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UNIMODAL SEQUENCES AND “STRANGE” FUNCTIONS:
A FAMILY OF QUANTUM MODULAR FORMS

KATHRIN BRINGMANN, AMANDA FOLSOM AND ROBERT C. RHOADES

We construct an infinite family of quantum modular forms from combinato-
rial rank “moment” generating functions for strongly unimodal sequences.
The first member of this family is Kontsevich’s “strange” function studied
by Zagier. These results rely upon the theory of mock Jacobi forms. As a
corollary, we exploit the quantum and mock modular properties of these
combinatorial functions in order to obtain asymptotic expansions.

1. Introduction and statement of results

A sequence of integers {a j }
s
j=1 is called a strongly unimodal sequence of size n if

there exists an integer k such that

(1-1) 0< a1 < a2 < · · ·< ak > ak+1 > · · ·> as > 0

and a1+ · · ·+ as = n. A number of familiar sequences are strongly unimodal, for
example, the sequence of binomial coefficients

{( n
j−1

)}n+1
j=1 with n even. Attached

to strongly unimodal sequences is a notion of rank, analogous to the well-known
notion of the rank of an integer partition. For more on partition ranks, see for
example original works in [Ramanujan 1919; Dyson 1944; Atkin and Swinnerton-
Dyer 1954], and the more recent joint work of [Bringmann and Ono 2010] related
to mock modular forms. The rank of a strongly unimodal sequence is equal to
s− 2k+ 1, the number of terms after the maximal term minus the number of terms
that precede it. For example, there are six strongly unimodal sequences of size 5: {5},
{1, 4}, {4, 1}, {1, 3, 1}, {2, 3}, {3, 2}. Their respective ranks are 0,−1, 1, 0,−1, 1.
By letting w (resp. w−1) keep track of the terms after (resp. before) a maximal
term, we have that u(m, n), the number of size n and rank m sequences, satisfies

(1-2) U (w; q) :=
∞∑

n=1

∞∑
m=−∞

u(m, n)(−w)mqn
=

∞∑
n=0

(wq; q)n
(
w−1q; q

)
nqn+1,

MSC2010: primary 11F99; secondary 11F37, 33D15.
Keywords: quantum modular forms, mock modular forms, Jacobi forms, unimodal sequences,

partitions, asymptotics, moment generating functions.
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where we set (w; q)n :=
∏n−1

j=0(1−wq j ), for n ∈ N0.
Recently, Bryson, Ono, Pitman, and the third author [Bryson et al. 2012] studied

this function in the special case w = 1, namely,1

U (1; q)=
∞∑

n=1

∞∑
m=−∞

(−1)mu(m, n)qn
=

∞∑
n=1

(ue(n)− uo(n))qn,

where ue(n) (resp. uo(n)) denotes the number of unimodal sequences of size n with
even (resp. odd) rank. They showed that for every root of unity ζ ,

U (1; ζ )= F
(
ζ−1),

where Kontsevich’s “strange” function is defined by

F(q) :=
∞∑

n=0

(q; q)n.

Previously, Zagier [2001] proved that this function satisfies the “identity”

(1-3) F(q)=−
1
2

∞∑
n=1

n
(

12
n

)
q(n

2
−1)/24,

where
(
·

·

)
is the Kronecker symbol. The two sides of (1-3) don’t make sense

simultaneously. Indeed, the right-hand side of (1-3) converges in the unit disk
|q| < 1, but nowhere on the unit circle. The identity (1-3) means that at roots of
unity ζ , F(ζ ) (which is clearly a finite sum) agrees with the limit as q approaches ζ
radially within the unit disk of the function on the right-hand side of (1-3). Moreover,
Zagier proved that for x ∈Q \ {0},

(1-4) φ(x)+ (−i x)−3/2φ

(
−

1
x

)
=

√
3i

2π

∫ i∞

0
(w+ x)−3/2η(w) dw,

where
φ(x) := e−π i x/12 F

(
e−2π i x)

and

η(w) := eπ iw/12
∞∏

n=1

(
1− e2π inw)

is the Dedekind eta function. Note that the constant
√

3i/2π in (1-4) is given
explicitly in [Bryson et al. 2012]. There, the authors also gave a new proof of
(1-4), using the fact that U (1; q) is a (weak) mixed mock modular form for |q|< 1.
Here, we slightly modify the definition of “mixed mock modular form” given in

1Note that the function U (w; q), given in (1-2), is equal to the function U (−w; q) as defined in
[Bryson et al. 2012].
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[Dabholkar et al. 2014] to mean functions that lie in the tensor product of the
general spaces of mock modular forms and weakly holomorphic modular forms
(up to possible rational multiples of q powers). In particular, we do not require
these functions to be holomorphic at the cusps, as in [loc. cit.]. Weak mixed mock
modular forms in this sense occur in a variety of areas including combinatorics
[Andrews 2005], algebraic geometry [Vafa and Witten 1994], Lie theory [Kac and
Wakimoto 2001], Joyce invariants [Mellit and Okada 2009], and quantum black
holes [Manschot 2011; Dabholkar et al. 2014].

The similarity between (1-4) and the usual modular transformation formula of a
modular form in part motivated Zagier [2010] to introduce the notion of a quantum
modular form. A quantum modular form of weight k ∈ 1

2 Z is a complex-valued
function f on Q such that for all γ =

(
a b
c d

)
∈ SL2(Z), the complex-valued function

hγ defined on Q \ γ−1(∞) by

(1-5) hγ (x) := f (x)− ε(γ )(cx + d)−k f
(

ax + b
cx + d

)
satisfies a “suitable” property of continuity or analyticity. The ε(γ ) in (1-5) are
suitable complex numbers, such as those in the theory of half-integral weight
modular forms when k ∈ 1

2 Z \Z.
This paper gives an infinite family of quantum modular forms from the “moments”

of the unimodal rank statistic. In general, such moment functions are of both number
theoretic and combinatorial interest. For example, in their celebrated work, Atkin
and Garvan [2003] discovered a partial differential equation relating the bivariate
generating functions for the partition statistics rank and crank, leading to exact
linear relations between rank and crank moments. Andrews [2007] provided a
beautiful combinatorial interpretation of partition rank moments in terms of “k-
marked Durfee symbols”. Andrews [2008] also discovered a relationship between
partition rank moments and the “smallest parts” partition statistic, which has led to
further work by Garvan [2011], for example. In addition to intrinsic combinatorial
interest, moment functions have been shown to satisfy modular properties. For
example, works including [Bringmann et al. 2009; 2010; Alfes et al. 2011] exhibit
relationships to weak Maass forms and mock theta functions.

To state our results, we define for r ∈ N0 the “weighted” moment functions

(1-6) φr (τ ) := (π i)2r+1
∞∑

n=1

∑
m∈Z

(−1)mu(m, n)Qr
(
m2, n− 1

24

)
qn− 1

24 ,

where here and throughout we set q := e2π iτ and

(1-7) Qr (X, Y ) :=
∑

0≤µ≤r
0≤`≤r−µ

cr (µ, `)X`Yµ ∈Q[X, Y ],
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the rational coefficients cr (µ, `) being defined in (1-9). For example, the first few
polynomials

(
normalized, with Y → Y − 1

24

)
are given by

Q0
(
X, Y − 1

24

)
=−2,

Q1
(
X, Y − 1

24

)
=−4(X + 2Y ),

Q2
(
X, Y − 1

24

)
=−

4
105

(
10X + 35X2

+ 6Y + 180XY + 108Y 2),
Q3
(
X, Y − 1

24

)
=−

4
3465

(
7X + 140X2

+ 154X3
+ 2Y + 420XY

+ 1260X2Y + 120Y 2
+ 2520XY 2

+ 720Y 3).
Note that in particular the first member of the family φr (τ ) is (up to a constant)

the “strange” function studied by Zagier and Kontsevich discussed above. That
is, φ0(τ ) = −2π iq−1/24U (1; q) = −2π iφ(τ). It is not difficult to see that the
functions φr (τ ) may also be written in terms of the “twisted” unimodal moment
functions ur , defined for integers r ≥ 0 by

ur (q) :=
∞∑

n=1

∑
m∈Z

(−1)mu(m, n)mr qn.

The moments
∑

m u(m, n)mr of the unimodal rank statistic are analogous with the
rank and crank partition moments, functions which have drawn wide combinatorial
interest since Atkin and Garvan [2003] famously introduced them. There is a vast
literature on such objects, including asymptotic questions and congruence properties.
While the unimodal rank moments are exponentially large for even r [Bringmann
et al. ≥ 2015], it is surprising that the twisted moments

∑
m(−1)mu(m, n)mr , as a

consequence of our results, are only polynomially large in n. We have chosen to
handle the more complicated expressions

∑
m(−1)mu(m, n)Qr (m2, n− 1

24) because
the generating functions for these numbers have a fixed weight as modular objects
as seen in Theorem 1.1, while the generating function for the twisted moments
will have a mixed weight. To relate these generating functions φr (τ ) to the twisted
unimodal moments ur (τ ), by symmetry, we note that u2r+1(q) = 0 for integers
r ≥ 0. In particular, using (1-6), we find that

(1-8) φr (τ )= (π i)2r+1
∑

0≤µ≤r
0≤`≤r−µ

cr (µ, `)

(2π i)µ
·
∂µ

∂τµ

(
u2`(q)q−

1
24
)
,

where we define

(1-9) cr (µ, `) :=
−22`+16µ0

( 1
2 + 2r −µ

)
0
( 1

2 + 2r
)
µ!(2`)!(2r − 2µ− 2`+ 1)!

∈Q.

The coefficients cr (µ, `) are indeed in Q, as it is well known for integers k ∈N0, that
0( 1

2+k)∈
√
π ·Q. The twisted moment functions also naturally extend the unimodal

function U (1; q) discussed above; namely, u0(q)=U (1; q)=−q1/24(2π i)−1φ0(τ ).
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To state our first result, we define another polynomial

(1-10) Pr (X, Y ) :=
∑

0≤N≤r
0≤M≤3r

br (N ,M)X2N+1Y M ,

where the coefficients br (N ,M) are given explicitly in (3-13). Our first theorem
establishes that the unimodal moment functions φr are quantum modular forms on
Q\{0}, and that their transformation law also extends to H. The function Hr below
is defined in (3-14).

Theorem 1.1. Let r ∈ N0. If τ ∈ H∪Q\{0}, we have

(1-11) φr (τ )− (−iτ)−3/2−2rφr

(
−

1
τ

)
=

∫
R

Pr
(
w, (−iτ)−1)eπ iτw2/3 sinh

( 2πw
3

)
cosh(πw)

dw+Hr (τ ),

where Hr (τ ) = 0 for τ ∈ Q \ {0}. In particular, the functions φr are quantum
modular forms.

Remarks. (1) The transformation law given in (1-11) in the case τ ∈H essentially
establishes the mock modular properties of the unimodal rank moment functions
φr (τ ).

(2) In the course of proving (1-11) in the case τ ∈Q \ {0}, we show that for each
integer r ≥ 0, the function φr is defined for τ ∈ Q. Moreover, in Theorem 5.1
of Section 5, we pay special attention to the case r = 1, and establish an explicit
finite value for φ1(h/k) (h, k ∈ Z) as the value of a polynomial in the root of unity
e2π ih/k .

(3) Our functions naturally arise from mock Jacobi forms. It would be interesting
to investigate whether a theory of quantum Jacobi forms could be developed that
contains functions arising in this paper as special cases.

Our next theorem exploits the automorphic properties given in Theorem 1.1,
and establishes the asymptotic behavior of the moment functions ur . While such
properties are of independent interest, we also point out that these functions are
related to the quantum moment functions φr by (1-8). To describe their asymptotic
behavior, we use the Bernoulli polynomials Bk(x) and Euler polynomials Ek(x),
defined by the generating functions

(1-12)
zexz

ez − 1
=

∞∑
k=0

Bk(x)
zk

k!
and

(1-13)
2exz

ez + 1
=

∞∑
k=0

Ek(x)
zk

k!
.
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Theorem 1.2. For nonnegative integers r , as t→ 0+, we have

eπ t/12u2r
(
e−2π t)
=

32r+1

2r + 1

∞∑
k=0

(3π t)k

k!

∑
0≤n≤r

(2r+1
2n

)
3−2n B2n

(
1
2

)
E2r+1+2k−2n

(
5
6

)
,

In particular, we have

eπ t/12u2r
(
e−2π t)

∼
2 · 62r

2r + 1

(
B2r+1

(
2
3

)
+ B2r+1

(
5
6

))
.

The paper is organized as follows. In Section 2 we provide relevant background
information on modular forms, Jacobi forms, and mock Jacobi forms, as well as
Bernoulli and Euler polynomials. In Section 3 we prove Theorem 1.1, and in
Section 4 we establish Theorem 1.2. In Section 5 we pay special consideration to
the moment function φ1.

2. Preliminaries

Here, we provide preliminary information on automorphic forms in Section 2A,
and Bernoulli and Euler polynomials in Section 2B.

2A. Automorphic forms. In this section, we recall some fundamental properties
of certain modular and (mock) Jacobi forms. We start with the well-known trans-
formation law for the Dedekind η-function.

Lemma 2.1. For γ =
(

a b
c d

)
∈ SL2(Z), we have

(2-1) η(γ τ)= χ(γ )(cτ + d)1/2η(τ),

where χ(γ ) is a 24-th root of unity, which can be given explicitly in terms of
Dedekind sums [Rademacher 1973]. In particular, we have

η
(
−

1
τ

)
=
√
−iτη(τ).

Here and throughout the square root is defined by the principal branch of the
logarithm. Moreover, we require the usual Jacobi theta function, defined for z ∈ C

and τ ∈ H by

(2-2) ϑ(z; τ) :=
∑
ν∈ 1

2+Z

eπ iν2τ+2π iν(z+ 1
2).

This function is well known to satisfy the following transformation law [Rademacher
1973, (80.31) and (80.8)]:
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Lemma 2.2. For λ,µ ∈ Z and γ =
(

a b
c d

)
∈ SL2(Z), we have

ϑ(z+ λτ +µ; τ)= (−1)λ+µq−λ
2/2e−2π iλzϑ(z; τ),

ϑ

(
z

cτ + d
; γ τ

)
= χ3(γ )(cτ + d)1/2eπ icz2/(cτ+d)ϑ(z; τ).

In particular,

ϑ

(
z
τ
;−

1
τ

)
=−i
√
−iτeπ i z2/τϑ(z; τ).

The Jacobi theta function also satisfies the well-known triple product identity
(w = e2π i z)

ϑ(z; τ)=−iq1/8w−1/2
∞∏

n=1

(
1− qn)(1−wqn−1)(1−w−1qn).

Additionally, we require the following classical Taylor expansion (see for example
[Zagier 1991]):

(2-3) ϑ(z; τ)=−2π z · η3(τ ) exp
(
−2

∞∑
k=1

G2k(τ )
(2π i z)2k

(2k)!

)
.

Here for even integers k ≥ 2, the Eisenstein series are defined by

Gk(τ ) := −
Bk

2k
+

∞∑
n=1

σk−1(n)qn,

where σ`(n) :=
∑

d |n d` and Bk denotes the k-th Bernoulli number.
We also make use of Zwegers’ functions A`(z1, z2; τ) [2010] (see also [Bring-

mann 2008; Andrews et al. 2013]), defined for ` ∈ N, τ ∈ H, z2 ∈ C, and
z1 ∈ C \ (Zτ +Z) by

(2-4) A`(z1, z2; τ) := e`π i z1
∑
n∈Z

(−1)`nq`n(n+1)/2e2π inz2

1− qne2π i z1
.

These functions may be “completed” into nonholomorphic Jacobi forms by setting

Â`(z1, z2; τ) := A`(z1, z2; τ)+ R`(z1, z2; τ).

The nonholomorphic completions of these higher-level Appell functions are defined
by

R`(z1, z2; τ) :=
i
2

`−1∑
k=0

e(kz1)ϑ
(

z2+ kτ + `−1
2
; `τ
)

R
(
`z1− z2− kτ − `−1

2
; `τ
)
,

where e(x) := e2π i x and where (with τ = u+ iv)
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R(z; τ) :=
∑

n∈ 1
2+Z

(
sgn(n)− E

((
n+

Im(z)
v

)
√

2v
))
(−1)n−

1
2 q−n2/2e−2π inz,

with E(z) := 2
∫ z

0 e−π t2
dt. Proposition 2.3 below shows that the so-called “error

to modularity” of the function R(z; τ) is the Mordell integral, defined for z ∈ C

and τ ∈ H by

(2-5) h(z; τ) :=
∫

R

eπ iτw2
−2π zw

cosh(πw)
dw.

Proposition 2.3 [Zwegers 2002]. For z ∈ C and τ ∈ H, we have

R(z+ 1; τ)=−R(z; τ),

R
( z
τ
;−

1
τ

)
=
√
−iτe−π i z2/τ (−R(z; τ)+ h(z; τ)).

The completed higher-level Appell functions A`(z1, z2; τ) transform as follows.

Proposition 2.4 [Zwegers 2010]. For n1, n2,m1,m2 ∈ Z and γ =
(

a b
c d

)
∈ SL2(Z),

we have

Â`(z1+ n1τ +m1, z2+ n2τ +m2; τ)

= (−1)`(n1+m1)e(z1(`n1− n2)− n1z2)q`n
2
1/2−n1n2 Â`(z1, z2; τ),

Â`

(
z1

cτ + d
,

z2

cτ + d
; γ τ

)
= (cτ + d)e

(
c(−`z2

1+ 2z1z2)

2(cτ + d)

)
Â`(z1, z2; τ).

We further require “dissection properties” of the functions ϑ and R (see [Shimura
1973; Zwegers 2010; Bringmann and Folsom 2013]).

Lemma 2.5. With notation as above, we have for n ∈ N,

ϑ
(

z; τ
n

)
=

n−1∑
`=0

q(`−
n−1

2 )
2
/(2n)e2π i(`− n−1

2 )(z+
1
2)ϑ

(
nz+

(̀
−

n−1
2

)
τ +

n−1
2
; nτ

)
,

R
(

z; τ
n

)
=

n−1∑
`=0

q−(`−
n−1

2 )
2
/(2n)e−2π i(`− n−1

2 )(z+
1
2)R

(
nz+

(̀
−

n−1
2

)
τ+

n−1
2
; nτ

)
.

2B. Bernoulli and Euler polynomials. In this section, we recall certain properties
of the Bernoulli polynomials Bk(x) and Euler polynomials Ek(x), defined in (1-12)
and (1-13), respectively, as well as their special values

Bk := Bk(0), Ek := 2k Ek
( 1

2

)
.
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One property we make use of is a “dissection” property of the Bernoulli polynomials
(see [Abramowitz and Stegun 1964, Chapter 23])

(2-6) Bk(mx)= mk−1
m−1∑
a=0

Bk

(
x +

a
m

)
for m ∈ 2N0+ 1.

Another “splitting” property that we use is

(2-7) 2k Bk

(
x + y

2

)
=

k∑
j=0

(k
j

)
B j (x)Ek− j (y),

which follows easily from the definition of the Euler and Bernoulli polynomials,
using the fact that

2z · e(x+y)z

e2z − 1
=

zexz

ez − 1
·

2eyz

ez + 1
.

Here and throughout, we let ζN := e2π i/N for N ∈ N. The next lemma expresses
derivatives of secant in terms of Euler polynomials.

Lemma 2.6. With notation as above, we have, for c ∈ N0,

sec(2c+1)(π
3

)
= (−1)c

√
3 · 62c+1 E2c+1

( 5
6

)
.

Proof. This follows quickly from [Cvijović 2009, Theorem 2]. Namely, using the
facts that E2c−1

( 1
6

)
=−E2c−1

( 5
6

)
and E2c−1

( 1
2

)
= 0 gives the claim. �

A fourth property that we use expresses the Euler numbers as integrals. Namely,
it is known (see [Erdélyi et al. 1981, p. 42, Equation (18)] for example) that for
k ∈ N0,

(2-8)
∫

R

w2k

cosh(πw)
dw = (2i)−2k E2k .

Note that E2k−1 = 0 for k ∈ N.

3. Proof of Theorem 1.1

Here, we ultimately conclude Theorem 1.1 from Propositions 3.6–3.8 below. In
Section 3A, we establish properties of mock Jacobi forms related to the unimodal
rank generating function; and in Section 3B, we construct mock modular forms from
its Taylor coefficients. In Section 3C, we establish quantum modularity and prove
Theorem 1.1. Until otherwise indicated, throughout this section, we take τ ∈ H.
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3A. Mock Jacobi forms and unimodal ranks. Here we establish properties of
mock Jacobi forms associated to the unimodal rank generating function. We begin
by writing U (w; q) in terms of the Appell functions A`(u, v; τ) defined in (2-4).
Throughout, for w1, w2 ∈ C, we let

U(w1;w2) :=U (e(w1); e(w2)).

Lemma 3.1. Let w = e(z). With notation as above, we have

U(z; τ)=
1(

w1/2−w−1/2
)
(q; q)∞

(
A1(z,−z; τ)−w−1 A3(z,−τ ; τ)

)
.

Proof. Entry 3.4.7 of “Ramanujan’s lost notebook” (see [Andrews and Berndt 2009,
p. 67]) gives with a =−w, b =−w−1 that U(z; τ) equals

(3-1)
−1

(1−w)(1−w−1)

∞∑
n=0

qn2

(wq; q)n(w−1q; q)n

+
1

(1−w−1)(q; q)∞

∑
n∈Z

(−1)nqn(n+1)/2w−n

1−wqn .

We note that the second sum on the right-hand side of (3-1) is easily seen to equal

1
(w1/2−w−1/2)(q; q)∞

A1(z,−z; τ).

Using these facts, the result follows after applying the identity (see [Atkin and
Swinnerton-Dyer 1954])

−1
(1−w−1)(1−w)

∞∑
n=0

qn2

(wq; q)n(w−1q; q)n

=
−1

(w1/2−w−1/2)

1
(q; q)∞

A3(z,−τ ; τ). �

Next we define a normalization of the function U(z; τ)

(3-2) Y+(z; τ) := −
(
w1/2
−w−1/2)q−1/24

·U(z; τ)

= η−1(τ )
(
w−1 A3(z,−τ ; τ)− A1(z,−z; τ)

)
,

where the second equality follows from Lemma 3.1. Using Proposition 3.3, we
now establish a transformation law for Y+, which is a key step in showing quantum
modularity of the functions φr . To state this, we define

H(z; τ) :=
i
2
ϑ(z; τ)
η(τ )

h(2z; τ)− g(z; τ),
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where h(z; τ) is given in (2-5), and

g(z; τ) :=
i
√

3

∫
R

eπ iτw2/3−2πwz sinh
( 2πw

3

)
cosh(πw)

dw.

Proposition 3.2. With notation as above, we have

−ie3π i z2/τY+
(

z
τ
;−

1
τ

)
1
√
−iτ
− Y+(z; τ)= H(z; τ).

To prove Proposition 3.2 we rather work with a second normalization of the
function U(z; τ), namely,

X+(z; τ) := −e−3π z2/(2v)(w1/2
−w−1/2)(q; q)∞U(z; τ)

=
(
w−1 A3(z,−τ ; τ)− A1(z,−z; τ)

)
e−3π z2/(2v).

Moreover we need the completed function

(3-3) X̂(z; τ) :=
(
w−1 Â3(z,−τ ; τ)− Â1(z,−z; τ)

)
e−3π z2/(2v)

=
(

Â3(z, 0; τ)− Â1(z,−z; τ)
)
e−3π z2/(2v),

where the second equality follows from the first transformation in Proposition 2.4.
Using Proposition 2.4, it is not difficult to establish a modularity result for

X̂(z; τ):

Proposition 3.3. With notation as above, for γ =
(

a b
c d

)
∈ SL2(Z), we have

X̂
(

z
cτ + d

; γ τ

)
= (cτ + d)X̂(z; τ).

From Proposition 3.3, we can establish a transformation property of X+(z; τ):

Proposition 3.4. With notation as above, we have that

X+
( z
τ
;−

1
τ

)
τ−1
− X+(z; τ)

=

(
i
2
ϑ(z; τ)h(2z; τ)+

i

2
√

3
η(τ)

∑
±

±h
(

z± 1
3
;
τ

3

))
e−3π z2/(2v).

Proof. Using Proposition 3.3 we obtain that(
X+
( z
τ
;−

1
τ

)
τ−1
− X+(z; τ)

)
2i = f1(z; τ)+ f2(z; τ),
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with

f1(z; τ) := ϑ
(
−

1
τ
;−

3
τ

)
e−3π z2τ/(2vτ)τ−1

∑
±

±e±2π i z/τ R
(3z
τ
±

1
τ
;−

3
τ

)
−ϑ(τ ; 3τ)e−3π z2/(2v)

∑
±

±e±2π i z R(3z∓ τ ; 3τ),

f2(z; τ) :=ϑ
( z
τ
;−

1
τ

)
R
(2z
τ
;−

1
τ

)
e−3π z2τ/(2vτ)τ−1

−ϑ(z; τ)R(2z; τ)e−3π z2/(2v).

We next simplify f1 and f2. Firstly, using Lemma 2.2 and Proposition 2.3, we
obtain that

(3-4) f2(z; τ)=−ϑ(z; τ)h(2z; τ)e−3π z2/(2v).

Next Lemma 2.2 and Proposition 2.3 yield that

ϑ
(
−

1
τ
;−

3
τ

)
e−3π z2τ/(2vτ)τ−1

∑
±

±e±2π i z/τ R
(3z
τ
±

1
τ
;−

3
τ

)
=−

1
3

e−3π z2/(2v)ϑ
(
−

1
3
;
τ

3

)∑
±

±

(
−R

(
z± 1

3
;
τ

3

)
+ h

(
z± 1

3
;
τ

3

))
.

Now Lemma 2.5, the fact that ϑ(0; τ)= 0, and Proposition 2.3, give that

ϑ
(
−

1
3
;
τ

3

)
= 2i sin

(
π

3

)
q1/6ϑ(τ ; 3τ),

R
(

z± 1
3
;
τ

3

)
=−q−

1
6 e2π i(z± 1

3)R(3z− τ ; 3τ)+ R(3z; 3τ)

− q−1/6e−2π i(z± 1
3)R(3z+ τ ; 3τ).

Thus ∑
±

∓R
(

z± 1
3
;
τ

3

)
= 2i sin

(2π
3

)
q−1/6

∑
±

±e±2π i z R(3z∓ τ ; 3τ),

and hence

(3-5) f1(z; τ)=−
i
√

3
q1/6ϑ(τ ; 3τ)

∑
±

±h
(

z± 1
3
;
τ

3

)
e−3π z2/(2v).

Combining (3-4), (3-5), and the fact that ϑ(τ ; 3τ)=−iq−1/6η(τ) gives the claim.
�

Proof of Proposition 3.2. First note that∑
±

±h
(

z± 1
3
;
τ

3

)
= 2i
√

3 · g(z; τ).



UNIMODAL SEQUENCES AND QUANTUM MODULAR FORMS 13

The result now follows immediately from Proposition 3.4 and Lemma 2.1, using
the fact that

Y+(z; τ)=
e3π z2/(2v)

η(τ)
X+(z; τ). �

3B. Taylor coefficients and unimodal ranks. Using the results from Section 3A,
we next construct mock modular forms from the Taylor coefficients of the unimodal
rank generating function. The functions H(z; τ) and Y+(z; τ) are holomorphic in
z, and it is not difficult to see that they are both odd functions in z. So we may write

Y+(z; τ)=
∞∑

r=0

a2r (τ )z2r+1,(3-6)

H(z; τ)=
∞∑

r=0

h2r (τ )z2r+1.(3-7)

The next lemma describes the modularity properties of the Taylor coefficients
a2r (τ ) of Y+(z; τ).

Lemma 3.5. With notation as above, we have

a2r

(
−

1
τ

)
(−iτ)−3/2−2r

=

∑
0≤ j≤r

(3π)r− j

(r − j)!
(−1) j+1(−iτ) j−r (a2 j (τ )+ h2 j (τ )).

Proof. Proposition 3.2 directly yields

Y+
( z
τ
;−

1
τ

)
= ie−3π i z2/τ

√
−iτ(Y+(z; τ)+ H(z; τ)).

Inserting (3-6), (3-7), and the Taylor expansion of the exponential function, we
obtain
∞∑

r=0

a2r

(
−

1
τ

)( z
τ

)2r+1

= i
√
−iτ

∞∑
`=0

(−3π i z2/τ)`

`!

∞∑
j=0

(a2 j (τ )+ h2 j (τ ))z2 j+1

= i
√
−iτ

∞∑
r=0

z2r+1
∑

0≤ j≤r

(3π)r− j

(r − j)!
(−1)r+ j (−iτ) j−r (a2 j (τ )+ h2 j (τ )).

Equating the coefficients of z2r+1 gives the claim. �

To prove the transformation law for the functions φr , we define for r ∈ N0,

(3-8) b2r (τ ) :=
∑

0≤µ≤r

(3π i)µ0
(1

2 + 2r −µ
)

0
( 1

2 + 2r
)
µ!

a(µ)2r−2µ(τ ).
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We will later show that φr (τ )= b2r (τ ). The functions b2r (τ ) transform as described
in the following proposition, a fact which follows as in [Eichler and Zagier 1985],
using Lemma 3.5.

Proposition 3.6. With notation as above, for r ∈ N0, we have

b2r

(
−

1
τ

)
(−iτ)−3/2−2r

− b2r (τ )

=−(−iτ)−3/2−2r
∑

0≤µ≤r

(3π i)µ0
( 1

2 + 2r −µ
)

0
( 1

2 + 2r
)
µ!

×

∑
0≤ j≤r−µ

(3π)r−µ− j (−1) j

(r −µ− j)!
∂µ

∂τµ

(
(−iτ) j+r−µ+ 3

2 h2 j (τ )
)
.

Our next proposition shows that the “errors to modularity” h2r are C∞, a fact
we use in the course of establishing the quantum modularity of the unimodal rank
functions φr in Theorem 1.1. In doing so, we split the Taylor expansion of H(z; τ)
into two pieces

(3-9) H(z; τ)= H1(z; τ)+ H2(z; τ),

with

H1(z; τ)=
∞∑

r=0

h1,2r (τ )z2r+1
:=

i
2
ϑ(z; τ)
η(τ )

h(2z; τ),

H2(z; τ)=
∞∑

r=0

h2,2r (τ )z2r+1
:= −g(z; τ).

Proposition 3.7. The functions h2r are C∞ on R. To be more precise, h1,2r (τ )

vanishes to infinite order for τ ∈Q, and we extend this function to equal 0 on all
of R. Moreover, for τ ∈ H∪Q, the function h2,2r satisfies

h2,2r (τ )=
i
√

3

(2π)2r+1

(2r + 1)!

∫
R

eπ iτw2/3w2r+1 sinh
( 2πw

3

)
sinh(πw)

dw.

Proof. Firstly, we have

H1(z; τ)

=
i

2η(τ)

∞∑
r=0

∂r

∂zr [ϑ(z; τ)h(2z; τ)]z=0
zr

r !

=
i

2η(τ)

∞∑
r=0

z2r+1

(2r + 1)!

r∑
`=0

(
2r + 1
2`+ 1

)
∂2`+1

∂z2`+1 [ϑ (z; τ)]z=0
∂2r−2`

∂z2r−2` [h(2z; τ)]z=0,
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so that

h1,2r (τ )=
i

2η(τ)

r∑
`=0

1
(2`+1)!(2r−2`)!

∂2`+1

∂z2`+1 [ϑ(z; τ)]z=0
∂2r−2`

∂z2r−2` [h(2z; τ)]z=0.

It is not hard to see that h(2z; τ) is C∞ as a function of τ near z = 0. Moreover by
(2-3), we see that

i
2η(τ)

∂2`+1

∂z2`+1 [ϑ(z; τ)]z=0

gives a linear combination of Eisenstein series multiplied by η2(τ ). It is well known
that the Eisenstein series satisfy

Gk

(
−

1
τ

)
= τ k Gk(τ ) (k > 2, even)

and
G2

(
−

1
τ

)
= τ 2G2(τ )+

iτ
4π
.

This implies that the function h2r (τ ) and its derivatives vanish exponentially for
τ ∈ Q. The second claim follows directly by inserting the Taylor expansion of
e−2π zx . �

3C. Quantum unimodal ranks. Building from the results in Sections 3A and 3B,
here we prove Theorem 1.1.

Proof of Theorem 1.1. We first relate the Taylor coefficients of Y+(z; τ) to the
unimodal moments u2r . Using the definition of u2r , it is not difficult to verify that

(3-10) U(z; τ)=
∞∑

r=0

u2r (q)
(2π i z)2r

(2r)!
.

Using the Taylor expansion of sin(π z) we find that

Y+(z; τ)=−2iq−1/24 sin(π z)U(z; τ)

=−(2π i z)
∞∑

r=0

(2π i z)2r
∑

0≤`≤r

u2`(q)q−1/2422`−2r

(2`)!(2r−2`+1)!
,

yielding

(3-11)
a2r (τ )

(2π i)2r+1 =−
∑

0≤`≤r

u2`(q)q−1/2422`−2r

(2`)!(2r − 2`+ 1)!
.

Using (3-11), the definition of φr (τ ) in (1-6), or its equivalent formulation given
in (1-8), as well as the definition of b2r (τ ) in (3-8), it is not difficult to see that for
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each r ∈ N0, b2r (τ )= φr (τ ). Combining this with the fact that

h2 j (τ )= h1,2 j (τ )+ h2,2 j (τ ),

Proposition 3.6 yields

(3-12) φr

(
−

1
τ

)
(−iτ)−3/2−2r

−φr (τ )

=−(−iτ)−3/2−2r
∑

0≤µ≤r
0≤ j≤r−µ

(3π)r− j (−1) j iµ0
( 1

2 + 2r −µ
)

0(1
2 + 2r)µ!(r −µ− j)!

×
∂µ

∂τµ

(
(−iτ) j+r−µ+ 3

2 (h1,2 j (τ )+ h2,2 j (τ ))
)
.

By continuation, (3-12) and what follows hold on H∪Q \ {0}.
We first consider the first summand. We have by Proposition 3.7

∂µ

∂τµ

(
(−iτ) j+r−µ+ 3

2 h2,2 j (τ )
)

=
i
√

3

(2π)2 j+1

(2 j + 1)!

×

∫
R

µ∑
`=0

(
µ

`

)
∂`

∂τ `

(
(−iτ) j+r−µ+ 3

2

) ∂µ−`
∂τµ−`

(
eπ iw2τ/3

)
w2 j+1 sinh

(2πw
3

)
cosh(πw)

dw

=

µ∑
`=0

(−1)`iµ+1π2 j+1+µ−`22 j+13`−µ−
1
2

(
µ

`

)
0
(

j + r −µ+ 5
2

)
(2 j + 1)!0

(
j + r −µ+ 5

2 − `
)

× (−iτ) j+r+ 3
2−µ−`

∫
R

w2 j+2µ−2`+1eπ iw2τ/3 sinh
( 2πw

3

)
cosh(πw)

dw.

We now define the numbers

br (µ, j, `) :=

i(−1) j+`+µ22 j+1πr+ j+µ+1−`3r+`−µ− j− 1
20
( 1

2 + 2r −µ
)
0
(

j + r −µ+ 5
2

)
(2 j + 1)!`!(µ− `)!(r −µ− j)!0

( 1
2 + 2r

)
0
(

j + r −µ+ 5
2 − `

) ,

and let

(3-13) br (N ,M) :=
∑

0≤µ≤r

∑
0≤ j≤r−µ

0≤`≤µ
N= j+µ−`

M=µ+`+r− j

br (µ, j, `).
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Moreover, we define Hr (τ ) to be

(3-14) (−iτ)−
3
2−2r

×

∑
0≤µ≤r

0≤ j≤r−µ

(3π)r− j (−1) j iµ0
( 1

2 + 2r −µ
)

0
( 1

2 + 2r
)
µ!(r −µ− j)!

∂µ

∂τµ

(
(−iτ) j+r−µ+ 3

2 h1,2 j (τ )
)
.

Note that Hr (τ )= 0 for τ ∈Q \ {0}. We have thus shown for τ ∈ H∪Q \ {0},

(−iτ)−
3
2−2rφr

(
−

1
τ

)
−φr (τ )

=−

∫
R

Pr
(
w, (−iτ)−1)eπ iτw2/3 sinh

( 2πw
3

)
cosh(πw)

dw−Hr (τ ),

as claimed in (1-11).
Finally, under the translation τ → τ + 1, it is clear using the definition of φr (τ )

in (1-6) that φr (τ + 1) = e−π i/12φr (τ ). With the proof of Proposition 3.8 below,
using (1-8), Theorem 1.1 now follows. �

We are left to show the existence of the moment functions and their derivatives.

Proposition 3.8. For r, n ∈ N0, the moment functions

∂n

∂τ n

[
q−1/24u2r (q)

]
are defined for every root of unity q = ζ and lie in Z[ζ ].

Proof. For ease of notation, we let

Dα := α
∂

∂α
,

Jm(w; q) := (wq; q)m
(
w−1q; q

)
m .

To finish the proof it is enough to show that for m sufficiently large, and every
n, r ∈ N0, the function

(3-15) Dn
q
(
Dr
w[Jm(w; q)]w=1

)
vanishes for q = ζ .

It is not difficult to see that for m ∈ N,

(3-16)
Dw(Jm(w; q))

Jm(w; q)
=−

m∑
k=1

wqk

1−wqk +

m∑
k=1

w−1qk

1−w−1qk =: Rm(w; q).
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We further relax notation and let J := Jm(w; q), R := Rm(w; q), and R(r) := Dr
wR

for r ∈ N0. Using (3-16), we find that

Dw J = J R,

D2
w J = J

(
R2
+ R(1)

)
,

D3
w J = J

(
R3
+ 3R R(1)+ R(2)

)
,

D4
w J = J

(
R4
+ 4R R(2)+ 3

(
R(1)

)2
+ 6R2 R(1)+ R(3)

)
,

...

Note that each Dr
w J can be expressed as J multiplied by a sum over the partitions of

r . That is, given a partition π = `1(π)·1+`2(π)·2+· · ·+`r−1(π)·(r−1)+`r (π)·r
of r (where each ` j (π) ∈ N0), we may assign the product∏

1≤ j≤r

(
D j−1
w R

)` j (π)
.

Conversely, every such product appearing as a summand as above for Dr
w J corre-

sponds to a partition of r . In general, we have

Dr
w[Jm(w; q)]w=1 = (q; q)2m

∑
π`r

c(π)
∏

1≤ j≤r

(
D j−1
w [Rm(w; q)]w=1

)` j (π)
,

where we sum over all partitions π of r . The exponents ` j (π) correspond to the
number of parts of the partition π of r , and the constants c(π)= cr (π) also depend
on the partition π of r . Now using the definition of Rm(w; q) in (3-16), we may
write

(3-17)
∑
π`r

c(π)
∏

1≤ j≤r

(
D j−1
w [Rm(w; q)]w=1

)` j (π)

=

∑
Ek=(k1,...,kc)

PEk,r (q)∏c
j=1(1− qk j )r

=: Rm,r (q),

where c = cr ∈ N depends only on r , and PEk,r ∈ Z[q]. Next we apply the operator
Dn

q to (q; q)2m multiplied by Rm,r (q) in (3-17) above. Using the product rule, we
have (3-15) equals ∑

0≤ j≤n

(n
j

)
D j

q
(
(q; q)2m

)
Dn− j

q (Rm,r (q)).

It is not difficult to see that

Dq
(
(q; q)2m

)
(q; q)2m

=−2
m∑

k=1

kqk

1− qk =: Tm(q),
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and for l ∈ N, that

D`−1
q (Tm(q))=

m∑
k=1

Qk,l(q)
(1− qk)`

,

with Qk,l(q) ∈ Z[q]. Therefore, we may conclude that (3-15) has the shape

(q; q)2m
∑

Ek=(k1,...,kd )

PEk,r,n(q)∏d
j=1
(
1− qk j

)r+n ,

where d = dr,n ∈ N depends only on r and n, and PEk,r,n ∈ Z[q]. Now if ζ = ζm

then (q; q)2M (M ∈ N) vanishes at q = ζ of order ≥ 2bm/Mc. On the other hand,
each term

PEk,r,n(q)∏d
j=1
(
1− qk j

)r+n

vanishes at q = ζ of order at most d(r + n), which is a constant independent of m.
Thus, the claim follows. �

4. Proof of Theorem 1.2

To prove Theorem 1.2, we recall (3-2). It is not difficult to see from Proposition 3.2
that

Y+(z; i t)=−H(z; i t)+
∑
r≥0

βr (t)zr

with

βr (t)�r e−N/t

for some N > 0. To find the asymptotic expansion of H(z; i t), we split as in (3-9)
and bound using (2-3)

h1,2r (i t)� e−M/t

for some M > 0. Thus we are left to determine the asymptotic expansion of
H2(z; i t). For this, we write

H2(z; i t)=−
i
√

3

∫
R

e−π tw2/3−2πwz sinh
( 2πw

3

)
cosh(πw)

dw

=−
i
√

3

∞∑
r=0

(−2π z)2r+1

(2r + 1)!

∞∑
k=0

(−π t/3)k

k!

∫
R

w2r+2k+1 sinh
( 2πw

3

)
cosh(πw)

dw,(4-1)
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where the identity in (4-1) refers to an asymptotic expansion. Thus, to determine
the asymptotic expansion of H2(z; i t), we are left to evaluate explicitly for a ∈ N0,

Ca :=

∫
R

w2a+1 sinh
( 2πw

3

)
cosh(πw)

dw

=
1
2

∫
R

w2a+1
(
e2πw/3

− e−2πw/3
)

cosh(πw)
dw =

∞∑
r=1

( 2π
3

)2r−1

(2r − 1)!

∫
R

w2a+2r

cosh(πw)
dw.

From (2-8), we have that the integral above equals (2i)−2a−2r E2a+2r , yielding

Ca = (−2i)−2a−1
∞∑

r=1

(
π i
3

)2r−1

(2r − 1)!
E2a+2r = (−2i)−2a−1

∞∑
r=0

(
π i
3

)r
r !

E2a+r+1.

The second equality above holds because E j = 0 for j odd.
We are thus left to understand

∑
∞

r=0(v
r/r !)Er+b for positive integers b and

v = π i/3. Set

f (v) :=
∞∑

r=0

Er

r !
vr
= sech(v),

where the second equality above is simply the definition of the Euler numbers. Then

f (b)(v)=
∞∑

r=0

Er+b

r !
vr .

Thus

(4-2) Ca = (−2i)−2a−1 sech(2a+1)
(
π i
3

)
= 2−2a−1 sec(2a+1)

(
π

3

)
.

Next we deduce from (1-12) that

i
2

1
sin(π z)

=−

∞∑
n=0

B2n
(1

2

)
(2n)!

(2π i z)2n−1.

Combining the above, we have established that the asymptotic expansion of
U(z; i t)eπ t/12 as t→ 0+ is given by

1
√

3

∞∑
r=0

(2π i z)2r (−1)r
∑

0≤n≤r

B2n
( 1

2

)
(2n)!

(−1)n

(2r − 2n+ 1)!

∞∑
k=0

(
−π t/3

)k

k!
Cr−n+k .

Thus, using (4-2), we have the asymptotic expansion as t→ 0+,

(4-3) eπ t/12u2r
(
e−2π t)

=
(2r)!(−1)r 2−2r−1

√
3

∞∑
k=0

tk

k!

(
−
π

3

)k
2−2k

×

∑
0≤n≤r

(−1)n B2n
( 1

2

)
22n

(2n)!(2r − 2n+ 1)!
sec(2r−2n+2k+1)

(
π

3

)
.
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Using Lemma 2.6 together with (4-3), we have

(4-4) eπ t/12u2r
(
e−2π t)

=
32r+1

2r + 1

∞∑
k=0

(3π t)k

k!

∑
0≤n≤r

(2r+1
2n

)
3−2n B2n

(
1
2

)
E2r+2k+1−2n

(
5
6

)
,

which concludes the proof of the first statement of Theorem 1.2.
Next we prove the claimed asymptotic for the main term. Since B2n+1

( 1
2

)
= 0,

we may rewrite the k = 0 summand of (4-4) as

(4-5)
32r+1

2r + 1

∑
0≤n≤2r+1

(2r+1
n

)
3−n Bn

(
1
2

)
E2r+1−n

(
5
6

)
.

Now we use (2-6), which yields that

Bn

(
1
2

)
= 3n−1

2∑
a=0

Bn

(
1
6
+

a
3

)
.

Thus, (4-5) equals

32r

2r + 1

2∑
a=0

∑
0≤n≤2r+1

(
2r+1

n

)
Bn

(
1
6
+

a
3

)
E2r+1−n

(
5
6

)
.(4-6)

Using (2-7), (4-6) reduces to

2 · 62r

2r + 1

2∑
a=0

B2r+1

(
1
2
+

a
6

)
.

Noting again that B2r+1
( 1

2

)
= 0, we find that as claimed, as t→ 0+,

eπ t/12u2r
(
e−2π t)

∼
2 · 62r

2r + 1

(
B2r+1

(
2
3

)
+ B2r+1

(
5
6

))
.

5. An example: the moment function φ1(τ)

In this section, we give an exact value for the quantum moment function

(5-1)
φ1(τ )= 4π3iq−1/24

∞∑
n=1

∑
m∈Z

(−1)mu(m, n)
(
m2
+ 2n

)
qn

= 4π3iq−1/24
(

u2(q)− iπ−1 ∂

∂τ
u0(q)

)
.
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To describe this, we define for positive integers n the polynomials

dn(q) := n(q; q)2n−1qn
− 2qn+2(q; q)n

n∑
j=1

jq j−1
n∏

k=1
k 6= j

(
1− qk)

∈ Z[q],(5-2)

bn(q) := qn+1
n∑

j=1

q j
n∏

k=1
k 6= j

(
1− qk)2

∈ Z[q].(5-3)

Theorem 5.1. If h, k ∈ N, with gcd(h, k)= 1, we have

φ1

(
h
k

)
= 8π3iζ−h

24k

( k∑
n=1

dn
(
ζ h

k
)
−

2k−1∑
n=1

bn
(
ζ h

k
))
.

Remark. Theorem 5.1, together with (1-11) in the case τ ∈Q\{0} of Theorem 1.1,
gives an exact value for the integral∫

R

P1
(
w, (−iτ)−1)eπ iτw2/3 sinh

( 2πw
3

)
cosh(πw)

dw.

To prove Theorem 5.1, we first establish Propositions 5.2 and 5.3 below. These
propositions give alternate expressions for the functions defining φ1(τ ) (see (5-1)),
which we subsequently evaluate for q = ζ , where ζ is any root of unity.

Proposition 5.2. With notation as above, we have

∂

∂τ
u0(q)= 2π i

∑
n≥1

dn(q).

Moreover, if gcd(h, k)= 1, we have

∂

∂τ
[u0(q)]q=ζ h

k
= 2π i

k∑
n=1

dn
(
ζ h

k
)
.

Proof. The first statement follows by straightforward differentiation, using that
u0(q) = U(0; τ), definition (1-2), and the fact that 1/(2π i)(∂/∂τ) = q(d/dq).
To prove the second statement, we observe that dn(q) is of the form dn(q) =
(q; q)n−1d̃n(q), where d̃n(ζ

h
k ) <∞. The statement now follows, observing that for

n ≥ k+ 1, the factor (q; q)n−1 of dn(q) vanishes when q = ζ h
k . �

Proposition 5.3. With notation as above, we have

(2π i)2u2(q)=
∂2

∂z2 [U(z; τ)]z=0 =−2(2π i)2
∑
n≥1

bn(q).
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Moreover, if h, k ∈ N, with gcd(h, k)= 1, we have

(2π i)2u2
(
ζ h

k
)
=−2(2π i)2

2k−1∑
n=1

bn
(
ζ h

k
)
.

Proof. The first statement follows by straightforward differentiation, using definition
(1-2), and the fact that 1/(2π i)(∂/∂z) = w(d/dw) for w = e2π i z . To prove the
second statement, using the first statement, we see for n ≥ 2k, the j-th summand
defining bn(q) (for any j ≥ 1) contains either the factor (1− qk) or (1− q2k) (or
both), both of which vanish when q = ζ h

k . �

Proof of Theorem 5.1. Theorem 5.1 now follows from the definition of φ1(τ ) (see
(5-1)), Propositions 5.2 and 5.3. �
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CONGRUENCE PRIMES
FOR IKEDA LIFTS AND THE IKEDA IDEAL

JIM BROWN AND RODNEY KEATON

Let f be a newform of level 1 and weight (2κ − n) for positive even integers
κ and n. We study congruence primes for the Ikeda lift of f . In particular,
we consider a conjecture of Katsurada stating that primes dividing certain
L-values of f are congruence primes for the Ikeda lift. Instead of focusing
on a congruence to a single eigenform, we deduce a lower bound on the
number of all congruences between the Ikeda lift of f and forms not lying
in the space spanned by Ikeda lifts.

1. Introduction

Let κ be an integer and let χ be a Dirichlet character of conductor N satisfying
χ(−1)= (−1)κ . One has an associated Eisenstein series Eκ,χ . It is a well-known
fact that for a prime ` - N and a prime l dividing ` in a suitably large extension of Z

so that l | L(1−κ, χ) there exists a cuspidal eigenform f of level M with N |M such
that f ≡ Eκ,χ (mod l). Such congruences between cusp forms and Eisenstein series
have been studied by many authors. For instance, one can use such congruences
to make deductions on the structure of the residual Galois representation of the
cusp form, which can then be used to study Selmer groups associated to the cusp
form (see [Ribet 1976; Wiles 1990; Skinner and Urban 2014] for some prominent
examples of this type of argument).

If we view the Eisenstein series as a “lift” of the Dirichlet character χ from
GL(1) to GL(2), then we can fit the congruences mentioned above into a more
general framework. Namely, one can consider more general automorphic forms
and lift them to automorphic forms on other algebraic groups. This approach has
also received considerable attention as it can also be used to study Selmer groups of
higher-degree Galois representations; see [Skinner and Urban 2006; Klosin 2009;
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Agarwal and Brown 2014] for specific examples and [Mazur 2011] for a survey of
this method. This makes classifying primes for which one will have a congruence
between a lifted form and a nonlifted form a natural question to study. In this paper
we investigate this problem for Ikeda lifts.

Let κ and n be positive even integers, f ∈ S2κ−n(SL2(Z)) a newform, and
In( f ) ∈ Sκ(Sp2n(Z)) the Ikeda lift of f . Katsurada [2011] states a conjecture on
when a prime l will satisfy that there is an eigenform F ∈ Sκ(Sp2n(Z)) that is not
an Ikeda lift and is congruent to In( f ) modulo l. The conjecture is in terms of
divisibilities of special values of L-functions of f by l. One can see Conjecture 9
for the precise statement. To provide evidence for his conjecture he proves that
if a prime divides the required L-values and does not divide other L-values then
one indeed does have such a congruence (see Theorem 10). In this paper we
also consider Ikeda lifts, but instead of focusing on producing one congruence we
introduce the Ikeda ideal. This ideal is an analogue of the Eisenstein ideal in the
GL(2) case and measures congruences between In( f ) and all other eigenforms.
We then show that under similar hypotheses as given in [Katsurada 2011], we
can do better and bound from below the congruences between In( f ) and all other
eigenforms that are not lifts. One can see Theorem 14 for the precise result.

One thing to note here is that while the Saito–Kurokawa lift is useful for study-
ing the p-adic Bloch–Kato conjecture for the L-value Lalg(κ, f ) due to the fact
that the value Lalg(κ, f ) “controls” the congruence between the Saito–Kurokawa
lift and a nonlifted form (see [Brown 2011; Agarwal and Brown 2014] for ex-
ample), the L-values that control the congruence for an Ikeda lift are given by
Lalg(κ, f )

∏n/2−1
j=1 Lalg(2 j+1, ad0 f ). This indicates that if one knew the existence

of Galois representations for automorphic forms on GSp2n , as well as expected
properties of these representations, one could use the congruence results produced
in this paper to study the `-adic Bloch–Kato conjecture not only for Lalg(κ, f ), but
also for the values Lalg(2 j + 1, ad0 f ) when j = 1, . . . , n

2 − 1. This makes such
congruences particularly interesting.

The structure of the paper is as follows. Section 2 recalls the basic definitions
we will need throughout the paper. We recall the Ikeda lift and some necessary
properties in Section 3. In Section 4 we state Katsurada’s conjecture and result,
introduce the Ikeda ideal, and show how Katsurada’s congruence can be recovered
by studying the Ikeda ideal. We then state our main result and discuss the major
hypotheses in Section 5. Section 6 gives a somewhat detailed description of an
Eisenstein series originally introduced by Shimura and some results needed to prove
the main theorem. Finally, we conclude by proving the main theorem in Section 7.

Throughout the paper ` denotes an odd prime. We fix once and for all an algebraic
closure Q of the rationals and Q` of Q`. We also fix compatible embeddings
Q ↪→Q` ↪→ C.



CONGRUENCE PRIMES FOR IKEDA LIFTS AND THE IKEDA IDEAL 29

2. Modular forms

In this section we recall the basics on modular forms and Siegel modular forms that
will be needed throughout the rest of the paper.

2.1. Basic definitions. Given a ring R with identity, we write Matn(R) for the ring
of n× n matrices with entries in R.

Set

Jn =

(
0n −1n

1n 0n

)
and recall that the degree-n symplectic group is defined by

Gn = GSp2n = {g ∈ GL2n :
tg Jng = µn(g)Jn, µn(g) ∈ GL1}.

We set Sp2n = kerµn . We denote Sp2n(Z) by 0n to ease notation. We say that
0 ⊂ 0n is a congruence subgroup if it contains 0(n)(N ) as a subgroup of finite
index for some integer N ≥ 1, where

0(n)(N )= {γ ∈ 0n : γ ≡ 12n (mod N )}.

Given a matrix z ∈Matn(C), we can write z = x +
√
−1y for x, y ∈Matn(R).

When we write z = x +
√
−1y, we will always mean x, y ∈Matn(R). The Siegel

upper half-space is given by

hn = {z = x +
√
−1y ∈Matn(C) : tz = z, y > 0}.

We have an action of G+n (R)= {g ∈ Gn(R) : µn(g) > 0} on hn given by

gz = (agz+ bg)(cgz+ dg)
−1 for g =

(
ag bg

cg dg

)
,

where ag, bg, cg, dg ∈Matn(R).
For g ∈ G+n (R) and z ∈ hn , we set

j (g, z)= det(cgz+ dg).

Let κ be a positive integer. Given f : hn→C, we define the slash operator on f by

( f |κg)(z)= µn(g)nκ/2 j (g, z)−κ f (gz).

Let 0 ⊂ 0n be a congruence subgroup. We say that such an f is a genus-n Siegel
modular form of weight κ and level 0 if f is holomorphic and satisfies

( f |κγ )(z)= f (z)

for all γ ∈ 0. If n = 1 we also require that f is holomorphic at the cusps so that
we recover the theory of elliptic modular forms. We denote the space of genus-n,
level-0, and weight-κ modular forms by Mκ(0).
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Let f ∈ Mκ(0) and let γ ∈ G+n (Q). Then f |κγ has a Fourier expansion of the
form

( f |κγ )(z)=
∑

T∈3n

a f |κγ (T )e(Tr(T z)),

where 3n is defined to be the set of n × n half-integral positive semidefinite
symmetric matrices and e(w) := e2π iw. We say that f is a cusp form if for all
T ∈ 3n with det(T ) = 0 we have a f |κγ (T ) = 0 for all γ ∈ G+n (Q). We write
Sκ(0) for the cusp forms in Mκ(0). Given a ring R ⊂ C, we write Mκ(0; R) for
those modular forms whose Fourier coefficients all lie in R and likewise for the
cusp forms.

Let f1, f2 ∈ Mκ(0) with at least one of them a cusp form. The Petersson inner
product of f1 and f2 is defined by

〈 f1, f2〉0 =

∫
0\hn

f1(z) f2(z)(det y)κ dµz,

where z = x + iy with x = (xα,β), y = (yα,β) ∈Matn(R), and

dµz = (det y)−(n+1)
∏
α≤β

dxα,β
∏
α≤β

dyα,β,

with dxα,β and dyα,β the usual Lebesgue measure on R. We will use the following
scaled definition that is independent of the congruence subgroup considered:

〈 f1, f2〉 =
1

[0n : 0]
〈 f1, f2〉0,

where 0n = 0n/{±12n} and 0 is the image of 0 in 0n .

2.2. Hecke algebras. Let 0 ⊂ 0n be a congruence subgroup. Given g ∈ G+n (Q),
we write T (g) to denote the double coset 0g0. We define the usual action of T (g)
on Siegel modular forms by setting

T (g) f =
∑

i

f |κgi ,

where 0g0 =
∐

i 0gi and f ∈ Mκ(0). Let p be prime and define

T (n)(p)= T (diag(1n, p1n)),

and for i = 1, . . . , n, set

T (n)
i (p2)= T (diag(1n−i , p1i , p21n−i , p1i )).

These Hecke operators generate the local Siegel Hecke algebra at p [van der Geer
2008, Theorem 9].
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Let H(n)
Z denote the Z-subalgebra of EndC(Sκ(0)) generated by T (n)(p) and

T (n)
i (p2) for i = 1, . . . , n. Given any Z-algebra A, we write H(n)

A for H(n)
Z ⊗Z A.

Let E be a finite extension of Q` and OE the ring of integers of E . Then H(n)
OE

is
a semilocal complete finite OE -algebra. One has

(1) H(n)
OE
=

∏
m

H(n)
m ,

where the product runs over all maximal ideals of H(n)
OE

and H(n)
m denotes the

localization of H(n)
OE

at m.

2.3. Congruences. Let f, g ∈ Mκ(0n; K ), with K ⊆Q`. Let O denote the ring of
integers of K with l the prime of O. We write

f ≡ g (mod lb)

to denote
vall(a f (T )− ag(T ))≥ b

for all T ∈3n . We refer to this as a congruence of Fourier coefficients.
We will also use the notion of a congruence of eigenvalues. Let f, g ∈ Mκ(0n)

be eigenforms and now suppose that K/Q` is the minimal extension containing all
Hecke eigenvalues of f and g. Note that this is a finite extension by [Kurokawa
1981, Theorem 1]. Furthermore, by the remark in [Mizumoto 1991, Section 2]
we may assume that f , g are normalized so that the Fourier coefficients are also
contained in K . We shall assume throughout the remainder of the paper that all
eigenforms are normalized in this way.

In this case, if f and g are eigenforms for all t ∈H(n)
O with eigenvalues λ f (t)

and λg(t), respectively, we write

f ≡ev g (mod lb)

to denote
vall(λ f (t)− λg(t))≥ b

for all t ∈H(n)
O .

2.4. L-functions. In this section we introduce the L-functions that will be needed
in this paper. In the case of the relevant L-functions attached to elliptic modular
forms, we also introduce the appropriate canonical periods.

Given local Euler factors L p(s) and a finite set of primes 6, we define

L6(s)=
∏
p/∈6

L p(s).

If 6 = {p | N } we write L N (s) for L6(s). We set L(s)= L∅(s).
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We begin with the case of an elliptic modular form f ∈ Sκ(01). We assume that
f is a normalized eigenform with Fourier expansion

f (z)=
∑
n≥1

a f (n)e(nz).

Let π f =
⊗
′

p π f,p be the automorphic representation associated to f . For each
prime p there exists a character σp such that π f,p = π(σp, σ

−1
p ), where π(σp, σ

−1
p )

is the principal series representation of GL2(Qp). The p-Satake parameter of f is
given by α0(p; f )= σp(p). We will drop the f from the notation when it is clear
from context. The L-function of f is given by

L(s, f )=
∏

p

(1−α0(p)p−s+(κ−1)/2)−1(1−α0(p)−1 p−s+(κ−1)/2)−1

=

∏
p

(1− a f (p)p−s
+ pκ−1−2s)−1

=

∑
n≥1

a f (n)n−s .

Given a Dirichlet character χ , we will also make use of the twisted L-function

L(s, f, χ)=
∑
n≥1

χ(n)a f (n)n−s .

Let ` ≥ κ be a prime and let K be a suitably large finite extension of Q`

with ring of integers O. Let f ∈ Sκ(01;O) be a normalized eigenform. Let ρ f,`

be the `-adic Galois representation associated to f and assume that the residual
representation ρ f,` is irreducible. Then we have canonical complex periods �±f
(determined up to `-units) by [Vatsal 1999]. Vatsal showed that such periods exist
for level greater than 3, but using arguments in [Hida 1987] we can define �±f for
arbitrary level. One can see [Brown 2007] for more details. Using these periods
we have:

Theorem 1 [Shimura 1977; Vatsal 1999]. Let f ∈ Sκ(01;O) be as in the above
discussion. There exist complex periods �±f such that for each integer m with
0< m < κ and every Dirichlet character χ one has

L(m, f, χ)

τ (χ)(2π
√
−1)m

∈

{
�+f Oχ if χ(−1)= (−1)m,
�−f Oχ if χ(−1)= (−1)m−1,

where τ(χ) is the Gauss sum of χ and Oχ is the extension of O generated by the
values of χ .

With this theorem in mind we set the following notation for the algebraic part of
L(m, f, χ) with 0< m < κ:

Lalg(m, f, χ) :=
L(m, f, χ)

τ (χ)(2π
√
−1)m�±f

,

where the choice of period is from the theorem.
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For Siegel modular forms of genus greater than 1 there are two relevant L-
functions: the standard and spinor L-functions. Let f ∈ Sκ(0n) be an eigenform.
Associated to f is a cuspidal automorphic representation π f of PGSp2n(A). We
can decompose π f into local components as π f =

⊗
′
π f,p, with π f,p an Iwahori

spherical representation of PGSp2n(Qp). We refer the reader to [Asgari and Schmidt
2001, Section 3] for the details concerning the construction of cuspidal automorphic
representations associated to Siegel cusp forms. The representation π f,p is given
as π(χ0, χ1, . . . , χn) for χi unramified characters of Q×p . One can see [Asgari and
Schmidt 2001, Section 3.2] for the definition of this spherical representation. Let
α0(p; f ) = χ0(p), . . . , αn(p; f ) = χn(p) denote the p-Satake parameters of f .
Note these are normalized so that

α0(p; f )2α1(p; f ) · · ·αn(p; f )= 1.

We drop f and/or p in the notation for the Satake parameters when they are clear
from context. Set α̃0 = p(2nκ−n(n+1))/4α0 and

L p(X, f ; spin)= (1− α̃0 X)
n∏

j=1

∏
1≤i1≤···≤i j≤n

(1− α̃0αi1 · · ·αi j X).

The spinor L-function associated to f is given by

L(s, f ; spin)=
∏

p

L p(p−s, f ; spin)−1.

One should note that in the case that f is an elliptic modular form the spinor
L-function is exactly L(s, f ) defined above.

Set

L p(X, f ; st)= (1− X)
n∏

i=1

(1−αi (p)X)(1−αi (p)−1 X).

Then, we define the standard L-function associated to f by

L(s, f ; st)=
∏

p

L p(p−s, f ; st)−1.

Given a Hecke character χ , the twisted standard L-function is given by

L(s, f, χ; st)=
∏

p

L p(χ(p)p−s, f ; st)−1.

In the case that f ∈ Sκ(01;O) is an elliptic modular form the standard L-function is
usually denoted by L(s, ad0 f ), i.e., it is the adjoint L-function. Then the corollary
to [Zagier 1977, Theorem 2] gives that

L(m, ad0 f )
π2m+κ−1�+f �

−

f
∈Q
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for m = 1, 3, . . . , κ − 1 and

L(m, ad0 f )
πm+κ−1�+f �

−

f
∈Q

for m = 2− κ, 4− κ, . . . , 0. We will only be interested in the first case; we denote
this algebraic value by Lalg(m, ad0 f ).

3. The Ikeda lift

In this section we will present an introduction to the Ikeda lift. For the details the
reader is referred to [Kohnen 2002] or Ikeda’s original paper [2001]. The Ikeda
lift can be viewed as a composition of the Shintani map from the space of elliptic
modular forms to the space of half-integral weight modular forms and a map from
the space of half-integral weight forms to the correct space of Siegel modular forms.

Throughout we assume κ, n to be positive even integers with 2κ − n > 1. We
note here that we begin with weight 2κ − n instead of 2κ as used in [Ikeda 2001;
Kohnen 2002]. This normalization is more convenient for our purposes.

Recall the algebraic version of Shintani’s lift that we require. One has:

Theorem 2 [Shintani 1975]. There is a linear function

θκ,n : S2κ−n(01)→ S+
κ− n

2+
1
2
(00(4))

that is Hecke equivariant, i.e., one has θκ,n( f | T (p)) = θκ,n( f ) | T (p2) for any
prime p.

The next result will be pivotal for the algebraic construction.

Proposition 3 [Stevens 1994, Proposition 2.3.1]. Let f ∈ S2κ−n(01;O) be a Hecke
eigenform, where O is the ring of integers of a field that can be embedded in C.
Then there is a nonzero complex number �( f ) ∈ C× so that

1
�( f )

θκ,n( f ) ∈ S+
κ− n

2+
1
2
(00(4);O).

Moreover, if O is a discrete valuation ring then �( f ) can be chosen so that at least
one of the Fourier coefficients of (1/�( f ))θκ,n( f ) is a unit in O.

From now on we write θ alg
κ,n( f ) for (1/�( f ))θκ,n( f ) and will always choose the

period so that θ alg
κ,n( f ) has a unit Fourier coefficient in the case that O is a discrete

valuation ring. We write

θ alg
κ,n( f )(z)=

∑
m>0

m≡0,1 (mod 4)

c(m)e(mz).
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Let T > 0 be in 3n , i.e., T is an n× n half-integral positive definite symmetric
matrix. Set DT to be the determinant of 2T , 1T the absolute value of the discrimi-
nant of Q(

√
DT ), χT the primitive Dirichlet character associated to Q(

√
DT )/Q,

and fT the rational number satisfying DT =1T f
2
T .

Let Sn(R) denote the set of symmetric n × n matrices over a ring R. For a
rational prime p, let ψp :Qp→ C× be the unique additive character given by

ψp(x)= exp(−{x}p),

where {x}p ∈ Z
[ 1

p

]
is the p-adic fractional part of x . The Siegel series for T is

bp(T, s) :=
∑

S∈Sn(Qp)/Sn(Zp)

ψp(Tr(T S))p−s ordp(ν(S)) for Re(s)� 0,

where ν(S) := det(S1) ·Zp, and S1 is from the factorization S = S−1
1 S2 for a sym-

metric coprime pair of matrices S1, S2. We have a factorization of the Siegel series

bp(T, s)= γp(T, p−s)Fp(T, p−s),

where

γp(T, X)=
1− X

1− p
n
2χT (p)X

n
2∏

i=1

(1− p2i X2),

and Fp(T, X) ∈ Z[X ] has constant term 1 and deg(Fp(T, X))= 2 ordp(fT ). Using
this polynomial Fp(T, X) we define

F̃p(T, X) := X− ordp(fT )Fp(T, p−
n
2−

1
2 X).

For each T > 0 in 3n , define

(2) a(T )= c(|1T |)f
κ− n+1

2
T

∏
p

F̃p(T, α0(p; f )),

and form the series
In( f )(z)=

∑
T>0

a(T )e(Tr(T z)),

where α0(p; f ) is the p-th Satake parameter of f . Then we have:

Theorem 4 [Ikeda 2001, Theorems 3.2 and 3.3]. The series In( f )(z), referred to as
the Ikeda lift of f , is an eigenform in Sκ(0n) whose standard L-function factors as

L(s, F; st)= ζ(s)
n∏

i=1

L(s+ κ − i, f ).

We will also need further information about the integrality of the Fourier coeffi-
cients of In( f ). In particular, the following result is essential to our applications.
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Theorem 5 [Kohnen 2002, Theorem 1]. Let θ alg
κ,n( f ) be as above and let a(T ) be

as in (2). Then
a(T )=

∑
d |fT

dκ−1φ(d; T )c(|1T |(fT /d)2),

where φ(d; T ) is an integer-valued function.

As an immediate consequence of this theorem and Proposition 3 we have:

Corollary 6. Let f ∈ S2κ−n(01;O) be a Hecke eigenform, where O is the ring of in-
tegers of a field that can be embedded in C. Then In( f ) has Fourier coefficients in O.

We will also make use of the following result.

Proposition 7 [Katsurada 2011, Proposition 4.6]. Let f ∈ S2κ−n(01) be a normal-
ized eigenform with Ikeda lift In( f ). Let O be the ring of integers of a field that can
be embedded in C and let l be a prime in O. If there is a fundamental discriminant D
such that the D-th Fourier coefficient of θ alg

κ,n( f ) is not divisible by l, then there is a
Fourier coefficient of In( f ) that is not divisible by l. In particular, if O is the ring
of integers of some K ⊂Q` with prime l, then In( f ) has a Fourier coefficient that
is a unit modulo l.

Proof. The only thing to prove is the last statement, but this follows immediately
from our normalization of θ alg

κ,n . �

Let f1, . . . , fr be an orthogonal basis of S2κ−n(01) consisting of normalized
eigenforms. We denote the span of In( f1), . . . , In( fr ) in Sκ(0n) by SIk

κ (0n). We
denote the orthogonal complement of SIk

κ (0n) in Sκ(0n)with respect to the Petersson
product by SN-Ik

κ (0n).

4. A conjecture of Katsurada and the Ikeda ideal

In this section we present a conjecture of Katsurada on the congruence primes
of Ikeda lifts. We then introduce the Ikeda ideal and show how one can use the
Ikeda ideal to study all the congruences between In( f ) and forms in SN-Ik

κ (0n) at
once. This allows us to prove a stronger congruence result under roughly the same
conditions as given in [Katsurada 2011].

We fix some notation used throughout this section. Let K denote a number field,
OK the ring of integers of K , and l a prime of OK of residue characteristic `. We
let O be the completion of OK at l and let λ denote a uniformizer of l in O.

4.1. A conjecture of Katsurada.

Definition 8. Let F ∈ Sκ(0n;O) be an eigenform. We say l is a congruence prime
of F with respect to V ⊂ (CF)⊥ if there exists an eigenform G ∈ V such that
F ≡ev G (mod l). (Note that in order for this congruence to make sense we may
need to extend K so that G ∈ Sκ(0n;O) as well.)
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One should note this definition can be extended to levels other than 0n , but we
will have no need of such a definition in this paper.

Let f ∈ S2κ−n(01) be a normalized eigenform. Katsurada’s conjecture states that
all of the primes dividing certain special values of L-functions of f are congruence
primes for the Ikeda lift In( f ) with respect to the space SIk

κ (0n)
⊥.

Conjecture 9 [Katsurada 2011, Conjecture A]. Let κ > n be integers and let
f = f1, f2, . . . , fr ∈ S2κ−n(01;O) be a basis of normalized eigenforms. Assume
` - (2κ − 1)!. Then l is a congruence prime of In( f ) with respect to SIk

κ (0n)
⊥ if

l
∣∣ Lalg(κ, f )

n
2−1∏
i=1

Lalg(2i + 1, ad0 f ).

As evidence for this conjecture, Katsurada proves the following theorem.

Theorem 10 [ibid., Theorem 4.7]. Let O, f , and l be as in the conjecture with
κ > 2n+ 4. Then l is a congruence prime for In( f ) with respect to SIk

κ (0n)
⊥ if the

following are satisfied:

(1) l
∣∣ Lalg(κ, f )

n
2−1∏
i=1

Lalg(2i + 1, ad0 f ).

(2) For some integer m satisfying n
2 < m < κ

2 −
n
2 and some fundamental discrimi-

nant D satisfying (−1)
n
2 D > 0,

l 6
∣∣ D(m− 1)!ζalg(2m)Lalg

(
κ −

n
2
, χD

) n∏
i=1

Lalg(2m+ κ − i, f ),

where ζalg(2m)= ζ(2m)/π2m .

(3) For a constant Cκ,n :=
∏

j≤(2κ−n)/12(1+ j+· · ·+ jn−1) if n > 2 and Cκ,2 = 1,

l 6
∣∣∣ Cκ,n〈 f, f 〉

�+f �
−

f
.

As noted by Katsurada, the second condition allows freedom to choose m, so it is
reasonable to expect that one can find an m with l - ζalg(2m)

∏n
i=1 Lalg(2m+κ−i, f )

in many cases.

4.2. The Ikeda ideal: definition and bounds. The conjecture in the previous sub-
section gives conditions when one will have a congruence between an Ikeda lift
In( f ) and a form in SN-Ik

κ (0n). In this section we will introduce the Ikeda ideal
associated to In( f ) that will capture this information as well. In fact, the ideal
captures more information as it measures all congruences between In( f ) and forms
in SN-Ik

κ (0n).
Let f be a normalized eigenform in S2κ−n(01;O) and In( f ) the Ikeda lift of f .

Recall that the Hecke algebra over O acting on Sκ(0n) is denoted by H(n)
O .
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Let X ⊆ SIk
κ (0n) be a Hecke-stable subspace and let Y be the orthogonal com-

plement in Sκ(0n) to X under the Petersson product. In particular, the examples we
will be interested in are when X = CIn( f ) or X = SIk

κ (0n). Let H(n),Y
O denote the

image of H(n)
O in EndC(Y ) and let φ :H(n)

O →H(n),Y
O denote the natural surjection.

We let Ann(In( f )) denote the annihilator of In( f ) in H(n)
O . We have that In( f )

induces an O-algebra homomorphism H(n)
O →O by sending a Hecke operator to its

eigenvalue. Since this is an O-algebra homomorphism it is surjective and it clearly
has kernel Ann(In( f )). Thus, there is an isomorphism

H(n)
O /Ann(In( f ))∼=O.

Using that φ is surjective we have that φ(Ann(In( f ))) is an ideal in H(n),Y
O . We

refer to this ideal as the Ikeda ideal associated to In( f ) with respect to Y and denote
it by IY

n ( f ). We will be interested in the index of this ideal. In particular, one has
that there exists an integer m such that

H(n),Y
O /IY

n ( f )∼=O/lmO.

We give here two elementary propositions to relate this index to Katsurada’s
conjecture.

Proposition 11. With the notation as above, if there exists G ∈ Y , not necessarily
an eigenform, such that

In( f )≡ G (mod lb),

then m ≥ b.

Proof. Assume that b > m, and consider the diagram

H(n)
O

φ
//

��

H(n),Y
O

��

H(n)
O /Ann(In( f ))

φ
//

'

��

H(n),Y
O /IY

n ( f )

'

��
O // O/lmO

Each map here is an O-algebra surjection. Let t ∈ φ−1(λm) ⊂ H(n)
O . Then by

definition we have tG = λmG. Moreover, by the commutativity of the diagram we
see that t ∈ Ann(In( f )), so the assumed congruence gives

λmG ≡ 0 (mod lb),
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i.e.,
G ≡ 0 (mod lb−m).

However, since we are assuming b > m, this gives

In( f )≡ G ≡ 0 (mod l).

This contradicts Proposition 7, and so it must be that b ≤ m. �

Proposition 12. With the notation as above, suppose m ≥ 1. Then there exists an
eigenform G ∈ Y such that

In( f )≡ev G (mod l).

Proof. Extend K if necessary so that In( f ) ∈ Sκ(0n;O) and we have an orthog-
onal basis F1, . . . , Fr of Y with each Fi ∈ Sκ(0n;O). Suppose that there are no
eigenforms G ∈ Y eigenvalue-congruent to In( f ).

Let S denote the C-vector space spanned by In( f ), F1, . . . , Fr . Let H(n),S
O denote

the image of the Hecke algebra H(n)
O in EndC(S). For each eigenform F ∈ S with

eigenvalues in O we obtain a maximal ideal mF of H(n),S
O given as the kernel of

the map H(n),S
O → O/lO : t 7→ λF (t) (mod l). We have that eigenforms F and G

are eigenvalue-congruent modulo l if and only if mF =mG .
We now use the fact that In( f ) is not congruent to any of F1, . . . , Fr to conclude

that
H(n),S

O =H(n),S
mIn ( f )
×

∏
m

H(n),S
m ,

where the product is over the maximal ideals corresponding to F1, . . . , Fr . However,
this gives that IY

n ( f )=
∏

m H(n),S
m , and this is exactly H(n),Y

O . This contradicts the
assumption that m ≥ 1. Thus, it must be that there is a congruence as desired. �

To match the previous results with Katsurada’s, simply take X = SIk
κ (0n) and

Y = SN-Ik
κ (0n). In fact, one has that the index of the Ikeda ideal measures all

congruences between forms in Y and In( f ). This follows from Proposition 13. One
should note that we use the fact that the space of Ikeda lifts satisfies multiplicity
one [Ikeda 2013, Theorem 7.1] in order to apply this result.

Proposition 13 [Berger et al. ≥ 2015, Proposition 4.3]. Let X and Y be as above
and let F1, . . . , Fr be a basis of Y . For each 1≤ i ≤ r , let mi be the largest integer
so that

In( f )≡ev Fi (mod lmi ).

Then one has
1
e

r∑
i=1

mi ≥ valλ
(
#H(n),Y

O /IY
n ( f )

)
,

where e is the ramification index of O over Z`.
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Thus, one can view results giving a lower bound on the Ikeda ideal as a strength-
ening of the results of [Katsurada 2011], where one is only concerned with a
congruence modulo l to a single eigenform.

5. Main results

We now state the main result of this paper. The proof will be given in Section 7.
After stating the theorem, we discuss the main hypotheses.

Theorem 14. Let κ and n be positive even integers with κ > n + 1 and let ` be
a prime so that ` > 2κ − n. Assume ` -

∏
p≤(2κ−n)/12(1+ p + · · · + pn−1). Let

f ∈ S2κ−n(01) be a newform and let O be a suitably large finite extension of Z` that
contains all the eigenvalues of f . Let l denote the prime of O. Furthermore, assume
that ρ f,` is irreducible and vall(〈 f, f 〉/(�+f �

−

f ))= 0. We make these assumptions:

(1) There exists an integer N > 1 prime to ` and a Dirichlet character χ of
conductor N with χ(−1)= (−1)κ such that

vall

(
L N (n− κ + 1, χ)

n∏
j=1

L N
alg(n+ 1− j, f, χ)

)
= 0.

(2) There exists a fundamental discriminant D prime to ` such that (−1)n/2 D > 0,
χD(−1)=−1, and

vall
(

Lalg

(
κ −

n
2
, f, χD

))
= 0.

(3) We have

vall

(
Lalg(κ, f )

n
2−1∏
j=1

Lalg(2 j + 1, ad0 f )
)
= b > 0.

Then we have
vall

(
#H(n),Y

O /IY
n ( f )

)
≥ b,

where Y is the orthogonal complement of X = CIn( f ) in Sκ(0n).

Corollary 15. With the same setup and assumptions as in Theorem 14, if F1, . . . , Fr

is a basis of eigenforms of SN-Ik
κ (0n;O) (where we enlarge O if necessary) and if

we let mi be the largest integer so that

In( f )≡ev Fi (mod lmi ),

then we have
1
e

r∑
i=1

mi ≥ b,

where e is the ramification index of O over Z`.
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Proof. Let F1, . . . , Fr be a basis of eigenforms of SN-Ik
κ (0n;O) and Fr+1, . . . , Fs ,

In( f ) a basis of SIk
κ (0n). For i = 1, . . . , s let mi be the largest integer so that

In( f )≡ev Fi (mod lmi ).

Theorem 14 and Proposition 13 give

1
e

s∑
i=1

mi ≥ b.

However, we have mr+1=· · ·=ms=0 as the assumption vall(〈 f, f 〉/(�+f �
−

f ))=0
guarantees that there are no eigenvalue congruences between In( f ) and other Ikeda
lifts by the proof of [Katsurada 2011, Theorem 4.7]. Thus, we obtain the result. �

We first discuss the hypotheses that vall(〈 f, f 〉/(�+f �
−

f )) = 0. This condi-
tion is equivalent to assuming that there are no other normalized eigenforms
g ∈ S2κ−n(01;O) that are eigenvalue-equivalent to f modulo l. One can see
[Hida 1981; Ribet 1983] for further discussion. For a particular f this condition
can be easily checked [Bosma et al. 1997; Stein et al. 2013].

The two hypotheses we focus on are the ones concerning the l-indivisibility of
L-values. We begin with the assumption that vall

(
Lalg

(
κ− n

2 , f, χD
))
= 0. Note this

is a central critical value since the weight of f is 2κ − n. There have been several
results on the l-divisibility of this particular special value due to its relation with the
Fourier coefficients of the half-integral weight modular form θ

alg
κ,n( f ). For example,

Corollary 3 of [Bruinier and Ono 2003] shows that for nonexceptional primes `
there is a period � of f with the property that for infinitely many fundamental
discriminants D prime to ` with (−1)n/2 D > 0 one has

ordl

(
Dκ− n

2−
1
2 Lalg

(
κ − n

2 , f, χD
)

�

)
= 0.

Since we assume ρ f,` is irreducible, ` is automatically a nonexceptional prime
for f [Swinnerton-Dyer 1973, Corollary 2]. However, we are unable to apply this
result in our situation as the period � used is not the canonical period �+f that we
are using to normalize the L-value. We are unaware of any period relation between
� and �+f . However, this does reduce the consideration to another period ratio; and
since we have already assumed that l does not divide a period ratio, this assumption
is a reasonable one as well.

We next consider L(n− κ + 1, χ). Let p be a prime with p 6= `, m ≥ 1 and ϕ
be a Dirichlet character. In this setting Washington [1978] proves that for all but
finitely many Dirichlet characters ψ of p-power conductor with ϕψ(−1)= (−1)m ,

vall(L(1−m, ϕψ)/2)= 0.
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In our setup we can take m = κ − n, χ = ϕψ , and observe that χ(−1)= (−1)κ =
(−1)κ−n to see there are infinitely many χ so that

vall(L(n− κ + 1, χ))= 0.

If this were the only L-value controlled by χ we would be able to remove the
hypothesis regarding this L-value. However, we also require that

vall

( n∏
j=1

L N
alg(n+ 1− j, f, χ)

)
= 0.

This means that we must choose a χ so that all of these L-values are simultaneously
l-adic units. This is a much more delicate issue. We note here that we have a great
deal of freedom in choosing such a χ , namely, the only restrictions concern the
parity of χ and that its conductor be prime to `. Thus, we have infinitely many
characters to choose from so it is reasonable to expect that one can often find such
a χ . In the case n = 2, i.e., when one considers Saito–Kurokawa lifts, one can
find computational evidence supporting the existence of such a χ in [Agarwal and
Brown 2013]. One can use the same methods to produce computational evidence
for n > 2.

6. Siegel Eisenstein series

In this section we recall the definition of a Siegel Eisenstein series associated to
a character. Following Shimura we then make a suitable choice of a section so
that the Fourier coefficients of the Eisenstein series can be computed. Finally, we
consider the pullback of our Siegel Eisenstein series and recall an inner product
formula of Shimura. Throughout this section we assume that κ and n are even
integers with κ > n+ 1.

6.1. Siegel Eisenstein series — general setup. Let Pn be the Siegel parabolic sub-
group of Gn given by Pn = {g ∈ Gn : cg = 0}. We have that Pn factors as
Pn = NPn MPn , where NPn is the unipotent radical

NPn =

{
n(x)=

(
1n x
0n 1n

)
:

tx = x, x ∈Matn

}
and MPn is the Levi subgroup

MPn =

{(
A 0n

0n α(tA)−1

)
: A ∈ GLn, α ∈ GL1

}
.

Let A denote the rational adeles. Fix an idele class character χ and consider the
induced representation

I (χ)= IndGn(A)
Pn(A)

(χ)=
⊗
υ

Iυ(χυ)
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consisting of smooth functions f on Gn(A) that satisfy

f(pg)= χ(det(Ap))f(g) for p =
(

Ap Bp

0 Dp

)
∈ Pn(A), g ∈ Gn(A).

For s ∈ C and f ∈ I (χ) define

f(pg, s)= χ(det(Ap))|det(Ap D−1
p )|sf(g).

For υ a place of Q we define Iυ(χυ) and fυ(pg, s) analogously. We associate to
such a section the Siegel Eisenstein series

(3) EA(g, s; f)=
∑

γ∈Pn(Q)\Gn(Q)

f(γ g, s).

Observe that EA(g, s; f) converges absolutely and uniformly for (g, s) on compact
subsets of Gn(A)× {s ∈ C : Re(s) > (n + 1)/2}. One can see [Shimura 1997,
Appendix A.3] for this fact. Moreover, (3) defines an automorphic form on Gn(A)

and a holomorphic function on {s ∈ C : Re(s) > 0} with meromorphic continuation
to C with at most finitely many poles. Furthermore, Langlands [1976] gives a
functional equation for EA(g, s; f) relating the value at (n+1)/2−s to the value at s.

6.2. A choice of section. For our applications we need to restrict the possible χ
and pick a particular section f. Let N > 1 be an integer.

Let χ =
⊗

υ χυ be an idele class character of Q that satisfies

χ∞(x)=
(

x
|x |

)κ
,

χp(x)= 1 if p -∞, x ∈ Z×p , and x ≡ 1 (mod N ).

For each finite prime p, we set

K (n)
0,p(N )= {g ∈ Gn(Qp) : ag, bg, dg ∈Matn(Zp), cg ∈Matn(NZp)}.

From this definition it is immediate that if p - N we have

K (n)
0,p(N )= Gn(Qp)∩Mat2n(Zp).

At the infinite place we put

K (n)
∞
= {g ∈ Sp2n(R) : g(in)= in}.

Set
K (n)

0 (N )=
∏

p

K (n)
0,p(N ).

We choose our section f=
⊗

υ fυ as follows.
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(1) We set f∞ to be the unique vector in I∞(χ∞, s) so that

f∞(k, κ)= j (k, i)−κ

for all k ∈ K (n)
∞ .

(2) If p - N we set fp to be the unique K (n)
0,p(N )-fixed vector so that

fp(1)= 1.

(3) If p | N we set fp to be the vector given by

fp(k)= χp(det(ak)) for all k ∈ K (n)
0,p(N ), k =

(
ak bk

ck dk

)
and

fp(g)= 0 for all g /∈ Pn(Qp)K
(n)
0,p(N ).

The Eisenstein series EA is the same as in [Shimura 1995; 1997].
Define

3N
n (s, χ)= L N (2s, χ)

[
n
2 ]∏

i=1

L N (4s− 2i, χ2)

and normalize EA by setting

EA(g, s; f)= π−n(n+2)/43N
n (s, χ)EA(g J−1

n , s; f).

Set

(4) Gn
κ(z; f)= EA

((
y1/2 xy−1/2

0 y−1/2

)
,

n+1
2
−
κ

2
; f

)
.

We have that Gn
κ(z; f) is a Siegel modular form of weight κ and level 0(n)0 (N )

[Shimura 1983], where

0
(n)
0 (N )=

{(
A B
C D

)
∈ 0n : C ≡ 0 (mod N )

}
.

Write
Gn
κ(z; f)=

∑
T∈3n

a(T ; f)e(Tr(T z)).

The Fourier coefficients a(T ; f) are well known for this particular choice of section
and normalization [Shimura 1997, Chapters 18 and 19]. In particular:

Theorem 16 [Brown 2007, Theorem 4.4]. Let `≥ n+1 be an odd prime with ` - N.
Then

Gn
κ(z; f) ∈ Mκ

(
0
(n)
0 (N );Z`

[
χ,
√
−1

nκ])
.
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6.3. Pullbacks of Siegel Eisenstein series. Let N > 1 be an integer and ` > n+ 1
a prime with ` - N .

Consider the diagonal embedding of hn
× hn into h2n via the map

(z, w) 7→ diag[z, w] =
(

z 0
0 w

)
.

We also have an embedding of 0n ×0n into 02n given by

((
A1 B1

C1 D1

)
,

(
A2 B2

C2 D2

))
7→


A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

 .
This allows us to view the natural action of 0n ×0n on hn

× hn as a restriction of
the action of 02n on h2n .

We will be interested in the restriction of the Eisenstein series G2n
κ (Z; f) to

hn
× hn . We refer to such a restriction as a pullback. These pullbacks have been

considered in [Garrett 1984; Böcherer 1985; Garrett 1992; Shimura 1995; 1997].
In general, if F is a modular form of degree 2n, level 0(2n)

0 (N ), and weight κ , then
the restriction of F to hn

× hn is a modular form of degree n, level 0(n)0 (N ), and
weight κ when considered as a function of z or w.

Shimura calculates the following set of representatives for P2n\G2n/(Gn ×Gn).

Lemma 17 [Shimura 1995, Lemma 4.2]. For 0≤ r ≤ n let τr denote the element
of G2n given by

τr =

(
12n 0
ρr 12n

)
, ρr =

(
0n er
ter 0n

)
, er =

(
1r 0
0 0

)
.

Then the τr form a complete set of representatives for P2n\G2n/(Gn ×Gn).

We will make use of τn . Let F ∈ Sκ(0n) be an eigenform. We can specialize
[ibid., Equation (6.17)] to obtain

(5) 〈(G2n
κ | τn)(diag[z, w]; f), Fc(w)〉

=Aκ,n,Nπ−n(n+1)/2L(n+ 1− κ, F, χ; st)F(z),

where we have used F | Jn = F since F has level 0n , and

Aκ,n,N =
2n(2κ−3n+2)/2

[0n : 0
(n)
0 (N )]

n−1∏
j=0

0((n− j)/2)
0((2n+ 1− j)/2)

.

Since it will be important in the next section, we note that since G2n
κ (z; f) ∈

Mκ(0
(2n)
0 (N );Z`[χ ]), we have (G2n

κ | τn)(z; f) ∈ Mκ(τ
−1
n 0

(2n)
0 (N )τn;Z`[χ ]) by
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the q-expansion principle for Siegel modular forms [Chai and Faltings 1990, Propo-
sition 1.5]. The Fourier expansion of (G2n

κ | τn)(diag[z, w]; f) can be written as

(G2n
κ | τn)(diag[z, w]; f)

=

∑
T1,T2∈3n

( ∑
T∈32n(T1,T2)

a(T ;G2n
κ | τn)

)
e(Tr(T1z))e(Tr(T2w)),

where a(T ;G2n
κ | τn) is the T-th Fourier coefficient of G2n

κ | τn , and for T1, T2 ∈3n

we define

32n(T1, T2)=

{
T ∈32n : T =

(
T1 b
b T2

)}
.

This immediately gives that the Fourier coefficients of (G2n
κ | τn)(diag[z, w]; f) lie

in Z`[χ ] as well.

7. Constructing a congruence

In this section we prove Theorem 14. We work under the hypotheses listed after
the theorem. We again let O be a suitably large finite extension of Z` with prime l

and uniformizer λ.
Our first step in constructing the congruence is to replace the Eisenstein series

(G2n
κ | τn)(diag[z, w]; f) with a form of level 0n×0n . To do this, we take the trace

G̃2n
κ (diag[z, w]; f)=

∑
γ1,γ2

(G2n
κ | τn)(diag[z, w]; f) | (γ1× γ2)

where the sum is over (0n ×0n)/(τ
−1
n 0

(n)
0 (N )τn × τ

−1
n 0

(n)
0 (N )τn). We note again

that this has Fourier coefficients in Z`[χ ] by the q-expansion principle. Moreover,
we know that G̃2n

κ is a cusp form in each variable via [Brown 2011, Section 3.2].
Let F0 = In( f ), F1, . . . , Fr be an orthogonal basis of eigenforms for Sκ(0n).

Note that Fc
0 , . . . , Fc

r is also an orthogonal basis of eigenforms for Sκ(0n). Applying
[Shimura 1995, Equation (7.7)] we may write

G̃2n
κ (diag[z, w]; f)=

∑
0≤i≤r
0≤ j≤r

ci, j Fi (z)Fc
j (w)

for some ci, j ∈ C. Furthermore, from [Brown 2011, Lemma 5.1] we can rewrite

(6) G̃2n
κ (diag[z, w]; f)= c0 In( f )(z)In( f )(w)+

∑
0< j≤r

c j F j (z)Fc
j (w),

where we write c j = c j, j and we have used that since f c
= f , Corollary 6 gives

In( f )c = In( f ).
We now turn our attention to the constant c0. Our goal is to show that we can

write c0 as a product of an element of O× and λ−m for some m > 0.
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Consider the inner product 〈G̃2n
κ (diag[z, w]; f), In( f )(w)〉. Note that

〈G̃2n
κ (diag[z, w]; f), In( f )(w)〉 = 〈(G2n

κ | τn)(diag[z, w]; f), In( f )(w)〉,

where we view the forms on the left-hand side as being level 0n and on the right-
hand side as being level τ−1

n 0
(n)
0 (N )τn . Taking the inner product of both sides of (6)

with In( f )(w), applying (5), and solving for c0 we obtain

c0 =
Ak,n,N L N (n− κ + 1, In( f ), χ; st)

πn(n+1)/2〈In( f ), In( f )〉
.

Ikeda [2006] made a conjecture relating 〈In( f ), In( f )〉 to 〈 f, f 〉. We have
the following theorem, which proves Ikeda’s conjecture assuming n is even. We
rephrase their result to suit our purposes.

Theorem 18 [Katsurada and Kawamura 2013, Theorem 2.3]. Let κ be a positive
even integer and let ` > n + 1 be a prime. Let f ∈ S2κ−n(01;O) be a newform
with O a suitably large finite extension of Z`. Assume vall(〈 f, f 〉/(�+f �

−

f )) = 0.
Let D be a fundamental discriminant such that (−1)n/2 D > 0, χD(−1)=−1, and
assume ` - D. Then if In( f ) is the Ikeda lift of f as given above, we have

〈In( f ), In( f )〉
〈 f, f 〉n/2

= u1 ·
0(κ)

∏ n
2−1
j=1 0(2 j + 2κ − n)|c(|D|)|2

∏ n
2
j=1 ζalg(2 j)

0
(
κ − n

2

)
×

Lalg(κ, f )
∏ n

2−1
j=1 Lalg(2 j + 1, ad0 f )

Lalg
(
κ − n

2 , f, χD
) ,

where vall(u1)= 0, c(|D|) is the |D|-th Fourier coefficient of θ alg
κ,n( f ) from above

and we have used the assumption on 〈 f, f 〉/(�+f �
−

f ) to normalize the adjoint
L-function to our conventions.

We now apply this result to remove the period 〈In( f ), In( f )〉 in our expression
for c0 to obtain

c0 =
Bκ,n
|c(|D|)|2

·
L N (n− κ + 1, In( f ), χ; st)Lalg

(
κ − n

2 , f, χD
)

π
n(n+1)

2 〈 f, f 〉
n
2 ζalg(n)

∏ n
2−1
i=1 ζalg(2i)Lalg(2i + 1, ad0 f )Lalg(κ, f )

,

where

Bκ,n = u2 ·
0
(
κ − n

2

)∏n−1
j=1 0

( n− j
2

)
[0n : 0

(n)
0 (N )]0(k)

∏n−1
j=1 0

( 2n+1− j
2

)∏ n
2−1
j=1 0(2i + 2k− n)

,

where u2 satisfies vall(u2)= 0.
The following factorization is a direct consequence of Theorem 4:

(7) L N (n− k+ 1, In( f ), χ; st)= L N (n− k+ 1, χ)
n∏

i=1

L N (n+ 1− i, f, χ).



48 JIM BROWN AND RODNEY KEATON

Applying the assumption that vall(〈 f, f 〉/(�+f �
−

f ))= 0, we can replace 〈 f, f 〉n/2

by u3(�
+

f �
−

f )
n/2 for u3 an l-adic unit. Furthermore, note that if �±f is the period

associated to L(n+ 1− i, f, χ) as in Theorem 1, then �∓f is the period associated
to L(n+ 1− (i + 1), f, χ). Using this, we can rewrite our expression for c0 as

c0 = u4 ·Bκ,n · CD,n,χ ·L f,χ,D,

where u4 is a l-adic unit, Bκ,n is defined as above,

CD,n,χ =
1

|ch(|D|)|2
∏ n

2
i=1 ζalg(2i)

,

and

L f,χ,χD =
L N (n− κ + 1, χ)Lalg

(
κ − n

2 , f, χD
)∏n

j=1 L N
alg(n+ 1− j, f, χ)

Lalg(κ, f )
∏ n

2−1
j=1 Lalg(2 j + 2, ad0 f )

.

Note that it is shown in [Brown 2007, Section 4.2] that L N (n−k+1, χ)∈Z`[χ ].
As Bκ,n , CD,n,χ , and L f,χ,D are algebraic, we may consider the l-divisibility of c0.
First, using that n is even and ` > n+ 1 we have vall(Bk,n)≤ 0.

Next we turn our attention to CD,n,χ . Our choice of θ alg
κ,n( f ) given in Section 3

gives that |c(|D|)| ∈ O, and so vall(|c(|D|)|2) ≥ 0. Consider ζalg(2 j) for some
1 ≤ j ≤ n

2 . It is an immediate consequence of the Von Staudt–Clausen Theorem
(see for example [Ireland and Rosen 1990, p. 233]) that ζalg(2 j) is in O, and hence
vall(ζalg(2 j))≥ 0. Thus, we have vall(CD,n,χ )≤ 0.

By assumption we have vall(L f,χ,χD ) < 0, so under our assumptions we have
vall(c0)< 0. We now show how this gives the desired congruence. Write c0=αλ

−b′

for some b′ > 0 and α an l-adic unit. Using this, we may rewrite (6) as

(8) G̃2n
κ (diag[z, w]; f)= αλ−b′ In( f )(z)In( f )(w)+

∑
0< j≤r

c j F j (z)Fc
j (w).

Note that by Proposition 7 there is a T0 so that vall(aIn( f )(T0))= 0. We expand (8)
in terms of z and equate the T0-th Fourier coefficients to obtain∑
T2∈3n

( ∑
T∈32n(T0,T2)

a(T,G2n
κ | τn)

)
e(Tr(T2w))

= αλ−b′aIn( f )(T0)In( f )(w)+
∑

0< j≤r

c j aF j (T0)Fc
j (w).

Multiply the equation by λb′ and recall that a(T,G2n
κ |τn) ∈O for all T to see that

In( f )(w)≡−
λb′

αaIn( f )(T0)

∑
0< j≤r

c j aF j (T0)Fc
j (w) (mod lb

′

).

Note that since aIn( f )(T0) is a l-adic unit, the form on the right-hand side of
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the congruence cannot be zero modulo lb
′

, i.e., we have constructed a nontrivial
congruence. Set

G(w)=−
λb′

αaIn( f )(T0)

∑
0< j≤r

c j aIn( f )(T0)F j (w).

We now return to the setting of Ikeda ideals. Let X =CIn( f ) and Y = (CIn( f ))⊥,
where the notation follows that given in Section 4.2. We have constructed a congru-
ence

In( f )≡ G (mod lb
′

)

for some b′ ≥ 1 and G ∈ Y . Note that it is clear from above that

b′ ≥ vall

(
Lalg(κ, f )

n
2−1∏
j=1

Lalg(2 j + 1, ad0 f )
)
,

which is what we labeled b in the statement of Theorem 14. Thus, applying
Proposition 11 concludes the proof of Theorem 14.

One thing to note here is that we do not obtain a lower bound of b′ for the index in
the Hecke algebra of the Ikeda ideal with respect to X = SIk

κ (0n) and Y = SN-Ik
κ (0n).

The reason for this is that while we know In( f ) cannot be eigenvalue-congruent to
any other Ikeda lifts, that does not imply that G ∈ SN-Ik

κ (0n). One can use the fact
that In( f ) is not congruent to any other Ikeda lifts along with (1) to conclude there
is an idempotent t in the Hecke algebra H(n)

O that satisfies

t F =
{

0 if F 6≡ev In( f ) (mod l),

F if F ≡ev In( f ) (mod l).

If one acts on G by this Hecke operator one obtains a form tG in SN-Ik
κ (0n) with

tG ≡ev In( f ) (mod l). Thus, one only obtains a lower bound of 1 for the Ikeda
ideal with respect to X = SIk

κ (0n) and Y = SN-Ik
κ (0n). While one would like to have

a stronger bound for this Ikeda ideal, Corollary 15 shows that it is not necessary for
our results.
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CONSTANT MEAN CURVATURE, FLUX CONSERVATION,
AND SYMMETRY

NICK EDELEN AND BRUCE SOLOMON

As first noted by Korevaar, Kusner, and Solomon, constant mean curvature
implies a homological conservation law for hypersurfaces in ambient spaces
with Killing fields. We generalize that law by relaxing the topological re-
strictions assumed by Korevaar et al., and by allowing a weighted mean
curvature functional. We also prove a partial converse, which roughly says
that when flux is conserved along a Killing field, a hypersurface splits into
two regions: one with constant (weighted) mean curvature, and one pre-
served by the Killing field. We demonstrate our theory by using it to derive
a first integral for helicoidal surfaces of constant mean curvature in R3, i.e.,
“twizzlers”.

1. Introduction

Constant mean curvature (“CMC”) imposes a homological flux conservation law
on hypersurfaces in ambient spaces with nontrivial Killing fields. This was first
observed and exploited by Korevaar, Kusner, and Solomon [1989] in their paper on
the structure of embedded CMC surfaces in R3 (see [Kusner 1991] for an alternative
exposition). In Theorem 3.5, we generalize that law by relaxing the topological
restrictions assumed by Korevaar et al. [1989], and by allowing a weighted version
of the mean curvature functional. We further extend the theory via Theorem 4.1,
which gives a partial converse to the conservation law. Roughly, it states that when
the appropriate flux is conserved along Killing fields, the hypersurface splits into
two regions (though either may be empty): a region with constant (weighted) mean
curvature, and a region preserved by the Killing fields.

We apply our results in Case study 4.5 by using them to quickly derive the
seemingly ad hoc first integral that Perdomo [2012], do Carmo and Dajczer [1982],
and others have used to analyze the moduli space of CMC surfaces with helicoidal
symmetry, also known as twizzlers1. In general, constancy of weighted mean

MSC2010: 53A10.
Keywords: constant mean curvature, conservation law.

1Twizzlers have also been studied by Wunderlich [1952] and, more recently, Halldorsson [2013].
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curvature is characterized by a nonlinear second-order PDE, and its Noetherian
reduction to a first-order condition makes it easier to analyze.

When a CMC hypersurface 6 in a manifold N is preserved by the action of a
continuous isometry group G, one can project it into the orbit space N/G. The
projected hypersurface 6/G will then be stationary for the weighted functional
introduced in Section 3.2. We analyze the weighted functional and the resulting
weighted mean-curvature invariant with an eye toward this fact. We suspect that
virtually all we do here could be developed in a more general, stratified context
encompassing both Riemannian manifolds and their quotients under smooth group
actions.

We stick with smooth ambient manifolds here, but the orbit space viewpoint can
be helpful, and Case study 4.5 could easily have been carried out in that setting.
The approach we demonstrate there can also be adapted to spherical and hyperbolic
space forms. The first author’s report [Edelen 2011] sketches out one way to
do that, but we describe the orbit-space approach to those examples in our final
Remark 4.6.2.

2. Preliminaries

Let N denote an n-dimensional oriented Riemannian manifold, and consider a
smooth, connected, oriented, properly immersed hypersurface f :6n−1

→ N . We
will feel free to write 6 when we mean f (6) or even f :6→ N , leaving context
to clarify our intentions.

Let ν denote the unit normal that completes the orientation of 6 to that of N .
The mean curvature function h : 6 → R is the trace of the shape operator ∇ν.
Notationally,

(2-1) h = div6(ν).

Here div6(Y ) denotes the intrinsic divergence of a vector field Y along 6, that is,
the trace of the endomorphism T6→ T6 gotten at each p ∈6 by projecting the
ambient covariant derivative ∇Y onto Tp6. One may compute div6 locally using
any orthonormal basis {ei } for Tp6 via

div6(Y) :=
n−1∑
i=1

∇ei Y · ei .

2.1. Chains and k-area. The homology of the sequence

N → (N , 6)→6

will play a role below in a way that makes it problematic to work solely with smooth
submanifolds. We therefore work with a class of piecewise smooth objects:
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Definition 2.1.1. A smooth r-chain (or simply chain) in a smooth manifold M is a
finite union of smoothly immersed oriented r -dimensional simplices. We regard a
chain X as a formal homological sum

(2-2) X =
m∑

i=1

mi fi .

Here each fi :1→ M immerses the standard closed oriented r -simplex 1 (along
with its boundary) smoothly into M . The mi are (for us) always integers.

We denote the support of a chain X by ‖X‖.
We write Sr (M) for the group of smooth r-chains in M , and ∂X for the ho-

mological boundary of a chain X , while Zi (M) and Bi (M) denote the spaces of
i-dimensional cycles and boundaries (kernel and image of ∂) in M , respectively.
Likewise, Zi (M, A) and Bi (M, A) indicate spaces of cycles and boundaries modulo
a subset A ⊂ M .

Integration of an r -form φ on M over such a chain is trivial:∫
X
φ :=

m∑
i=1

mi

∫
1

f ∗i φ,

where f ∗i denotes the usual pullback.
Given a Riemannian metric on M , one can also integrate functions over chains,

and most importantly for our purposes, compute weighted volumes.

Definition 2.1.2. Letµ :M→R be any continuous function. Define theµ-weighted
r-volume |X |µ of the r -chain X in (2-2) as

|X |µ := sup
{∫

X
eµφ : φ is an r -form on M with ‖φ‖∞ ≤ 1

}
.

For a single immersed simplex, the usual Riemannian volume integral gives a
simpler definition. To allow coincident, oppositely oriented simplices to cancel,
however, we need the definition above.2

Finally, note that because Stokes’ Theorem holds for immersed r-simplices, it
holds for r -chains as well.

2.2. Symmetry. Our work here is vacuous unless the ambient space N has nontriv-
ial Killing fields.

Write I and L(I) respectively for the isometry group of N and its Lie algebra.
Identify L(I) with the linear space of Killing fields on N in the usual way, associ-
ating each Y ∈ L(I) with the Killing field (also called Y ) we get by differentiating

2Definition 2.1.2 amounts to a weighted version of the mass of X as a current, in the sense of
geometric measure theory [Federer 1969, p. 358].
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the flow that sends p ∈ N along the path t 7→ exp(tY )p. We write Yp for the value
of Y at p.

One often studies CMC hypersurfaces (like surfaces of revolution and twizzlers
in R3) in relation to the action of a closed, connected subgroup L⊂ I. Though it
complicates our exposition to some extent, the presence of such a subgroup L —
like the density function eµ — lets us broaden our theory. Even when µ≡ 0 and L

is the full isometry group of N , however, our results go beyond those of [Korevaar
et al. 1989].

In Theorem 4.1 (a converse to our conservation law) we must consider the
possibility that all Killing fields associated with L lie tangent to an open subset S
of our hypersurface 6 ⊂ N . The following lemma (and its corollary) then lets us
deduce L-invariance of S.

Lemma 2.3. Suppose S ⊂ N is a hypersurface, and that for some Y ∈ L(L), we
have Yp ∈ Tp S for every p ∈ S. Then for each p ∈ S, there exist a compact
neighborhood Op ⊂ S and an ε > 0 such that etY q ∈ S whenever |t |< ε and q ∈ Op.

Proof. Since S is a submanifold, some open set W ⊂ N contains S, but no point
of S \ S (S = closure of S). Let 2 : S × R→ N denote the flow of Y , so that
2(q, t) := exp(tY )q . Then 2−1(W ) is an open neighborhood of S×{0}.

Now 2(q, t) parametrizes the integral curve of Y with initial velocity Yq . But
Yp ∈ Tp S for all p ∈ S, and first-order ODE’s have unique solutions, so this curve
must stay in S for all (q, t) ∈W . It follows that 2−1(W )=2−1(S).

For any compact neighborhood Op of p ∈ S, there now exists an ε > 0 such that

Op× (−ε, ε)⊂2
−1(S),

and the lemma consequently holds with this choice of Op and ε. �

2.4. Flux. Korevaar et al. [1989] showed that when a hypersurface 6 ⊂ N n has
constant mean curvature h ≡ H and the homology groups Hn−1(N ) and Hn−2(N )
are both trivial (over Z — all homology groups in this paper have integer coefficients),
there exists a flux homomorphism

φ : Hn−2(6)⊗ L(I)→ R

defined by assigning, to any Killing field Y and any class k ∈ Hn−2(6), the flux
φ(k, Y ) of Y across k, where

(2-3) φ(k, Y ) :=
∫
0

η · Y + H
∫

K
ν · Y.

Here,

• 0 can be an (n− 2)-cycle representing k;
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• K ⊂ N can be any (n− 1)-chain bounded by 0;

• η is the orienting unit conormal to 0 in 6; and

• ν is the orienting unit normal to K in N .

To ensure that φ(k, Y ) is well-defined by (2-3), [Korevaar et al. 1989] makes two
topological assumptions: namely, that Hn−1(N ) and Hn−2(N ) both vanish. The
vanishing of Hn−2(N ) ensures 0 will bound some chain K , while that of Hn−1(N )
means any competing chain K ′ with ∂K ′ = ∂K can be written K ′ = K + ∂U for
some n-chain U . Since Killing fields are divergence-free, the divergence theorem
then makes the second integral in (2-3) independent of the choice of K .

Here, we extend this flux theory in [Korevaar et al. 1989] in several ways.
First, in Section 3.2, we broaden the mean curvature functional by allowing

µ-weighted area and volume as in Definition 2.1.2. This is a minor tweak of the
standard theory, but it does not correspond to a mere conformal change of metric,
since n- and (n−1)-dimensional volumes scale differently under conformal change.
We do this with a geometric application in mind: the µ-weighted theory relates the
geometry of L-invariant CMC hypersurfaces in N to that of hypersurfaces in the
orbit space N/L (see Remark 3.3.2 below).

Second, and more importantly, we eliminate the homological triviality assump-
tions mentioned above. Though we follow the same variational strategy as in
[Korevaar et al. 1989], we show the flux invariant lives more naturally in a certain
relative homology group. Instead of focusing the invariant on (n − 2)-cycles in
the surface 6, we realize the flux as an invariant on certain (n− 1)-dimensional
relative cycles we shall call caps.

The homological restriction can be naively avoided by defining the flux on
Hn−1(N , 6). When Hn−2(6) 6= 0, however, one gets a more sensitive invariant by
designating a set of “reference cycles”. We call this set a spine. It not only gives
better invariants, but it tends to make flux calculations more tractable.

The new viewpoint reproduces the invariant in [Korevaar et al. 1989] when
Hn−1(N )= Hn−2(N )= 0. In that case, the reference cycle is trivial, and the long
exact sequence for the pair (N , 6), namely

0= Hn−1(N )→ Hn−1(N , 6)
∂
→ Hn−2(6)→ Hn−2(N )= 0,

shows that Hn−1(N , 6)∼= Hn−2(6).
We derive our generalized conservation law in Section 3, and then, in Section 4,

develop a partial converse. Before proceeding to these extensions, however, we
present a motivating example that we can review later as an illustration of our
theory.

Example 2.4.1. Twizzlers are “helicoidal” CMC surfaces invariant under a 1-para-
meter group of screw motions in R3. Any such surface can be gotten by applying



58 NICK EDELEN AND BRUCE SOLOMON

a screw motion to a curve γ in a plane perpendicular to the screw-axis. The
resulting helicoidal surface will then have mean curvature h ≡ H if and only if
γ satisfies an easily derived second-order ODE. However, as others have noted
[do Carmo and Dajczer 1982; Wunderlich 1952; Perdomo 2012; Halldorsson 2013],
the second-order ODE has a useful first integral. We show how to derive it from
flux conservation below.

The conservation law formulated in [Korevaar et al. 1989], however, yields
nothing for twizzlers, since the typical CMC twizzler is generated by a nonperiodic
curve γ in the transverse plane, and thus lacks homology. To remedy that, one can
mod out the translational period of the helicoidal motion, realizing the twizzler as
an immersion of a cylinder in N := R2

× S1. Cylinders do have nontrivial loops,
but those loops don’t bound in N , and hence can’t be capped off as required by
[Korevaar et al. 1989].

Our approach evades that obstruction; see Example 3.1.1 and Case study 4.5.

3. Conservation

Like Korevaar et al. [1989], we derive flux conservation using a constrained first-
variation formula. We make two notable modifications, however.

First, we weight both the areas of hypersurfaces and the volumes of domains by
an L-invariant density function

(3-1) eµ : N → (0,∞).

Here µ can be any smooth function fixed by L. The formula in [Korevaar et al.
1989] effectively takes µ≡ 0, as will become clear in Section 3.2 below.

Secondly, we encode the homology of our immersion f :6→ N into a set of
reference cycles B. Let f∗ denote the induced homomorphism

f∗ : Hn−2(6)→ Hn−2(N ).

Definition 3.0.1 (Spine). We call a subgroup B ⊂ Zn−2(N ) a spine for the pair
(N , 6) if:

(a) B ∩Zn−2(6)= 0;

(b) B generates f∗Hn−2(6);

(c) the composition B→ Zn−2(N )→ Hn−2(N ) is injective.

We won’t always draw an explicit distinction between the subgroup B and a set
of generating cycles for B.

A nontrivial spine lets us assign fluxes to classes in Hn−2(6) that don’t bound
in N .
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Note that a spine for (N , 6) always exists. Indeed, any independent set of
cycles that generate f∗Hn−2(6) in Hn−2(N ) will satisfy conditions (b) and (c) of
Definition 3.0.1, and one can always perturb slightly, if needed, to realize (a). That
condition is really an artifact of the language we use to define the flux invariants;
we want the sum Zn−2(6)+ B to be direct. The assumption could be omitted in
favor of more precision in distinguishing “caps with nontrivial spines” and “caps
without spines”.

Definition 3.0.2 (Cap). A cap K is any chain in Sn−1(N ) such that

∂K ∈ Zn−2(6)⊕ B.

As the kernel of the composition

Sn−1(N )
∂
→ Sn−2(N )→ Sn−2(N )/(Sn−2(6)⊕ B),

the set of all caps forms a group, which we denote by Z(N , 6, B).
A reduced cap is a class belonging to the quotient

K(N , 6, B)= Z(N , 6, B)/Bn−1(N , 6).

We call two caps K , K ′ homologous, written K ∼ K ′, if they represent the same
reduced cap in K(N , 6, B).

In spirit, a reduced cap is a class in Hn−1(N , 6 ∪ ‖B‖), where ‖B‖ denotes
the support of B. Indeed, when ‖B‖ is disjoint from 6, we have K(N , 6, B) =
Hn−1(N , 6 ∪‖B‖). When ‖B‖ does meet 6, however, ambiguity can arise as to
which part of ∂K to take as β in Observation 3.1 below. The need to remove that
ambiguity motivated Definition 3.0.2. The direct sum decomposition of Z(N , 6, B)
there immediately yields the fact we need:

Observation 3.1. For any cap K , there exists a unique β ∈ B with ‖∂K −β‖ ⊂6.

To make the notions of spine and cap more concrete, we illustrate using twizzlers:

Example 3.1.1. As explained in Example 2.4.1, we may regard a twizzler as a
cylinder6=R×S1 immersed in N =C×S1 and preserved by the helical S1-action

(3-2) [eiθ
](z, eit)= (eiθ z, ei(t+θ)).

The length of the S1-factor is geometrically significant, but we can take it to be
the usual 2π for purposes of this example.

We call the orbits of the screw-action helices. By construction, both N and the
twizzler f (6) are foliated by such helices, any one of which generates f∗H1(6)=

H1(N ). It follows that any helix, viewed as a 1-cycle in N , qualifies as a spine for
(N , 6). We take the shortest one, namely 0× S1

⊂ N , as our spine B.
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Suppose a twizzler is generated by a particular curve γ : R→ C, so that we can
immerse it in N via

f (t, eiθ )= (eiθγ (t), eiθ ).

For each fixed t ∈ R, the helix 0t := f (t, S1) forms a nontrivial cycle in H1(6).
Any oriented surface that realizes the homology between 0t and the compatibly
oriented cycle β ∈ B is then a cap for 0t .

For instance, the line segment (or any arc) joining 0 to γ (t) in C will, under the
S1-action (3-2), sweep out a cap, and all arcs give rise to the same reduced cap
in this way. Such caps are also preserved by the S1-action, a useful property that
many other caps lack.

3.2. First variation. To prepare for our first variation formula, fix a spine B for
(N , 6), and suppose we have homologous caps K , K ′ in Z(N , 6, B). There then
exists an n-chain U satisfying

(3-3) ∂U = S+ K − K ′

for some S ∈ Sn−1(6). Applying the boundary operator to (3-3), we then get

(3-4) ∂K − ∂K ′ =−∂S.

In particular, ∂K − ∂K ′ is a cycle in 6, and by the definition of a cap, there now
exist unique β, β ′ ∈ B such that

∂K −β, ∂K ′−β ′ ∈ Zn−2(6)

and (3-4) forces β = β ′. This proves:

Proposition 3.3. If two caps K , K ′ ∈ Z(N , 6, B) are homologous, there exists a
unique β ∈ B such that both ∂K −β and ∂K ′−β are supported in 6.

Definition 3.3.1. The proposition above lets us define the spine of a reduced cap k∈
K(N , 6, B) as the unique β ∈ B with ∂K −β ∈Zn−2(6) for any representative K .

In the situation just described, and in the presence of a density function eµ, we
now consider the n- and (n− 1)-dimensional µ-weighted volumes |U |µ and |S|µ
of the chains U and S respectively (Definition 2.1.2) as we deform along the flow
of a smooth vector field Y . Fix a scalar H , and consider the initial derivative of
|S|µ− H |U |µ with respect to this flow, written

(3-5) δY (|S|µ− H |U |µ).

Calling this the (µ-weighted) volume-constrained first variation of S, we obtain our
conservation law for hypersurfaces with constant µ-mean curvature hµ ≡ H , as
defined in (3-8) below, by evaluating (3-5) on Killing vector fields of N . To simplify
the task, we analyze δY |U |µ and δY |S|µ separately before combining results.
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A familiar derivation shows δY |U |µ to equal the integral of divN(Y) over U
when µ≡ 0. A routine modification of that calculation shows that for general µ,

δY |U |µ =
∫

U
divN(eµY)=

∫
∂U

eµY · ν,

where ν denotes the orienting unit normal along ∂U . By (3-3), we can rewrite this
as

(3-6) δY |U |µ =
∫

S
eµY · ν+

∫
K−K ′

eµY · ν.

A similar modification of the µ≡ 0 case, as analyzed in [Simon 1983, pp. 46–51],
computes the µ-weighted first variation of |S|µ along Y :

(3-7) δY |S|µ =
∫

S
eµdµ(ν)ν · Y + div6(eµY>)+ div6(eµY⊥).

Here Y> and Y⊥ signify the tangential and normal components, respectively, of Y
along S.

Recall that for vector fields tangent to 6, the divergence theorem applies in its
usual form: given an (n− 1)-chain S in 6 with oriented unit conormal η along its
boundary, we have ∫

S
div6(X) =

∫
∂S

X · η (X tangent to 6).

For vector fields normal to 6, on the other hand, the divergence operator invokes
the mean curvature of 6, due to (2-1). When Z = (Z · ν)ν is purely normal, then,
the Leibniz rule yields∫

S
div6(Z) =

∫
S
(Z · ν)h (Z normal to 6).

Accordingly, we define the µ-mean curvature hµ along 6 as

(3-8) hµ := h+ dµ(ν).

Using this notation, the facts above reduce (3-7) to

(3-9) δY |S|µ =
∫
∂S

eµY · η+
∫

S
eµhµY · ν.

Finally, using (3-6), (3-9), and (3-4), we can put our volume-constrained first-
variation formula (3-5) into the form we need:
(3-10)

δY (|S|µ− H |U |µ)=−
∫
∂K−∂K ′

eµη · Y − H
∫

K−K ′
eµν · Y +

∫
S

eµ(hµ− H)ν · Y.
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Remark 3.3.2. The µ-mean curvature hµ arises naturally in the context of Rie-
mannian submersions, which we encounter here whenever a compact Lie group G of
dimension k > 0 acts isometrically on a Riemannian manifold X . In that situation,
the principal orbits (roughly speaking, the orbits of highest dimension) foliate a
dense open subset X ′ ⊂ X , and the submersion X ′→ X ′/G becomes Riemannian,
given the right metric on X ′/G (see [Hsiang and Lawson 1971]).

In any case, every Riemannian submersion π : P→ N induces a fiber volume
function

eµ : N → (0,∞), eµ(p) := |π−1(p)|,

where |π−1(p)| is the k-dimensional volume of the fiber over p. A standard
first-variation calculation then shows:

Observation 3.4. The µ-mean curvature hµ of a hypersurface 6 ⊂ N gives the
classical mean curvature h of its preimage π−1(6)⊂ P.

In the context of an isometric G-action as discussed above, one may then study
G-invariant hypersurfaces of constant (classical) mean curvature h ≡ H in X
by considering, instead, hypersurfaces of constant µ-mean curvature hµ ≡ H in
the orbit space X/G. This can be especially fruitful when X/G is just two- or
three-dimensional. We consider examples involving twizzlers at the end of the
paper.

In any case, the constrained first-variation formula (3-10) lets us extend the
conservation law presented in [Korevaar et al. 1989]. As before, L ⊂ I denotes
a µ-preserving group of isometries on N , and the Killing fields that generate its
identity component correspond to L(L).

Theorem 3.5 (conservation law). Suppose 6 ⊂ N is an oriented hypersurface with
hµ ≡ H , and B is a spine for the pair (N , 6). Then the formula

(3-11) φB[k](Y ) :=
∫
∂K−β

eµη · Y + H
∫

K
eµν · Y

yields a well-defined homomorphism

φB : K(N , 6, B)⊗ L(L)→ R.

Here Y is any Killing field in L(L), K is any cap in k, and β ∈ B is the spine of k
given by Definition 3.3.1.

Proof. The basic linearity properties of the integral make φB a homomorphism once
we establish well-definition: that φB[k](Y ) doesn’t depend on which cap K ∈ k we
use to compute it. We thus need to show, for all Y ∈ L(L) and all K , K ′ ∈ k, that

(3-12)
∫
∂K−β

eµη · Y + H
∫

K
eµν · Y =

∫
∂K ′−β

eµη · Y + H
∫

K ′
eµν · Y
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for any other K ′ ∈ k. This follows easily from the constrained first-variation formula
(3-10), however.

For µ is L-invariant, and Y generates a flow that leaves both |S|µ and |U |µ
unchanged, and hence the left-hand side of (3-10) must vanish. The integral over S
on the right of (3-10) vanishes too, because hµ ≡ H . So (3-10) reduces to

0=
∫
∂K−∂K ′

eµη · Y + H
∫

K−K ′
eµν · Y.

This is clearly equivalent to (3-12), since the integrals over β there cancel. �

Remark 3.5.1. The simplest case of Theorem 3.5, where µ≡ 0 and L is the full
isometry group of N (so that L(L) includes all Killing fields), already improves
on the conservation law in [Korevaar et al. 1989] by eliminating the triviality
assumptions there on Hn−1(N ) and Hn−2(N ).

Remark 3.5.2. The particular choice of spine B in Theorem 3.5 is of no real
consequence. For when B and B ′ are both spines for (N , 6), the well-definition
of φB on a class in K(N , 6, B) implies that of φB ′ on a corresponding class in
K(N , 6, B ′).

To see this, suppose φB is well-defined on a class k containing a cap K with
boundary 0+β, where β ∈ B and 0 is supported in 6. Then there exists a cycle
β ′ ∈ B ′ homologous to β, and hence an (n− 1)-chain P with

∂P = β ′−β.

We claim φB ′ will now be well-defined on the class k′ represented by K + P in
K(N , 6, B ′).

Indeed, take any cap K̃ homologous to K + P in the latter group. Then K̃ − P ∈
k ∈K(N , 6, B), and if φB is well-defined there for some Y ∈ L(I), we have, on
the one hand,

φB(K̃ − P, Y )= φB(K , Y ).

On the other hand, we have

φB(K̃ − P, Y )=
∫
0′

eµη · Y + H
∫

K̃−P
eµν · Y

=

∫
0′

eµη · Y + H
∫

K̃
eµν · Y + H

∫
P

eµν · Y

= φB ′(K̃ , Y )+ H
∫

P
eµν · Y.

Together, these facts yield

φB ′(K̃ , Y )= φB(K , Y )− H
∫

P
eµν · Y.
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Since K̃ was arbitrary in k′, while P is fixed, we see that φB ′ is well-defined on
k′ ∈ K(N , 6, B ′), as claimed.

4. Partial converse

Suppose the isometry group I of our ambient manifold N contains a closed, con-
nected group L preserving a density function eµ as above. Consider an immersed
hypersurface f :6→ N , together with a spine B for the pair (N , 6).

Above, we assumed constancy of µ-mean curvature on 6, and deduced con-
servation of flux. We now seek a converse conservation law to the effect that
well-definition of the flux functional φB implies constancy of µ-mean curvature.
Well-definition of φB , however, means nothing without Killing fields on which to
pose it, so the strength of any such converse must correlate with the abundance of
Killing fields.

Similarly, one shouldn’t need to assume well-definition of φB on all Killing
fields to get a conservation law. We could restrict φB to a nonempty subset of L(L)
(even a singleton) and ask whether well-definition of φB there influences geometry.

Dually, we needn’t assume constancy of φB on all caps. We have in mind the
case where 6 is preserved by a closed, connected subgroup G⊂ L and φB takes a
fixed value on a sufficiently “crowded” set of homologous G-invariant caps.

Definition 4.0.1 (G-crowded). A set of trivial caps C⊂Bn−1(N , 6) is a G-crowded
set of boundaries if, for every G-orbit λ and every ε > 0, we can find a cap K ∈ C
satisfying

K = ∂U − S.

Here U is an (n+ 1)-chain in N , and S is an n-chain in 6, which, as an n-current,
is represented by some constant multiple of a submanifold-with-boundary within
distance ε of the orbit λ. In other words, for some constant c and any integrable
function f , we have ∫

S
f = c

∫
spt S

f.

We say that a set C of nonbounding caps in Z(N , 6, B) is G-crowded if the
difference set {K − K ′ : K , K ′ ∈ C} forms a G-crowded set of boundaries. Note
that in this case, each K ∈ C represents the same reduced cap in K(N , 6, B).

Example 4.0.2. For any point p ∈ 6, and ε > 0, let Vε(p) be the G-orbit of the
ball Bε(p). When ε is sufficiently small, 6 will separate Vε into two open sets V±ε .
Then K = ∂V+ε −6 ∩ Vε will be a trivial cap, and the collection of all these K for
p ∈6 and ε > 0 small will form a G-crowded set.

Using this definition, we can state and prove our partial converse, which says
(roughly) that when our hypersurface 6 and the density eµ are preserved by a
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closed, connected subgroup G⊂ I, and the flux is constant on a G-crowded set of
caps — with respect to Killing fields that commute with G — we can split 6 into
two nice subsets: one with constant µ-mean curvature, and one preserved by the
flows of those Killing fields. These subsets may overlap, and either can be empty,
as seen in Examples 4.4.1 below.

Theorem 4.1. Let 6 ⊂ N be a complete oriented G-invariant hypersurface, and B
a spine for the pair (N , 6). Suppose C⊂ Z(N , 6, B) is a G-crowded set of caps,
and β ∈ B is the spine of the reduced cap containing C.

If G preserves a Killing field Y , and the µ-weighted flux functional∫
∂K−β

eµη · Y + H
∫

K
eµν · Y

is constant on C, then the set

6′ :=6 \ h−1
µ (H)

is preserved by the flow of Y .

Proof. Definition 4.0.1 and the form of the flux functional immediately show that
constancy of flux on any G-crowded set of caps in Z(N , 6, B) forces vanishing
of flux on a G-crowded set of boundaries. So without losing generality, we may
assume C⊂Bn−1(N , 6).

The heart of our argument then lies with the following:

Claim. If p ∈6′, then Yp ∈ Tp6.

The definition makes 6′ relatively open in 6. Since G preserves 6 and µ, it
preserves hµ and hence 6′. The G-crowdedness of C ensures the existence of a cap

K = ∂U − S ∈ C,

with S ⊂6′ supported within an arbitrarily small distance to the G-orbit of p.
We use the volume-constrained first-variation formula with K as above, and

K ′ = 0 since K bounds modulo 6′ ⊂ 6. The first two integrals in (3-10) now
vanish on our Killing field Y , since together they compute the flux of Y across a
trivial cap.

This reduces the constrained first variation to a single integral:

δY (|S|µ− H |U |µ)=
∫

S
eµ(hµ− H)Y · ν.

Finally, since Y preserves µ, the left side of this equation must vanish, leaving
the identity

(4-1)
∫

spt S
eµ(hµ− H)Y · ν = 0.
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If Yp 6∈ Tp S, then by assumption the integrand (hµ−H)Y ·ν is not 0 at p. Since
all quantities are continuous and preserved by G, it follows that (hµ − H)Y · ν
is strictly positive (or negative) in a neighborhood of the G-orbit of p. Since the
G-crowdedness of C lets us confine the support of S to such a neighborhood, we
can contradict (4-1), thereby proving the claim.

To finish proving the theorem, it suffices to show that whenever p ∈ 6′, the
entire Y -streamline with initial velocity Yp lies in 6′.

Let T > 0 be the maximal time such that 2(p, t) ⊂ 6′ for all t < T . By
Lemma 2.3 (with q := p), some such T exists. Since Y generates a µ-preserving
isometric flow, we have hµ(2(p, t)) ≡ H ′ with H ′ constant for all t ∈ [0, T ).
Moreover, H ′ 6= H , as we are in 6′. We now claim T =∞. For otherwise, the
continuity of hµ and the completeness of the larger hypersurface 6 immediately
yields both 2(p, T ) ∈6 and hµ(2(p, T ))= H ′ 6= H , so that 2(p, T ) ∈6′. But
then Lemma 2.3 (with q := 2(p, T )) contradicts the maximality of T . In short,
2(p, t) ∈6′ for all t ≥ 0. Since the same reasoning shows that 2(p, t) ∈6′ for
all t ≤ 0 too, the proof is complete. �

Remark 4.1.1. We emphasize again that our converse remains interesting even
when G is trivial. Theorem 4.1 then implies, for instance, that when the flux across
every sufficiently small trivial cap vanishes on the generators of a subgroup L⊂ I,
the part of 6 that does not have constant µ-mean curvature hµ = H must be
L-invariant.

Corollary 4.2. If , as in Theorem 4.1, the µ-weighted flux functional is constant on
one G-crowded set of caps, it actually extends as a well-defined conserved quantity
to all of K(N , 6, B).

Proof. While the theorem assumes constancy of φB only on a G-crowded set of caps,
the proof then deduces that at every point p ∈6, either hµ = H or Y belongs to
Tp6. In this case, the last integral in the volume-constrained first-variation formula
(3-5) clearly vanishes on any (n− 1)-chain S in 6, so that φB(K , Y )= φB(K ′, Y )
for any two homologous caps K , K ′ ∈ Z(N , 6, B). �

Let us henceforth agree that when G is trivial, we call a G-crowded set of caps
simply crowded.

Corollary 4.3. If N is homogeneous, µ is constant, and on some crowded set of
caps, the flux functional is well-defined for all Killing fields on N , then 6 has mean
curvature h ≡ H everywhere.

Proof. With G trivial in Theorem 4.1, well-definition on all Killing fields makes
6′ invariant under the entire isometry group I. But in a homogeneous space, all
nonempty I-invariant sets have top dimension. So 6′, having codimension one,
must be empty, forcing h ≡ H throughout 6. �
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When L⊂I is a subgroup, we say that N has cohomogeneity k with respect to L

when the highest-dimensional orbits of L have codimension k in N . Cohomogeneity
zero is the same as homogeneity.

Corollary 4.4. Suppose a real-analytic Riemannian manifold N has cohomogeneity
one with respect to a µ-preserving group L, and on some crowded set of caps, the
flux functional is well-defined on all of L(L). Then either hµ ≡ H , or 6 is an orbit
of L. Either way, hµ is constant on 6.

Proof. In an analytic ambient space, hypersurfaces with constant µ-mean curvature
are analytic [Federer 1969, 5.2.16]. Cohomogeneity one means the only connected
L-invariant hypersurfaces are single orbits of L, which clearly have constant µ-
mean curvature. Since6 is connected, the corollary now follows from Theorem 4.1.

�

Examples 4.4.1. Take N = R3 and let G be the circular group acting by rotation
about the x-axis. The Killing field Y = (1, 0, 0) generates translational flow along
that axis, and G commutes with this flow as required by Theorem 4.1. The noncylin-
drical Delaunay surfaces — CMC surfaces of revolution about the x-axis analyzed
by C. Delaunay in 1841 — show that Theorem 4.1 may obtain with G-invariant
hypersurfaces having h ≡ H and no flow-invariant subset 6′.

In contrast, if we take 6 to be any cylinder centered about the x-axis with radius
not equal to 1/H , we get an example with 6′ =6. That is, 6 has mean curvature
H nowhere, and yet the flux functional remains well-defined on Y , thanks to the
global flow-invariance of 6.

Of course, the cylinder of radius 1/H about the x-axis has both h ≡ H and the
extra translational symmetry.

All these possibilities arise in the family of twizzlers too, as we shall shortly see.

Case study 4.5 (first integrals for twizzlers). Consider the Riemannian product
N :=C× S1

R , where the complex plane C and S1
R (the circle of radius R) have their

standard metrics. Take µ≡ 0, and let G≈ S1 act via screw-motion:

[eit
](z, Reiθ )= (eit z, Rei(t+θ)).

In this situation, each helical orbit of the G-action generates H1(N )≈Z. Let6⊂ N
be any connected G-invariant surface, and with no loss of generality assume it does
not contain the shortest orbit β := 0× S1

R . Then β clearly generates a spine for
(N , 6).

We can parametrize6 by letting G act on an immersed curve γ :R→C×{1}≈C

via the map

(4-2) X (u, v)= (eivγ (u), Reiv).
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Assume the orientation of γ makes the natural frame {Xu, Xv} positively oriented
along 6.

Now fix any point p on the generating curve γ , and join it to the origin in C by
a line segment. This segment sweeps out a helicoidal cap K p, invariant under the
G-action, and the reduced class of K p in K(N , 6, B) is clearly independent of p.
One easily sees that as p varies over γ , the resulting caps K p form a G-crowded
set C according to Definition 4.0.1.

Now let Y be the circular Killing field generating the purely “horizontal” isometric
flow [eis

](z, Reiθ )= (eisz, Reiθ ). Note that Y commutes with G and preserves µ,
as required by Theorem 4.1.

Finally, suppose that when we put K = K p and β as above in the flux formula
of Theorem 3.5, the result is independent of p.

Since N has cohomogeneity one with respect to the extension of G by the flow
of Y , Corollary 4.4 dictates that either 6 is a CMC twizzler with h ≡ H , or 6 is an
orbit of the combined action, and thus a circular cylinder with h ≡ 1/r (r giving
the radius of the cylinder; typically 1/r 6= H ).

As an application of our theory, we now show that constancy of φB on the
G-crowded set of caps K p described above “explains” the first-order ODE known to
characterize generating curves of CMC twizzlers, as mentioned in our introduction.

Proposition 4.6. A noncircular immersed curve γ in C generates a twizzler in
C× S1

R with h ≡ H if and only if , for some c ∈ R, it solves

(4-3)
2πR2(γ̇ · iγ )√

R2|γ̇ |2+ (γ̇ · γ )2
−πRH |γ |2 = c.

Proof. Since we assume γ is not circular, Theorem 3.5 and Corollary 4.4, as noted
above, tell us that h ≡ H if and only if the flux of the circular vector field

Y(z,τ ) = (iz, 0)

across K p is independent of p. That is,

(4-4) φB(K p, Y )≡ c for all p ∈ γ .

Equation (4-3) merely evaluates this assertion.
To reach (4-3) from (4-4), we temporarily fix a point p = γ (t) on the generating

curve γ , and specify an orientation on the cap K p, by declaring the frame field
{Ku, Kv} associated with the parametrization

K (u, v)= (ueiv p, Reiv), (u, v) ∈ (0, 1)× (0, 2π)

to be positively oriented.
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Now consider the second integral in the flux formula (3-11) — the one that pairs
Y with the unit normal ν along K p. The correctly oriented unit normal will be a
positive multiple of

Ku ∧ Kv = (−Rieiv p, u|p|2ieiv).

The length of Ku ∧ Kv is actually irrelevant: we divide by it to normalize, but then
multiply it back in as the Jacobian in the flux integral, namely∫

K p
ν · Y =

∫ 2π

0

∫ 1

0
(Ku ∧ Kv) · Y

∣∣
K (u,v) du dv.

At K (u, v), we have Y = (uieiv p, 0), so the corresponding flux term evaluates
easily to

(4-5) H
∫

K p
ν · Y =−2πH R|p|2

∫ 1

0
u du =−πH R|p|2.

Now consider the other integral in the flux formula (3-11), the integral over
0 := ∂K −β, where K p meets 6. This curve is the helical G-orbit of p, and one
easily computes its length as

|0| = 2π
√

R2+ |p|2.

Our chosen orientation of K induces an orientation on 0. Since Ku at 0 is parallel
to the outer conormal in K , the velocity 0′ of 0 is equal to a positive multiple
of Xv . The outer conormal in 6 along 0, which we called η, must then give the pair
{η, 0′} positive orientation, so we can obtain η by orthonormalizing Xu along 0,
i.e., by normalizing

|Xv|2 Xu − (Xu · Xv)Xv.

Both η and Y are G-invariant, making η ·Y constant along 0, and careful calculation
then shows that indeed,

η · Y ≡
R2γ̇ · ip√

R2+ |p|2
√
(R2+ |p|2)|γ̇ |2− (γ · ip)2

,

where we evaluate γ̇ at p. We can simplify the second square root in the denominator
here via the elementary identity

(γ̇ · ip)2 = |γ̇ |2|p|2− (γ̇ · p)2.

This lets us express the conormal flux integral as

(4-6)
∫
0

η · Y =
2πR2(γ̇ · ip)√

R2|γ̇ |2+ (γ̇ · p)2
.



70 NICK EDELEN AND BRUCE SOLOMON

Setting p = γ (t) and recalling (3-11), we now get φB(K p, Y ) by adding (4-5) to
(4-6). �

Remark 4.6.1. If we parametrize a convex arc of the generating curve γ using its
support function, namely

k(t) := sup
θ

γ (t) · eiθ ,

then
γ (t)= (k(t)+ ik̇(t))eit .

It now follows from Proposition 4.6 that when γ generates a pitch-R twizzler
with h ≡ H , its support function satisfies a simple nonlinear ODE:

2Rk√
R2+ k̇2

− H(k2
+ k̇2)= C.

In other words, the phase portrait of k lies on one of the “heart-shaped” level
curves of the function

F(x, y) :=
2Rx√
R2+ y2

− H(x2
+ y2).

Perdomo [2012; 2013] based his dynamical characterization of twizzler generating
curves and his study of their moduli space on this observation.

Remark 4.6.2 (twizzlers in other 3D-space forms). It is natural to see the curve γ in
Case study 4.5 as the projection of the hypersurface6 into the orbit space N/G≈C.
The length of the orbit above z ∈ C is easily computed as |0z| = 2π

√
R2+ |z|2,

and if we adopt this as our density function, i.e., eµ(z) = |0z|, on the orbit space
(see Definition 2.1.2), a simple reworking of Proposition 4.6 reinterprets the first
integral there as the condition for γ to have hµ ≡ H as a “hypersurface” in the
two-dimensional orbit space.

Similarly, one can seek CMC “twizzlers” in the 3-sphere S3
⊂R4 invariant under

one of the helical (k, l) “torus knot” circle actions given by

[eit
](z, w)= (eikt z, eiltw).

This is the standard Hopf action when k = l = 1, in which case the orbit space S3/G

is of course the standard 2-sphere S2. More generally, when gcd(k, l)= 1, one can
realize the orbit space as an eccentric “football” or “teardrop” shaped surface of
revolution in R3, smooth except for conical singularities at one or both ends. The
G-invariant CMC twizzlers in S3 then correspond one-to-one with curves having
constant µ-mean curvature in the orbit space, where the density function is again
given by orbit length: eµ(p) = |π−1(p)| for p in the orbit space. By Theorem 4.1,
these hµ ≡ H curves are precisely the noncircular curves that conserve flux along
the Killing fields that generate the rotational symmetry of the orbit space. It is then
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straightforward to use this fact, as in Proposition 4.6, to derive the first integral they
satisfy. See [Edelen 2011] for the resulting expression. We should note here that the
special case hµ ≡ 0 (minimal twizzlers in S3) was analyzed using Hamilton–Jacobi
theory in [Hsiang and Lawson 1971, Chapter IV].

Analogous helical actions exist in the hyperbolic space form H3, and the resulting
CMC twizzlers have a first integral derivable in precisely the same way. The reader
may consult [Edelen 2011] for a description of the group action and the resulting
first integral in this case as well.
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THE CYLINDRICAL CONTACT HOMOLOGY OF
UNIVERSALLY TIGHT SUTURED CONTACT SOLID TORI

ROMAN GOLOVKO

We calculate the sutured version of cylindrical contact homology of a su-
tured contact solid torus (S1 × D2, 0, ξ), where 0 consists of 2n parallel
sutures of arbitrary slope and ξ is a universally tight contact structure. In
particular, we show that it is nonzero. This computation is one of the first
computations of the sutured version of cylindrical contact homology and
does not follow from computations in the closed case.

1. Introduction

The cylindrical contact homology of a (closed) contact manifold was introduced
by Eliashberg and Hofer and is the simplest version of the symplectic field theory
of Eliashberg, Givental and Hofer [Eliashberg et al. 2000]. It is the homology of
a differential graded module whose differential counts genus zero holomorphic
curves in the symplectization with one positive puncture and one negative puncture.

In the early 1980s, Gabai [1983] developed the theory of sutured manifolds,
which became a powerful tool in studying 3-manifolds with boundary. It turns out
that there is a way to generalize cylindrical contact homology to sutured manifolds.
This is possible by imposing a certain convexity condition on the contact form. This
construction is described in the paper of Colin, Ghiggini, Honda and Hutchings
[Colin et al. 2011] and will be summarized in Section 2.

In this paper, we construct a sutured contact solid torus with 2n parallel sutures of
slope −k/ l using the gluing method of [Colin et al. 2011], and calculate the sutured
cylindrical contact homology of it. Here n ∈N, (k, l)= 1 and k > l > 0. In order to
define the slope, we choose an oriented identification ∂(S1

× D2)' T 2
= (R/Z)2

as follows: map {pt} × ∂D2 (the meridian) to (1, 0) (slope is 0) and S1
× {pt}

(a longitude) to (0, 1).
This calculation, together with the calculation of the sutured cylindrical contact

homology of the sutured contact solid torus with 2n parallel longitudinal sutures,
where n ≥ 2, that has been done in [Golovko 2011], finishes the calculation of the
cylindrical contact homology of (S1

× D2, 0, ξ), where 0 consists of 2n parallel
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sutures of arbitrary slope, ξ is a universally tight contact structure and such that
if one cuts along the meridian disk, the sutures on the disk are ∂-parallel. In
particular, this gives a complete calculation of the cylindrical contact homology of
(S1
× D2, 0, ξ), where 0 consists of 2 parallel sutures of arbitrary slope and ξ is

a universally tight contact structure (observe that in this situation there are only
two isomorphic (but not isotopic) universally tight contact structures; see [Honda
2002, Section 2]). These are not all the universally tight contact structures on the
solid torus, but all of them can be obtained from the #0 = 2 case by successively
applying the folding operation.

Our goal is to prove the following theorem:

Theorem 1.1. Let (S1
× D2, 0) be a sutured manifold, where 0 is a set of 2n

parallel closed curves of slope −k/ l, where (k, l)= 1, k > l > 0 and n ∈ N. Then
there is a contact form α which makes (S1

× D2, 0, α) a sutured contact manifold
with a universally tight contact structure ξ =ker α, HCcyl(S1

×D2, 0, α) is defined,
is independent of the contact form α for ξ = ker α and the almost complex structure
J and

HCcyl,h(S1
× D2, 0, ξ)'


Q for k - h > 0,
Qn−1 for k | h > 0,
0, otherwise.

Here h corresponds to the homological grading.

2. Background

The goal of this section is to review definitions of sutured contact manifold and the
relative version of cylindrical contact homology. This section can be considered as
a summary of [Colin et al. 2011].

2A. Review of sutured contact manifolds. In this section, we recall some defini-
tions and describe some constructions from [Colin et al. 2011]. We first start with
the notion of a Liouville manifold.

Definition 2.1. A Liouville manifold (often also called a Liouville domain) is a
pair (W, β) consisting of a compact, oriented 2n-dimensional manifold W with
boundary and a 1-form β on W , where ω = dβ is a positive symplectic form on W
and the Liouville vector field Y given by iY (ω)= β is positively transverse to ∂W .
It follows that the 1-form β0 = β|∂W (this notation means β pulled back to ∂W ) is
a positive contact form with kernel ζ .

We now recall the definition of a sutured contact manifold.

Definition 2.2. A compact oriented 2n+1-dimensional manifold M with boundary
and corners is a sutured contact manifold if it comes with an oriented, not necessarily
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connected submanifold 0 ⊂ ∂M of dimension 2n− 1 (called the suture), together
with a neighborhood U (0) = [−1, 0] × [−1, 1] × 0 of 0 = {0} × {0} × 0 in M ,
with coordinates (τ, t) ∈ [−1, 0]× [−1, 1], such that the following holds:

(1) U ∩ ∂M = ({0}× [−1, 1]×0)∪ ([−1, 0]× {−1}×0)∪ ([−1, 0]× {1}×0).

(2) ∂M \ ({0} × (−1, 1)× 0) = R−(0) t R+(0), where the orientation of ∂M
agrees with that of R+(0) and is opposite that of R−(0) and the orientation
of 0 agrees with the boundary orientation of R+(0).

(3) The corners of M are precisely {0}× {±1}×0.

In addition, M is equipped with a contact structure ξ , which is given by the kernel
of a positive contact 1-form α such that

(i) (R±(0), β± = α|R±(0)) is a Liouville manifold;

(ii) α = C dt +β inside U (0), where C > 0 and β is independent of t and does
not have a dt-term;

(iii) ∂τ = Y±, where Y± is a Liouville vector field for β±.

Such a contact form α is said to be adapted to (M, 0,U (0)).

Here we briefly describe the way to glue sutured contact manifolds. This proce-
dure was first described by Colin and Honda [2005] and then generalized by Colin
et al. [2011].

Let (M ′, 0′,U (0′), ξ ′) be a sutured contact 3-manifold with an adapted contact
form α′. We denote by π the projection along ∂t defined on U (0′).

Take 2-dimensional submanifolds P± ⊂ R±(0′) such that ∂P± is the union of
(∂P±)∂ ⊂ ∂R±(0′), (∂P±)int⊂ int(R±(0′)) and ∂P± is positively transversal to the
Liouville vector field Y ′

±
on R±(0′). Whenever we refer to (∂P±)int and (∂P±)∂ , we

assume that closures are taken as appropriate. Moreover we make the assumption
that π((∂P−)∂)∩π(∂P+)∂)=∅.

Let ϕ be a diffeomorphism which sends (P+, β ′+|P+) to (P−, β ′−|P−) and takes
(∂P+)int to (∂P−)∂ and (∂P+)∂ to (∂P−)int. Note that, since dim M = 3, we only
need β ′

+
|P+ and ϕ∗(β ′

−
|P−) to match up on ∂P+, since we can linearly interpolate

between primitives of positive area forms on a surface.
Topologically, we construct the sutured manifold (M, 0) from (M ′, 0′) and the

gluing data (P+, P−, ϕ) as follows: Let M = M ′/∼, where

• x ∼ ϕ(x) for all x ∈ P+;

• x ∼ x ′ if x, x ′ ∈ π−1(0′) and π(x)= π(x ′) ∈ 0′.

Then

R±(0)=
R±(0′) \ P±
(∂P±)int

∼ π±((∂P∓)∂)
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and

0 =
0′ \π(∂P+ t ∂P−)
π((∂P+)int ∩ (∂P+)∂)

∼ π((∂P−)int ∩ (∂P−)∂).

For a detailed description of the gluing procedure, see [Colin et al. 2011].
Finally, we describe the way to complete sutured contact manifold (M, α) to a

noncompact contact manifold (M∗, α∗). This construction was first described in
[Colin et al. 2011].

Let (M, 0,U (0), ξ) be a sutured contact manifold with an adapted contact
form α. The form α is then given by

C dt +β±

on collar neighborhoods [1−ε, 1]× R+(0) and [−1,−1+ε]× R−(0) of R+(0)=
{1} × R+(0) and R−(0) = {−1} × R−(0), where t ∈ [−1,−1+ ε] ∪ [1− ε, 1]
extends the t-coordinate on U . On U we have α = C dt + β, β = β+ = β− and
∂τ is a Liouville vector field Y for β. We first extend α to [1,∞)× R+(0) and
(−∞,−1]× R−(0) by taking C dt +β± as appropriate. The boundary of this new
manifold is {0}×R×0. Notice that since ∂τ = Y , the form dβ|[−1,0]×{t}×0 is the
symplectization of β|{0}×{t}×0 in the positive τ -direction. We glue [0,∞)×R×0

with the form C dt + eτβ0, where β0 is the pullback of β to {0}× {t}×0.
We denote by M∗ the noncompact extension of M described above and by α∗

the extension of α to M∗.

2B. Review of cylindrical contact homology. In this section, we review the defi-
nition of cylindrical contact homology for sutured manifolds. We refer to [Colin
et al. 2011] for more details of this construction.

Let (M, 0,U (0), ξ) be a sutured contact manifold with an adapted contact form
α and (M∗, α∗) be its completion.

The Reeb vector field Rα∗ that is associated to a contact form α∗ is given by
dα∗(Rα∗, · )= 0 and α∗(Rα∗)= 1. We assume that Rα∗ is nondegenerate, i.e., the
first return map along each (not necessarily simple) periodic orbit does not have 1
as an eigenvalue. Observe that nondegeneracy can always be achieved by a small
perturbation.

Remark 2.3. Every periodic orbit of Rα∗ lies in M . Hence, the set of periodic
Reeb orbits of Rα∗ coincides with the set of periodic Reeb orbits of Rα.

A Reeb orbit γ is called elliptic or positive (respectively negative) hyperbolic if
the eigenvalues of Pγ are on the unit circle or the positive (resp. negative) real line
respectively.

If τ is a trivialization of ξ over γ , we can then define the Conley–Zehnder index.
In 3-dimensional situation, we can explicitly describe the Conley–Zehnder index
and its behavior under multiple covers as follows:
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Proposition 2.4 [Hutchings 2002]. If γ is elliptic, then there is an irrational number
φ ∈ R such that Pγ is conjugate in SL2(R) to a rotation by angle 2πφ and

µτ (γ
k)= 2bkφc+ 1,

where 2πφ is the total rotation angle with respect to τ of the linearized flow around
the orbit.

If γ is positive (respectively negative) hyperbolic, then there is an even (re-
spectively odd) integer r such that the linearized flow around the orbit rotates the
eigenspaces of Pγ by angle πr with respect to τ and

µτ (γ
k)= kr.

A closed orbit of Rα∗ is said to be good if it does not cover a simple orbit γ an
even number of times, where the first return map ξγ (0)→ ξγ (T ) has an odd number
of eigenvalues in the interval (−1, 0). Here T is the period of the orbit γ . An orbit
that is not good is called bad.

We now recall the notion of an almost complex structure on R× M∗ that is
tailored to (M∗, α∗).

Let (W, β) be a Liouville manifold and ζ be the contact structure given on ∂W
by ker(β0), where β0 = β|∂W . In addition, An almost complex structure J0 on Ŵ is
β̂- adapted if J0 is β0-adapted on [0,∞)×∂W ; and dβ(v, J0v) > 0 for all nonzero
tangent vectors v on W .

Definition 2.5. Let (M, 0,U (0), ξ) be a sutured contact manifold, α be an adapted
contact form and (M∗, α∗) be its completion. We say that an almost complex
structure J on R×M∗ is tailored to (M∗, α∗) if the following conditions hold:

(1) J is α∗-adapted, i.e., J is R-invariant, J (ξ)= ξ , dα(v, Jv) > 0 for nonzero
v ∈ ξ and J (∂s)= Rα∗ , where s denotes the R-coordinate.

(2) J is ∂t -invariant in a neighborhood of M∗ \ int(M).

(3) The projection of J to T R̂±(0) is a β̂±-adapted almost complex structure
J0 on the completion (R̂+(0), β̂+)t (R̂−(0), β̂−) of the Liouville manifold
(R+(0), β+)t(R−(0), β−). Moreover, the flow of ∂t identifies J0|R̂+(0)\R+(0)
and J0|R̂−(0)\R−(0)

.

Given a sutured contact manifold (M, 0,U (0), α) and an α∗-adapted almost
complex structure J , we define the sutured cylindrical contact homology group
HCcyl(M, 0, α, J ) to be the cylindrical contact homology of (M∗, α∗, J ). The
cylindrical contact homology chain complex C(α, J ) is a Q-module freely generated
by all good Reeb orbits, where the grading | · | and the boundary map ∂ are defined
as in [Bourgeois 2009] with respect to the α∗-adapted almost complex structure
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J . The homology of C(α, J ) is the sutured cylindrical contact homology group
HCcyl(M, 0, α, J ).

For our calculations we need the following construction of a “global” symplectic
trivialization described in [Bourgeois 2009]. Assume that all the Reeb orbits of Rα
are good. Let us now choose trivializations τ(γ ) consistently for all Reeb orbits
γ . Assume that H1(M;Z) is a free module. We pick representatives C1, . . . ,Cs

in H1(M;Z) for a basis of H1(M;Z), together with a trivialization of ξ along
each representative Ci , i = 1, . . . , s. Now for a Reeb orbit γ , we distinguish the
following cases:

(1) [γ ] = 0 ∈ H1(M;Z). Choose a spanning surface Sγ and use it to trivialize ξ
along γ .

(2) 0 6= [γ ] ∈ H1(M;Z). We choose a surface Sγ realizing a homology between
γ and a linear combination of the representatives Ci , i = 1, . . . , s. We then
use Sγ to extend the chosen trivializations of ξ along the Ci to γ .

We denote the obtained trivialization by τ .
To a J -holomorphic cylinder in MJ (γ ; γ ′), we can glue the chosen surfaces Sγ

and Sγ ′ and obtain a closed surface in M (here MJ (γ ; γ ′) is a moduli space of
J -holomorphic cylinders considered in cylindrical contact homology theory). Let
A ∈ H2(M;Z) be its homology class; we can use it to decorate the corresponding
connected component M J

A(γ ; γ
′) of the moduli space. Using τ we can write

(2B.1) ind(u)= |γ | − |γ ′| + 2〈c1(ξ), A〉

for u ∈MJ
A(γ ; γ

′), where |γ | is the Conley–Zehnder grading of γ defined by

(2B.2) |γ | := µτ (γ )− 1.

We will use (2B.1) and (2B.2) for our calculations.
In addition, we will need the following fact, which is a consequence of Lemma 5.4

in [Bourgeois et al. 2003]:

Fact 2.6. Let (M, α) be a closed, oriented contact manifold with nondegenerate
Reeb orbits and u ∈MJ (γ ; γ ′), where γ and γ ′ are good Reeb orbits and J is an
α-adapted almost complex structure on R×M. Then A(γ ) :=

∫
γ
α≥

∫
γ ′
α=:A(γ ′)

with equality if and only if γ = γ ′ and in this case the moduli space consists of a
single element R× γ .

Theorem 2.7 [Bourgeois 2009]. Let (M, α) be a closed, oriented contact manifold
with nondegenerate Reeb orbits. Let Ch

m(M, α) be the cylindrical contact homology
complex, where h is a homotopy class of Reeb orbits and m corresponds to the
Conley–Zehnder grading. If C0

k (M, α)= 0 for k =−1, 0, 1, we have for every free
homotopy class h:
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(1) ∂2
= 0.

(2) H(Ch
∗
(M, α), ∂) is independent of the contact form α for ξ , the almost complex

structure J and the choice of perturbation for the moduli spaces.

When M is closed and R× M is 4-dimensional, the following transversality
result has been proven by Momin [2011, Proposition 2.10]:

Theorem 2.8 [Momin 2011]. Let u ∈MJ (γ ; γ ′) be such that ind(u)= 1. Then the
linearization of the Cauchy–Riemann operator is surjective at u.

Remark 2.9. Theorem 2.8 does not require J to be generic. In addition, note that
Theorem 2.8 can be considered as a consequence of the automatic transversality
result of Wendl [2010, Theorem 0.1].

Finally, we recall the following result of Colin, Ghiggini, Honda and Hutchings:

Theorem 2.10 [Colin et al. 2011]. Let (M, 0,U (0), ξ) be a sutured contact 3-
manifold with an adapted contact form α, (M∗, α∗) be its completion and J be
an almost complex structure on R× M∗ which is tailored to (M∗, α∗). Then the
contact homology algebra HC(M, 0, ξ) is defined and independent of the choice
of contact 1-form α with ker(α) = ξ , adapted almost complex structure J , and
abstract perturbation.

Remark 2.11. Fact 2.6, Theorems 2.7 and 2.8 and formulas (2B.1) and (2B.2) hold
for J -holomorphic curves in the symplectization of the completion of a sutured
contact manifold, provided that we choose the almost complex structure J on
R×M∗ to be tailored to (M∗, α∗).

Remark 2.12. Theorem 2.10 and Remark 2.11 rely on the assumption that the
machinery, needed to prove the analogous properties for contact homology and
cylindrical contact homology in the closed case, works.

3. Construction

The goal of this section is to construct the sutured contact solid torus (S1
×D2, 0̃, α̃δ),

where 0̃ consists of 2n parallel sutures of slope −k/ l, (k, l) = 1, k > l > 0 and
n ∈ N. Here α̃δ is a contact form such that ξ = ker α̃δ is a universally tight contact
structure and the set of embedded orbits of Rα̃δ consists of an elliptic orbit γ and
hyperbolic orbits γ1, . . . , γn with

[γ ] = 1, µτ (γ
s
i )=−2ls, A(γ k) >A(γi ),

[γi ] = k ∈ Z' H1(S1
× D2

;Z), µτ (γ
t)=−2ml + 1,

where (m − 1)k < t ≤ mk, for some “global” symplectic trivialization τ . Here
i = 1, . . . , n, t ≤ Nδ, s ≤ Nδ/k, Nδ � 0.
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3A. Gluing map. First we construct H ∈ C∞(R2). The time-1 flow of the Hamil-
tonian vector field associated to H composed with an appropriate rotation will play
a role of the gluing map when we will apply the gluing construction described in
Section 2A to the sutured contact solid cylinder constructed in Section 3B.

We fix p ∈ R2 and consider Hsing : R
2
→ R given by Hsing = µr2 cos(nkθ) in

polar coordinates (r, θ) about p, where µ > 0, n ≥ 1 and k ∈ N \ {1}. Note that
Hsing is singular only at p.

Lemma 3.1. There exists a function H ∈ C∞(R2) which satisfies the following
properties:

• H = Hsing on R2
\ D(rsing) for some rsing > 0.

• H is 2π
nk -symmetric with respect to θ .

• The set of critical points of H consists of equally spaced saddle points p1, . . . , pnk

and a critical point p.

• There exists a neighborhood Us of ps with coordinates (x, y) such that H = axy
on Us with a > 0, and such that 2π

nk -rotation about p that we call Rnk maps
Us with the corresponding coordinate system to Us+1 with the corresponding
coordinate system for s = 1, . . . , nk.

• There exists a neighborhood U of p such that H = B̃r2
− C̃ on U , where C̃ > 0

and B̃ is a small positive number.

Proof. We construct H ∈C∞(R2) from Hsing by perturbing Hsing on a disk D(rsing)

about p in such a way that H has nk equally spaced saddle points, critical point at p
and interpolates with no other critical points with Hsing. In other words, H = Hsing

on R2
\ D(rsing) for some rsing > 0. For the level sets of Hsing and H in the case

n = 1, k = 3 we refer to Figure 1.
The construction of H is a modification of the construction described in [Cotton-

Clay 2009].
We proceed in four steps.

(1) We consider

H1 = Hsing+ f (r, θ)= Hsing+ fexp(r, θ)+ g(r, θ)

= µr2 cos(nkθ)− Ae−mr2
+ g(r, θ),

where A and m are positive constants, and g(r, θ) is a smooth function to be chosen
later. We are interested in the critical points of H1 away from the origin.

We calculate

∂H1

∂r
= 2µr cos(nkθ)+ 2mr Ae−mr2

+
∂g
∂r
,

∂H1

∂θ
=−nkµr2 sin(nkθ).
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Figure 1. The level sets of Hsing (left) and the level sets of H
(right) in the case n = 1, k = 3.

Thus, at the critical points of H1 we must have sin(nkθ) = 0. In this case,
cos(nkθ) = ±1. If cos(nkθ) = 1, then ∂H1/∂r − ∂g/∂r cannot be zero. When
cos(nkθ) = −1, ∂H1/∂r − ∂g/∂r = −2µr + 2mr Ae−mr2

. For r > 0, ∂H1/∂r −
∂g/∂r = 0 when emr2

= m A/µ, i.e., when

r = rc :=

√
1
m

ln
m A
µ
.

We impose the restriction that m A > µ. By making m large, we can make rc

arbitrarily small. When cos(nkθ)=−1, H1− g(r, θ)=−µ
m

(
ln(m A/µ)+ 1

)
. Let

g(r) be equal to µ
m

(
ln(m A/µ)+1

)
on the annular neighborhood of r = rc. For such

g, H1 is 0 at the critical points, i.e., at the points (rc, θ), where cos(nkθ)=−1.
In summary, we get critical points at one value of r at the values of θ when

cos(nkθ)=−1, that is, for nk values of θ . These are our nk saddle points (it’s not
hard to see they are saddle points; alternatively, we can deduce that they must be
for index reasons).

(2) Keeping fexp solely a function of r and keeping g constant, we cut off fexp

smoothly starting at some point past rc to give a Hamiltonian H2 which agrees
with Hsing+ g outside a ball. As long as ∂ fexp/∂r < 2µr , there are no new critical
points.

Note that fexp(rc) = −µ/m. Keeping ∂ fexp/∂r near µrc (which, using, e.g.,
A = eµ/m, is 1/

√
m), we can bring fexp to zero in a radial distance of a constant

times 1/
√

m; that is, for m large we can make H2 agree with Hsing+ g outside an
arbitrarily small ball.

For A = eµ/m, g = 2µ/m. Then keeping g solely a function of r , we cut off
g(r, θ) smoothly starting at some point past the point where H2 = Hsing+ g to give
Hamiltonian H3. As long as ∂g/∂r >−2µr , there are no new critical points. We
can make it in such a way that H3 agrees with Hsing outside a small ball.
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(3) Recall that H3= Hsing+ fexp+g near the origin and g(r, θ)= 2µm > 0. Note that
g(r, θ) is small for large m. Now keeping g constant we modify Hsing+ fexp+ g
near the origin to give us H4 which is Br2

−C near the origin (for B > 0), which
corresponds to the Hamiltonian flow rotating at a constant angular rate. Since

∂H3

∂r
=
∂(Hsing+ fexp)

∂r
> 0 for r < rc,

we can patch together Br2
− C near the origin with H2 outside a small ball of

radius less than rc in a radially symmetric manner to get H4 such that ∂H4/∂r > 0
for r < rc (we do this by choosing C sufficiently large). Note that H4 has a critical
point at the origin.

(4) Finally, to ensure no fixed points of the time-1 flow of the Hamiltonian vector
field of H , we let H be H4 multiplied by a radially symmetric function which is
ε for r < R (for ε sufficiently small that the only fixed points of the time-1 flow
inside radius R are the critical points and for R large enough that H4 agrees with
Hsing for r > R) and 1 for r > 2R. This creates no new fixed points in the region
R < r < 2R because H4 and ∂H4/∂r have the same sign there. Now there are no
fixed points of the time-1 flow of the Hamiltonian vector field of H , except for the
nk + 1 critical points of H because outside radius R there are no compact flow
lines.

Let p1, . . . , pnk denote the equally spaced saddle points of H ordered counter-
clockwise, i.e., Rnk(pi )= pi+1, where Rnk corresponds to the 2π

nk -rotation around
p. We note that H(ps)= 0 for s = 1, . . . , nk. Hence, by Morse lemma (arguing the
same way as in Lemma 3.2 in [Golovko 2011]) we get that there is a neighborhood
Us of ps such that H = axy on Us , where s = 1, . . . , nk and a > 0. In addition,
observe that H is 2π

nk -symmetric with respect to θ . Therefore, the Us together with
coordinates (x, y) are 2π

nk -symmetric with respect to θ , i.e., Rnk(Us) = Us+1 and
coordinates on Us maps to the coordinate on Us+1. Finally, note that H = B̃r2

− C̃
on a neighborhood of the center of D(rsing), which we call U , where C̃ > 0 and B̃
is a small positive number and hence Hamiltonian flow rotates at a constant rate
near the origin. �

3B. Sutured contact solid cylinder. In this section, we construct the sutured con-
tact solid cylinder that we later will glue to get the sutured contact solid torus with
2n sutures of slope −k/ l, where n ∈ N, (k, l)= 1 and k > l > 0.

Let γp,ps be an embedded curve in R2 which starts at p and ends at ps for
s = 1, . . . , nk. For the time being, we can think about γp,ps as about the segment
connecting p and ps .
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Lemma 3.2. There exists a 1-form β on R2 satisfying the following:

(1) dβ > 0.

(2) Its singular foliation given by ker β has isolated singularities and no closed
orbits.

(3) β = 1
2εcr2dθ on U with respect to the polar coordinates whose origin is

at the center of D(rsing); β = 1
2εsym(x dy − y dx) on Us with respect to the

coordinates from Lemma 3.1, where s∈{1, . . . , nk}; β= 1
2r2dθ on R2

\D(rsing)

with respect to the polar coordinates whose origin is at the center of D(rsing);
here 0< εc� εsym� 1.

(4) The set of hyperbolic points of the singular foliation of β is given by {qs}
nk
s=1

such that qs lies on γp,ps outside of Us and U.

(5) β is 2π
nk -symmetric, i.e., R∗nk(β)= β.

Proof. Consider a singular foliation F on R2 which satisfies the following:

(1) F is Morse–Smale and has no closed orbits.

(2) The singular set of F consists of elliptic points and hyperbolic points. The
elliptic points are the equally spaced saddle points of H and the center of D(rsing).
The set of hyperbolic points of the singular foliation of β is given by {qs}

nk
s=1 such

that qs lies on γp,ps outside of Us and U .

(3) F is oriented and for one choice of orientation the flow is transverse to and
exits from ∂D(rsing).

(4) F is 2π
nk -symmetric with respect to θ .

Next, we modify F near each of the singular points so that F is given by
β0 =

1
2(x dy− y dx) on Us with respect to the coordinates from Lemma 3.1 and

β0 = 2x dy + y dx near a hyperbolic point. On R2
\ D(rsing), β0 =

1
2r2dθ with

respect to the polar coordinates whose origin is at the center of D(rsing). In addition,
on U , β0=

1
2r2dθ with respect to the polar coordinates whose origin is at the center

of D(rsing). From Lemma 3.1 it follows that we can do it in such a way that the
modification of F is still 2π

nk -symmetric. Finally, we get F given by β0, which
satisfies dβ0 > 0 near the singular points and on R2

\ D(rsing). Now let β = gβ0,
where g is a positive function with dg(X)� 0 outside of

U ∪
(⋃nk

s=1 Us
)
∪ (R2

\ D(rsing)),

g|⋃nk
s=1 Us

= εsym, g|U = εc, g|R2\D(rsing) = 1 and X is an oriented vector field for
F (nonzero away from the singular points). Here 0 < εc � εsym � 1. Since
dβ = dg∧β0+ g∧ dβ0, dg(X)� 0 guarantees that dβ > 0. �
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Figure 2. The level sets of H (left) and the characteristic foliation
of β (right) in the case n = 1, k = 3.

For the comparison of the level sets of H with the singular foliation of β in the
case n = 1, k = 3 we refer to Figure 2.

Lemma 3.3. Let β be a 1-form from Lemma 3.2. The Hamiltonian vector field X H

of H with respect to the area form dβ satisfies β(X H )= H on(⋃nk
s=1 Us

)
∪ (R2

\ D(rsing)).

In addition, the Hamiltonian vector field X H of H with respect to the area form dβ
satisfies β(X H )− H = C̃ on U.

Proof. First, Lemmas 3.1 and 3.2 imply that β = 1
2εcr2dθ , H = B̃r2

− C̃ on U

and εc is a small positive number. Now we show that X H =
2B̃
εc

∂
∂θ

is a solution of
β(X H )− H = C̃ on U . We calculate

iX H (dβ)=
(

2B̃
εc

∂

∂θ

)
y(εcr dr ∧ dθ)=−2B̃r dr =−d H

and

β(X H )− H = 1
2εcr2dθ

(
2B̃
εc

∂

∂θ

)
− B̃r2

+ C̃ = C̃ .

Next, we work on Us , where s = 1, . . . , nk. From Lemmas 3.1 and 3.2 it follows
that β = 1

2εsym(x dy− y dx) and H = axy on Us . Let X H be a Hamiltonian vector
field defined by iX H dβ =−d H .

We show that

X H =−
ax
εsym

∂

∂x
+

ay
εsym

∂

∂y

is a solution of the equation

(3B.1) β(X H )= H

on Us . We calculate

iX H (dβ)=
(
−

ax
εsym

∂

∂x
+

ay
εsym

∂

∂y

)
y(εsymdx ∧ dy)=−ax dy− ay dx =−d H
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and

β(X H )=
1
2εsym(x dy− y dx)

(
−

ax
εsym

∂

∂x
+

ay
εsym

∂

∂y

)
= axy = H.

Finally, Lemmas 3.1 and 3.2 say that β = 1
2r2dθ and H = µr2 cos(nkθ) on

R2
\ D(rsing). As in the previous case, we show that

X H = nkµr sin(nkθ)
∂

∂r
+ 2µ cos(nkθ)

∂

∂θ

is a solution of Equation (3B.1) on R2
\ D(rsing).

We calculate

iX H (dβ)= (nkµr sin(nkθ)∂r + 2µ cos(nkθ)∂θ )y(r dr ∧ dθ)

=−2µr cos(nkθ)dr + nkµr2 sin(nkθ) dθ =−d H,

and

β(X H )=
1
2r2dθ

(
nkµr sin(nkθ)

∂

∂r
+ 2µ cos(nkθ)

∂

∂θ

)
= µr2 cos(nkθ)= H. �

Let X H be the Hamiltonian vector field of H with respect to dβ and ϕs
X H

be the
time-s flow of X H . Now we introduce the following notations:

S :=
{

x ∈ R2
\ D(rsing) | ϕ

s
X H
(x) ∈ R2

\ D(rsing) for all s ∈ [0, 1]
}
,

V :=
{

x ∈U | ϕs
X H
(x) ∈U for all s ∈ [−1, 1]

}
,

Vi :=
{

x ∈Ui | ϕ
s
X H
(x) ∈Ui for all s ∈ [−1, 1]

}
.

For simplicity, let us denote ϕX H := ϕ
1
X H

.

Remark 3.4. Using the form of X H on Ui , where i = 1, . . . , nk, we may assume
that the curves γp,pi in Lemma 3.2 satisfy the following list of properties:

(1) γp,pi is an embedded curve which starts at p and ends at pi ;

(2) γp,pi is a part of one of the curves of the singular foliation given by ker β;

(3) γp,pi coincides with one of the level sets of H on Vi and near pi can be
presented as W s(ϕX H , pi )= {x | (ϕX H )

n(x)→ p as n→∞}.

Recall that the following claim was proven in [Golovko 2011]:

Claim 3.5. If (M, ω) is an exact symplectic manifold, i.e., ω = dβ, then the flow
ϕt

X H
of a Hamiltonian vector field X H consists of exact symplectic maps, i.e.,

(ϕt
X H
)∗β −β = d ft ,



86 ROMAN GOLOVKO

where
ft =

∫ t

0
(−H +β(X H )) ◦ϕ

s
X H

ds.

Remark 3.6. From Lemma 3.3 and Claim 3.5 it follows that

ϕ∗X H
(β)−β = dh,

where h := f1= 0 on S∪
⋃nk

i=1 Vi and h= C̃ > 0 on V . Hence, we get ϕ∗X H
(β)= β

on S ∪ V ∪
⋃nk

i=1 Vi .

Now we define ϕ−k/ l := R−k/ l ◦ ϕX H , where R−k/ l : R
2
→ R2 is a rotation by

−2πl/k around p.

Remark 3.7. Since R∗nk(β)= β, we get R∗
−k/ l(β)= β and hence

ϕ∗
−k/ l(β)= (R−k/ l ◦ϕX H )

∗(β)= ϕ∗X H
(R∗
−k/ l(β))= ϕ

∗

X H
(β).

Fix R∗� rsing such that there is an annular neighborhood VR∗ of ∂D(R∗) in R2

with VR∗ ⊂ S. Consider D(R∗) with

β0 := β|D(R∗) and β1 := ϕ
∗

X H
(β)|D(R∗)(= ϕ

∗

−k/ l(β)|D(R∗)).

Note that

(3B.2) dβ1 = d(ϕ∗X H
(β)|D(R∗))= ϕ

∗

X H
(dβ)|D(R∗) = (dβ)|D(R∗) = dβ0 > 0.

In addition, from the definitions of V (R∗) and D(R∗) it follows that

(3B.3) β0 = β1 on VR∗ ∩ D(R∗).

Now we recall the construction of the contact 1-form on [−1, 1]× D2.

Lemma 3.8 [Golovko 2011, Lemma 3.10]. Let β0 and β1 be two 1-forms on D2

such that β0 = β1 in a neighborhood of ∂D2 and dβ0 = dβ1 = ω > 0. Then
there exists a contact 1-form α and a Reeb vector field Rα on [−1, 1] × D2 with
coordinates (t, x), where t is a coordinate on [−1, 1] and x is a coordinate on D2,
with the following properties:

(1) α = dt + εβ0 in a neighborhood of {−1}× D2.

(2) α = dt + εβ1 in a neighborhood of {1}× D2.

(3) Rα is collinear to ∂/∂t on [−1, 1]× D2.

(4) Rα = ∂/∂t in a neighborhood of [−1, 1]× ∂D2.

Here ε is a small positive number.

In addition, recall that

(3B.4) α = (1+ εχ1(t)h) dt + ε((1−χ0(t))β0+χ0(t)β1),
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where h ∈ C∞(D2) such that β1−β0 = dh; χ0 : [−1, 1] → [0, 1] is a smooth map
for which χ0(t)= 0 for −1≤ t ≤−1+εχ0 , χ0(t)= 1 for 1−εχ0 ≤ t ≤ 1, χ ′0(t)≥ 0
for t ∈ [−1, 1] and εχ0 is a small positive number; χ1(t) := χ ′0(t); ε is a sufficiently
small positive number.

Remark 3.9. Note that dα = εω, where α is a 1-form given by (3B.4) and ω =
dβ0 = dβ1 > 0 on D2.

Observe that from (3B.2) and (3B.3) it follows that β0 and β1 described above
satisfy the conditions of Lemma 3.8. We now take [−1, 1]× D(R∗) equipped with
the contact 1-form α given by (3B.4). For simplicity, let us denote β− := εβ0 and
β+ := εβ1, where ε is a constant from Lemma 3.8 which makes α contact.

3C. Gluing. We now construct P+, P− and D in the way described in [Golovko
2011]. Recall that

P+, P−, D ⊂ D(R∗)⊂ R2

are surfaces with boundary which satisfy the following properties:

(1) P± ⊂ D.

(2) (∂P±)∂ ⊂ ∂D and (∂P±)int ⊂ int(D).

(3) ϕX H maps P+ to P− taking (∂P+)int onto (∂P−)∂ and (∂P+)∂ onto (∂P−)int.

(4) (∂P−)∂ ∩ (∂P+)∂ =∅.

Note that

• ∂P+ =
(⋃nk−1

s=0 a+s
)
∪
(⋃nk−1

s=0 b+s
)
,

• ∂P− =
(⋃nk−1

s=0 a−s
)
∪
(⋃nk−1

s=0 b−s
)
,

• ∂D =
(⋃nk−1

s=0 a+s
)
∪
(⋃nk−1

s=0 b−s
)
∪
(⋃nk−1

s=0 c+s
)
∪
(⋃nk−1

s=0 c−s
)
.

See Figure 3 for the schematic visualization of P+ (bounded by the bold line),
P− and D. For more details of this construction we refer to [Golovko 2011].

Remark 3.10. Note that the a±i , b±i and c±i are constructed in such a way that

a±i , b±i , c±i ⊂ D(R∗)∩ S

for i = 0, . . . , nk−1. Hence, we see that ∂P+, ∂P−, ∂D ⊂ D(R∗)∩ S. In addition,
Rnk(a±i )= a±i+1 and Rnk(b±i )= b±i+1, where i, i + 1 are considered modulo nk.

We take [−1, 1] × D with a contact form α := α|[−1,1]×D. Let 0 = {0} × ∂D
in [−1, 1] × D and U (0) := [0, 1] × [−1, 1] × 0 be a neighborhood of 0 with
coordinates (τ, t) ∈ [0, 1]×[−1, 1], where t is a usual t-coordinate on [−1, 1]×D.
From the definition of S and Remark 3.10 it follows that we may assume that
U (0)⊂ [−1, 1]× (S ∩ D).
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D(rsing)

a+0

a+1 a+2

b−0

b−1

b−2

c+0

c+1

c+2c−0

c−1

c−2

Figure 3. Construction of P+, P− and D in the case n = 1, k = 3.

Lemma 3.11. ([−1, 1]× D, 0,U (0), ξ) is a sutured contact manifold and α is an
adapted contact form.

Proof. First note that α|R− = β− and α|R+ = β+. Let us check that (R−, β−)
and (R+, β+) are Liouville manifolds. From the construction of β± it follows that
d(β−) = d(β+) > 0. Since β− = β+ on D ∩ S and by (3B.4), α = dt + β− on
U (0). Recall that β− = β+ = 1

2εr
2dθ on D ∩ S. Hence, α|U (0) = dt + 1

2εr
2dθ .

The calculation

iY±|R±∩U (0)(dβ±)=
(1

2r∂r
)
y(εr dr ∧ dθ)= 1

2εr
2dθ = β±

implies that the Liouville vector fields Y±|R±∩U (0) are equal to 1
2r∂r . From the

construction of D it follows that Y± is positively transverse to ∂R±. Thus, (R−, εβ0)

and (R+, εβ1) are Liouville manifolds. As already mentioned, we have α= dt+β−
on U (0). Finally, if we take τ such that ∂τ = 1

2r∂r , then ([−1, 1]×D, 0,U (0), ξ)
becomes a sutured contact manifold with an adapted contact form α. �

Then we use ϕ−k/ l for the gluing construction. Note that ϕX H maps a+s to a−s
and b+s to b−s . Hence, using Remark 3.10, we see that ϕ−k/ l maps a+s to a−s−nl and
b+s to b−s−nl . Then we follow the gluing procedure briefly described in Section 2A
and completely written in [Colin et al. 2011]. Finally, we get a sutured contact solid
torus (S1

× D2, 0̃,U (0̃)) with a contact form α̃δ, where 0̃ is a set of 2n parallel
closed curves of slope −k/ l, where n ∈N, (k, l)= 1, k > l > 0 and δ is the rotation
angle of the map ϕX H near p.

Remark 3.12. We have constructed (S1
×D2, 0̃,U (0̃)) using the gluing construc-

tion for sutured manifolds. However, since there is a close connection between
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sutured contact manifolds and contact manifolds with convex boundary, we ob-
serve that the gluing construction we used for the sutured contact solid cylinder
corresponds to the gluing construction for the contact 3-ball with convex boundary
and one dividing curve on the boundary. The corresponding gluing construction
for the contact 3-ball with convex boundary corresponds (is inverse) to the convex
decomposition of the contact solid torus S1

×D2 with convex boundary with respect
to the convex meridional disk {pt}×D2 with ∂-parallel dividing curves. Hence, the
constructed sutured contact solid tori are universally tight sutured contact manifolds
by the gluing/classification result from Section 2 in [Honda 2002] (more precisely,
Corollary 2.3, Theorem 2.5 and Corollary 2.6).

3D. Reeb orbits. Note that ϕ−k/ l |P+ has n orbits of period k obtained from the
equally spaced saddle points of H . Lemma 3.8 and the gluing procedure briefly
described in Section 2A imply that these orbits correspond to the Reeb orbits, which
we call γ1, . . . , γn such that

[γs] = [γt ] = k ∈ H1(S1
× D2

;Z)

for s, t = 1, . . . , n. In addition, ϕ−k/ l |P+ has a periodic point of period 1, which is p.
It corresponds to the Reeb orbit, which we call γ , such that [γ ]=1∈H1(S1

×D2
;Z).

Lemma 3.13.
∫
γs
α̃δ =

∫
γt
α̃δ and k

∫
γ
α̃δ >

∫
γs
α̃δ, where s, t = 1, . . . , n.

Proof. Let

M (0)
= (([−1, 1]× D)∪ (R+(0)×[1;∞))∪ (R+(0)× (−∞;−1])),

M̃ = M (0)
\ ((P+× (N ,∞)∪ (P−× (−∞,−N )).

In addition, let αM̃ denote the contact form on M̃ and let ξM̃ denote the contact
structure defined by αM̃ .

Consider [−1, 1]×D⊂ M̃ . From the construction of α it follows that β+=β− on
Vs and α|[−1,1]×Vs = dt +β− for s = 1, . . . , nk. Hence, since the contact structure
on [1,∞)× P+ is given by dt+β+ and the contact structure on (−∞,−1]× P− is
given by dt+β−, αM̃ |[−N ,N ]×Vs = dt+β− on [−N , N ]×Vs ⊂ M̃ for s= 1, . . . , nk.
Therefore, we get

(3D.1)
∫
[−N ,N ]×{ps}

αM̃ = 2N

for s = 1, . . . , nk. From the gluing construction and (3D.1) it follows that∫
γs

α̃δ = 2Nk

for s = 1, . . . , n. Note that
∫
γs
α̃δ does not depend on s. Hence,

∫
γs
α̃δ =

∫
γt
α̃δ for

s, t = 1, . . . , n.
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Now from the fact that α = (1+ εχ1(t)h) dt +β− on [−1, 1]× V , where h > 0
and χ1(t) > 0, we get that

Rα =
1

1+ εχ1(t)h
∂

∂t

on [−1, 1] × V . Hence, from the gluing construction we obtain k
∫
γ
α̃δ > 2Nk.

Thus, ∫
γs

α̃δ =

∫
γt

α̃δ and k
∫
γ

α̃δ >

∫
γs

α̃δ,

where s, t = 1, . . . , n. �

Lemma 3.14. All closed orbits of Rα̃δ are nondegenerate. Moreover, γ is an
elliptic orbit and γi is a hyperbolic orbit such that γ t and γ s

i are good orbits for
i = 1, . . . n; s, t ∈N. There exists a symplectic trivialization τ of ξ along γ and the
γi , constructed in the consistent way as described in Section 2B, and Nδ ∈ N such
that

µτ (γ
s
i )=−2ls,

µτ (γ
t)=−2ml + 1,

where (m− 1)k < t ≤ mk and i = 1, . . . , n, t ≤ Nδ, s ≤ Nδ/k.

Proof. For simplicity, assume that l = 1. The general calculation can be done in the
analogous way.

Fix i = 1, . . . , n. We first observe that H |Vi = axy, where a > 0 and hence

ϕX H |Vi =

(
λ 0
0 λ−1

)
,

where λ = ea
6= 1. Let the symplectic trivialization of ξM̃ along [−N , N ] × {pi }

be given by the framing (λ
−N−t

2N ∂x , λ
t+N
2N ∂y), where i = 1, . . . , nk and (x, y) are

coordinates on Vi which coincide with the coordinates on Ui from Lemma 3.1.
Since Lemma 3.1 implies that Rnk maps coordinates on Vi to the coordinate on
Vi+1, where i , i + 1 are considered modulo nk, we conclude that the symplectic
trivializations of ξM̃ along each [−N , N ]×{pi+nm} for m = 0, . . . , k−1 and fixed
i = 1, . . . , n give rise to the symplectic trivialization τγi of ξ̃ along γi . It is easy to
see that the linearized return map Pγi with respect to this trivialization is given by

Pγi =

(
λk 0
0 λ−k

)
.

Since the eigenvalues of Pγi are positive real numbers different from 1, γi is a
positive hyperbolic orbit. In addition, Pγ s

i
= Ps

γi
. Therefore, the eigenvalues of Pγ s

i

are different from 1. Hence, γ s
i is a nondegenerate orbit for s ∈N and i = 1, . . . , n.



CYLINDRICAL CONTACT HOMOLOGY OF CONTACT SOLID TORI 91

We now observe that the linearized Reeb flow around γi (with respect to τγi ) rotates
the eigenspaces of Pγi by angle −2π . Hence, we get

(3D.2) µτγi
(γ s

i )=−2s

for s ∈ N and i = 1, . . . , n.
Now let the symplectic trivialization of ξM̃ along [−N , N ] × {p} be given by

the framing(
cos(θδ,k,N (t))∂x + sin(θδ,k,N (t))∂y,− sin(θδ,k,N (t))∂x + cos(θδ,k,N (t))∂y

)
,

where θδ,k,N (t)= π(1−δk)(t+N )/(Nk) and t ∈ [−N , N ]. Note that R−k ◦ϕX H |V

is a rotation through 2π(−1/k+ δ), where R−k is a −2π/k-rotation about p and
δ is a small positive irrational number. It is easy to see that with respect to this
framing Pγ is a rotation by 2π(−1/k+ δ). Hence, since δ is irrational, we see that
γ is an elliptic orbit and γ t is nondegenerate for t ∈ N. Let

Nδ :=max
{
m ∈ N | mδ < 1/k

}
.

Note that we get

(3D.3) µτγ (γ
t)=−2m+ 1,

where (m−1)k < t ≤mk and t ≤ Nδ . Formulas (3D.2) and (3D.3) and the fact that
δ is irrational imply that the parity of µτγi

(γ s
i ) is independent of s for given i and

the parity of µτγ (γ
t) is independent of t . Hence, we conclude that the γ s

i and γ t

are good Reeb orbits for i = 1, . . . , n and s, t ∈ N.
It is not difficult to see that the symplectic trivialization τγ k (induced from τγ )

can be extended to the τγi (are consistent in terms of Section 2B) along the surfaces
obtained from (ϕ

(−N−t)/2N
X H

(γp,pi ))
nk
i=1 by gluing them with ϕ−k and gives rise to

the global symplectic trivialization that we call τ . �

4. Calculation

In this section, we calculate the sutured version of cylindrical contact homology of
the sutured contact solid torus that we have constructed in Section 3.

Remark 4.1. There are no contractible Reeb orbits. Hence, from Theorem 2.7,
Remark 2.11, and the fact that π1(S1

× D2
;Z) ' H1(S1

× D2
;Z) ' Z it follows

that for all h ∈ H1(S1
×D2
;Z), HCcyl,h

∗ (S1
×D2, 0̃, α̃δ, J ) is defined, i.e., ∂2

= 0,
and is independent of contact form α̃δ for the given contact structure ξ̃ and the
almost complex structure J .

For simplicity, assume that l = 1. The calculation for l > 1 can be made in the
completely analogous way.
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Lemma 3.14 implies that all Reeb orbits are good and

(4A.4) |γ s
i | = −2s− 1, |γ t

| = −2m,

where m− 1< t/k ≤ m and i = 1, . . . , n, s ≤ Nδ/k, t ≤ Nδ. Hence, we get

(4A.5)
Ch

m(α̃δ, J )=


Q〈γ h

〉 for h > 0 and m = 2
⌊

h(−1/k+ δ)
⌋
,

Q〈γ
h/k
1 , . . . , γ

h/k
n 〉 for k | h > 0 and m =−2h/k− 1,

0, otherwise,

for h ≤ Nδ.
Now, since by Lemma 3.13 A(γ k) >A(γi ) for i = 1, . . . , n, we can use Fact 2.6

and Remark 2.11 and conclude that ∂(γ s
i )= 0 for i = 1, . . . , n and s > 0. Then, we

prove that ∂(γ t)= 0 for k - t ≤ Nδ . Since [γi ] = k[γ ] in H1(S1
× D2

;Z)∼= Z, the
cylindrical contact homology differential at γ t counts only cylinders with negative
end at γ t . Then, similarly to the previous case, Fact 2.6 and Remark 2.11 imply
that ∂(γ t)= 0 for k - t ≤ Nδ.

We now consider the case when k | t and will show that ∂(γ t) 6= 0 for k | t ≤ Nδ .
Is this situation, by arguing in the same way as in the case when k - t , we get that
∂(γ t) counts only cylinders with negative end at γ t/k

i .
Now we note that

(4A.6) ind(u)= |γ t
| − |γ

t/k
i |

for any pseudoholomorphic curve u in the moduli space MJ (γ t
; γ

t/k
i ), where

k | t ≤ Nδ and J is an almost complex structure tailored to ((R× S1
× D2)∗, α̃∗δ ).

The index formula can be written in this way, since H2(S1
× D2
;Z)= 0 and hence

< c1(ξ), A >= 0 for all A ∈ H2(S1
× D2,Z). We now use (4A.4) and get

|γ t
| − |γ

t/k
i | = −2m− (−2t/k− 1)=−2(m− t/k)+ 1,

and m = t/k for i = 1, . . . , n; t ≤ Nδ. Hence, we can rewrite (4A.6) as

(4A.7) ind(u)= |γ t
| − |γ

t/k
i | = −2(t/k− t/k)+ 1= 1

for i = 1, . . . , n and t ≤ Nδ. Therefore, Theorem 2.8 and Remark 2.11 imply
that for every u ∈M(γ t , γ

t/k
i ) the linearization of the Cauchy–Riemann operator

is surjective at u; here k | t ≤ Nδ, J is any almost complex structure tailored to
((S1
× D2)∗, α̃∗δ ) and i = 1, . . . , n.

Let (S1
× D2, 0long,U (0long), α

long
δ ) be a sutured contact solid torus obtained

from ([−1, 1]× D, 0,U (0), α) by using ϕX H as a gluing map. Recall that we get
(S1
×D2, 0̃,U (0̃), α̃δ) from ([−1, 1]×D, 0,U (0), α) by using ϕ−k = R−k ◦ϕX H

as a gluing map. We now note that (S1
×D2, 0long,U (0long), α

long
δ ) is a universally

tight sutured contact solid torus with 2nk parallel longitudinal sutures, k > 1, and
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such that when one cuts it along the meridian disk the sutures on the disk are
boundary-parallel. This follows from the gluing/classification result for universally
tight contact structures on a sutured solid torus; see Section 2 in [Honda 2002]
(more precisely, Corollary 2.3, Theorem 2.5 and Corollary 2.6). The cylindrical
contact homology of this sutured contact manifold is computed in [Golovko 2011]
and is given by

(4A.8) HCcyl,h(S1
× D2, 0long, ξlong)'

{
Qnk−1 for h ≥ 1,
0, otherwise.

Here ξlong = ker αlong.
Note that (S1

× D2, 0long,U (0long), α
long
δ ) has nk hyperbolic orbits

γ
long
1 , . . . , γ

long
nk

and one elliptic orbit γ long. Here the γ long
i correspond to the equally spaced saddle

points of H and γ long corresponds to the critical point of H at the center of D(rsing).
In addition, observe that

(4A.9) [γ
long
i ] = [γ long

] = 1 ∈ H1(S1
× D2

;Z).

Finally, note that from Lemma 3.13 and from the construction of

γ long and γ
long
1 , . . . , γ

long
nk ,

it follows that

(4A.10) A(γ long) >A(γ
long
i ), A(γ

long
i )=A(γ

long
j )

for i, j = 1, . . . , nk. Hence, Theorem 2.7, Remark 2.11 together with Fact 2.6, and
(4A.8), (4A.9) and (4A.10) imply that ∂(γ long)s 6= 0 for s > 0; otherwise we arrive
at a contradiction with (4A.8) (since ∂(γ long)s = 0 implies that the exponent of Q

in (4A.8) must be nk+ 1). In addition, observe that < ∂(γ long)s, (γ
long
i )s >6= 0 for

some i and all s > 0.
We now take an almost complex structure J long tailored to ((S1

×D2)∗, (α
long
δ )∗)

such that as a map ξ long
→ ξ long it is obtained from some fixed J cyl

: ξ → ξ which
is defined on ([−1, 1]× D, 0,U (0), α) and satisfies the following properties:

(1) (J cyl)2 =−I , dα(J cyl
· , J cyl

· )= dα( · , · ), dα( · , J cyl
· ) > 0;

(2) J cyl
|{1}×D = ϕ

∗

X H
(J cyl
|{−1}×D) and J cyl is 2π

nk -symmetric, i.e., it is invariant
under 2π

nk -rotation with respect to the center of D.

Here ξ long
= ker αlong

δ and ξ = ker α. By saying that J long is obtained from J cyl we
simply mean that the gluing procedure with ϕX H applied to ([−1,1]×D, 0,U (0), α)
transforms J cyl to J long. Since ξ is 2π

nk -symmetric on ([−1, 1]×D, 0,U (0), α), we
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claim that J cyl, which satisfies Properties (1) and (2), exists and that Property (2) is
not a serious restriction on J cyl. The symmetry of ξ follows from the symmetry of
β and X H , and from the construction of α. From the symmetry of J long it follows
that < ∂(γ long)s, (γ

long
i )s >6= 0 for all i = 1, . . . , nk and s > 0.

Now we take J̃ on (S1
× D2, 0̃,U (0̃), α̃δ), which is obtained from the same

J cyl defined on ([−1, 1]× D, 0,U (0), α) by applying the gluing procedure with

ϕ−k = R−k ◦ϕX H to ([−1, 1]× D, 0,U (0), α),

and possibly modify it near the boundary of (S1
× D2, 0̃,U (0̃), α̃δ) (far from the

Reeb orbits) so that it becomes tailored to ((S1
×D2)∗, (α̃δ)

∗). Observe that we can
assume that J long= J̃ . From the symmetry of J cyl and the form of the gluing maps for
(S1
× D2, 0̃,U (0̃), α̃δ) and (S1

× D2, 0long,U (0long), α
long
δ ) it follows that every

J long-holomorphic curve u which contributes to < ∂(γ long)ks, (γ
long
i )ks >6= 0 can

be modified to a J̃ -holomorphic curve ũ from γ ks to γ s
i by modifying (composing)

it with the rotation about the center of a meridian disk, and hence < ∂γ ks, γ s
i >6= 0.

This choice of almost complex structures is possible since Theorem 2.8 and
Remark 2.11 imply that we do not need to require almost complex structures to be
generic. Finally, it follows from (4A.5) that

HCcyl,h
m (S1

× D2, 0̃, α̃δ)'


Q for h > 0 and m = 2

⌊
h(−1/k+ δ)

⌋
,

Qn−1 for k | h > 0 and m =−2h/k− 1,

0, otherwise.

for h ≤ Nδ.
We now note that ξ̃ = ker α̃δ is independent of δ. This follows from the glu-

ing/classification result for universally tight contact structures on a sutured solid
torus; see [Honda 2002, Corollary 2.3, Theorem 2.5 and Corollary 2.6]. Hence,
from Theorem 2.7 and Remark 2.11 it follows that

HCcyl,h(S1
× D2, 0̃, ξ̃ )= HCcyl,h(S1

× D2, 0̃, α̃δ)

for all h and hence for h ≤ Nδ, where δ is a small positive irrational number,

HCcyl,h(S1
× D2, 0̃, ξ̃ ) :=

⊕
m

HCcyl,h
m (S1

× D2, 0̃, ξ̃ ),

HCcyl,h(S1
× D2, 0̃, α̃δ) :=

⊕
m

HCcyl,h
m (S1

× D2, 0̃, α̃δ).

Now observe that Nδ→∞ when δ→ 0. In addition, we note that for fixed n, k and
two small positive irrational numbers δ1 6= δ2, the sets of closed orbits of Rα̃δ1 and
Rα̃δ2 are the same, and the corresponding orbits with the same first homology class
h ≤ min{Nδ1, Nδ2} have the same Conley–Zehnder gradings in the corresponding
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complexes. Therefore, for every 0< h ∈ Z= H1(S1
× D2

;Z), there exists δ such
that

HCcyl,h
m (S1

× D2, 0̃, ξ̃ )= HCcyl,h
m (S1

× D2, 0̃, α̃δ)

'


Q for h > 0 and m = 2

⌊
h(−1/k+ δ)

⌋
,

Qn−1 for k | h > 0 and m =−2h/k− 1,

0, otherwise.

for h ≤ Nδ and hence

(4A.11) HCcyl,h
m (S1

× D2, 0̃, ξ̃ )'


Q for h > 0 and m = 2

⌊
−h/k+ δk

⌋
,

Qn−1 for k | h > 0 and m =−2h/k− 1,

0, otherwise,

where 0< δk � 1/k. Finally, (4A.11) implies that

(4A.12) HCcyl,h(S1
× D2, 0, ξ)'


Q for k - h > 0,
Qn−1 for k | h > 0,
0, otherwise.

This completes the proof of Theorem 1.1 when l = 1.
For l > 1, one can use the same observations as in the case when l = 1 and show

that the only nonzero part of the cylindrical contact homology differential is given
by < ∂γ t , γ

t/k
i >6= 0 for k | t ≤ Nδ. This will lead to (4A.12) for all l such that

(k, l)= 1, k > l > 0.

Remark 4.2. Theorem 1.3 from [Golovko 2011] and Theorem 1.1 provide the
formula for the sutured version of cylindrical contact homology of (S1

× D2, 0, ξ),
where 0 consists of 2n parallel sutures of arbitrary slope, ξ is a universally tight
contact structure and such that if one cuts along the meridian disk, the sutures
on the disk are ∂-parallel. In particular, this gives a complete calculation of the
cylindrical contact homology of (S1

× D2, 0, ξ), where 0 consists of 2 parallel
sutures of arbitrary slope and ξ is a universally tight contact structure (observe that
in this situation there are only two isomorphic (but not isotopic) universally tight
contact structures; see Section 2 in [Honda 2002]). These are not all the universally
tight contact structures on the solid torus, but all of them can be obtained from the
#0 = 2 case by successively applying the folding operation.
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UNIFORM BOUNDEDNESS OF S-UNITS
IN ARITHMETIC DYNAMICS

HOLLY KRIEGER, AARON LEVIN, ZACHARY SCHERR,
THOMAS TUCKER, YU YASUFUKU AND MICHAEL E. ZIEVE

Let K be a number field and let S be a finite set of places of K which contains
all the archimedean places. For any φ(z) ∈ K (z) of degree d ≥ 2 which is
not a d-th power in K (z), Siegel’s theorem implies that the image set φ(K )
contains only finitely many S-units. We conjecture that the number of such
S-units is bounded by a function of |S| and d (independently of K , S and φ).
We prove this conjecture for several classes of rational functions, and show
that the full conjecture follows from the Bombieri–Lang conjecture.

1. Introduction

Let K be a number field, let S be a finite set of places of K which contains the
set S∞ of archimedean places of K , and write oS for the ring of S-integers of K
and o∗S for the group of S-units of K . The genus-0 case of Siegel’s theorem asserts
that, for any φ(z) ∈ K (z) which has at least three poles in P1(K ), the image set
φ(K ) contains only finitely many S-integers. However, the number of S-integers
in φ(K ) cannot be bounded independently of φ(z), even if we restrict to functions
φ(z) having a fixed degree, since ψ(z) := βφ(z) satisfies ψ(K )= βφ(K ) for any
β ∈ K ∗.

Although the number of S-integers in φ(K ) cannot be bounded in terms of only
K , S, and degφ, such a bound may be possible for the number of S-units in φ(K ).
In fact we conjecture that there is a bound depending only on |S| and degφ (and
not on K ):

Conjecture 1.1. For any integers s ≥ 1 and d ≥ 2, there is a constant C = C(s, d)
such that for any

• number field K ,
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DMS-1200749 (T.T.), and DMS-1162181 (M.Z.). The fifth author was partially supported by JSPS
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MSC2010: primary 37P05, 37P15; secondary 11G99, 11R99.
Keywords: arithmetic dynamics, S-units, uniform boundedness.
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• s-element set S of places of K with S ⊇ S∞,

• degree-d rational function φ(z) ∈ K (z) which is not a d-th power in K (z),

we have
|φ(K )∩ o∗S| ≤ C.

We will prove Conjecture 1.1 in case φ(z) is restricted to certain classes of
rational functions, and we will also prove that the full conjecture is a consequence
of a variant of the Caporaso–Harris–Mazur conjecture on uniform boundedness of
rational points on curves of fixed genus.

We also consider a variant of Conjecture 1.1, which addresses S-units in an orbit
of φ rather than in the image set φ(K ). Here, for any α ∈ P1(K ), the orbit of α
under φ(z) is the set

Oφ(α) := {φn(α) : n ≥ 1},

where φn
=φ◦· · ·◦φ denotes the n-fold composition of φ with itself. For any φ(z)∈

K (z) of degree at least 2 such that φ2(z) /∈ K [z], Silverman [1993] showed that
Oφ(α)∩oS is finite. However, for any β ∈K ∗ the functionψ(z) :=βφ(z/β) satisfies
Oψ(αβ)= βOφ(α), so the size of Oφ(α)∩ oS cannot be bounded independently of
φ(z). We conjecture that there is a uniform bound on the number of S-units in an
orbit:

Conjecture 1.2. For any integers s ≥ 1 and d ≥ 2, there is a constant C = C(s, d)
such that for any

• number field K ,

• s-element set S of places of K with S ⊇ S∞,

• degree-d rational function φ(z) ∈ K (z) which is not of the form βz±d with
β ∈ K ∗,

• α ∈ P1(K ),

we have
|Oφ(α)∩ o∗S| ≤ C.

It turns out that this conjecture is a consequence of Conjecture 1.1:

Proposition 1.3. If Conjecture 1.1 is true then Conjecture 1.2 is true.

Remark 1.4. The hypotheses of Conjectures 1.1 and 1.2 imply that [K :Q] ≤ 2s,
since S∞ ⊆ S.

In Section 3 we prove the following preliminary results, which show that Conjec-
tures 1.1 and 1.2 would be true if we allowed the constants C in those conjectures
to depend on K , S, and φ, rather than just on s and d. We note that in the case of
Conjecture 1.1 this simply says that φ(K )∩ o∗S is finite. These results also indicate
the special behavior of the functions excluded in the statements of these conjectures.
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Proposition 1.5. Let K be a number field, let S be a finite set of places of K with
S ⊇ S∞, and let φ(z) ∈ K (z) be any rational function.

(a) If |φ−1({0,∞})| 6= 2 then φ(K )∩ o∗S is finite.

(b) If |φ−1({0,∞})| = 2 then there is a finite set S′ ⊇ S for which φ(K )∩ o∗S′ is
infinite.

Proposition 1.6. Let K be a number field, let S be a finite set of places of K with
S ⊇ S∞, and let φ(z) ∈ K (z) have degree d ≥ 2.

(a) If φ(z) does not have the form βz±d with β ∈ K ∗, then there is a constant
C(K , S, φ) such that every α ∈ P1(K ) satisfies |Oφ(α)∩ o∗S| ≤ C(K , S, φ).

(b) If φ(z)= βz±d with β ∈ K ∗, then there exist α ∈P1(K ) and a finite set S′ ⊇ S
for which Oφ(α)∩ o∗S′ is infinite.

We note that part (a) of each of these propositions follows from Siegel’s theorem.
For, if |φ−1({0,∞})| > 2 then ψ(z) := φ(z) + 1/φ(z) has at least three poles
so that ψ(K ) ∩ oS is finite; but ψ(β) is in oS whenever φ(β) is in o∗S , so also
φ(K )∩ o∗S is finite. Next, if φ−1({0,∞}) is a two-element set other than {0,∞},
then Lemma 3.2 implies that |φ−2({0,∞})|> 2, so that φ2(K )∩o∗S has size N <∞,
whence |Oφ(α)∩ o∗S| ≤ N + 1= C(K , S, φ).

In Section 2 we prove Conjectures 1.1 and 1.2 for some families of polynomial
maps. The first family consists of monic polynomials in oS[z]:

Theorem 1.7. Let s ≥ 1 and d ≥ 2 be integers. There is a constant C = C(s, d)
such that for any

• number field K ,

• s-element set S of places of K with S ⊇ S∞,

• degree-d monic polynomial φ(z) ∈ oS[z] which does not equal (z − β)d for
any β ∈ K ,

we have
|φ(K )∩ o∗S| ≤ C.

Theorem 1.7 proves Conjecture 1.1 for monic polynomials in oS[z]; for such
polynomials, Conjecture 1.2 follows by applying Theorem 1.7 to φ2(z).

We also prove Conjecture 1.2 for monic polynomials in K [z] in which the
coefficients of all but one term are in oS , so long as this exceptional term does not
have degree d−1. We deduce this from the following more general result in v-adic
dynamics.

Theorem 1.8. Let K be a field with a nonarchimedean valuation v, and let

φ(z)= ad zd
+ · · ·+ a1z+ a0 ∈ K [z]
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be a polynomial satisfying

• v(ad)= 0,

• there is exactly one integer i for which v(ai )< 0, and this exceptional i satisfies
i 6= d − 1.

Then for each α ∈ K , the set {n ≥ 1 | v(φn(α))= 0} contains at most one element.

As an immediate corollary, we have the stated case of Conjecture 1.2:

Corollary 1.9. Let K be a number field, and let S be a finite set of places of K with
S ⊇ S∞. For any monic φ0(z) ∈ oS[z], any α, β ∈ K with β /∈ oS , and any integer i
with 0≤ i < degφ0− 1, the polynomial φ(z) := φ0(z)+βzi satisfies

|Oφ(α)∩ o∗S| ≤ 1.

Remark 1.10. Conjecture 1.2 also follows from Theorem 2 of [Levin 2012] for
rational functions of the form

φ(z) :=
zd
+βd−1zd−1

+ · · ·+β1z
γd−1zd−1+ γd−2zd−2+ · · ·+ γ1z+ 1

with β1, . . . , βd−1, γ1, . . . , γd−1 ∈ oS and φ(z) 6= zd . For that theorem gives a
uniform bound on the number of elements of K in the backwards orbit of any
element of o∗S . This also bounds the number of S-units in Oφ(α) for any α ∈ K ,
since if φn(α) ∈ o∗S then α, φ(α), . . . , φn−1(α) are elements of K in the backwards
orbit of φn(α).

We prove our conjectures for some further classes of rational functions in
Section 4.

In Section 3 we show that our conjectures are consequences of the following
variant of the deep conjecture of Caporaso, Harris and Mazur [Caporaso et al. 1997]
concerning rational points on curves of a fixed genus.

Conjecture 1.11. Fix integers g ≥ 2 and D ≥ 1. There is a constant N = N (D, g)
such that |X (K )| ≤ N for every smooth, projective, geometrically irreducible
genus-g curve X defined over a degree-D number field K .

Theorem 1.12. If Conjecture 1.11 is true, then Conjecture 1.1 and Conjecture 1.2
are true.

Remark 1.13. Conjecture 1.11 follows from the Bombieri–Lang conjecture [Pacelli
1997].

The referee provided the following geometric explanation of the difference
between the questions of S-integers and S-units in the image set φ(K ) of a rational
function φ, indicating possible directions for future work. Writing φ(x/y)= f (x,y)

g(x,y)
as the ratio of two coprime homogeneous polynomials, we see that the S-integral
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points of φ(K ) correspond to the S-integral points of the quasi-affine variety cut
out by

zg(x, y)= f (x, y) in P1
×A1.

Similarly, the S-unit points in φ(K ) correspond to the S-integral points of the
variety defined by

zg(x, y)= w f (x, y) and zw = 1 in P1
×A2.

It would be interesting to seek generalizations of Conjecture 1.1 by considering
more generally what sorts of families of varieties are likely to satisfy uniform
boundedness statements for their S-integral points.

2. Special classes of rational functions

In this section we prove Theorems 1.7 and 1.8.

Proof of Theorem 1.7. Let K be a number field, let S be a finite set of places of K
with S ⊇ S∞, and let φ(z) ∈ oS[z] be monic of degree d ≥ 2 with φ(z) 6= (z−β)d

for any β ∈ K . Then φ(z) has at least two distinct roots δ1, δ2 in K . Let K ′ =
K (δ1, δ2) and let S′ be the set of places of K ′ which lie over places in S, so that
|S′| ≤ [K ′ : K ]|S| ≤ d(d − 1)|S| and δi ∈ oS′ . Then we can write

φ(z)= (z− δ1)(z− δ2)ψ(z),

where ψ(z) is a monic polynomial in oS′[z]. Let γ ∈ K satisfy φ(γ ) ∈ o∗S . Then
we must have γ ∈ oS , so that both ui := γ − δi and ψ(γ ) are in oS′ . Since
u1u2ψ(γ )= φ(γ ) is in o∗S , it follows that u1, u2 ∈ o

∗

S′ . In addition we have

(2-1)
1

δ2− δ1
u1−

1
δ2− δ1

u2 = 1.

Moreover, γ is uniquely determined by u1, so the number of elements γ ∈ oS for
which φ(γ )∈ o∗S is at most the number of solutions to (2-1) in elements u1, u2 ∈ o

∗

S′ .
Finally, by [Evertse 1984], the number of such solutions is at most C1C |S

′
|−1

2 for
some absolute constants C1,C2 (in fact, we can take C1 = C2 = 256 [Beukers and
Schlickewei 1996]). Therefore |φ(K )∩ o∗S| is bounded by a function of |S′|, and
hence by a function of |S| and d. �

Proof of Theorem 1.8. Suppose that Oφ(α) contains a unit of the valuation ring, and
let m be the least positive integer for which v(φm(α)) = 0. Writing γ := φm(α),
we will show by induction that |φn(γ )|v = |ai |

dn−1

v for every n ≥ 1. The strong
triangle inequality implies that |φ(γ )|v = |ai |v, proving the base case n = 1. If
δ := φn(γ ) satisfies |δ|v = |ai |

dn−1

v for some n ≥ 1, then |aiδ
i
|v = |ai |

1+idn−1

v and
|a jδ

j
|v ≤ |ai |

jdn−1

v for j 6= i , with equality when j = d. Our hypothesis i < d − 1



102 H. KRIEGER, A. LEVIN, Z. SCHERR, T. TUCKER, Y. YASUFUKU AND M. ZIEVE

implies that dn > 1 + idn−1, so that |φn+1(γ )|v = |ai |
dn

v , which completes the
induction. It follows that v(φn(γ )) < 0 for every n > 0, so that Oφ(α) contains
exactly one unit, which concludes the proof. �

3. Connection with rational points on curves

In this section we prove Theorem 1.12 and Propositions 1.3, 1.5, and 1.6. We begin
by relating S-units in the image set φ(K ) of a rational function to rational points
on certain curves.

Lemma 3.1. Let K be a number field, let S be a finite set of places of K with
S ⊇ S∞, and let φ(z) ∈ K (z) be a nonconstant rational function. For any prime
p with p > degφ, there are elements γ1, . . . , γt ∈ o∗S , where t ≤ p|S|, with the
following properties:

• For each i , the affine curve X i defined by y p
= γiφ(z) is geometrically irre-

ducible.

• We have |φ(K )∩ o∗S| ≤
∑t

i=1 Ni where Ni is the number of points in X i (K )
having nonzero y-coordinate.

Proof. First note that y p
= γφ(z) is geometrically irreducible for any γ ∈ K ∗,

since γφ(z) is not a p-th power in K (z). Dirichlet’s S-unit theorem asserts that
o∗S
∼= µK ×Z|S|−1, where µK denotes the group of roots of unity in K . Since µK

is cyclic, it follows that o∗S /(o
∗

S)
p ∼= (Z/pZ)r where r ∈ {|S| − 1, |S|}. Let 0 be a

set of pr elements in o∗S whose images in o∗S /(o
∗

S)
p are pairwise distinct. For any

β ∈ K such that φ(β) ∈ o∗S , we can write φ(β)= γ−1δ p for some γ ∈0 and δ ∈ o∗S .
Then (δ, β) is a K -rational point on the curve y p

= γφ(z) whose y-coordinate is
nonzero. Since the z-coordinate of this point is β, the result follows. �

Proof of Theorem 1.12. By Proposition 1.3, it suffices to show that Conjecture 1.11
implies Conjecture 1.1. Let K be a number field, let S be a finite set of places
of K with S ⊇ S∞, and let φ(z) ∈ K (z) have degree d ≥ 2. Assume that φ(z) is
not a d-th power in K (z), so that m := |φ−1({0,∞})| is at least 3. Let p be the
smallest prime for which p > d and (p − 1)(m − 2) > 2. Then p = 5 if d = 2
and m = 3, and in all other cases p < 2d by Bertrand’s postulate. Let γ1, . . . , γt

satisfy the conclusion of Lemma 3.1, so that γi ∈ K ∗ and t ≤ p|S|. Writing X i for
the curve y p

= γiφ(z), and Ni for the number of points in X i (K ) having nonzero
y-coordinate, it follows that |φ(K ) ∩ o∗S| ≤

∑t
i=1 Ni . Since every point on X i

having nonzero y-coordinate is nonsingular, we see that Ni is bounded above by
the number of K -rational points on the unique smooth projective curve Yi over K
which is birational to X i . Since p > d, the classical genus formula for Kummer
covers [Stichtenoth 2009, Proposition III.7.3] implies that the genus g of Yi is
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(p− 1)(m− 2)/2. Thus our choice of p ensures that

2≤ g ≤ 1
2

( 5
2 d − 1

)(
2d − 2

)
.

If Conjecture 1.11 is true then |Yi (K )| is bounded by a constant which depends
only on the genus of Yi (K ) and the degree [K :Q]. Since the genus is bounded by a
function of d , and the degree [K :Q] is bounded by a function of |S| (by Remark 1.4),
it follows that |Yi (K )| is bounded by a constant depending on d and |S|. Since
t ≤ p|S| ≤ (5d/2)|S|, this proves that Conjecture 1.11 implies Conjecture 1.1. �

Our proof of Proposition 1.3 relies on the following well-known lemma.

Lemma 3.2. Let φ(z) ∈ C(z) be any rational function of degree d ≥ 2 which is not
of the form βz±d with β ∈ C∗. Then |φ−2({0,∞})| ≥ 3.

Proof. Write m := |φ−2({0,∞})|, so we must show that m ≥ 3. Plainly m ≥
|φ−1({0,∞})| ≥ 2, so the conclusion holds unless |φ−1({0,∞})| = 2. In this case φ
is totally ramified over both 0 and∞, so the Riemann–Hurwitz formula (or writing
down φ(z)) implies that φ is unramified over all other points. Since φ(z) does
not have the form βz±d , we know that φ−1({0,∞}) 6= {0,∞}, so that at least one
point in φ−1({0,∞}) has d distinct φ-preimages. Since each point has at least one
preimage, we conclude that m ≥ d + 1≥ 3, as desired. �

Proof of Proposition 1.3. If φ(z) 6= βz±d then φ2(z) has a total of at least three
zeroes and poles by Lemma 3.2, and hence is not a d2-th power in K (z). Thus
Conjecture 1.1 implies that |φ2(K )∩ o∗S| ≤ C(s, d), so that

|Oφ(α)∩ o∗S| ≤ C(s, d)+ 1. �

Part (a) of Proposition 1.5 follows from our proof of Theorem 1.12, by using
Faltings’ theorem [1983] instead of Conjecture 1.11. We now give a more elementary
proof of Proposition 1.5.

Proof of Proposition 1.5. If |φ−1({0,∞})|> 2, the function ψ(z) := φ(z)+1/φ(z)
satisfies |ψ−1({0,∞})| ≥ 3, so ψ(K )∩ oS is finite by Siegel’s theorem; but ψ(β)
is in oS whenever φ(β) is in o∗S , so it follows that φ(K )∩ o∗S is finite. Now assume
that |φ−1({0,∞})| = 2, so that φ(z)= γµ(z)d for some d ≥ 1, some γ ∈ K ∗, and
some degree-one µ(z)∈ K (z). Let S′ be a finite set of places of K such that γ ∈ o∗S′ ,
S′ ⊇ S, and |S′| > 1. Since µ(K ) contains all but at most one element of K , it
follows that φ(K ) contains all but at most one element of γ (o∗S′)

d . Since γ ∈ o∗S′
and |S′|> 1, this shows that φ(K )∩ o∗S′ is infinite. �

Proof of Proposition 1.6. If φ(z) does not have the form βz±d then |φ−2({0,∞})| ≥
3 by Lemma 3.2, so Proposition 1.5 implies that φ2(K )∩o∗S has size N <∞, whence

|Oφ(α)∩ o∗S| ≤ N + 1= C(K , S, φ).
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Now consider φ(z)=βz±d with β ∈K ∗ and d≥2. Any α∈K ∗ satisfies Oφ(α)⊆o∗S′
where S′ is the union of S with the set of places v of K for which |α|v 6= 1 or
|β|v 6= 1. If α ∈ K ∗ is not a root of unity then Oφ(α) is infinite, so that Oφ(α)∩o∗S′
is infinite. �

4. Additional remarks

We make two final remarks. First, the proofs of Theorems 1.7 and 1.8 can be
modified to treat some classes of Laurent polynomials. For example, let d and
d ′ be distinct positive integers, and let φ(z) = (γd zd

+ · · · + γ1z+ γ0)/zd ′ where
γi ∈ oS and γd , γ0 ∈ o

∗

S . Suppose in addition that the numerator is not a d-th power
in K [z]. Then |φ(K )∩ o∗S| ≤ C(s, d) for any α ∈ P1(K ). Indeed, since γ0 and γd

are assumed to be units, φ(β) cannot be in o∗S if |β|v 6= 1 for some v /∈ S. Thus we
need only consider β ∈ o∗S , and now the desired bound follows from the proof of
Theorem 1.7.

As another example, consider φ(z)= (γd zd
+ · · ·+ γ1z+ γ0)/zd ′ where d > d ′,

γi ∈ K , and there is some v /∈ S for which |γd |v>max(1, |γi |v) for each i < d . Then
|Oφ(α)∩o∗S| ≤ 1 for any α ∈P1(K ), as the orbit of an S-unit cannot contain another
S-integer by the proof of Theorem 1.8. Both this class of examples and the previous
class are quite special, but they serve as further evidence for Conjectures 1.1 and 1.2.

We conclude this paper by noting that the constant C that appears in Conjec-
tures 1.1 and 1.2 must depend on both s and d. The necessity of dependence on
s is clear. Dependence on d is also required, since by Lagrange interpolation one
can construct polynomials φ(z) ∈ K [z] in which the first several φi (α) take on any
prescribed distinct values in K while also φ(z) has at least two zeroes (and hence
is not βz±d ).
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A COUNTEREXAMPLE TO THE ENERGY IDENTITY FOR
SEQUENCES OF ˛-HARMONIC MAPS

YUXIANG LI AND YOUDE WANG

We construct a closed Riemannian manifold .N; h/ and a sequence of ˛-
harmonic maps from S 2 into N with uniformly bounded energy such that
the energy identity for this sequence is not true.

1. Introduction

Let .†; g/ be a Riemann surface and .N; h/ be an n-dimensional smooth compact
Riemannian manifold which is embedded in RK . Usually, we denote the space of
Sobolev maps from † into N by W k;p.†;N /, which is defined by

W k;p.†;N /D fu 2W k;p.†;RK/ W u.x/ 2N for a.e. x 2†g:

For u 2W 1;2.†;N /, we define locally the energy density e.u/ of u at x 2† by

e.u/.x/D jrguj
2
D gij .x/h˛ˇ .u.x//

@u˛

@xi
@uˇ

@xj
:

The energy of u on †, denoted by E.u/ or E.u;†/, is defined by

E.u/D
1

2

Z
†

e.u/ dVg ;

and the critical points of E are called harmonic maps. We know that a harmonic
map u satisfies

�.u/D�uCA.u/.ru;ru/D 0;

where A is the second fundamental form of N in RK . Harmonic maps are related
very closely to minimal surface. It is well known that a harmonic map from S2

into N must be a branched conformal immersion in N .
Unfortunately,E does not satisfy the Palais–Smale condition. From the viewpoint

of calculus of variation, it is difficult to show the existence of harmonic maps from a

MSC2010: primary 58E20; secondary 35Q60.
Keywords: ˛-harmonic map, energy identity.
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surface. In order to obtain harmonic maps, Sacks and Uhlenbeck [1981] introduced
the so-called ˛-energy E˛, instead of L2 energy E, as

E˛.u/D
1

2

Z
†

f.1Cjruj2/˛ � 1g dVg ;

where we always assume that ˛ > 1. It is well known that this ˛-energy functional
E˛ satisfies the Palais–Smale condition. The critical points of E˛ in W 1;2˛.†;N /,
called ˛-harmonic maps, satisfy

(1-1) �gu˛C .˛� 1/
rg jrgu˛j

2rgu˛

1Cjrgu˛j2
CA.u˛/.du˛; du˛/D 0:

The strategy of Sacks and Uhlenbeck is to employ a sequence of ˛-harmonic maps
to approximate a harmonic map as ˛ tends to 1. Hence, to show the existence
of harmonic maps we need to study the convergence behavior of a sequence of
˛-harmonic maps u˛ with E˛.u˛/ < C from a compact surface .†; g/ into a
compact Riemannian manifold .N; h/without boundary. Generally, such a sequence
converges weakly to a harmonic map in W 1;2.†;N / and strongly in C1 away
from a finite set of points in †.

Concretely, let fu˛kg be a sequence of ˛-harmonic maps from † into N with
uniformly bounded ˛-energy, that is, E˛k .u˛k / < ƒ <1. We assume that the
sequence does not converge smoothly on †. By the theory of Sacks and Uhlenbeck,
there exists a subsequence of fu˛kg, still denoted by fu˛kg, and a finite set S�†

such that the subsequence converges to a harmonic map u0 in C1loc .†nS/. We
know that, at each point pi 2 S, the energy of the subsequence concentrates and
the blowup phenomena occurs. Moreover, there exist point sequences fxlikg in
† with limk!C1 xlik D pi and scaling constant number sequences f�likg with
limk!C1 �lik ! 0, l D 1; : : : ; n0, such that

u˛k .x
l
ik
C�likx/! vl in C jloc.R

2
nAi /;

where all vi are nontrivial harmonic maps from S2 into N , and Ai � R2 is a finite
set.

In order to explore and describe the asymptotic behavior of fu˛kg at each blowup
point, the following two problems arise naturally. The first is whether or not the
energy identity holds true:

lim
˛k!1

E˛k .u˛k ; B
†
r0
.pi //DE.u0; B

†
r0
.pi //C

n0X
lD1

E.vl/:

Here, B†r0.pi / is a geodesic ball in † which contains only one blowup point pi .
The other is whether or not the necks connecting bubbles are some geodesics of
finite length?
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Considerable progress has been made regarding these problems; let us now recall
some main results on them. Chen and Tian [1999] considered a special sequence
fu˛kg with uniformly bounded ˛-energy, for which every u˛k is a minimizing
˛k-harmonic map and all maps u˛k belong to a fixed homotopy class. They studied
the convergence behavior of such a special sequence and provided a proof on the
above energy identity. Later, for the same sequence, Li and Wang [2010a] gave
another constructing proof on the energy identity, which is completely different
from that given in [Chen and Tian 1999].

The energy identity for a minimax sequence of ˛-harmonic maps has also been
considered. Suppose that A is a parameter manifold. Let h0 W †�A! N be a
continuous map, and H be such a set of continuous maps h W†�A!N that every
h 2H is homotopic to h0 and satisfies h.t/ 2W 1;2˛.†;N / for any fixed t 2 A.
Set

ˇ˛.H/D inf
h2H

sup
t2A

E˛.h. � ; t //:

It is known that there is at least a sequence fu˛kg, each u˛k of which attains
ˇ˛k .H/, satisfies the energy identity as ˛k! 1. For more details, we refer to [Jost
1991; Lamm 2010].

On the other hand, it should be pointed out that some effective methods have been
established to successfully prove the energy identity and give a detailed description
of the connecting necks for the heat flow of harmonic maps from a Riemann surface,
or more generally, a sequence of maps from a Riemann surface with tension fields �
bounded in the sense of L2 [Ding 1998; Ding and Tian 1995; Qing 1995; Qing and
Tian 1997].

Recently, Li and Wang [2010b] studied the above problems on the sequences of
˛-harmonic maps and obtained some results which can be summarized as follows.
If the energy concentration phenomena appears for fu˛kg, one can prove a weak
energy identity and a direct convergence relation between the blowup radius and
the parameter ˛, which ensures the energy identity and no-neck property. Li and
Wang also showed that the necks converge to some geodesics and gave a length
formula for the neck in the case where only one bubble appears.

Motivated by an example given by Duzaar and Kuwert [1998], Li and Wang
[2010b] also constructed an ˛-harmonic map sequence with uniformly bounded
energy, for which the blowup phenomenon occurs and there exists at least a neck
(geodesic) of infinite length. This answers negatively the second problem on ˛-
harmonic map sequence.

Although some mathematicians think that the energy identity for the sequence
of ˛-harmonic maps should also be true, up to now it has been unclear in general
whether the energy identity for an ˛-harmonic map sequence with bounded energy
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holds true or not. In this short paper, we will modify the construction in [Li and
Wang 2010b] to show that the energy identity is also not true.

On the other hand, a natural problem is whether the set of the values of energy
for harmonic spheres in any given Riemannian manifold .N; h/ is discrete or not,
since the bubbles produced in the convergence of a sequence of ˛-harmonic maps
from .†; g/ are always harmonic spheres.

We denote this set by

E.N; h/D fE.u/ W u is a harmonic map from S2 into .N; h/g:

It is well known that if .N; h/ is the standard sphere S2, we have

E.N; h/D f4k� W k D 0; 1; : : : ; n; : : :g:

We also know from [Valli 1988] that if .N; h/ is the unitary group U.n/ with the
standard metric, then the energy of harmonic maps S2! U.n/ can take as values
only integral multiples of 8� . Some other energy gap phenomena on unitons were
discussed in [Anand 1995; Dong 2002; Uhlenbeck 1989]. Some mathematicians
conjectured that E.N; h/ is a discrete set. Here, we will also give a counterexample
to show that E.N; h/ is not discrete.

2. ˛-harmonic maps

Later, we will discuss the convergence behavior of some ˛-harmonic map sequences
with uniformly bounded ˛-energy or L2 energy. In fact, by discussing the conver-
gence of ˛-harmonic map sequences, Sacks and Uhlenbeck developed an existence
theory on minimal surfaces in [Sacks and Uhlenbeck 1981; 1982]. In particular, they
established the well-known �-regularity theorem on ˛-harmonic maps and removal
singularity theorem on harmonic maps [1981], which will be used repeatedly in the
present paper.

Theorem 2.1. Let D DD1.0/D fz W jzj < 1g � C be a disk with radius 1 and N
be a Riemannian manifold. Assume that u WD!N satisfies Equation (1-1). Then
there exists �0 > 0 and ˛0 > 1 such that if E.u;D/ < �0 and 1� ˛ � ˛0, then we
have

kr
kukL1.D1=2/ � C.k/E.u;D/:

Theorem 2.2. Assume that u WDnf0g !N is a harmonic map with E.u/ <C1.
Then u is a harmonic map from D into N .

The above theorem tells us that, if u is a harmonic map from Cnfpi 2 C W i D

1; 2; : : : ; l <1g into N with E.u/ <C1, then u can be viewed as a harmonic
map from S2 into N .
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Now, we can state more precisely the energy concentration of fu˛kg. Let B†t .x/
denote the geodesic ball of † which is centered at x and has geodesic radius t . By
Theorem 2.1, the finite singular set of fu˛kg can be defined precisely by

SD

�
x 2† W lim

t!0
lim

k!C1

Z
B†t .x/

jru˛k j
2
�
�0

2

�
:

For any Qx0 … S, there exists ı > 0 such that E.u˛k ; B
†
ı
. Qx0// < �0. Applying

Theorem 2.1, fu˛kg converges smoothly on any � b †nS. The limit map is a
harmonic map from †nS into N . Theorem 2.2 tells us that the singular points of
the limit map can be removed, in other words, it is a harmonic map from † into N .

If x0 2 S, it is easy to check that

kru˛kkC0.B†t .x0//
!C1

for any t . Choose x˛k 2 B
†
ı
.x0/ such that

jru˛k .x˛k /j D max
B†
ı
.x0/

jru˛k j;

and let

�˛k D
1

maxB†
ı
.x0/
jru˛k j

:

It is easy to see that x˛k! x0 as k!1. Then, in an isothermal coordinate system
around x0, we may define

vk.x/D u˛k .x˛k C�˛kx/:

It is well known that vk converges in C1.DR/ to a harmonic map v1 W C!N for
any fixed R, where DR DDR.0/D fz W jzj<Rg � C is a disk with radius R > 0.
We can regard v1 as a harmonic map from S2 into N . Usually, v1 is called the first
bubble. For the details on getting all the bubbles we refer to the appendix of [Li and
Wang 2010b]. Moreover, in [Li and Wang 2010a] (see also [Chen and Tian 1999;
Hong and Yin 2010]) we prove the following theorem which will be used later.

Theorem 2.3. Let .†; g/ be a closed Riemann surface and N a compact Riemann-
ian manifold. Suppose that H is a fixed homotopy class of maps from † into N
and u˛ is a minimizer of E˛ in the set W 1;2˛.†;N /\H . Then when ˛! 1 there
exists a subsequence fu˛g and harmonic map u0 such that fu˛g converges to u0
weakly in W 1;2.†;N / and blows up at finitely many points fpi W i D 1; 2; : : : ; mg.
Moreover, associated with each fpig there exist finitely many harmonic maps wij
from S2 into N , j D 1; 2; : : : ; i0, such that

lim
˛!1

E˛.u˛/DE.u0/C

mX
iD1

i0X
jD1

E.wij /:



112 YUXIANG LI AND YOUDE WANG

3. Construction of the counterexample

3A. Constructing the manifold .N; h/. Let h1 be the standard metric on

Y1 D T3 D S1 �S1 �S1 D R3=2�Z˚ 2�Z˚ 2�Z:

Let Br.p/ denote a geodesic ball in T3 with radius r and center p. Fix a point
p 2 Y1, and set

X1 D T3nBr.p/;

where r < �=.4
p
3C 2/. It is easy to see that the injective radius of Y1 at p is �

and B�.p/nBr.p/ is isometric to

T0 D
�
S2 � .�log�;�log r�; e�2t .ds2C dt2/

�
;

where gs D ds2 is the standard metric over S2. It is also easy to check that T0 is
isometric to

T00 D

�
S2 �

h
0; log �

r

�
; e2tC2 log r.ds2C dt2/

�
and

T000 D

�
S2 �

�
�log �

r
; 0
i
; e�2tC2 log r.ds2C dt2/

�
:

Let .X2; h2/D .X1; h1/. We consider the quotient space of X1[X2, obtained
by gluing every point x 2 @X1 with the same point x 2 @X2 together. In this way,
we get a closed compact manifold N and a projection map � WX1[X2!N . We
set

M D �.@Br.p//:

On N nM , the metric h0 D .��1/�.h1/[ .��1/�.h2/ is well defined and can
be extended to a metric g0 over N . However, g0 is not smooth and need to be
modified. Obviously, M has a neighborhood which is isometric to

T D
�
S2 �

�
�log �

r
; log �

r

�
; e2jt jC2 log r.ds2C dt2/

�
:

In fact, T is obtained by gluing T00 and T000 along S2 � f0g.
We let  be a smooth function defined on

�
�log �

r
; log �

r

�
which satisfies

(1)  D e2jt jC2 log r when jt j � log 2;

(2)  0 < 0 on .�log 2; 0/ and  0 > 0 on .0; log 2/.

Note that (2) implies that 0 is the only critical point of  on .�log 2; log 2/.
We define a new metric h on N which is h0 on N nT , and  .t/.ds2C dt2/

on T . It is easy to see that h is smooth on N . For convenience, we set

Q.a/D S2 �
�
�log a

r
; log a

r

�
� T:
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Obviously, we have

��1.Q.a//\X1 D Ba.p/nBr.p/� Y1:

Lemma 3.1. Let .N; h/, T and Q.a/ be defined as above. Assume that u W S2!
.N; h/ is a nontrivial harmonic map with u.S2/�Q.�/DT . Then u is a harmonic
map from S2 into M .

Proof. Let uD .v; f / W S2!Q.�/ be a harmonic map, where v 2 C1.S2; S2/
and f 2 C1.S2/. The energy can be written as

E.u/D
1

2

Z
S2
jruj2 dV D

1

2

Z
S2

�
jrvj2Cjrf j2

�
 .f / dV:

Here dV D dVgs is the standard volume form of S2. By a direct calculation, it is
easy to see that u satisfies

(3-1)
�r. .f /rv/C .f /jrvj2v D 0;

�r. .f /rf /C 1
2

�
jrvj2Cjrf j2

�
 0.f /D 0:

Multiplying both sides of the second equation of (3-1) by f and then integrating
the obtained identity over S2, we get the identityZ

S2

�
jrf j2 .f /C 1

2

�
jrvj2Cjrf j2

�
 0.f /f

�
dV D 0:

Noting that  0.f /f � 0 always holds true, we infer from the above identityZ
S2
jrf j2 .f / dsD

1

2

Z
S2

�
jrvj2Cjrf j2

�
 0.f /f dV D 0:

This implies that rf D 0 and f is a constant. Moreover, from the above identity
we also have

jrvj2 0f � 0:

Since u is nontrivial by assumption, there always exists a point x1 2 S2 such that
jrvj.x1/ ¤ 0. Hence we conclude that  0.f /f � 0 which implies f � 0. It
follows that v is a harmonic map from S2 into M . �

Lemma 3.2. Let .N; h/ and Q be the same as in Lemma 3.1. Assume that u is
a harmonic map from S2 into .N; h/ such that u.S2/\Q.2r/¤ ∅ and u.S2/\
@Q.�/¤∅. Then we have

E.u/� �.� � 2r/2:
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Proof. Without loss of generality, we assume p1 2X1 is such that p1 is in @B�.p/
in Y1 and �.p1/ is in u.S2/. First, u is a branched minimal surface since u is a
harmonic map from S2 into N . On the other hand, as h is flat on �.B��2r.p1//,
it is easy to check that u.S2/ \ �.B��2r.p1// is a stationary varifold. Denote
by �.u.S2/\B��2r.p1// the area of u.S2/\B��2r.p1/. By the monotonicity
inequality for stationary varifolds (see [Simon 1983]), we have

�.u.S2/\B��2r.p1//

�.� � 2r/2
� 1:

In light of this inequality and the fact E.u/� �.u.S2/\B��2r.p1//, we derive
the desired inequality

E.u/� �.� � 2r/2I

and the proof is complete. �

Since h is flat on N nQ.2r/, we have the following lemma.

Lemma 3.3. Let .N; h/ and Q be the same as in Lemma 3.1. Then there is no
nontrivial harmonic map u W S2! .N; h/ such that u.S2/\Q.2r/D∅.

By the definition of  , it is easy to check that

4� .0/� 16�r2 < 1
3
�.� � 2r/2

when r is small enough. Using Lemma 3.2 and Lemma 3.3, we get the following
result.

Corollary 3.4. Let .N; h/ and Q be the same as in Lemma 3.1. Assume that u is a
nontrivial harmonic map with E.u/ < �.� � 2r/2; then

E.u/D 4m� .0/

where m is a positive integer.

It is easy to check that

12� .0/ < 48�r2 < �.� � 2r/2;

if r < �

4
p
3C2

. Therefore we know that if E.u/ < 12� .0/ and u is a nontrivial
harmonic map, then E.u/D 4� .0/ or 8� .0/.

3B. The homotopy class Œuk�. We have �1.Y1/D �1.T3/D Z3. Let ˇ 2 �1.Y1/
which represents .1; 0; 0/. Let x1, x22M , and 
0 be a curve inM such that 
0.0/D
x2, and 
0.1/D x1. Let 
k W Œ0; 1�! X be a curve with 
k.0/D x1; 
k.1/D x2
and Œ
k C 
0� D kˇ. Let w0 be a diffeomorphism from S2 onto M satisfying
w0.0; 0; 1/D x1 and w0.0; 0;�1/D x2, where .0; 0; 1/ and .0; 0;�1/ are the north
and the south poles of S2 � R3, respectively.
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For the sake of convenience, we introduce the stereographic projection coordi-
nates on S2 with the south pole corresponding to1. Thus, w0 W S2!N can be
viewed as a map from C[f1g into N . For simplicity, we neglect the stereographic
projection map S W S2! C[f1g and still denote w0 ıS�1 by w0.

By the continuity of w0, there exists a small ı0 > 0 such that w0.Dı0/ is
contained in a small neighborhood of x1, where Dı0 D fz 2 C W jzj < ı0g, and a
large R0 > 0 such that w0.CnDR0/ is contained in a small neighborhood of x2,
where DR0 D fz 2 C W jzj<R0g.

In order to construct a sequence of maps, we need to define the following two
smooth nonnegative functions � and � on Œ0;1/:

(1) �.s/ W Œ0;1�! Œ0; 1� with �.s/� 0 as s 2 Œ0; ı0� and �.s/� 1 as s 2 Œ2ı0;1/.

(2) �.s/ W Œ0;1/! Œ0; 1� with �.s/� 1 as s 2 Œ0; R0�Rc0� and �.s/� 0 as s >R0,
where Rc0 is a small positive constant number.

Now we define a sequence of maps uk W S2!N by

uk D

8̂̂̂̂
<̂
ˆ̂̂:
w0.�.jzj/z/ jzj � ı0;


k

�
logjzj � logR0�0
log ı0� logR0�0

�
R0�0 < jzj< ı0;

w0

�
z

�.jzj=�0/�0

�
jzj � �0R0:

Here �0 > 0 is a fixed constant number such that R0�0 < ı0. By the arguments in
[Li and Wang 2010b], for any i ¤ j , ui is not homotopic to uj . For the sequence
fuig constructed above, we have the following lemma:

Lemma 3.5. Let uk be the maps from S2 into .N; h/ constructed above and Œuk� de-
note the class of maps inW 1;2.S2; N /\C.S2; N /, each map of which is homotopic
to uk . For any fixed k, we have

inf
u2Œuk�

E.u/D 8� .0/:

Moreover, infE.u/ cannot be attained by a harmonic map belonging to Œuk�.

Proof. First of all, we prove that for every fixed k

(3-2) inf
u2Œuk�

E.u/� 8� .0/:

Denote z1 D .0; 0; 1/ and z2 D .0; 0;�1/ 2 S2. Without loss of generality, we
assume w0 is a harmonic map from S2 into M with E.w0/ D 4� .0/ with
w0.z1/Dx1 andw0.z2/Dx2. Let S be the stereographic projection from S2nfz2g

to C and
Ou0.z/D w0.S

�1.z// W C[f1g!N:
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Choose a coordinate system .y1; y2; y3/ in a geodesic ball B�.x1/ around x1 2N
with x1 D .0; 0; 0/ and f.y1; y2; 0/ W .y1; y2; 0/ 2B�.x1/g �M . By the continuity
of w0, there exists a small ı > 0 such that w0.z/ 2B�.x1/ when jzj< ı. We define

u00 D �1 Ou0;

where �1 is a smooth nonnegative function which equals 1 outside D2ı , 0 on Dı ,
and satisfies jr�1j < C

ı
. Here D2ı � C denotes the disk centered at the origin.

Then we haveZ
D2ı

jru00j
2 dx2 � 2

Z
D2ı

�
jr�1j

2
j Ou0j

2
Cjr Ou0j

2
�
dx2 � Cı:

Thus u00 satisfies

distM .u00; Ou0/ < Cı; E.u00/ < 4� .0/CCı; and u00.Dı/D x1:

Since E is conformally invariant, Ou0.1=z/ is also a harmonic map from Cnf0g

into N with

E. Ou0.1=z/;C/DE. Ou0.z/;C/:

Thus, Ou0.1=z/ can be extended smoothly to f0g. Choose a coordinate system
.y1; y2; y3/ in a geodesic ball B�.x2/ around x2 2 N with x2 D .0; 0; 0/ and
f.y1; y2; 0/ W .y1; y2; 0/ 2 B�.x2/g �M . By the continuity of w0, there exists a
large R > 0 such that Ou0.z/ 2 B�.x2/ as jzj>R. Then we have

Ou0.1=z/DO.z/ and jr Ou0.1=z/j DO.1/; as z! 0:

Hence, we have

Ou0.z/DO.1=z/ and jz2r Ou0.z/j DO.1/; as z!1:

Let

u000.z/D �2.jzj/ Ou0.z/;

where �2.jzj/ is a smooth nonnegative function which equals 0 outside DR, 1 on
DR=2, and satisfies jr�1j< C

R
. Then we haveZ

CnDR=2

jru000j
2 dx2 � 2

Z
DRnDR=2

�
jr�2j

2
j Ou0j

2
Cjr Ou0j

2
�
dx2 �

C

R
:

Thus

distM .u000; u0/ <
C

R
; E.u000/ < 4� .0/C

C

R
; and u000.CnDR/D x2:
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We define

�k D

8̂̂̂<̂
ˆ̂:
u00.z/; jzj � ı;


k

�
logjzj � logR�
log ı� logR�

�
; R� < jzj< ı;

u000

�
z

�

�
; jzj � �R:

By a direct calculation, we obtainZ
DınDR�

jr�kj
2
D 2�

Z ı

R�

ˇ̌̌̌
@
k

@r

ˇ̌̌̌2
r dr

<
ck P
kk

2
L1

.�logR�C log ı/2

Z ı

R�

dr

r
D

ck P
kk
2
L1

log ı� logR�
:

Thus, for any �1 > 0, we can choose suitable ı, R and � such that

E.�k/ < 8� .0/C �1:

Obviously, 'k D �k.S�1/ is homotopic to uk , denoted by 'k � uk . Thus, we get
(3-2).

Next, we prove that infu2Œuk�E.u/ cannot be attained by a harmonic map. As-
sume it is attained by a harmonic map v0. Recall that

8� .0/ < 12� .0/ < 48�r2 < �.� � 2r/2;

where r >0 is small enough. By Lemma 3.2, v0.S2/�Q.�/. Thus v0 is a harmonic
map from S2 into M . This contradicts the fact v0 � uk . Hence infu2Œuk�E.u/
cannot be attained by a harmonic map.

Let u˛ be the ˛-harmonic map such that, for fixed k,

E˛.u˛/D inf
u2Œuk�\W 1;2˛.S2;N/

E˛.u/:

Then each map of fu˛g is minimizing and belongs to Œuk�. We claim that fu˛g does
not converge smoothly. Otherwise, the limit map is a harmonic map from S2 intoN ,
which is homotopic to uk . This contradicts the above fact that infu2Œuk�E.u/ cannot
be attained by a harmonic map. Hence, the bubbles must appear in the convergence
of u˛. If we denote the weak limit of fu˛g as u0 and the bubbles as v1; : : : ; vm,
then, by Theorem 2.3, we have

inf
u2Œuk�

E.u/D lim
˛!1

E˛.u˛/DE.u0/C

mX
iD1

E.vi /:

Since E.u0/ and E.vi / are smaller than �.� � 2r/2, E.u0/C
Pm
iD1E.v

i / can
only equal 8� .0/ or 4� .0/.
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Next, we will show that the following identity does not hold true:

E.u0/C

mX
iD1

E.vi /D 4� .0/:

If we assume this is true, then u0 is trivial and u˛ has only one bubble v1. To
derive a contradiction, we only need to prove u˛ � v1.

Let x0 2 S2 be a blowup point. Take an isothermal coordinate system around
x0 with x0 D .0; 0/ on S2 D C[f1g. Let v1 be the limit map of u˛.z˛C�1˛z/,
where z˛! 0, �1˛! 0. Then

v1˛.z/D u˛.z˛C�
1
˛z/

converges smoothly to v1 on any DR D DR.0/ � C. Moreover, u˛ converges
smoothly in C[ f1gnD1=R to a point y0 2 N . For us to prove u˛ � v1, it is
enough to check that for any � > 0, there exists an R > 0, such that

sup
t2ŒR�1˛;1=R�

osc@Dt .z˛/ u˛ < �:

Indeed, if this is not true then there exists a sequence of �2˛ with �2˛ ! 0 and
�2˛=�

1
˛!C1, such that

osc@D
�2˛
.z˛/ u˛! �1 ¤ 0:

Let
v2˛.z/D u˛.z˛C�

2
˛z/:

If the sequence fv2˛g has blowup points, then at each blowup point there exists at
least a bubble of fv2˛g which is also a bubble of u˛ and is different from the previous
bubble v1. However, this is impossible since there only exists one bubble for fu˛g.
Hence, we infer that as ˛! 1, fv2˛g converges smoothly on DR0 nD1=R0 � C for
any R0. It follows that

osc@D1v
2
˛! �1 ¤ 0:

This means that the limit map of fv2˛g is not trivial and the limit map is also a bubble
of fu˛g which is different from v1. This is a contradiction. Thus, we conclude

inf
u2Œuk�

E.u/DE.u0/C

mX
iD1

E.vi /D 8� .0/:

This completes the proof of the lemma. �

By the Sobolev embedding theorem, we know that for ˛ > 1,

W 1;2˛.S2; N /� C.S2; N /:
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For simplicity, let Œuk�˛ denote the class of maps belonging to W 1;2˛.S2; N /, each
map of which is homotopic to uk . In fact, it is easy to see that

Œuk�
˛
D Œuk�\W

1;2˛.S2; N /:

From now on, we will always denote the smooth map which attains infu2Œuk�˛ E˛.u/
by u˛;k:

E˛.u˛;k/D inf
u2Œuk�˛

E˛.u/:

Lemma 3.6. For any �0 > 8� .0/, there exists a sequence f˛kg with ˛k! 1 and
a sequence fikg such that E˛k .u˛k ;ik /D �0 for every k.

Proof. For ˛ 2 Œ1; ˛0/ where ˛0� 1 > 0 is small enough, we define the following
function

'k.˛/D inf
u2Œuk�˛

E˛.u/:

Firstly, we need to show that for any fixed ˛ 2 .1; ˛0/,

(3-3) lim
k!C1

'k.˛/DC1:

If this is false, then there exists a constant C such that 'k.˛/ � C as k is large
enough. We note that for any small ı and x 2 S2,
(3-4)

E.u˛;k; Bı.x//D
1

2

Z
Bı.x/

jru˛;kj
2
�
1

2

�Z
Bı.x/

jru˛;kj
2˛

�1=˛
jBı.x/j

.˛�1/=˛:

Hence, we can pick a fixed ı, which is small enough, such that

E.u˛;k; Bı.x// < �0:

Thus, by Theorem 2.1, there exists a subsequence of u˛;k which converges smoothly
to a smooth map u0 as k tends to1. Hence, we know that u˛;k are homotopic to
u0 for any k. This contradicts the fact that u˛;i is not homotopic to u˛;j as i ¤ j .

Next, we want to prove 'k is continuous on Œ1; ˛0/. Using (3-4) again, we can
prove that, for a fixed small � > 0,

kru˛;kkC0.S2/ <ƒ.�/

for any ˛ 2 .1C �; ˛0/. For any ˛, ˛0 2 .1C �; ˛0/, we have

'k.˛/�
1
2
.1CC 21 /

˛�˛0

Z
S2
.1Cjru˛;kj

2/˛
0

�
1
2

� .1CC 21 /
˛�˛0

'k.˛
0/C 1

2
.1CC 21 /

˛�˛0

�
1
2
;
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where

C1 D

�
0 when ˛ > ˛0;
ƒ.�/ when ˛ < ˛0:

It follows that
lim
˛!˛0

'k.˛/� 'k.˛
0/:

On the other hand, we also have

'k.˛
0/� 1

2
.1CC 22 /

˛0�˛

Z
S2
.1Cjru˛0;kj

2/˛ � 1
2
;

where

C2 D

�
0 when ˛0 > ˛;
kru˛0kkL1 when ˛0 < ˛:

It follows that

'k.˛
0/� .1CC 22 /

˛0�˛'k.˛/C
1
2
.1CC 22 /

˛0�˛
�
1
2
;

and
lim
˛!˛0

'k.˛/� 'k.˛
0/:

Therefore, we have
lim
˛!˛0

'k.˛/D 'k.˛
0/;

and we have shown the continuity of 'k.˛/ on .1; ˛0/.
Next, we want to prove that 'k.˛/ is left continuous at 1. Equivalently, we need

to show

(3-5) lim
˛&1

'k.˛/D 'k.1/:

Obviously, for any fixed u 2W 1;2.S2; N / and ˛1 > ˛2 > 1,

E˛1.u/�E˛2.u/�E.u/:

It follows that
'k.˛1/� 'k.˛2/� 'k.1/:

Hence, lim˛&1 'k exists and

lim
˛&1

'k.˛/� 'k.1/:

On the other hand, note that uk is a smooth map. Then for any � > 0, there
exists a smooth map u0

k
2 C1.S2; N / which is homotopic to uk (i.e., u0

k
� uk),

and satisfies
E.u0k/� 'k.1/C �:
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Since
lim
˛&1

E˛.u
0
k/DE.u

0
k/ and 'k.˛/�E˛.u

0
k/;

we have
lim
˛&1

'k.˛/� 'k.1/C �;

which implies (3-5), and shows that 'k.˛/ is continuous on Œ1; ˛0/ for any fixed k.
By (3-3), for any given sequence f˛0

k
g with ˛0

k
! 1, there exists a sequence fikg

such that E˛0
k
.u˛0

k
;ik
/ > �0, or equivalently, 'ik .˛

0
k
/ > �0. Lemma 3.5 tells us that

'ik .1/D 8� .0/ for any ik . By the assumption �0 > 8� .0/ we have

'ik .˛
0
k/ > �0 > 'ik .1/:

Since 'k.˛/ is continuous on Œ1; ˛0/, we conclude that for any fixed ik there exists
˛k 2 .1; ˛

0
k
/ such that

'ik .˛k/DE˛k .u˛k ;ik /D �0:

This completes the proof. �

3C. The counterexample. By Lemma 3.6, for given � 2 .8� .0/; 12� .0// there
exist a sequence f˛k W ˛k > 1; k 2 Ng with ˛k! 1 and a sequence of minimizing
˛k-harmonic maps vk 2W 1;2˛k .S2; N / with vk � uik such that

� DE˛k .vk/D inf
u2Œuik �

˛k

E˛k .u/ for all k 2 N:

Since vi and vj are not in the same homotopy class for any i ¤ j , vk must blow up
as k!C1. Let v0 be the weak limit of fvkg in W 1;2.S2; N /, and v1; : : : ; vm

be all the bubbles produced in the convergence of fvkg. Since E.vi / < 12� .0/,
it follows from Corollary 3.4 that E.vi /D 4� .0/ or 8� .0/. Hence,

1

4� .0/

�
E.v0/C

mX
iD1

E.vi /

�
is always an integer. However, certainly �

4� .0/
is not an integer by the previous

assumption. So the energy identity is not true for the sequence fvkg:

lim
k!1

E˛k .vk/¤E.v
0/C

mX
iD1

E.vi /:

Remark 3.7. By an argument in [Li and Wang 2010b], we also have

lim
k!1

E.vk/¤E.v
0/C

mX
iD1

E.vi /:
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4. An example of a manifold whose energy set is nondiscrete
for harmonic 2-spheres

In this section, we will construct a Riemannian manifold .N; h/ for which E.N; h/

is not discrete. In other words, E.N; h/ admits limit points.
Let  .t/ be a smooth positive function defined on .�1; 1/ satisfying

 .t/D e�1=t
2

sin 1
t
C 1; t 2 .�1

2
; 1
2
/:

It is easy to check that the critical point of  .t/ satisfies the equation

tan 1
t
D

t
2
:

Thus, we can find tk! 0, such that  0.tk/D 0,  .tk/¤ 1 and  .tk/! 1.
Let

hD  .t/.ds2C dt2/;

which is a metric over S2 � .�1; 1/. Let v be the identity map from S2 to S2 and

uk D .v; tk/ W S
2
! .N; h/� .S2 � .�1; 1/; h/:

By (3-1), it is easy to see that uk is a harmonic map from S2 into .S2� .�1; 1/; h/
with

E.uk/D 4� .tk/:

Thus, 4� is not a discrete number in E.S2 � .�1; 1/; h/.
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THEORY OF NEWFORMS OF HALF-INTEGRAL WEIGHT

MURUGESAN MANICKAM, JABAN MEHER

AND BALAKRISHNAN RAMAKRISHNAN

We set up the theory of newforms of half-integral weight on 00(8N) and
00(16N), where N is odd and squarefree. Further, we extend the definition
of the Kohnen plus space in general for trivial character and also study the
theory of newforms in the plus spaces on 00(8N), 00(16N), where N is odd
and squarefree. Finally, we show that the Atkin–Lehner W-operator W4

acts as the identity operator on Snew
2k (4N), where N is odd and squarefree.

This proves that S−2k(4)= S2k(4).

1. Introduction

Let k,M be positive integers, k ≥ 2. Write M = 2αN , α ≥ 0, N ≥ 1, N odd.
Let χ0 be a Dirichlet character modulo N with ε = χ0(−1) and let χ1 be an
even Dirichlet character modulo 2α+2. Let χ =

( 4ε
·

)
χ1χ0. Let Sk+1/2(4M, χ) be

the space of cusp forms of half-integral weight k+ 1
2 for 00(4M) with character

χ , and let S2k(2M, χ2) be the space of cusp forms of weight 2k, level 2M with
character χ2. By the work of G. Shimura [1973] and S. Niwa [1975], there exist
linear operators St,4M,χ indexed by squarefree integers t , ε(−1)k t > 0, which
commute with the action of Hecke operators T (n2), (n, 2M) = 1, and map the
space Sk+1/2(4M, χ) into the space S2k(2M, χ2). If M is an odd integer, W.
Kohnen [1980; 1982] introduced a canonical subspace S+k+1/2(4M, χ), called the
Kohnen plus space, in the full space Sk+1/2(4M, χ). He defined modified Shimura
lifts S+D,4M,χ , called Shimura–Kohnen lifts, indexed by fundamental discriminants
D, ε(−1)k D > 0, which commute with the action of Hecke operators T (n2),
(n,M) = 1, where T (4) = T+(4) is the Hecke operator introduced by Kohnen
on the plus space. He proved that the linear operator S+D,4M,χ maps the space
S+k+1/2(4M, χ) into the space S2k(M, χ2). The idea of characterising the spaces of
half-integral weight forms Hecke-equivalent to a fixed integral weight newform is
important, and establishing Hecke equivariant isomorphisms via trace identities is
certainly a powerful tool. These isomorphisms often give hints as to how to further
decompose these eigenspaces to obtain multiplicity-one results. The first such work

MSC2010: primary 11F37; secondary 11F11, 11F32.
Keywords: modular forms of half-integral weight, theory of newforms, Kohnen plus space.
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was by Kohnen, who achieved that goal by introducing the plus space, which we
now wish to generalise. Kohnen [1980; 1982] initiated the study of the theory of
newforms for the plus space S+k+1/2(4M, χ) along the lines of Atkin and Lehner
[1970], where M is odd and squarefree and χ2

= 1. Using the trace identities proved
by Niwa [1977], M. Manickam, B. Ramakrishnan and T. C. Vasudevan [Manickam
et al. 1990] set up the theory of newforms for the full space Sk+1/2(4M, χ), where
M is odd and squarefree and χ2

= 1. If M is even and squarefree, this theory is
known on the full space Sk+1/2(4M, χ) by the work of Manickam [1980; 2011].
For similar theories we refer to [Serre and Stark 1977; Shemanske 1996; Ueda
1988; 1991; 1993; 1998; 2001].

Kohnen introduced the plus space in Sk+1/2(4M, χ) when M is odd by letting

S+k+1/2(4M, χ)={ f ∈ Sk+1/2(4M, χ) :a f (n)=0 unless ε(−1)kn≡0, 1 (mod 4)}.

Ueda and Yamana [2010] extended the definition of the plus space for Sk+1/2(4M)
(M is even and squarefree) by using the same condition on the Fourier coefficients.
If M is even, let

S+k+1/2(4M)= { f ∈ Sk+1/2(4M) : a f (n)= 0 unless (−1)kn ≡ 0, 1 (mod 4)}.

In the case where M is odd, the Kohnen plus space S+k+1/2(4M) is an eigensubspace
of Sk+1/2(4M) under a hermitian operator U (4)W (4) [Kohnen 1982; Manickam
et al. 1990], whereas in all other cases it is the image of the projection operator P+
on Sk+1/2(4M) (M even) given by

P+ :
∑
n≥0

a(n)qn
−→

∑
n≥0

(−1)k n≡0,1 (mod 4)

a(n)qn.

This operator P+ was introduced by Kohnen and considered by Ueda and Yamana
[2010]. If M is even, P+ preserves the space Sk+1/2(4M). This phenomenon is
striking and it allows us to define the plus space for an even integer M by

S+k+1/2(4M)= Sk+1/2(4M)|P+.

In this paper we generalise the theory of newforms for the Kohnen plus space
and the full space whenever the traces of Hecke operators acting on the spaces of
integral and half-integral weight modular forms are equal. We also consider the
space Sk+1/2(16N ), N odd and squarefree, and develop the theory of newforms by
computing the dimension, since Ueda’s trace formula is known for the case where
the character of the space is nontrivial. In this case, we prove that the newform
spaces Snew

k+1/2(16N ) and S+,new
k+1/2(16N ) contain only the zero function.

Let us now explain the results of this paper. Let M = 2αN , α = 1, 2, N odd and
squarefree, χ2

= 1 and χ = χ8 when α= 2, where χ8 is the real quadratic primitive
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even character modulo 8 defined by χ8(n)=
( 2

n

)
. Then there is a Hecke-equivariant

isomorphism [Ueda 1988]

ψ : Sk+1/2(4M, χ)−→ S2k(2M).

We define the space of newforms in the full space as

Snew
k+1/2(4M, χ)=

⊕
F

Snew
k+1/2(4M, χ; F),

where the sum varies over an orthogonal basis of normalised Hecke eigenforms in
Snew

2k (2M), and for each such F let

Snew
k+1/2(4M; F)= { f ∈ Sk+1/2(4M, χ) : f |T (n2)= aF (n) f,∀n ≥ 1, (n, 2M)= 1}.

Then, Snew
k+1/2(4M, χ) is the inverse image of Snew

2k (2M) under the isomorphism ψ ,
so the “multiplicity-one” result is valid for Snew

k+1/2(4M, χ).
Consider the plus space S+k+1/2(8N ). Since P+ preserves the space Sk+1/2(8N )

and P+T (n2)= T (n2)P+, (n, 2N )= 1, we define S+,new
k+1/2(8N )= Snew

k+1/2(8N )|P+,
and as such the plus space S+,new

k+1/2(8N ) is a subspace of Snew
k+1/2(8N ). For a nonzero

Hecke eigenform f ∈ Snew
k+1/2(8N ; F), the form f |P+ is also a nonzero Hecke

eigenform belonging to the same space having the same eigenvalues (for almost
all Hecke operators) as that of f . Since N is odd and squarefree, a multiplicity-
one result holds for the space Snew

k+1/2(8N ) and hence f |P+ = f . This proves the
equality S+,new

k+1/2(8N )= Snew
k+1/2(8N ). To get f |P+ 6= 0, we use the multiplicity-one

result along with the fact that F |S∗t 6= 0 for some squarefree integer t ≡ 1 (mod 4),
(−1)k t > 0. Here S∗t is the Shintani lifting, which is the adjoint of the Shimura
map St with respect to the Petersson scalar product (St maps Sk+1/2(8N ) into
S2k(4N )) — see [Manickam et al. 1989; Shintani 1975]. The nonvanishing of F |S∗t
follows from the fact that the |t |-th Fourier coefficient of F |S∗t is (up to a nonzero
constant) equal to the special value L(F, t, k) and, for some choice of squarefree
integer t , (t, 2N )= 1, this special value is nonzero — see [Murty and Murty 1997].
Thus, we get F |S∗t |P+ 6= 0, since t ≡ 1 (mod 4).

Now, we let M = 4N and χ be trivial. Through the dimension formula we
observe that Snew

k+1/2(16N ) = S+,new
k+1/2(16N ) = {0}. Further, we develop the theory of

newforms on Sk+1/2(16N , χ), where χ is trivial or χ = χ8. Thus, in this paper we
consider the above assumptions on M :

M =
{

2N χ trivial,
4N χ trivial or χ = χ8,

with N odd and squarefree, and set up the theory of newforms. We observe that the
Shimura–Kohnen lifts map the space S+,new

k+1/2(8N ) into the space Snew
2k (4N ) instead

of Snew
2k (2N ).
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Finally, as an application of the theory of newforms of half-integral weight, we get
explicit eigenvalues for the W-operators on S2k(2M) (see [Gun et al. 2010], for exam-
ple). More precisely, if M=2N or 4N (N odd and squarefree), and if F ∈ Snew

2k (2M)
is a normalised newform with associated newform f ∈ Snew

k+1/2(4M, χ) (8| condχ
if M = 4N ), then we have

f |wp =

(D
p

)
f

for all p|N , where D is a fundamental discriminant, (−1)k D> 0, (D,M)= 1 with
a f (|D|) 6= 0. To get this, we use f |wp = λp f and the explicit Fourier expansion
of f |wp (see [Kohnen 1982]). Thus, for p|N , F |Wp =

( D
p

)
F . Now,

L∗(F, D, s) :=
(

2π
√

2M |D|

)−s

0(s)L(F, D, s)

satisfies

L∗(F, D, 2k− s)=
( D

2M

)
λ2M L∗(F, D, s),

( D
−1

)
= (−1)k,

where λ2M is the product of eigenvalues of the various W-operators Wpβ ,

β =

{
α+ 1 if p = 2,
1 otherwise.

Using λp =
( D

p

)
for all primes p|N in the above functional equation, we get( D

2β
)
· λ2β = 1, since L(F, D, k) is nonzero for some fundamental discriminant

D, (D, 2N ) = 1. From this we conclude that the eigenvalue of the W-operator
W2β on Snew

2k (2M) is equal to 1 when β is even. This proves that S2k(4)= S−2k(4),
where

S−2k(m)=
{

f ∈ S2k(m) : f
∣∣∣∣ (0 −1

m 0

)
= f

}
.

The above subspace was introduced by Skoruppa and Zagier [1988] in connection
with the theory of newforms for the space of Jacobi cusp forms.

2. Preliminaries

We begin by recalling some basic facts regarding modular forms of half-integral
weight. Let H denote the upper half-plane consisting of complex numbers τ ∈C with
Im(τ )>0. For complex numbers z 6=0, x , we let zx

= ex log z , log z= log |z|+i arg z,
−π < arg z ≤ π . Let ζ be a fourth root of unity. Let G denote the four-sheeted
covering of GL+2 (Q) defined as the set of all ordered pairs (α, φ(τ)), where
φ(τ) is a holomorphic function on H such that φ2(τ ) = ζ 2(cτ + d)/

√
detα and

α=
(a

c
b
d

)
∈GL+2 (Q). Then G is a group with multiplication (α, φ(τ))(β, ψ(τ))=

(αβ, φ(βτ)ψ(τ)). Let k ≥ 2 be a natural number. For a complex valued function f
defined on the upper half-plane H and an element (α, φ(τ)) ∈ G, define the stroke
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operator by f |k+1/2(α, φ(τ))(τ )= φ(τ)
−2k−1 f (ατ). We omit the subscript k+ 1

2
wherever there is no ambiguity. For 00(4) and its subgroups, we take the lifting
00(4)→ G as the collection {(α, j (α, τ ))}, where

α =

(
a b
c d

)
∈ 00(4) and j (α, τ )=

( c
d

)(
−4
d

)−1/2
(cτ + d)1/2.

Here
( c

d

)
denotes the generalised quadratic residue symbol and

(
−4
d

)1/2 is equal
to 1 or i according as d is 1 or 3 modulo 4. Let M be a natural number. A
holomorphic function f : H→ C is called a modular form of weight k + 1

2 for
00(4M) with character χ (modulo 4M) if f |k+1/2(γ, j (γ, τ ))(τ )= χ(d) f (τ ) for
all γ =

(a
c

b
d

)
∈00(4M) and f is holomorphic at all the cusps of 00(4M). If, further,

it vanishes at all the cusps, then it is called a cusp form. The set of cusp forms
defined as above forms a complex vector space denoted by Sk+1/2(4M, χ). If χ
is the trivial character, then the space is denoted by Sk+1/2(4M). We also denote
by Sk(M) the space of cusp forms of weight k on 00(M) with trivial character.
The Fourier expansion of a cusp form f at the cusp infinity is usually written as
f (τ )=

∑
n≥1 a f (n)qn , where q = e2π iτ . For a prime p, the p-th Hecke operator on

Sk+1/2(4M) is denoted by T (p2) if p -2M and U (p2) if p |2M ; and on S2k(M) is de-
noted by T (p) if p - M and U (p) if p|M . By a Hecke eigenform in Sk+1/2(4M, χ),
we mean a nonzero form in the space which is a simultaneous eigenform for all
Hecke operators T (n2), (n, 2M)= 1. For any positive integer n, the operators U (n)
and B(n) are defined on formal sums by U (n) :

∑
m≥1 a(m)qm

7→
∑

m≥1 a(mn)qm ,
B(n) :

∑
m≥1 a(m)qm

7→
∑

m≥1 a(m)qnm . The Petersson inner product for forms
f , g ∈ Sk+1/2(4M) is defined by

(1) 〈 f, g〉 = 1
i4M

∫
F

f (τ )g(τ )vk−3/2 du dv,

where F is a fundamental domain for the action of 00(4M) on H, i4M is the index
of 00(4M) in SL2(Z) and τ = u+ iv.

2.1. Shimura and Shintani liftings. Let t be a squarefree integer with (−1)k t > 0.
Then the t-th Shimura map on the space Sk+1/2(4M) is defined by

(2) f |St =
∑
n≥1

( ∑
d|n

(d,2M)=1

(4t
d

)
dk−1a f (|t |n2/d2)

)
qn.

We summarise the Shintani lifting [Manickam et al. 1989] when M = 2αN , N is
odd and α ≥ 1. If t is a squarefree integer, (−1)k t > 0, then for F ∈ S2k(2M) we
have F |S∗t ∈ Sk+1/2(4M) and it is given by
(3)
F |S∗t = (−1)[k/2]2k−1+(a+1)(−k+1/2)

∑
m≥1

(∑
r |N

µ(r)
( t

r

)
r−krk,2Mr (F;1mr2)

)
qm,



130 MANICKAM, MEHER AND RAMAKRISHNAN

where rk,2M(F;1m) is a certain cycle integral given by

(4) rk,2M(F;1m)=
∑

ωt(Q)
∫

CQ

F(z)(az2
+ bz+ c)k−1 dz.

In the above, the sum is over all 00(2M)-equivalent quadratic forms Q = [a, b, c]
with discriminant b2

− 4ac = 1m, 1 = 4α+1
|t | and a ≡ 0 (mod 22α+1 N ); CQ is

the image in 00(2M)\H of the semicircle a|z|2 + b<(z)+ c = 0 oriented from
(−b−

√
1m)/2a to (−b+

√
1m)/2a if a 6= 0, or of the vertical line b<(z)+c= 0

oriented from −c/b to i∞ if b > 0 and from i∞ to −c/b if b < 0, a = 0.
Let us compute rk,2M(F;1|t |). Since 1|t | = 4α+1t2, we take the representatives
{[0, 2α+1

|t |, µ]◦Wr :µ (mod 2α+1
|t |), r |2M, r > 0}, where Wr is the Atkin–Lehner

W-operator. Note that ωt(Qµ ◦Wr ) =
( t

r

)
ωt(Qµ) =

( t
r

)( t
µ

)
. Now, following the

arguments in [Kohnen 1985, p. 243] we get

(5) rk,2M(F; 4α+1t2)= 2ν(2M)(−1)[k/2](2π)−k0(k)(2α+1
|t |)k−1/2L(F, t, k),

where ν(2M) is the number of prime factors of 2M . From this we get that, when
F is a newform, the |t |-th Fourier coefficient of F |S∗t is (up to a nonzero constant)
the special value L(F, t, k).

2.2. W-operators and the projection operator P+. For p|2N , let Wp denote the
Atkin–Lehner W-operator on S2k(2N ). For p = 2, we define the analogous Atkin–
Lehner W-operators W (4) on Sk+1/2(4N ) and W (8) on Sk+1/2(8N ) as follows:

W (4)=
((

4a b
4Nc 4

)
, 21/2eiπ/4(Ncτ + 1)1/2

)
,

where a, b, c are integers satisfying 4a− Nbc = 1 and b ≡ 1 (mod 4);

(6) W (8)=
((

8x y
8Nw 8

)
, 81/4eiπ/4(Nwτ + 1)1/2

)
,

where x , y, w are integers such that y ≡ 1 (mod 8), 8x − Nwy = 1. We also let

W∗(4)=
((

4u v

4Nr 8

)
, 21/2eiπ/4(Nrτ + 2)1/2

)
,

where r , u, v are integers satisfying 8u− Nrv = 1 and v ≡ 1 (mod 8).

Remark 2.1. The W-operators defined above are independent of the choice of
the integers a, b, c, x , y, w, r , u, v with the given conditions. We note that
W∗(4)=W (4) on Sk+1/2(4N ); see [Manickam 1980; 2011] for details. The operator
W (8) maps Sk+1/2(8N ) into Sk+1/2(8N , χ8), and W (8)2 = I on Sk+1/2(8N , χ),
where χ is the principal character or χ = χ8 and I denotes the identity operator.
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We now define the projection operator P+ on Sk+1/2(4M) when M is even. Let
ξ =

(( 4
0

1
4

)
, eπ i/4

)
and ξ ′=

((4
0
−1
4

)
, e−π i/4

)
. Then a formal computation shows that

ξ (and hence ξ ′) preserves the space Sk+1/2(4M) if 4|M . Hence, if 4|M , we have

(7) ξ + ξ ′ : Sk+1/2(4M)−→ Sk+1/2(4M).

However, in the following we prove the above property for any even integer M . Let
M = 2N , where N is an odd positive integer. We write

ξ + ξ ′ = ξ +

(
1− 2N (N − 1)/2

8N 1− 2N

)∗
ξ

(
1 0
−8N 1

)∗
= ξ + ξ

(
1 0
−8N 1

)∗
= ξ Tr on Sk+1/2(8N ),

where Tr=
∑

ν=0,1
( 1
−4Nν

0
1

)∗ is adjoint to the inclusion Sk+1/2(8N ) ↪→ Sk+1/2(16N )
with respect to the Petersson scalar product. On formal Fourier series

∑
anqn , we

have

(8)
∑

anqn
|(ξ+ξ ′)=χ8(2k+1)

√
2
( ∑
(−1)kn≡0,1 (mod 4)

anqn
−

∑
(−1)kn≡2,3 (mod 4)

anqn
)
.

We define

(9) P+ :=
1
2

(
χ8(2k+ 1)
√

2
(ξ + ξ ′)+ I

)
.

Then
f |P+ =

∑
(−1)kn≡0,1 (mod 4)

a f (n)qn
∈ Sk+1/2(4M),

where f =
∑

n≥1 a f (n)qn
∈ Sk+1/2(4M).

3. Newforms on the plus space S+k+1/2(8N)

In the recent work of Ueda and Yamana [2010], the plus space for Sk+1/2(8N ) has
been introduced and they studied the theory of newforms. In this case each newform
in the full space Snew

k+1/2(8N ) (see [Manickam 1980; 2011]) satisfies f |P+ = f .
This follows by using that P+ maps Snew

k+1/2(8N ) into itself and the multiplicity-one
result obtained from Ueda’s trace formula, together with the nonvanishing of F |S∗t
for some squarefree t ≡ 1 (mod 4), where F ∈ Snew

2k (4N ) is a normalised newform
equivalent to f . Hence, the elements of Snew

k+1/2(8N ) also satisfies the same plus
space condition. Therefore, we consider the development of the theory of newforms
on S+k+1/2(8N ) and present the results in this section.
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Let us first state the results for the full space Sk+1/2(8N ), where N is odd
and squarefree. The following orthogonal decomposition of Sk+1/2(8N ) has been
obtained in [Manickam 1980; 2011]:

(10) Sk+1/2(8N )= Snew
k+1/2(8N )⊕ Sold

k+1/2(8N ),

where Snew
k+1/2(8N ) = S+,new

k+1/2(8N ) and the space of oldforms Sold
k+1/2(8N ) has the

decomposition

(11) Sold
k+1/2(8N )=

⊕
rd|N ,d<N

S+,new
k+1/2(8d)|U (r2)⊕

⊕
rd|N

Snew
k+1/2(4d)|U (r2)

⊕

⊕
rd|N

Snew
k+1/2(4d)U (r2)|P+⊕

⊕
d|N

rd|2N

S+,new
k+1/2(4d)|U (r2)

⊕

⊕
rd|N

S+,new
k+1/2(4d)|U (4r2)|P+.

We need to show only that, for a fixed divisor d|N , the sum

S+,new
k+1/2(4d)+ S+,new

k+1/2(4d)|U (4)+ S+,new
k+1/2(4d)|U (4)P+

is direct. For some constants α, β, γ and a newform f ∈ S+,new
k+1/2(4d), if we have

α f +β f |U (4)+ γ f |U (4)P+ = 0,

then, applying the operator U (4) we get

α f |U (4)=−(β + γ ) f |U (16),

from which we conclude that α= 0. Since S+,new
k+1/2(4d)|U (4)⊕ S+,new

k+1/2(4d)|U (4)P+
is a direct sum, it follows that β = γ = 0. This proves the required direct sum.

Thus, we get the following theorem regarding the plus space S+k+1/2(8N ):

Theorem 3.1. The plus space S+k+1/2(8N ) has the orthogonal decomposition

S+k+1/2(8N )= S+,new
k+1/2(8N )⊕ S+,old

k+1/2(8N ),
where

(12) S+,old
k+1/2(8N )=

⊕
rd|N ,d<N

S+,new
k+1/2(8d)|U (r2)⊕

⊕
rd|N

Snew
k+1/2(4d)U (r2)|P+

⊕

⊕
rd|N

S+,new
k+1/2(4d)|U (4r2)|P+.

The spaces S+,new
k+1/2(8N ) and S+,old

k+1/2(8N ) are mapped into the spaces Snew
2k (4N ) and

Sold
2k (4N ) respectively under the Shimura lifting. Moreover, the spaces of newforms

S+,new
k+1/2(8N ) and Snew

2k (4N ) are isomorphic under a linear combination of Shimura
lifts indexed by squarefree integers t ≡ 1 (mod 4), (−1)k t > 0.
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Remark 3.2. If f ∈ S+,new
k+1/2(8N )= Snew

k+1/2(8N ), then a f (n)=0 whenever (−1)kn is
not congruent to 1 modulo 4. Hence, the Shimura maps St,8N annihilate Snew

k+1/2(8N )
whenever t 6≡ 1 (mod 4), (−1)k t > 0.

4. Newform theory on Sk+1/2(16N)

In this section, we extend the theory of newforms to the space Sk+1/2(16N ), where
N is odd and squarefree. In this case, Ueda’s trace formula is not valid as condχ =1.
Also from the work of Manickam, Ramakrishnan and Vasudevan [Manickam et al.
1989] on the Shintani lifting, it seems that there exists no Shintani lift from Snew

2k (8N )
to Sk+1/2(16N ). But, such a lifting exists if we replace the trivial character by a
primitive character modulo 8 or 16 (see [Manickam et al. 1989]). This indicates the
nonexistence of a nontrivial space of newforms in Sk+1/2(16N ), which is mapped to
Snew

2k (8N ) under the Shimura lifting. To realise this, we compute the dimension of
the space Sk+1/2(16N ) and give a decomposition of the space of oldforms (which
turns out to be the full space).

Let us now compute the dimensions of the spaces S2k(4N ) and Sk+1/2(16N ).
Using [Martin 2005], we have

(13) dim S2k(4N )= 2k−1
12

4N
∏
p|2N

(
1+ 1

p

)
−

3
2

2ν(N )

=
(2k−1)

2

∏
p|N

(p+ 1)− 3 · 2ν(N )−1,

where ν(N ) is the number of prime factors of N . Now, using [Cohen and Oesterlé
1977], we get
(14)

dim Sk+1/2(16N )= 2k−1
24

16N
∏
p|2N

(
1+ 1

p

)
−
ζ(k, 16N , 1)

2

∏
p|N

λ(rp, sp, p)

= (2k− 1)
∏
p|N

(p+ 1)− 3 · 2ν(N ).

(In the above we have used the dimension formula as given in [Ono 2004, Theo-
rem 1.56, p. 16].) Equations (13), (14) imply that dim Sk+1/2(16N )= 2 dim S2k(4N ).

We now state the main theorem of this section.

Theorem 4.1. We have

(15) Snew
k+1/2(16N )= {0}

and
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(16) Sk+1/2(16N )

=

⊕
rd|N

(
S+,new

k+1/2(4d)⊕ S+,new
k+1/2(4d)|U (4)⊕ S+,new

k+1/2(4d)|U (4)P+

⊕S+,new
k+1/2(4d)|U (8)B(2)⊕ S+,new

k+1/2(4d)|B(4)

⊕S+,new
k+1/2(4d)|U (4)B(4)

)
|U (r2)

⊕

⊕
rd|N

(
Snew

k+1/2(4d)⊕ Snew
k+1/2(4d)|P+⊕ Snew

k+1/2(4d)|U (2)B(2)

⊕Snew
k+1/2(4d)|B(4)

)
|U (r2)

⊕

⊕
rd|N

(
Snew

k+1/2(8d)⊕ Snew
k+1/2(8d)|W (16)

)
|U (r2),

where W (16) is the W-operator corresponding to the prime p = 2 in Sk+1/2(16N ).

Proof. It is enough to show the direct sum in the respective eigensubspaces. First
consider the eigensubspace generated by S+,new

k+1/2(4d). By Theorem 3.1, the sum
S+,new

k+1/2(4d)+ S+,new
k+1/2(4d)|U (4)+ S+,new

k+1/2(4d)|U (4)P+ is direct and, assuming the
rest of the sum in the eigensubspace is not direct, then we have f ∈ S+,new

k+1/2(4d)
which is nonzero and such that all odd coefficients of f |U (8) are zero, by assuming
S+,new

k+1/2(4d)|U (8) ∩ (S+,new
k+1/2(4d)|B(2)+ S+,new

k+1/2(4d)|U (4)B(2)) is nonzero. That
is, f |U (4) ∈ Sk+1/2(4d) has the property that its n-th Fourier coefficient is zero
whenever n ≡ 2 (mod 4). This means that f |U (4) ∈ S+k+1/2(4d), a contradiction
since 0 6= f ∈ S+k+1/2(4d). Hence all the sums in the eigensubspace generated by
S+,new

k+1/2(4d) are direct. Next, consider the eigensubspace generated by Snew
k+1/2(4d).

Clearly Snew
k+1/2(4d)⊕ Snew

k+1/2(4d)|P+ is a direct sum in Sk+1/2(8N ). If there is a
nonzero element in the intersection of Snew

k+1/2(4d)|U (2)B(2) and Snew
k+1/2(4d)|B(4),

then the n-th Fourier coefficient of a nonzero form f ∈ Snew
k+1/2(4d) vanishes when-

ever n ≡ 2 (mod 4) and hence, by [Kohnen 1982, Lemma], 0 6= f ∈ S+k+1/2(4d), a
contradiction. So, the subspace Sk+1/2|U (2)B(2)⊕Snew

k+1/2(4d)|B(4) is a direct sum
in Sk+1/2(16N ). In order to prove that all the sum as above generated by Snew

k+1/2(4d)
is direct, we use the following fact. If f ∈ Sk+1/2(8N , χ8) and f |B(2)∈ Sk+1/2(8N ),
then f = 0, by [Serre and Stark 1977, Lemma 7]. Finally, applying U (2) on
the eigensubspace of Snew

k+1/2(8d), one component is mapped to zero and the other
component is Snew

k+1/2(8d)|W (8), which is nonzero. Hence, we get that the sum in this
eigensubspace is direct. This completes the proof for the direct sum decomposition
of Sold

k+1/2(16N ).
Since the spaces S+,new

k+1/2(4d), Snew
k+1/2(4d) and Snew

k+1/2(8d) are isomorphic (un-
der the Shimura correspondence) to the spaces Snew

2k (d), Snew
2k (2d) and Snew

2k (4d)
respectively, we see that

dim Sold
k+1/2(16N )=

∑
rd|N

(6 dim Snew
2k (d)+ 4 dim Snew

2k (2d)+ 2 dim Snew
2k (4d))

(17)
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= 2
∑
rd|N

(3 dim Snew
2k (d)+ 2 dim Snew

2k (2d)+ dim Snew
2k (4d))

= 2 dim S2k(4N )= dim Sk+1/2(16N )

from the above computation. Therefore, it follows that Snew
k+1/2(16N )= {0}. �

5. Newform theory on Sk+1/2(16N, χ8)

In this section, we study the theory of newforms on Sk+1/2(16N , χ8), where χ8 is
the even quadratic character modulo 8 defined in the introduction and N is odd
and squarefree. Since condχ8 = 8, by Ueda’s result [1988] there exists a Hecke
equivariant isomorphism between the spaces Sk+1/2(16N , χ8) and S2k(8N ). Define
the space of oldforms in Sk+1/2(16N , χ8) as follows:

(18) Sold
k+1/2(16N , χ8)

=

∑
rd|N

(S+,new
k+1/2(4d)|B(2)+ S+,new

k+1/2(4d)|U (2))U (r2)

+

∑
rd|N

(S+,new
k+1/2(4d)|U (8)+ S+,new

k+1/2(4d)|U (8)W (8)B(2))U (r2)

+

∑
rd|N

(Snew
k+1/2(4d)|U (2)+ Snew

k+1/2(4d)|B(2))U (r2)

+

∑
rd|N

Snew
k+1/2(4d)|U (2)W (8)B(2)U (r2)+

∑
rd|N

Snew
k+1/2(8d)|B(2)U (r2)

+

∑
rd|N

Snew
k+1/2(8d)|W (8)U (r2)+

∑
rd|N ,d<N

Snew
k+1/2(16d, χ8)|U (r2).

First consider the sum in the eigensubspace generated by S+,new
k+1/2(4d). Suppose

( f1|U (4)+ f2)|U (2)= f3|B(2), where fi ∈ S+,new
k+1/2(4d), i = 1, 2, 3. This implies

that f1|U (4)+ f2 ∈ Sk+1/2(4d) is such that all its Fourier coefficients which are
congruent to 2 modulo 4 are zero. Hence, by [Kohnen 1982, Lemma], we conclude
that f1|U (4)+ f2 ∈ S+k+1/2(4d). Thus, f1 = 0. Therefore, f2|U (2)= f3|B(2), i.e.,
f2 and f2|U (4) belong to S+k+1/2(4d), which implies that f2 and hence f3= 0. Now,
among the four components, the first three direct sums belong to Sk+1/2(8d, χ8).
But, the fourth one is in Sk+1/2(4d)|B(2) ∈ Sk+1/2(16, χ8). This shows that all the
four components form a direct sum. Next, consider the eigensubspaces generated
by Snew

k+1/2(4d) and Snew
k+1/2(8d). A similar argument as above together with the

following lemma shows that the respective sums are direct.

Lemma 5.1. The operator U (2)W (8) has the following mapping property:

U (2)W (8) : Sk+1/2(4N )−→ Sk+1/2(8N ).
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Moreover, if f ∈ Sk+1/2(4N ), then f |U (2)W (8) ∈ Sk+1/2(4N ) if and only if
f ∈ S+k+1/2(4N ).

Proof. The mapping property follows from a straightforward verification. Suppose
f |U (2)W (8)= g, where f , g ∈ Sk+1/2(4N ). Using

(19) W (8)W∗(4)= χ8(2k+ 1)
((

1 0
0 2

)
, 21/4

)
on Sk+1/2(8N , χ8)

and

(20) W∗(4)=W (4) on Sk+1/2(4N ),

we get

f |U (2)
∣∣∣∣((1 0

0 2

)
, 21/4

)
= χ8(2k+ 1) g|W (4).

Now, g|W (4) is invariant under
( 1

0
1
1

)∗. Hence, a f |U (2)(n) = 0 if n is odd and,
therefore, a f (n) = 0 whenever n ≡ 2 (mod 4). This proves that f ∈ S+k+1/2(4N ),
a contradiction. For a detailed proof of the identities (19) and (20), we refer to
[Manickam 2011]. �

Define the space of newforms in Sk+1/2(16N , χ8) to be the orthogonal com-
plement (with respect to the Petersson scalar product) of Sold

k+1/2(16N , χ8) in
Sk+1/2(16N , χ8). It is already known that the spaces S+,new

k+1/2(4d), Snew
k+1/2(4d)

and Snew
k+1/2(8d) are isomorphic (respectively) to Snew

2k (d), Snew
2k (2d) and Snew

2k (4d).
Using induction on the number of prime factors of N , it follows that the space
Snew

k+1/2(16d, χ8) is isomorphic to Snew
2k (8d) if d|N and d < N . Now, comparing

the dimension of the space Sold
2k (8N ), we see that the spaces Sold

k+1/2(16N , χ8) and
Sold

2k (8N ) have equal dimension. As mentioned at the beginning of this section,
Ueda [1988] has shown that the spaces Sk+1/2(16N , χ8) and S2k(8N ) are Hecke-
equivariantly isomorphic when N is odd and squarefree. Therefore, combining all
these facts, it follows that the space Snew

k+1/2(16N , χ8) is isomorphic to Snew
2k (8N ).

We summarise the results of this section in the following.

Theorem 5.2. Let N be an odd and squarefree natural number and let χ8 be the
primitive even quadratic Dirichlet character modulo 8. Then Sk+1/2(16N , χ8) has
an orthogonal decomposition

Sk+1/2(16N , χ8)= Snew
k+1/2(16N , χ8)⊕ Sold

k+1/2(16N , χ8),

and
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(21) Sold
k+1/2(16N , χ8)

=

⊕
rd|N

(
S+,new

k+1/2(4d)|B(2)⊕ S+,new
k+1/2(4d)|U (2)⊕ S+,new

k+1/2(4d)|U (8)

⊕S+,new
k+1/2(4d)|U (8)W (8)B(2)

)
U (r2)

⊕

⊕
rd|N

(
Snew

k+1/2(4d)|U (2)⊕ Snew
k+1/2(4d)|B(2)

⊕rd|N Snew
k+1/2(4d)|U (2)W (8)B(2)

)
U (r2)

⊕

⊕
rd|N

(
Snew

k+1/2(8d)|B(2)⊕ Snew
k+1/2(8d)|W (8)

)
U (r2)

⊕

⊕
rd|N ,d<N

Snew
k+1/2(16d, χ8)|U (r2).

The spaces Snew
k+1/2(16N , χ8) and Sold

k+1/2(16N , χ8) are mapped, respectively, into
the spaces Snew

2k (8N ) and Sold
2k (8N ) under the Shimura lifting. Moreover, the spaces

of newforms Snew
k+1/2(16N , χ8) and Snew

2k (8N ) are isomorphic under a linear combi-
nation of Shimura maps indexed by squarefree integers t ≡ 1 (mod 4), (−1)k t > 0.
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ALGEBRAIC FAMILIES OF HYPERELLIPTIC CURVES
VIOLATING THE HASSE PRINCIPLE

NGUYEN NGOC DONG QUAN

In 2000, Colliot-Thélène and Poonen showed how to construct algebraic
families of genus-one curves violating the Hasse principle. Poonen explicitly
constructed such a family of cubic curves using the general method devel-
oped by Colliot-Thélène and himself. The main result in this paper gen-
eralizes the result of Colliot-Thélène and Poonen to arbitrarily high genus
hyperelliptic curves. More precisely, for n > 5 and n 6≡ 0 (mod 4), we show
that there is an explicit algebraic family of hyperelliptic curves of genus n
that are counterexamples to the Hasse principle explained by the Brauer–
Manin obstruction.
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1. Introduction

The aim of this article is to prove the following result.

Theorem 1.1 (see Theorem 6.8). Let n > 5 be an integer such that n 6≡ 0 (mod 4).
Then there is an algebraic family Ct of hyperelliptic curves of genus n such that Ct is
a counterexample to the Hasse principle explained by the Brauer–Manin obstruction
for all t ∈Q. Furthermore, Ct contains no zero-cycles of odd degree over Q for all
t ∈Q.
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We will shortly relate this theorem to existing results in literature, and sketch
the ideas of the proof of Theorem 1.1. Let us begin by briefly recalling some
terminology which appears in many places in this paper. For a basic introduction
to the Brauer–Manin obstruction, see [Skorobogatov 2001; Poonen 2008].

Recall from [Poonen 2001] that an algebraic family of curves is a family of
curves depending on a parameter T such that substituting any rational number for T
results in a smooth curve over Q.

A smooth geometrically irreducible curve C over Q is said to satisfy the Hasse
principle if the everywhere local solvability of C is equivalent to the global solvability
of C. In more concrete terms, this means that

C(Q) 6=∅ if and only if C(Qp) 6=∅ for every prime p including p =∞.

If C has points locally everywhere but has no rational points, we say that C is a
counterexample to the Hasse principle. Furthermore, if we also have C(AQ)

Br
=∅

(see [Poonen 2008], or [Skorobogatov 2001] for the definition of C(AQ)
Br), we

say that C is a counterexample to the Hasse principle explained by the Brauer–
Manin obstruction. The Hasse principle fails in general. The first counterexamples
of genus-one curves to the Hasse principle were discovered by Lind [1940] and
independently shortly thereafter by Reichardt [1942].

Let us relate Theorem 1.1 to existing results in literature. For n = 1, Colliot-
Thélène and Poonen [2000] showed how to produce one-parameter families of curves
of genus one violating the Hasse principle. Poonen [2001] explicitly constructed an
algebraic family of genus-one cubic curves violating the Hasse principle using the
general method developed in [Colliot-Thélène and Poonen 2000]. It is not known
whether there exists an algebraic family of curves of genus n violating the Hasse
principle for all n ≥ 2.

Here, as throughout the article, we say that a smooth geometrically irreducible
variety V over Q satisfies CHP if it is a counterexample to the Hasse principle
explained by the Brauer–Manin obstruction. A smooth geometrically irreducible
variety V over Q is said to satisfy NZC if it contains no zero-cycles of odd degree
over Q.

Coray and Manoil [1996] showed that for each positive integer n ≥ 2, the smooth
projective model of the affine curve defined by

(1) z2
= 605 · 106x2n+2

+ (18x2
− 4400)(45x2

− 8800)

satisfies CHP and NZC. The Coray–Manoil family of curves is the first family
of hyperelliptic curves of varying genus that satisfies CHP and NZC. Although
the authors restricted themselves to constructing only one hyperelliptic curve of
genus n satisfying CHP and NZC for each integer n ≥ 2, it seems plausible that
their approach can be modified to produce algebraic families of hyperelliptic curves



ALGEBRAIC FAMILIES OF HYPERELLIPTIC CURVES 143

of arbitrary genus satisfying CHP and NZC. Since we will follow the approach of
Coray and Manoil with some modifications to prove Theorem 1.1, we briefly recall
their main ideas for constructing the family (1).

Colliot-Thélène, Coray and Sansuc [Colliot-Thélène et al. 1980] proved that the
threefold Y(5,1,1) in P5

Q
, defined by

Y(5,1,1) :
{

u2
1− 5v2

1 = 2xy,
u2

2− 5v2
2 = 2(x + 20y)(x + 25y),

satisfies CHP and NZC. Building on this result, Coray and Manoil [1996] introduced
a geometric construction of hyperelliptic curves that allows to smoothly embed the
family of curves defined by (1) into the threefold Y(5,1,1). It follows immediately
from functoriality that the Coray–Manoil family of curves satisfies CHP and NZC.

In order to generalize the result of Coray and Manoil, we first construct a family
of threefolds in P5

Q
that satisfies CHP and NZC and has the threefold Y(5,1,1) as

a member. The construction of such threefolds is achieved by building on that
of the threefold Y(5,1,1). In order to show that the Brauer–Manin obstruction for
these threefolds is nonempty, we also need to show the existence of infinitely many
primes p and q satisfying certain quadratic equations. We do this by calling on the
result of [Iwaniec 1974] that a quadratic polynomial in two variables represents
infinitely many primes. Since the existence of certain threefolds in P5

Q
satisfying

CHP and NZC is of interest in its own right, we state this result here.

Theorem 1.2. Let p be a prime such that p ≡ 5 (mod 8) and 3 is quadratic non-
residue in F×p . Then there exist infinitely many pairs (b, d) ∈ Z2 such that any
smooth and proper Q-model Z of the smooth Q-variety X in A5

Q
, defined by{

0 6= u2
1− pv2

1 = 2x,
0 6= u2

2− pv2
2 = 2(x + 4pb2)(x + p2d2),

satisfies CHP and NZC.

The next step is to choose a family of hyperelliptic curves of arbitrary genus that
can be smoothly embedded into the family of threefolds in Theorem 1.2 using the
geometric construction of Coray and Manoil. For each n ≥ 2, we define a family of
hyperelliptic curves of genus n of the shape

z2
= pα2 Q2x2n+2

+ (2b2 Px2
+βQ)(d2 pPx2

+ 2βQ),(2)

where α, β, γ are certain rational numbers, and P , Q depend on α, β, γ , p, b, d.
In order to apply the geometric construction of hyperelliptic curves of Coray and
Manoil, the polynomials on the right-hand side of (2) are required to be separable.

In order to smoothly embed these hyperelliptic curves into the threefolds in
Theorem 1.2, we impose certain conditions on α, β, γ such that these rational
numbers satisfy certain local congruences and certain conics in P2

Q
constructed
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from sextuples (p, b, d, α, β, γ ) possess at least one nontrivial rational point. Lem-
mas 5.1 and 5.4 show that there are infinitely many sextuples (p, b, d, α, β, γ )
satisfying these conditions. For any such sextuple, it follows from functoriality
and Theorem 1.2 that the family of hyperelliptic curves of genus n defined by (2)
satisfies CHP and NZC for each n ≥ 2.

In the last step, the main difficulty is to show the existence of rational functions in
Q(T ) that parametrize rational numbers α, β, γ such that for each integer n≥2, sub-
stituting any rational number for T in the polynomials on the right-hand side of (2)
results in a separable polynomial of degree 2n+2 over Q. We do this by calling on a
separability criterion from [Dong Quan 2014], which will be reviewed in Section 6.

After this article was finished, the author learned that Bhargava, Gross, and
Wang [Bhargava et al. 2013] showed that for any integer n ≥ 1, there is a positive
proportion of everywhere locally solvable hyperelliptic curves over Q of genus n
that have no points over any number field of odd degree over Q. Despite this
remarkable result, it cannot determine whether an explicit hyperelliptic curve over
Q satisfies CHP and NZC. The main theorem of this article describes an explicit
algebraic family of such curves of genus n with gcd(n, 4)= 1 and n > 5.

2. The Hasse principle for certain threefolds in P5
Q

In this section, we will construct families of threefolds satisfying CHP and NZC.
We begin by stating some lemmas that we will need in the proof of the main results
throughout the paper.

Lemma 2.1 (see [Coray and Manoil 1996, Lemma 4.8]). Let k be a number field,
and let V1 and V2 be (proper) k-varieties. Assume that there is a k-morphism
α : V1→ V2 and V2(Ak)

Br
=∅. Then V1(Ak)

Br
=∅.

Lemma 2.2 (see, for example, [Corn 2007, Proposition 6.4]). Let X be a smooth F-
variety. Let L/F be a cyclic extension, and let F(X ) be the function field of X . Let
f be an element of F(X ), and let XL =X×F L. Then the class of the cyclic algebra
(L/F, f ) ∈Br(F(X )) lies in the image of the inclusion Br(X ) ↪→Br(F(X )) if and
only if div( f )= NormL/F (D) for some D ∈ Div(XL).

Lemma 2.3 (Lang–Nishimura, [Colliot-Thélène et al. 1980, p. 164, Lemme 3.1.1]).
Let F be a field, and let X be an integral F-variety. Let Y be a proper F-variety,
and let f : X −→ Y be an F-rational map. If X (F) contains a regular F-point,
then Y(F) is nonempty. In particular, the condition X (F) 6=∅ is an F-birational
invariant in the category of smooth, proper and integral F-varieties X .

We now describe a construction of certain Azumaya algebras on certain threefolds.

Lemma 2.4. Let p be a prime such that p ≡ 5 (mod 8). Assume that:

(A1) 3 is a quadratic nonresidue in F×p .
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(B) There exists a pair (b, c) ∈ Z2 such that gcd(b, c) = 1, b 6≡ 0 (mod p), and
q := |pc−4b2

| is either 1 or an odd power of an odd prime. Here | · | denotes
the absolute value in Q. Furthermore, if b ≡ 0 (mod 3), then c ≡ 2 (mod 3).

Let V be a smooth, proper Q-model of the smooth Q-variety U in A5
Q

defined by

(3) U :
{

0 6= u2
1− pv2

1 = 2x,
0 6= u2

2− pv2
2 = 2(x + 4pb2)(x + p2c).

Let Q(V) be the function field of V , and let A be the class of the quaternion algebra
(p, x + 4pb2). Then A is an Azumaya algebra of V , that is, A belongs to the
subgroup Br(V) of Br(Q(V)).

Proof. Let K =Q(
√

p ). Let 0 be the divisor defined over Q(
√

p ) and lying on V
defined by

0 : f := x + 4pb2
= 0, u2−

√
pv2 = 0, u2

1− pv2
1 =−8pb2.

Let σ be a generator of Gal(K/Q). We see that div( f ) = 0 + σ0, and it thus
follows from Lemma 2.2 that A is in the image of Br(V) ↪→ Br(Q(V)). �

Lemma 2.5. Let p be a prime such that p ≡ 5 (mod 8). Assume that conditions
(A1) and (B) in Lemma 2.4 are true. Then there exists a nonzero integer a such that

(4) gcd
(
(a2
+ 2pb2)(2a2

+ p2c), 3(2b2
+ pc)

)
= 1.

Proof. Assume that H1 := 2b2
+ pc =±

∏m
i=1 lαi

i , where li are distinct primes and
αi ∈ Z>0. Note that since q = |pc− 4b2

| is either 1 or an odd power of an odd
prime, c is odd. Thus H1 is odd, and therefore li 6= 2 for each 1≤ i ≤ m. We also
have that li 6= p for each 1≤ i ≤ m; otherwise, li = p for some integer 1≤ i ≤ m.
Since 2b2

+ pc ≡ 0 (mod li ) and li = p, it follows that b ≡ 0 (mod p), which is a
contradiction. We consider the following cases:

Case 1. b ≡ 0 (mod 3).
By assumption (B), one knows that c ≡ 2 (mod 3). Define a :=

∏m
i=1 li . We

contend that a satisfies (4). Indeed, we have that li 6=3 for each 1≤ i ≤m; otherwise,
li = 3 for some integer 1≤ i ≤ m. Since b ≡ 0 (mod 3) and p 6= 3, it follows that
c ≡ 0 (mod 3), which is a contradiction.

Let H2 :=a2
+2pb2 and H3 := 2a2

+ p2c. We see that a2
=
∏m

i=1 l2
i ≡ 1 (mod 3).

Since p 6= 3, we deduce that H2 ≡ 1 (mod 3) and H3 ≡ 2+ c ≡ 1 (mod 3), and
thus H2 H3 ≡ 1 (mod 3).

Suppose that l j divides H2 for some integer 1 ≤ j ≤ m. Since a =
∏m

i=1 li ≡

0 (mod l j ), it follows that b ≡ 0 (mod l j ). Thus c ≡ 0 (mod l j ), which is a contra-
diction to (B).
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Suppose that l j divides H3 for some integer 1 ≤ j ≤ m. Since a =
∏m

i=1 li ≡

0 (mod l j ) and l j 6= p, it follows that c≡ 0 (mod l j ). Hence b≡ 0 (mod l j ), which
is a contradiction to (B). Therefore, in any event, (4) holds.

Case 2. b 6≡ 0 (mod 3) and c ≡ 0 (mod 3).
Let a :=

∏m
i=1 li . By (A1), we know that p ≡ 2 (mod 3). Hence repeating in the

same manner as in Case 1, we deduce that (4) holds.

Case 3. b 6≡ 0 (mod 3) and c 6≡ 0 (mod 3).
Let a := 3

∏m
i=1 li . The same arguments as in Case 1 show that (4) holds. �

Following the techniques in the proof of [Colliot-Thélène et al. 1980, Proposi-
tion 7.1], we now prove the main theorem in this section.

Theorem 2.6. We maintain the same notation as in Lemma 2.4. Let p be a prime
such that p ≡ 5 (mod 8). Assume further that (A1) and (B) are true. Let U and V
be the Q-varieties defined in Lemma 2.4. Let T be the singular Q-variety in P5

Q

defined by

(5) T :
{

u2
1− pv2

1 = 2xy,
u2

2− pv2
2 = 2(x + 4pb2 y)(x + p2cy).

Then U , V and T satisfy CHP and NZC.

Proof. The proof of Theorem 2.6 is divided into several steps.

Step 1. U(Q)= T (Q).

It is clear that U(Q)⊆ T (Q). Assume that there is a point

P := (x : y : u1 : v1 : u2 : v2) ∈ T (Q).

Suppose first that y = 0. Then u1 = v1 = 0. If furthermore x = 0, then u2 = v2 = 0,
which is a contradiction. Hence x 6= 0, and thus 2= (u2/x)2− p(v2/x)2. Hence 2
is the norm of an element in Q(

√
p )×, and therefore 2 is the norm of an element in

Qp(
√

p )×. Thus the local Hilbert symbol (2, p)p is 1. On the other hand, using
[Cohen 2007, p. 296, Theorem 5.2.7] and p ≡ 5 (mod 8), we deduce that

(2, p)p =

( 2
p

)
=−1,

which is a contradiction.
Now we assume that y 6= 0, and with no loss of generality, assume further that

y = 1. We consider the following cases:

Case 1. x = 0.
The second equation of (5) implies that u2

2− pv2
2 = 8p3b2c. Thus 8p3b2c is the

norm of an element in Q2(
√

p )×, and hence the local Hilbert symbol (8p3b2c, p)2
is 1. Since q = |pc− 4b2

| is either 1 or an odd power of an odd prime, c is odd.
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Hence v2(8p3b2c) = 3+ 2v2(b), which is an odd integer. Using [Cohen 2007,
loc. cit.], we deduce that

(8p3b2c, p)2 =
( p

2

)
=−1,

which is a contradiction.

Case 2. x =−4pb2.
It follows from (5) that u2

1 − pv2
1 = −8pb2. Using the same arguments as in

Case 1, we deduce that −8pb2 is not the norm of any element in Q2(
√

p )×, which
is a contradiction to the last identity.

Case 3. x =−p2c.
We see from (5) that u2

1− pv2
1 =−2p2c. Using the same arguments as in Case 1,

we deduce that −2p2c is not the norm of any element in Q2(
√

p )×, which is a
contradiction to the last identity.

Therefore, in any event, we have shown that if the point P := (x : y :u1 :v1 :u2 :v2)

belongs to T (Q), then y = 1, x 6= 0, x+4pb2
6= 0 and x+ p2c 6= 0. In other words,

the point P satisfies{
0 6= u2

1− pv2
1 = 2x,

0 6= u2
2− pv2

2 = 2(x + 4pb2)(x + p2c),

and thus P ∈ U(Q). Therefore U(Q)= T (Q).

Step 2. U,V , and T are everywhere locally solvable.

We now prove that U,V and T are everywhere locally solvable. By Lemma 2.3,
it suffices to prove that U is everywhere locally solvable. Recall that by Lemma 2.5,
there is a nonzero integer a such that

gcd
(
(a2
+ 2pb2)(2a2

+ p2c), 3(2b2
+ pc)

)
= 1.

Hence it suffices to consider the following cases:

Case I. l is a prime such that l 6= p and gcd(l, (a2
+ 2pb2)(2a2

+ p2c))= 1.
Let x = 2a2. Since 2x = 4a2 is a square in Z, we see that the local Hilbert

symbol (2x, p)l satisfies

(2x, p)l = (4a2, p)l = 1.

Thus 2x is the norm of an element in Ql(
√

p )×.
We see that

vl(2(x + 4pb2)(x + p2c))= vl(4(a2
+ 2pb2)(2a2

+ p2c))

= 2vl(2)+ vl((a2
+ 2pb2)(2a2

+ p2c))= 2vl(2).
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Hence, using [Cohen 2007, loc. cit.], we deduce that the local Hilbert symbol
(2(x + 4pb2)(x + p2c), p)l equals 1. Thus 2(x + 4pb2)(x + p2c) is the norm of
an element in Ql(

√
p )×. Therefore U is locally solvable at l.

Case II. l is a prime such that gcd(l, 3(2b2
+ pc))= 1. Note that p is among these

primes.
Assume first that l = p, and set x = 2pb2. We see that 2x = p(2b)2, and

2(x + 4pb2)(x + p2c) = p2(12b2)(2b2
+ pc). Note that (2b)2 6≡ 0 (mod p) and

(12b2)(2b2
+ pc) ≡ 6(2b2)2 6≡ 0 (mod p). Hence, using [Cohen 2007, loc. cit.],

we deduce that the local Hilbert symbol (2x, p)p satisfies

(2x, p)p = (−1)(p−1)/2
(
(2b)2

p

)
= 1.

Hence 2x is the norm of an element in Qp(
√

p ).
By (A1), we know that 6 is quadratic residue in F×p . Since (12b2)(2b2

+ pc)≡
6(2b2)2 (mod p), we see that (12b2)(2b2

+ pc) is a quadratic residue in F×p . Thus
using the same arguments as above, we deduce that

(2(x + 4pb2)(x + p2c), p)p = (p2(12b2)(2b2
+ pc), p)p = 1.

Therefore 2(x + 4pb2)(x + p2c) is the norm of an element in Qp(
√

p ). Hence U
is locally solvable at p.

Suppose that l 6= p, and set x = 2pb2. We see that

vl(2x)= vl(4pb2)= vl(p)+ 2vl(2b)= 2vl(2b),

vl(2(x + 4pb2)(x + p2c))= vl(p2(12b2)(2b2
+ pc))

= 2vl(2b)+ vl(3(2b2
+ pc))= 2vl(2b).

Using the same arguments as in Case I, we deduce that U is locally solvable at l.
It is not difficult to see that U(R) 6=∅. It follows from Cases I and II that U is

everywhere locally solvable, and thus U,V and T are everywhere locally solvable.

Step 3. V satisfies CHP.

We will prove that V(AQ)
Br
= ∅. Let Q(V) be the function field of V , and

let A be the class of quaternion algebra (p, x + 4pb2) in Br(Q(V)). It follows
from Lemma 2.4 that A is an Azumaya algebra of V . We will prove that for any
Pl ∈ V(Ql),

(6) invl(A(Pl))=

{
0 if l 6= 2,
1
2 if l = 2.

Since V is smooth, we know that U(Ql) is l-adically dense in V(Ql). It is well-
known (see, for example, [Viray 2012, Lemma 3.2]) that invl(A(Pl)) is a continuous
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function on V(Ql) with the l-adic topology. Hence it suffices to prove (6) for
Pl ∈ U(Ql).

Suppose that l = ∞, or l is an odd prime such that l 6= p and p is a square
in Q×l . We see that p ∈Q

2,×
l , and hence the local Hilbert symbol (p, t)l is 1 for

any t ∈Q×l . Thus invl(A(Pl)) is 0.
Suppose that l is an odd prime such that l 6= p and p is not a square in Q×l . Let Pl ∈

U(Ql), and let x = x(Pl). It follows from (3) and [Cohen 2007, loc. cit.] that vl(x)
and vl((x+4pb2)(x+ p2c)) are even, and hence the sum vl(x+4pb2)+vl(x+ p2c)
is even. Assume first that vl(x) < 0. We deduce that vl(x + 4pb2) = vl(x), and
hence it is even. Suppose now that vl(x)≥ 0. We then see that vl(x + 4pb2)≥ 0
and vl(x + p2c)≥ 0. We contend that at least one of the last two numbers is zero.
Otherwise, since x ∈Zl , one sees that x+4pb2

≡0 (mod l) and x+ p2c≡0 (mod l).
Hence l divides p(pc−4b2), and thus by condition (B), we deduce that l divides pq .

If q is 1, then l = p, which is a contradiction. If q is an odd power of an odd
prime, say q2m+1

1 for some odd prime q1 and m ∈Z≥0, then l=q1. By condition (B),
we know that q = q2m+1

1 ≡±4b2
6≡ 0 (mod p). Hence

l = q1 ≡±

(
2b
qm

1

)2

(mod p).

Since −1 is a square in F×p , it follows from the congruence above that l is a
square in F×p . By the quadratic reciprocity law, p is a square in Q×l , which is a
contradiction. Since the sum vl(x + 4pb2)+ vl(x + p2c) is even and at least one
of the two summands is even, we deduce that each of them is even. Hence, using
[Cohen 2007, loc. cit.], we deduce that the local Hilbert symbol (p, x+4pb2)l is 1.
Therefore invl(A(Pl)) is 0.

Suppose that l = p. Let Pp ∈ U(Qp) and x = x(Pp). Since the local Hilbert
symbol (p, 2)p is −1, we deduce from (3) and [Cohen 2007, loc. cit.] that

(7)
{

x = pnα with n ∈ Z, α ∈ Z×p and
(
α
p

)
=−1,

(x + 4pb2)(x + p2c)= pmβ with m ∈ Z, β ∈ Z×p and
(
β

p

)
=−1.

Assume that n ≤ 0. We see that p−nx ≡ α (mod p). Hence p−n(x + 4pb2) ≡

α (mod p) and p−n(x + p2c) ≡ α (mod p). Thus the product of the two last
congruences contradicts the second equation of (7). Hence, with no loss of generality,
we may assume that n ≥ 1. Assume first that n = 1. We deduce that p−1x ≡
α (mod p), and hence p−1(x + p2c) = p−1x + pc ≡ α (mod p). Thus, by (7),
there exists an integer k ∈ Z such that pk(x + 4pb2)≡ βα−1 (mod p). We see that(
βα−1

p

)
= 1. Hence, using [Cohen 2007, loc. cit.], we deduce that the local Hilbert

symbol (p, x + 4pb2)p satisfies

(p, x + 4pb2)p =

(
βα−1

p

)
= 1.
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Therefore invp(A(Pp)) is 0.
Suppose now that n ≥ 2. We see that

p−1(x + 4pb2)= pn−1α+ 4b2
≡ 4b2 (mod p).

Hence, using the same arguments as above, we deduce that the local Hilbert symbol
(p, x + 4pb2)p is 1, and thus invp(A(Pp)) equals 0.

Therefore, in any event, we see that invp(A(Pp))= 0.
Suppose that l = 2. Let P2 ∈ U(Q2), and let x = x(P2). Since the local Hilbert

symbol (p, 2)2 satisfies

(p, 2)2 =
( p

2

)
=−1,

we deduce from (3) and [Cohen 2007, loc. cit.] that

(p, x)2 = (p, (x + 4pb2)(x + p2c))2 =−1.

Hence v2(x) and v2((x+4pb2)(x+ p2c)) are odd. Thus v2(x+4pb2)+v2(x+ p2c)
is odd. We contend that v2(x)≥ 0. Otherwise, we deduce that

v2(x + 4pb2)+ v2(x + p2c)= 2v2(x),

which is a contradiction since the left-hand side is odd whereas the right-hand side
is even. Since v2(x) is odd and v2(x)≥ 0, we see that v2(x)≥ 1. Since c is odd, it
follows that v2(p2c)= 0. Hence v2(x+ p2c)= v2(p2c)= 0, and thus v2(x+4pb2)

is odd. Since p ≡ 5 (mod 8), the local Hilbert symbol (p, x + 4pb2)2 satisfies

(p, x + 4pb2)2 =
( p

2

)
=−1.

Therefore inv2(A(P2)) equals 1
2 .

Thus, in any event,
∑

l
invl A(Pl)=

1
2 for any (Pl)l ∈V(AQ). Thus V(AQ)

Br
=∅.

Step 4. U and T satisfy CHP.

For any point Pl ∈ U(Ql), let x = x(Pl). By the definition of U , we see that
x + 4pb2 is nonzero. By what we have proved in Step 3, we know that the local
Hilbert symbol (p, x + 4pb2)l satisfies

(p, x + 4pb2)l =

{
1 if l 6= 2,
−1 if l = 2.

Hence it follows that x + 4pb2 is the norm of an element of Ql(
√

p ) for every
l 6= 2 including l =∞, and that x + 4pb2 is not a local norm of any element of
Q2(
√

p ). Thus we deduce that

(8)
∏

l

(p, x + 4pb2)l =−1,
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where the product is taken over every prime l, including l = ∞. Therefore it
follows from the product formula [Cohen 2007, Theorem 5.3.1] that U(Q) is empty;
otherwise there exists a rational point P ∈ U(Q). Thus the element x + 4pb2 is
in Q×, where x = x(P). Hence, by the product formula, we see that∏

l

(p, x + 4pb2)l = 1,

which is a contradiction to (8). Hence U satisfies CHP, and it thus follows from
Step 1 that T satisfies CHP.

Step 5. U,V and T satisfy NZC.

Note that since T (Q) = ∅, it follows from the Amer–Brumer theorem [Amer
1976; Brumer 1978] that T does not contain any zero-cycle of odd degree over Q.
Thus U,V and T satisfy NZC, and hence our contention follows. �

The following result plays a key role in constructing algebraic families of curves
satisfying CHP and NZC.

Theorem 2.7. Let p be a prime such that p≡ 5 (mod 8). Assume (A1), and assume
further that the following is true:

(A2) There exists a pair (b, d) of integers such that b, d are odd, b 6≡ 0 (mod 3),
b 6≡ 0 (mod p) and q := |pd2

− 4b2
| is either 1 or an odd prime.

Let Z be a smooth and proper Q-model of the smooth Q-variety X in A5
Q

defined by

(9) X :
{

0 6= u2
1− pv2

1 = 2x,
0 6= u2

2− pv2
2 = 2(x + 4pb2)(x + p2d2).

Let Y ⊂ P5
Q

be the singular Q-variety defined by

(10) Y :
{

u2
1− pv2

1 = 2xy,
u2

2− pv2
2 = 2(x + 4pb2 y)(x + p2d2 y).

Then X , Y and Z satisfy CHP and NZC.

Remark 2.8. In Section 3, we will prove that there are infinitely many triples
(p, b, d) satisfying (A1) and (A2).

Proof. Let c = d2. We contend that the pair (b, c) satisfies (B) in Lemma 2.4.
Indeed, we note that gcd(b, d)= 1; otherwise, there exists an odd prime l such that
b = lb1 and d = ld1 for some integers b1, d1 ∈ Z. Hence q = l2

1 |pd2
1 − 4b2

1|, which
is a contradiction to (A2). Thus gcd(b, d)= 1, and it follows that gcd(b, c)= 1.

We know that q = |pc−4b2
| is either 1 or an odd prime, and that b 6≡ 0 (mod 3)

and b 6≡ 0 (mod p). Hence the pair (b, c) satisfies (B). Thus by Theorem 2.6, we
deduce that X , Y and Z satisfy CHP and NZC. �
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3. Infinitude of triples ( p, b, d).

In this section, we will prove that there are infinitely many triples (p, b, d) satisfying
(A1) and (A2). We begin by recalling a theorem of Iwaniec’s.

Let P(x, y) be a quadratic polynomial in two variables x and y. We say that P
depends essentially on two variables if ∂P/∂x and ∂P/∂y are linearly independent
as elements of the Q-vector space Q[x, y].

Theorem 3.1 [Iwaniec 1974, p. 443]. Let P(x, y)= ax2
+bxy+cy2

+ex+ f y+g
be a quadratic polynomial defined over Q, and assume that the following are true:

(i) a, b, c, e, f , g are in Z and gcd(a, b, c, e, f, g)= 1.

(ii) P(x, y) is irreducible in Q[x, y], represents arbitrarily large odd numbers and
depends essentially on two variables.

(iii) D = a f 2
− be f + ce2

+ (b2
− 4ac)g = 0 or 1= b2

− 4ac is a perfect square.

Then
N

log N
�

∑
p≤N , p=P(x,y)

p prime

1.

We now prove the main lemma in this section.

Lemma 3.2. Let p be a prime such that p ≡ 5 (mod 8), and assume that 3 is
a quadratic nonresidue in F×p . Then there are infinitely many triples (p, b, d)
satisfying (A1) and (A2).

Proof. The result follows immediately by applying Theorem 3.1 to

P(x, y) := p(2x + 1)2− 4(6py+ b0)
2
∈Q[x, y],

where b0 is an odd integer such that gcd(b0, 3p)= 1. �

Example 3.3. Let (p, b, d) = (5, 1, 1). We see that the triple (p, b, d) satisfies
(A1) and (A2). Let Y(5,1,1) be the singular Q-threefold in P5

Q
defined by

Y(5,1,1) :
{

u2
1− 5v2

1 = 2xy,
u2

2− 5v2
2 = 2(x + 20y)(x + 25y).

By Theorem 2.7, Y(5,1,1) satisfies CHP and NZC. The threefold Y(5,1,1) is the
well-known Colliot-Thélène–Coray–Sansuc threefold [Colliot-Thélène et al. 1980,
p. 186, Proposition 7.1].

Example 3.4. Let (p, b, d)= (29, 1, 3). We see that

q = |pd2
− 4b2

| = |29 · 32
− 4 · 12

| = 257,
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which is an odd prime. Hence (29, 1, 3) satisfies (A1) and (A2). Let Y(29,1,3) be
the singular Q-threefold in P5

Q
defined by

Y(29,1,3) :

{
u2

1− 29v2
1 = 2xy,

u2
2− 29v2

2 = 2(x + 116y)(x + 7569y).

By Theorem 2.7, Y(29,1,3) satisfies CHP and NZC.

4. Hyperelliptic curves violating the Hasse principle

In this section, we give a sufficient condition under which, for each integer n ≥ 2
and n 6≡ 0 (mod 4), there exist hyperelliptic curves of genus n that lie on the
threefolds Y in Theorem 2.7, and satisfy CHP and NZC. The sufficient condition is
in terms of the existence of certain sextuples (p, b, d, α, β, γ ), and obtained using
the geometric construction of hyperelliptic curves due to [Coray and Manoil 1996,
Proposition 4.2].

Theorem 4.1. Let p be a prime such that p ≡ 5 (mod 8), and let (p, b, d) ∈ Z3 be
a triple of integers satisfying (A1) and (A2). Let n be an integer such that n ≥ 2,
and let (α, β, γ ) ∈Q3 be a triple of rational numbers such that αβγ 6= 0. Assume
further that the following are true:

(A3) We have

P := pα2
+ 2β2

− 2pγ 2
6= 0,(11)

Q := 4bdpγ − 4b2β − d2 pβ 6= 0,(12)

and the conic Q1 ⊂ P2
Q

, defined by

Q1 : pU 2
− V 2

− (βP Q)T 2
= 0,

has a point (u, v, t) ∈ Z3 with uvt 6= 0 and gcd(u, v, t)= 1.

(S) The polynomial Pp,b,d,α,β,γ (x) ∈Q[x], defined by

Pp,b,d,α,β,γ (x) := pα2 Q2x2n+2
+ (2b2 Px2

+βQ)(d2 pPx2
+ 2βQ),

is separable; that is, Pp,b,d,α,β,γ (x) has exactly 2n+ 2 distinct roots in C.

Let C be the smooth projective model of the affine curve defined by

(13) C : z2
= pα2 Q2x2n+2

+ (2b2 Px2
+βQ)(d2 pPx2

+ 2βQ).

Then C(Ql) 6= ∅ for every prime l 6= 2, p, and C(AQ)
Br
= ∅. Furthermore, C

satisfies NZC.
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Proof. The proof follows closely that of [Coray and Manoil 1996, Proposition 4.2].
We begin by recalling the geometric construction of hyperelliptic curves due to
Coray and Manoil.

Let Ca ⊂A2
K be the affine curve defined by z2

= P(x), where P(x) is a separable
polynomial of degree 2n+2 and K is a number field. Recall from [Silverman 1986,
Chapter II, Exercise 2.14] that the smooth projective model of Ca can be described
as the closure of the image of Ca under the mapping

Ca→ Pn+2
K ,

(x, z) 7→ (1, x, . . . , xn+1, z).

Following [Coray and Manoil 1996, Proposition 4.2], we will index the coordinates
of Pn+2

K in such a way that zi corresponds to x i for 0≤ i≤n+1 and zn+2 corresponds
to z.

Using the above arguments, we deduce from (13) that C can be smoothly embed-
ded into the intersection of quadrics defined by

(14)
{

z2
n+2 = pα2 Q2z2

n+1+ (2b2 Pz2+βQz0)(d2 pPz2+ 2βQz0),

z2
1 = z2z0.

Recall that (u, v, t) ∈ Z3 is the point on the conic Q1 defined in (A3) that is
assumed to exist. Upon letting

z0 =
1
βQ

x, z1 =
t
u

u1, z2 =
2p
P

y, zn+1 =
1
αQ

v2, zn+2 = u2,

we deduce from (14) that

(15)


βP Qt2

pu2 u2
1 = 2xy,

u2
2− pv2

2 = 2(x + 4pb2 y)(x + p2d2 y).

We see that (15) defines a singular del Pezzo surface D ⊆ P4
Q

. We contend that
D(AQ)

Br
=∅ and D does not contain any zero-cycle of odd degree over Q. Indeed,

upon letting

v1 =
v

pu
u1,

we deduce from the first equation of (15) and (A3) that

u2
1− pv2

1 = u2
1− p

v2

p2u2 u2
1 =

βP Qt2

pu2 u2
1 = 2xy.
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Therefore D is a hyperplane section of the threefold Y in Theorem 2.7. Hence there
exists a sequence of Q-morphisms

C→ D→ Y.

Hence it follows from Lemma 2.1 and Theorem 2.7 that D(AQ)
Br
= ∅. Thus

C(AQ)
Br
=∅. Furthermore, since Y does not contain any zero-cycle of odd degree

over Q, neither do C and D.
We now prove that C is locally solvable at primes l with l 6= 2, p. We consider

the following cases:

Case I. l =∞ or l is an odd prime such that l 6= p and
( p

l

)
= 1.

We know that the curve C∗, defined by

C∗ : z2
= pα2 Q2x2n+2

+ y2n−2(2b2 Px2
+βQy2)(d2 pPx2

+ 2βQy2),

is an open subscheme of C. We see that P∞ = (x : y : z)= (1 : 0 :
√

pαQ) belongs
to C∗(Ql)⊂ C(Ql), and hence C is locally solvable at l.

Case II. l is an odd prime such that
( 2

l

)
= 1.

It follows from (13) that the point P1 = (x, z)= (0,
√

2βQ) belongs to C(Ql).

Case III. l is an odd prime such that l 6= p and
( 2p

l

)
= 1.

Let F(x, z) be the defining polynomial of C, defined by

F(x, z)= pα2 Q2x2n+2
+ (2b2 Px2

+βQ)(d2 pPx2
+ 2βQ)− z2.

We see that

F(1,
√

2p(γ Q+ bd P))

= (pα2 Q2
+ 2p(bd P)2+ 4b2βP Q+βpP Qd2

+ 2β2 Q2)− 2p(γ Q+ bd P)2.

Hence, it follows from (11) and (12) that

pα2 Q2
+ 4b2βP Q+βpP Qd2

+ 2β2 Q2
= 2pγ 2 Q2

+ 4p(γ Q)(bd P).

Thus

pα2 Q2
+ 2p(bd P)2+ 4b2βP Q+βpP Qd2

+ 2β2 Q2
= 2p(γ Q+ bd P)2.

Hence, we deduce that F(1,
√

2p(γ Q+ bd P))= 0, and therefore the point P2 =

(1,
√

2p(γ Q+ bd P)) belongs to C(Ql).
Thus, in any event, C is locally solvable at primes l with l 6= 2, p, which proves

our contention. �

Remark 4.2. Theorem 4.1 constructs hyperelliptic curves of genus at least two
such that they satisfy NZC and all conditions in CHP except the local solvability at
2 and p. The rest of this section presents certain sufficient conditions for which
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those hyperelliptic curves arising from Theorem 4.1 are locally solvable at 2 and p,
and hence satisfy CHP and NZC.

Lemma 4.3. Let p be a prime such that p≡5 (mod 8), and let (b, d)∈Z3 be a pair
of integers satisfying (A1) and (A2). Assume that there is a triple (α, β, γ ) ∈ Q3

satisfying (A3) in Theorem 4.1, and assume further that α, β, γ ∈ Zp. Then there is
a rational number β ∈Q such that β = pβ and β ∈ Zp.

Proof. Let Q1 be the conic defined in (A3). Assume that (u, v, t) ∈ Z3 belongs to
Q1(Q) such that uvt 6= 0 and gcd(u, v, t)= 1. We see that

pu2
− v2
−βP Qt2

= 0,

where P and Q are defined by (11) and (12), respectively. Taking the identity above
modulo p, it follows that

v2
≡ 8b2β4t2 (mod p).

Since 2 is a quadratic nonresidue in F×p and b 6≡ 0 (mod p), we deduce from the
congruence above that

v ≡ βt ≡ 0 (mod p).

Assume that β 6≡ 0 (mod p). Then v ≡ t ≡ 0 (mod p), and hence v = pv1 and
t = pt1 for some integers v1, t1. Substituting v and t into the defining equation of
the conic Q1, we get

u2
− pv2

1 − pβP Qt2
1 = 0,

and hence it follows that p divides u. Thus p divides gcd(u, v, t), which is a
contradiction. Therefore there is a rational number β ∈ Q such that β = pβ and
β ∈ Zp. �

Remark 4.4. By Lemma 4.3, one knows that if (α, β, γ ) ∈Q3 satisfies (A3) and
α, β, γ ∈Zp, then there is a rational number β such that β = pβ and β ∈Zp. Hence
one sees that P = pP1 and Q = pQ1, where

P1 := α
2
+ 2pβ2

− 2γ 2,

Q1 := 4bdγ − 4b2β − d2 pβ.

We also see that P1 and Q1 belong to Zp.

In the proofs of Corollaries 4.6 and 4.8 below, we will use Hensel’s lemma to
deduce the local solvability at primes 2 and p. For the sake of self-containedness,
we recall the statement of Hensel’s lemma.

Theorem 4.5 [Borevich and Shafarevich 1966, Section 5.2, Theorem 3]. Let p
be a prime. Let F(x1, x2, . . . , xn) ∈ Zp[x1, x2, . . . , xn] be a polynomial whose
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coefficients are p-adic integers. Let δ be a nonnegative integer. Assume that there
are p-adic integers a1, a2, . . . , an such that for some integer 1≤ k ≤ n, we have

F(a1, a2, . . . , an)≡ 0 (mod p2δ+1),

∂F
∂xk

(a1, a2, . . . , an)≡ 0 (mod pδ),

∂F
∂xk

(a1, a2, . . . , an) 6≡ 0 (mod pδ+1).

Then there exist p-adic integers θ1, θ2, . . . , θn such that F(θ1, θ2, . . . , θn)= 0.

The following result provides a sufficient condition under which certain hyperel-
liptic curves of odd genus satisfy CHP and NZC.

Corollary 4.6. We maintain the same notation and assumptions as in Theorem 4.1.
Assume (A1)–(A3) and (S). Assume further that the following are true:

(A4) α, β, γ ∈ Z×2 , α, γ, d ∈ Z×p and β ∈ Zp.

(A5) γ Q1+bd P1≡ 0 (mod p2), where β, P1 and Q1 are defined as in Remark 4.4.

(A6) n 6≡ −2(γ /α)2 (mod p), n ≥ 3 and n is odd.

Let C be the smooth projective model of the affine curve defined by (13). Then C
satisfies CHP and NZC.

Proof. By Theorem 4.1, it suffices to prove that C is locally solvable at 2 and p.

Step 1. C is locally solvable at p.

We will use Theorem 4.5 with the exponent δ = 3 to prove the local solvability
of C at p. We consider the system of equations

(16)



F(x, z)= pα2 Q2x2n+2
+ (2b2 Px2

+βQ)(d2 pPx2
+ 2βQ)− z2

≡ 0 (mod p7),

∂F
∂x
(x, z)= (2n+ 2)pα2 Q2x2n+1

+ 4b2 Px(d2 pPx2
+ 2βQ)

+ 2d2 pPx(2b2 Px2
+βQ)

≡ 0 (mod p3),

∂F
∂x
(x, z) 6≡ 0 (mod p4).

Repeating the same arguments as in Case III of the proof of Theorem 4.1, we
deduce that

F(1, 0)= 2p(γ Q+ bd P)2.

By Remark 4.4, one knows that P = pP1 and Q = pQ1. Hence

(17) F(1, 0)= 2p3(γ Q1+ bd P1)
2.
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Thus it follows from (A5) and (17) that F(1, 0)≡ 0 (mod p7). On the other hand,
we see that

(18) ∂F
∂x
(1, 0)= p3((2n+ 2)α2 Q2

1+ 4b2 P1(d2 P1+ 2βQ1)

+ 2d2 P1(2b2 P1+ pβQ1)
)
.

Since α, β, γ and P1, Q1 are in Zp, one obtains that

∂F
∂x
(1, 0)≡ 0 (mod p3).

Assume that

(19)
1
p3

(
∂F
∂x
(1, 0)

)
≡ 0 (mod p).

Since γ ∈ Z×p , it follows from (A5) that

(20) Q1 ≡−
bd
γ

P1 (mod p).

Upon replacing Q1 by −(bd/γ )P1 in (19), we deduce that

2P2
1 bd
γ 2

(
(n+ 1)α2bd + γ (4bdγ − 4b2β − d2 pβ)

)
≡ 0 (mod p).

Thus it follows from the definition of Q1 in Remark 4.4 that

2P2
1 bd
γ 2 ((n+ 1)α2bd + γ Q1)≡ 0 (mod p).

Note that P1∈Z×p ; otherwise, we deduce from the definition of P1 in Remark 4.4 that

α2
− 2γ 2

≡ P1 ≡ 0 (mod p).

Since α, γ ∈ Z×p , it follows from the congruence above that 2≡ (α/γ )2 (mod p),
which is a contradiction to the fact that p ≡ 5 (mod 8). Thus P1 ∈ Z×p . Since
2, b, d, γ and P1 are in Z×p , we obtain that

(n+ 1)α2bd + γ Q1 ≡ 0 (mod p).

Since γ Q1 ≡−bd P1 (mod p) and b, d ∈ Z×p , we deduce from this congruence that

(n+ 1)α2
≡ P1 ≡ (α

2
− 2γ 2) (mod p).

Since α, γ ∈ Z×p , it follows that n ≡−2(γ /α)2 (mod p), which is a contradiction
to (A6). Thus the system (16) has a solution (x, z)= (1, 0). By Hensel’s lemma, C
is locally solvable at p.

Step 2. C is locally solvable at 2.
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We will use Theorem 4.5 with the exponent δ = 1 to prove the local solvability
of C at 2. We consider the system of equations

(21)


F(x, z)≡ 0 (mod 23),

∂F
∂x
(x, z)≡ 0 (mod 2),

∂F
∂x
(x, z) 6≡ 0 (mod 22).

We see from (17) and the definitions of P1 and Q1 that

F(1, 0)= 2p3(γ (4bdγ − 4b2β − d2 pβ)+ bd(α2
+ 2pβ2

− 2γ 2)
)2
.

Since β is in Z×2 and p 6= 2, we see that β is also in Z×2 . Since b, d, p, α, β, γ ∈Z×2 ,
we see that

−d2 pβγ + bdα2
≡ 0 (mod 2).

Let v2 denote the 2-adic valuation. We see that

v2
(
γ (4bdγ − 4b2β − d2 pβ)+ bd(α2

+ 2pβ2
− 2γ 2)

)
= v2

(
(4γ (bdγ − b2β)+ 2bd(pβ2

− γ 2))+ (−d2 pβγ + bdα2)
)

≥min
(
v2(4γ (bdγ − b2β)+ 2bd(pβ2

− γ 2)), v2(−d2 pβγ + bdα2)
)
≥ 1.

Hence F(1, 0)≡ 0 (mod 23). On the other hand, we know from (18) that

∂F
∂x
(1, 0)≡ 0 (mod 2).

Since n is odd, (2n+ 2)≡ 2(n+ 1)≡ 0 (mod 22). Hence, it follows from (18) that

∂F
∂x
(1, 0)≡ 2d2 p4βP1 Q1 (mod 22).

By (A4) and the definitions of P1 and Q1, we know that

d2 p4βP1 Q1 6≡ 0 (mod 2).

Hence we deduce that (∂F/∂x)(1, 0) 6≡ 0 (mod 22). Thus the system (21) has a
solution (x, z)= (1, 0). By Hensel’s lemma, C is locally solvable at 2, and hence
our contention follows. �

Remark 4.7. Assume (A1)–(A3), (A5) and (S). Following closely the proof of
Corollary 4.6, we note that the following are true:

(1) If α, β, γ ∈ Z×2 and n is odd, then C is locally solvable at 2.

(2) If α, γ, d ∈ Z×p , β ∈ Zp, n ≥ 2 and n 6≡ −2(γ /α)2 (mod p), then C is locally
solvable at p.

We now prove a sufficient condition under which certain hyperelliptic curves of
genus n ≡ 2 (mod 4) satisfy CHP and NZC.
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Corollary 4.8. We maintain the same notation as in Theorem 4.1 and Corollary 4.6.
Assume (A1)–(A5) and (S). Assume further that the following are true:

(B1) bd −βγ ≡ 0 (mod 4).

(B2) n 6≡ −2(γ /α)2 (mod p), n ≥ 2 and n ≡ 2 (mod 4).

Let C be the smooth projective model defined by (13). Then C satisfies CHP
and NZC.

Proof. By Theorem 4.1 and Remark 4.7, it suffices to prove that C is locally solvable
at 2. We will use Theorem 4.5 with the exponent δ= 2 to prove the local solvability
of C at 2. We consider the system of equations

(22)


F(x, z)≡ 0 (mod 25),

∂F
∂x
(x, z)≡ 0 (mod 22),

∂F
∂x
(x, z) 6≡ 0 (mod 23),

where F(x, z) denotes the polynomial in the variables x, z defined in (16). Since
α∈Z×2 , we know that α≡1 (mod 4) or α≡3 (mod 4). Hence α2

≡1 (mod 4). Sim-
ilarly we know that β2, γ 2, b2, d2

≡1 (mod 4). Since p≡5 (mod 8), it follows that

P1 ≡ 1 (mod 4),

Q1 ≡−β (mod 4).

By (B1), we know that

γ Q1+ bd P1 ≡ bd −βγ ≡ 0 (mod 4),

and hence we deduce from (17) that F(1, 0)≡ 0 (mod 25).
Since n ≡ 2 (mod 4), there is a nonnegative integer l such that n = 4l + 2. We

know that

4b2 P1(d2 P1+ 2βQ1)+ 2d2 P1(2b2 P1+ pβQ1)

= 8b2d2 P2
1 + 8b2βP1 Q1+ 2pd2βP1 Q1.

Hence, it follows from (18) that

∂F
∂x
(1, 0)≡ 2α2 Q2

1+ 2pd2βP1 Q1 ≡ 2− 2β2
≡ 0 (mod 22).

Similarly, one sees that

∂F
∂x
(1, 0)≡ 5(8l + 6)α2 Q2

1+ 10pd2βP1 Q1 (mod 23).
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Since α, β, γ, b, d ∈ Z×2 , we deduce that α2, β2, γ 2, b2, d2
≡ 1 (mod 23). Since

p ≡ 5 (mod 23) and bdγ − b2β ≡ 0 (mod 2), it follows from the definitions of P1

and Q1 that
P1 ≡ 1 (mod 23),

Q1 ≡ 4(bdγ − b2β)− 5β ≡−5β (mod 23).

Thus we see that
∂F
∂x
(1, 0)≡ 30− 250β2

≡ 4 6≡ 0 (mod 23).

Therefore the system (22) has a solution (x, z)= (1, 0). By Hensel’s lemma, C is
locally solvable at 2, which proves our contention. �

5. Infinitude of sextuples ( p, b, d, α, β, γ )

By Corollaries 4.6 and 4.8, we know that in order to construct algebraic families of
hyperelliptic curves satisfying CHP and NZC, we need to find certain sextuples of
rational functions in Q(T ) that parametrize sextuples (p, b, d, α, β, γ ) satisfying
(A1)–(A5), (S) and (B1). In this section, we show how to produce infinitely many
sextuples (p, b, d, α, β, γ ) satisfying (A1)–(A5) and (B1) from the known ones.

Lemma 5.1. Let (p, b, d) be a triple of integers satisfying (A1) and (A2). As-
sume that there is a triple (α0, β0, γ0) ∈ Q3 satisfying (A3)–(A5) and (B1). Let
(u0, v0, t0) ∈ Z3 be a point on the conic Q(α0,β0,γ0)

1 such that u0v0t0 6= 0 and
gcd(u0, v0, t0)= 1, where the conic Q(α0,β0,γ0)

1 is defined by

Q(α0,β0,γ0)

1 : pU 2
− V 2

−β0 P0 Q0T 2
= 0

with
P0 = pα2

0 + 2β2
0 − 2pγ 2

0 ,

Q0 = 4bdpγ0− 4b2β0− d2 pβ0.

Let A, B ∈Q be rational numbers, and assume that the following are true:

(C1) A, B ∈ Z2 and B2
− p A2

∈ Z×2 .

(C2) A ∈ Zp and B ∈ Z×p .

(C3) u := u0+ AC 6= 0 and v := v0+ BC 6= 0, where

(23) C :=
2pu0 A− 2v0 B− 4p3α0β0t2

0 Q0

B2− p A2+ 4p5β0t2
0 Q0

.

Define
α := α0+ 2p2C, β := β0, γ := γ0.

Then the triple (α, β, γ ) ∈Q3 satisfies (A3)–(A5) and (B1).
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Remark 5.2. In order to use Theorem 4.1 to show the existence of algebraic
families of hyperelliptic curves satisfying CHP and NZC, one of the crucial steps
is to describe a parametrization of triples (α, β, γ ) such that the conics associated
to these triples in (A3) has a nontrivial rational point. Assuming the existence of
one triple (α0, β0, γ0) satisfying (A3)–(A5) and (B1), Lemma 5.1 shows how to
construct families of triples (α, β, γ ) satisfying the same conditions as the triple
(α0, β0, γ0).

Proof. We first prove that (α, β, γ ) satisfies (A4). Since A ∈ Zp, B ∈ Z×p and
the triple (α0, β0, γ0) satisfies (A4), it follows that B2

− p A2
+ 4p5β0t2

0 Q0 ∈ Z×p .
Hence by (23) and (C2), we see that C ∈ Zp. Thus α = α0+ 2p2C ∈ Zp. Hence it
follows that

α ≡ α0 6≡ 0 (mod p),

which proves that α ∈ Z×p . By assumption, one knows that the triple (α0, β0, γ0)

satisfies (A4). Since β = β0 and γ = γ0, we deduce that β, γ ∈ Z×2 , β ∈ Zp and
γ, d ∈ Z×p . Hence it remains to prove that α ∈ Z×2 . By assumptions and (C1), we
know that Q0 ∈ Z2 and B2

− p A2
∈ Z×2 . Hence it follows that

B2
− p A2

+ 4p5β0t2
0 Q0 ≡ B2

− p A2
6≡ 0 (mod 2).

Thus B2
− p A2

+ 4p5β0t2
0 Q0 ∈ Z×2 , and hence we deduce that C ∈ Z2. Thus,

α = α0+ 2p2C ≡ α0 6≡ 0 (mod 2).

Therefore α ∈ Z×2 , and hence (α, β, γ ) satisfies (A4).
Now we prove that (α, β, γ ) satisfies (A3). By what we have proved above, we

know that α, β, γ ∈ Z×2 . This implies that α, β, γ 6= 0. Let P and Q be the rational
numbers defined by (11) and (12), respectively. One knows that Q = Q0 6= 0. Since
α, β, γ ∈ Z×2 , it follows that P ∈ Z2. Hence we deduce that

P ≡ pα2
6≡ 0 (mod 2),

which proves that P ∈ Z×2 . Note that P 6= 0 since P ∈ Z×2 .
Let Q1 ⊂ P2

Q
be the conic defined by

Q1 : pU 2
− V 2

−βP QT 2
= 0.

We prove that the point P := (u, v, t) ∈Q3 belongs to Q1(Q), where u and v are
defined in (C3) and t := t0. Indeed, since β = β0, γ = γ0 and Q = Q0, we deduce
from (11) that

−βP Qt2
=−β0t2

0 Q0(p(α0+ 2p2C)2+ 2β2
0 − 2pγ 2

0 )

=−(4p5β0t2
0 Q0)C2

− (4p3α0β0t2
0 Q0)C − (β0 P0 Q0)t2

0 .
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Hence

pu2
−v2
−βP Qt2

= p(u0+AC)2−(v0+BC)2−(4p5β0t2
0 Q0)C2

−(4p3α0β0t2
0 Q0)C−(β0 P0 Q0)t2

0

= (p A2
−B2
−4p5β0t2

0 Q0)C2

+(2pu0 A−2v0 B−4p3α0β0t2
0 Q0)C+(pu2

0−v
2
0−β0 P0 Q0t2

0 ).

Since (u0, v0, t0) belongs to Q(α0,β0,γ0)

1 (Q), we see that

pu2
0− v

2
0 −β0 P0 Q0t2

0 = 0.

Hence it follows from (23) that

pu2
− v2
−βP Qt2

= (p A2
− B2

− 4p5β0t2
0 Q0)C2

+ (2pu0 A− 2v0 B− 4p3α0β0t2
0 Q0)C = 0.

Thus P ∈Q1(Q). Since Q1 is a nonsingular conic in P2
Q

, Q1(Q) 6=∅ and uvt 6= 0,
it follows that (α, β, γ ) satisfies (A3).

We now prove that (α, β, γ ) satisfies (A5). Indeed, we have shown that (α, β, γ )
satisfies (A3), (A4). This implies that α, β, γ ∈ Zp. By Lemma 4.3, we know
that there is a rational number β ∈ Q such that β = pβ and β ∈ Zp. Similarly,
since (α0, β0, γ0) satisfies (A3) and (A4), there is a rational number β0 such that
β0 = pβ0 and β0 ∈ Zp. Since β = β0, we deduce that β = β0.

Let P1 and Q1 be the rational numbers defined in Remark 4.4 and let P (0)1
and Q(0)

1 be the rational numbers defined by the same equations as P1, Q1 with
(α0, β0, γ0) in the role of (α, β, γ ). By assumption, one knows that the triple
(α0, β0, γ0) satisfies (A5), that is,

γ0 Q(0)
1 + bd P (0)1 ≡ 0 (mod p2).

We will prove that
γ Q1+ bd P1 ≡ 0 (mod p2).

Indeed, one can check that

P1 = α
2
+ 2pβ2

− 2γ 2
= 4p4C2

+ 4p2α0C + P (0)1

and Q1 = Q(0)
1 . Since α, β, γ are in Zp, we deduce that P1 ∈ Zp. Recall that

C ∈ Zp. Hence

P1 = 4p4C2
+ 4p2α0C + P (0)1 ≡ P (0)1 (mod p2),

and thus we deduce that

γ Q1+ bd P1 ≡ γ0 Q(0)
1 + bd P (0)1 ≡ 0 (mod p2).
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Therefore (α, β, γ ) satisfies (A5).
Finally, since (α0, β0, γ0) satisfies (B1), we see that

bd −βγ = bd −β0γ0 ≡ 0 (mod 4).

Thus (α, β, γ ) satisfies (B1), which proves our contention. �

Lemma 5.3. Let (p, b, d) be a triple of integers satisfying (A1) and (A2). As-
sume that there is a triple (α0, β0, γ0) ∈ Q3 satisfying (A3)–(A5) and (B1). Let
(u0, v0, t0) ∈ Z3 be a point on the conic Q(α0,β0,γ0)

1 such that u0v0t0 6= 0 and
gcd(u0, v0, t0) = 1, where P0, Q0 and the conic Q(α0,β0,γ0)

1 are defined as in
Lemma 5.1. Let I be the set defined by

I := {(A, B) ∈Q2
: (A, B) satisfies (C1)–(C3) in Lemma 5.1}.

Then I is of infinite cardinality.

Proof. Let B0 be an integer such that gcd(B0, 2p) = 1. For each x ∈ Z, define
B = 2px+ B0. We see that B ∈ Z×2 and B ∈ Z×p . The latter implies that B 6= 0. Let
A = 0, and let C be the rational number defined by (23). Define

u := u0+ AC = u0,

v := v0+ BC.

By assumption, we know that u = u0 6= 0. Assume that v = 0. Since B 6= 0, it
follows from (23) and the definition of v that

C =−
v0

B
=
−2v0 B− 4p3α0β0t2

0 Q0

B2+ 4p5β0t2
0 Q0

.

Hence we deduce that B is a zero of the quadratic polynomial B(T ) ∈Q[T ], where
B(T ) is defined by

(24) B(T ) := v0T 2
+ (4p3α0β0t2

0 Q0)T − 4p5β0v0t2
0 Q0.

Hence, upon letting T1 and T2 be the zeros of B(T ), we deduce that (0, B) sat-
isfies (C3) if and only if B 6= T1 and B 6= T2. The latter holds if and only if
x 6= (T1− B0)/(2p) and x 6= (T2− B0)/(2p). This implies that if T1, T2 6∈ Z, then
(0, B) automatically satisfies (C3) for any integer x ∈ Z. Furthermore we see that
B2
− p A2

= B2
∈ Z×2 . Hence (0, B) satisfies (C1) and (C2). Thus J is a subset

of I , where J is defined by

J :=
{
(0, B) : x ∈ Z, x 6=

T1− B0

2p
and x 6=

T2− B0

2p

}
.

Since J is of infinite cardinality, so is I . Hence our contention follows. �

Using Lemmas 5.1 and 5.3, we prove the main result in this section.
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Lemma 5.4. There are infinitely many sextuples (p, b, d, α, β, γ ) satisfying (A1)–
(A5) and (B1).

Proof. Assume that there is a sextuple (p, b, d, α0, β0, γ0) satisfying (A1)–(A5)
and (B1). Let (u0, v0, t0)∈Z3 be a point on the conic Q(α0,β0,γ0)

1 such that u0v0t0 6=0
and gcd(u0, v0, t0) = 1, where P0, Q0 and the conic Q(α0,β0,γ0)

1 are defined as in
Lemma 5.1. Let J be the set defined in the proof of Lemma 5.3. We construct an
infinite sequence (0, Bn)n∈Z≥0 of elements of J as follows.

Let (0, B1) be an arbitrary element of J , and assume that the elements (0, Bi )

of J with 1≤ i ≤ n are already constructed. Since J is infinite, we can choose an
element (0, Bn+1) of J such that Bn+1 6= Bi for 1≤ i ≤ n and Bn+1 is not a zero
of any of the polynomials Hi (T ) for 1≤ i ≤ n, where for each 1≤ i ≤ n,

(25) Hi (T )=(v0 Bi+2p3α0β0t2
0 Q0)T+2p3α0β0t2

0 Q0 Bi−4p5β0v0t2
0 Q0∈Q[T ].

Indeed, we see that 2p3α0β0t2
0 Q0 Bi − 4p5β0v0t2

0 Q0 6= 0 for every 1 ≤ i ≤ n;
otherwise, there is an integer 1≤ i ≤ n such that

α0 Bi = 2p2v0.

Hence α0 Bi 6∈ Z×p , which is a contradiction since α0 and Bi are in Z×p . Hence
Hi (T ) is nonzero and of degree at most 1 for each 1≤ i ≤ n. Thus Hi (T ) has at
most one zero in Z for each 1≤ i ≤ n; hence, excluding these n zeros (if existing)
and the integers Bi for 1 ≤ i ≤ n out of the infinite set J , one can choose an
element (0, Bn+1) as desired. Therefore we have inductively constructed an infinite
sequence {(0, Bn)}n≥1 of elements of J . We contend that for any two distinct
members (0, Bm) and (0, Bn) of the sequence with m < n, the triples (αm, β0, γ0)

and (αn, β0, γ0) are distinct, that is, αm 6= αn , where

αm := α0+ 2p2C(m), αn := α0+ 2p2C(n),

and C(m), C(n) are defined as in (23) with (0, Bm) and (0, Bn) in the role of (A, B),
respectively. Assume the contrary, that is, αm = αn . It follows that

−2v0 Bm − 4p3α0β0t2
0 Q0

B2
m + 4p5β0t2

0 Q0
= C(m) = C(n) =

−2v0 Bn − 4p3α0β0t2
0 Q0

B2
n + 4p5β0t2

0 Q0
.

Hence we deduce that

2(Bn − Bm)
(
(v0 Bm + 2p3α0β0t2

0 Q0)Bn + 2p3α0β0t2
0 Q0 Bm − 4p5β0v0t2

0 Q0
)
= 0.

Since Bn 6= Bm , we deduce that Bn is a zero of Hm(T ), where Hm(T ) is defined
by (25), which is a contradiction to the choice of Bn . Thus we have shown that
there are infinitely many sextuples (p, b, d, α, β, γ ) satisfying (A1)–(A5) and (B1)
provided that there exists one sextuple (p, b, d, α0, β0, γ0) satisfying (A1)–(A5)
and (B1). On the other hand, in the proof of Theorem 6.8(i) below, we will show
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that the sextuple (p, b, d, α0, β0, γ0) = (29, 1, 3, 7, 261, 15) satisfies (A1)–(A5)
and (B1), and hence our contention follows. �

6. Algebraic families of hyperelliptic curves violating the Hasse principle

Let n be an integer such that n > 5 and n 6≡ 0 (mod 4). In this section, using the
results in the last section, we will show how to construct algebraic families of
hyperelliptic curves of genus n satisfying CHP and NZC. We begin by proving:

Lemma 6.1. Let S be a finite set of primes, and let G(t) ∈ Q(t) be a nonzero
rational function. Let Z be the finite set of rational zeros and poles of G(t), that is,
Z consists of the rational numbers z ∈Q for which G(z) is either zero or infinity.
For any z ∈ Z, let az, bz be integers such that bz 6= 0, gcd(az, bz)= 1 and z = az/bz .
Assume that the following is true:

(D) Let z be any element in Z such that az 6= 0. Then az 6≡ 0 (mod l) for each
prime l ∈ S.

Then there is a rational function F(t) ∈Q(t) such that the following are true:

(1) F(t∗) ∈ Z×l for each prime l ∈ S and each t∗ ∈Q; and

(2) G(F(t∗)) is defined (that is, not infinity) and nonzero for each t∗ ∈Q.

Proof. We consider two cases:

Case 1. Z is nonempty.
By the Chinese remainder theorem, there exists an integer ε such that ε ≡

2 (mod 4) and ε is a quadratic nonresidue in F×l for each odd prime l ∈ S with
l 6= 2. Let p0 be an odd prime such that:

(i) p0 6∈ S;

(ii) bz 6≡ 0 (mod p0) for every z ∈ Z; and

(iii) for any element z in Z such that az 6= 0, we have az 6≡ 0 (mod p0).

For each z ∈ Z, we define

(26) Dz := p0bz sign(az)
∏

w∈Z\{z}

max(1, |aw|) ∈ Z,

where sign( · ) denotes the usual sign function of R, that is, sign(x)= 1 if x ≥ 0, and
sign(x)=−1 if x < 0. We see that |Dz| ≥ p0 ≥ 3 for each z ∈ Z. This implies that
|Dz − 1| ≥ 1 for every z ∈ Z. We will prove that the rational function F(t) ∈Q(t),
defined by

(27) F(t) :=
(

p0
∏
z∈Z

max(1, |az|)

)(
1+

4
∏

l∈S, l 6=2 l
∏

z∈Z(Dz − 1)

t2− p2
0ε

)
,
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satisfies (1) and (2) in Lemma 6.1. Indeed, take any rational number t∗, and write
t∗ = t1/t2, where t1, t2 ∈ Z, t2 6= 0 and gcd(t1, t2) = 1. For each prime l, denote
by vl the l-adic valuation of Ql . For each prime l ∈ S with l 6= 2, one knows that

vl

(
1

t2
∗
− p2

0ε

)
= vl(t2

2 )− vl(t2
1 − t2

2 p2
0ε).

Assume that t2
1 − t2

2 p2
0ε ≡ 0 (mod l). Since p0 6= l and ε is a quadratic nonresidue

in F×l , it follows that t1 ≡ t2 ≡ 0 (mod l), which is a contradiction. Hence we
deduce that vl(t2

1 − t2
2 p2

0ε)= 0. Thus we see that

vl

(
1

t2
∗
− p2

0ε

)
= vl(t2

2 )≥ 0.

Therefore 1
t2
∗
− p2

0ε
∈ Zl , and hence we deduce that

1+
4
∏

l∈S, l 6=2 l
∏

z∈Z(Dz − 1)

t2
∗
− p2

0ε
∈ 1+ lZl .

By assumption (D) and the choice of p0, one knows that p0
∏

z∈Z max(1, |az|)∈Z×l .
Hence it follows that for each prime l ∈ S with l 6= 2, F(t∗) ∈ Z×l for every t∗ ∈Q.
Thus we have shown that if 2 6∈ S, then F(t) satisfies (1) in Lemma 6.1. Hence it
remains to show that if 2 ∈ S, then F(t∗) ∈ Z×2 for every t∗ ∈Q.

Let us first assume that t1 is even. Hence t2 is odd, and then one sees that
t2
1 − t2

2 p2
0ε ≡ 2 (mod 4). Thus v2(t2

1 − t2
2 p2

0ε)= 1. Hence it follows that

v2

(
2

t2
∗
− p2

0ε

)
= 1+ v2(t2

2 )− v2(t2
1 − t2

2 p2
0ε)= 0,

which implies that 2/(t2
∗
− p2

0ε) ∈ Z2 for all t∗ ∈Q.
Now assume that t1 is odd. Since ε is even, one sees that t2

1 − t2
2 p2

0ε is odd.
Hence it follows that

v2

(
2

t2
∗
− p2

0ε

)
= 1+ v2(t2

2 )− v2(t2
1 − t2

2 p2
0ε)= 1+ v2(t2

2 )≥ 1.

Thus we have shown that 2/(t2
∗
− p2

0ε) ∈ Z2 for all t∗ ∈ Q. By the definition of
F(t) and assumption (D), we deduce that F(t∗) ∈ Z×2 for all t∗ ∈ Q. Hence the
rational function F(t) satisfies Lemma 6.1(1).

Now we prove that F(t) satisfies Lemma 6.1(2). Since z is a rational zero or
pole of G(t) for each z ∈ Z, we see that if F(t∗) 6= z for every z ∈ Z and all t∗ ∈Q,
then G(F(t∗)) is defined, namely, not infinity, and nonzero for all t∗ ∈Q.

Assume that there is a rational number t∗ ∈ Q such that F(t∗) = z for some
z = az/bz ∈ Z. We consider two subcases:

Subcase 1. az 6= 0.
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We see that max(1, |az|)= |az|. Hence it follows that

Dz

(
1+

4
∏

l∈S,l 6=2 l
∏
w∈Z(Dw − 1)

t2
∗
− p2

0ε

)
= 1.

Upon multiplying both sides by t2
∗
− p2

0ε and simplifying, we deduce that

t2
∗
= p2

0ε− 4Dz

∏
l∈S, l 6=2

l
∏

w∈Z\{z}

(Dw − 1).

Hence it follows from (26) that

t2
∗
= p0

(
p0ε− 4bz sign(az)

∏
w∈Z\{z}

max(1, |aw|)
∏

l∈S, l 6=2

l
∏

w∈Z\{z}

(Dw − 1)
)
.

This implies that t∗ ∈ Z and t∗ ≡ 0 (mod p0). Hence vp0(t
2
∗
)= 2vp0(t∗)≥ 2. Thus,

p0ε− 4bz sign(az)
∏

w∈Z\{z}

max(1, |aw|)
∏

l∈S, l 6=2

l
∏

w∈Z\{z}

(Dw − 1)≡ 0 (mod p0).

Hence

4bz sign(az)
∏

w∈Z\{z}

max(1, |aw|)
∏

l∈S, l 6=2

l
∏

w∈Z\{z}

(Dw − 1)≡ 0 (mod p0).

By (26), one knows that Dw ≡ 0 (mod p0) for every w ∈ Z. Hence∏
w∈Z\{z}

(Dw − 1)≡ (−1)m−1 (mod p0).

Thus we deduce that

(−1)m−14bz sign(az)
∏

w∈Z\{z}

max(1, |aw|)
∏

l∈S, l 6=2

l ≡ 0 (mod p0),

which is a contradiction to the choice of p0. Therefore F(t∗) 6= z for all t∗ ∈Q.

Subcase 2. az = 0.
We see that F(t∗)=az/bz=0. Hence we deduce from the definition of F(t∗) that

t2
∗
= p2

0ε− 4
∏

l∈S, l 6=2

l
∏
w∈Z

(Dw − 1).

This implies that t∗ ∈ Z. Hence we deduce that

t2
∗
= p2

0ε (mod l)

for each prime l ∈ S with l 6= 2. Since ε is a quadratic nonresidue in F×l , it follows
that t∗ ≡ p0 ≡ 0 (mod l), which is a contradiction to the choice of p0. Thus, in any
event, F(t∗) 6= z for all t∗ ∈Q. Therefore F(t∗) satisfies Lemma 6.1(2).
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Case 2. Z =∅.
In this case, let ε be the same as in Case 1, and let p0 be an odd prime such that

p0 6∈ S. Let F(t) ∈Q(t) be the rational function defined by

(28) F(t) := 1+
4
∏

l∈S, l 6=2 l

t2− p2
0ε

.

Using the same arguments as in Case 1, one can show that F(t) satisfies (1) and (2)
in Lemma 6.1. �

Lemma 6.2. Let D(t) ∈Q(t) be a nonzero rational function of the form

D(t)=
at4
+ bt2

+ c
dt4+ et2+ f

,

where a, b, c, d , e, f are integers. Let q be an odd prime. Assume that there exists
an integer t0 such that

at4
0 + bt2

0 + c ≡ 0 (mod q),

at4
0 + bt2

0 + c 6≡ 0 (mod q2),

dt4
0 + et2

0 + f 6≡ 0 (mod q).

Then there exists a rational function 0(t) ∈Q(t) such that for all t∗ ∈Q, D(0(t∗))
belongs to qZq , but does not belong to q2Zq .

Proof. Let ε be an integer such that ε is a quadratic nonresidue in F×q . Let q0 be an
odd prime such that q0 6= q. We will show that the rational function 0(t) ∈Q(t),
defined by

(29) 0(t)= t0+
q2

t2− q2
0ε
,

satisfies the assertions in Lemma 6.2.
Since ε is not a square in F×q , it follows that t2

∗
− q2

0ε is nonzero for each t∗ ∈Q,
and hence 0(t∗) is well defined, namely, not infinity for all t∗ ∈Q.

We now prove that 0(t∗) belongs to t0+ q2Zq for all t∗ ∈Q. Indeed, take any
rational number t∗, and write t∗ = t1/t2, where t1, t2 are integers such that t2 6= 0
and gcd(t1, t2)= 1. We see that

vq

(
1

t2
∗
− q2

0ε

)
= vq

(
t2
2

t2
1 − q2

0εt2
2

)
= vq(t2

2 )− vq(t2
1 − q2

0εt2
2 ).

If t2 ≡ 0 (mod q), then it follows that t1 6≡ 0 (mod q). Hence we deduce that

vq(t2
1 − q2

0εt2
2 )=min(vq(t2

1 ), vq(q2
0εt2

2 ))=min(0, vq(t2
2 ))= 0,
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and thus

vq

(
1

t2
∗
− q2

0ε

)
= vq(t2

2 )− vq(t2
1 − q2

0εt2
2 )= 2vq(t2)≥ 2.

Therefore 1/(t2
∗
− q2

0ε) belongs to Zq , and hence it follows from (29) that 0(t∗)
belongs to t0+ q2Zq .

If t2 6≡ 0 (mod q), then vq(t2
2 ) = 0. We contend that t2

1 − q2
0εt2

2 6≡ 0 (mod q).
Assume the contrary, that is, t2

1 − q2
0εt2

2 ≡ 0 (mod q). Since t2 6≡ 0 (mod q) and
q0 6= q , we deduce that

ε ≡

(
t1

q0t2

)2

(mod q),

which contradicts the choice of ε. This establishes that t2
1 − q2

0εt2
2 6≡ 0 (mod q),

and thus

vq

(
1

t2
∗
− q2

0ε

)
= vq(t2

2 )− vq(t2
1 − q2

0εt2
2 )= 0.

Therefore 1/(t2
∗
− q2

0ε) belongs to Z×q , and hence it follows from (29) that 0(t∗)
belongs to t0+ q2Zq .

Since 0(t∗) belongs to t0+ q2Zq , we see that

a(0(t∗))4+ b(0(t∗))2+ c ≡ at4
0 + bt2

0 + c ≡ 0 (mod q),

a(0(t∗))4+ b(0(t∗))2+ c ≡ at4
0 + bt2

0 + c 6≡ 0 (mod q2),

d(0(t∗))4+ e(0(t∗))2+ f ≡ dt4
0 + et2

0 + f 6≡ 0 (mod q).

The last congruence shows that

1
c(0(t∗))4+ d(0(t∗))2+ e

belongs to Z×q , and hence we deduce that for every t∗ ∈Q,

D(0(t∗))=
a(0(t∗))4+ b(0(t∗))2+ c
d(0(t∗))4+ e(0(t∗))2+ f

belongs to qZq , but does not belong to q2Zq . Thus our contention follows. �

The next two examples will be used in proving the main theorem in this section.

Example 6.3. Let D1(T ) ∈Q(T ) be the rational function defined by

(30) D1(T ) :=
45588894173298T 4

−1641200890885920T 2
+14770814323798008

−5477180725633679T 4
+197178506122812676T 2

−1774606555105302716
,
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and define

(31) D∗1(T ) := 7+1682D1(T )

=
−38340254920051483T 4

+1380250355610428708T 2
−12422263806891130444

5477180725633679T 4
−197178506122812676T 2

+1774606555105302716
.

Let T0 = 0, and let q = 31. Since

12422263806891130444= 22
· 73
· 31 · 433 · 3299 · 10589 · 19309,

it follows that

vq(−12422263806891130444)= v31(−12422263806891130444)= 1,

and we deduce that for T = T0 = 0 the numerator of the fraction in (31) is divisible
by q, but not by q2. Since

1774606555105302716= 22
· 72
· 47 · 192640746320593,

we see that for T = T0 = 0 the denominator in (31) is not divisible by q .
Let ε = 3, and let q0 = 5. Following the proof of Lemma 6.2, we define the

rational function 01(T ) ∈Q(T ) by (29), that is,

(32) 01(T ) := T0+
q2

T 2− q2
0ε
=

961
T 2− 75

.

Applying Lemma 6.2 with D∗1(T ) in the role of D(t), we deduce that for all T∗ ∈Q,
D∗1(01(T∗)) belongs to 31Z31, but does not belong to 312Z31, where

(33) D∗1(01(T ))=
61,1(T )
61,2(T )

∈Q(T )

with

(34) 61,1(T )=−12422263806891130444T 8
+ 3726679142067339133200T 6

+ 855438785181123078355868T 4
− 170240958125426027001880200T 2

− 25922975674046723162225380003

and

(35) 61,2(T )= 1774606555105302716T 8
− 532381966531590814800T 6

− 122205519918242118687196T 4
+ 24320125111216714469579400T 2

+ 3703283999134302153081910439.

Example 6.4. Let D2(T ) ∈Q(T ) be the rational function defined by

(36) D2(T ) :=
−64380401708754T 4

+2317693623118880T 2
−20859235062503544

407097080892401T 4
−14655494912126204T 2

+131899454209147204
,
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and define

(37) D∗2(T ) := 133+ 1682D2(T )

=
−54143923915434895T 4

+1949179850773171028T 2
−17542605965314382876

407097080892401T 4
−14655494912126204T 2

+131899454209147204
.

Let T0 = 0, and let q = 11. Since

17542605965314382876= 22
· 7 · 11 · 56956512874397347,

it follows that for T = T0 the numerator in (37) is divisible by 11, but not by 112.
Since

131899454209147204≡ 8 6≡ 0 (mod 11),

for T = T0 the denominator in (37) is not divisible by 11.
Let ε = 7, and let q0 = 3. Following the proof of Lemma 6.2, we define the

rational function 02(T ) ∈Q(T ) by (29), that is,

(38) 02(T ) := T0+
q2

T 2− q2
0ε
=

121
T 2− 63

.

Applying Lemma 6.2 with D∗2(T ) in the role of D(t), we deduce that for all T∗ ∈Q,
D∗2(02(T∗)) belongs to 11Z11, but does not belong to 112Z11, where

(39) D∗2(02(T ))=
62,1(T )
62,2(T )

∈Q(T )

with

(40) 62,1(T )=−17542605965314382876T 8
+ 4420736703259224484752T 6

− 389221676262826716788116T 4
+ 13950123258644442355341240T 2

− 174687125980796870729105719

and

(41) 62,2(T )= 131899454209147204T 8
− 33238662460705095408T 6

+ 2926482501528191763292T 4
− 104888292579475114826088T 2

+ 1313439132893945928914009.

The next result is a mild generalization of Theorem 2.1 of [Dong Quan 2014].
The only difference between these two theorems is that in the latter, a, b, c, d, e
are assumed to be integers, whereas here we only assume that a, b, c, d, e belong
to Zp. Upon examining closely the proof of [loc. cit.], we see that it is sufficient to
assume that a, b, c, d, e are in Zp, and hence Theorem 6.5 follows immediately
from the proof of that result.
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Theorem 6.5 (separability criterion [Dong Quan 2014]). Let n, m, k be positive
integers, and let a, b, c, d , e be rational numbers such that a 6= 0. Let p be an odd
prime such that a, b, c, d , e belong to Zp and a ≡ 0 (mod p). Let F(x) ∈Q[x] be
the polynomial defined by

(42) F(x) := ax2n+2
+ (bx2m

+ c)(dx2k
+ e).

Define
n1 := (m+ k)(vp(a)− vp(bd))+m+ k− 1,

n2 := (m+ k)(vp(a)− vp(b))+m− 1,

n3 := (m+ k)(vp(a)− vp(d))+ k− 1,

n4 := (m+ k)vp(a)− 1,

n5 := vp(a)− vp(bd)+m+ k− 1.

Suppose that the following are true:

(S1) n > m+ k− 1 and n >max(n1, n2, n3, n4, n5).

(S2) ce 6≡ 0 (mod p), km 6≡ 0 (mod p), and bkem
+ (−1)m+k+1ckdm

6≡ 0 (mod p).

Then F is separable, that is, it has exactly 2n+ 2 distinct roots in C. �

Using Theorem 6.5, we prove the following corollaries that are crucial in con-
structing algebraic families of curves violating the Hasse principle.

Corollary 6.6. We maintain the same notation as in Example 6.3. Let D1(T ),
D∗1(T ), 01(T ) ∈Q(T ) be the rational functions defined by (30), (31), (32), respec-
tively. Let n be a positive integer such that n > 5. For each rational number T∗ ∈Q,
let P1,T∗(x) ∈Q[x] be the polynomial of degree 2n+ 2 given by

(43) P1,T∗(x) := 118579927725(D∗1(01(T∗)))2x2n+2

+ (2(29(D∗1(01(T∗)))2+ 123192)x2
− 16689645)

× (261(29(D∗1(01(T∗)))2+ 123192)x2
− 33379290),

where the composition rational function D∗1(01(T )) of D∗1(T ) and 01(T ) is given
by (33). Then for all T∗ ∈ Q, the polynomial P1,T∗(x) is separable, that is, it has
exactly 2n+ 2 distinct roots in C.

Proof. Throughout the proof, we maintain the same notation as in Theorem 6.5.
Take any rational number T∗ ∈Q, and define

a := 118579927725(D∗1(01(T∗)))2,

b := 2(29(D∗1(01(T∗)))2+ 123192),

c := −16689645,

d := 261(29(D∗1(01(T∗)))2+ 123192),
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e := −33379290.

Let p= 31, and let m = k = 1. Since 118579927725≡ 27 6≡ 0 (mod 31), 123192≡
29 6≡ 0 (mod 31), it follows from Example 6.3 that

vp(a)= v31(118579927725(D∗1(01(T∗)))2)= 2v31(D∗1(01(T∗)))= 2,

vp(b)= v31(2(29(D∗1(01(T∗)))2+ 123192))= v31(123192)= 0,

vp(d)= v31(261(29(D∗1(01(T∗)))2+ 123192))= v31(123192)= 0.

We see that

n1 := (m+ k)(vp(a)− vp(bd))+m+ k− 1= 2vp(a)+ 1= 5,

n2 := (m+ k)(vp(a)− vp(b))+m− 1= 2vp(a)= 4,

n3 := (m+ k)(vp(a)− vp(d))+ k− 1= 2vp(a)= 4,

n4 := (m+ k)vp(a)− 1= 2vp(a)− 1= 3,

n5 := vp(a)− vp(bd)+m+ k− 1= 2+ 1= 3,

and hence
max(n1, n2, n3, n4, n5)= 5.

By assumption, we know that

n > 5=max(n1, n2, n3, n4, n5),

and hence condition (S1) is satisfied.
It is obvious that km = 1 6≡ 0 (mod 31) and

ce = (−16689645) · (−33379290)≡ 25 6≡ 0 (mod 31).

Furthermore, since D∗1(01(T∗)) belongs to 31Z31, we deduce that

bkem
+ (−1)m+k+1ckdm

= be− cd

= (2(29(D∗1(01(T∗)))2+ 123192))(−33379290)

− (−16689645)(261(29(D∗1(01(T∗)))2+ 123192))

≡ 2 · 123192 · (−33379290)+ 16689645 · 261 · 123192

≡ 12 6≡ 0 (mod 31).

Therefore condition (S2) is satisfied, and hence the polynomial P1,T∗(x) is separable.
Since T∗ is an arbitrary rational number, our contention follows. �

Corollary 6.7. We maintain the same notation as in Example 6.4. Let D2(T ),
D∗2(T ), 02(T ) ∈Q(T ) be the rational functions defined by (36), (37), (38), respec-
tively. Let n be a positive integer such that n > 5. For each rational number T∗ ∈Q,
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let P2,T∗(x) ∈Q[x] be the polynomial of degree 2n+ 2 given by

(44) P2,T∗(x) := 84898109(D∗2(02(T∗)))2x2n+2

+ (2(29(D∗2(02(T∗)))2− 40600)x2
+ 49619)

× (261(29(D∗2(02(T∗)))2− 40600)x2
+ 99238),

where the composition rational function D∗2(02(T )) of D∗2(T ) and 02(T ) is given
by (39). Then for all T∗ ∈ Q, the polynomial P2,T∗(x) is separable, that is, it has
exactly 2n+ 2 distinct roots in C.

Proof. Throughout the proof, we maintain the same notation as in Theorem 6.5.
Take any rational number T∗ ∈Q, and define

a := 84898109(D∗2(02(T∗)))2,

b := 2(29(D∗2(02(T∗)))2− 40600),

c := 49619,

d := 261(29(D∗2(02(T∗)))2− 40600),

e := 99238.

Let p= 11, and let m = k = 1. Since 84898109≡ 10 6≡ 0 (mod 11), 40600≡ 10 6≡
0 (mod 11), it follows from Example 6.4 that

vp(a)= v11(84898109(D∗2(02(T∗)))2)= 2v11(D∗2(02(T∗)))= 2,

vp(b)= v11(2(29(D∗2(02(T∗)))2− 40600))= v11(40600)= 0,

vp(d)= v31(261(29(D∗2(02(T∗)))2− 40600))= v11(40600)= 0.

We see that

n1 := (m+ k)(vp(a)− vp(bd))+m+ k− 1= 2vp(a)+ 1= 5,

n2 := (m+ k)(vp(a)− vp(b))+m− 1= 2vp(a)= 4,

n3 := (m+ k)(vp(a)− vp(d))+ k− 1= 2vp(a)= 4,

n4 := (m+ k)vp(a)− 1= 2vp(a)− 1= 3,

n5 := vp(a)− vp(bd)+m+ k− 1= 2+ 1= 3,
and hence

max(n1, n2, n3, n4, n5)= 5.

By assumption, we know that

n > 5=max(n1, n2, n3, n4, n5),

and hence condition (S1) is satisfied.
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It is obvious that km = 1 6≡ 0 (mod 11) and

ce = 49619 · 99238≡ 8 6≡ 0 (mod 11).

Since D∗2(02(T∗)) belongs to 11Z11, we deduce that

bkem
+ (−1)m+k+1ckdm

= be− cd

= (2(29(D∗2(02(T∗)))2− 40600))(99238)

− (49619)(261(29(D∗2(02(T∗)))2− 40600))

≡ 2 · (−40600) · 99238− (49619) · 261 · (−40600)

≡ 8 6≡ 0 (mod 11).

Therefore condition (S2) is satisfied, and hence the polynomial P2,T∗(x) is separable.
Since T∗ is an arbitrary rational number, our contention follows. �

For the rest of this section, let

A1 := {n ∈ Z : n > 5, n 6≡ 0 (mod 4) and n 6≡ 21 (mod 29)},

A2 := {n ∈ Z : n > 5, n 6≡ 0 (mod 4) and n 6≡ 8 (mod 29)}.

We see that

(45) A1 ∪ A2 = {n ∈ Z : n > 5 and n 6≡ 0 (mod 4)}.

We now prove the main theorem in this section.

Theorem 6.8. For each n ∈ A1 and each rational number T∗ ∈ Q, let P1,T∗(x) ∈
Q[x] be the polynomial of degree 2n+2 defined by (43). For each n ∈ A2 and each
rational number T∗ ∈ Q, let P2,T∗(x) ∈ Q[x] be the polynomial of degree 2n+ 2
defined by (44). Then:

(i) For each n ∈ A1 and each rational number T∗ ∈ Q, the hyperelliptic curve
C(7,261,15)

n,T∗,(29,1,3) of genus n satisfies CHP and NZC, where C(7,261,15)
n,T∗,(29,1,3) is the

smooth projective model of the affine curve defined by

C(7,261,15)
n,T∗,(29,1,3) : z

2
= P1,T∗(x).

(ii) For each n ∈ A2 and each rational number T∗ ∈ Q, the hyperelliptic curve
C(133,29,27)

n,T∗,(29,1,3) of genus n satisfies CHP and NZC, where C(133,29,27)
n,T∗,(29,1,3) is the

smooth projective model of the affine curve defined by

C(133,29,27)
n,T∗,(29,1,3) : z

2
= P2,T∗(x).

Remark 6.9. By (45) and Theorem 6.8, Theorem 1.1 follows immediately.
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Proof. Throughout the proof of Theorem 6.8, we will use the same notation as in
Theorem 4.1 and Lemma 5.1. We first prove that Theorem 6.8(i) holds.

Let (p, b, d, α0, β0, γ0)= (29, 1, 3, 7, 261, 15). Let n be any integer such that
n ∈ A1. We see that β0 = 9. One can check that the sextuple (p, b, d, α0, β0, γ0)

satisfies (A1)–(A5) and (B1). Indeed, (A1), (A2), (A4), (A5) and (B1) are obvious.
It remains to prove that (p, b, d, α0, β0, γ0) satisfies (A3). By (11) and (12), we
know that

P0 = 124613, Q0 =−63945.

The conic Q(7,261,15)
1 in (A3) of Theorem 4.1 defined by

Q(7,261,15)
1 : 29U 2

− V 2
+ 2079746732385T 2

= 0

has a point (u0, v0, t0) = (166257, 3020031, 2), and hence (p, b, d, α0, β0, γ0)

satisfies (A3).
Let S := {2, 29}, and let C1(T ) be the rational function in Q(T ) defined by the

same equation (23) of C with (0, T ) in the role of (A, B), that is,

C1(T ) :=
−2v0T − 4p3α0β0t2

0 Q0

T 2+ 4p5β0t2
0 Q0

=
−6040062T + 45588900213360

T 2− 5477180725633680
.

Let G1(T ) ∈Q(T ) be the rational function defined by

(46) G1(T )= v0+ T C1(T )

=
−3020031T 2

+ 45588900213360T − 16541255584016208244080

T 2
− 5477180725633680

.

Since the numerator and denominator of G1(T ) are irreducible polynomials over Q,
the set Z1 of rational zeros and poles of G1(T ) is empty. Hence, applying Lemma 6.1
for the triple (S, G1(T ), Z1), we know that F1(T ) satisfies (1) and (2) in Lemma 6.1,
where F1(T ) is the rational function defined by (28) with (p0, ε) = (3, 2) and
(S, G1(T ), Z1) in the role of (S, G(T ), Z), that is,

F1(T ) := 1+
4
∏

l∈S, l 6=2 l

T 2− p2
0ε
= 1+

116
T 2− 18

=
T 2
+ 98

T 2− 18
.

Let 01(T ) ∈Q(T ) be the rational function defined by (32). Recall that

01(T ) :=
961

T 2− 75
.

It is known that 01(T∗) is well-defined, namely, not infinity for all T∗ ∈Q.
Take an arbitrary rational number T∗ ∈Q, and let (A, B)= (0, F1(01(T∗))). By

Lemma 6.1, we know that (0, F1(T∗)) satisfies (C1) and (C2) in Lemma 5.1, and it
thus follows that (A, B)= (0, F1(01(T∗))) also satisfies (C1) and (C2).
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Let D1(01(T )) be the rational function in Q(T ) defined by the same equation (23)
of C with (0, F1(01(T ))) in the role of (A, B), that is,

(47) D1(01(T )) := C1(F1(01(T )))

=
45588894173298(01(T ))4− 1641200890885920(01(T ))2+ 14770814323798008

−5477180725633679(01(T ))4+ 197178506122812676(01(T ))2− 1774606555105302716
.

Note that (A, B)= (0, F1(01(T∗))) satisfies (C1) and (C2). Hence, using the same
arguments as in the proof of Lemma 5.1, one knows that D1(01(T∗)) ∈ Z29.

We see that

u := u0+ A D1(01(T∗))= u0 = 166257 6= 0.

Furthermore, it follows from Lemma 6.1(2), (46) and (47) that

v := v0+ B D1(01(T∗))= G1(F1(01(T∗)))

is well-defined, namely, not infinity and nonzero. Hence (A, B)= (0, F1(01(T∗)))
satisfies (C3) in Lemma 5.1.

Set

α := α0+ 2p2 D1(01(T∗))= 7+ 1682D1(01(T∗))= D∗1(01(T∗)),

β := β0 = 261,

γ := γ0 = 15,

where D∗1(01(T )) ∈ Q(T ) is the rational function defined by (33). Recall from
there that

D∗1(01(T ))=
61,1(T )
61,2(T )

,

where 61,1(T ),61,2(T ) are defined by (34), (35), respectively.
By Lemma 5.1, we know that (α, β, γ ) satisfies (A1)–(A5) and (B1). By (11)

and (12), we know that

P = 29(7+ 1682D1(01(T∗)))2+ 123192= 29(D∗1(01(T∗)))2+ 123192,

Q = Q0 =−63945.

It is not difficult to see that the curve C(7,261,15)
n,T∗,(29,1,3) defined in Theorem 6.8(i) is the

smooth projective model of the affine curve defined by (13).
By Corollary 6.6, we know that P1,T∗(x) is separable, and hence we deduce that

condition (S) in Theorem 4.1 is true. Since D1(01(T∗)) ∈ Z29, we see that

−2
(γ
α

)2
≡ 21 (mod 29).
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Since n ∈ A1, we deduce that

n 6≡ −2
(γ
α

)2
(mod 29).

Thus (A6) holds if n is odd, and (B2) holds if n ≡ 2 (mod 4). By Corollaries 4.6
and 4.8, we deduce that for each n ∈ A1, the curve C(7,261,15)

n,T∗,(29,1,3) satisfies CHP and
NZC. Since T∗ is an arbitrary rational number, Theorem 6.8(i) follows.

We now prove Theorem 6.8(ii). We will use the same notation as in the proof of
part (i) as long as it does not cause any confusion. We will use the same arguments
as in the proof of part (i) to construct an algebraic family of hyperelliptic curves of
genus n satisfying CHP and NZC for each n ∈ A2.

Let (p, b, d, α0, β0, γ0)= (29, 1, 3, 133, 29, 27). Let n be any integer such that
n ∈ A2. We see that β0 = 1. One can check that the sextuple (p, b, d, α0, β0, γ0)

satisfies (A1)–(A5) and (B1). Indeed (A1), (A2), (A4), (A5) and (B1) are obvious.
It remains to prove that the sextuple satisfies (A3). By (11) and (12), we know that

P0 = 472381, Q0 = 1711.

The conic Q(133,29,27)
1 in (A3) of Theorem 4.1 defined by

Q(133,29,27)
1 : 29U 2

− V 2
− 23439072839T 2

= 0

has a point (u0, v0, t0) = (728799, 3613777, 10), and thus (p, b, d, α0, β0, γ0)

satisfies (A3).
Let S := {2, 29}, and let C2(T ) ∈Q(T ) be the rational function defined by the

same equation (23) of C with (0, T ) in the role of (A, B), that is,

C2(T )=
−2v0T − 4p3α0β0t2

0 Q0

T 2+ 4p5β0t2
0 Q0

=
−7227554T − 64380394481200

T 2+ 407097080892400
.

Let G2(T ) ∈Q(T ) be the rational function defined by

(48) G2(T )= v0+ T C2(T )

=
−3613777T 2

− 64380394481200T + 147115806769609459480

T 2
+ 407097080892400

.

Since the numerator and denominator of G2(T ) are irreducible polynomials over Q,
the set Z2 of rational zeros and poles of G2(T ) is empty. Hence, applying Lemma 6.1
for the triple (S, G2(T ), Z2), we know that F2(T ) satisfies (1) and (2) in Lemma 6.1,
where F2(T ) is the rational function defined by (28) with (p0, ε) = (3, 2) and
(S, G2(T ), Z2) in the role of (S, G(T ), Z), that is,

F2(T ) := 1+
4
∏

l∈S, l 6=2 l

T 2− p2
0ε
= 1+

116
T 2− 18

=
T 2
+ 98

T 2− 18
.
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Let 02(T ) ∈Q(T ) be the rational function defined by (38). Recall that

02(T ) :=
121

T 2− 63
.

It is known that 02(T∗) is well defined, namely, not infinity for each rational number
T∗ ∈Q.

Now take an arbitrary rational number T∗ ∈Q, and let (A, B)= (0, F2(02(T∗))).
By Lemma 6.1, we know that (0, F2(T∗)) satisfies (C1) and (C2) in Lemma 5.1,
and it thus follows that (A, B)= (0, F2(02(T∗))) also satisfies (C1) and (C2).

Let D2(02(T )) be the rational function in Q(T ) defined by the same equation
(23) of C with (0, F2(02(T ))) in the role of (A, B), that is,

(49) D2(02(T )) := C2(F2(02(T )))

=
−64380401708754(02(T ))4+ 2317693623118880(02(T ))2− 20859235062503544

407097080892401(02(T ))4− 14655494912126204(02(T ))2+ 131899454209147204
.

Note that (A, B)= (0, F2(02(T∗))) satisfies (C1) and (C2). Hence, using the same
arguments as in the proof of Lemma 5.1, one knows that D2(02(T∗)) ∈ Z29.

We see that

u := u0+ A D1(01(T∗))= u0 = 728799 6= 0.

Furthermore, it follows from Lemma 6.1(2), (48) and (49) that

v := v0+ B D2(02(T∗))= G2(F2(02(T∗)))

is defined, namely, not infinity and nonzero. Hence (A, B) = (0, F2(02(T∗)))
satisfies Lemma 5.1(C3).

Set

α := α0+ 2p2 D2(02(T∗))= 133+ 1682D2(02(T∗))= D∗2(02(T∗)),

β := β0 = 29,

γ := γ0 = 27,

where D∗2(02(T )) ∈ Q(T ) is the rational function defined by (39). Recall from
there that

D∗2(02(T ))=
62,1(T )
62,2(T )

,

where 62,1(T ),62,2(T ) are defined by (40), (41), respectively.
By Lemma 5.1, we know that (α, β, γ ) satisfies (A1)–(A5) and (B1). By (11)

and (12), we know that

P = 29(133+ 1682D2(02(T∗)))2− 40600= 29(D∗2(02(T∗)))2− 40600,

Q = Q0 = 1711.
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It is not difficult to see that the curve C(133,29,27)
n,T∗,(29,1,3) defined in Theorem 6.8(ii) is the

smooth projective model of the affine curve defined by (13).
By Corollary 6.7, we know that P2,T∗(x) is separable, and hence we deduce that

condition (S) in Theorem 4.1 is true. Since D2(02(T∗)) ∈ Z29, we see that

−2
(γ
α

)2
≡ 8 (mod 29).

Since n ∈ A2, we deduce that

n 6≡ −2
(γ
α

)2
(mod 29).

Thus (A6) holds if n is odd, and (B2) holds if n ≡ 2 (mod 4). By Corollaries 4.6
and 4.8, we deduce that for each n ∈ A2, the curve C(133,29,27)

n,T∗,(29,1,3) satisfies CHP and
NZC. Since T∗ is an arbitrary rational number, Theorem 6.8(ii) follows. �
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F-ZIPS WITH ADDITIONAL STRUCTURE

RICHARD PINK, TORSTEN WEDHORN AND PAUL ZIEGLER

Let Fq be a fixed finite field of cardinality q. An F-zip over a scheme S over
Fq is a certain object of semilinear algebra consisting of a locally free sheaf
of OS-modules with a descending filtration and an ascending filtration and a
Frobq-twisted isomorphism between the respective graded sheaves. In this
article we define and systematically investigate what might be called “F-zips
with a G-structure”, for an arbitrary reductive linear algebraic group G
over Fq .

These objects come in two incarnations. One incarnation is an exact Fq-
linear tensor functor from the category of finite dimensional representations
of G over Fq to the category of F-zips over S. Locally any such functor has a
type χ , which is a cocharacter of Gk for a finite extension k of Fq that deter-
mines the ranks of the graded pieces of the filtrations. The other incarnation
is a certain G-torsor analogue of the notion of F-zips. We prove that both
incarnations define stacks that are naturally equivalent to a quotient stack
of the form [EG,χ\Gk] that was studied in our earlier paper (Doc. Math.
16 (2011), 253–300). By the results of this work they are therefore smooth
algebraic stacks of dimension 0 over k. Using our previous work we can
also classify the isomorphism classes of such objects over an algebraically
closed field, describe their automorphism groups, and determine which iso-
morphism classes can degenerate into which others.

For classical groups we can deduce the corresponding results for twisted
or untwisted symplectic, orthogonal, or unitary F-zips, a part of which
has been described before by Moonen and Wedhorn (Int. Math. Res. Not.
2004:72, 3855–3903). The results can be applied to the algebraic de Rham
cohomology of smooth projective varieties (or generalizations thereof) and
to truncated Barsotti–Tate groups of level 1. In addition, we hope that our
systematic group theoretical approach will help to understand the analogue
of the Ekedahl–Oort stratification of the special fibers of arbitrary Shimura
varieties.
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1. Introduction

1A. Background. Let X→ S be a smooth proper morphism of schemes in char-
acteristic p> 0 whose Hodge spectral sequence degenerates and is compatible with
base change. In [Moonen and Wedhorn 2004] it was shown that its relative De Rham
cohomology H •

DR(X/S) carries the structure of a so-called F-zip over S, namely: It
is a locally free sheaf of OS-modules of finite rank together with two filtrations (the
“Hodge” and the “conjugate” filtration) and a Frobenius linear isomorphism between
the associated graded vector spaces (the “Cartier isomorphism”). They showed that
the isomorphism classes of F-zips of fixed dimension n and with a fixed type of
Hodge filtration over an algebraically closed field are in natural bijection with the
orbits under GLn,k in a variant Z ′I of the varieties Z I studied by Lusztig [2004a;
2004b]. They studied the analogous varieties Z ′I for arbitrary reductive groups G
defined over a finite field and determined the G-orbits in them as analogues of the
G-stable pieces in Z I . By specializing G to classical groups they deduced from
this a classification of F-zips with certain additional structure, for example, with a
nondegenerate symmetric or alternating form.

In [Pink et al. 2011] the present authors showed that the quotient stack [G\Z ′I ]
is isomorphic to a quotient stack of the form [Eχ\G], where Eχ is certain linear
algebraic group depending on the choice of a cocharacter χ of G. We studied this
quotient stack in detail, classifying the Eχ-orbits in G by a subset of the Weyl
group of G and describing their closure relation using a variant of the Bruhat
order.

1B. Main idea. The aim of this paper is to define and investigate what might
be called “F-zips with a G-structure”, for an arbitrary reductive linear algebraic
group G.

As a guideline let us first review the analogous case of vector bundles. Recall that
giving a vector bundle E of constant rank n on a manifold or a scheme S over a field
k is equivalent to giving the associated GLn,k-torsor. For a subgroup G⊂GLn,k , the
choice of a G-torsor I within this GLn,k-torsor is called a G-structure on E . The
vector bundle E can be recovered as the pushout of I with the given n-dimensional
representation of G, so giving a vector bundle with a G-structure is really equivalent
to giving a G-torsor I .

At this point we can disregard the special role of the original representation
and form the pushout of I with all finite dimensional representations of G. This
yields an exact k-linear tensor functor from the Tannakian category G-Rep of finite
dimensional representations of G over k to the category of vector bundles on S,
which is known (for example by Nori [1976, Proposition 2.9]) to be again equivalent
to giving I . Altogether such a functor is therefore equivalent to giving a vector
bundle with a G-structure on S.
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These observations suggest that objects with a G-structure in a more general
exact k-linear tensor category T should be equivalent to, or might even be defined as,
exact k-linear tensor functors G-Rep→T, and that they should be equivalent to G-
torsor analogues of the objects in T. In the cases of graded or filtered vector bundles
equivalences of this kind were in fact derived in some cases in [Saavedra Rivano
1972, IV.1–2] and in general in [Ziegler 2011]. The principle was also applied to
F-isocrystals with additional structure by Rapoport and Richartz [1996].

The program for the present paper is therefore to develop this approach for the
category of F-zips and to classify the ensuing objects using the results of [Pink
et al. 2011].

1C. F-zips with a G-structure. Let Fq be a fixed finite field with q elements, and
consider a scheme S over Fq . Recall from [Moonen and Wedhorn 2004] that an
F-zip over S is a tuple M= (M,C •, D•, ϕ•) consisting of a locally free sheaf of OS-
modules of finite rank M on S, a descending filtration C • and an ascending filtration
D• of M, and an OS-linear isomorphism ϕi : (gri

C M)(q) ∼
−→ grD

i M for every i ∈ Z,
where ( )(q) denotes the pullback by the Frobenius morphism x 7→ xq . In a natural
way (see Section 6) the F-zips over S are the objects of an exact Fq-linear tensor
category F-Zip(S).

Let G be a reductive linear algebraic group over Fq , and let k be a finite extension
of Fq . In the body of the paper we consider not necessarily connected groups, but
to simplify notations in this introduction we stick to a connected group G. For
simplicity we also assume that G splits over k, so that every conjugacy class of
cocharacters of G over any extension field of k possesses a representative that is
defined over k. Let G-Rep denote the Fq-linear abelian tensor category of finite-
dimensional rational representations of G over Fq . The role of “F-zips with a
G-structure” is played by the following objects:

Definition 1.1 (cf. Definition 7.1). For any scheme S over k, a G-zip functor over S
is an exact Fq -linear tensor functor

z : G-Rep→ F-Zip(S).

As S varies, these objects form a category G-ZipFun fibered in groupoids over
the category of schemes over k. It is not hard to show that G-ZipFun is a stack
over k (see Proposition 7.2). It possesses a natural decomposition that is indexed
by conjugacy classes of cocharacters of G, defined as follows.

Let χ be a cocharacter of the group Gk obtained from G by base change. Then
χ induces a grading on Vk := V ⊗Fq k for every representation V of G and thus an
Fq -linear tensor functor γχ from G-Rep to the category of graded k-vector spaces.
On the other hand, any G-zip functor z over S induces an Fq -linear tensor functor
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from G-Rep to the category of graded locally free sheaves of OS-modules on S
which sends V to gr•C ◦ z(V ).

Definition 1.2 (cf. Definitions 5.3 and 7.3). A G-zip functor z over S is called of
type χ if the graded fiber functors gr•C ◦ z and γχ are fpqc-locally isomorphic. The
substack of G-ZipFun of G-zip functors of type χ is denoted G-ZipFunχ .

Theorem 1.3 (cf. Corollary 7.6). Every G-zip functor over a connected scheme has
a type. Each G-ZipFunχ is an open and closed substack of G-ZipFun.

In Section 8 we work out equivalent but simpler descriptions of G-zip functors
for certain classical groups. The rough idea in all cases is that any G-zip functor
is already determined up to unique isomorphism by its restriction to a certain
finite subcategory of G-Rep and that, conversely, any suitable functor from this
subcategory to the category of F-zips extends to a G-zip functor on all of G-Rep.
For instance, giving a GLn-zip functor is equivalent to giving an F-zip M of constant
rank n, and giving an SLn-zip functor is equivalent to giving an F-zip M of constant
rank n together with an isomorphism between its highest exterior power 3nM and
the unit object 1(0). Similarly, giving an Spn-zip, resp. On-zip functor is equivalent
to giving a symplectic, resp. orthogonal F-zip of constant rank n, by which we
mean an F-zip M of constant rank n together with an epimorphism of F-zips
32M� 1(0), resp. S2M� 1(0), whose underlying pairing of locally free sheaves
is nondegenerate everywhere. We also discuss the relation between Un-zip functors
and unitary F-zips, as well as twisted versions of these equivalences associated to
the groups of similitudes CSpn and COn and CUn .

1D. G-zips. To describe the stack of G-zip functors G-ZipFunχ in detail we use
the following G-torsor analogue of F-zips. Let G and χ be as above, and let
P± = L nU± be the associated pair of opposite parabolic subgroups of Gk .

Definition 1.4 (cf. Definition 3.1). A G-zip of type χ over a scheme S over k
is a tuple I = (I, I+, I−, ι) consisting of a right Gk-torsor I over S, a right P+-
torsor I+ ⊂ I , a right P (q)− -torsor I− ⊂ I , and an isomorphism of L(q)-torsors
ι : I (q)+ /U (q)

+
∼
−→ I−/U (q)

− .

As S varies, these objects form a category G-Zipχ fibered in groupoids over the
category of schemes over k. It is not hard to show that G-Zipχ is a stack over k
(see Proposition 3.2).

To G and χ we can also associate a natural algebraic zip datum in the sense
of [Pink et al. 2011] (see Definition 3.6). The associated zip group is the linear
algebraic group

EG,χ := {(`u+, `(q)u−) | ` ∈ L , u+ ∈U+, u− ∈U (q)
− } ⊂ P+×k P (q)−
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which acts from the left hand side on Gk by (p+, p−) · g := p+gp−1
− . We can thus

form the algebraic quotient stack [EG,χ\Gk].

Theorem 1.5 (cf. Proposition 3.11, Theorem 7.13, and Corollary 3.12). The stacks
G-ZipFunχ and G-Zipχ and [EG,χ\Gk] are naturally equivalent. They are smooth
algebraic stacks of dimension 0 over k.

In particular, it is equivalent to give a G-zip functor of type χ over S, or a G-zip
of type χ over S, or a morphism S→ [EG,χ\Gk] over k. The equivalences are in
fact obtained by explicit constructions (see Sections 3D and 7B).

1E. Classification. Using the results of [Pink et al. 2011] we can now describe the
stack of G-zips of type χ in detail. By Theorem 1.5, all the following statements
hold equivalently for G-zip functors of type χ . By the results of Section 8 they
also hold for symplectic, orthogonal, resp. unitary F-zips, and so on.

Let W be the Weyl group of G, let I ⊂ W be the subset of simple reflections
corresponding to P+, and let WI be the subgroup of W generated by I . Let I W be
the set of elements w ∈W that are of minimal length in their right coset WIw. We
endow I W with a certain partial order� which is somewhat complicated to describe
(and in general strictly finer than the Bruhat order; see (3.16) and Example 3.23).
This turns I W into a finite topological space (see Proposition 2.1), which we can
compare with the topological space underlying the algebraic stack G-Zipχ (see
Section 2B).

Theorem 1.6 (cf. Theorem 3.20). The topological space underlying G-Zipχ is
naturally homeomorphic to I W . In particular, there is a natural bijection between
the set of isomorphism classes of G-zips of type χ over an algebraically closed field
K containing k and the set I W .

For any G-zip I of type χ over a scheme S over k we thus obtain a finite
stratification of S by the isomorphism type of I . This generalizes the F-zip
stratification defined in [Moonen and Wedhorn 2004] in the case G = GLn,Fq ,
as well as the Ekedahl–Oort stratification of the moduli space of g-dimensional
principally polarized abelian varieties in the case G =CSp2g,Fq

. The partial order �
yields information on the closure relations between these strata (see (3.29) and
Proposition 3.30). Using a result from [Wedhorn and Yatsyshyn 2014] we can also
deduce a purity result (see Proposition 3.33). Furthermore, the description of point
stabilizers in EG,χ from [Pink et al. 2011, Theorem 8.1] yields information on
automorphism groups of G-zips; in particular:

Theorem 1.7 (cf. Proposition 3.34). The automorphism group scheme of the G-zip
of type χ over an algebraically closed field K containing k corresponding tow∈ I W
is an extension of a finite group (see Proposition 3.34 for its precise description) by



188 RICHARD PINK, TORSTEN WEDHORN AND PAUL ZIEGLER

a connected unipotent group of dimension dim(G/P+)− `(w), where `( ) denotes
the length function on the Coxeter group W .

1F. Applications. In Section 9 we study the de Rham cohomology of a smooth
proper Deligne–Mumford stack X→ S whose Hodge spectral sequence degenerates
and is compatible with arbitrary base change. For all d ≥ 0 we obtain an F-zip
H d

DR(X/S). If X is a scheme, the cup product induces for all d , e ≥ 0 a morphism
of F-zips

∪: H d
DR(X/S)⊗ H e

DR(X/S)−→ H d+e
DR (X/S).

If X→ S is a smooth proper morphism of schemes with geometrically connected
fibers of dimension n, the cup product turns H n

DR(X/S) into a twisted symplectic
or orthogonal F-zip, depending on the parity of n.

In Section 9C we attach an F-zip to any truncated Barsotti–Tate group of level 1
over a scheme S of characteristic p. This construction improves the one given in
[Moonen and Wedhorn 2004] where S was assumed to be perfect.

In addition, we hope that our results can be applied to the special fibers of
arbitrary Shimura varieties, where G is the reduction modulo p of the connected
reductive linear algebraic group over Q that gives rise to the Shimura variety. In that
case our systematic group theoretical approach should prove especially valuable.
For good reductions of Shimura varieties of Hodge type some progress has already
been made. C. Zhang [2013] has defined a smooth morphism from the special
fiber of Kisin’s integral model to the stack of G-zips of a certain type χ yielding
a description of Ekedahl–Oort strata for the special fiber. This has been used by
D. Wortmann [2013] to prove that the conjectured candidate for the generic Newton
stratum is indeed open and dense in the special fiber.

1G. Contents of the paper. As a preparation we begin by recalling some properties
of quotient stacks in Section 2.

In Section 3 we first introduce some general notation used throughout the rest
of the article. We mostly work with a not necessarily connected linear algebraic
group Ĝ over Fq whose identity component G is reductive. Besides a cocharacter
χ of Gk , the basic data also requires the choice of a subgroup 2 of the group of
connected components of the stabilizer of χ . We then define the general notion
of Ĝ-zips of type (χ,2) and prove that they form a smooth algebraic stack of
dimension 0 over k that is naturally isomorphic to a quotient stack of the form
[E Ĝ,χ,2\Ĝk] that was studied in [Pink et al. 2011]. The remainder of Section 3
contains an assortment of results on the topological space underlying this stack, on
the associated stratification, and on automorphisms.

We use Section 4 to collect some generalities concerning locally free sheaves,
gradings, filtrations, and alternating and symmetric powers. In Section 5 we recall
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some results of the third author on filtered and graded fiber functors on the Tannakian
category Ĝ-Rep.

In Section 6 we endow the category of F-zips over a scheme S with the structure
of an exact rigid tensor category. Section 7 then contains the definition of Ĝ-zip
functors. Here we use the results recalled in Section 5 to prove that every Ĝ-zip
functor over a connected scheme S has a type χ . With the unique maximal possible
choice of 2 we then establish a natural isomorphism between the stack of Ĝ-zip
functors of type χ and the stack of Ĝ-zips of type (χ,2). Consequently the stack
of Ĝ-zip functors of type χ is also a smooth algebraic stack of dimension 0 that is
naturally isomorphic to [E Ĝ,χ,2\Ĝk].

In Section 8 we go through a list of eight classical groups, in each case describing
an equivalence between Ĝ-zip functors and F-zips of a given rank with a certain
embellishment such as an alternating or symmetric or hermitian form within the
category of F-zips.

Finally, in Section 9 we discuss applications to the algebraic de Rham cohomology
of certain Deligne–Mumford stacks and to truncated Barsotti–Tate groups of level 1.

2. General properties of quotient stacks

As a preparation we discuss some general properties of algebraic group actions and
quotient stacks.

2A. Closure relation for an algebraic group action. First recall that a topological
space Z is called T0 (or Kolmogorov) if for any two distinct points, at least one of
them possesses a neighborhood that does not contain the other. Abbreviating the
closure of a subset by ( ), as usual, this is equivalent to saying that for any z′, z ∈ Z
we have z′= z if and only if both z′ ∈ {z} and z ∈ {z′}. On the other hand, recall that
a partial order � on a set Z is a transitive binary relation which is antisymmetric in
the sense that z′ = z if and only if both z′ � z and z � z′. With these observations
the following well-known fact is easy to prove:

Proposition 2.1. For any finite T0 topological space Z the relation z′ � z :⇔
z′ ∈ {z} is a partial order on Z. Conversely, any partial order on a finite set Z
arises in this way from a unique T0 topology on Z. Moreover, a map between finite
T0 spaces is continuous if and only if it preserves the associated partial orders.

Next consider a field k with an algebraic closure k̄ and the associated absolute
Galois group 0 := Aut(k̄/k). Let X be a scheme of finite type over k, and let H
be a linear algebraic group over k which acts on X from the left by a morphism
H ×k X → X . Then every H(k̄)-orbit O ⊂ X (k̄) is locally closed for the Zariski
topology on X (k̄). Moreover, its closure O is again H(k̄)-invariant and therefore a
union of orbits, and we have dim(Or O) < dim(O). From this it follows that the
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set of orbits
4 := H(k̄)\X (k̄)

with the induced quotient topology is a T0 space.
Assume now that 4 is finite. Then by Proposition 2.1 the topology on 4 corre-

sponds to the partial order � on 4 defined by O′ � O :⇔ O′ ⊂ O. Also, the Galois
group 0 acts on 4 preserving the topology and the partial order. Thus the quotient
set 0\4 again inherits a quotient topology which is T0 and corresponds to a partial
order described in the same fashion. The set 0\4 is in natural bijection with the
set of algebraic H -orbits in X , that is, with the set of nonempty H -invariant locally
closed reduced subschemes that do not possess nonempty H -invariant locally closed
proper subschemes.

2B. Quotient stacks. This article will require a certain familiarity with the notion
of stacks. Recall that a stack over a scheme S is a category fibered in groupoids
over the category ((Sch/S)) of schemes over S which satisfies effective descent
with respect to any fpqc morphism. The morphisms of stacks are functors, and
so instead of equality of morphisms one often only has isomorphisms of functors.
For the technical definition of an algebraic stack see [Laumon and Moret-Bailly
2000, Definition 4.1]. Let us recall only that every scheme can be considered as
an algebraic stack, and for every algebraic stack X there exists a smooth surjective
morphism from a scheme X→ X. Many concepts and properties of schemes and
morphisms of schemes have analogues for algebraic stacks. For example, there
exist natural fiber products and pullbacks of algebraic stacks, and many properties
of algebraic stacks and of morphisms of algebraic stacks are tested using pullbacks
to schemes.

Every algebraic stack X possesses an underlying topological space |X|, defined
in [Laumon and Moret-Bailly 2000, Section 5]. An element of |X| is an equivalence
class of morphisms Spec K →X for fields K , where two morphisms Spec K1→X

and Spec K2→X are equivalent if and only if there exists a common field extension
K such that the composite morphisms Spec K → Spec Ki → X are isomorphic.
The open subsets of |X| are the subsets |U| for all open substacks U⊂ X. If X is
represented by a scheme X , then |X| is homeomorphic to the topological space
underlying X .

Consider now the situation of Section 2A, where H acts from the left hand side
on a scheme X over k. The quotient stack [H\X ] is then defined as follows. For
any scheme S over k the category [H\X ](S) has as objects the pairs consisting
of a left H -torsor T → S and an H -equivariant morphism f : T → X over k. A
morphism (T, f )→ (T ′, f ′) in [H\X ](S) is a morphism g : T → T ′ of H -torsors
over S such that f ′◦g= f , and composition is defined in the obvious way. With the
evident notion of pullback under morphisms S′→ S this turns the whole collection
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of categories [H\X ](S) into a stack over k that is denoted [H\X ]. This is an
algebraic stack by [Laumon and Moret-Bailly 2000, Proposition 10.13.1], and it
possesses a natural surjective morphism X→ [H\X ].

Assume that the set4 of orbits over k̄ is finite, so that it and its quotient 0\4 carry
the natural topologies described in Section 2A. As a reformulation of [Wedhorn
2001, Section 4.4] we then have:

Proposition 2.2. There is a natural homeomorphism 0\4∼=
∣∣[H\X ]∣∣.

Now consider any algebraic H -orbit Y ⊂ X . Then Y is a locally closed reduced
subscheme of X , and so [H\Y ] is a locally closed reduced substack of [H\X ].
Varying Y we thus obtain a stratification

(2.3) [H\X ] “=”
⊔
0\4

[H\Y ]

in the sense that for any scheme S and any morphism S→ [H\X ] we obtain a
disjoint decomposition of S into locally closed subschemes S×[H\X ] [H\Y ].

Moreover, assume that k is perfect, and consider any point y ∈ Y (k̄). Then
Yk̄ is again reduced and hence the disjoint union of the reduced Hk̄-orbit O(y)
of y and a (possibly empty) finite collection of 0-conjugates thereof. Being a
reduced orbit O(y) is smooth over k̄; hence Y is smooth over k, and so [H\Y ] is a
smooth algebraic stack over k by definition (see [Laumon and Moret-Bailly 2000,
Définition 4.14]). Furthermore, as the smooth morphism X → [H\X ] preserves
codimension, we have

(2.4) codim([H\Y ], [H\X ])= codim(Y, X)= codim(O(y), X k̄).

Also, the automorphisms of an object of a quotient stack can be described as
follows. Consider a scheme S over k, a point x ∈ X (S), and let x̄ ∈[H\X ](S) denote
the image of x under the canonical morphism X→ [H\X ]. Denote by Aut(x̄) the
sheaf of groups on the category on schemes over S that attaches to S′→ S the
group of automorphisms of the base change x̄S′ in the category [H\X ](S′). On
the other hand let StabHS (x) denote the closed subgroup scheme of HS := H ×k S
whose S′-valued points consist of those h ∈ H(S′) which satisfy h · xS′ = xS′ .

Proposition 2.5. There is a natural isomorphism Aut(x̄)∼= StabHS (x).

Proof. In the construction of [H\X ], the point x̄ ∈ [H\X ](S) is represented by
the trivial H -torsor HS→ S together with the morphism HS→ X , h 7→ hx . The
automorphisms of the trivial left H -torsor HS′→ S′ are precisely the morphisms
h 7→ hg for all sections g ∈ H(S′). Thus Aut(x̄)(S′) = Aut[H\X ](S′)(x̄S′) is the
group of automorphisms h 7→ hg of HS′→ S′ with g ∈ H(S′), such that the two
morphisms HS′ → X given by h 7→ hx and h 7→ hg 7→ hgx coincide. But these
conditions are equivalent to g ∈ StabHS (x)(S

′). �
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3. Ĝ-zips

3A. General notation. Let Fq be a finite field of order q, and let k be a finite
overfield of Fq . By a linear algebraic group over k we mean a reduced affine
group scheme of finite type over k. We do not generally assume it to be connected.
Throughout we denote a linear algebraic group over k by Ĥ , its identity component
by H , and the finite étale group scheme of connected components by π0(Ĥ) :=
Ĥ/H ; and similarly for other letters of the alphabet. Note that the unipotent radical
Ru H of H is a normal subgroup of Ĥ . Any homomorphism of algebraic groups
ϕ̂ : Ĝ→ Ĥ restricts to a homomorphism ϕ : G→ H .

Let S be a scheme over k. By an Ĥ -torsor I over S we will mean a right Ĥ -torsor
over S for the fpqc-topology, unless mentioned otherwise. In other words I is a
scheme over S together with a right action I×k Ĥ→ I written (i, h) 7→ ih, such that
the morphism I ×k Ĥ→ I ×S I , (i, h) 7→ (i, ih) is an isomorphism and there exists
an fpqc-covering S′→ S such that I (S′) 6=∅. Any section in I (S′) then induces an
isomorphism Ĥ×k S′ ∼−→ I ×S S′ over S′. By faithfully flat descent for S′→ S we
can therefore deduce that every Ĥ -torsor over S is affine and faithfully flat over S.
Moreover, since k is perfect, the reduced group scheme Ĥ is automatically smooth,
and hence I is smooth over S. Thus by [Grothendieck 1967, Corollaire (17.16.3)]
there already exists a surjective étale morphism S′→ S such that I (S′) 6=∅.

Any scheme S over k possesses a natural q-th power Frobenius morphism S→ S,
which is the identity on the underlying topological space and the map x 7→ xq on
the structure sheaf. The pullback of a scheme or a sheaf or a morphism over S
under this Frobenius morphism is denoted by ( )(q). For example, the pullback of
a linear algebraic group Ĥ over k is a linear algebraic group Ĥ (q) over k, and the
pullback of an Ĥ -torsor I over S is an Ĥ (q)-torsor I (q) over S.

3B. The basic data. Let Ĝ be a linear algebraic group over Fq such that G is
reductive, and let Ĝk denote its base extension to k. Let χ : Gm,k → Gk be a
cocharacter over k, and let L denote its centralizer in Gk . There exist unique
opposite parabolic subgroups P± = L nU± ⊂ Gk with common Levi component
L and unipotent radicals U±, such that Lie U+ is the sum of the weight spaces of
weights > 0, and Lie U− is the sum of the weight spaces of weights < 0 in Lie Gk

under Ad ◦χ . Note that the groups L and P± and U± are all connected.
By definition we have L = CentĜk

(χ)∩Gk , and since L is connected, we have
a canonical inclusion π0(CentĜk

(χ)) = CentĜk
(χ)/L ↪→ π0(Ĝk). Let 2 be a

subgroup scheme of π0(CentĜk
(χ)), and L̂ denote its inverse image in CentĜk

(χ).
Then L is the identity component of L̂ , and π0(L̂)=2⊂ π0(Ĝk). Also, since χ
is centralized by L̂ , and the subgroups U± depend only on χ , these subgroups are
normalized by L̂ . Thus P̂± := L̂ nU± are algebraic subgroups of Ĝk with identity
components P± and π0(P̂±)∼= π0(L̂)=2.
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This data will remain fixed throughout the article.
For schemes S over k we are interested in (right) torsors over S with respect to the

above algebraic groups. Consider any Ĝk-torsor I over S. By a P̂±-torsor I± ⊂ I
we mean a subscheme which is a P̂±-torsor with respect to the induced action of P̂±.
For any P̂±-torsor I± over S, the quotient I±/U± is a P̂±/U±-torsor over S, which
we can view as an L̂-torsor under the canonical isomorphism L̂ ∼

−→ P̂±/U±.
On the other hand, the definition of Ĝk as a base extension from Fq induces a

natural isomorphism Ĝ(q)
k
∼= Ĝk . Via this isomorphism we can consider χ (q) again

as a cocharacter of Gk , with associated subgroups P̂ (q)± = L̂(q)nU (q)
± . Likewise, the

Ĝ(q)
k -torsor I (q) becomes a Ĝk-torsor in a natural way. Moreover, the pullback of a

P̂±-torsor I± ⊂ I is a P̂ (q)± -torsor I (q)± ⊂ I (q).

3C. The stack of Ĝ-zips.

Definition 3.1. Let S be a scheme over k.

(a) A Ĝ-zip of type (χ,2) over S is a tuple I = (I, I+, I−, ι) consisting of a
(right) Ĝk-torsor I over S, a P̂+-torsor I+ ⊂ I , a P̂ (q)− -torsor I− ⊂ I , and an
isomorphism of L̂(q)-torsors ι : I (q)+ /U (q)

+
∼
−→ I−/U (q)

− .

(b) A morphism (I, I+, I−, ι)→ (I ′, I ′
+
, I ′
−
, ι′) of Ĝ-zips of type (χ,2) over S

consists of equivariant morphisms I → I ′ and I±→ I ′
±

that are compatible
with the inclusions and the isomorphisms ι and ι′.

(c) The resulting category of Ĝ-zips of type (χ,2) over S is denoted Ĝ-Zipk
χ,2
(S).

If Ĝ is connected, we necessarily have2= 1 and drop it from the notation, speaking
simply of Ĝ-zips of type χ over S and denoting their category by Ĝ-Zipk

χ
(S).

With the evident notion of pullback the Ĝ-Zipk
χ,2
(S) form a fibered category

over the category ((Sch/k)) of schemes over k, which we denote Ĝ-Zipk
χ,2.

Proposition 3.2. Ĝ-Zipk
χ,2 is a stack.

Proof. Any morphism of Ĝ-zips is an isomorphism; hence Ĝ-Zipk
χ,2 is a category

fibered in groupoids. As Ĝk and P̂± are affine over k, the torsors I and I± are affine
over S, and so the data in a Ĝ-zip satisfy effective descent with respect to any fpqc
morphism S′→ S. �

Remark 3.3. For any finite field extension k ′/k the given data χ,2, L , P±, . . .
induces corresponding data χ k′,2k′, . . . over k ′ by base change. The definition of
Ĝ-zips then immediately implies that Ĝ-Zipk′

χ k′ ,2k′ is just the pullback of Ĝ-Zipk
χ,2

under Spec k ′→ Spec k. One can use this to deduce properties of Ĝ-Zipk
χ,2 from

the corresponding properties of Ĝ-Zipk′
χ k′ ,2k′ . In particular, one can apply this to a

finite extension k ′/k for which Gk′ splits and π0(Ĝk′) is a constant group scheme.
Thus over k ′ the added complexity induced by the Galois action in Sections 3E and
3F disappears.
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3D. Realization as a quotient stack.

Construction 3.4. Let S be a scheme over k. To any section g ∈ Ĝ(S) we associate
a Ĝ-zip of type (χ,2) over S, as follows. Let Ig := S×k Ĝk and Ig,+ := S×k P̂+⊂ Ig

be the trivial torsors. Then I (q)g ∼= S×k Ĝk = Ig canonically, and we define Ig,−⊂ Ig

as the image of S ×k P̂ (q)− ⊂ S ×k Ĝ− under left multiplication by g. Then left
multiplication by g induces an isomorphism of L̂(q)-torsors

ιg : I (q)g,+/U (q)
+ = S×k P̂ (q)+ /U (q)

+
∼= S×k P̂ (q)− /U (q)

−

∼
−→ g(S×k P̂ (q)− )/U (q)

− = Ig,−/U (q)
− .

We thus obtain a Ĝ-zip of type (χ,2) over S, which we denote by

I g := (Ig, Ig,+, Ig,−, ιg).

Lemma 3.5. Every Ĝ-zip of type (χ,2) is étale locally isomorphic to one of the
form I g.

Proof. Let I = (I, I+, I−, ι) be a Ĝ-zip of type (χ,2) over S. By Section 3A, after
replacing S by an étale covering there exist sections i± ∈ I±(S). These sections
induce two sections i−U (q)

− and ι(i (q)+ U (q)
+ ) in (I−/U (q)

− )(S); hence there exists a
unique section ` ∈ L̂(q)(S) such that i−U (q)

− · `= ι(i
(q)
+ U (q)

+ ). After replacing i− by
i−` we may therefore assume that the induced sections of I−/U (q)

− coincide. Then
i− and i+ induce two sections of I ; hence there exists a unique g ∈ Ĝ(S) such that
i− = i+g.

We claim that I ∼= I g. Indeed, using i+ to trivialize I+ and I , we may without loss
of generality assume that I+= Ig,+⊂ I = Ig and that i+ is the identity section. Then
i− = i+g corresponds to the section g of Ig. This implies that I− = i− P̂ (q)− = Ig,−.
Furthermore, since the L̂(q)-equivariant isomorphism ι : I (q)+ /U (q)

+
∼
−→ I−/U (q)

−

sends the section i (q)+ U (q)
+ = U (q)

+ to the section i−U (q)
− = g(S ×k U (q)

− ), it must
coincide with ιg. Thus we find that I = I g and are done. �

Definition 3.6. The algebraic zip datum associated to Ĝ and (χ,2) is the tuple
ZĜ,χ,2 := (Ĝk, P̂+, P̂ (q)− , ϕ̂) where ϕ̂ is the composite isogeny

P̂+/U+ ∼= L̂
Frobq

// L̂(q) ∼= P̂ (q)− /U (q)
− .

The associated zip group is the linear algebraic group over k

(3.7) E Ĝ,χ,2 := {(`u+, `(q)u−) : ` ∈ L̂, u+ ∈U+, u− ∈U (q)
− } ⊂ P̂+×k P̂ (q)− .

It acts from the left hand side on Ĝk by the formula

(3.8) (p+, p−) · g := p+gp−1
−
.
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If Ĝ is connected and thus 2 = 1, we abbreviate ZĜ,χ := ZĜ,χ,2 and E Ĝ,χ :=

E Ĝ,χ,2.

Remark 3.9. In [Pink et al. 2011, Definition 10.1], we defined algebraic zip data
over algebraically closed fields, whereas here k is finite. But the natural base
extension of the above tuple ZĜ,χ,2 to an algebraic closure k̄ of k is an algebraic
zip datum in the sense of loc. cit., and the base extension of the above zip group
E Ĝ,χ,2 and its action on Ĝ are those of [loc. cit.], so all the results there have direct
consequences here. For example, by [Pink et al. 2011, Proposition 7.3], the zip
datum over k̄ is orbitally finite, and so the group E Ĝ,χ,2 acts with only finitely
many orbits on Ĝk .

Lemma 3.10. For any two sections g, g′∈ Ĝ(S) there is a natural bijection between
the transporter

TranspE Ĝ,χ,2(S)(g, g′) := {(p+, p−) ∈ E Ĝ,χ,2(S) | p+gp−1
−
= g′}

and the set of morphisms of Ĝ-zips I g → I g′ over S, under which (p+, p−) cor-
responds to the morphisms Ig→ Ig′ and Ig,+→ Ig′,+ given by left multiplication
with p+ and the morphism Ig,−→ Ig′,− given by left multiplication with g′ p−g−1.

Proof. By definition a morphism I g→ I g′ consists of equivariant isomorphisms
f : Ig → Ig′ and f± : Ig,± → Ig′,± satisfying certain compatibilities, which we
analyze in turn. First, since Ig,+ = S×k P̂+ = Ig′,+, the isomorphism f+ must be
left multiplication by a unique section p+ ∈ P̂+(S). Next, since Ig = S×k Ĝ = Ig′ ,
the compatibility with f+ implies that f , too, is left multiplication by p+.

On the other hand, since Ig,− = g(S×k P̂ (q)− ) and Ig′,− = g′(S×k P̂ (q)− ) within
S×k Ĝ−, the isomorphism f− must be left multiplication by g′ p−g−1 for a unique
section p− ∈ P̂ (q)− (S). This isomorphism must be compatible with the isomorphism
f : Ig

∼
−→ Ig′ , which is left multiplication by p+. The compatibility thus amounts

to the equation g′ p−g−1
= p+.

The last compatibility is the commutativity of the diagram of isomorphisms

I (q)g,+/U (q)
+

p(q)+
//

g
��

I (q)g′,+/U (q)
+

g′

��

Ig,−/U (q)
−

g′ p−g−1

// Ig′,−/U (q)
− ,

where each arrow is defined as left multiplication by the indicated element. This
amounts to the equation p(q)+ U (q)

+ = p−U (q)
− in P̂ (q)+ /U (q)

+
∼= L̂(q)∼= P̂ (q)− /U (q)

− . That
in turn is equivalent to p+ = `u+ and p− = `(q)u− with ` ∈ L̂(S), u+ ∈ U+(S),
and u− ∈U (q)

− (S), or in other words to (p+, p−) ∈ E Ĝ,χ,2(S).
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Combined with the earlier relation g′ = p+gp−1
− this means that (p+, p−) lies in

the transporter TranspE Ĝ,χ,2(S)(g, g′). Thus the map in the lemma defines a bijection
between this transporter and the set of morphisms I g→ I g′ , as desired. �

Proposition 3.11. The stack Ĝ-Zipk
χ,2 of Ĝ-zips of type (χ,2) is isomorphic to

the algebraic quotient stack [E Ĝ,χ,2\Ĝk]. In particular, the isomorphism classes
of Ĝ-zips of type (χ,2) over any algebraically closed field K containing k are in
bijection with the E Ĝ,χ,2(K )-orbits on Ĝ(K ).

Proof. Consider the category X fibered in groupoids over ((Sch/k)) defined as
follows: For any scheme S over k the class of objects of X(S) is the set Ĝ(S), and
for any elements g, g′ ∈ Ĝ(S) the set of morphisms from g to g′ is the transporter
TranspE Ĝ,χ,2

(g, g′), with composition given by the multiplication in E Ĝ,χ,2. For
any morphism S′→ S of schemes over k, the pullback of objects and morphisms is
given by the canonical maps Ĝ(S)→ Ĝ(S′) and E Ĝ,χ,2(S)→ E Ĝ,χ,2(S′). Since
E Ĝ,χ,2 is a scheme, this is a prestack, that is, it satisfies effective descent for
morphisms. By [Laumon and Moret-Bailly 2000, 3.4.3], the stackification (for this
notion see [Laumon and Moret-Bailly 2000, 3.2]) of this prestack is the quotient
stack [E Ĝ,χ,2\Ĝk].

As can be verified directly from its description, the bijection in Lemma 3.10
is compatible with pullback and composition and sends 1 ∈ TranspE Ĝ,χ,2

(g, g) to
the identity morphism id : I g→ I g for all g ∈ Ĝ(S). Thus there is a fully faithful
morphism X→ Ĝ-Zipk

χ,2 which sends g ∈ X(S) = Ĝ(S) to I g and which acts
on morphisms by the bijection of Lemma 3.10. Lemma 3.5 is then equivalent to
saying that this morphism induces an isomorphism from the stackification of X to
Ĝ-Zipk

χ,2. Since the former is [E Ĝ,χ,2\Ĝk], the proposition follows. �

Corollary 3.12. Ĝ-Zipk
χ,2 is a smooth algebraic stack of dimension 0 over k.

Proof. The quotient stack [E Ĝ,χ,2\Ĝk] it is algebraic by [Laumon and Moret-Bailly
2000, Proposition 10.13.1], and the canonical morphism Ĝk→ [E Ĝ,χ,2\Ĝk] is a
torsor over the group scheme E Ĝ,χ,2. As Ĝk and E Ĝ,χ,2 are smooth of the same
dimension, this quotient stack is smooth of dimension 0 over k. The corollary thus
follows from Proposition 3.11. �

3E. The topological space underlying Ĝ-Zipk
χ,2. We recall some notation and

facts from [Pink et al. 2011], especially from Sections 2.2, 6, and 10.
Choose an algebraic closure k̄ of k and let 0 := Gal(k̄/k) be the corresponding

Galois group of k. Let T ⊂ B ⊂ G k̄ be a maximal torus, respectively a Borel
subgroup of G k̄ . Consider the finite groups

W := NormG(k̄)(T (k̄))/T (k̄), Ŵ := NormĜ(k̄)(T (k̄))/T (k̄),

� :=
(
NormĜ(k̄)(T (k̄))∩NormĜ(k̄)(B(k̄))

)
/T (k̄).
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The fact that W acts simply transitively on the set of Borel subgroups containing
Tk̄ implies that Ŵ =W o�, and the fact that G(k̄) acts transitively on the set of
all maximal tori of G k̄ implies that � ∼= Ŵ/W ∼= π0(Ĝ)(k̄). Also, let S ⊂ W be
the set of simple reflections associated to the pair (T, B). As this pair is unique
up to conjugation by G(k̄), and NormG(k̄)(T (k̄)) ∩NormG(k̄)(B(k̄)) = T (k̄), the
Coxeter system (W, S) and the groups Ŵ and � are, up to unique isomorphism,
independent of the choice of T and B. The inner automorphism of Ŵ induced by
an element x ∈ Ŵ will be denoted by int(x) : ŵ 7→ x

ŵ := xŵx−1.
Recall that the length of an element w ∈ W is the smallest number `(w) such

that w can be written as a product of `(w) simple reflections. For any subsets
K , K ′ ⊆ S, we denote by WK the subgroup of W generated by K and by K W (resp.
W K ′ , resp. K W K ′) the set of w ∈ W that are of minimal length in the left coset
WKw (resp. in the right coset wWK ′ , resp. in the double coset WKwWK ′). We let
w0 ∈W denote the unique element of maximal length in W , and w0,K the unique
element of maximal length in WK .

The Frobenius isogeny ϕ̂ : Ĝ→ Ĝ relative to Fq induces an automorphism ϕ̄ of
Ŵ which preserves W and �. Its restriction to W is an automorphism of Coxeter
systems (W, S) ∼

−→(W, S). Therefore ϕ̄ preserves the length of elements in W
and in particular satisfies ϕ̄(w0)= w0.

Let I ⊆ S be the type of the parabolic subgroup P+, and J ⊆ S the type of P (q)− .
The fact that P− is opposite to P+ implies that J = ϕ̄(w0 I )=w0 ϕ̄(I ). We write these
equations in the form J = ϕ̄(y I )= x ϕ̄(I ), where x ∈ J W ϕ̄(I ) is the unique element
of minimal length in WJw0Wϕ̄(I ) and y := ϕ̄−1(x). Then ψ̂ := int(x)◦ϕ̄= ϕ̄◦int(y)
is an automorphism of Ŵ which induces an isomorphism of Coxeter systems

(WI , I ) ∼
−→(WJ , J ).

From [Pink et al. 2011, Proposition 2.7] we can deduce that

(3.13) y = w0w0,I = w0,ϕ̄−1(J )w0.

Via the isomorphism π0(Ĝ)(k̄) ∼= � we can view 2(k̄) (resp. 2(q)(k̄)) as a
subgroup of �, which by abuse of notation we will again denote by 2 (resp. 2(q)).
Note that, since 2 ⊆ NormĜ(P+)/P+, conjugation by elements of 2 preserves
the type I of P+ and thus the subgroup WI . Therefore WI2 = WI o 2 is a
subgroup of Ŵ . Since 2(q) ⊆ NormĜ(P

(q)
− )/P (q)− , the same observation holds for

WJ2
(q)
= WJ o2(q), and the automorphism ψ̂ sends the subgroup 2 ⊆ � to

2(q) ⊆�. By [Pink et al. 2011, Lemma 10.4], the map

(3.14) (θ, ŵ) 7→ θŵψ̂(θ)−1

defines a left action of 2 on the subset I W�⊆ Ŵ .
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Recall that the Bruhat order ≤ on W is defined by w′ ≤ w if for some (and
equivalently for any) expression of w as a product of `(w) simple reflections, by
leaving out certain factors one can obtain an expression of w′ as a product of `(w′)
simple reflections. We extend the Bruhat order to Ŵ by setting

(3.15) w′ω′ ≤ wω if and only if w′ ≤ w and ω′ = ω

for any w,w′ ∈W and ω,ω′ ∈�. Also, for any ŵ, ŵ′ ∈ I W� we write

(3.16) ŵ′ � ŵ if and only if there exists v̂ ∈WI2 with v̂ŵ′ψ̂(v̂)−1
≤ ŵ.

By [Pink et al. 2011, Theorem 10.9], see also [He 2007], this defines a partial order
on I W�. We also extend the length function from W to Ŵ by setting

(3.17) `(wω) := `(w)

for any w ∈W and ω ∈�.

Lemma 3.18. The action (3.14) preserves the extended Bruhat order ≤ on Ŵ , the
partial order � on I W�, and the extended length function ` on Ŵ .

Proof. Consider any elements θ ∈2 and w′, w ∈W and ω′, ω ∈�. First assume
that w′ω′ ≤ wω, in other words, that w′ ≤ w and ω′ = ω. Then θw′θ−1

≤ θwθ−1

and θω′ψ̂(θ)−1
= θωψ̂(θ)−1, and the latter is again an element of �, because

2(q) = ψ̂(2)⊂�. By (3.15) we therefore find that

θw′ω′ψ̂(θ)−1
= θw′θ−1

· θω′ψ̂(θ)−1
≤ θwθ−1

· θωψ̂(θ)−1
= θwωψ̂(θ)−1.

Thus the action (3.14) preserves the extended Bruhat order ≤ on Ŵ .
Next, the last equality above and the fact that θωψ̂(θ)−1

∈� also imply that the
length of θwωψ̂(θ)−1 is equal to that of θwθ−1. Since θ ∈�, that length is equal
to the length of w and hence of wω, proving that the action (3.14) preserves the
extended length function on Ŵ .

Now assume that w ,w′ ∈ I W and w′ω′�wω, which means that v̂w′ω′ψ̂(v̂)−1
≤

wω for some v̂ ∈WI2. Then we have just shown that

θv̂θ−1
· θw′ω′ψ̂(θ)−1

· ψ̂(θ v̂θ−1)−1
= θv̂w′ω′ψ̂(v̂)−1ψ̂(θ)−1

≤ θwωψ̂(θ)−1.

Since θ normalizes WI , it follows that û := θv̂θ−1 is an element of WI2 which
satisfies û · θw′ω′ψ̂(θ)−1

· ψ̂(û)−1
≤ θwωψ̂(θ)−1 and thus by (3.16) shows that

θw′ω′ψ̂(θ)−1
� θwωψ̂(θ)−1. Therefore the action (3.14) preserves the partial

order � , and we are done. �

As a consequence of Lemma 3.18, the partial order � from (3.16) induces a
partial order on the set of 2-orbits

(3.19) 4
χ,2
:=2\I W�.
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By Proposition 2.1 this in turn defines a T0 topology on the finite set 4χ,2.
Now observe that since the subgroups P± ⊂Gk and P̂± ⊂ Ĝk are defined over k,

there is a natural continuous action of 0 := Gal(k̄/k) on everything discussed
above. In particular this action preserves the decomposition Ŵ = W o �, the
subsets S, I, J, I W, . . ., the partial orders ≤ and �, the length function `, the
subgroup 2 and its action on I W�, and so it induces an action on the topological
space 4χ,2.

Theorem 3.20. The topological space underlying Ĝ-Zipk
χ,2 is naturally homeo-

morphic to the quotient space 0\4χ,2.

Proof. By Proposition 3.11 the stack Ĝ-Zipk
χ,2 is isomorphic to [E Ĝ,χ,2\Ĝk]. By

[Pink et al. 2011, Proposition 7.3], (see also Remark 3.9) the zip datum ZĜ,χ,2,k̄
is orbitally finite, that is, the number of E Ĝ,χ,2(k̄)-orbits in Ĝ(k̄) is finite. We
can therefore apply Proposition 2.2. The description of the topological space now
follows from the description of E Ĝ,χ,2,k̄-orbits in Ĝ k̄ and their closures from [Pink
et al. 2011, Theorems 10.9 and 10.10]. �

Remark 3.21. If we replace k by a suitable finite extension k ′ within k̄, the Galois
group 0 is replaced by a subgroup which acts trivially on Ŵ and everything else
above. Then Theorem 3.20 asserts that the topological space underlying Ĝ-Zipk′

χ,2

is naturally homeomorphic to 4χ,2. In particular, for any algebraically closed
extension field K of k̄ we obtain a natural bijection

(3.22) 4
χ,2 ∼
−→

{isomorphism classes of Ĝ-zips
of type (χ,2) over K

}
.

By [Pink et al. 2011] this can be made more explicit, as follows. As the choice
of (T, B) was arbitary, we may without loss of generality assume that T ⊂ L K

and B ⊂ P−,K . Then we may identify W = NormG(T )(K )/T (K ) and Ŵ =
NormĜ(T )(K )/T (K ). Choose a representative g ∈ NormG(T )(K ) of the element
y = ϕ̄−1(x) ∈W . Then by [Pink et al. 2011, Lemma 12.11] the triple (B, T, g) is a
frame of the connected zip datum (G K , P+,K , P (q)

−,K , ϕ : L K → L(q)K ) in the sense
of [Pink et al. 2011, Definition 3.6]. Also, for every element ŵ ∈ I W� choose a
representative ˙̂w ∈ NormĜ(T )(K ), and let I g ˙̂w denote the Ĝ-zip of type (χ,2)
over K attached to g ˙̂w ∈ Ĝ(K ) by Construction 3.4. Combining the isomorphism
in Proposition 3.11 with [Pink et al. 2011, Theorem 10.10] then shows that the
bijection (3.22) sends the orbit of ŵ in 4χ,2 =2\I W� to the isomorphism class
of I g ˙̂w.

Example 3.23. Assume that Ĝ = G is a connected split reductive group over Fq .
Then 2 = � = 1, and 4χ,2 = I W with the trivial action of Gal(k̄/Fq). All the
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formulas then simplify accordingly. In particular, by Theorem 3.20 the topolog-
ical space underlying G-Zipχk is naturally homeomorphic to I W for every finite
extension k of Fq .

Moreover, the automorphism ϕ̄ induced by Frobenius is the identity on W . Thus
ψ̂ = int(x), where x ∈ J W I is the unique element of minimal length in WJw0WI .
The partial order � on I W is therefore given by

(3.24) w′ � w if and only if there exists v ∈WI with vw′xv−1x−1
≤ w.

If in addition the Dynkin diagram of G has no component of type An with n ≥ 2,
of type Dn with n ≥ 5 odd, or of type E6, then w0 is central in W , and so I = J .
Also, by (3.13) we then have x = w0w0,I , and since w0 is central and w−1

0,I = w0,I ,
the partial order can then be written equivalently in the form

(3.25) w′ � w if and only if there exists v ∈WI with vw′w0,Iv
−1w0,I ≤ w.

3F. The stratification of Ĝ-Zipk
χ,2. For any orbit in 0\4χ,2 = 0\(2\I W�)

represented by an element ŵ ∈ I W�, let [ŵ] denote the corresponding point in the
topological space underlying Ĝ-Zipk

χ,2 via the homeomorphism in Theorem 3.20.

Theorem 3.26. The point [ŵ] underlies a smooth locally closed substack of the
category Ĝ-Zipk

χ,2 of pure codimension dim(G/P+)− `(ŵ), where `( ) denotes
the extended length function from (3.17).

Proof. As in the proof of Theorem 3.20 this translates into an assertion for the
quotient stack [E Ĝ,χ,2\Ĝk]. Let Ĝŵ

k̄
denote the E Ĝ,χ,2,k̄-orbit in Ĝ k̄ corresponding

to ŵ by [Pink et al. 2011, Theorem 10.10]. Since k is perfect, by the remarks
following Proposition 2.2 this determines a smooth locally closed substack of
[E Ĝ,χ,2\Ĝk] with underlying point [ŵ]. By (2.4) the codimension of this substack
is equal to the codimension of Ĝŵ

k̄
in Ĝ k̄ , which by [Pink et al. 2011, Theorem 5.11

and Lemma 10.3] is given by the desired formula. �

Let S be a scheme over k, and let I be a Ĝ-zip of type (χ,2) over S. Then I
defines a classifying morphism

(3.27) ζ : S −→ Ĝ-Zipk
χ,2
.

Let SŵI denote the pullback under ζ of the substack corresponding to [ŵ]. This is
a locally closed subscheme of S. As [ŵ] varies, these subschemes form a finite
stratification of S, in other words S is the set-theoretic disjoint union

(3.28) S =
⊔

[ŵ]∈0\4χ,2

S[ŵ]I .
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The description of the topology in Theorem 3.20 implies that for any ŵ we have

(3.29) S[ŵ]I ⊂
⊔

[ŵ′]∈0\4
χ,2

ŵ′�ŵ

S[ŵ]I

For the next result recall that any open or flat morphism of schemes is generizing.

Proposition 3.30. If the morphism ζ in (3.27) is generizing, the inclusion (3.29) is
an equality. If in addition S is locally noetherian, then S[ŵ]I is of pure of codimension
dim(G/P+)− `(ŵ). If ζ is smooth, then S[ŵ]I is smooth as a scheme over k.

Proof. If ζ is generizing, then ζ−1(ϒ)= ζ−1(ϒ) for any locally closed substack
ϒ of Ĝ-Zipk

χ,2, so the first assertion follows from Theorem 3.20. If in addition
S is locally noetherian, the codimension is well defined and preserved by ζ ; so
the second assertion follows from Theorem 3.26. If ζ is smooth, then S[ŵ]I , being
the pullback of a smooth stack under a smooth morphism, is smooth as a scheme
over k, proving the third assertion. �

Instead of the above construction, the subscheme S[ŵ]I can also be characterized
by a construction directly involving I . For simplicity we discuss this only in a
special case (but compare Remark 3.3):

Proposition 3.31. Assume that G splits over k and that π0(Ĝk) is a constant group
scheme. Then a morphism of schemes f : S′→ S factors through S[ŵ]I if and only if
f ∗ I is locally for the fppf-topology on S′ isomorphic to the constant G-zip I g ˙̂w×k S
with I g ˙̂w as in Remark 3.21.

Proof. The assumptions imply that the E Ĝ,χ,2-orbit used to prove Theorem 3.26
is really defined over k; let us denote it by Ĝŵ

k . Define S′′ and g′ by the cartesian
diagram

S′′

��
��

g′
// Ĝk

��
��

S′
f
// S

ζ
// [E Ĝ,χ,2\Ĝk] ∼= Ĝ-Zipk

χ,2

where the vertical morphisms are fppf. Then by the definition of the quotient stack
and the construction of S[ŵ]I , the morphism f factors through S[ŵ]I if and only if
g′ factors through Ĝŵ

k . As the orbit Ĝŵ
k is smooth, the morphism E Ĝ,χ,2→ Ĝŵ

k ,
e 7→ e · g ˙̂w is fppf. Thus g′ factors through Ĝŵ

k if and only if there exists an fppf-
covering S′′′→ S′′ and an e : S′′′→ E Ĝ,χ,2 such that g′=e·g ˙̂w. By Lemma 3.10 the
latter condition is equivalent to saying that the Ĝ-zip I g′ is fppf-locally isomorphic
to I g ˙̂w, or again that f ∗ I is fppf-locally isomorphic to I g ˙̂w, as desired. �
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Remark 3.32. It is shown in [Wedhorn and Yatsyshyn 2014] that all E Ĝ,χ,2-orbits
in Ĝk are affine. This implies that the inclusion into Ĝ-Zipk

χ,2 of the substack
associated to [ŵ] is an affine morphism, and so the inclusion S[ŵ]I ↪→ S is an affine
morphism. In particular this implies the following purity result:

Proposition 3.33. Let S be a locally noetherian scheme over k, and let Z be a
closed subscheme of codimension ≥ 2. Assume that Z contains no embedded
component of S (which is automatic if S is reduced). Let I be a Ĝ-zip over S whose
restriction to S r Z is fppf-locally constant. Then I is fppf-locally constant.

Proof. By Proposition 3.31 there exists [ŵ] such that the open immersion SrZ ↪→ S
factors through the subscheme S[ŵ]I . By assumption S r Z and hence S[ŵ]I is
schematically dense in S; being locally closed S[ŵ]I is therefore an open subscheme
of S. On the other hand its complement Z ′ is of codimension ≥ 2. Since the
inclusion S[ŵ]I ↪→ S is affine, this implies that Z ′ =∅. �

3G. Automorphisms of G-zips. Let K be an algebraically closed extension field
of k̄, and let I be a Ĝ-zip of type (χ,2) over K . Let T, B, g, ˙̂w be as in Remark 3.21.
Then I is isomorphic to I g ˙̂w for some ŵ ∈ I W�. Its automorphism group scheme
is therefore Aut( I )∼= Aut( I g ˙̂w). By Proposition 2.5 the latter is isomorphic to the
stabilizer StabE Ĝ,χ,2,K

(g ˙̂w).
Since the results on stabilizers in [Pink et al. 2011] were formulated only for

connected zip data, we now assume that Ĝ = G is connected. Then 2=�= 1,
and we can write ŵ = w ∈ I W and ˙̂w = ẇ ∈ NormG(T )(K ). As in [Pink et al.
2011, Section 5.1], let Hw be the Levi subgroup of G K containing T whose set of
simple reflections is the unique largest subset Kw of J ∩ w

−1
I such that (int(x) ◦

ϕ̄ ◦ int(w))(Kw)= Kw.

Proposition 3.34. (a) The identity component of Aut( I gẇ) is a unipotent group
scheme of dimension dim(G/P+)− `(w).

(b) Let v be the unique element of minimal length in the double coset WIwWJ .
Then the Lie algebra of Aut( I gẇ) has dimension dim(G/P+)− `(v).

(c) The group of connected components of Aut( I gẇ) is isomorphic to the constant
group scheme over K associated to the finite group

5 := {h ∈ Hw(k̄) : h = ϕ(gẇh(gẇ)−1)}.

Proof. The group A := Aut( I gẇ)
∼= StabEG,χ,2,K

(gẇ) is isomorphic to a semidirect
product of the group 5 in (c) with a connected unipotent group scheme U [Pink
et al. 2011, Theorem 8.1]. As the zip datum is orbitally finite, the group 5 is
finite by [Pink et al. 2011, Proposition 7.1]. This shows (c) and that the identity
component of A is unipotent. Moreover, the orbit o(gẇ)⊂G K of gẇ has dimension
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dim P+ + `(w) by [Pink et al. 2011, Theorem 7.5]. As the definition of EG,χ,2

implies that dim EG,χ,2= dim G, it follows that

dim A = dim EG,χ,2,K − dim o(gẇ)= dim G− dim(P+)− `(w),

proving (a). Assertion (b) follows from [Pink et al. 2011, Theorem 8.5]. �

Remark 3.35. Since a group scheme is smooth if and only if its dimension is equal
to the dimension of its Lie algebra, Proposition 3.34 (a) and (b) imply that Aut( I gẇ)

is smooth if and only if w is of minimal length in its double coset WIwWJ . This
condition will often not be satisfied.

4. Generalities on filtrations

In this section we briefly review some standard definitions and notations for gradings
and filtrations of locally free sheaves of finite rank.

4A. Locally free sheaves of finite rank. Let S be a scheme over a ring k. The
category of locally free sheaves of OS-modules of finite rank on S with all OS-linear
homomorphisms between them is denoted LF(S). It is a k-linear additive category,
but in general not abelian. A homomorphism in LF(S) is called admissible if
its image in the category of sheaves of finite rank is a locally direct summand.
This notion turns LF(S) into an exact category in the sense of Quillen. It is also
idempotent complete, that is, any endomorphism f : M→M in LF(S) satisfying
f 2
= f is admissible and corresponds to a direct sum decomposition M= ker( f )⊕

im( f ) within LF(S).
For a useful overview of exact categories see [Bühler 2010]. Every admissible

homomorphism in an exact category has a kernel and a cokernel, and they satisfy a
number of axioms: see [Bühler 2010]. An additive functor between exact categories
is exact if it sends admissible homomorphisms to admissible homomorphisms and
commutes with their kernels and cokernels.

Endowed with the usual tensor product of sheaves of finite rank M⊗N, the usual
dual M∨ :=Hom(M,OS), and the usual associativity and commutativity constraints
LF(S) is a rigid tensor category in the sense of [Saavedra Rivano 1972, I.5.1].
Moreover, the tensor product and the dual define exact functors in the indicated
sense.

4B. Gradings. By a graded locally free sheaf of finite rank on S we mean a locally
free sheaf of finite rank M together with a decomposition M =

⊕
i∈Z Mi , whose

graded pieces Mi vanish for almost all i . A homomorphism of graded locally free
sheaves of finite rank f : M→ N is a homomorphism of the underlying sheaves
that satisfies f (Mi )⊂ Ni for all i ∈ Z. The category of graded locally free sheaves
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of finite rank on S is denoted GrLF(S). It is a k-linear additive category, but in
general not abelian.

A homomorphism in GrLF(S) is admissible if it is admissible in each degree.
This turns GrLF(S) into an exact category that is idempotent complete.

The tensor product of graded locally free sheaves of finite rank is the usual
tensor product of sheaves with the grading (M⊗N)i :=

⊕
j∈Z M j

⊗Ni− j . The
dual of a graded locally free sheaf of finite rank M is the usual dual sheaf with the
grading (M∨)i := (M−i )∨. These notions turn GrLF(S) into a rigid tensor category
together with a (forgetful) exact tensor functor forg : GrLF(S)→ LF(S) sending
graded locally free sheaves to their underlying locally free sheaves.

4C. Descending filtrations. By a descending filtration C • of a locally free sheaf
of finite rank M on S we mean a family of quasicoherent subsheaves C i M for i ∈ Z,
which are locally direct summands and satisfy C i+1M⊂C i M for all i and C i M= 0
for all i� 0 and C i M=M for all i� 0. A homomorphism of sheaves of finite rank
f : M→ N endowed with a descending filtration is compatible with the filtrations
if it satisfies f (C i M)⊂ C i N for all i ∈ Z. This defines a category of locally free
sheaves of finite rank on S endowed with a descending filtration, which we denote
FilLF•(S). It is a k-linear additive category, but in general not abelian. It possesses
an evident forgetful functor forg : FilLF•(S)→ LF(S).

The assumptions imply that the subquotients gri
C M := C i M/C i+1M are again

locally free sheaves of finite rank on S which vanish for almost all i . Also,
any homomorphism f : M→ N in FilLF•(S) induces natural homomorphisms
gri

C f : gri
C M→ gri

C N. Together this defines a natural functor gr•C : FilLF•(S)→
GrLF(S).

Reciprocally, any graded locally free sheaf of finite rank M carries a natu-
ral descending filtration C i M :=

⊕
j>i M j , which defines a natural functor fil• :

GrLF(S)→ FilLF•(S).
A homomorphism f : M→ N in FilLF•(S) is called admissible if for all i the

sheaf f (C i M) is equal to f (M)∩C i N and a locally direct summand of N. This
is equivalent to saying that locally on S, the morphism possesses a factorization
of the form M ∼= M′⊕L� L ↪→ L⊕N′ ∼= N in the category of filtered locally
free sheaves of finite rank. With this notion FilLF•(S) is an exact category that is
idempotent complete.

Descending filtrations of M and N induce a natural descending filtration of M⊗N

by the formula C i (M ⊗ N) :=
∑

j∈Z C j M ⊗ C i− j N. The graded subquotients
inherit natural isomorphisms gri

C(M⊗N)∼=
⊕

j∈Z gr j
C M⊗ gri− j

C N. Moreover, a
descending filtration of M induces a descending filtration of M∨ by the formula
C i (M∨) := (M/C1−i M)∨, and the graded subquotients possess natural isomor-
phisms gri

C(M
∨) ∼= (gr−i

C M)∨. These notions turn FilLF•(S) into a rigid tensor
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category, such that all three functors above are tensor functors. These functors, as
well as tensor product and dual, are also exact.

4D. Ascending filtrations. An ascending filtration D• of M is a family of sub-
sheaves Di M such that the D−i M form a descending filtration of M. Thus every-
thing in Section 4C has a direct analogue for ascending filtrations. Descending
filtrations are generally indexed by upper indices, ascending filtrations by lower
indices, while gradings can be indexed in both fashions. In particular the graded
subquotients of an ascending filtration are denoted grD

i M := Di M/Di−1M. The
category of locally free sheaves of OS-modules with an ascending filtration is denoted
FilLF•(S). There are natural exact tensor functors grD

•
: FilLF•(S)→ GrLF(S)

and fil• : GrLF(S) → FilLF•(S) and forg : FilLF•(S) → LF(S). The functors
introduced so far are summarized in the following diagram.

(4.1)

FilLF•(S)
gr•C

xx

forg

%%
GrLF(S)

fil•

88

forg
//

fil•

&&

LF(S)

FilLF•(S)
grD
•

ff forg
99

4E. Types. Let n = (ni )i∈Z be a family of nonnegative integers which vanish for
almost all i . We say that a graded locally free sheaf of finite rank M is of type n
if each Mi is locally free of constant rank ni . We call a locally free sheaf of finite
rank endowed with a descending or ascending filtration of type n if its associated
graded sheaf is of type n. In all these cases, the sheaf itself is then locally free of
constant rank

∑
i ni . If S is connected (and hence nonempty!), every graded or

filtered locally free sheaf of finite rank on S possesses a unique type.

4F. Pullback. All the above notions possess evident pullbacks under a morphism
S′→ S, which are compatible with all the given constructions. We generally denote
the pullback of f : M→N by fS′ : MS′→NS′ . This defines an exact tensor functor
FilLF•(S)→ FilLF•(S′) and similar functors on the other categories.

Many properties and invariants such as the rank of a locally free sheaf of finite
rank are local for the fpqc topology. In particular:

Lemma 4.2. For a homomorphism of graded, filtered, or naked locally free sheaves
of finite rank, the property of being admissible is local for the fpqc topology.

Proof. The subsheaf f (M) ⊂ N is a locally direct summand if and only if the
quotient N/ f (M) is locally free. Since the latter property is local for the fpqc
topology, so is the former, and the lemma follows for naked and graded locally free
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sheaves of finite rank. For filtered ones observe that the formation of f (C i M) and
f (M)∩C i N commutes with flat pullback and their equality is local for the fpqc
topology. By the same argument as before their being a locally direct summand is
local for the fpqc topology, too, and so the lemma follows in the filtered case. �

4G. Alternating and symmetric powers. Consider an object X of an exact additive
tensor category C. For any integer m > 0 let X⊗m denote the tensor product of m
copies of X with itself, which carries a natural action of the symmetric group Sm .
Thus there is a homomorphism

(4.3) Am(X) : X⊗m
−→ X⊗m, x 7→

∑
σ∈Sm

sgn(σ ) · σ(x).

If this homomorphism is admissible, its image 3m X := im Am(X) is called the
m-th alternating, or exterior, power of X . Likewise, there is a homomorphism

(4.4) Bm(X) :
⊕
σ∈Sm

X⊗m
−→ X⊗m, (xσ )σ 7→

∑
σ∈Sm

(σ − 1)(xσ ).

If this homomorphism is admissible, its cokernel Sm X := coker Bm(X) is called
the m-th symmetric power of X .

For any morphism f : X → Y in C the above constructions are compatible
with the induced morphism f ⊗m

: X⊗m
→ Y⊗m ; hence they induce morphisms

3m f : 3m X → 3mY and Sm f : Sm X → SmY whenever the respective powers
exist. Evidently this sends the identity on X to the identity on 3m X and Sm X and
commutes with composition, that is, it is functorial in X .

As a direct consequence of this construction, alternating and symmetric powers
commute with any exact tensor functor between exact additive tensor categories
F : C→D. More precisely, if 3m X exists, then 3m F(X) exists and is canonically
isomorphic to F(3m X), and similarly for Sm .

In each of the categories LF(S), GrLF(S), FilLF•(S), and FilLF•(S) above,
all alternating and symmetric powers exist and have the usual local descriptions,
essentially because every object is Zariski locally on S a direct sum of objects
of rank 1. Also, the m-th alternating power of an object of constant rank n has
constant rank

(n
m

)
, and the m-th symmetric power of an object of constant rank n

has constant rank
(n+m−1

m

)
. In particular, the n-th exterior power of an object X

of constant rank n is an object of constant rank 1, also called the highest exterior
power of X .

5. Filtered fiber functors and cocharacters

Let Ĝ be a (not necessarily connected) linear algebraic group over an arbitrary
field k0, and let Ĝ-Rep denote the tensor category of finite dimensional representa-
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tions of Ĝ over k0. As usual, by a fiber functor over a scheme S over k0 we mean
an exact k0-linear tensor functor Ĝ-Rep→ LF(S). Similarly, by a graded fiber
functor we mean an exact k0-linear tensor functor Ĝ-Rep→ GrLF(S), and by a
filtered fiber functor an exact k0-linear tensor functor Ĝ-Rep→ FilLF•(S). In this
section we collect some results from [Saavedra Rivano 1972] and [Ziegler 2011]
on graded and filtered fiber functors. We consider only descending filtrations; the
corresponding results for ascending filtrations follow directly by renumbering.

For any graded fiber functor γ : Ĝ-Rep→ GrLF(S) and any morphism S′→
S we let γS′ : Ĝ-Rep → GrLF(S′) denote the graded fiber functor obtained by
pullback. We call two graded fiber functors γ1, γ2 : Ĝ-Rep→ GrLF(S) fpqc-locally
isomorphic if their pullbacks under some fpqc morphism S′→ S are isomorphic. In
general we let Isom⊗(γ1, γ2) denote the fpqc-sheaf on ((Sch/S)) sending S′→ S to
the set of isomorphisms γ1,S′

∼
−→ γ2,S′ . By composition of isomorphisms it carries

a natural right action of the sheaf of groups Aut⊗(γ1) := Isom⊗(γ1, γ1). The same
notation will be used for filtered fiber functors ψ , ψ1, ψ2 : Ĝ-Rep→ FilLF•(S).

We first consider the special case that S = Spec k for an overfield k of k0. Since
a locally free sheaf of finite rank on Spec k is just a finite dimensional k-vector
space, we abbreviate

Vec(k) := LF(Spec k),

GrVec(k) := GrLF(Spec k),

FilVec•(k) := FilLF•(Spec k).

Let ω0,k : Ĝ-Rep→ Vec(k) denote the tautological fiber functor that sends each
representation V to the vector space Vk := V ⊗k0 k.

Consider a cocharacter χ : Gm,k→ Ĝk . Let L̂ denote its centralizer in Ĝk , let U
denote the unique connected smooth unipotent subgroup of Ĝk that is normalized
by L̂ and whose Lie algebra is the sum of the weight spaces of weights > 0 under
Ad ◦χ , and set P̂ := L̂ n U . (If the identity component of Ĝ is reductive, the
identity component of P̂ is a parabolic subgroup P and the identity component
of L̂ is a Levi subgroup of P .)

For any representation V ∈ Ĝ-Rep, the cocharacter χ determines a grading
Vk =

⊕
i∈Z V i

k . This grading is k0-linearly functorial in V , exact in short exact
sequences, and compatible with tensor product, and the same holds for the associated
descending filtration. Thus χ induces a graded fiber functor γχ and a filtered fiber
functor fil• ◦ γχ such that the composite

Ĝ-Rep
γχ
// GrVec(k)

fil•
// FilVec•(k)

forg
// Vec(k)

is equal to ω0,k .
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Proposition 5.1. (a) The action of L̂ on γχ induces a natural isomorphism

L̂ ∼
−→Aut⊗(γχ ).

(b) The action of P̂ on fil• ◦ γχ induces a natural isomorphism

P̂ ∼
−→Aut⊗(fil• ◦ γχ ).

Proof. Part (a) is [Ziegler 2011, Corollary 3.7]. Part (b) is a consequence of
[Saavedra Rivano 1972, 2.1.4 and 2.1.5]. �

Now let k̄0 be an algebraic closure of k0, and let ks
0 denote the separable closure

of k0 in k̄0. Let CĜ denote the set of Ĝ(k̄0)-conjugacy classes of cocharacters
Gm,k̄0

→ Ĝ k̄0
. The Galois group Gal(ks

0/k0) ∼= Aut(k̄0/k0) acts naturally on CĜ .
For any c ∈ CĜ we let kc ⊂ ks

0 denote the fixed field of the stabilizer of c in
Gal(ks

0/k0). The fact that c contains a cocharacter which is defined over a finite
separable extension of k0 implies that kc is finite separable over k0.

Definition 5.2. We call kc the field of definition of the conjugacy class c.

Next observe that conjugate cocharacters χ , χ ′ give rise to isomorphic functors
γχ , γ ′χ , so the following definition depends only on the conjugacy class of χ .

Definition 5.3. Let c ∈ CĜ and let S be a scheme over kc. A graded fiber functor
γ : Ĝ-Rep→ GrLF(S) is called of type c, or of type χ for any χ ∈ c, if the pullbacks
of the functors γ and γχ to S×kc k̄0 are fpqc-locally isomorphic. A filtered fiber
functor ψ : Ĝ-Rep→ FilLF•(S) is called of type c if the associated graded fiber
functor gr•C ◦ψ : G-Rep→ GrLF(S) is of type c.

Theorem 5.4 [Ziegler 2011, Theorem 3.25]. Let S be a connected scheme over k0,
and let γ be a graded fiber functor Ĝ-Rep→ GrLF(S). Then there exist a unique
c ∈ CĜ and a unique morphism S→ Spec kc over k0, such that γ is of type c. The
same assertion holds for any filtered fiber functor ψ : Ĝ-Rep→ FilLF•(S).

In general, a conjugacy class c ∈ CĜ does not have a representative which
is defined over kc. For the following results, we therefore fix a field extension
kc ⊂ k ⊂ k̄0 and a representative χ ∈ c that is defined over k. Let L̂ , U , and
P̂ = L̂ nU be the associated subgroups of Ĝk . Let S be a scheme over k.

Theorem 5.5 [Ziegler 2011, Theorem 3.27]. There is a natural equivalence of
categories from the category of graded fiber functors Ĝ-Rep→ GrLF(S) of type c
to the category of right L̂-torsors over S, given by

γ 7→ Isom⊗(γχ,S, γ ).



F -ZIPS WITH ADDITIONAL STRUCTURE 209

Theorem 5.6 [Ziegler 2011, Theorem 4.43]. There is a natural equivalence of
categories from the category of filtered fiber functors Ĝ-Rep→ FilLF•(S) of type
c to the category of right P̂-torsors over S, given by

ψ 7→ Isom⊗(fil• ◦ γχ,S, ψ).

Theorem 5.7 [Ziegler 2011, Theorem 4.39]. For any filtered fiber functor ψ :
Ĝ-Rep→ FilLF•(S) of type c, the functor gr•C induces a natural isomorphism of
right L̂-torsors

Isom⊗(fil• ◦ γχ,S, ψ)/U ∼= Isom⊗(γχ,S, gr•C ◦ψ).

6. F-zips

Definition 6.1. (a) An F-zip over S is a tuple M = (M,C •, D•, ϕ•) consisting
of a locally free sheaf of OS-modules of finite rank M on S, a descending
filtration C • and an ascending filtration D• of M, and an OS-linear isomorphism
ϕi : (gri

C M)(q) ∼
−→ grD

i M for every i ∈ Z.

(b) A homomorphism f : M→ N of F-zips over S is a homomorphism of the
underlying sheaves of OS-modules M → N which for all i ∈ Z satisfies
f (C i M)⊂ C i N and f (Di M)⊂ Di N and makes the following diagram com-
mute:

(gri
C M)(q)

∼

ϕi
//

(gri
C f )(q)

��

grD
i M

grD
i f

��

(gri
C N)(q)

∼

ϕi
// grD

i N.

(c) The resulting category of F-zips over S is denoted F-Zip(S).

The category F-Zip(S) is additive, but due to the presence of the Frobenius
pullback it is only Fq -linear in general, not OS-linear. Easy examples show that it is
not abelian if S 6=∅.

Definition 6.2. A homomorphism of F-zips M→N is admissible if the underlying
morphisms of filtered locally free sheaves M→N for both filtrations C • and D• is
admissible.

This notion turns F-Zip(S) into an exact category that is idempotent complete.

Definition 6.3. An F-zip is called of rank n, or of height n, if its underlying sheaf of
OS-modules is of constant rank n. Let n= (ni )i∈Z be a family of nonnegative integers
which vanish for almost all i . An F-zip M is of type n if gri

C M, or equivalently
grD

i M, is locally free of constant rank ni for all i .
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Any F-zip of type n is of rank
∑

i ni . If its rank is 1 there exists an integer d
such that nd = 1 and ni = 0 for i 6= d . In this case we say briefly that the F-zip is
of type d. If S is connected, every F-zip over S possesses a unique type.

Definition 6.4. The tensor product of F-zips M and N over S is the F-zip M⊗N

consisting of the tensor product M⊗N with the induced descending filtration C •

and the induced ascending filtration D• of M⊗N and the induced isomorphisms

(gri
C(M⊗N))(q)

∼

∼=

��

⊕
j∈Z (gr j

C M)(q)⊗ (gri− j
C N)(q)

∼=

⊕
j (ϕ j⊗ϕi− j )

��

grD
i (M⊗N)

∼ ⊕
j∈Z grD

j M⊗ grD
i− j N.

There is also a straightforward definition of tensor product of morphisms of F-zips,
we leave it to the reader to verify that this is a homomorphism of F-zips. The
tensor product thus defines a functor F-Zip(S)× F-Zip(S)→ F-Zip(S), which
is Fq -bilinear and exact.

Comparing Definition 6.2 with the construction in Section 4G we find that all
symmetric powers SmM and all alternating powers 3mM of F-zips exist. They
have evident descriptions in terms of the symmetric and alternating powers of the
underlying filtered and graded locally free sheaves since symmetric and alternating
powers of filtered and graded locally free sheaves are compatible with pullbacks
under Frobenius and the functor gr.

Definition 6.5. The dual of an F-zip M over S is the F-zip M∨ consisting of the
dual sheaf of OS-modules M∨ equipped with the duals of the filtrations C •(M) and
D•(M) whose terms are given by gri

C(M
∨)= (gr−i

C M)∨ and grD
i (M

∨)= (grD
−i M)

∨,
and the induced isomorphisms

(gri
C(M

∨))(q)

∼=

��

((gr−i
C M)∨)(q)

∼= (ϕ−1
−i )
∨

��

grD
i (M

∨)
∼

(grD
−i M)

∨.

There is an evident notion of the dual of a homomorphism of F-zips, so that we
obtain a functor F-Zip(S)op

→ F-Zip(S), which is Fq -linear and exact.

As usual the tensor product and the dual yields the notion of an internal Hom of
two F-zips M and N over S by setting

Hom(M,N) :=M∨⊗N.
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Example 6.6. The Tate F-zip of weight d ∈ Z is 1(d) := (OS,C •, D•, ϕ•), where

C i
=

{
OS for i ≤ d;
0 for i > d;

Di =

{
0 for i < d;
OS for i ≥ d;

and ϕd is the identity on O
(q)
S = OS . Thus 1(d) is an F-zip of rank 1 and type d.

There are natural isomorphisms 1(d)⊗1(d ′)∼= 1(d+d ′) and 1(d)∨ ∼= 1(−d). The
d-th Tate twist of an F-zip M is defined as M(d) :=M⊗1(d), and there is a natural
isomorphism M(0)∼=M.

With the above tensor product and dual and the unit object 1(0) the category
F-Zip(S) is a rigid tensor category. It is endowed with the following natural exact
Fq -linear tensor functors:

forg : F-Zip(S)→ LF(S), M 7→M,

fil• : F-Zip(S)→ FilLF•(S),M 7→ (M,C •),

fil• : F-Zip(S)→ FilLF•(S),M 7→ (M, D•).

The isomorphism ϕ• : (gr•C M)(q) ∼
−→ grD

•
M that is part of an F-zip induces an

isomorphism of tensor functors ϕ ◦ ( )(q) : gr•C ◦ fil•→ grD
•
◦ fil•. Combined with

some of the functors from (4.1) we obtain the following diagram

(6.7)

FilLF•(S)

gr•Cxx

forg

))
GrLF(S) ϕ ◦ ( )(q) � F-Zip(S)

fil•

xx

fil•

ff

forg
// LF(S)

FilLF•(S),

grD
•

ff

forg

55

which is commutative except that the left hand side commutes only up to ϕ ◦ ( )(q).
Also, there is an evident notion of pullback of F-zips under morphisms S′→ S,

compatible with everything discussed above. Lemma 4.2 directly implies:

Lemma 6.8. For a homomorphism of F-zips, the property of being admissible is
local for the fpqc topology.

7. Ĝ-zip functors

Throughout this section we fix a (not necessarily connected) linear algebraic group
Ĝ over Fq . Let S be a scheme over Fq . It is known (for example by [Nori 1976,
Proposition 2.9]) that giving an exact Fq-linear tensor functor Ĝ-Rep→ LF(S)
is equivalent to giving a Ĝ-torsor over S. This suggests the idea that an exact
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Fq -linear tensor functor from Ĝ-Rep to an arbitrary exact Fq -linear tensor category
C may be viewed as a “Ĝ-torsor in C”, which underlies Section 8 of Deligne’s
article [1990]. In the present section we apply this point of view to the category
of F-zips and describe an equivalence between exact Fq-linear tensor functors
Ĝ-Rep→ F-Zip(S) and Ĝ-zips.

7A. The stack of Ĝ-zip functors.

Definition 7.1. (a) A Ĝ-zip functor over S is an exact Fq -linear tensor functor

z : Ĝ-Rep→ F-Zip(S).

(b) A morphism of Ĝ-zip functors over S is a natural transformation that is com-
patible with the tensor product.

(c) The resulting category of Ĝ-zip functors over S is denoted Ĝ-ZipFun(S).

With the evident notion of pullback the Ĝ-ZipFun(S) form a fibered category
over the category ((Sch/Fq)) of schemes over Fq , which we denote Ĝ-ZipFun.

Proposition 7.2. Ĝ-ZipFun is a stack.

Proof. Since Ĝ-Rep and F-Zip(S) are rigid tensor categories, any morphism of
Ĝ-zip functors is an isomorphism (see [Saavedra Rivano 1972, I.5.2.3]); hence
Ĝ-ZipFun is fibered in groupoids. It remains to prove that Ĝ-ZipFun satisfies
effective descent for morphisms and objects. For this let S′→ S be an fpqc covering
and set S′′ := S′×S S′.

First consider objects z1, z2 ∈ Ĝ-ZipFun(S) and a morphism λ′ : z1,S′ → z2,S′

whose two pullbacks to S′′ coincide. Since morphisms of F-zips satisfy effective
descent with respect to the fpqc topology, for any V ∈ Ĝ-Rep the homomorphism
λ′(V ) : z1(V )S′→ z2(V )S′ comes from a unique homomorphism λ(V ) : z1(V )→
z2(V ). In order for λ to be a tensor morphism, certain diagrams in F-Zip(S) need
to commute. But as λ′ is a tensor morphism, these diagrams commute after pullback
to S′; hence by descent they commute over S and thus λ is a tensor morphism.
Therefore Ĝ-ZipFun satisfies effective descent for morphisms.

Now consider an object z′ of Ĝ-ZipFun(S′) equipped with a descent datum. For
each V ∈ Ĝ-Rep this descent datum induces a descent datum on z′(V ); hence it
yields an object z(V ) of F-Zip(S) with z′(V )= z(V )S′ . Next, the descent datum
on z′(V ) depends functorially on V . Thus for each morphism f : V → V ′ in
Ĝ-Rep the two pullbacks of z′( f ) : z(V )S′→ z(V ′)S′ coincide and therefore come
from a unique morphism z( f ) : z(V )→ z(V ′). The uniquess of z( f ) implies that
z : Ĝ-Rep→ F-Zip(S) is a functor. Making z into a tensor functor requires functo-
rial isomorphisms z(1)∼=1 and z(V )⊗ z(V ′)∼= z(V ⊗ V ′) for all V , V ′ ∈ Ĝ-Rep
which are compatible with the associativity, commutativity and unit constraints
of the tensor category F-Zip(S). These are again obtained by descent from the
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corresponding isomorphisms for z′, and the compatibility with the constraints holds
because it holds after pullback to S′. Finally, by Lemma 6.8 the exactness of z
follows from the exactness of z′. Altogether z is an element of Ĝ-ZipFun(S) which
gives rise to z′ with its descent datum. Thus Ĝ-ZipFun satisfies effective descent
for objects and we are done. �

To analyze a zip functor we will compose it with the functors forg, fil•, and fil•
from (6.7). First we look at the numerical invariants obtained from the filtrations.
Let F̄q be an algebraic closure of Fq . As in Section 5 let CĜ denote the set of
Ĝ(F̄q)-conjugacy classes of cocharacters Gm,F̄q

→ Ĝ F̄q
, and let kc ⊂ F̄q denote the

field of definition of an element c ∈ CĜ , which is a finite extension of Fq .

Definition 7.3. Let c ∈ CĜ and let S be a scheme over kc.

(a) A Ĝ-zip functor z over S is called of type c, or of type χ ∈ c, if the asso-
ciated functor gr•C ◦ fil• ◦ z : Ĝ-Rep→ GrLF(S) is of type c in the sense of
Definition 5.3.

(b) The full subcategory of Ĝ-ZipFun(S) whose objects are the G-zip functors
of type c is denoted Ĝ-ZipFunc

kc
(S).

With the evident notion of pullback the categories Ĝ-ZipFunc
kc
(S) form a fibered

category over the category ((Sch/kc)), which we denote Ĝ-ZipFunc
kc

. Since
Definition 5.3 is local for the fpqc topology, Proposition 7.2 and Definition 7.3
directly imply:

Proposition 7.4. Ĝ-ZipFunc
kc

is a substack of Ĝ-ZipFunkc
.

The next result says that every zip functor over a connected scheme has a type.

Proposition 7.5. Let S be a connected scheme over Fq and z a Ĝ-zip functor over S.
Then there exist a unique c ∈CĜ and a unique morphism S→ Spec kc over Fq such
that z is of type c.

Proof. Direct consequence of Definition 7.3 and Theorem 5.4. �

Corollary 7.6. (a) Each Ĝ-ZipFunc
kc

, viewed as a stack over Fq by Grothendieck
restriction, is an open and closed substack of Ĝ-ZipFun.

(b) Ĝ-ZipFun is the disjoint union of the Ĝ-ZipFunc
kc

taken over all c ∈ CĜ .

Theorem 7.7 [Ziegler 2011, Theorem 3.32]. For any c ∈ CĜ there exists an inner
form

(Ĝ ′, τ : Ĝ ′k̄
∼
−→ Ĝ k̄)

of Ĝ defined over kc and a cocharacter χ : Gm,kc → Ĝ ′ such that τ ◦χ k̄ lies in c.
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Remark 7.8. From the Tannakian viewpoint, replacing Ĝ by an inner form does
not change the category Ĝ-Rep; it merely endows it with a different fiber functor. In
particular it does not change the stack of Ĝ-zip functors. Thus Theorem 7.7 implies
that to study zip functors of a given type c, we may without loss of generality
assume that c has a representative χ which is defined over kc.

7B. Equivalence with Ĝ-zips. We now assume that the identity component G of Ĝ
is reductive. We fix a finite field extension k of Fq and a cocharacter χ : Gm,k→ Ĝk .
We let L̂ ⊂ Ĝk denote the centralizer of χ and set 2 := π0(L̂) ⊂ π0(Ĝk). Then
we are in the situation of Section 3B with the maximal possible choice of 2. We
will use all the pertaining notation from Section 3. Let c, c(q) ∈ CĜ denote the
conjugacy classes of χ , χ (q).

Construction 7.9. For any finite dimensional representation V of Ĝ over Fq , the
cocharacter χ determines a grading Vk =

⊕
i∈Z V i

k . This grading induces a de-
scending filtration C •(Vk). Also, the definition of Vk by base extension induces
a natural isomorphism V (q)

k
∼= Vk . Thus we may consider the decomposition⊕

i∈Z(V
i
k )
(q) as another grading of Vk , namely that induced by the cocharacter χ (q).

This grading induces an ascending filtration D•(Vk). Then for all i ∈ Z we obtain
natural isomorphisms ϕi (Vk) : (gri

C(Vk))
(q) ∼
−→(V i

k )
(q) ∼
−→ grD

i (Vk). Altogether
this data defines an F-zip over k, denoted

z1(V ) :=
(
Vk,C •(Vk), D•(Vk), ϕ•(Vk)

)
.

Clearly this construction is Fq -linearly functorial in V and compatible with tensor
product. It therefore defines a Ĝ-zip functor over k

z1 : Ĝ-Rep→ F-Zip(Spec k).

By pullback we obtain a zip functor z1,S over any scheme S over k. We will measure
an arbitrary zip functor over S by how it differs from this basic zip functor z1,S .

Lemma 7.10. There are natural isomorphisms

(a) Aut⊗(forg ◦ z1)∼= Ĝk ,

(b) Aut⊗(fil• ◦ z1)∼= P̂+,

(c) Aut⊗(fil• ◦ z1)∼= P̂ (q)− .

Proof. Assertion (a) is an instance of the main theorem of Tannaka duality [Deligne
1990, Theorem 1.12], and (b) and (c) are instances of Proposition 5.1. �

Construction 7.11. Let S be a scheme over k, and z a Ĝ-zip functor of type c
over S. Then

(a) Iz := Isom⊗(forg ◦ z1,S, forg ◦ z) is a right Ĝk-torsor over S,

(b) Iz,+ := Isom⊗(fil• ◦ z1,S,fil• ◦ z) is a right P̂+-torsor over S,
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(c) Iz,− := Isom⊗(fil• ◦ z1,S,fil• ◦ z) is a right P̂ (q)− -torsor over S.

Indeed, (a) follows from Lemma 7.10 (a) and [Deligne 1990, Theorem 1.12],
and (b) results from combining Lemma 7.10 (b) with Theorem 5.6 above. Also, the
commutativity of (6.7) shows that ( )q ◦ gr•C ◦fil• ◦ z∼= grD

•
◦fil• ◦ z is of type c(q),

and so (c) follows from Lemma 7.10 (c) and Theorem 5.6.
Moreover, composition with the functors forgetting the filtration induces a natural

P̂+-equivariant embedding

Iz,+
� � // Isom⊗(forg ◦fil• ◦ z1,S, forg ◦fil• ◦ z)

o

Iz
∼

Isom⊗(forg ◦ z1,S, forg ◦ z)

and likewise a natural P̂ (q)− -equivariant embedding Iz,− ↪→ Iz. Furthermore, by
Theorem 5.7 we have natural isomorphisms of L̂(q)-torsors in the rows of the
following diagram, where the vertical isomorphism is induced by the isomorphism
of tensor functors ϕ : ( )(q) ◦ gr•C ◦fil• ∼−→ grD

•
◦fil• from (6.7):

I (q)z,+/U (q)
+

∼

Isom⊗(( )(q) ◦ gr•C ◦fil• ◦ z1,S, ( )
(q)
◦ gr•C ◦fil• ◦ z)

o
��

Iz,−/U (q)
−

∼

Isom⊗(grD
•
◦fil• ◦ z1,S, grD

•
◦fil• ◦ z)

The composite is therefore an isomorphism of L̂(q)-torsors ιz : I (q)z,+/U (q)
+

∼
−→

Iz,−/U (q)
− . Together this data defines a Ĝ-zip of type (χ,2) over S

I z := (Iz, Iz,+, Iz,−, ιz).

Clearly this construction is Fq -linearly functorial in z and compatible with pullback.
Thus it defines a morphism of stacks

(7.12) Ĝ-ZipFunc
k→ Ĝ-Zipk

(χ,2)
, z 7→ I z.

Theorem 7.13. The morphism (7.12) is an isomorphism.

Proof. We construct a morphism in the other direction, as follows. Consider a Ĝ-zip
I = (I, I+, I−, ι) of type (χ,2) over S. The essential surjectivity in Theorem 5.6
shows that I− ∼= Isom⊗(fil• ◦ z1,S, ψ−) for some exact Fq -linear tensor functor

ψ− : Ĝ-Rep→ FilLF•(S), V 7→ (M(V ), D•).

The embedding I− ↪→ I and the fullness in Theorem 5.6 then yield an isomorphism
I ∼= Isom⊗(forg◦z1,S, ω)withω := forg◦ψ− : V 7→M(V ). The essential surjectivity
in Theorem 5.6 also shows that I+∼= Isom⊗(fil•◦z1,S, ψ+) for some exact Fq -linear
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tensor functor ψ+ : Ĝ-Rep→ FilLF•(S). The embedding I+ ↪→ I and the fullness
in Theorem 5.6 then yield an isomorphism forg◦ψ+∼=ω. After replacing ψ+ by an
isomorphic functor we may therefore assume thatψ+ has the form V 7→ (M(V ),C •).
Moreover, Theorem 5.7 and ι yield isomorphisms

I (q)+ /U (q)
+

∼

oι ��

Isom⊗(( )(q) ◦ gr•C ◦fil• ◦ z1,S, ( )
(q)
◦ gr•C ◦ψ+)

I−/U (q)
−

∼

Isom⊗(grD
•
◦fil• ◦ z1,S, grD

•
◦ψ−).

Thus the isomorphism ϕ• : ( )
(q)
◦gr◦fil•◦z1,S

∼
−→ gr◦fil•◦z1,S from Construction 7.9

and the fullness in Theorem 5.5 yield an isomorphism ( )(q)◦gr•C ◦ψ+
∼
−→ grD

•
◦ψ−.

This amounts to graded isomorphisms ϕ• : (gr•C M(V ))(q) ∼
−→ grD

•
M(V ) for all

V ∈ Ĝ-Rep that are functorial and compatible with tensor product. The assembled
data thus determines a Ĝ-zip functor

zI : V 7→ (M(V ),C •, D•, ϕ•)

of type c over S. By definition it satisfies fil• ◦ z=ψ+ and fil• ◦ z=ψ−; comparing
this construction with Construction 7.11 therefore yields an isomorphism I zI

∼= I .
The faithfulness in Theorems 5.6 and 5.5 implies that z is unique up to unique

isomorphism. It is therefore functorial in I . As the construction is clearly compatible
with pullback, it thus defines a morphism of stacks Ĝ-Zipk

(χ,2)
→ Ĝ-ZipFunc

k .
Again by faithfulness the isomorphism I zI

∼= I is functorial in I and compatible
with pullback; hence I 7→ zI is a right inverse of z 7→ I z. Moreover, applying the
above construction to I z for a Ĝ-zip functor z one easily shows that zI z

∼= z, and
so the morphism is also a left inverse. Thus the morphism (7.12) has a two-sided
inverse and is therefore an isomorphism, as desired. �

8. F-zips with additional structure

An important tool in the study of vector bundles is the equivalence between vector
bundles of constant rank n on a scheme S and the associated GLn-torsors. One
also uses the equivalence between vector bundles with a nondegenerate symmetric,
alternating, resp. hermitian pairing and the associated torsors with respect to the
orthogonal, symplectic, resp. unitary group. In this section we describe similar
equivalences between F-zips of constant rank n and GLn-zips, and between F-zips
with additional structure such as a pairing and G-zips for certain associated linear
algebraic groups G.

Let n = (ni )i∈Z be a family of nonnegative integers which vanish for almost all i ,
such that n :=

∑
i ni > 1.
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8A. F-zips versus GLn-zips. For any scheme S over k := Fq we let F-Zipn
k (S)

denote the category whose objects are all F-zips of type n over S according to
Definition 6.3 and whose morphisms are all isomorphisms. For varying S this
defines a category F-Zipn

k fibered in groupoids over ((Sch/k)). Since F-zips
consist of quasicoherent sheaves and homomorphisms thereof, they satisfy effective
descent with respect to any fpqc morphism S′→ S. Therefore F-Zipn

k is a stack.
Choose a cocharacter χ : Gm,k→GLn,k whose weights on the standard represen-

tation kn of GLn,k are i with multiplicity ni for all i . This determines a grading of kn ,
whose associated descending and ascending filtrations we denote by C • and D•.
Since k = Fq , there is a natural isomorphism ϕ1• : (gr•C kn)(q) = gr•C kn ∼

−→ grD
•

kn

turning

(8.1) M1 := (k
n,C •, D•, ϕ1•)

into an F-zip of type n over k. As in Section 7B, we compare arbitrary F-zips of
type n with this basic one.

Set G :=GLn,k , and let P± = L nU± be the parabolics of G associated to χ , as
in Section 3B. Thus P+ is the stabilizer of the filtration C •, and P− is the stabilizer
of D•. Since χ is defined over Fq , we have χ (q) = χ and P (q)± = L(q) nU (q)

± =

P± = L nU±. Also, since G is connected, we have 2= 1 in this case.
In the following, for any graded, filtered, or naked sheaves of OS-modules M1

and M2 we let Isom(M1,M2) denote the fpqc-sheaf on ((Sch/S)) sending S′→ S
to the set of (graded, filtered, resp. neither) isomorphisms M1,S′

∼
−→M2,S′ . By

composition of isomorphisms it carries a natural right action of the sheaf of groups
Isom(M1,M1) = Aut(M1). This sheaf is representable by a smooth affine group
scheme over S if M1 is locally free of finite rank.

Construction 8.2. Let M= (M,C •, D•, ϕ•) be an F-zip of type n over S. Then M

is a locally free sheaf of rank n, and the filtered sheaves (M,C •) and (M, D•) are
Zariski locally isomorphic to (kn,C •)S and (kn, D•)S , respectively. Thus

(a) I := Isom((kn)S,M) is a right GLn-torsor over S,

(b) I+ := Isom
(
(kn,C •)S, (M,C •)

)
is a right P+-torsor over S,

(c) I− := Isom
(
(kn, D•)S, (M, D•)

)
is a right P (q)− -torsor over S.

Forgetting the filtration induces natural equivariant embeddings I± ↪→ I . Also, the
functors gr•C and grD

•
induce natural isomorphisms I+/U+∼= Isom((gr•C kn)S, gr•C M)

and I−/U (q)
−
∼= Isom((grD

•
kn)S, grD

•
M). Moreover, the isomorphisms ϕ1• : (gr•C kn)(q)

∼
−→ grD

•
kn and ϕ• : (gr•C M)(q) ∼

−→ grD
•

M induce an isomorphism ι of L-torsors
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making the following diagram commute:

I (q)+ /U (q)
+

∼

ι ��

Isom
(
(gr•C kn)

(q)
S , (gr•C M)(q)

)
o
��

I−/U (q)
−

∼

Isom
(
(grD

•
kn)S, grD

•
M
)
.

Together this data defines a GLn-zip I := (I, I+, I−, ι) of type χ over S. Clearly
this construction is k-linearly functorial in M and compatible with pullback. Thus
it defines a morphism of stacks

(8.3) F-Zipn
k −→ GLn-Zipχk .

Proposition 8.4. This morphism is an isomorphism.

Proof. A morphism in the other direction is obtained by evaluating the inverse
of the morphism (7.12) at the standard representation V = kn of GLn,k . It is
straightforward to check that these two morphisms are mutually inverse. �

Combined with Theorem 7.13 this shows in particular that giving an F-zip of
type n, or a GLn-zip of type χ , or a GLn-zip functor of type χ , are all equivalent.
Also, combined with Proposition 3.11 it shows that the isomorphism classes of F-
zips of type n over an algebraically closed field K containing Fq are in bijection with
the EGLn,χ(K )-orbits on GLn(K ), which in turn have a combinatorial description
in terms of the Weyl group of GLn , as in Example 3.23. The analogous remarks
apply to the cases treated in the rest of this section.

8B. F-zips with trivialized determinant versus SLn-zips. Keeping the notations
of the preceding subsection, we now assume that

∑
i ni i = 0. Then the highest

exterior power of any F-zip of type n is an F-zip of rank 1 whose filtrations
are concentrated in degree 0. We call a pair (M,1) consisting of an F-zip M of
type n and an isomorphism 1 : 3nM ∼

−→ 1(0) an F-zip of type n with trivialized
determinant. For the same reasons as before, the F-zips of type n with trivialized
determinant, together with isomorphisms of such pairs, form a stack over k.

Let 11 : 3
n(kn) ∼

−→ k denote the isomorphism induced by the determinant.
With the basic F-zip from (8.1) the pair (M1,11) is then an F-zip of type n with
trivialized determinant over k. As in the preceding subsection, we compare arbitrary
F-zips of type n with trivialized determinant with this basic one.

The relevant linear algebraic group is now SLn,k . Clearly χ factors through
SLn,k , so that we can speak of SLn-zips of type χ . The associated parabolics of
SLn,k are now P± ∩SLn,k with P± as in Section 8A.

Note that 11 : 3
n(kn) ∼

−→ k is an isomorphism in the category SLn-Rep if the
target k is endowed with the trivial representation. The equivalence (8.6) below



F -ZIPS WITH ADDITIONAL STRUCTURE 219

can be interpreted as saying that an F-zip with trivialized determinant is a partial
SLn-zip functor containing just enough information to possess a unique extension
to a full SLn-zip functor z : SLn-Rep→ F-Zip(S).

Construction 8.5. Let (M,1) with M = (M,C •, D•, ϕ•) be an F-zip of type n
with trivialized determinant over S. Let I := (I, I+, I−, ι) be the GLn-zip associ-
ated to M by Construction 8.2. Let I ′ ⊂ I be the subsheaf of all isomorphisms
u : (kn)S′

∼
−→MS′ for which the composite

3n(kn)S′
3nu
−→3nMS′

1
−→ (k)S′

is equal to 11,S′ . One easily checks that

(a) I ′ is a right SLn-torsor over S,

(b) I ′
+
:= I+ ∩ I ′ is a right P+ ∩SLn,k-torsor over S,

(c) I ′
−
:= I− ∩ I ′ is a right P (q)− ∩SLn,k-torsor over S.

Moreover, the highest exterior power of a filtered locally free sheaf of finite rank
is canonically isomorphic to the highest exterior power of the associated graded
sheaf. Thus the isomorphism of F-zips 1 amounts to a commutative diagram of
isomorphisms

3n(gr•C M)(q)
∼

o3nϕ•
��

3nM(q) 1(q)

∼

// (k)(q)S

3ngrD
•

M
∼

3nM
1

∼

// (k)S .

From this one easily deduces that the isomorphism ι : I (q)+ /U (q)
+

∼
−→ I−/U (q)

− in-
duces an isomorphism ι′ : (I ′)(q)+ /U (q)

+
∼
−→ I ′

−
/U (q)
− . Together the assembled data

therefore defines an SLn-zip I ′ := (I ′, I ′
+
, I ′
−
, ι′) of type χ over S. Clearly this

construction is Fq -linearly functorial in (M,1) and compatible with pullback. Thus
it defines a morphism of stacks

(8.6)
((

F-zips of type n with trivialized determinant
))
−→ SLn-Zipχk .

Proposition 8.7. This morphism is an isomorphism.

Proof. By the remarks in Section 4G and exactness, any zip functor z : SLn-Rep→
F-Zip(S) commutes with alternating powers; hence it sends 11 to an isomorphism
z(11) : 3

n(z(kn)) ∼= z(3n(kn)) ∼
−→ z(k) = 1(0). Therefore z 7→ (z(kn), z(11))

defines a morphism from the stack of SLn-zips of type χ to the stack of F-zips of
type n with trivialized determinant. Composed with the inverse of the morphism
(7.12) we thus obtain a morphism in the other direction. The careful reader will be
able to check that this is a two-sided inverse of the morphism (8.6). �
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8C. Symplectic F-zips versus Spn-zips. We call a pair (M, E) consisting of an
F-zip M of type n over S and an admissible epimorphism E : 32M� 1(0), whose
underlying alternating pairing M ×M → (k)S is nondegenerate everywhere, a
symplectic F-zip of type n over S. For the same reasons as before these pairs,
together with compatible isomorphisms, form a stack over k := Fq . For this stack
to be nonempty we assume that n :=

∑
i ni is even and that ni = n−i for all i .

Fix a nondegenerate alternating pairing E1 : kn
× kn

→ k, and let Spn,k ⊂

GLn,k denote the associated symplectic group. Then E1 can be viewed as an
equivariant epimorphism 32(kn)� k, where Spn,k acts trivially on the target k. By
the assumptions on n there exists a cocharacter χ : Gm,k → Spn,k , unique up to
conjugation, whose weights on the standard representation kn of Spn,k are i with
multiplicity ni for all i . Fixing such a cocharacter, we can thus speak of Spn-zips
of type χ over any scheme S over k.

To any symplectic F-zip (M, E) of type n over S we can associate an Spn-zip
I ′ := (I ′, I ′

+
, I ′
−
, ι′) of type χ over S. Namely, if I := (I, I+, I−, ι) denotes the

GLn-zip associated to M by Construction 8.2, we let I ′ ⊂ I be the subsheaf of
isomorphisms (kn)S

∼
−→MS which are compatible with E1 and E . From the fact

that any two nondegenerate alternating pairings on the sheaf O⊕n
S are conjugate

under GLn(S) one deduces that this is an Spn,k-torsor. Also I ′
+
, I ′
−
⊂ I ′ are the

subsheaves of isomorphisms preserving the filtrations C •, respectively D•, and ι′

is constructed from the isomorphism ϕ• in M. Together we obtain a morphism of
stacks

(8.8)
((

symplectic F-zips of type n
))
−→ Spn-Zipχk .

Conversely, for any Spn-zip of type χ over S we evaluate the associated zip
functor z on the standard representation kn and the homomorphism E1 in Spn,k-Rep,
obtaining a symplectic F-zip (z(kn), z(E1)) of type n over S. By showing that this
construction yields a two-sided inverse of the first one proves that the morphism
(8.8) is an isomorphism.

8D. Twisted symplectic F-zips versus CSpn-zips. We call a triple (M,L, E) con-
sisting of an F-zip M of type n over S, an F-zip L of rank 1 over S, and an admissible
epimorphism E : 32M� L, whose underlying alternating pairing M×M→L is
nondegenerate everywhere on S, a twisted symplectic F-zip of type n over S. For
the same reasons as before these triples, together with compatible isomorphisms,
form a stack over k := Fq . For this stack to be nonempty we assume that n :=

∑
i ni

is even and that there is an integer d satisfying ni = nd−i for all i . This d is then
unique, and the above L must be of type d .

Fix a nondegenerate alternating pairing E1 : kn
× kn
→ k, and let CSpn,k denote

the associated group of symplectic similitudes, that is, the group of all g ∈ GLn,k
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satisfying E1 ◦ (g× g) = µ(g) · E1 for a scalar µ(g). Then E1 can be viewed as
a CSpn,k-equivariant epimorphism 32(kn)� k, where CSpn,k acts on the target
k through the multiplier character µ : CSpn,k � Gm,k . By the assumptions on n
there exists a cocharacter χ : Gm,k → CSpn,k , unique up to conjugation, whose
weights on the standard representation kn of CSpn,k are i with multiplicity ni for
all i . Fixing such a cocharacter, we can thus speak of CSpn-zips of type χ over any
scheme S over k.

Using the same principles as before, to any twisted symplectic F-zip (M,L, E)
of type n over S we can associate a CSpn-zip I := (I, I+, I−, ι) of type χ over S.
In the interest of brevity we only sketch the construction: Here I is the sheaf of
pairs of isomorphisms (kn)S′

∼
−→MS′ and (k)S′

∼
−→LS′ that are compatible with

E1 and E . That this is a CSpn,k-torsor again results from the fact that any two
nondegenerate alternating pairings on the sheaf O⊕n

S′ are conjugate under GLn(S′).
Also I+, I− ⊂ I are the subsheaves of isomorphisms preserving the filtrations C •,
respectively D•, and ι is constructed from the isomorphisms ϕ• in M and L. Together
we obtain a morphism of stacks

(8.9)
((

twisted symplectic F-zips of type n
))
−→ CSpn-Zipχk .

Conversely, for any CSpn-zip of type χ over S we evaluate the associated zip
functor z on the standard representation kn , the representation k with the multiplier
character µ, and the homomorphism E1, obtaining a twisted symplectic F-zip
(z(kn), z(k), z(E1)) of type n over S. By showing that this construction yields a
two-sided inverse of the first one proves that the morphism (8.9) is an isomorphism.
The details in these arguments follow those in the preceding subsections and are
left to the conscientious reader.

8E. Orthogonal F-zips versus On-zips. To avoid the usual idiosyncrasies of sym-
metric bilinear forms in characteristic 2 we assume that q is odd in this subsection
and the next. We call a pair (M, B) consisting of an F-zip M of type n over S and
an admissible epimorphism E : S2M� 1(0), whose underlying symmetric pairing
M×M→ (k)S is nondegenerate everywhere, an orthogonal F-zip of type n over S.
For the same reasons as before these pairs, together with compatible isomorphisms,
form a stack over k := Fq . For this stack to be nonempty we assume that ni = n−i

for all i .
Fix a nondegenerate split symmetric bilinear form B1 : kn

× kn
→ k, and let

On,k ⊂ GLn,k denote the associated orthogonal group. Then B1 can be viewed as
an equivariant epimorphism S2(kn)� k, where On,k acts trivially on the target k.
Note that On,k has two connected components and that its identity component is a
split special orthogonal group SOn,k . By the assumptions on n there exists a cochar-
acter χ : Gm,k→ On,k , unique up to conjugation, whose weights on the standard



222 RICHARD PINK, TORSTEN WEDHORN AND PAUL ZIEGLER

representation kn are i with multiplicity ni for all i . We fix such a cocharacter and
set L̂ := CentOn,k (χ) and 2 := π0(L̂)⊂ π0(On,k). A quick calculation shows that
L̂ ∼= On0,k ×

∏
i>0 GLni ,k ; hence 2 is trivial if n0 = 0, and equal to π0(On,k) if

n0 > 0. According to Definition 3.1 we can speak of On-zips of type (χ,2) over
any scheme S over k.

The definition of L̂ implies that the associated subgroups P̂± from Section 3B are
precisely the stabilizers of the descending and ascending filtrations of kn induced
by χ . Also, observe that any two nondegenerate symmetric pairings on the sheaf O⊕n

S
are fpqc-locally conjugate under GLn . Using these facts and the same construction
as in Section 8C, to any orthogonal F-zip (M, B) of type n over S we can associate
an On-zip of type (χ,2) over S, obtaining a morphism of stacks

(8.10)
((

orthogonal F-zips of type n
))
−→ On-Zipχ,2k .

Conversely, for any On-zip of type (χ,2) over S we evaluate the associated zip
functor z on the standard representation kn and the homomorphism B1 in On,k-Rep,
obtaining an orthogonal F-zip (z(kn), z(B1)) of type n over S. This construction
yields a two-sided inverse of the first and thereby proves that the morphism (8.10)
is an isomorphism.

8F. Twisted orthogonal F-zips versus COn-zips. Again we assume that q is odd.
We call a triple (M,L, B) consisting of an F-zip M of type n over S, an F-zip L

of rank 1 over S, and an admissible epimorphism B : S2M� L, whose underlying
symmetric pairing M × M → L is nondegenerate everywhere on S, a twisted
orthogonal F-zip of type n over S. For the same reasons as before these triples,
together with compatible isomorphisms, form a stack over k := Fq . For this stack
to be nonempty we assume that there is an integer d satisfying ni = nd−i for all i .
This d is then unique, and the above L must be of type d.

Fix a nondegenerate split symmetric bilinear form B1 : kn
× kn
→ k. Let COn,k

denote the associated group of orthogonal similitudes, that is, the group of all
g ∈ GLn,k satisfying B1 ◦ (g × g) = µ(g) · B1 for a scalar µ(g). Then B1 can
be viewed as a COn,k-equivariant epimorphism S2(kn)� k, where COn,k acts on
the target k through the character µ : COn,k � Gm,k . If n is odd, then COn,k is
connected with a root system of type B(n−1)/2 and is therefore split. If n is even,
then COn,k has two connected components and a root system of type Dn/2. In both
cases the identity component of COn,k is split, because B1 is split. Thus there exists
a cocharacter χ : Gm,k→ COn,k , unique up to conjugation, whose weights on the
standard representation kn of COn,k are i with multiplicity ni for all i . We fix such
a cocharacter and set L̂ := CentCOn,k (χ) and 2 := π0(L̂) ⊂ π0(COn,k). A quick
calculation shows that L̂ ∼=COnd/2,k ×

∏
i>d/2 GLni ,k if d is even and nd/2 > 0, and

L̂ ∼= Gm,k ×
∏

i>d/2 GLni ,k otherwise. Thus 2 is trivial unless d is even and nd/2
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is even and positive, in which case 2 = π0(COn,k) of order 2. In either case we
can speak of COn-zips of type (χ,2) over any scheme S over k.

In the same way as in Section 8D, to any twisted orthogonal F-zip (M,L, B)
of type n over S we can associate a COn-zip of type (χ,2) over S, obtaining a
morphism of stacks

(8.11)
((

twisted orthogonal F-zips of type n
))
−→ COn-Zipχ,2k .

Conversely, for any COn-zip of type (χ,2) over S we evaluate the associated zip
functor z on the standard representation kn , the representation k with the multiplier
character µ, and the homomorphism B1, obtaining a twisted orthogonal F-zip
(z(kn), z(k), z(B1)) of type n over S. By showing that this construction yields a
two-sided inverse of the first one proves that the morphism (8.11) is an isomorphism.

8G. Unitary F-zips versus Un-zips. Let Fq2 denote a fixed quadratic extension
of Fq , and let σ denote its nontrivial automorphism x 7→ xq over Fq . Let S be a
scheme over Fq . We call a triple (M, ρ, H) consisting of an F-zip M over S, an
Fq-algebra homomorphism ρ : Fq2 → End(M), and an admissible epimorphism
H : M⊗M→ Fq2 ⊗Fq 1(0), which satisfies

(a) H ◦ (ρ(α)⊗ ρ(β))= (αqβ⊗ 1) ◦ H for all α, β ∈ Fq2 , and

(b) H(m2,m1)= (σ ⊗ 1) ◦ H(m1,m2) for all local sections m1, m2 of M,

and whose hermitian pairing on the underlying sheaf M ×M → Fq2 ⊗Fq OS is
nondegenerate everywhere, a unitary F-zip over S. To classify such objects we use
base change fro Fq to Fq2 :

Let S̃ be a scheme over Fq2 and (M̃, ρ̃, H̃) a unitary F-zip over S̃. Then we have
a unique decomposition M̃= Ñ⊕ Ñ′, where ρ̃(α) acts on Ñ through multiplication
by α and on Ñ′ through multiplication by αq , and the hermitian pairing H̃ amounts
to an isomorphism Ñ′ ∼−→ Ñ∨. Working out the rest of the data we find that
giving a unitary F-zip over S is equivalent to giving a quadruple (Ñ,C •, D•, ψ•)
consisting of a locally free sheaf of OS-modules of finite rank Ñ on S, a descending
filtration C • and an ascending filtration D• of Ñ, and an OS-linear isomorphism
ψi : (gri

C Ñ)(q) ∼
−→(grD

−i Ñ)
∨ for every i ∈ Z. We call (M̃, ρ̃, H̃) of type n if the

associated gri
C Ñ is locally free of constant rank ni for all i . For the same reasons as

before the unitary F-zips of type n, together with compatible isomorphisms, form
a stack over Fq2 . is no further condition on n in this case.

Let as above S be a scheme over Fq and (M, ρ, H) a unitary F-zip over S. We
have M=pr2∗ M̃ for a locally free sheaf of OS̃-modules M̃ on S̃ :=Spec Fq2×Spec Fq S,
such that the action ρ of Fq2 is induced from the first factor. The Fq2-invariant
filtration C • on M then comes from a filtration of M̃. In this case we call a unitary
F-zip of type n if the associated gri

C M̃ is locally free of constant rank ni for all i .
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Since the hermitian pairing H induces isomorphisms (σ× id)∗gri
C M̃ ∼
−→(gr−i

C M̃)∨,
this condition can be satisfied nontrivially only if ni = n−i for all i . Under this
assumption the unitary F-zips of type n, together with compatible isomorphisms,
form a stack over Fq . Moreover, a unitary F-zip is of type n in this sense if and
only if its pullback to S̃ is of type n in the previous sense; hence the stack over Fq2

described before is just the base change of the present stack over Fq .
In summary, set k := Fq if ni = n−i for all i , respectively k := Fq2 if not; the

unitary F-zips of type n then form a natural stack over k.
Fix a nondegenerate σ -hermitian form H1 : Fn

q2 × Fn
q2 → Fq2 , and let Un,Fq ⊂

RFq2/Fq GLn,Fq2 denote the associated unitary group. The assumptions on n and k
imply that there exists a cocharacter χ : Gm,k → Un,k , unique up to conjugation,
whose weights on the standard representation Fn

q2 of Un,Fq2 are i with multiplicity
ni for all i . Fixing such a cocharacter, we can thus speak of Un-zips of type χ over
any scheme S over k.

Also, set M1 := Fn
q2 ⊗Fq k with the descending filtration C • associated to χ and

the ascending filtration D• associated to the Frobenius twist χ (q), so that there are
natural Fq2 ⊗Fq k-linear isomorphisms ϕi : (gri

C M1)
(q) ∼
−→ grD

i M1 for all i ∈ Z.
Then M1 := (M1,C •, D•, ϕ•) together with the evident action of Fq2 and the pairing
H1 is a unitary F-zip of type n over k.

Using the same principles as in the preceding subsections, to any unitary F-zip
(M, ρ, H) of type n over S we can now associate a Un-zip I := (I, I+, I−, ι) of type
χ over S. Here I is the sheaf of all Fq2⊗Fq OS′-linear isomorphisms M1,S′

∼
−→MS′

which are compatible with H1 and H , for all morphisms S′→ S, and I± are the
subsheaves of isomorphisms which are in addition compatible with the filtrations C •,
respectively D•, and ι is obtained from the graded isomorphisms ϕ•. Together this
yields a morphism of stacks

(8.12)
((

unitary F-zips of type n
))
−→ Un-Zipχk .

Conversely, for any Un-zip of type χ over S we evaluate the associated zip
functor z on the standard representation Fn

q2 , the obvious homomorphism Fq2 →

EndUn,Fq
(Fn

q2), and the hermitian pairing H1 (all of which are objects and morphisms
in Un-Rep), obtaining a unitary F-zip of type n over S. By showing that this
construction yields a two-sided inverse of the first one proves that the morphism
(8.12) is an isomorphism.

8H. Twisted unitary F-zips versus CUn-zips. Again let Fq2 denote a fixed qua-
dratic extension of Fq , and let σ denote its nontrivial automorphism x 7→ xq over Fq .
We call a quadruple (M, ρ,L, H) consisting of an F-zip M over S, an Fq -algebra
homomorphism ρ : Fq2→ End(M), an F-zip L of rank 1 over S, and an admissible
epimorphism H : M⊗M→ Fq2 ⊗Fq L, which satisfies the same conditions (a)
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and (b) as in Section 8G and whose hermitian pairing on the underlying sheaf is
nondegenerate everywhere, a twisted unitary F-zip over S.

If S is a scheme over Fq2 , for any twisted unitary F-zip over S there is a unique
decomposition M = N⊕N′, where ρ(α) acts on N through multiplication by α
and on N′ through multiplication by αq , and it is compatible with the filtration C •.
In this case we call a twisted unitary F-zip over S of type (n, d) if the associated
gri

C N is locally free of constant rank ni for all i and L is of type d. For the same
reasons as before the twisted unitary F-zips of type (n, d), together with compatible
isomorphisms, form a stack over Fq2 . There is no further condition on (n, d) in this
case.

If S is only a scheme over Fq , we still have M = pr2∗ M̃ for a locally free
sheaf of OS̃-modules M̃ on S̃ := Spec Fq2 ×Spec Fq S, such that the action ρ of
Fq2 is induced by the first factor. In this case we call a twisted unitary F-zip
of type (n, d) if the associated gri

C M̃ is locally free of constant rank ni for all i
and L is of type d. Since the hermitian pairing H must induce isomorphisms
(σ × id)∗gri

C M̃ ∼
−→(grd−i

C M̃)∨⊗ pr∗2 L, this condition can be satisfied nontrivially
only if ni = nd−i for all i . Under this assumption the twisted unitary F-zips of type
(n, d), together with compatible isomorphisms, form a stack over Fq . Moreover, a
twisted unitary F-zip is of type (n, d) in this sense if and only if its pullback to S̃
is of type (n, d) in the previous sense; hence the stack over Fq2 described before is
just the base change of the present stack over Fq .

In summary, set k := Fq if ni = nd−i for all i , respectively k := Fq2 if not; the
twisted unitary F-zips of type (n, d) then form a natural stack over k.

Fix a nondegenerate σ -hermitian form H1 : Fn
q2 × Fn

q2 → Fq2 , and let CUn,Fq ⊂

RFq2/Fq GLn,Fq2 denote the associated group of unitary similitudes, that is, of sec-
tions g that satisfy H1 ◦ (g × g) = µ(g) · H1 for a scalar µ(g) in Gm,Fq . The
assumptions on (n, d) and k imply that there exists a cocharacter χ : Gm,k→CUn,k ,
unique up to conjugation, whose weights on the standard representation Fn

q2 of
Un,Fq2 are i with multiplicity ni for all i , and whose weight under the multiplier
character µ is d. Fixing such a cocharacter, we can thus speak of CUn-zips of
type χ over any scheme S over k.

By the same procedure as before, to any twisted unitary F-zip (M, ρ, H) of type
(n, d) over S we can associate a CUn-zip of type χ over S, obtaining a morphism
of stacks

(8.13)
((

twisted unitary F-zips of type (n, d)
))
−→ CUn-Zipχk .

Conversely, for any CUn-zip of type χ over S we evaluate the associated zip
functor z on the standard representation Fn

q2 , the obvious homomorphism Fq2 →

EndCUn,Fq
(Fn

q2), the multiplier representation on Fq , and the hermitian pairing H1

(all of which are objects and morphisms in CUn-Rep), obtaining a twisted unitary
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F-zip of type (n, d) over S. By showing that this construction yields a two-sided
inverse of the first one proves that the morphism (8.13) is an isomorphism.

8I. Other groups. For each of the groups Ĝ above, we have identified a finite
subcategory C of Ĝ-Rep and have shown that any suitable functor C→ F-Zip(S)
extends to a Ĝ-zip functor Ĝ-Rep→ F-Zip(S). Surely it must be possible to
apply the same principle to an arbitrary reductive linear algebraic group Ĝ over k.
However, identifying a suitable subcategory C becomes tiresome very quickly.

For instance, it should be possible to describe SOn-zip functors in terms of
triples (M, B,1) consisting of an F-zip M of rank n, an everywhere nondegenerate
symmetric pairing B on M, and a trivialization 1 of the highest exterior power
of M. However, to guarantee the extendability to SOn,k-Rep one must also impose a
certain relation between B and 1 which is more complicated to describe. Moreover,
the identification of the type of an SOn-zip functor might require some extra data,
because SOn may possess nonconjugate cocharacters which are conjugate under
GLn . A similar situation arises for the group SUn,k .

9. Applications

9A. Zip strata attached to smooth proper morphism with degenerating Hodge
spectral sequence. In the following we give a generalization of a construction
from [Moonen and Wedhorn 2004]. Let S be a scheme over Fp, let X be a Deligne–
Mumford stack and let f : X→ S be a morphism of finite type. For every étale
morphism U → X, where U is a scheme, we set �•X/S|U :=�

•

U/S , where �•U/S is
the de Rham complex of U over S. As the formation of the de Rham complex �•U/S
commutes with étale localization on U , this defines a complex of quasicoherent
sheaves of OX-modules of finite type on the étale site on X whose differentials are
f −1OS-linear.

Attached to the naive and the canonical filtration of the de Rham complex
�•X/S we obtain two spectral sequences converging to the de Rham cohomology
H •

DR(X/S)= R• f∗(�•X/S), namely the Hodge–de Rham spectral sequence

H Eab
1 = Rb f∗(�a

X/S)=⇒ Ha+b
DR (X/S)

and the conjugate spectral sequence

conj Eab
2 = Ra f∗(Hb(�•X/S))=⇒ Ha+b

DR (X/S).

In particular these spectral sequences endow H d
DR(X/S) for d ≥ 0 with two de-

scending filtrations (H F i H d
DR(X/S))i∈Z and (conj F i H d

DR(X/S))i∈Z by sheaves of
OS-submodules which are called the Hodge filtration and the conjugate filtration.
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We denote by F : X → X(p) the relative Frobenius of X over S. For étale
morphisms g : U → X the diagram

U
Frob

//

g
��

U

g
��

X
Frob
// X,

where the horizontal morphisms are the absolute Frobenii, is cartesian. This shows
that the formation of the relative Frobenius also commutes with étale base change.
In particular, F is representable and finite.

If f is smooth, there is a unique isomorphism of graded sheaves of OX(p)-modules

C−1
:

⊕
b≥0

�b
X(p)/S

∼
−→

⊕
b≥0

Hb(F∗(�•X/S)
)
,

the (inverse) Cartier isomorphism, which satisfies

C−1(1)= 1

C−1(dσ−1(x))= class of x p−1dx

C−1(ω∧ω′)= C−1(ω)∧C−1(ω′).

To see this, we remark that because of the uniqueness assertion one may work
locally for étale topology on X(p). As the formation of differentials, of Hi ( ), and
of Frobenius is compatible with étale base change U → X, the unique existence
of C−1 for Deligne–Mumford stacks follows from the analogous result for smooth
morphisms of schemes.

From now on we assume that f is smooth and proper. We fix an integer d ≥ 0.
We assume that f and d satisfy the following two conditions.

(D1) The sheaves of OS-modules Rb f∗(�a
X/S) are locally free of finite rank for all

a, b ≥ 0 with a+ b ≤ d .

(D2) The Hodge–de Rham spectral sequence H Eab
1 = Rb f∗(�a

X/S)=⇒ Ha+b
DR (X/S)

degenerates for a+ b ≤ d (that is, for all r ≥ 1 and a, b with a+ b ≤ d the
differentials from and to H Eab

r vanish).

Then the formation of the Hodge–de Rham spectral sequence for a+b≤d commutes
with base change S′→ S, and H e

DR(X/S) is locally free of finite rank for e ≤ d.
Now one has Ra f (p)∗ ◦ F∗ = Ra f∗ because F is affine. Hence applying the

functor Ra f (p)∗ to the Cartier isomorphism we obtain an isomorphism

Ra f (p)
∗
(�b

X(p)/S)
∼
−→ Ra f∗

(
Hb(�•X/S)

)
.
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Because of Condition (D1) the OS-modules Ra f∗(�b
X/S) are flat for all a, b ≥ 0

with a+ b ≤ d and we obtain isomorphisms

(9.1) ϕab
: Ra f∗(�b

X/S)
(p)
= (H Eba)(p) ∼

−→ conj Eab
2 = Ra f∗

(
Hb(�•X/S)

)
.

This implies that the conjugate spectral sequence also degenerates for a+ b ≤ d
and that its formation commutes with arbitrary base change for a + b ≤ d (see
[Katz 1972] 2 if X is a scheme; the arguments for Deligne–Mumford stacks X are
verbatim the same).

Remark 9.2. We list some examples of morphisms f and integers d that satisfy
conditions (D1) and (D2).
(a) By [Moonen and Wedhorn 2004], conditions (D1) and (D2) are satisfied for all

d in case X is a smooth proper relative curve over S, in case X is an abelian
scheme over S, in case X is a smooth toric scheme over S and in case X is a
relative K3-surface over S.

(b) Conditions (D1) and (D2) are satisfied for all d ≤ p− 1 if there exists a flat
scheme S̃ over Z/p2Z satisfying S̃⊗Z/p2Z Fp ∼= S and a smooth proper lift of
X to S̃.

This is shown in [Deligne and Illusie 1987] if X is a scheme, and the
proof carries over verbatim to the case of Deligne–Mumford stacks because the
formation of the de Rham complex and the relative Frobenius is compatible with
pull back via étale morphisms X ′→ X (see also [Satriano 2012, Theorem 3.7]
for a generalization to tame Artin stacks; note that Satriano formulates only the
case where S = Spec k for a perfect field k but combining his proof with the
proof over a general base scheme in [Deligne and Illusie 1987] also shows the
general case).

(c) Let S = Spec k for a perfect field k. Let X be a smooth proper scheme over
k and let D ∈ Div(X)⊗Q be a Q-divisor whose support has only normal
crossings and such that exists an integer b prime to char(k) such that bD is
integral. Then in [Matsuki and Olsson 2005] there is attached a morphism
X→ X , where X is a smooth proper Deligne–Mumford stack which is the
“minimal covering” of X such that D becomes integral. Moreover the authors
show that each lift of (X, D) over W2(k) yields also a smooth proper lift of X

making it possible to apply (b). We refer to [loc. cit.,Theorem 4.1] for details.

We associate to f and d an F-zip (M,C •, D•, ϕ•) over S as follows: Set M=

H d
DR(X/S). Let C • be the Hodge filtration on M, and define the filtration D• by

Di = conj Fd−i H d
DR(X/S). As the formation of both spectral sequences commutes

with arbitrary base change, C • and D• are filtrations by locally direct summands,
that is they are filtrations in the sense of Sections 4C and 4D. The assumption of
the degeneracy of the Hodge spectral sequence and hence of the conjugate spectral
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sequence shows that one has functorial isomorphisms

(9.3)
gri

C H d
DR(X/S)∼= Rd−i f∗(�i

X/S)

grD
i H d

DR(X/S)∼= Rd−i f∗(Hi (�•X/S))

Finally, let

ϕi := ϕ
d−i,i
: (gri

C)
(p)
= Rd−i f∗(�i

X/S)
(p) ∼
−→ grD

i = Rd−i f∗(Hi (�•X/S)),

where ϕd−i,i is the isomorphism defined in (9.1). We denote this F-zip by H d
DR(X/S).

For i ∈ Z set

ni :=

{
hd−i,i

= rk(Rd−i f∗(�i
X/S)), for 0≤ i ≤ d;

0, otherwise.
This is a locally constant function on S. If ni is constant for all i , which is
automatic if S is connected, then n= (ni ) is the type of the F-zip H d

DR(X/S). Thus
for n :=

∑
i ni the isomorphism (8.3) yields a GLn-zip I of type χ over S, where

χ is the cocharacter of GLn associated to n as in Section 8A. By (3.28) we obtain a
decomposition into locally closed subschemes

S =
⋃
w∈I W

SwI

indexed by
I W =

{
w ∈ Sh : ∀i ∈ Z : w−1

(∑
j<i

n j + 1
)
< · · ·<w−1

(∑
j<i

n j + ni

)}
.

Let � be the partial order on I W given by (3.16). By the inclusion (3.29) and
Proposition 3.30 one has

SwI ⊆
⋃
w′�w

Sw
′

I

with equality if the classifying morphism S → GLn-ZipχFp
of the GLn-zip I is

generizing.

9B. Cup product and duality. The cup product in de Rham cohomology yields a
bilinear map of F-zips, as follows. As the cup product has not yet been worked out
for Deligne–Mumford stacks (as far as we know), we restrict ourself to the case
that f : X→ S is a smooth and proper morphisms of schemes over Fp satisfying
conditions (D1) and (D2) for all d . Using the Künneth formula for hypercohomology
of complexes ([Grothendieck 1963, Section 6.7.8], applicable because �a

X/S and
H d

DR(X/S) are S-flat for all a and d) one sees that the wedge product

(9.4) �•X/S ⊗ f −1OS �
•

X/S→�•X/S

induces a homomorphism of locally free graded OS-modules of finite rank

(9.5) ∪: H •

DR(X/S)⊗OS H •

DR(X/S)−→ H •

DR(X/S),
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the cup product. This makes H •(X/S) into a graded anticommutative OS-algebra. It
is easily checked that the wedge product sends the tensor product of the naive (resp.
canonical) filtrations to the naive (resp. canonical) filtration. Thus by functoriality
of the spectral sequence associated to a filtered complex the cup product induces
for all d, e ≥ 0 a morphism of filtered locally free modules of finite rank

(9.6) ∪: H d
DR(X/S)⊗OS H e

DR(X/S)−→ H d+e
DR (X/S).

In particular we obtain induced pairings on the associated graded pieces. Moreover,
using the defining properties of the Cartier isomorphism, one sees that there is a
commutative diagram

(9.7)

gri
C H d

DR(X/S)(p)⊗ gr j
C H e

DR(X/S)(p) //

ϕd−i,i
⊗ϕe− j, j

��

gri+ j
C H d+e

DR (X/S)(p)

ϕd+e−i− j,i+ j

��

grD
i H d

DR(X/S)⊗ grD
j H e

DR(X/S) // grD
i+ j H d+e

DR (X/S).

Hence we obtain a morphism of F-zips over S

(9.8) ∪: H d
DR(X/S)⊗ H e

DR(X/S)→ H d+e
DR (X/S),

Example 9.9. Let A→ S be an abelian scheme. Then the cup product yields an
isomorphism of graded anticommutative algebras

3•H 1
DR(A/S) ∼

−→ H •

DR(A/S)

(see for example [Berthelot et al. 1982, Proposition 2.5.2]). The above arguments
show that this is in fact an isomorphism of F-zips.

Now assume in addition that f has geometrically connected fibers of fixed
dimension n. Then we have a trace isomorphism

(9.10) Rn f∗�n
X/S
∼= H 2n

DR(X/S)
tr
−→∼ OS.

In other words, we obtain an isomorphism of F-zips

(9.11) H 2n
DR(X/S)

tr
−→∼ 1(n).

The cup-product pairings of F-zips

(9.12) H d
DR(X/S)⊗OS H 2n−d

DR (X/S)−→ H 2n
DR(X/S)= 1(n)

are perfect dualities [Katz 1972, (2.3.5.1)], that is they yield isomorphisms of F-zips

(9.13) H d
DR(X/S) ∼

−→ H 2n−d
DR (X/S)∨(n).
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For d = n the morphism (9.12) factors through

(9.14)
v : 32 H n

DR(X/S)→ 1(n), if n is odd;

b : S2 H n
DR(X/S)→ 1(n), if n is even.

In other words the pairing is symplectic if n is odd and it is symmetric if n is even.
For n odd we hence obtain a twisted symplectic F-zip (H n

DR(X/S),1(n), v).
For n even (and p> 2) we obtain a twisted orthogonal F-zip (H n

DR(X/S),1(n), b).

9C. Zip strata attached to truncated Barsotti–Tate groups of level 1. Let S be a
scheme over Fp and let X be a truncated Barsotti–Tate group of level 1 over S. We
denote by X∨ its Cartier dual. Let D(X) be its covariant Dieudonné crystal and
let M(X) be its evaluation at the trivial PD-thickening (S, S, 0). Then there is an
exact sequence, functorial in X and compatible with base change S′→ S

(9.15) 0→ ωX∨→M(X)→ Lie(X)→ 0,

where ωX∨ = e∗�X∨/S is the sheaf of OS-modules of invariant differentials of X∨

(see [Berthelot et al. 1982, Corollary 3.2]). In particular the relative Frobenius
F : X → X (p) and the Verschiebung V : X (p)

→ X induce OS-linear homomor-
phisms

F :=M(V ) : M(X)(p)→M(X), V :=M(F) : M(X)→M(X)(p).

Note that the roles of F and V are switched as we are considering covariant
Dieudonné theory. Moreover

(ωX∨)
(p)
= ker(F)= Im(V), ker(V)= Im(F)

are locally direct summands of M(X)(p) and of M(X), respectively.
We attach an F-zips M(X) := (M(X),C •, D•, ϕ•) as follows. Set

C0
:=M(X), C1

:= ωX∨, C2
:= 0

D−1 := 0, D0 := ker(V), D1 :=M(X)

and let

ϕ0 : M(X)(p)/(C1)(p)→ D0, ϕ1 : (C1)(p)→M(X)/D0

be the OS-linear isomorphisms induced by F and V−1, respectively.
Altogether we obtain a functor X 7→ M(X) from the category of truncated

Barsotti–Tate groups of level 1 over S to the category of F-zips over S. Moreover
it follows from [Berthelot et al. 1982, Proposition 5.2] that there is an isomorphism
of F-zips

(9.16) M(X∨)∼= Hom(M(X),1(1)),
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which is functorial in X and compatible with base change. If d := rkOS (Lie X) is
the dimension of X and n its height, then the type of the F-zip M is (ni )i with

(9.17) n0 = d, n1 = n− d, ni = 0 for i 6= 0, 1.

Truncated Barsotti–Tate groups of level 1 of height n and dimension d over
schemes over Fp form a smooth algebraic stack BTn,d

1 of finite type over Fp [Wedhorn
2001, Proposition 1.8] and the above construction yields a morphism of algebraic
stacks

(9.18) 8 : BTn,d
1 → F-Zipn

Fp
,

where n is given by (9.17). By Dieudonné theory this functor is an equivalence on
points with values in a perfect field. In particular, for every algebraically closed
field K of characteristic p we obtain a bijection

(9.19)
{isomorphism classes of truncated Barsotti–Tate groups

over K of level 1, height n, and dimension d

}
↔ {w ∈ Sn : w

−1(1) < · · ·<w−1(d), w−1(d + 1) < · · ·<w−1(n)}

This was first proved by Moonen [2001].
The following results (all due to Eike Lau) show that 8 (9.18) is a smooth

(nonrepresentable) morphism.

Remark 9.20. Let R be an Fp-algebra. Let σ be the ring endomorphism x 7→ x p, let
I := R(σ ) be the restrictions of scalars of the R-module R under σ , and let σ1 : I→ R
be the σ -linear map given by the identity of R. Lau [2013] has defined the notion
of a display of level 1 over R. Recall that this is a tuple D = (P, Q, ι, ε, F, F1)

consisting of R-modules P and Q together with R-linear maps I⊗P
ε
−→ Q

ι
−→ P

such that P and coker(ι) are finitely generated and projective and such that the
following sequence is exact

0−→ I ⊗ coker(ι)
ε
−→ Q

ι
−→ P −→ coker(ι)−→ 0.

Finally, F : P→ P and F1 : Q→ P are σ -linear maps such that F1(Q) generates
P and such that F1 ◦ ε = σ1⊗ F . The rank of P is called the height of D and the
rank of coker(ι) is called the dimension of D. One has the obvious notion of an
isomorphism of displays of level 1 and of base change for a ring homomorphism
R → R′. One obtains the category Dispn,d

1 of level 1 displays of height n and
dimension d fibered over the category of Fp-algebras. This is a smooth algebraic
stack over Fp [Lau 2013, Proposition 3.15].

To every display D = (P, Q, ι, ε, F, F1) of level 1 of height n and dimension
d over R one can attach an F-zip of type n with n as in (9.17) as follows. We set
M = P , C1

= im(ι : Q→ P), D0 := im(F] : P (σ )→ P), where F] denotes the
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linearization of F , and we define ϕ0, ϕ1 as the linearizations of the σ -linear maps
ϕ
[

0, ϕ[1 defined by the following commutative diagrams

P
F

//

��

P

��

Q
F1

//

��

P

��
P/C1

ϕ
[

0
// D0 C1

ϕ
[
1
// P/D0.

Then it is straight forward to check (by choosing a normal decomposition, see
[Lau 2013, Section 3.2]) that this contruction defines an equivalence of the cat-
egory of displays of level 1 of height n and dimension d over R with the cate-
gory of F-zips of type n over R. We obtain an equivalence of algebraic stacks
2 : Dispn,d

1
∼
−→ F-Zipn

Fp
.

Lau has defined a morphism 9 : BTn,d
1 → Dispn,d

1 of algebraic stacks such that
the composition with the equivalence 2 is the morphism 8 [Lau 2013, Section 4].
Moreover he proves that 9 is a smooth morphism (Theorem A of loc. cit.) which
shows the smoothness of 8.

Example 9.21. Let X be a p-divisible group of height n and dimension d over a
finite field Fq (where q is a power of p). Let N be the attached Rapoport–Zink
space over Fq [Rapoport and Zink 1996], that is, N(S) consists for every scheme
S over Fq of isomorphism classes of pairs (X, ρ), where X is a p-divisible group
over S and ρ : XS → X is a quasiisogeny. Then N is representable by a formal
scheme locally formally of finite type over Fq . Attaching to X its p-torsion X [p]
defines a morphism

ε : N→ (BTn,d
1 )⊗ Fq

which is formally smooth by the main result of [Illusie 1985] and by Drinfeld’s
result that quasiisogenies between p-divisible groups can always be deformed
uniquely. Composing ε with the smooth morphism 8 from (9.18) we obtain a
formally smooth (and hence generizing) morphism N→ F-Zipn

Fq
and hence locally

closed formal subschemes Nw as in (3.28) with

Nw
=

⋃
w′�w

Nw′ .

This can be generalized to other Rapoport–Zink spaces.

For every truncated Barsotti–Tate group X of level 1 over a scheme S over Fp

the morphism 8 : BTn,d
1 → F-Zipn

Fp
from (9.18) yields a homomorphism of the

automorphism group schemes

α : Aut(X)→ Aut(M(X)).
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As both stacks are quotient stacks of a linear group acting on a scheme of finite type
over Fp, the two group schemes Aut(X) and Aut(M(X)) are affine and of finite
type over S (Proposition 2.5). If S = Spec K for an algebraically closed field K , it
is shown in [Wedhorn 2001, Section (5.7)], that α induces a homeomorphism of
the reduced subgroup schemes

Aut(X)red
∼
−→Aut(M(X))red.

Hence we can use Proposition 3.34 to describe Aut(X).

Proposition 9.22. Let X be a truncated Barsotti–Tate group of level 1 over an
algebraically closed field K of characteristic p. Let n be its height and d the
dimension of its Lie algebra. Let w be the permutation corresponding to the
isomorphism class of X via the bijection (9.19).

(a) The reduced subgroup scheme of the identity component Aut(X) is a unipotent
linear algebraic group of dimension d(n− d)− `(w). In particular

dim(Aut(X))= d(n− d)− `(w).

(b) The group of connected components of Aut(X) is isomorphic to the group 5
defined in Proposition 3.34.

Note that for a permutation w ∈ Sn the length can be easily computed by

`(w)= #{(i, j) : 1≤ i < j ≤ n, w(i) > w( j)}.
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MEAN VALUES OF L-FUNCTIONS OVER FUNCTION FIELDS

JEFFREY LIN THUNDER

For a fixed global function field, positive integer and complex number, we
prove estimates for mean values of L-functions evaluated at the given com-
plex number, where the averaging is done over quadratic extensions of the
given function field with genus equal to the given positive integer. To ac-
complish this we utilize our previous results on certain quadratic character
sums over function fields.

1. Introduction

In modern number theory L-series play a prominent role. They encode many
deep properties of number fields and primes and are objects of intense interest.
The analogous L-functions over global function fields play an equally prominent
role. Here we will prove estimates for mean values of such L-functions, where
the averaging is done over quadratic extensions of a fixed global function field.
Our estimates cover a much wider range of cases than the similar estimates of
Hoffstein and Rosen [1992] and those of Andrade and Keating (for values on
the critical line) [2012]. Our methods are akin to those used by Siegel [1944],
where he estimates the average number of quadratic forms with given discriminant
and signature.

For a prime p, let Fp denote the finite field with p elements and let X be
transcendental over Fp, so that Fp(X) is a field of rational functions. Fix algebraic
closures Fp of Fp and Fp(X) ⊃ Fp of Fp(X). In what follows, by global function
field (or simply function field) we mean a finite algebraic extension K ⊇ Fp(X)
contained in Fp(X). For such a field K we have K ∩ Fp = FqK

for some finite field
FqK

with qK elements; this field is called the field of constants of K . We write gK

for the genus of K and JK for the number of divisor classes of degree 0. We denote
the set of places of K by M(K ) and the divisor group (i.e., the free abelian group
generated by the places) by DivK . The reader can refer to Chapters I and V of
[Stichtenoth 1993] for a thorough background on these notions. We will use capital
script German letters to denote divisors A, B, etc., with the sole exception of the
zero divisor 0. For any divisor A ∈ DivK we write A=

∑
ordv(A) · v, where the

MSC2010: 11M41.
Keywords: function field, L-functions.
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sum is over all places v ∈ M(K ). The support SuppA of a divisor A ∈DivK is the
finite (possibly empty) set of places v ∈ M(K ) where ordv(A) 6= 0. We say A is
effective if A≥ 0, i.e., ordv(A)≥ 0 for all places v ∈ M(K ). The degree map on
DivK , normalized to have image Z (see Chapter V of [Stichtenoth 1993] again)
will be denoted deg.

With the above notation, the zeta function ζK is given by

ζK (s)=
∑

A∈DivK
A≥0

q−s degA.

Since

(0)
∑

A∈DivK
A≥0, degA= j

1=
JK

qK − 1
(q j+1−gK

K − 1)

for all integers j ≥ 2gK −1 by the Riemann–Roch Theorem (see [Stichtenoth 1993,
Lemma V.1.4], for example), the series defining ζK (s) converges for all s ∈ C with
<(s) > 1. The L-function L K is given by

L K (q−s
K )= (1− q−s

K )(1− q1−s
K )ζK (s)=

ζK (s)
ζFqK

(X)(s)
.

It is well known that L K is a polynomial of degree 2gK in q−s
K and all its zeros

have <(s)= 1
2 (see [Stichtenoth 1993, Chapter V], for example).

For a fixed function field K and integer m ≥ 0, we will be concerned with sums
over quadratic extensions of K with genus m and the same field of constants FqK

.
We first denote the number of such quadratic extensions

NK (m)=
∑
[F :K ]=2

gF=m, qF=qK

1.

We note that NK (m) is asymptotically q2m
K 2JK q3−5gK

K /ζK (2)(qK − 1) as m→∞
(see Proposition 1 below). We will investigate the arithmetic mean of the set
of values L F (q−s) over the quadratic extensions F ⊃ K of genus m, and higher
moments as well. It will prove convenient to multiply these means by the L-function
value of the ground field K , Thus, for a fixed s ∈ C and integer n ≥ 1, we set

MK (s,m, n)= (NK (m))−1
∑
[F :K ]=2

gF=m, qF=qK

L F (q−s)n L K (q−s)−n

provided NK (m) > 0, and set MK (s,m, n) = 0 otherwise. We will prove the
following estimates:
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Theorem 1. Let K be a function field with field of constants Fq . For all positive
integers n and all s ∈ C with <(s) > 1

2 , set

σK (s, n)=
∏

v∈M(K )

(
1+

Pn(q−s deg v)

(n− 1)!(1+ q− deg v)(1− q−2s deg v)n

)
,

where Pn(X) ∈ Z[X ] is given by

dn−1 Xn+1/(1− X2)

d Xn−1 =
Pn(X)

(1− X2)n
.

Then for all integers m ≥ 0, all ε > 0 and all s ∈ C with <(s) > 1+ (n− 1)ε if q is
odd, or <(s) > 1+ nε− 1/2n if q is even, we have

|MK (s,m, n)− σK (s, n)| ≤
{

c(ε)n(q−m
+ q−4m(<(s)−1−(n−1)ε)) if q is odd,

c(ε)n(q−m
+ q−2mn(<(s)−1−ε+1/2n)) if q is even,

where the constant c(ε) > 0 depends only on K and ε.

We obtain stronger estimates (i.e., better error terms) when we consider the case
n = 1:

Theorem 2. Let K be a function field with field of constants Fq and let m be an
integer with m > gK . Then MK (s,m, 1) is a polynomial of degree 2(m − gK ) in
q−s satisfying the same functional equation as the L-function,

MK (s,m, 1)= qm−gK q−s2(m−gK )MK (1− s,m, 1).

Further, MK (s,m, 1) is an even function in q−s with

MK (s,m, 1)= 1+ a2q−2s
+ · · ·+ a2(m−gK )q

−2s(m−gK ).

We have a2(m−gK− j) = qm−gK−2 j a2 j for all j = 0, . . . ,m− gK , and, for all ε > 0,

a2 j =
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1
+

{
O(q−mq2 j (5/4+ε)) if q is odd,
O(q−mq2 j (1+ε)) if q is even,

where the implicit constants depend only on K and ε. Finally,∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1

= q j JK q1−gK ζK (2)
q − 1

∏
v∈M(K )

(1− 2q−2 deg v
+ q−3 deg v)+ O(qε j )

for all j ≥ 0, where the implicit constant depends only on K and ε.
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Corollary 1. Let K be a function field with field of constants Fq and let m be a
positive integer. Then for all ε > 0 and all s ∈ C with <(s) > 1

2

MK (s,m, 1)= σK (s, 1)+


O
(

q−m(2/3−ε)(2<(s)−1)

1− q1−2<(s)

)
if q is odd,

O
(

q−m(1−ε)(2<(s)−1)

1− q1−2<(s)

)
if q is even,

where the implicit constants depend only on K and ε. In particular, setting s = 1
we have

(NK (m))−1
∑
[F :K ]=2

gF=m, qF=q

JFq−gF

= JK q−gK (ζK (2))2
∏

v∈M(K )

(1− q−2 deg v
− q−3 deg v

+ q−4 deg v)

+

{
O(q−m(2/3−ε)) if q is odd,
O(q−m(1−ε)) if q is even.

Mean values similar to those in Corollary 1 were previously considered by
Hoffstein and Rosen [1992], but only in the case where the field K is a field of
rational functions and only in odd characteristic. More general cases were considered
by Fisher and Friedberg [2004], with further refinements by Chinta, Friedberg and
Hoffstein [Chinta et al. 2006], but again only in odd characteristic. The higher
moments in Theorem 1 have not been previously estimated to our knowledge.
Our approach differs from those previous by utilizing more general estimates for
quadratic characters over function fields, including estimates in characteristic 2
(which is clearly special when considering quadratic extensions).

Theorem 2 can also be used to estimate the “average” of L F (q−1/2) (cf. [Goldfeld
and Hoffstein 1985, Theorem 1] for the case where K is replaced by Q). As alluded
to above, such a result is proven in [Andrade and Keating 2012], though again
only in certain special cases where the ground field is a field of rational functions
(specifically, for q congruent to 1 modulo 4).

Corollary 2. Let K be a function field with field of constants Fq and let m be an
integer with m > gK . Set m′ = m− gK and

C(K )=
JK q1−gK ζK (2)

q − 1

∏
v∈M(K )

(1− 2q−2 deg v
+ q−3 deg v).

Then the series

C ′(K )=
∞∑
j=0

( ∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1
)
−C(K )



MEAN VALUES OF L -FUNCTIONS OVER FUNCTION FIELDS 241

converges and, for all ε > 0,

MK
( 1

2 ,m, 1
)
= (m′+ 1)C(K )+ 2C ′(K )+

{
O(q−m(1/4−ε)) if q is odd,
O(q−m(1/2−ε)) if q is even,

where the implicit constants depend only on K and ε.

Finally, we note that Theorem 2 can also be used to give the “average” number
of places of degree 1.

Corollary 3. Let K be a function field with field of constants Fq . Then (assuming
NK (m) 6= 0)

(NK (m))−1
∑
[F :K ]=2

gF=m, qF=q

#{w ∈ M(F) : degw = 1} = #{v ∈ M(K ) : deg v = 1}.

One can compare this with the famous estimate due to Drinfeld and Vladut
[Stichtenoth 1993, Theorem V.3.5],

lim sup
m→∞

max
F⊃K

gF=m, qF=q

#{w ∈ M(F) : degw = 1}
m

≤ q1/2
− 1.

2. Preparatory Results

We briefly discuss separability issues before proceeding further. If K is a function
field and F ⊃ K is a quadratic extension, then F is clearly a separable extension
if qK is odd. If qK is even this is not necessarily the case. However, it turns out
that there is exactly one inseparable quadratic extension F ⊃ K with qF = qK

when qK is even; it satisfies K = {α2
: α ∈ F} and gF = gK by [Stichtenoth 1993,

Proposition III.9.2]. Therefore we can safely ignore this inseparable extension and
tacitly assume in what follows that all quadratic extensions that appear are separable
extensions.

If K is a function field, v ∈ M(K ) and F is a quadratic extension of K with
qF = qK , we set

χ(F/v)=


0 if v ramifies in F ,
1 if v is inert in F ,
−1 if v splits in F .

This is extended to effective divisors A ∈ DivK by

χ(F/A)=
∏

v∈SuppA

(
χ(F/v)

)ord(A)
.

The following is shown in [Thunder 2013, §1]:
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Lemma 1. Let K be a function field with field with field of constants Fq and F ⊃ K
be a quadratic extension with qF = q. Then

L F (q−s)= L K (q−s)
∑

A∈DivK
A≥0

χ(F/A)q−s degA,

so that

NK (m)MK (s,m, n)=
∑

C∈DivK
C≥0

∑
Ai≥0

A1+···+An=C

q−s degC
∑
[F :K ]=2

gF=m,qF=qK

χ(F/C).

It turns out that the sums in Lemma 1 where degC is odd vanish entirely and,
when degC is even, the C ∈ 2 DivK dominate.

Lemma 2 [Thunder 2013, Lemma 9]. Suppose K is a function field with field of
constants Fq and m is a nonnegative integer. Then for all effective divisors C∈DivK
of odd degree, ∑

[F :K ]=2
gF=m, qF=q

χ(F/C)= 0.

Proposition 1 [Thunder 2013, Proposition 7]. Let K be a function field with field
of constants Fq and m be a nonnegative integer. Set

N ′K (m)= q2m 2JK q3−5gK

ζK (2)(q − 1)
.

For all effective divisors C ∈ DivK and all ε > 0∣∣∣∣ ∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− N ′K (m)
∏

v∈SuppC

(1+ q− deg v)−1
∣∣∣∣

≤

{
c′(ε)q(1/2+ε)mqε degC if q is odd,
c′(ε)

(
qεmqε degC

+ qm
)

if q is even,

where c′(ε) > 0 depends only on K and ε. In particular,

|NK (m)− N ′K (m)| ≤
{

c′(ε)q(1/2+ε)m if q is odd,
c′(1)qm if q is even.

Proposition 2 [Thunder 2013, Proposition 5]. Suppose K is a function field with
qK = q odd and let C ∈ DivK be an effective divisor with C 6∈ 2 DivK . Then, for
all nonnegative integers m and all ε > 0, we have∣∣∣∣ ∑

[F :K ]=2
gF=m, qF=q

χ(F/C)
∣∣∣∣≤ c′′(ε)qmq(ε+1/4) degC,

where the constant c′′(ε) > 0 depends only on K and ε.
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Proposition 3 [Thunder 2013, Proposition 6]. Suppose K is a function field with
qK = q even and let C ∈ DivK be an effective divisor with C 6∈ 2 DivK . Then, for
all nonnegative integers m and all ε > 0, we have∣∣∣∣ ∑

[F :K ]=2
gF=m, qF=q

χ(F/C)
∣∣∣∣≤ c′′(ε)qmqε degC,

where the constant c′′(ε) > 0 depends only on K and ε.

We also have the following elementary estimates:

Lemma 3. Suppose K is a function field with field of constants Fq . Let C ∈ DivK
be an effective divisor. For all integers n > 1 and all ε > 0,∑

Ai≥0
A1+···+An=C

1≤ c1(ε)
n−1q(n−1)ε degC,

where the constant c1(ε)> 0 depends only on K and ε. Also, for all positive integers
m and all ε > 0,∑

A≥0
degA≤m

q(ε−1) degA
≤

c2

ε
qεm,

∑
A≥0

degA≥m

q−(1+ε) degA
≤

c2

ε
q−εm,

and

ζK (1+ ε)≤
(

c2

ε

)[K :Fq (X)]

,

where the constant c2 > 0 depends only on K .

Proof. We prove the first part by induction on n. The case n = 2 follows directly
from [Thunder 2013, Lemma 0]. Now assume n > 2. Then∑

Ai≥0
A1+···+An=C

1=
∑

0≤An≤C

∑
Ai≥0

A1+···+An−1
=C−An

1

≤

∑
0≤An≤C

c1(ε)
n−2q(n−2) deg(C−An)

≤ c1(ε)
n−2q(n−2)ε degC

∑
0≤An≤C

1

≤ c1(ε)
n−1q(n−1)ε degC.

For the next two inequalities, we see by (0) that there is a positive constant c,
depending only on the field K , such that for all nonnegative integers j we have∑

A≥0
degA= j

1≤ cq j .
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Finally, by the Euler product representation of the zeta function, we have

ζK (s)≤ (ζFq (X)(s))
[K :Fq (X)]

for all real s > 1. (See [Thunder and Widmer 2013, Lemma 2], for example.) Using
the well-known formula

ζFq (X)(s)=
1

(1− q−s)(1− q1−s)

and substituting s = 1+ ε gives

ζK (1+ ε)≤
(

c′

ε

)[K :Fq (X)]

for some positive constant c′ depending only on q. Setting c2 to be the maximum
of c and c′ completes the proof. �

3. Proof of Theorem 1

We first deal with the summands in Lemma 1 where C ∈ 2 DivK . This is done in
two steps.

Lemma 4. Suppose K is a function field with field of constants Fq and s ∈ C with
<(s) > 1

2 . Then, for all integers n ≥ 1,∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1
= σK (s, n).

Proof. Set

θn(C)= q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1
∑
Ai≥0

A1+···+An=2C

1.

Note that θn(C+D)= θn(C)θn(D) for all n whenever C,D ∈ DivK have disjoint
support. Thus

(1)
∑
C≥0

θn(C)=
∏

v∈M(K )

(
1+

∞∑
k=1

θn(kv)
)
.

For all positive integers k and all places v ∈ M(K ),

θn(kv)= (1+ q− deg v)−1q−2ks deg v f (2k, n),

where

f (m, n)=
∑
i j≥0

i1+···+in=m

1=
(m+ 1) · · · (m+ n− 1)

(n− 1)!
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for integers m ≥ 0 and n ≥ 1. Therefore

(2)
∞∑

k=1

θn(kv)= (1+ q− deg v)−1
∞∑

k=1

q−2ks deg v (2k+ 1) · · · (2k+ n− 1)
(n− 1)!

.

Differentiating term-by-term n− 1 times yields

(3)
dn−1∑∞

k=1 x2k+n−1

dxn−1 =

∞∑
k=1

x2k(2k+ 1) · · · (2k+ n− 1).

On the other hand,

(4)
dn−1∑∞

k=1 x2k+n−1

dxn−1 =
dn−1xn−1∑∞

k=1 x2k

dxn−1

=
dn−1xn+1∑∞

k=0 x2k

dxn−1

=
dn−1xn+1/(1− x2)

dxn−1

= Pn(x)(1− x2)−n.

The lemma follows from (1)–(4). �

Lemma 5. Let K be a function field with field of constants Fq . Suppose m is a
nonnegative integer such that NK (m) > 0. Then, for all ε > 0 and all s ∈ C with
<(s) > (1+ nε)/2,∣∣∣∣ 1

NK (m)

∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− σK (s, n)
∣∣∣∣

≤

{
c3(ε)

n+1q−m(3/2−ε) if q is odd,
c3(ε)

nq−m if q is even,

where c3(ε) > 0 depends only on K and ε.

Proof. We have

(5)
∣∣∣∣∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− NK (m)σK (s, n)
∣∣∣∣

≤

∣∣∣∣∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− N ′K (m)σK (s, n)
∣∣∣∣

+ |NK (m)− N ′K (m)| |σK (s, n)|.
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By Lemma 3 and using 2<(s)− (n− 1)ε > 1+ ε,

(6)
∣∣∣∣∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1
∣∣∣∣

≤

∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2<(s) degC

≤ c1

(
ε

2

)n−1∑
C≥0

q(−2<(s)+(n−1)ε) degC

< c1

(
ε

2

)n−1
ζK (1+ ε)

≤ c4ε
n,

where c4(ε)=max{c1(ε/2), (c2/ε)
[K :Fq (X)]}.

Now, by Proposition 1, Lemma 4 and (6),

(7a)
∣∣∣∣∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− N ′K (m)σK (s, n)
∣∣∣∣

≤ c′(ε)q(1/2+ε)m
∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2<(s) degC
≤ c′(ε)c4(ε)

nq(1/2+ε)m

if q is odd, and

(7b)
∣∣∣∣∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)− N ′K (m)σK (s, n)
∣∣∣∣

� c′(1)qm
∑
C≥0

∑
Ai≥0

A1+···+An=2C

q−2<(s) degC
≤ c′(1)c4(ε)

nqm

if q is even. Also, by Proposition 1, Lemma 4 and (6)

(8) |NK (m)− N ′K (m)| |σK (s, n)| ≤
{

c′(ε)c4(ε)
nq(1/2+ε)m if q is odd,

c′(1)c4(ε)
nqm if q is even.

Finally, if NK (m) isn’t zero, then

(9) c5q2m
≤ NK (m)≤ c6q2m

by Proposition 1, where c5, c6 > 0 depend only on K . The lemma follows from (5)
and (7a)–(9) when q is odd, and (5), (7b), (8) and (9) when q is even. �

With the sums over the main terms done, we now turn to the sums over the error
terms, i.e., the sums where A1+ · · ·+An 6∈ 2 DivK . We have the following:
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Lemma 6. Suppose K is a function field with field of constants Fq and m is a
nonnegative integer. Fix an integer n ≥ 2 and an ε > 0. Suppose that s ∈ C with
<(s) > 1

2 + (n− 1)ε. Then, for any quadratic extension F ⊃ K with gF = m and
qF = q ,∑
Ai≥0

q−<(s) deg(A1+···+An−1)

∣∣∣∣ ∑
An≥0

degAn>2m−2gK
A1+···+An 6∈2 DivK

q−s degAnχ(F/A)
∣∣∣∣≤ c7ε

n+1q−2m(<(s)−1/2),

where the constant c7(ε) > 0 depends only on K and ε.

Proof. For the moment, fix A1, . . . ,An−1 and set B = A1 + · · · +An−1. Write
B=B′+ 2B′′, where B′ and B′′ are both effective divisors and ordv(B′)= 1 for
all v ∈ SuppB′. Fix an integer j > 2m− 2gK . As shown in the proof of [Thunder
2013, Lemma 25],

(10)
∣∣∣∣ ∑

An≥0
degAn= j

B+An 6∈2 DivK

χ(F/A)q−s degAn

∣∣∣∣≤ c8q− deg(B′)/2q− j (<(s)−1/2)

for some c8 > 0 depending only on K . Now, since <(s)− 1
2 > (n− 1)ε,

(11)
∑

j>2m−2gK

q− j (<(s)−1/2) <
∑

j>2m−2gK

q− j (n−1)ε

≤ c9q−2m(n−1)ε
∑
j≥0

q− j (n−1)ε

= c9q−2m(<(s)−1/2)(1− q−(n−1)ε)−1

≤ c9c10q−2m(<(s)−1/2)((n− 1)ε)−1,

where c9, c10 > 0 depend only on K . By Lemma 3,

(12)
∑
B≥0

∑
Ai≥0

A1+···+An−1=B

q−<(s) degBq− deg(B′)/2

≤ c1(ε)
n−2

∑
B≥0

q((n−2)ε−<(s)) degBq− deg(B′)/2

= c1(ε)
n−2

∑
B≥0

q((n−2)ε−1/2−<(s)) degB′q2((n−2)ε−<(s)) degB′′

≤ c1(ε)
n−2

∑
B′≥0

q((n−2)ε−1/2−<(s)) degB′
∑
B′′≥0

q2((n−2)ε−<(s)) degB′′

< c1(ε)
n−2ζK (1+ ε)ζK (1+ 2ε) < c11(ε)

n,

where c11(ε)=max{c1(ε), (c2/ε)
[K :Fq (X)]}. The lemma follows from (10)–(12). �
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Proof of Theorem 1. Suppose first that q is odd. Since the cases n = 2 and n = 1 of
Theorem 1 follow directly from [Thunder 2013, Theorem 1, Corollary 1], we will
assume that n ≥ 3. We may also assume that NK (m) > 0. Rearranging the sums
and then using Lemma 6 yields

(13)
∣∣∣∣ 1

NK (m)

∑
C≥0

C 6∈2 DivK

∑
Ai≥0

A1+···+An=C
degAn>2m−2gK

∑
[F :K ]=2

gF=m, qF=q

q−s degCχ(F/C)
∣∣∣∣

≤ c7(ε)
n+1q−2m(<(s)−1/2)

whenever <(s) > 1
2 + (n− 1)ε.

Let δ >0, to be chosen later. Using Proposition 2 and setting B=A1+· · ·+An−1

in what follows, we have

(14)
∣∣∣∣ ∑

C≥0
C 6∈2 DivK
degC<4m

∑
Ai≥0

A1+···+An=C
degAn≤2m−2gK

q−s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/C)
∣∣∣∣

≤ c′′(δ)qm
∑
An≥0

degAn≤2m−2gK

q(δ+1/4−<(s)) degAn

×

∑
B≥0

degB<4m−degAn

∑
Ai≥0

A1+···+An−1
=B

q(δ+1/4−<(s)) degB

≤ c′′(δ)c1(δ)
n−2qm

∑
An≥0

degAn≤2m−2gK

q(δ+1/4−<(s)) degAn
∑
B≥0

degB<4m−degAn

q((n−1)δ+1/4−<(s)) degB.

If <(s)≤ 5
4+(n−2)ε we set δ= ε above. Since 5

4+(n−1)ε−<(s)≥ ε, Lemma 3
implies that

(15)
∑
An≥0

degAn≤2m−2gK

q(ε+1/4−<(s)) degAn
∑
B≥0

degB<4m−degAn

q((n−1)ε+1/4−<(s)) degB

≤
c2

ε
q4m(5/4+(n−1)ε−<(s))

∑
An≥0

degAn≤2m−2gK

q−(1+(n−2)ε) degAn

<
c2

ε
ζK (1+ (n− 2)ε)q4m(5/4+(n−1)ε−<(s))

≤
c2

ε

(
c2

ε

)[K :Fq (X)]

q4m(5/4+(n−1)ε−<(s)).

If <(s) > 5
4 + (n− 1)ε we set nδ =<(s)− 5

4 and note that δ > (n− 2)ε/n ≥ ε/3
since <(s) > 1+ (n− 1)ε. We thus may assume that c′′(δ)c1(δ)

n−2
≤ c12(ε)

n−2
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for some c12(ε) > 0 depending only on K and ε. Also, by Lemma 3,

(16)
∑
An≥0

degAn≤2m−2gK

q(δ+1/4−<(s)) degAn
∑
B≥0

degB<4m−degAn

q((n−1)δ+1/4−<(s)) degB

<
∑
An≥0

q−((n−1)δ+1) degAn
∑
B≥0

q−(δ+1) degB

< ζK (1+ (n− 1)δ)ζK (1+ δ)

≤

(
c2

δ

)2[K :Fq (X)]

<

(
3c2

ε

)2[K :Fq (X)]

.

When degC≥ 4m, we trivially estimate

(17)
∣∣∣∣ ∑

C≥0
C 6∈2 DivK
degC≥4m

∑
Ai≥0

A1+···+An=C
degAn≤2m−2gK

q−s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/C)
∣∣∣∣

≤ NK (m)
∑
An≥0

degAn≤2m−2gK

q−<(s) degAn
∑
B≥0

degB≥4m−degAn

∑
Ai≥0

A1+···+An−1=B

q−<(s) degB

≤ NK (m)c1(ε)
n−2

∑
An≥0

degAn≤2m−2gK

q−<(s) degAn
∑
B≥0

degB≥4m−degAn

q((n−2)ε−<(s)) degB.

Since <(s) > 1+ (n− 1)ε by hypothesis, Lemma 3 implies that

(18)
∑
B≥0

degB≥4m−degAn

q((n−2)ε−<(s)) degB
≤

c2

ε
q(4m−degAn)((n−2)ε+1−<(s))

and also

(19)
∑
An≥0

degAn≤2m−2gK

q−<(s) degAn q(<(s)−1−(n−2)ε) degAn

< ζK (1+ (n− 2)ε)≤
(

c2

ε

)[K :Fq (X)]

.

Combining (9) with (13)–(19) yields

(20)
∣∣∣∣ 1

NK (m)

∑
C≥0

C 6∈2 DivK

∑
Ai≥0

A1+···+An=C

∑
[F :K ]=2

gF=m, qF=q

q−s degCχ(F/C)
∣∣∣∣

≤ c13(ε)
n+1(q−m

+ q−4m(<(s)−1−(n−1)ε))
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for some c13(ε) > 0 depending only on K and ε. The case where q is odd (and
n ≥ 3) in Theorem 1 follows from Lemma 1, Lemma 5 and (20).

Suppose now that q is even. This time we use Lemma 6 to get

(21)
∣∣∣∣ 1

NK (m)

∑
C≥0

C 6∈2 DivK

∑
Ai≥0

A1+···+An=C
degAi>2m−2gK for some i

∑
[F :K ]=2

gF=m, qF=q

q−s degCχ(F/C)
∣∣∣∣

≤ nc7(ε)
n+1q−2m(<(s)−1/2)

Let δ > 0, to be chosen later. By Proposition 3,

(22)
∣∣∣∣ ∑

C≥0
C 6∈2 DivK

∑
Ai≥0

A1+···+An=C
degAi≤2m−2gK

q−s degC
∑
[F :K ]=2

gF=m, qF=q

χ(F/C)
∣∣∣∣

≤ c′′(δ)qm
( ∑

A≥0
degA≤2m−2gK

q(δ−<(s)) degA
)n

.

If <(s)≤ 1+ ε/2 we set δ = ε. Since 1+ ε−<(s)≥ ε/2, Lemma 3 implies that

(23)
∑
A≥0

degA≤2m−2gK

q(ε−<(s)) degA
≤

2c2

ε
q(2m−2gK )(1+ε−<(s)) ≤ c14(ε)q−2m(<(s)−1−ε),

where c14(ε) > 0 depends only on K and ε. If <(s) > 1+ ε/2 then we set δ = ε/4.
We now have c′′(δ)= c15(ε) and, by Lemma 3,

(24)
∑
A≥0

degA≤2m−2gK

q(δ−<(s)) degA < ζK (1+ ε/4)≤
(

4c2

ε

)[K :Fq (X)]

.

Combining (9) and (21)–(24) gives

(25)
∣∣∣∣ 1

NK (m)

∑
C≥0

C 6∈2 DivK

∑
Ai≥0

A1+···+An=C

∑
[F :K ]=2

gF=m, qF=q

q−s degCχ(F/C)
∣∣∣∣

≤ c16(ε)
n(q−m

+ q−2mn(<(s)−1−ε+1/2n))

for some c16(ε) > 0 depending only on K and ε. The case where q is even in
Theorem 1 follows from Lemma 1, Lemma 5 and (25). �

4. Proof of Theorem 2 and Corollaries

Proof of Theorem 2. We know that MK (s,m, 1) is a polynomial in q−s thanks to
a theorem of Weil (see [Rosen 2002, Theorem 9.16B]). It’s an even function of
q−s by Lemma 2 and Lemma 1. Also, a0 = 1 since χ(F/0)= 1 by definition. The
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functional equation for MK (s,m, 1) follows directly from the functional equations
for L K (q−s) and L F (q−s) for all quadratic extensions F ⊃ K . The identity

a2(m−gK− j) = qm−gK−2 j a2 j , j = 0, . . . ,m− gK ,

follows immediately from the functional equation.
Similar to the proof of Lemma 4, for an effective divisor C ∈ DivK set

θ(C)= q−s degC
∏

v∈SuppC

(1+ q− deg v)−1

and set f (s)=
∑

C≥0 θ(C). Since θ(C+D)= θ(C)θ(D) whenever C and D have
disjoint support,

f (s)=
∏

v∈M(K )

(
1+

∞∑
k=1

θ(kv)
)

=

∏
v∈M(K )

(
1+

q−s deg v

(1+ q− deg v)(1− q−s deg v)

)

=

∏
v∈M(K )

(
1+

q−s deg v(1− q− deg v)

(1+ q−2 deg v)(1− q−s deg v)

)
= ζK (2)ζK (s)

∏
v∈M(K )

(
(1−q−2 deg v)(1−q−s deg v)+q−s deg v(1−q− deg v)

)
= ζK (2)ζK (s)

∏
v∈M(K )

(1− q−2 deg v
− q−(s+1) deg v

+ q−(s+2) deg v).

For any ε>0, f (s) is holomorphic on {s∈C :<(s)≥ε,−π/ log q≤=(s)<π/ log q}
except for a simple pole at s = 1, where the residue is

Ress=1 f (s)= ζK (2)
∏

v∈M(K )

(1− 2q−2 deg v
+ q−3 deg v)Ress=1 ζK (s)

=
JK q1−gK ζK (2)
(q − 1) log q

∏
v∈M(K )

(1− 2q−2 deg v
+ q−3 deg v)

(see [Weil 1974, Chapter VII], for example, for the residue of the zeta function).
Now by a Tauberian argument (see [Rosen 2002, Theorem 17.1], for example)∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1

= q j JK q1−gK ζK (2)
q − 1

∏
v∈M(K )

(1− q−2 deg v
+ q−3 deg v)+ O(Mqε j ),
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where the implicit constant is absolute and

M = max
<(s)=ε

| f (s)|,

which is clearly bounded above by a constant that depends only on K and ε.
Therefore

(26)
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1

= q j JK q1−gK ζK (2)
q − 1

∏
v∈M(K )

(1− q−2 deg v
+ q−3 deg v)+ O(qε j ),

where the implicit constant depends only on K and ε.
We may assume that NK (m) > 0. For the remainder of the proof, all implicit

constants depend only on K and ε. Fix an index j between 0 and m− gK and an
ε > 0. Then by Lemma 1 (separating out those divisors of degree 2 j that are twice
an effective divisor and those that aren’t)

(27) NK (m)a2 j =
∑
C≥0

degC=2 j

∑
[F :K ]=2

gF=m, qF=q

χ(F/C)

=

∑
C≥0

degC= j

∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)+
∑
C≥0

C 6∈2 DivK
degC=2 j

∑
[F :K ]=2

gF=m, qF=q

χ(F/C).

Now, by (0) and Proposition 1,

(28)
∑
C≥0

degC= j

∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)= N ′K (m)
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1

+

{
O(q(1/2+ε)mq(1+ε) j ) if q is odd,
O(qmq j

+ qεmq(1+ε) j ) if q is even.

Using the estimate for |N ′K (m)− NK (m)| in Proposition 1 and (26), we get

(29) N ′K (m)
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1

= NK (m)
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1
+

{
O(q(1/2+ε)mq j ) if q is odd,
O(qmq j ) if q is even.
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Combining (28), (29) and (9) yields

(30) (NK (m))−1
∑
C≥0

degC= j

∑
[F :K ]=2

gF=m, qF=q

χ(F/2C)

=

∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1
+

{
O(q−(3/2−ε)mq(1+ε) j ) if q is odd,
O(q−mq j ) if q is even.

Using (0) in conjunction with Propositions 2 and 3, we get∑
C≥0

C 6∈2 DivK
degC=2 j

∑
[F :K ]=2

gF=m, qF=q

χ(F/C)=
{

O(qmq(5/4+ε)2 j ) if q is odd,
O(qmq(1+ε)2 j ) if q is even.

Combining this with (9) yields

(31) (NK (m))−1
∑
C≥0

C 6∈2 DivK
degC=2 j

∑
[F :K ]=2

gF=m, qF=q

χ(F/C)=
{

O(q−mq(5/4+ε)2 j ) if q is odd,
O(q−mq(1+ε)2 j ) if q is even.

Finally, by (27), (30) and (31),

a2 j =
∑
C≥0

degC= j

∏
v∈SuppC

(1+ q− deg v)−1
+

{
O(q−mq(5/4+ε)2 j ) if q is odd,
O(q−mq(1+ε)2 j ) if q is even.

This completes the proof of Theorem 2. �

Proof of Corollary 1. Set m′ = m− gK in what follows for notational convenience.
We first note that a2 j =O(q j ) for all j=0, . . . ,m′ by Theorem 2, where the implicit
constant depends only on K . Let x ≤ 1 to be chosen later. Then, whenever<(s)> 1

2 ,

(32) MK (s,m, 1)=
∑

j≤xm′
a2 j q−2s j

+ O
( ∑

j>xm′
q− j (2<(s)−1)

)

=

∑
j≤xm′

a2 j q−2s j
+ O

(
q−xm′(2<(s)−1)

1− q1−2<(s)

)
,

where the implicit constants depend only on K . Also, by Theorem 2, for any δ > 0,

(33)
∑

j≤xm′
a2 j q−2s j

=

∑
j≤xm′

∑
C≥0

degC= j

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1

+

{
O
(
q−m ∑

j≤xm′ q
2 j (5/4+δ−<(s))

)
if q is odd,

O
(
q−m ∑

j≤xm′ q
2 j (1+δ−<(s))

)
if q is even,
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=

∑
j≤xm′

∑
C≥0

degC= j

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1

+

{
O(q−m(1+ q2xm′(5/4+δ−<(s)))) if q is odd,
O(q−m(1+ q2xm′(1+δ−<(s)))) if q is even,

where the implicit constants depend only on K and δ. We may assume that ε ≤ 1
6 .

We now choose x and δ such that

x =


1

3/2+2δ
=

2
3
− ε if q is odd,

1
1+2δ

= 1− ε if q is even,

so that

−xm′(2<(s)− 1)=
{
−m′+ 2xm′

( 5
4 + δ−<(s)

)
if q is odd,

−m′+ 2xm′(1+ δ−<(s)) if q is even.

Then, by (32), (33) and the definition of m′,

(34) MK (s,m, 1)=
∑

j≤xm′

∑
C≥0

degC= j

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1

+


O
(

q−m(2/3−ε)(2<(s)−1)

(1− q1−2<(s))

)
if q is odd,

O
(

q−m(1−ε)(2<(s)−1)

(1− q1−2<(s))

)
if q is even,

where the implicit constants depend only on K and ε. Also, by Theorem 2,

(35)
∑

j≤xm′

∑
C≥0

degC= j

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1

=

∑
C≥0

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1
+ O

( ∑
j>xm′

q− j (2<(s)−1)
)

=

∑
C≥0

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1

+


O
(

q−m(2/3−ε)(2<(s)−1)

(1− q1−2<(s))

)
if q is odd,

O
(

q−m(1−ε)(2<(s)−1)

(1− q1−2<(s))

)
if q is even.

Finally, by Lemma 3,

(36)
∑
C≥0

q−2s degC
∏

v∈SuppC

(1+ q− deg v)−1
= σK (s, 1).

Corollary 1 follows from (34)–(36). �
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Proof of Corollary 2. Set m′ = m− gK again. By Theorem 2,

(37)
∑

j≥m′/2

( ∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1
)
−C(K )

= O
( ∑

j≥m′/2

q− j (1−2ε)
)
= O(q−m′(1/2−ε)),

where the implicit constant depends only on K and ε. This shows that the series
C ′(K ) converges. Also, by Theorem 2,

(38) MK
( 1

2 ,m, 1
)
=

{
2
∑

j<m′/2 a2 j q− j if m′ is odd,
2
∑

j<m′/2 a2 j q− j
+ am′q−m′/2 if m′ is even,

and

(39a) 2
∑

j<m′/2

a2 j q− j
= 2

∑
j<m′/2

∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1

+ O
( ∑

j<m′/2

q−m′q j (3/2+2ε)
)

= 2
∑

j<m′/2

∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1

+ O(q−m′(1/4−ε))

if q is odd. If q is even, similar estimates give

(39b) 2
∑

j<m′/2

a2 j q− j
= 2

∑
j<m′/2

∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1

+ O(q−m′(1/2−ε)).

Now, by (37),

(40) 2
∑

j<m′/2

∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1

= 2C ′(K )+ 2
∑

j<m′/2

C(K )

− 2
∑

j≥m′/2

( ∑
C≥0

degC= j

q− degC
∏

v∈SuppC

(1+ q− deg v)−1
)
−C(K )

= 2C ′(K )+ O(q−m′(1/2−ε))+

{
m′C(K ) if m′ is even,
(m′+ 1)C(K ) if m′ is odd.

Finally, if m′ is even, Theorem 2 gives

(41) am′q−m′/2
= C(K )+ O(q−m′(1/2−ε)).
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The remainder of Corollary 2 follows from (38)–(41). �

Proof of Corollary 3. It is well known that #{v ∈ M(F) : deg v= 1}−q−1 is equal
to the coefficient of q−s in the polynomial L F (q−s) for all function fields F with
qF = q. (See [Stichtenoth 1993, Theorem V.1.15], for example.) By Theorem 2,
the coefficient of q−s in the polynomial L K (q−s)MK (s,m, 1) is just the coefficient
of q−s in the polynomial L K (q−s). �
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