝ-zip functors. Thus Theorem 7.7 implies
that to study zip functors of a given type c, we may without loss of generality
assume that c has a representative χ which is defined over kc.

7B. Equivalence with Ĝ-zips. We now assume that the identity component G of Ĝ
is reductive. We fix a finite field extension k of Fq and a cocharacter χ : Gm,k→ Ĝk .
We let L̂ ⊂ Ĝk denote the centralizer of χ and set 2 := π0(L̂) ⊂ π0(Ĝk). Then
we are in the situation of Section 3B with the maximal possible choice of 2. We
will use all the pertaining notation from Section 3. Let c, c(q) ∈ CĜ denote the
conjugacy classes of χ , χ (q).

Construction 7.9. For any finite dimensional representation V of Ĝ over Fq , the
cocharacter χ determines a grading Vk =

⊕
i∈Z V i

k . This grading induces a de-
scending filtration C •(Vk). Also, the definition of Vk by base extension induces
a natural isomorphism V (q)

k
∼= Vk . Thus we may consider the decomposition⊕

i∈Z(V
i
k )
(q) as another grading of Vk , namely that induced by the cocharacter χ (q).

This grading induces an ascending filtration D•(Vk). Then for all i ∈ Z we obtain
natural isomorphisms ϕi (Vk) : (gri

C(Vk))
(q) ∼
−→(V i

k )
(q) ∼
−→ grD

i (Vk). Altogether
this data defines an F-zip over k, denoted

z1(V ) :=
(
Vk,C •(Vk), D•(Vk), ϕ•(Vk)

)
.

Clearly this construction is Fq -linearly functorial in V and compatible with tensor
product. It therefore defines a Ĝ-zip functor over k

z1 : Ĝ-Rep→ F-Zip(Spec k).

By pullback we obtain a zip functor z1,S over any scheme S over k. We will measure
an arbitrary zip functor over S by how it differs from this basic zip functor z1,S .

Lemma 7.10. There are natural isomorphisms

(a) Aut⊗(forg ◦ z1)∼= Ĝk ,

(b) Aut⊗(fil• ◦ z1)∼= P̂+,

(c) Aut⊗(fil• ◦ z1)∼= P̂ (q)− .

Proof. Assertion (a) is an instance of the main theorem of Tannaka duality [Deligne
1990, Theorem 1.12], and (b) and (c) are instances of Proposition 5.1. �

Construction 7.11. Let S be a scheme over k, and z a Ĝ-zip functor of type c
over S. Then

(a) Iz := Isom⊗(forg ◦ z1,S, forg ◦ z) is a right Ĝk-torsor over S,

(b) Iz,+ := Isom⊗(fil• ◦ z1,S,fil• ◦ z) is a right P̂+-torsor over S,
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(c) Iz,− := Isom⊗(fil• ◦ z1,S,fil• ◦ z) is a right P̂ (q)− -torsor over S.

Indeed, (a) follows from Lemma 7.10 (a) and [Deligne 1990, Theorem 1.12],
and (b) results from combining Lemma 7.10 (b) with Theorem 5.6 above. Also, the
commutativity of (6.7) shows that ( )q ◦ gr•C ◦fil• ◦ z∼= grD

•
◦fil• ◦ z is of type c(q),

and so (c) follows from Lemma 7.10 (c) and Theorem 5.6.
Moreover, composition with the functors forgetting the filtration induces a natural

P̂+-equivariant embedding

Iz,+
� � // Isom⊗(forg ◦fil• ◦ z1,S, forg ◦fil• ◦ z)

o

Iz
∼

Isom⊗(forg ◦ z1,S, forg ◦ z)

and likewise a natural P̂ (q)− -equivariant embedding Iz,− ↪→ Iz. Furthermore, by
Theorem 5.7 we have natural isomorphisms of L̂(q)-torsors in the rows of the
following diagram, where the vertical isomorphism is induced by the isomorphism
of tensor functors ϕ : ( )(q) ◦ gr•C ◦fil• ∼−→ grD

•
◦fil• from (6.7):

I (q)z,+/U (q)
+

∼

Isom⊗(( )(q) ◦ gr•C ◦fil• ◦ z1,S, ( )
(q)
◦ gr•C ◦fil• ◦ z)

o
��

Iz,−/U (q)
−

∼

Isom⊗(grD
•
◦fil• ◦ z1,S, grD

•
◦fil• ◦ z)

The composite is therefore an isomorphism of L̂(q)-torsors ιz : I (q)z,+/U (q)
+

∼
−→

Iz,−/U (q)
− . Together this data defines a Ĝ-zip of type (χ,2) over S

I z := (Iz, Iz,+, Iz,−, ιz).

Clearly this construction is Fq -linearly functorial in z and compatible with pullback.
Thus it defines a morphism of stacks

(7.12) Ĝ-ZipFunc
k→ Ĝ-Zipk

(χ,2)
, z 7→ I z.

Theorem 7.13. The morphism (7.12) is an isomorphism.

Proof. We construct a morphism in the other direction, as follows. Consider a Ĝ-zip
I = (I, I+, I−, ι) of type (χ,2) over S. The essential surjectivity in Theorem 5.6
shows that I− ∼= Isom⊗(fil• ◦ z1,S, ψ−) for some exact Fq -linear tensor functor

ψ− : Ĝ-Rep→ FilLF•(S), V 7→ (M(V ), D•).

The embedding I− ↪→ I and the fullness in Theorem 5.6 then yield an isomorphism
I ∼= Isom⊗(forg◦z1,S, ω)withω := forg◦ψ− : V 7→M(V ). The essential surjectivity
in Theorem 5.6 also shows that I+∼= Isom⊗(fil•◦z1,S, ψ+) for some exact Fq -linear
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tensor functor ψ+ : Ĝ-Rep→ FilLF•(S). The embedding I+ ↪→ I and the fullness
in Theorem 5.6 then yield an isomorphism forg◦ψ+∼=ω. After replacing ψ+ by an
isomorphic functor we may therefore assume thatψ+ has the form V 7→ (M(V ),C •).
Moreover, Theorem 5.7 and ι yield isomorphisms

I (q)+ /U (q)
+

∼

oι ��

Isom⊗(( )(q) ◦ gr•C ◦fil• ◦ z1,S, ( )
(q)
◦ gr•C ◦ψ+)

I−/U (q)
−

∼

Isom⊗(grD
•
◦fil• ◦ z1,S, grD

•
◦ψ−).

Thus the isomorphism ϕ• : ( )
(q)
◦gr◦fil•◦z1,S

∼
−→ gr◦fil•◦z1,S from Construction 7.9

and the fullness in Theorem 5.5 yield an isomorphism ( )(q)◦gr•C ◦ψ+
∼
−→ grD

•
◦ψ−.

This amounts to graded isomorphisms ϕ• : (gr•C M(V ))(q) ∼
−→ grD

•
M(V ) for all

V ∈ Ĝ-Rep that are functorial and compatible with tensor product. The assembled
data thus determines a Ĝ-zip functor

zI : V 7→ (M(V ),C •, D•, ϕ•)

of type c over S. By definition it satisfies fil• ◦ z=ψ+ and fil• ◦ z=ψ−; comparing
this construction with Construction 7.11 therefore yields an isomorphism I zI

∼= I .
The faithfulness in Theorems 5.6 and 5.5 implies that z is unique up to unique

isomorphism. It is therefore functorial in I . As the construction is clearly compatible
with pullback, it thus defines a morphism of stacks Ĝ-Zipk

(χ,2)
→ Ĝ-ZipFunc

k .
Again by faithfulness the isomorphism I zI

∼= I is functorial in I and compatible
with pullback; hence I 7→ zI is a right inverse of z 7→ I z. Moreover, applying the
above construction to I z for a Ĝ-zip functor z one easily shows that zI z

∼= z, and
so the morphism is also a left inverse. Thus the morphism (7.12) has a two-sided
inverse and is therefore an isomorphism, as desired. �

8. F-zips with additional structure

An important tool in the study of vector bundles is the equivalence between vector
bundles of constant rank n on a scheme S and the associated GLn-torsors. One
also uses the equivalence between vector bundles with a nondegenerate symmetric,
alternating, resp. hermitian pairing and the associated torsors with respect to the
orthogonal, symplectic, resp. unitary group. In this section we describe similar
equivalences between F-zips of constant rank n and GLn-zips, and between F-zips
with additional structure such as a pairing and G-zips for certain associated linear
algebraic groups G.

Let n = (ni )i∈Z be a family of nonnegative integers which vanish for almost all i ,
such that n :=

∑
i ni > 1.
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8A. F-zips versus GLn-zips. For any scheme S over k := Fq we let F-Zipn
k (S)

denote the category whose objects are all F-zips of type n over S according to
Definition 6.3 and whose morphisms are all isomorphisms. For varying S this
defines a category F-Zipn

k fibered in groupoids over ((Sch/k)). Since F-zips
consist of quasicoherent sheaves and homomorphisms thereof, they satisfy effective
descent with respect to any fpqc morphism S′→ S. Therefore F-Zipn

k is a stack.
Choose a cocharacter χ : Gm,k→GLn,k whose weights on the standard represen-

tation kn of GLn,k are i with multiplicity ni for all i . This determines a grading of kn ,
whose associated descending and ascending filtrations we denote by C • and D•.
Since k = Fq , there is a natural isomorphism ϕ1• : (gr•C kn)(q) = gr•C kn ∼

−→ grD
•

kn

turning

(8.1) M1 := (k
n,C •, D•, ϕ1•)

into an F-zip of type n over k. As in Section 7B, we compare arbitrary F-zips of
type n with this basic one.

Set G :=GLn,k , and let P± = L nU± be the parabolics of G associated to χ , as
in Section 3B. Thus P+ is the stabilizer of the filtration C •, and P− is the stabilizer
of D•. Since χ is defined over Fq , we have χ (q) = χ and P (q)± = L(q) nU (q)

± =

P± = L nU±. Also, since G is connected, we have 2= 1 in this case.
In the following, for any graded, filtered, or naked sheaves of OS-modules M1

and M2 we let Isom(M1,M2) denote the fpqc-sheaf on ((Sch/S)) sending S′→ S
to the set of (graded, filtered, resp. neither) isomorphisms M1,S′

∼
−→M2,S′ . By

composition of isomorphisms it carries a natural right action of the sheaf of groups
Isom(M1,M1) = Aut(M1). This sheaf is representable by a smooth affine group
scheme over S if M1 is locally free of finite rank.

Construction 8.2. Let M= (M,C •, D•, ϕ•) be an F-zip of type n over S. Then M

is a locally free sheaf of rank n, and the filtered sheaves (M,C •) and (M, D•) are
Zariski locally isomorphic to (kn,C •)S and (kn, D•)S , respectively. Thus

(a) I := Isom((kn)S,M) is a right GLn-torsor over S,

(b) I+ := Isom
(
(kn,C •)S, (M,C •)

)
is a right P+-torsor over S,

(c) I− := Isom
(
(kn, D•)S, (M, D•)

)
is a right P (q)− -torsor over S.

Forgetting the filtration induces natural equivariant embeddings I± ↪→ I . Also, the
functors gr•C and grD

•
induce natural isomorphisms I+/U+∼= Isom((gr•C kn)S, gr•C M)

and I−/U (q)
−
∼= Isom((grD

•
kn)S, grD

•
M). Moreover, the isomorphisms ϕ1• : (gr•C kn)(q)

∼
−→ grD

•
kn and ϕ• : (gr•C M)(q) ∼

−→ grD
•

M induce an isomorphism ι of L-torsors
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making the following diagram commute:

I (q)+ /U (q)
+

∼

ι ��

Isom
(
(gr•C kn)

(q)
S , (gr•C M)(q)

)
o
��

I−/U (q)
−

∼

Isom
(
(grD

•
kn)S, grD

•
M
)
.

Together this data defines a GLn-zip I := (I, I+, I−, ι) of type χ over S. Clearly
this construction is k-linearly functorial in M and compatible with pullback. Thus
it defines a morphism of stacks

(8.3) F-Zipn
k −→ GLn-Zipχk .

Proposition 8.4. This morphism is an isomorphism.

Proof. A morphism in the other direction is obtained by evaluating the inverse
of the morphism (7.12) at the standard representation V = kn of GLn,k . It is
straightforward to check that these two morphisms are mutually inverse. �

Combined with Theorem 7.13 this shows in particular that giving an F-zip of
type n, or a GLn-zip of type χ , or a GLn-zip functor of type χ , are all equivalent.
Also, combined with Proposition 3.11 it shows that the isomorphism classes of F-
zips of type n over an algebraically closed field K containing Fq are in bijection with
the EGLn,χ(K )-orbits on GLn(K ), which in turn have a combinatorial description
in terms of the Weyl group of GLn , as in Example 3.23. The analogous remarks
apply to the cases treated in the rest of this section.

8B. F-zips with trivialized determinant versus SLn-zips. Keeping the notations
of the preceding subsection, we now assume that

∑
i ni i = 0. Then the highest

exterior power of any F-zip of type n is an F-zip of rank 1 whose filtrations
are concentrated in degree 0. We call a pair (M,1) consisting of an F-zip M of
type n and an isomorphism 1 : 3nM ∼

−→ 1(0) an F-zip of type n with trivialized
determinant. For the same reasons as before, the F-zips of type n with trivialized
determinant, together with isomorphisms of such pairs, form a stack over k.

Let 11 : 3
n(kn) ∼

−→ k denote the isomorphism induced by the determinant.
With the basic F-zip from (8.1) the pair (M1,11) is then an F-zip of type n with
trivialized determinant over k. As in the preceding subsection, we compare arbitrary
F-zips of type n with trivialized determinant with this basic one.

The relevant linear algebraic group is now SLn,k . Clearly χ factors through
SLn,k , so that we can speak of SLn-zips of type χ . The associated parabolics of
SLn,k are now P± ∩SLn,k with P± as in Section 8A.

Note that 11 : 3
n(kn) ∼

−→ k is an isomorphism in the category SLn-Rep if the
target k is endowed with the trivial representation. The equivalence (8.6) below
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can be interpreted as saying that an F-zip with trivialized determinant is a partial
SLn-zip functor containing just enough information to possess a unique extension
to a full SLn-zip functor z : SLn-Rep→ F-Zip(S).

Construction 8.5. Let (M,1) with M = (M,C •, D•, ϕ•) be an F-zip of type n
with trivialized determinant over S. Let I := (I, I+, I−, ι) be the GLn-zip associ-
ated to M by Construction 8.2. Let I ′ ⊂ I be the subsheaf of all isomorphisms
u : (kn)S′

∼
−→MS′ for which the composite

3n(kn)S′
3nu
−→3nMS′

1
−→ (k)S′

is equal to 11,S′ . One easily checks that

(a) I ′ is a right SLn-torsor over S,

(b) I ′
+
:= I+ ∩ I ′ is a right P+ ∩SLn,k-torsor over S,

(c) I ′
−
:= I− ∩ I ′ is a right P (q)− ∩SLn,k-torsor over S.

Moreover, the highest exterior power of a filtered locally free sheaf of finite rank
is canonically isomorphic to the highest exterior power of the associated graded
sheaf. Thus the isomorphism of F-zips 1 amounts to a commutative diagram of
isomorphisms

3n(gr•C M)(q)
∼

o3nϕ•
��

3nM(q) 1(q)

∼

// (k)(q)S

3ngrD
•

M
∼

3nM
1

∼

// (k)S .

From this one easily deduces that the isomorphism ι : I (q)+ /U (q)
+

∼
−→ I−/U (q)

− in-
duces an isomorphism ι′ : (I ′)(q)+ /U (q)

+
∼
−→ I ′

−
/U (q)
− . Together the assembled data

therefore defines an SLn-zip I ′ := (I ′, I ′
+
, I ′
−
, ι′) of type χ over S. Clearly this

construction is Fq -linearly functorial in (M,1) and compatible with pullback. Thus
it defines a morphism of stacks

(8.6)
((

F-zips of type n with trivialized determinant
))
−→ SLn-Zipχk .

Proposition 8.7. This morphism is an isomorphism.

Proof. By the remarks in Section 4G and exactness, any zip functor z : SLn-Rep→
F-Zip(S) commutes with alternating powers; hence it sends 11 to an isomorphism
z(11) : 3

n(z(kn)) ∼= z(3n(kn)) ∼
−→ z(k) = 1(0). Therefore z 7→ (z(kn), z(11))

defines a morphism from the stack of SLn-zips of type χ to the stack of F-zips of
type n with trivialized determinant. Composed with the inverse of the morphism
(7.12) we thus obtain a morphism in the other direction. The careful reader will be
able to check that this is a two-sided inverse of the morphism (8.6). �
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8C. Symplectic F-zips versus Spn-zips. We call a pair (M, E) consisting of an
F-zip M of type n over S and an admissible epimorphism E : 32M� 1(0), whose
underlying alternating pairing M ×M → (k)S is nondegenerate everywhere, a
symplectic F-zip of type n over S. For the same reasons as before these pairs,
together with compatible isomorphisms, form a stack over k := Fq . For this stack
to be nonempty we assume that n :=

∑
i ni is even and that ni = n−i for all i .

Fix a nondegenerate alternating pairing E1 : kn
× kn

→ k, and let Spn,k ⊂

GLn,k denote the associated symplectic group. Then E1 can be viewed as an
equivariant epimorphism 32(kn)� k, where Spn,k acts trivially on the target k. By
the assumptions on n there exists a cocharacter χ : Gm,k → Spn,k , unique up to
conjugation, whose weights on the standard representation kn of Spn,k are i with
multiplicity ni for all i . Fixing such a cocharacter, we can thus speak of Spn-zips
of type χ over any scheme S over k.

To any symplectic F-zip (M, E) of type n over S we can associate an Spn-zip
I ′ := (I ′, I ′

+
, I ′
−
, ι′) of type χ over S. Namely, if I := (I, I+, I−, ι) denotes the

GLn-zip associated to M by Construction 8.2, we let I ′ ⊂ I be the subsheaf of
isomorphisms (kn)S

∼
−→MS which are compatible with E1 and E . From the fact

that any two nondegenerate alternating pairings on the sheaf O⊕n
S are conjugate

under GLn(S) one deduces that this is an Spn,k-torsor. Also I ′
+
, I ′
−
⊂ I ′ are the

subsheaves of isomorphisms preserving the filtrations C •, respectively D•, and ι′

is constructed from the isomorphism ϕ• in M. Together we obtain a morphism of
stacks

(8.8)
((

symplectic F-zips of type n
))
−→ Spn-Zipχk .

Conversely, for any Spn-zip of type χ over S we evaluate the associated zip
functor z on the standard representation kn and the homomorphism E1 in Spn,k-Rep,
obtaining a symplectic F-zip (z(kn), z(E1)) of type n over S. By showing that this
construction yields a two-sided inverse of the first one proves that the morphism
(8.8) is an isomorphism.

8D. Twisted symplectic F-zips versus CSpn-zips. We call a triple (M,L, E) con-
sisting of an F-zip M of type n over S, an F-zip L of rank 1 over S, and an admissible
epimorphism E : 32M� L, whose underlying alternating pairing M×M→L is
nondegenerate everywhere on S, a twisted symplectic F-zip of type n over S. For
the same reasons as before these triples, together with compatible isomorphisms,
form a stack over k := Fq . For this stack to be nonempty we assume that n :=

∑
i ni

is even and that there is an integer d satisfying ni = nd−i for all i . This d is then
unique, and the above L must be of type d .

Fix a nondegenerate alternating pairing E1 : kn
× kn
→ k, and let CSpn,k denote

the associated group of symplectic similitudes, that is, the group of all g ∈ GLn,k
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satisfying E1 ◦ (g× g) = µ(g) · E1 for a scalar µ(g). Then E1 can be viewed as
a CSpn,k-equivariant epimorphism 32(kn)� k, where CSpn,k acts on the target
k through the multiplier character µ : CSpn,k � Gm,k . By the assumptions on n
there exists a cocharacter χ : Gm,k → CSpn,k , unique up to conjugation, whose
weights on the standard representation kn of CSpn,k are i with multiplicity ni for
all i . Fixing such a cocharacter, we can thus speak of CSpn-zips of type χ over any
scheme S over k.

Using the same principles as before, to any twisted symplectic F-zip (M,L, E)
of type n over S we can associate a CSpn-zip I := (I, I+, I−, ι) of type χ over S.
In the interest of brevity we only sketch the construction: Here I is the sheaf of
pairs of isomorphisms (kn)S′

∼
−→MS′ and (k)S′

∼
−→LS′ that are compatible with

E1 and E . That this is a CSpn,k-torsor again results from the fact that any two
nondegenerate alternating pairings on the sheaf O⊕n

S′ are conjugate under GLn(S′).
Also I+, I− ⊂ I are the subsheaves of isomorphisms preserving the filtrations C •,
respectively D•, and ι is constructed from the isomorphisms ϕ• in M and L. Together
we obtain a morphism of stacks

(8.9)
((

twisted symplectic F-zips of type n
))
−→ CSpn-Zipχk .

Conversely, for any CSpn-zip of type χ over S we evaluate the associated zip
functor z on the standard representation kn , the representation k with the multiplier
character µ, and the homomorphism E1, obtaining a twisted symplectic F-zip
(z(kn), z(k), z(E1)) of type n over S. By showing that this construction yields a
two-sided inverse of the first one proves that the morphism (8.9) is an isomorphism.
The details in these arguments follow those in the preceding subsections and are
left to the conscientious reader.

8E. Orthogonal F-zips versus On-zips. To avoid the usual idiosyncrasies of sym-
metric bilinear forms in characteristic 2 we assume that q is odd in this subsection
and the next. We call a pair (M, B) consisting of an F-zip M of type n over S and
an admissible epimorphism E : S2M� 1(0), whose underlying symmetric pairing
M×M→ (k)S is nondegenerate everywhere, an orthogonal F-zip of type n over S.
For the same reasons as before these pairs, together with compatible isomorphisms,
form a stack over k := Fq . For this stack to be nonempty we assume that ni = n−i

for all i .
Fix a nondegenerate split symmetric bilinear form B1 : kn

× kn
→ k, and let

On,k ⊂ GLn,k denote the associated orthogonal group. Then B1 can be viewed as
an equivariant epimorphism S2(kn)� k, where On,k acts trivially on the target k.
Note that On,k has two connected components and that its identity component is a
split special orthogonal group SOn,k . By the assumptions on n there exists a cochar-
acter χ : Gm,k→ On,k , unique up to conjugation, whose weights on the standard
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representation kn are i with multiplicity ni for all i . We fix such a cocharacter and
set L̂ := CentOn,k (χ) and 2 := π0(L̂)⊂ π0(On,k). A quick calculation shows that
L̂ ∼= On0,k ×

∏
i>0 GLni ,k ; hence 2 is trivial if n0 = 0, and equal to π0(On,k) if

n0 > 0. According to Definition 3.1 we can speak of On-zips of type (χ,2) over
any scheme S over k.

The definition of L̂ implies that the associated subgroups P̂± from Section 3B are
precisely the stabilizers of the descending and ascending filtrations of kn induced
by χ . Also, observe that any two nondegenerate symmetric pairings on the sheaf O⊕n

S
are fpqc-locally conjugate under GLn . Using these facts and the same construction
as in Section 8C, to any orthogonal F-zip (M, B) of type n over S we can associate
an On-zip of type (χ,2) over S, obtaining a morphism of stacks

(8.10)
((

orthogonal F-zips of type n
))
−→ On-Zipχ,2k .

Conversely, for any On-zip of type (χ,2) over S we evaluate the associated zip
functor z on the standard representation kn and the homomorphism B1 in On,k-Rep,
obtaining an orthogonal F-zip (z(kn), z(B1)) of type n over S. This construction
yields a two-sided inverse of the first and thereby proves that the morphism (8.10)
is an isomorphism.

8F. Twisted orthogonal F-zips versus COn-zips. Again we assume that q is odd.
We call a triple (M,L, B) consisting of an F-zip M of type n over S, an F-zip L

of rank 1 over S, and an admissible epimorphism B : S2M� L, whose underlying
symmetric pairing M × M → L is nondegenerate everywhere on S, a twisted
orthogonal F-zip of type n over S. For the same reasons as before these triples,
together with compatible isomorphisms, form a stack over k := Fq . For this stack
to be nonempty we assume that there is an integer d satisfying ni = nd−i for all i .
This d is then unique, and the above L must be of type d.

Fix a nondegenerate split symmetric bilinear form B1 : kn
× kn
→ k. Let COn,k

denote the associated group of orthogonal similitudes, that is, the group of all
g ∈ GLn,k satisfying B1 ◦ (g × g) = µ(g) · B1 for a scalar µ(g). Then B1 can
be viewed as a COn,k-equivariant epimorphism S2(kn)� k, where COn,k acts on
the target k through the character µ : COn,k � Gm,k . If n is odd, then COn,k is
connected with a root system of type B(n−1)/2 and is therefore split. If n is even,
then COn,k has two connected components and a root system of type Dn/2. In both
cases the identity component of COn,k is split, because B1 is split. Thus there exists
a cocharacter χ : Gm,k→ COn,k , unique up to conjugation, whose weights on the
standard representation kn of COn,k are i with multiplicity ni for all i . We fix such
a cocharacter and set L̂ := CentCOn,k (χ) and 2 := π0(L̂) ⊂ π0(COn,k). A quick
calculation shows that L̂ ∼=COnd/2,k ×

∏
i>d/2 GLni ,k if d is even and nd/2 > 0, and

L̂ ∼= Gm,k ×
∏

i>d/2 GLni ,k otherwise. Thus 2 is trivial unless d is even and nd/2
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is even and positive, in which case 2 = π0(COn,k) of order 2. In either case we
can speak of COn-zips of type (χ,2) over any scheme S over k.

In the same way as in Section 8D, to any twisted orthogonal F-zip (M,L, B)
of type n over S we can associate a COn-zip of type (χ,2) over S, obtaining a
morphism of stacks

(8.11)
((

twisted orthogonal F-zips of type n
))
−→ COn-Zipχ,2k .

Conversely, for any COn-zip of type (χ,2) over S we evaluate the associated zip
functor z on the standard representation kn , the representation k with the multiplier
character µ, and the homomorphism B1, obtaining a twisted orthogonal F-zip
(z(kn), z(k), z(B1)) of type n over S. By showing that this construction yields a
two-sided inverse of the first one proves that the morphism (8.11) is an isomorphism.

8G. Unitary F-zips versus Un-zips. Let Fq2 denote a fixed quadratic extension
of Fq , and let σ denote its nontrivial automorphism x 7→ xq over Fq . Let S be a
scheme over Fq . We call a triple (M, ρ, H) consisting of an F-zip M over S, an
Fq-algebra homomorphism ρ : Fq2 → End(M), and an admissible epimorphism
H : M⊗M→ Fq2 ⊗Fq 1(0), which satisfies

(a) H ◦ (ρ(α)⊗ ρ(β))= (αqβ⊗ 1) ◦ H for all α, β ∈ Fq2 , and

(b) H(m2,m1)= (σ ⊗ 1) ◦ H(m1,m2) for all local sections m1, m2 of M,

and whose hermitian pairing on the underlying sheaf M ×M → Fq2 ⊗Fq OS is
nondegenerate everywhere, a unitary F-zip over S. To classify such objects we use
base change fro Fq to Fq2 :

Let S̃ be a scheme over Fq2 and (M̃, ρ̃, H̃) a unitary F-zip over S̃. Then we have
a unique decomposition M̃= Ñ⊕ Ñ′, where ρ̃(α) acts on Ñ through multiplication
by α and on Ñ′ through multiplication by αq , and the hermitian pairing H̃ amounts
to an isomorphism Ñ′ ∼−→ Ñ∨. Working out the rest of the data we find that
giving a unitary F-zip over S is equivalent to giving a quadruple (Ñ,C •, D•, ψ•)
consisting of a locally free sheaf of OS-modules of finite rank Ñ on S, a descending
filtration C • and an ascending filtration D• of Ñ, and an OS-linear isomorphism
ψi : (gri

C Ñ)(q) ∼
−→(grD

−i Ñ)
∨ for every i ∈ Z. We call (M̃, ρ̃, H̃) of type n if the

associated gri
C Ñ is locally free of constant rank ni for all i . For the same reasons as

before the unitary F-zips of type n, together with compatible isomorphisms, form
a stack over Fq2 . is no further condition on n in this case.

Let as above S be a scheme over Fq and (M, ρ, H) a unitary F-zip over S. We
have M=pr2∗ M̃ for a locally free sheaf of OS̃-modules M̃ on S̃ :=Spec Fq2×Spec Fq S,
such that the action ρ of Fq2 is induced from the first factor. The Fq2-invariant
filtration C • on M then comes from a filtration of M̃. In this case we call a unitary
F-zip of type n if the associated gri

C M̃ is locally free of constant rank ni for all i .
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Since the hermitian pairing H induces isomorphisms (σ× id)∗gri
C M̃ ∼
−→(gr−i

C M̃)∨,
this condition can be satisfied nontrivially only if ni = n−i for all i . Under this
assumption the unitary F-zips of type n, together with compatible isomorphisms,
form a stack over Fq . Moreover, a unitary F-zip is of type n in this sense if and
only if its pullback to S̃ is of type n in the previous sense; hence the stack over Fq2

described before is just the base change of the present stack over Fq .
In summary, set k := Fq if ni = n−i for all i , respectively k := Fq2 if not; the

unitary F-zips of type n then form a natural stack over k.
Fix a nondegenerate σ -hermitian form H1 : Fn

q2 × Fn
q2 → Fq2 , and let Un,Fq ⊂

RFq2/Fq GLn,Fq2 denote the associated unitary group. The assumptions on n and k
imply that there exists a cocharacter χ : Gm,k → Un,k , unique up to conjugation,
whose weights on the standard representation Fn

q2 of Un,Fq2 are i with multiplicity
ni for all i . Fixing such a cocharacter, we can thus speak of Un-zips of type χ over
any scheme S over k.

Also, set M1 := Fn
q2 ⊗Fq k with the descending filtration C • associated to χ and

the ascending filtration D• associated to the Frobenius twist χ (q), so that there are
natural Fq2 ⊗Fq k-linear isomorphisms ϕi : (gri

C M1)
(q) ∼
−→ grD

i M1 for all i ∈ Z.
Then M1 := (M1,C •, D•, ϕ•) together with the evident action of Fq2 and the pairing
H1 is a unitary F-zip of type n over k.

Using the same principles as in the preceding subsections, to any unitary F-zip
(M, ρ, H) of type n over S we can now associate a Un-zip I := (I, I+, I−, ι) of type
χ over S. Here I is the sheaf of all Fq2⊗Fq OS′-linear isomorphisms M1,S′

∼
−→MS′

which are compatible with H1 and H , for all morphisms S′→ S, and I± are the
subsheaves of isomorphisms which are in addition compatible with the filtrations C •,
respectively D•, and ι is obtained from the graded isomorphisms ϕ•. Together this
yields a morphism of stacks

(8.12)
((

unitary F-zips of type n
))
−→ Un-Zipχk .

Conversely, for any Un-zip of type χ over S we evaluate the associated zip
functor z on the standard representation Fn

q2 , the obvious homomorphism Fq2 →

EndUn,Fq
(Fn

q2), and the hermitian pairing H1 (all of which are objects and morphisms
in Un-Rep), obtaining a unitary F-zip of type n over S. By showing that this
construction yields a two-sided inverse of the first one proves that the morphism
(8.12) is an isomorphism.

8H. Twisted unitary F-zips versus CUn-zips. Again let Fq2 denote a fixed qua-
dratic extension of Fq , and let σ denote its nontrivial automorphism x 7→ xq over Fq .
We call a quadruple (M, ρ,L, H) consisting of an F-zip M over S, an Fq -algebra
homomorphism ρ : Fq2→ End(M), an F-zip L of rank 1 over S, and an admissible
epimorphism H : M⊗M→ Fq2 ⊗Fq L, which satisfies the same conditions (a)



F -ZIPS WITH ADDITIONAL STRUCTURE 225

and (b) as in Section 8G and whose hermitian pairing on the underlying sheaf is
nondegenerate everywhere, a twisted unitary F-zip over S.

If S is a scheme over Fq2 , for any twisted unitary F-zip over S there is a unique
decomposition M = N⊕N′, where ρ(α) acts on N through multiplication by α
and on N′ through multiplication by αq , and it is compatible with the filtration C •.
In this case we call a twisted unitary F-zip over S of type (n, d) if the associated
gri

C N is locally free of constant rank ni for all i and L is of type d. For the same
reasons as before the twisted unitary F-zips of type (n, d), together with compatible
isomorphisms, form a stack over Fq2 . There is no further condition on (n, d) in this
case.

If S is only a scheme over Fq , we still have M = pr2∗ M̃ for a locally free
sheaf of OS̃-modules M̃ on S̃ := Spec Fq2 ×Spec Fq S, such that the action ρ of
Fq2 is induced by the first factor. In this case we call a twisted unitary F-zip
of type (n, d) if the associated gri

C M̃ is locally free of constant rank ni for all i
and L is of type d. Since the hermitian pairing H must induce isomorphisms
(σ × id)∗gri

C M̃ ∼
−→(grd−i

C M̃)∨⊗ pr∗2 L, this condition can be satisfied nontrivially
only if ni = nd−i for all i . Under this assumption the twisted unitary F-zips of type
(n, d), together with compatible isomorphisms, form a stack over Fq . Moreover, a
twisted unitary F-zip is of type (n, d) in this sense if and only if its pullback to S̃
is of type (n, d) in the previous sense; hence the stack over Fq2 described before is
just the base change of the present stack over Fq .

In summary, set k := Fq if ni = nd−i for all i , respectively k := Fq2 if not; the
twisted unitary F-zips of type (n, d) then form a natural stack over k.

Fix a nondegenerate σ -hermitian form H1 : Fn
q2 × Fn

q2 → Fq2 , and let CUn,Fq ⊂

RFq2/Fq GLn,Fq2 denote the associated group of unitary similitudes, that is, of sec-
tions g that satisfy H1 ◦ (g × g) = µ(g) · H1 for a scalar µ(g) in Gm,Fq . The
assumptions on (n, d) and k imply that there exists a cocharacter χ : Gm,k→CUn,k ,
unique up to conjugation, whose weights on the standard representation Fn

q2 of
Un,Fq2 are i with multiplicity ni for all i , and whose weight under the multiplier
character µ is d. Fixing such a cocharacter, we can thus speak of CUn-zips of
type χ over any scheme S over k.

By the same procedure as before, to any twisted unitary F-zip (M, ρ, H) of type
(n, d) over S we can associate a CUn-zip of type χ over S, obtaining a morphism
of stacks

(8.13)
((

twisted unitary F-zips of type (n, d)
))
−→ CUn-Zipχk .

Conversely, for any CUn-zip of type χ over S we evaluate the associated zip
functor z on the standard representation Fn

q2 , the obvious homomorphism Fq2 →

EndCUn,Fq
(Fn

q2), the multiplier representation on Fq , and the hermitian pairing H1

(all of which are objects and morphisms in CUn-Rep), obtaining a twisted unitary
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F-zip of type (n, d) over S. By showing that this construction yields a two-sided
inverse of the first one proves that the morphism (8.13) is an isomorphism.

8I. Other groups. For each of the groups Ĝ above, we have identified a finite
subcategory C of Ĝ-Rep and have shown that any suitable functor C→ F-Zip(S)
extends to a Ĝ-zip functor Ĝ-Rep→ F-Zip(S). Surely it must be possible to
apply the same principle to an arbitrary reductive linear algebraic group Ĝ over k.
However, identifying a suitable subcategory C becomes tiresome very quickly.

For instance, it should be possible to describe SOn-zip functors in terms of
triples (M, B,1) consisting of an F-zip M of rank n, an everywhere nondegenerate
symmetric pairing B on M, and a trivialization 1 of the highest exterior power
of M. However, to guarantee the extendability to SOn,k-Rep one must also impose a
certain relation between B and 1 which is more complicated to describe. Moreover,
the identification of the type of an SOn-zip functor might require some extra data,
because SOn may possess nonconjugate cocharacters which are conjugate under
GLn . A similar situation arises for the group SUn,k .

9. Applications

9A. Zip strata attached to smooth proper morphism with degenerating Hodge
spectral sequence. In the following we give a generalization of a construction
from [Moonen and Wedhorn 2004]. Let S be a scheme over Fp, let X be a Deligne–
Mumford stack and let f : X→ S be a morphism of finite type. For every étale
morphism U → X, where U is a scheme, we set �•X/S|U :=�

•

U/S , where �•U/S is
the de Rham complex of U over S. As the formation of the de Rham complex �•U/S
commutes with étale localization on U , this defines a complex of quasicoherent
sheaves of OX-modules of finite type on the étale site on X whose differentials are
f −1OS-linear.

Attached to the naive and the canonical filtration of the de Rham complex
�•X/S we obtain two spectral sequences converging to the de Rham cohomology
H •

DR(X/S)= R• f∗(�•X/S), namely the Hodge–de Rham spectral sequence

H Eab
1 = Rb f∗(�a

X/S)=⇒ Ha+b
DR (X/S)

and the conjugate spectral sequence

conj Eab
2 = Ra f∗(Hb(�•X/S))=⇒ Ha+b

DR (X/S).

In particular these spectral sequences endow H d
DR(X/S) for d ≥ 0 with two de-

scending filtrations (H F i H d
DR(X/S))i∈Z and (conj F i H d

DR(X/S))i∈Z by sheaves of
OS-submodules which are called the Hodge filtration and the conjugate filtration.
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We denote by F : X → X(p) the relative Frobenius of X over S. For étale
morphisms g : U → X the diagram

U
Frob

//

g
��

U

g
��

X
Frob
// X,

where the horizontal morphisms are the absolute Frobenii, is cartesian. This shows
that the formation of the relative Frobenius also commutes with étale base change.
In particular, F is representable and finite.

If f is smooth, there is a unique isomorphism of graded sheaves of OX(p)-modules

C−1
:

⊕
b≥0

�b
X(p)/S

∼
−→

⊕
b≥0

Hb(F∗(�•X/S)
)
,

the (inverse) Cartier isomorphism, which satisfies

C−1(1)= 1

C−1(dσ−1(x))= class of x p−1dx

C−1(ω∧ω′)= C−1(ω)∧C−1(ω′).

To see this, we remark that because of the uniqueness assertion one may work
locally for étale topology on X(p). As the formation of differentials, of Hi ( ), and
of Frobenius is compatible with étale base change U → X, the unique existence
of C−1 for Deligne–Mumford stacks follows from the analogous result for smooth
morphisms of schemes.

From now on we assume that f is smooth and proper. We fix an integer d ≥ 0.
We assume that f and d satisfy the following two conditions.

(D1) The sheaves of OS-modules Rb f∗(�a
X/S) are locally free of finite rank for all

a, b ≥ 0 with a+ b ≤ d .

(D2) The Hodge–de Rham spectral sequence H Eab
1 = Rb f∗(�a

X/S)=⇒ Ha+b
DR (X/S)

degenerates for a+ b ≤ d (that is, for all r ≥ 1 and a, b with a+ b ≤ d the
differentials from and to H Eab

r vanish).

Then the formation of the Hodge–de Rham spectral sequence for a+b≤d commutes
with base change S′→ S, and H e

DR(X/S) is locally free of finite rank for e ≤ d.
Now one has Ra f (p)∗ ◦ F∗ = Ra f∗ because F is affine. Hence applying the

functor Ra f (p)∗ to the Cartier isomorphism we obtain an isomorphism

Ra f (p)
∗
(�b

X(p)/S)
∼
−→ Ra f∗

(
Hb(�•X/S)

)
.
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Because of Condition (D1) the OS-modules Ra f∗(�b
X/S) are flat for all a, b ≥ 0

with a+ b ≤ d and we obtain isomorphisms

(9.1) ϕab
: Ra f∗(�b

X/S)
(p)
= (H Eba)(p) ∼

−→ conj Eab
2 = Ra f∗

(
Hb(�•X/S)

)
.

This implies that the conjugate spectral sequence also degenerates for a+ b ≤ d
and that its formation commutes with arbitrary base change for a + b ≤ d (see
[Katz 1972] 2 if X is a scheme; the arguments for Deligne–Mumford stacks X are
verbatim the same).

Remark 9.2. We list some examples of morphisms f and integers d that satisfy
conditions (D1) and (D2).
(a) By [Moonen and Wedhorn 2004], conditions (D1) and (D2) are satisfied for all

d in case X is a smooth proper relative curve over S, in case X is an abelian
scheme over S, in case X is a smooth toric scheme over S and in case X is a
relative K3-surface over S.

(b) Conditions (D1) and (D2) are satisfied for all d ≤ p− 1 if there exists a flat
scheme S̃ over Z/p2Z satisfying S̃⊗Z/p2Z Fp ∼= S and a smooth proper lift of
X to S̃.

This is shown in [Deligne and Illusie 1987] if X is a scheme, and the
proof carries over verbatim to the case of Deligne–Mumford stacks because the
formation of the de Rham complex and the relative Frobenius is compatible with
pull back via étale morphisms X ′→ X (see also [Satriano 2012, Theorem 3.7]
for a generalization to tame Artin stacks; note that Satriano formulates only the
case where S = Spec k for a perfect field k but combining his proof with the
proof over a general base scheme in [Deligne and Illusie 1987] also shows the
general case).

(c) Let S = Spec k for a perfect field k. Let X be a smooth proper scheme over
k and let D ∈ Div(X)⊗Q be a Q-divisor whose support has only normal
crossings and such that exists an integer b prime to char(k) such that bD is
integral. Then in [Matsuki and Olsson 2005] there is attached a morphism
X→ X , where X is a smooth proper Deligne–Mumford stack which is the
“minimal covering” of X such that D becomes integral. Moreover the authors
show that each lift of (X, D) over W2(k) yields also a smooth proper lift of X

making it possible to apply (b). We refer to [loc. cit.,Theorem 4.1] for details.

We associate to f and d an F-zip (M,C •, D•, ϕ•) over S as follows: Set M=

H d
DR(X/S). Let C • be the Hodge filtration on M, and define the filtration D• by

Di = conj Fd−i H d
DR(X/S). As the formation of both spectral sequences commutes

with arbitrary base change, C • and D• are filtrations by locally direct summands,
that is they are filtrations in the sense of Sections 4C and 4D. The assumption of
the degeneracy of the Hodge spectral sequence and hence of the conjugate spectral
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sequence shows that one has functorial isomorphisms

(9.3)
gri

C H d
DR(X/S)∼= Rd−i f∗(�i

X/S)

grD
i H d

DR(X/S)∼= Rd−i f∗(Hi (�•X/S))

Finally, let

ϕi := ϕ
d−i,i
: (gri

C)
(p)
= Rd−i f∗(�i

X/S)
(p) ∼
−→ grD

i = Rd−i f∗(Hi (�•X/S)),

where ϕd−i,i is the isomorphism defined in (9.1). We denote this F-zip by H d
DR(X/S).

For i ∈ Z set

ni :=

{
hd−i,i

= rk(Rd−i f∗(�i
X/S)), for 0≤ i ≤ d;

0, otherwise.
This is a locally constant function on S. If ni is constant for all i , which is
automatic if S is connected, then n= (ni ) is the type of the F-zip H d

DR(X/S). Thus
for n :=

∑
i ni the isomorphism (8.3) yields a GLn-zip I of type χ over S, where

χ is the cocharacter of GLn associated to n as in Section 8A. By (3.28) we obtain a
decomposition into locally closed subschemes

S =
⋃
w∈I W

SwI

indexed by
I W =

{
w ∈ Sh : ∀i ∈ Z : w−1

(∑
j<i

n j + 1
)
< · · ·<w−1

(∑
j<i

n j + ni

)}
.

Let � be the partial order on I W given by (3.16). By the inclusion (3.29) and
Proposition 3.30 one has

SwI ⊆
⋃
w′�w

Sw
′

I

with equality if the classifying morphism S → GLn-ZipχFp
of the GLn-zip I is

generizing.

9B. Cup product and duality. The cup product in de Rham cohomology yields a
bilinear map of F-zips, as follows. As the cup product has not yet been worked out
for Deligne–Mumford stacks (as far as we know), we restrict ourself to the case
that f : X→ S is a smooth and proper morphisms of schemes over Fp satisfying
conditions (D1) and (D2) for all d . Using the Künneth formula for hypercohomology
of complexes ([Grothendieck 1963, Section 6.7.8], applicable because �a

X/S and
H d

DR(X/S) are S-flat for all a and d) one sees that the wedge product

(9.4) �•X/S ⊗ f −1OS �
•

X/S→�•X/S

induces a homomorphism of locally free graded OS-modules of finite rank

(9.5) ∪: H •

DR(X/S)⊗OS H •

DR(X/S)−→ H •

DR(X/S),
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the cup product. This makes H •(X/S) into a graded anticommutative OS-algebra. It
is easily checked that the wedge product sends the tensor product of the naive (resp.
canonical) filtrations to the naive (resp. canonical) filtration. Thus by functoriality
of the spectral sequence associated to a filtered complex the cup product induces
for all d, e ≥ 0 a morphism of filtered locally free modules of finite rank

(9.6) ∪: H d
DR(X/S)⊗OS H e

DR(X/S)−→ H d+e
DR (X/S).

In particular we obtain induced pairings on the associated graded pieces. Moreover,
using the defining properties of the Cartier isomorphism, one sees that there is a
commutative diagram

(9.7)

gri
C H d

DR(X/S)(p)⊗ gr j
C H e

DR(X/S)(p) //

ϕd−i,i
⊗ϕe− j, j

��

gri+ j
C H d+e

DR (X/S)(p)

ϕd+e−i− j,i+ j

��

grD
i H d

DR(X/S)⊗ grD
j H e

DR(X/S) // grD
i+ j H d+e

DR (X/S).

Hence we obtain a morphism of F-zips over S

(9.8) ∪: H d
DR(X/S)⊗ H e

DR(X/S)→ H d+e
DR (X/S),

Example 9.9. Let A→ S be an abelian scheme. Then the cup product yields an
isomorphism of graded anticommutative algebras

3•H 1
DR(A/S) ∼

−→ H •

DR(A/S)

(see for example [Berthelot et al. 1982, Proposition 2.5.2]). The above arguments
show that this is in fact an isomorphism of F-zips.

Now assume in addition that f has geometrically connected fibers of fixed
dimension n. Then we have a trace isomorphism

(9.10) Rn f∗�n
X/S
∼= H 2n

DR(X/S)
tr
−→∼ OS.

In other words, we obtain an isomorphism of F-zips

(9.11) H 2n
DR(X/S)

tr
−→∼ 1(n).

The cup-product pairings of F-zips

(9.12) H d
DR(X/S)⊗OS H 2n−d

DR (X/S)−→ H 2n
DR(X/S)= 1(n)

are perfect dualities [Katz 1972, (2.3.5.1)], that is they yield isomorphisms of F-zips

(9.13) H d
DR(X/S) ∼

−→ H 2n−d
DR (X/S)∨(n).
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For d = n the morphism (9.12) factors through

(9.14)
v : 32 H n

DR(X/S)→ 1(n), if n is odd;

b : S2 H n
DR(X/S)→ 1(n), if n is even.

In other words the pairing is symplectic if n is odd and it is symmetric if n is even.
For n odd we hence obtain a twisted symplectic F-zip (H n

DR(X/S),1(n), v).
For n even (and p> 2) we obtain a twisted orthogonal F-zip (H n

DR(X/S),1(n), b).

9C. Zip strata attached to truncated Barsotti–Tate groups of level 1. Let S be a
scheme over Fp and let X be a truncated Barsotti–Tate group of level 1 over S. We
denote by X∨ its Cartier dual. Let D(X) be its covariant Dieudonné crystal and
let M(X) be its evaluation at the trivial PD-thickening (S, S, 0). Then there is an
exact sequence, functorial in X and compatible with base change S′→ S

(9.15) 0→ ωX∨→M(X)→ Lie(X)→ 0,

where ωX∨ = e∗�X∨/S is the sheaf of OS-modules of invariant differentials of X∨

(see [Berthelot et al. 1982, Corollary 3.2]). In particular the relative Frobenius
F : X → X (p) and the Verschiebung V : X (p)

→ X induce OS-linear homomor-
phisms

F :=M(V ) : M(X)(p)→M(X), V :=M(F) : M(X)→M(X)(p).

Note that the roles of F and V are switched as we are considering covariant
Dieudonné theory. Moreover

(ωX∨)
(p)
= ker(F)= Im(V), ker(V)= Im(F)

are locally direct summands of M(X)(p) and of M(X), respectively.
We attach an F-zips M(X) := (M(X),C •, D•, ϕ•) as follows. Set

C0
:=M(X), C1

:= ωX∨, C2
:= 0

D−1 := 0, D0 := ker(V), D1 :=M(X)

and let

ϕ0 : M(X)(p)/(C1)(p)→ D0, ϕ1 : (C1)(p)→M(X)/D0

be the OS-linear isomorphisms induced by F and V−1, respectively.
Altogether we obtain a functor X 7→ M(X) from the category of truncated

Barsotti–Tate groups of level 1 over S to the category of F-zips over S. Moreover
it follows from [Berthelot et al. 1982, Proposition 5.2] that there is an isomorphism
of F-zips

(9.16) M(X∨)∼= Hom(M(X),1(1)),
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which is functorial in X and compatible with base change. If d := rkOS (Lie X) is
the dimension of X and n its height, then the type of the F-zip M is (ni )i with

(9.17) n0 = d, n1 = n− d, ni = 0 for i 6= 0, 1.

Truncated Barsotti–Tate groups of level 1 of height n and dimension d over
schemes over Fp form a smooth algebraic stack BTn,d

1 of finite type over Fp [Wedhorn
2001, Proposition 1.8] and the above construction yields a morphism of algebraic
stacks

(9.18) 8 : BTn,d
1 → F-Zipn

Fp
,

where n is given by (9.17). By Dieudonné theory this functor is an equivalence on
points with values in a perfect field. In particular, for every algebraically closed
field K of characteristic p we obtain a bijection

(9.19)
{isomorphism classes of truncated Barsotti–Tate groups

over K of level 1, height n, and dimension d

}
↔ {w ∈ Sn : w

−1(1) < · · ·<w−1(d), w−1(d + 1) < · · ·<w−1(n)}

This was first proved by Moonen [2001].
The following results (all due to Eike Lau) show that 8 (9.18) is a smooth

(nonrepresentable) morphism.

Remark 9.20. Let R be an Fp-algebra. Let σ be the ring endomorphism x 7→ x p, let
I := R(σ ) be the restrictions of scalars of the R-module R under σ , and let σ1 : I→ R
be the σ -linear map given by the identity of R. Lau [2013] has defined the notion
of a display of level 1 over R. Recall that this is a tuple D = (P, Q, ι, ε, F, F1)

consisting of R-modules P and Q together with R-linear maps I⊗P
ε
−→ Q

ι
−→ P

such that P and coker(ι) are finitely generated and projective and such that the
following sequence is exact

0−→ I ⊗ coker(ι)
ε
−→ Q

ι
−→ P −→ coker(ι)−→ 0.

Finally, F : P→ P and F1 : Q→ P are σ -linear maps such that F1(Q) generates
P and such that F1 ◦ ε = σ1⊗ F . The rank of P is called the height of D and the
rank of coker(ι) is called the dimension of D. One has the obvious notion of an
isomorphism of displays of level 1 and of base change for a ring homomorphism
R → R′. One obtains the category Dispn,d

1 of level 1 displays of height n and
dimension d fibered over the category of Fp-algebras. This is a smooth algebraic
stack over Fp [Lau 2013, Proposition 3.15].

To every display D = (P, Q, ι, ε, F, F1) of level 1 of height n and dimension
d over R one can attach an F-zip of type n with n as in (9.17) as follows. We set
M = P , C1

= im(ι : Q→ P), D0 := im(F] : P (σ )→ P), where F] denotes the
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linearization of F , and we define ϕ0, ϕ1 as the linearizations of the σ -linear maps
ϕ
[

0, ϕ[1 defined by the following commutative diagrams

P
F

//

��

P

��

Q
F1

//

��

P

��
P/C1

ϕ
[

0
// D0 C1

ϕ
[

1
// P/D0.

Then it is straight forward to check (by choosing a normal decomposition, see
[Lau 2013, Section 3.2]) that this contruction defines an equivalence of the cat-
egory of displays of level 1 of height n and dimension d over R with the cate-
gory of F-zips of type n over R. We obtain an equivalence of algebraic stacks
2 : Dispn,d

1
∼
−→ F-Zipn

Fp
.

Lau has defined a morphism 9 : BTn,d
1 → Dispn,d

1 of algebraic stacks such that
the composition with the equivalence 2 is the morphism 8 [Lau 2013, Section 4].
Moreover he proves that 9 is a smooth morphism (Theorem A of loc. cit.) which
shows the smoothness of 8.

Example 9.21. Let X be a p-divisible group of height n and dimension d over a
finite field Fq (where q is a power of p). Let N be the attached Rapoport–Zink
space over Fq [Rapoport and Zink 1996], that is, N(S) consists for every scheme
S over Fq of isomorphism classes of pairs (X, ρ), where X is a p-divisible group
over S and ρ : XS → X is a quasiisogeny. Then N is representable by a formal
scheme locally formally of finite type over Fq . Attaching to X its p-torsion X [p]
defines a morphism

ε : N→ (BTn,d
1 )⊗ Fq

which is formally smooth by the main result of [Illusie 1985] and by Drinfeld’s
result that quasiisogenies between p-divisible groups can always be deformed
uniquely. Composing ε with the smooth morphism 8 from (9.18) we obtain a
formally smooth (and hence generizing) morphism N→ F-Zipn

Fq
and hence locally

closed formal subschemes Nw as in (3.28) with

Nw
=

⋃
w′�w

Nw′ .

This can be generalized to other Rapoport–Zink spaces.

For every truncated Barsotti–Tate group X of level 1 over a scheme S over Fp

the morphism 8 : BTn,d
1 → F-Zipn

Fp
from (9.18) yields a homomorphism of the

automorphism group schemes

α : Aut(X)→ Aut(M(X)).
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As both stacks are quotient stacks of a linear group acting on a scheme of finite type
over Fp, the two group schemes Aut(X) and Aut(M(X)) are affine and of finite
type over S (Proposition 2.5). If S = Spec K for an algebraically closed field K , it
is shown in [Wedhorn 2001, Section (5.7)], that α induces a homeomorphism of
the reduced subgroup schemes

Aut(X)red
∼
−→Aut(M(X))red.

Hence we can use Proposition 3.34 to describe Aut(X).

Proposition 9.22. Let X be a truncated Barsotti–Tate group of level 1 over an
algebraically closed field K of characteristic p. Let n be its height and d the
dimension of its Lie algebra. Let w be the permutation corresponding to the
isomorphism class of X via the bijection (9.19).

(a) The reduced subgroup scheme of the identity component Aut(X) is a unipotent
linear algebraic group of dimension d(n− d)− `(w). In particular

dim(Aut(X))= d(n− d)− `(w).

(b) The group of connected components of Aut(X) is isomorphic to the group 5
defined in Proposition 3.34.

Note that for a permutation w ∈ Sn the length can be easily computed by

`(w)= #{(i, j) : 1≤ i < j ≤ n, w(i) > w( j)}.
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