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MEAN VALUES OF L-FUNCTIONS OVER FUNCTION FIELDS

JEFFREY LIN THUNDER

For a fixed global function field, positive integer and complex number, we
prove estimates for mean values of L-functions evaluated at the given com-
plex number, where the averaging is done over quadratic extensions of the
given function field with genus equal to the given positive integer. To ac-
complish this we utilize our previous results on certain quadratic character
sums over function fields.

1. Introduction

In modern number theory L-series play a prominent role. They encode many
deep properties of number fields and primes and are objects of intense interest.
The analogous L-functions over global function fields play an equally prominent
role. Here we will prove estimates for mean values of such L-functions, where
the averaging is done over quadratic extensions of a fixed global function field.
Our estimates cover a much wider range of cases than the similar estimates of
Hoffstein and Rosen [1992] and those of Andrade and Keating (for values on
the critical line) [2012]. Our methods are akin to those used by Siegel [1944],
where he estimates the average number of quadratic forms with given discriminant
and signature.

For a prime p, let Fp denote the finite field with p elements and let X be
transcendental over Fp, so that Fp(X) is a field of rational functions. Fix algebraic
closures Fp of Fp and Fp(X) ⊃ Fp of Fp(X). In what follows, by global function
field (or simply function field) we mean a finite algebraic extension K ⊇ Fp(X)
contained in Fp(X). For such a field K we have K ∩ Fp = FqK

for some finite field
FqK

with qK elements; this field is called the field of constants of K . We write gK

for the genus of K and JK for the number of divisor classes of degree 0. We denote
the set of places of K by M(K ) and the divisor group (i.e., the free abelian group
generated by the places) by DivK . The reader can refer to Chapters I and V of
[Stichtenoth 1993] for a thorough background on these notions. We will use capital
script German letters to denote divisors A, B, etc., with the sole exception of the
zero divisor 0. For any divisor A ∈ DivK we write A=

∑
ordv(A) · v, where the

MSC2010: 11M41.
Keywords: function field, L-functions.

237

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.274-1


238 JEFFREY LIN THUNDER

sum is over all places v ∈ M(K ). The support SuppA of a divisor A ∈DivK is the
finite (possibly empty) set of places v ∈ M(K ) where ordv(A) 6= 0. We say A is
effective if A≥ 0, i.e., ordv(A)≥ 0 for all places v ∈ M(K ). The degree map on
DivK , normalized to have image Z (see Chapter V of [Stichtenoth 1993] again)
will be denoted deg.

With the above notation, the zeta function ζK is given by

ζK (s)=
∑

A∈DivK
A≥0

q−s degA.

Since

(0)
∑

A∈DivK
A≥0, degA= j

1=
JK

qK − 1
(q j+1−gK

K − 1)

for all integers j ≥ 2gK −1 by the Riemann–Roch Theorem (see [Stichtenoth 1993,
Lemma V.1.4], for example), the series defining ζK (s) converges for all s ∈ C with
<(s) > 1. The L-function L K is given by

L K (q−s
K )= (1− q−s

K )(1− q1−s
K )ζK (s)=

ζK (s)
ζFqK

(X)(s)
.

It is well known that L K is a polynomial of degree 2gK in q−s
K and all its zeros

have <(s)= 1
2 (see [Stichtenoth 1993, Chapter V], for example).

For a fixed function field K and integer m ≥ 0, we will be concerned with sums
over quadratic extensions of K with genus m and the same field of constants FqK

.
We first denote the number of such quadratic extensions

NK (m)=
∑
[F :K ]=2

gF=m, qF=qK

1.

We note that NK (m) is asymptotically q2m
K 2JK q3−5gK

K /ζK (2)(qK − 1) as m→∞
(see Proposition 1 below). We will investigate the arithmetic mean of the set
of values L F (q−s) over the quadratic extensions F ⊃ K of genus m, and higher
moments as well. It will prove convenient to multiply these means by the L-function
value of the ground field K , Thus, for a fixed s ∈ C and integer n ≥ 1, we set

MK (s,m, n)= (NK (m))−1
∑
[F :K ]=2

gF=m, qF=qK

L F (q−s)n L K (q−s)−n

provided NK (m) > 0, and set MK (s,m, n) = 0 otherwise. We will prove the
following estimates:
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Theorem 1. Let K be a function field with field of constants Fq . For all positive
integers n and all s ∈ C with <(s) > 1

2 , set

σK (s, n)=
∏

v∈M(K )

(
1+

Pn(q−s deg v)

(n− 1)!(1+ q− deg v)(1− q−2s deg v)n

)
,

where Pn(X) ∈ Z[X ] is given by

dn−1 Xn+1/(1− X2)

d Xn−1 =
Pn(X)

(1− X2)n
.

Then for all integers m ≥ 0, all ε > 0 and all s ∈ C with <(s) > 1+ (n− 1)ε if q is
odd, or <(s) > 1+ nε− 1/2n if q is even, we have

|MK (s,m, n)− σK (s, n)| ≤
{

c(ε)n(q−m
+ q−4m(<(s)−1−(n−1)ε)) if q is odd,

c(ε)n(q−m
+ q−2mn(<(s)−1−ε+1/2n)) if q is even,

where the constant c(ε) > 0 depends only on K and ε.

We obtain stronger estimates (i.e., better error terms) when we consider the case
n = 1:

Theorem 2. Let K be a function field with field of constants Fq and let m be an
integer with m > gK . Then MK (s,m, 1) is a polynomial of degree 2(m − gK ) in
q−s satisfying the same functional equation as the L-function,

MK (s,m, 1)= qm−gK q−s2(m−gK )MK (1− s,m, 1).

Further, MK (s,m, 1) is an even function in q−s with

MK (s,m, 1)= 1+ a2q−2s
+ · · ·+ a2(m−gK )q

−2s(m−gK ).

We have a2(m−gK− j) = qm−gK−2 j a2 j for all j = 0, . . . ,m− gK , and, for all ε > 0,

a2 j =
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1
+

{
O(q−mq2 j (5/4+ε)) if q is odd,
O(q−mq2 j (1+ε)) if q is even,

where the implicit constants depend only on K and ε. Finally,∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1

= q j JK q1−gK ζK (2)
q − 1

∏
v∈M(K )

(1− 2q−2 deg v
+ q−3 deg v)+ O(qε j )

for all j ≥ 0, where the implicit constant depends only on K and ε.
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Corollary 1. Let K be a function field with field of constants Fq and let m be a
positive integer. Then for all ε > 0 and all s ∈ C with <(s) > 1

2

MK (s,m, 1)= σK (s, 1)+


O
(

q−m(2/3−ε)(2<(s)−1)

1− q1−2<(s)

)
if q is odd,

O
(

q−m(1−ε)(2<(s)−1)

1− q1−2<(s)

)
if q is even,

where the implicit constants depend only on K and ε. In particular, setting s = 1
we have

(NK (m))−1
∑
[F :K ]=2

gF=m, qF=q

JFq−gF

= JK q−gK (ζK (2))2
∏

v∈M(K )

(1− q−2 deg v
− q−3 deg v

+ q−4 deg v)

+

{
O(q−m(2/3−ε)) if q is odd,
O(q−m(1−ε)) if q is even.

Mean values similar to those in Corollary 1 were previously considered by
Hoffstein and Rosen [1992], but only in the case where the field K is a field of
rational functions and only in odd characteristic. More general cases were considered
by Fisher and Friedberg [2004], with further refinements by Chinta, Friedberg and
Hoffstein [Chinta et al. 2006], but again only in odd characteristic. The higher
moments in Theorem 1 have not been previously estimated to our knowledge.
Our approach differs from those previous by utilizing more general estimates for
quadratic characters over function fields, including estimates in characteristic 2
(which is clearly special when considering quadratic extensions).

Theorem 2 can also be used to estimate the “average” of L F (q−1/2) (cf. [Goldfeld
and Hoffstein 1985, Theorem 1] for the case where K is replaced by Q). As alluded
to above, such a result is proven in [Andrade and Keating 2012], though again
only in certain special cases where the ground field is a field of rational functions
(specifically, for q congruent to 1 modulo 4).

Corollary 2. Let K be a function field with field of constants Fq and let m be an
integer with m > gK . Set m′ = m− gK and

C(K )=
JK q1−gK ζK (2)

q − 1

∏
v∈M(K )

(1− 2q−2 deg v
+ q−3 deg v).

Then the series

C ′(K )=
∞∑
j=0

( ∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1
)
−C(K )
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converges and, for all ε > 0,

MK
( 1

2 ,m, 1
)
= (m′+ 1)C(K )+ 2C ′(K )+

{
O(q−m(1/4−ε)) if q is odd,
O(q−m(1/2−ε)) if q is even,

where the implicit constants depend only on K and ε.

Finally, we note that Theorem 2 can also be used to give the “average” number
of places of degree 1.

Corollary 3. Let K be a function field with field of constants Fq . Then (assuming
NK (m) 6= 0)

(NK (m))−1
∑
[F :K ]=2

gF=m, qF=q

#{w ∈ M(F) : degw = 1} = #{v ∈ M(K ) : deg v = 1}.

One can compare this with the famous estimate due to Drinfeld and Vladut
[Stichtenoth 1993, Theorem V.3.5],

lim sup
m→∞

max
F⊃K

gF=m, qF=q

#{w ∈ M(F) : degw = 1}
m

≤ q1/2
− 1.

2. Preparatory Results

We briefly discuss separability issues before proceeding further. If K is a function
field and F ⊃ K is a quadratic extension, then F is clearly a separable extension
if qK is odd. If qK is even this is not necessarily the case. However, it turns out
that there is exactly one inseparable quadratic extension F ⊃ K with qF = qK

when qK is even; it satisfies K = {α2
: α ∈ F} and gF = gK by [Stichtenoth 1993,

Proposition III.9.2]. Therefore we can safely ignore this inseparable extension and
tacitly assume in what follows that all quadratic extensions that appear are separable
extensions.

If K is a function field, v ∈ M(K ) and F is a quadratic extension of K with
qF = qK , we set

χ(F/v)=


0 if v ramifies in F ,
1 if v is inert in F ,
−1 if v splits in F .

This is extended to effective divisors A ∈ DivK by

χ(F/A)=
∏

v∈SuppA

(
χ(F/v)

)ord(A)
.

The following is shown in [Thunder 2013, §1]:
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Lemma 1. Let K be a function field with field with field of constants Fq and F ⊃ K
be a quadratic extension with qF = q. Then

L F (q−s)= L K (q−s)
∑

A∈DivK
A≥0

χ(F/A)q−s degA,

so that

NK (m)MK (s,m, n)=
∑

C∈DivK
C≥0

∑
Ai≥0

A1+···+An=C

q−s degC
∑
[F :K ]=2

gF=m,qF=qK

χ(F/C).

It turns out that the sums in Lemma 1 where degC is odd vanish entirely and,
when degC is even, the C ∈ 2 DivK dominate.

Lemma 2 [Thunder 2013, Lemma 9]. Suppose K is a function field with field of
constants Fq and m is a nonnegative integer. Then for all effective divisors C∈DivK
of odd degree, ∑

[F :K ]=2
gF=m, qF=q

χ(F/C)= 0.

Proposition 1 [Thunder 2013, Proposition 7]. Let K be a function field with field
of constants Fq and m be a nonnegative integer. Set

N ′K (m)= q2m 2JK q3−5gK

ζK (2)(q − 1)
.

For all effective divisors C ∈ DivK and all ε > 0∣∣∣∣ ∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− N ′K (m)
∏

v∈SuppC

(1+ q− deg v)−1
∣∣∣∣

≤

{
c′(ε)q(1/2+ε)mqε degC if q is odd,
c′(ε)

(
qεmqε degC

+ qm
)

if q is even,

where c′(ε) > 0 depends only on K and ε. In particular,

|NK (m)− N ′K (m)| ≤
{

c′(ε)q(1/2+ε)m if q is odd,
c′(1)qm if q is even.

Proposition 2 [Thunder 2013, Proposition 5]. Suppose K is a function field with
qK = q odd and let C ∈ DivK be an effective divisor with C 6∈ 2 DivK . Then, for
all nonnegative integers m and all ε > 0, we have∣∣∣∣ ∑

[F :K ]=2
gF=m, qF=q

χ(F/C)
∣∣∣∣≤ c′′(ε)qmq(ε+1/4) degC,

where the constant c′′(ε) > 0 depends only on K and ε.



MEAN VALUES OF L -FUNCTIONS OVER FUNCTION FIELDS 243

Proposition 3 [Thunder 2013, Proposition 6]. Suppose K is a function field with
qK = q even and let C ∈ DivK be an effective divisor with C 6∈ 2 DivK . Then, for
all nonnegative integers m and all ε > 0, we have∣∣∣∣ ∑

[F :K ]=2
gF=m, qF=q

χ(F/C)
∣∣∣∣≤ c′′(ε)qmqε degC,

where the constant c′′(ε) > 0 depends only on K and ε.

We also have the following elementary estimates:

Lemma 3. Suppose K is a function field with field of constants Fq . Let C ∈ DivK
be an effective divisor. For all integers n > 1 and all ε > 0,∑

Ai≥0
A1+···+An=C

1≤ c1(ε)
n−1q(n−1)ε degC,

where the constant c1(ε)> 0 depends only on K and ε. Also, for all positive integers
m and all ε > 0,∑

A≥0
degA≤m

q(ε−1) degA
≤

c2

ε
qεm,

∑
A≥0

degA≥m

q−(1+ε) degA
≤

c2

ε
q−εm,

and

ζK (1+ ε)≤
(

c2

ε

)[K :Fq (X)]

,

where the constant c2 > 0 depends only on K .

Proof. We prove the first part by induction on n. The case n = 2 follows directly
from [Thunder 2013, Lemma 0]. Now assume n > 2. Then∑

Ai≥0
A1+···+An=C

1=
∑

0≤An≤C

∑
Ai≥0

A1+···+An−1
=C−An

1

≤

∑
0≤An≤C

c1(ε)
n−2q(n−2) deg(C−An)

≤ c1(ε)
n−2q(n−2)ε degC

∑
0≤An≤C

1

≤ c1(ε)
n−1q(n−1)ε degC.

For the next two inequalities, we see by (0) that there is a positive constant c,
depending only on the field K , such that for all nonnegative integers j we have∑

A≥0
degA= j

1≤ cq j .
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Finally, by the Euler product representation of the zeta function, we have

ζK (s)≤ (ζFq (X)(s))
[K :Fq (X)]

for all real s > 1. (See [Thunder and Widmer 2013, Lemma 2], for example.) Using
the well-known formula

ζFq (X)(s)=
1

(1− q−s)(1− q1−s)

and substituting s = 1+ ε gives

ζK (1+ ε)≤
(

c′

ε

)[K :Fq (X)]

for some positive constant c′ depending only on q. Setting c2 to be the maximum
of c and c′ completes the proof. �

3. Proof of Theorem 1

We first deal with the summands in Lemma 1 where C ∈ 2 DivK . This is done in
two steps.

Lemma 4. Suppose K is a function field with field of constants Fq and s ∈ C with
<(s) > 1

2 . Then, for all integers n ≥ 1,∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1
= σK (s, n).

Proof. Set

θn(C)= q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1
∑
Ai≥0

A1+···+An=2C

1.

Note that θn(C+D)= θn(C)θn(D) for all n whenever C,D ∈ DivK have disjoint
support. Thus

(1)
∑
C≥0

θn(C)=
∏

v∈M(K )

(
1+

∞∑
k=1

θn(kv)
)
.

For all positive integers k and all places v ∈ M(K ),

θn(kv)= (1+ q− deg v)−1q−2ks deg v f (2k, n),

where

f (m, n)=
∑
i j≥0

i1+···+in=m

1=
(m+ 1) · · · (m+ n− 1)

(n− 1)!
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for integers m ≥ 0 and n ≥ 1. Therefore

(2)
∞∑

k=1

θn(kv)= (1+ q− deg v)−1
∞∑

k=1

q−2ks deg v (2k+ 1) · · · (2k+ n− 1)
(n− 1)!

.

Differentiating term-by-term n− 1 times yields

(3)
dn−1∑∞

k=1 x2k+n−1

dxn−1 =

∞∑
k=1

x2k(2k+ 1) · · · (2k+ n− 1).

On the other hand,

(4)
dn−1∑∞

k=1 x2k+n−1

dxn−1 =
dn−1xn−1∑∞

k=1 x2k

dxn−1

=
dn−1xn+1∑∞

k=0 x2k

dxn−1

=
dn−1xn+1/(1− x2)

dxn−1

= Pn(x)(1− x2)−n.

The lemma follows from (1)–(4). �

Lemma 5. Let K be a function field with field of constants Fq . Suppose m is a
nonnegative integer such that NK (m) > 0. Then, for all ε > 0 and all s ∈ C with
<(s) > (1+ nε)/2,∣∣∣∣ 1

NK (m)

∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− σK (s, n)
∣∣∣∣

≤

{
c3(ε)

n+1q−m(3/2−ε) if q is odd,
c3(ε)

nq−m if q is even,

where c3(ε) > 0 depends only on K and ε.

Proof. We have

(5)
∣∣∣∣∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− NK (m)σK (s, n)
∣∣∣∣

≤

∣∣∣∣∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− N ′K (m)σK (s, n)
∣∣∣∣

+ |NK (m)− N ′K (m)| |σK (s, n)|.
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By Lemma 3 and using 2<(s)− (n− 1)ε > 1+ ε,

(6)
∣∣∣∣∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1
∣∣∣∣

≤

∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2<(s) degC

≤ c1

(
ε

2

)n−1∑
C≥0

q(−2<(s)+(n−1)ε) degC

< c1

(
ε

2

)n−1
ζK (1+ ε)

≤ c4ε
n,

where c4(ε)=max{c1(ε/2), (c2/ε)
[K :Fq (X)]}.

Now, by Proposition 1, Lemma 4 and (6),

(7a)
∣∣∣∣∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− N ′K (m)σK (s, n)
∣∣∣∣

≤ c′(ε)q(1/2+ε)m
∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2<(s) degC
≤ c′(ε)c4(ε)

nq(1/2+ε)m

if q is odd, and

(7b)
∣∣∣∣∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− N ′K (m)σK (s, n)
∣∣∣∣

� c′(1)qm
∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2<(s) degC
≤ c′(1)c4(ε)

nqm

if q is even. Also, by Proposition 1, Lemma 4 and (6)

(8) |NK (m)− N ′K (m)| |σK (s, n)| ≤
{

c′(ε)c4(ε)
nq(1/2+ε)m if q is odd,

c′(1)c4(ε)
nqm if q is even.

Finally, if NK (m) isn’t zero, then

(9) c5q2m
≤ NK (m)≤ c6q2m

by Proposition 1, where c5, c6 > 0 depend only on K . The lemma follows from (5)
and (7a)–(9) when q is odd, and (5), (7b), (8) and (9) when q is even. �

With the sums over the main terms done, we now turn to the sums over the error
terms, i.e., the sums where A1+ · · ·+An 6∈ 2 DivK . We have the following:
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Lemma 6. Suppose K is a function field with field of constants Fq and m is a
nonnegative integer. Fix an integer n ≥ 2 and an ε > 0. Suppose that s ∈ C with
<(s) > 1

2 + (n− 1)ε. Then, for any quadratic extension F ⊃ K with gF = m and
qF = q ,∑
Ai≥0

q−<(s) deg(A1+···+An−1)

∣∣∣∣ ∑
An≥0

degAn>2m−2gK
A1+···+An 6∈2 DivK

q−s degAnχ(F/A)
∣∣∣∣≤ c7ε

n+1q−2m(<(s)−1/2),

where the constant c7(ε) > 0 depends only on K and ε.

Proof. For the moment, fix A1, . . . ,An−1 and set B = A1 + · · · +An−1. Write
B=B′+ 2B′′, where B′ and B′′ are both effective divisors and ordv(B′)= 1 for
all v ∈ SuppB′. Fix an integer j > 2m− 2gK . As shown in the proof of [Thunder
2013, Lemma 25],

(10)
∣∣∣∣ ∑

An≥0
degAn= j

B+An 6∈2 DivK

χ(F/A)q−s degAn

∣∣∣∣≤ c8q− deg(B′)/2q− j (<(s)−1/2)

for some c8 > 0 depending only on K . Now, since <(s)− 1
2 > (n− 1)ε,

(11)
∑

j>2m−2gK

q− j (<(s)−1/2) <
∑

j>2m−2gK

q− j (n−1)ε

≤ c9q−2m(n−1)ε
∑
j≥0

q− j (n−1)ε

= c9q−2m(<(s)−1/2)(1− q−(n−1)ε)−1

≤ c9c10q−2m(<(s)−1/2)((n− 1)ε)−1,

where c9, c10 > 0 depend only on K . By Lemma 3,

(12)
∑
B≥0

∑
Ai≥0

A1+···+An−1=B

q−<(s) degBq− deg(B′)/2

≤ c1(ε)
n−2

∑
B≥0

q((n−2)ε−<(s)) degBq− deg(B′)/2

= c1(ε)
n−2

∑
B≥0

q((n−2)ε−1/2−<(s)) degB′q2((n−2)ε−<(s)) degB′′

≤ c1(ε)
n−2

∑
B′≥0

q((n−2)ε−1/2−<(s)) degB′
∑
B′′≥0

q2((n−2)ε−<(s)) degB′′

< c1(ε)
n−2ζK (1+ ε)ζK (1+ 2ε) < c11(ε)

n,

where c11(ε)=max{c1(ε), (c2/ε)
[K :Fq (X)]}. The lemma follows from (10)–(12). �
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Proof of Theorem 1. Suppose first that q is odd. Since the cases n = 2 and n = 1 of
Theorem 1 follow directly from [Thunder 2013, Theorem 1, Corollary 1], we will
assume that n ≥ 3. We may also assume that NK (m) > 0. Rearranging the sums
and then using Lemma 6 yields

(13)
∣∣∣∣ 1

NK (m)

∑
C≥0

C 6∈2 DivK

∑
Ai≥0

A1+···+An=C
degAn>2m−2gK

∑
[F :K ]=2

gF=m, qF=q

q−s degCχ(F/C)
∣∣∣∣

≤ c7(ε)
n+1q−2m(<(s)−1/2)

whenever <(s) > 1
2 + (n− 1)ε.

Let δ >0, to be chosen later. Using Proposition 2 and setting B=A1+· · ·+An−1

in what follows, we have

(14)
∣∣∣∣ ∑

C≥0
C 6∈2 DivK
degC<4m

∑
Ai≥0

A1+···+An=C
degAn≤2m−2gK

q−s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/C)
∣∣∣∣

≤ c′′(δ)qm
∑
An≥0

degAn≤2m−2gK

q(δ+1/4−<(s)) degAn

×

∑
B≥0

degB<4m−degAn

∑
Ai≥0

A1+···+An−1
=B

q(δ+1/4−<(s)) degB

≤ c′′(δ)c1(δ)
n−2qm

∑
An≥0

degAn≤2m−2gK

q(δ+1/4−<(s)) degAn
∑
B≥0

degB<4m−degAn

q((n−1)δ+1/4−<(s)) degB.

If <(s)≤ 5
4+(n−2)ε we set δ= ε above. Since 5

4+(n−1)ε−<(s)≥ ε, Lemma 3
implies that

(15)
∑
An≥0

degAn≤2m−2gK

q(ε+1/4−<(s)) degAn
∑
B≥0

degB<4m−degAn

q((n−1)ε+1/4−<(s)) degB

≤
c2

ε
q4m(5/4+(n−1)ε−<(s))

∑
An≥0

degAn≤2m−2gK

q−(1+(n−2)ε) degAn

<
c2

ε
ζK (1+ (n− 2)ε)q4m(5/4+(n−1)ε−<(s))

≤
c2

ε

(
c2

ε

)[K :Fq (X)]

q4m(5/4+(n−1)ε−<(s)).

If <(s) > 5
4 + (n− 1)ε we set nδ =<(s)− 5

4 and note that δ > (n− 2)ε/n ≥ ε/3
since <(s) > 1+ (n− 1)ε. We thus may assume that c′′(δ)c1(δ)

n−2
≤ c12(ε)

n−2
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for some c12(ε) > 0 depending only on K and ε. Also, by Lemma 3,

(16)
∑
An≥0

degAn≤2m−2gK

q(δ+1/4−<(s)) degAn
∑
B≥0

degB<4m−degAn

q((n−1)δ+1/4−<(s)) degB

<
∑
An≥0

q−((n−1)δ+1) degAn
∑
B≥0

q−(δ+1) degB

< ζK (1+ (n− 1)δ)ζK (1+ δ)

≤

(
c2

δ

)2[K :Fq (X)]

<

(
3c2

ε

)2[K :Fq (X)]

.

When degC≥ 4m, we trivially estimate

(17)
∣∣∣∣ ∑

C≥0
C 6∈2 DivK
degC≥4m

∑
Ai≥0

A1+···+An=C
degAn≤2m−2gK

q−s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/C)
∣∣∣∣

≤ NK (m)
∑
An≥0

degAn≤2m−2gK

q−<(s) degAn
∑
B≥0

degB≥4m−degAn

∑
Ai≥0

A1+···+An−1=B

q−<(s) degB

≤ NK (m)c1(ε)
n−2

∑
An≥0

degAn≤2m−2gK

q−<(s) degAn
∑
B≥0

degB≥4m−degAn

q((n−2)ε−<(s)) degB.

Since <(s) > 1+ (n− 1)ε by hypothesis, Lemma 3 implies that

(18)
∑
B≥0

degB≥4m−degAn

q((n−2)ε−<(s)) degB
≤

c2

ε
q(4m−degAn)((n−2)ε+1−<(s))

and also

(19)
∑
An≥0

degAn≤2m−2gK

q−<(s) degAn q(<(s)−1−(n−2)ε) degAn

< ζK (1+ (n− 2)ε)≤
(

c2

ε

)[K :Fq (X)]

.

Combining (9) with (13)–(19) yields

(20)
∣∣∣∣ 1

NK (m)

∑
C≥0

C 6∈2 DivK

∑
Ai≥0

A1+···+An=C

∑
[F :K ]=2

gF=m, qF=q

q−s degCχ(F/C)
∣∣∣∣

≤ c13(ε)
n+1(q−m

+ q−4m(<(s)−1−(n−1)ε))
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for some c13(ε) > 0 depending only on K and ε. The case where q is odd (and
n ≥ 3) in Theorem 1 follows from Lemma 1, Lemma 5 and (20).

Suppose now that q is even. This time we use Lemma 6 to get

(21)
∣∣∣∣ 1

NK (m)

∑
C≥0

C 6∈2 DivK

∑
Ai≥0

A1+···+An=C
degAi>2m−2gK for some i

∑
[F :K ]=2

gF=m, qF=q

q−s degCχ(F/C)
∣∣∣∣

≤ nc7(ε)
n+1q−2m(<(s)−1/2)

Let δ > 0, to be chosen later. By Proposition 3,

(22)
∣∣∣∣ ∑

C≥0
C 6∈2 DivK

∑
Ai≥0

A1+···+An=C
degAi≤2m−2gK

q−s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/C)
∣∣∣∣

≤ c′′(δ)qm
( ∑

A≥0
degA≤2m−2gK

q(δ−<(s)) degA
)n

.

If <(s)≤ 1+ ε/2 we set δ = ε. Since 1+ ε−<(s)≥ ε/2, Lemma 3 implies that

(23)
∑
A≥0

degA≤2m−2gK

q(ε−<(s)) degA
≤

2c2

ε
q(2m−2gK )(1+ε−<(s)) ≤ c14(ε)q−2m(<(s)−1−ε),

where c14(ε) > 0 depends only on K and ε. If <(s) > 1+ ε/2 then we set δ = ε/4.
We now have c′′(δ)= c15(ε) and, by Lemma 3,

(24)
∑
A≥0

degA≤2m−2gK

q(δ−<(s)) degA < ζK (1+ ε/4)≤
(

4c2

ε

)[K :Fq (X)]

.

Combining (9) and (21)–(24) gives

(25)
∣∣∣∣ 1

NK (m)

∑
C≥0

C 6∈2 DivK

∑
Ai≥0

A1+···+An=C

∑
[F :K ]=2

gF=m, qF=q

q−s degCχ(F/C)
∣∣∣∣

≤ c16(ε)
n(q−m

+ q−2mn(<(s)−1−ε+1/2n))

for some c16(ε) > 0 depending only on K and ε. The case where q is even in
Theorem 1 follows from Lemma 1, Lemma 5 and (25). �

4. Proof of Theorem 2 and Corollaries

Proof of Theorem 2. We know that MK (s,m, 1) is a polynomial in q−s thanks to
a theorem of Weil (see [Rosen 2002, Theorem 9.16B]). It’s an even function of
q−s by Lemma 2 and Lemma 1. Also, a0 = 1 since χ(F/0)= 1 by definition. The
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functional equation for MK (s,m, 1) follows directly from the functional equations
for L K (q−s) and L F (q−s) for all quadratic extensions F ⊃ K . The identity

a2(m−gK− j) = qm−gK−2 j a2 j , j = 0, . . . ,m− gK ,

follows immediately from the functional equation.
Similar to the proof of Lemma 4, for an effective divisor C ∈ DivK set

θ(C)= q−s degC
∏

v∈SuppC

(1+ q− deg v)−1

and set f (s)=
∑

C≥0 θ(C). Since θ(C+D)= θ(C)θ(D) whenever C and D have
disjoint support,

f (s)=
∏

v∈M(K )

(
1+

∞∑
k=1

θ(kv)
)

=

∏
v∈M(K )

(
1+

q−s deg v

(1+ q− deg v)(1− q−s deg v)

)

=

∏
v∈M(K )

(
1+

q−s deg v(1− q− deg v)

(1+ q−2 deg v)(1− q−s deg v)

)
= ζK (2)ζK (s)

∏
v∈M(K )

(
(1−q−2 deg v)(1−q−s deg v)+q−s deg v(1−q− deg v)

)
= ζK (2)ζK (s)

∏
v∈M(K )

(1− q−2 deg v
− q−(s+1) deg v

+ q−(s+2) deg v).

For any ε>0, f (s) is holomorphic on {s∈C :<(s)≥ε,−π/ log q≤=(s)<π/ log q}
except for a simple pole at s = 1, where the residue is

Ress=1 f (s)= ζK (2)
∏

v∈M(K )

(1− 2q−2 deg v
+ q−3 deg v)Ress=1 ζK (s)

=
JK q1−gK ζK (2)
(q − 1) log q

∏
v∈M(K )

(1− 2q−2 deg v
+ q−3 deg v)

(see [Weil 1974, Chapter VII], for example, for the residue of the zeta function).
Now by a Tauberian argument (see [Rosen 2002, Theorem 17.1], for example)∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1

= q j JK q1−gK ζK (2)
q − 1

∏
v∈M(K )

(1− q−2 deg v
+ q−3 deg v)+ O(Mqε j ),
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where the implicit constant is absolute and

M = max
<(s)=ε

| f (s)|,

which is clearly bounded above by a constant that depends only on K and ε.
Therefore

(26)
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1

= q j JK q1−gK ζK (2)
q − 1

∏
v∈M(K )

(1− q−2 deg v
+ q−3 deg v)+ O(qε j ),

where the implicit constant depends only on K and ε.
We may assume that NK (m) > 0. For the remainder of the proof, all implicit

constants depend only on K and ε. Fix an index j between 0 and m− gK and an
ε > 0. Then by Lemma 1 (separating out those divisors of degree 2 j that are twice
an effective divisor and those that aren’t)

(27) NK (m)a2 j =
∑
C≥0

degC=2 j

∑
[F :K ]=2

gF=m, qF=q

χ(F/C)

=

∑
C≥0

degC= j

∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)+
∑
C≥0

C 6∈2 DivK
degC=2 j

∑
[F :K ]=2

gF=m, qF=q

χ(F/C).

Now, by (0) and Proposition 1,

(28)
∑
C≥0

degC= j

∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)= N ′K (m)
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1

+

{
O(q(1/2+ε)mq(1+ε) j ) if q is odd,
O(qmq j

+ qεmq(1+ε) j ) if q is even.

Using the estimate for |N ′K (m)− NK (m)| in Proposition 1 and (26), we get

(29) N ′K (m)
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1

= NK (m)
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1
+

{
O(q(1/2+ε)mq j ) if q is odd,
O(qmq j ) if q is even.
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Combining (28), (29) and (9) yields

(30) (NK (m))−1
∑
C≥0

degC= j

∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)

=

∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1
+

{
O(q−(3/2−ε)mq(1+ε) j ) if q is odd,
O(q−mq j ) if q is even.

Using (0) in conjunction with Propositions 2 and 3, we get∑
C≥0

C 6∈2 DivK
degC=2 j

∑
[F :K ]=2

gF=m, qF=q

χ(F/C)=
{

O(qmq(5/4+ε)2 j ) if q is odd,
O(qmq(1+ε)2 j ) if q is even.

Combining this with (9) yields

(31) (NK (m))−1
∑
C≥0

C 6∈2 DivK
degC=2 j

∑
[F :K ]=2

gF=m, qF=q

χ(F/C)=
{

O(q−mq(5/4+ε)2 j ) if q is odd,
O(q−mq(1+ε)2 j ) if q is even.

Finally, by (27), (30) and (31),

a2 j =
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1
+

{
O(q−mq(5/4+ε)2 j ) if q is odd,
O(q−mq(1+ε)2 j ) if q is even.

This completes the proof of Theorem 2. �

Proof of Corollary 1. Set m′ = m− gK in what follows for notational convenience.
We first note that a2 j =O(q j ) for all j=0, . . . ,m′ by Theorem 2, where the implicit
constant depends only on K . Let x ≤ 1 to be chosen later. Then, whenever<(s)> 1

2 ,

(32) MK (s,m, 1)=
∑

j≤xm′
a2 j q−2s j

+ O
( ∑

j>xm′
q− j (2<(s)−1)

)

=

∑
j≤xm′

a2 j q−2s j
+ O

(
q−xm′(2<(s)−1)

1− q1−2<(s)

)
,

where the implicit constants depend only on K . Also, by Theorem 2, for any δ > 0,

(33)
∑

j≤xm′
a2 j q−2s j

=

∑
j≤xm′

∑
C≥0

degC= j

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1

+

{
O
(
q−m ∑

j≤xm′ q
2 j (5/4+δ−<(s))

)
if q is odd,

O
(
q−m ∑

j≤xm′ q
2 j (1+δ−<(s))

)
if q is even,
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=

∑
j≤xm′

∑
C≥0

degC= j

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1

+

{
O(q−m(1+ q2xm′(5/4+δ−<(s)))) if q is odd,
O(q−m(1+ q2xm′(1+δ−<(s)))) if q is even,

where the implicit constants depend only on K and δ. We may assume that ε ≤ 1
6 .

We now choose x and δ such that

x =


1

3/2+2δ
=

2
3
− ε if q is odd,

1
1+2δ

= 1− ε if q is even,

so that

−xm′(2<(s)− 1)=
{
−m′+ 2xm′

( 5
4 + δ−<(s)

)
if q is odd,

−m′+ 2xm′(1+ δ−<(s)) if q is even.

Then, by (32), (33) and the definition of m′,

(34) MK (s,m, 1)=
∑

j≤xm′

∑
C≥0

degC= j

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1

+


O
(

q−m(2/3−ε)(2<(s)−1)

(1− q1−2<(s))

)
if q is odd,

O
(

q−m(1−ε)(2<(s)−1)

(1− q1−2<(s))

)
if q is even,

where the implicit constants depend only on K and ε. Also, by Theorem 2,

(35)
∑

j≤xm′

∑
C≥0

degC= j

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1

=

∑
C≥0

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1
+ O

( ∑
j>xm′

q− j (2<(s)−1)
)

=

∑
C≥0

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1

+


O
(

q−m(2/3−ε)(2<(s)−1)

(1− q1−2<(s))

)
if q is odd,

O
(

q−m(1−ε)(2<(s)−1)

(1− q1−2<(s))

)
if q is even.

Finally, by Lemma 3,

(36)
∑
C≥0

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1
= σK (s, 1).

Corollary 1 follows from (34)–(36). �
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Proof of Corollary 2. Set m′ = m− gK again. By Theorem 2,

(37)
∑

j≥m′/2

( ∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1
)
−C(K )

= O
( ∑

j≥m′/2

q− j (1−2ε)
)
= O(q−m′(1/2−ε)),

where the implicit constant depends only on K and ε. This shows that the series
C ′(K ) converges. Also, by Theorem 2,

(38) MK
( 1

2 ,m, 1
)
=

{
2
∑

j<m′/2 a2 j q− j if m′ is odd,
2
∑

j<m′/2 a2 j q− j
+ am′q−m′/2 if m′ is even,

and

(39a) 2
∑

j<m′/2

a2 j q− j
= 2

∑
j<m′/2

∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1

+ O
( ∑

j<m′/2

q−m′q j (3/2+2ε)
)

= 2
∑

j<m′/2

∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1

+ O(q−m′(1/4−ε))

if q is odd. If q is even, similar estimates give

(39b) 2
∑

j<m′/2

a2 j q− j
= 2

∑
j<m′/2

∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1

+ O(q−m′(1/2−ε)).

Now, by (37),

(40) 2
∑

j<m′/2

∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1

= 2C ′(K )+ 2
∑

j<m′/2

C(K )

− 2
∑

j≥m′/2

( ∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1
)
−C(K )

= 2C ′(K )+ O(q−m′(1/2−ε))+

{
m′C(K ) if m′ is even,
(m′+ 1)C(K ) if m′ is odd.

Finally, if m′ is even, Theorem 2 gives

(41) am′q−m′/2
= C(K )+ O(q−m′(1/2−ε)).



256 JEFFREY LIN THUNDER

The remainder of Corollary 2 follows from (38)–(41). �

Proof of Corollary 3. It is well known that #{v ∈ M(F) : deg v= 1}−q−1 is equal
to the coefficient of q−s in the polynomial L F (q−s) for all function fields F with
qF = q. (See [Stichtenoth 1993, Theorem V.1.15], for example.) By Theorem 2,
the coefficient of q−s in the polynomial L K (q−s)MK (s,m, 1) is just the coefficient
of q−s in the polynomial L K (q−s). �
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