
Pacific
Journal of
Mathematics

ON DEMAZURE AND LOCAL WEYL MODULES
FOR AFFINE HYPERALGEBRAS

ANGELO BIANCHI, TIAGO MACEDO AND ADRIANO MOURA

Volume 274 No. 2 April 2015



PACIFIC JOURNAL OF MATHEMATICS
Vol. 274, No. 2, 2015

dx.doi.org/10.2140/pjm.2015.274.257

ON DEMAZURE AND LOCAL WEYL MODULES
FOR AFFINE HYPERALGEBRAS

ANGELO BIANCHI, TIAGO MACEDO AND ADRIANO MOURA

We establish the existence of Demazure flags for graded local Weyl modules
for hyper current algebras in positive characteristic. If the underlying sim-
ple Lie algebra is simply laced, the flag has length one; that is, the graded
local Weyl modules are isomorphic to Demazure modules. This extends to
the positive characteristic setting results of Chari and Loktev, Fourier and
Littelmann, and Naoi for current algebras in characteristic zero. Using this
result, we prove that the character of local Weyl modules for hyper loop
algebras depend only on the highest weight, but not on the (algebraically
closed) ground field, and deduce a tensor product factorization for them.

Introduction

Let g be a semisimple finite-dimensional Lie algebra over the complex numbers
and, given an algebraically closed field F, let GF be a connected, simply connected,
semisimple algebraic group over F of the same Lie type as g. The category of
finite-dimensional GF-modules is equivalent to that of the hyperalgebra UF(g). The
hyperalgebra is a Hopf algebra obtained from the universal enveloping algebra of g
by first choosing a certain integral form and then changing scalars to F (this process
is often referred to as reduction modulo p). If the characteristic of F is positive,
the category of finite-dimensional GF-modules is not semisimple, and the modules
obtained by reduction modulo p of simple g-modules — called Weyl modules —
provide examples of indecomposable, reducible modules. The Weyl modules have
several interesting properties which are independent of F such as: a description in
terms of generators and relations, being the universal highest-weight modules of
the category of finite-dimensional GF-modules, their characters are given by the
Weyl character formula.

Consider now the loop algebra g̃ = g⊗C[t, t−1
]. The finite-dimensional rep-

resentation theory of g̃ was initiated by Chari and Presley [1986], where the
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simple modules were classified in terms of tensor products of evaluation modules.
Differently from the category of finite-dimensional g-modules, the category of
finite-dimensional g̃-modules is not semisimple. Therefore, it is natural to ask
if there is a notion analogue to that of Weyl modules for g̃. Chari and Presley
[2001] proved that the simple finite-dimensional g̃-modules are highest-weight in
an appropriate sense and introduced the Weyl modules for g̃ in terms of generator
and relations which are the natural analogues of the relations for the original Weyl
modules. The highest-weight vector is now an eigenvector for the action of the loop
algebra h̃ over the Cartan subalgebra h of g. Because of this, it eventually became
common practice to use the terms `-weight and highest-`-weight. In particular, it
was shown in [Chari and Pressley 2001] that the just-introduced Weyl modules share
a second property with their older relatives: they are the universal finite-dimensional
highest-`-weight modules. These results were immediately quantized and, still in
the same paper, the notion of Weyl modules for the quantum loop algebra Uq(g̃)

was introduced. Chari and Presley conjectured (and proved for g = sl2) that the
Weyl modules for g̃ were classical limits of quantum Weyl modules. Moreover, all
Weyl modules for g̃ could be obtained as classical limits of quantum Weyl modules
which are actually irreducible. This can be viewed as the analogue of the property
that the original Weyl modules are obtained by reduction modulo p from simple
g-modules.

Motivated by bringing the discussion of the last paragraph to the positive charac-
teristic setting, [Jakelić and Moura 2007] initiated the study of the finite-dimensional
representation theory of the hyperalgebras associated to g̃, which we refer to as
hyper loop algebras. Several basic properties of the underlying abelian category
were established and, in particular, the notion of Weyl modules was introduced.
Moreover, it was shown that certain Weyl modules for g̃ can be reduced modulo p.
In analogy with the previous paragraphs, it is natural to conjecture that the reduction
modulo p of a Weyl module is again a Weyl module (the difference is that now we
cannot restrict attention to Weyl modules which are irreducible since there are too
few of these).

In the meantime, two partial proofs of Chari and Presley’s conjecture appeared
[Chari and Loktev 2006; Fourier and Littelmann 2007]. Namely, it follows from a
tensor product factorization of the Weyl modules for g̃ proved in [Chari and Pressley
2001] together with the fact that the irreducible quantum Weyl modules are tensor
products of fundamental modules, that it suffices to compute the dimension of
graded analogues of Weyl modules for the current algebra g[t] = g⊗C[t]. These
graded analogues of Weyl modules were introduced in [Feigin and Loktev 2004] as
a particular case of a class of modules (named local Weyl modules) for algebras
of the form g⊗ A, where A is a commutative associative algebra (see also [Chari
et al. 2010; Fourier et al. 2012] and references therein for more on the recent
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development of the representation theory of such algebras). For g of type A, the
dimensions of the graded Weyl modules were computed in [Chari and Loktev 2006]
by explicitly exhibiting a vector space basis. As a consequence, it was observed that
they are isomorphic to certain Demazure modules. For a general simply-laced Lie
algebra, this isomorphism was proved in [Fourier and Littelmann 2007] by using a
certain presentation of Demazure modules by generators and relations as well as by
studying fusion products. In particular, the dimension of the graded Weyl modules
could be computed resulting in a proof of the conjecture. It was also shown in
[Fourier and Littelmann 2007] that such isomorphisms do not exist in general in
the non-simply laced case. It was pointed out by Nakajima that the general case
could be deduced by using global bases theory (this proof remains unpublished, but
a brief sketch is given in the introduction of [Fourier and Littelmann 2007]). The
relation with Demazure modules in the nonsimply laced case was finally established
in completely generality in [Naoi 2012] where it was shown that the graded Weyl
modules for g[t] admit Demazure flags, that is, filtrations whose quotients are
Demazure modules. Such flags are actually obtained from results of Joseph [2003;
2006] (see also [Littelmann 1998]) on global bases for tensor products of Demazure
modules. Therefore, in the nonsimply laced case, the relation between Weyl and
Demazure modules is, so far, dependent on the theory of global bases, although in
a different manner than Nakajima’s proposed proof.

The goal of the present paper is to extend to the positive characteristic context
the results of [Fourier and Littelmann 2007; Naoi 2012] and prove the conjecture of
[Jakelić and Moura 2007] on reduction modulo p of Weyl modules for hyper loop
algebras. Moreover, we prove a tensor product factorization of Weyl modules —
the hyperalgebraic analogue of that proved in [Chari and Pressley 2001]. However,
due to the extra technical difficulties which arise when dealing with hyperalgebras
in positive characteristic, there are several differences in our proofs from those
used in the characteristic zero setting. For instance, the tensor product factorization
was originally used to restrict the study to computing the dimension of the graded
Weyl modules for current algebras. In the positive characteristic setting, we actually
deduce the tensor product factorization from the computation of the dimension.
Also, for proving the existence of the Demazure flags, some arguments used in [Naoi
2012] do not admit a hyperalgebraic analogue. Our approach to overcome these
issues actually makes use of the characteristic-zero version of the same statements.
We also use the fact proved in [Mathieu 1988; 1989] that the characters of Demazure
modules do not depend on the ground field. Different presentations of Demazure
modules in terms of generator and relations are needed for different parts of the
argument. For g of type G2, technical issues for proving one of these presentations
require that we restrict ourselves to characteristic different than 2 and 3. Outside
type G2, there is no restriction in the characteristic of the ground field.
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While this paper was being finished, new ideas for studying Demazure, local
Weyl modules, and Kirillov–Reshetikhin modules are introduced. In particular,
several results of [Chari and Pressley 2001; Fourier and Littelmann 2007; Naoi
2012] are recovered and generalized. Moreover, new (and simpler) presentations in
terms of generators and relations for Demazure modules are obtained. It will be
interesting to study if the ideas and results of [Chari and Venkatesh 2014] can be
brought to the positive characteristic setting as well.

The paper is organized as follows. We start Section 1 fixing the notation regarding
finite and affine types, Kac–Moody algebras and reviewing the construction of the
hyperalgebras. Next, using generators and relations, we define the Weyl modules
for hyper loop algebras, their graded analogues for hyper current algebras, and
the subclass of the class of Demazure modules which is relevant for us. We then
state our main result (Theorem 1.5.2) and recall the precise statement (1.5.4) of the
conjecture in [Jakelić and Moura 2007]. Theorem 1.5.2 is stated in 4 parts. Part
(a) states the isomorphism between graded Weyl modules and Demazure modules
for simply laced g. Part (b) states the existence of Demazure flags for graded Weyl
modules. Part (c) establishes an isomorphism between a given graded Weyl module
and a twist of certain Weyl module for the hyper loop algebra. Finally, part (d) is
the aforementioned tensor product factorization. In Section 2, we fix some further
notation and establish a few technical results needed in the proofs.

Section 3.1 brings a review of the finite-dimensional representation theory of
the finite-type hyperalgebras while Section 3.2 gives a very brief account of the
relevant results from [Jakelić and Moura 2007]. Section 3.3 is concerned with the
category of finite-dimensional graded modules for the hyper current algebras. The
main results of this subsection are Theorem 3.3.4, where the basic properties of
the category are established, and Corollary 3.3.3 which states that the graded Weyl
modules for g[t] admit integral forms. Assuming Theorem 1.5.2(b), we prove (1.5.4)
in Section 3.4. The proof actually makes use of the characteristic-zero version
of all parts of Theorem 1.5.2 as well as [Naoi 2012, Corollary A] (stated here as
Proposition 3.4.1). In Section 3.5, we prove a second presentation of Demazure
modules in terms of generator and relations. It basically replaces a highest-weight
generator by a lowest-weight one. This is the presentation which allows us to
use the results of [Mathieu 1988; 1989] on the independence of the characters of
Demazure modules on the ground field.

In the first three subsections of Section 4 we collect the results of [Joseph 2003;
2006] on crystal and global bases which we need to prove Theorem 4.4.1 which is
an integral analogue of [Naoi 2012, Corollary 4.16] on the existence of higher level
Demazure flags for Demazure modules when the underlying simple Lie algebra
g is simply laced. We remark that the proof of Theorem 4.4.1 is the only one
where the theory of global bases is used. We further remark that, in order to prove
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Theorem 1.5.2(b), we only need the statement of Theorem 4.4.1 for g of type A. We
observe that the only other place quantum groups are being used here is in the proof
of the characteristic-zero version of Theorem 1.5.2(c); [Fourier and Littelmann
2007, Lemmas 1 and 3 and Equation (15)].

Theorem 1.5.2 is proved in Section 5. In particular, in Section 5.2, we prove a
positive characteristic analogue of [Naoi 2012, Proposition 4.1] which is a third
presentation of Demazure modules in terms of generator and relations in the case
that g is not simply laced. This is where the restriction on the characteristic of the
ground field for type G2 appears. Parts (b) and (c) of Theorem 1.5.2 are proved in
Sections 5.3 and 5.4, respectively. Finally, in Sections 5.5 and 5.6, we prove that
the tensor product of finite-dimensional highest-`-weight modules for hyper loop
algebras with relatively prime highest `-weights is itself a highest-`-weight module
and deduce Theorem 1.5.2(d). As an application of Theorem 1.5.2, we end the
paper proving that the graded Weyl modules are fusion products of Weyl modules
with “smaller” highest weights (Proposition 5.7.1).

1. The main results

1.1. Finite-type data. Let g be a finite-dimensional simple Lie algebra over C with
a fixed Cartan subalgebra h ⊂ g. The associated root system will be denoted by
R ⊂ h∗. We fix a simple system 1= {αi : i ∈ I } ⊂ R and denote the corresponding
set of positive roots by R+. The Borel subalgebra associated to R+ will be denoted
by b+ ⊂ g and the opposite Borel subalgebra will be denoted by b− ⊂ g. We fix
a Chevalley basis of the Lie algebra g consisting of x±α ∈ g±α, for each α ∈ R+,
and hi ∈ h, for each i ∈ I . We also define hα ∈ h, α ∈ R+, by hα = [x+α , x−α ]
(in particular, hi = hαi , i ∈ I ) and set R∨ = {hα ∈ h : α ∈ R}. We often simplify
notation and write x±i in place of x±αi

, i ∈ I . Let ( , ) denote the invariant symmetric
bilinear form on g such that (hθ , hθ ) = 2, where θ is the highest root of g. Let
ν : h→ h∗ be the linear isomorphism induced by ( , ) and keep denoting by ( , )
the nondegenerate bilinear form induced by ν on h∗. Notice that

(1.1.1) (x+α , x−α )=
2

(α, α)
for all α ∈ R+

and

(1.1.2) (α, α)=

{
2 if α is long,
2/r∨ if α is short,

where r∨ ∈ {1, 2, 3} is the lacing number of g. For notational convenience, set

(1.1.3) r∨α =
2

(α, α)
=

{
1, if α is long,
r∨, if α is short.
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We shall need the following fact [Carter 1972, Section 4.2]. Given α ∈ R, let
xα = x±±α according to whether α ∈±R+. For α, β ∈ R let p=max{n :β−nα ∈ R}.
Then there exists ε ∈ {−1, 1} such that

(1.1.4) [xα, xβ] = ε(p+ 1)xα+β .

We define the weight lattice P = {λ ∈ h∗ : λ(hα) ∈ Z for all α ∈ R}, the subset
of dominant weights P+ = {λ ∈ P : λ(hα) ∈N for all α ∈ R+}, the coweight lattice
P∨ = {h ∈ h : α(h) ∈ Z for all α ∈ R}, and the subset of dominant coweights
P∨+ = {h ∈ P∨ : α(h) ∈ N for all α ∈ R+}. We denote the fundamental weights
by ωi , i ∈ I , the root lattice of g by Q, and we let Q+ = Z≥0 R+. We consider the
usual partial order on h∗: µ≤ λ if and only if λ−µ ∈ Q+. The Weyl group W of g
is the subgroup of AutC(h∗) generated by the simple reflections si , i ∈ I , defined by
si (µ)=µ−µ(hi )αi for all µ ∈ h∗. As usual, w0 denotes the longest element in W.

1.2. Affine-type data. Consider the loop algebra g̃=g⊗C[t, t−1
], with Lie bracket

given by [x ⊗ tr , y⊗ t s
] = [x, y] ⊗ tr+s , for any x, y ∈ g, r, s ∈ Z. We identify g

with the subalgebra g⊗1 of g̃. The subalgebra g[t] = g⊗C[t] is the current algebra
of g. If a is a subalgebra of g, let ã= a⊗C[t, t−1

] and a[t] = a⊗C[t]. Let also
a[t]± := a⊗ (t±1C[t±1

]). In particular, as vector spaces,

g̃= ñ−⊕ h̃⊕ ñ+ and g[t] = n−[t]⊕ h[t]⊕ n+[t].

The affine Kac–Moody algebra ĝ is the 2-dimensional extension ĝ := g̃⊕Cc⊕Cd
of g̃ with Lie bracket given by

[x ⊗ tr , y⊗ t s
] = [x, y]⊗ tr+s

+ rδr,−s(x, y)c,

[c, ĝ] = {0}, and [d, x ⊗ tr
] = r x ⊗ tr

for any x, y ∈ g, r, s ∈ Z. Observe that if ĝ′ = [ĝ, ĝ] is the derived subalgebra of ĝ,
then ĝ′ = g̃⊕ Cc, and we have a nonsplit short exact sequence of Lie algebras
0→ Cc→ ĝ′→ g̃→ 0.

Set ĥ′ = h⊕Cc. Notice that g, g[t], and g[t]± remain subalgebras of ĝ. Set

ĥ= h⊕Cc⊕Cd, n̂± = n±⊕ g[t]±, and b̂± = n̂±⊕ ĥ.

The root system, positive root system, and set of simple roots associated to the
triangular decomposition ĝ = n̂− ⊕ ĥ ⊕ n̂+ will be denoted by R̂, R̂+ and 1̂,
respectively. Let Î = I t {0} and h0 = c− hθ , so that {hi : i ∈ Î } ∪ {d} is a basis
of ĥ. Identify h∗ with the subspace {λ ∈ ĥ∗ : λ(c) = λ(d) = 0}. Let also δ ∈ ĥ∗

be such that δ(d) = 1 and δ(hi ) = 0 for all i ∈ Î and define α0 = δ − θ . Then
1̂= {αi : i ∈ Î }, R̂+ = R+ ∪ {α+ rδ : α ∈ R ∪ {0}, r ∈ Z>0}, and ĝα+rδ = gα ⊗ tr

if α ∈ R, r ∈ Z, and ĝrδ = h⊗ tr , if r ∈ Z \ {0}. Observe that

(1.2.1) α(c)= 0 for all α ∈ R̂.
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A root γ ∈ R̂ is called real if γ = (α + rδ) with α ∈ R, r ∈ Z, and imaginary if
γ = rδ with r ∈ Z \ {0}. Set x±α,r = x±α ⊗ tr , hα,r = hα ⊗ tr , α ∈ R+, r ∈ Z. We
often simplify notation and write x±i,r and hi,r in place of x±αi ,r and hαi ,r , i ∈ I, r ∈Z.
Observe that {x±α,r , hi,r : α ∈ R+, i ∈ I, r ∈ Z} is a basis of g̃. Given α ∈ R+ and
r ∈ Z>0, set

x+
±α+rδ = x±α,r , x−

±α+rδ = x∓α,−r , h±α+rδ = [x+±α+rδ, x−
±α+rδ] = ±hα + rr∨α c.

Define also 3i ∈ ĥ∗, i ∈ Î , by the requirement 3i (d) = 0, 3i (h j ) = δi j for
all i, j ∈ Î . Set P̂ = Zδ⊕

⊕
i∈ Î Z3i , P̂+ = Zδ⊕

⊕
i∈ Î N3i , P̂ ′ =

⊕
i∈ Î Z3i , and

P̂ ′+ = P̂ ′ ∩ P̂+. Notice that

30(h)= 0 ⇐⇒ h ∈ h⊕Cd and 3i −ωi = ωi (hθ )30 for all i ∈ I.

Hence, P̂ =Z30⊕ P⊕Zδ. Given 3∈ P̂ , the number 3(c) is called the level of 3.
By (1.2.1), the level of 3 depends only on its class modulo the root lattice Q̂. Set
also Q̂+ = Z≥0 R̂+ and let Ŵ denote the affine Weyl group, which is generated by
the simple reflections si , i ∈ Î . Finally, observe that {30, δ} ∪1 is a basis of ĥ∗.

1.3. Integral forms and hyperalgebras. We use the following notation. Given a
Q-algebra U with unity, an element x ∈U , and k ∈ N, set

x (k) = 1
k!

xk and
( x

k

)
=

1
k!

x(x − 1) · · · (x − k+ 1).

In the case U =U (g̃), we also introduce elements 3x,±r ∈U (g̃), x ∈ g, r ∈ N, by
the following identity of power series in the variable u:

3±x (u) :=
∑
r≥0

3x,±r ur
= exp

(
−

∑
s>0

x ⊗ t±s

s
us
)
.

Most of the time we will work with such elements with x = hα for some α ∈ R+.
We then simplify notation and write 3±α (u)=3

±

hα (u), and if α = αi for some i ∈ I ,
we simply write 3±i (u)=3

±

hi
(u). To shorten notation, we also set 3x(u)=3+x (u).

Consider the Z-subalgebra UZ(ĝ
′) of U (ĝ′) generated by the set

{(x±α,r )
(k)
: α ∈ R+, r ∈ Z, k ∈ N}.

By [Garland 1978, Theorem 5.8], it is a free Z-submodule of U (ĝ′) and satisfies
C⊗ZUZ(ĝ

′)=U (ĝ′). In other words, UZ(ĝ
′) is an integral form of U (ĝ′). Moreover,

the image of UZ(ĝ
′) in U (g̃) is an integral form of U (g̃) denoted by UZ(g̃). For a

Lie subalgebra a of ĝ′ set

UZ(a)=U (a)∩UZ(ĝ
′),
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and similarly for subalgebras of g̃. The subalgebra UZ(g) coincides with the Z-
subalgebra of U (ĝ) generated by {(x±α )

(k)
:α ∈ R+, k ∈N}. The subalgebra UZ(n

±)

of UZ(g) is generated, as a Z-subalgebra, by the set {(x±α )
(k)
: α ∈ R+, k ∈ N}

while UZ(h) is generated, as a Z-subalgebra, by
{(hi

k

)
: i ∈ I, k ∈ N

}
. Similarly,

the subalgebra UZ(n
±
[t]) of UZ(g[t]) is generated, as a Z-subalgebra, by the set

{(x±α,r )
(k)
: α ∈ R+, k ∈ N, r ∈ Z≥0} while UZ(h[t]+) is generated by {3i,r : i ∈

I, r ∈ Z>0}. In fact, the latter is free commutative over the given set. The Poincaré–
Birkhoff–Witt (PBW) theorem implies that multiplication establishes isomorphisms
of Z-modules

UZ(ĝ
′)∼=UZ(n̂

−)⊗UZ(ĥ
′)⊗UZ(n̂

+),

UZ(g̃)∼=UZ(ñ
−)⊗UZ(h̃)⊗UZ(ñ

+),

UZ(g[t])∼=UZ(n
−
[t])⊗UZ(h[t])⊗UZ(n

+
[t]).

Moreover, restricted to UZ(h̃) this gives rise to an isomorphism of Z-algebras

UZ(h̃)∼=UZ(h[t]−)⊗UZ(h)⊗UZ(h[t]+).

In general, it may not be true that UZ(a) is an integral form of U (a). However, if a
has a basis consisting of real root vectors, an elementary use of the PBW theorem
implies that this is true. We shall make use of algebras of this form later on.

Given a field F, define the F-hyperalgebra of a by UF(a)= F⊗Z UZ(a), where a

is any of the Lie algebras with Z-forms defined above. Clearly, if the characteristic
of F is zero, the algebra UF(g̃) is naturally isomorphic to U (g̃F) where g̃F= F⊗Z g̃Z

and g̃Z is the Z-span of the Chevalley basis of g̃, and similarly for all algebras a
we have considered. For fields of positive characteristic we just have an algebra
homomorphism U (aF)→UF(a) which is neither injective nor surjective. We will
keep denoting by x the image of an element x ∈ UZ(a) in UF(a). Notice that we
have UF(g̃)=UF(ñ

−)UF(h̃)UF(ñ
+).

Given an algebraically closed field F, let A be a Henselian discrete valuation
ring of characteristic zero having F as its residue field. Set UA(a)= A⊗Z UZ(a).
Clearly UF(a)∼= F⊗A UA(a). We shall also fix an algebraic closure K of the field
of fractions of A. For an explanation why we shall need to move from integral
forms to A-forms, see Remark 1.5.5 (and [Jakelić and Moura 2007, Section 4C]).
As mentioned in the introduction, we assume the characteristic of F is either zero
or at least 5 if g is of type G2.

Notice that the Hopf algebra structure of the universal enveloping algebras induce
such structure on the hyperalgebras. For any Hopf algebra H , denote by H 0 its
augmentation ideal.

1.4. The `-weight lattice. For a ring A, we shall denote by A× its set of unities.
Consider the set P+F consisting of |I |-tuples ω = (ωi )i∈I , where ωi ∈ F[u] and
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ωi (0)= 1 for all i ∈ I . Endowed with coordinatewise polynomial multiplication,
P+F is a monoid. We denote by PF the multiplicative abelian group associated to P+F
which will be referred to as the `-weight lattice associated to g. One can describe
PF in another way. Given µ ∈ P and a ∈ F×, let ωµ,a be the element of PF defined
as

(ωµ,a)i (u)= (1− au)µ(hi ) for all i ∈ I.

If µ=ωi is a fundamental weight, we simplify notation and write ωωi ,a =ωi,a . We
refer to ωi,a as a fundamental `-weight, for all i ∈ I and a ∈ F×. Notice that PF is
the free abelian group on the set of fundamental `-weights. One defines PK in the
obvious way. Let also P×A be the submonoid of P+K generated by ωi,a, i ∈ I, a ∈A×.

Let wt : PF→ P be the unique group homomorphism such that wt(ωi,a)= ωi

for all i ∈ I, a ∈ F×. Let also ω 7→ ω− be the unique group automorphism of PF

mapping ωi,a to ωi,a−1 for all i ∈ I, a ∈ F×. For notational convenience we set
ω+ = ω.

The abelian group PF can be identified with a subgroup of the monoid of |I |-tuples
of formal power series with coefficients in F by identifying the rational function
(1−au)−1 with the corresponding geometric formal power series

∑
n≥0(au)n . This

allows us to define an inclusion PF ↪→ UF(h̃)
∗. Indeed, if ω ∈ PF is such that

ω±i (u)=
∑

r≥0 ωi,±r ur
∈ PF, set

ω
((hi

k

))
=

(wt(ω)(hi )

k

)
, ω(3i,r )= ωi,r , for all i ∈ I, r, k ∈ Z, k ≥ 0,

and ω(xy)= ω(x)ω(y), for all x, y ∈UF(h̃).

1.5. Demazure and local Weyl modules. Given ω ∈ P+F , the local Weyl module
WF(ω) is the quotient of UF(g̃) by the left ideal generated by

UF(ñ
+)0, h−ω(h), (x−α )

(k) for all h ∈UF(h̃), α ∈ R+, k > wt(ω)(hα).

It is known that the local Weyl modules are finite-dimensional (see Theorem 3.2.1(c)).
For λ ∈ P+, the graded local Weyl module W c

F (λ) is the quotient of UF(g[t]) by
the left ideal I c

F (λ) generated by

(1.5.1) UF(n
+
[t])0, UF(h[t]+)0, h− λ(h), (x−α )

(k)

for all h ∈UF(h), α ∈ R+, k > λ(hα).

Also, given ` ≥ 0, let DF(`, λ) denote the quotient of UF(g[t]) by the left ideal
IF(`, λ) generated by I c

F (λ) together with

(x−α,s)
(k) for all α ∈ R+, s, k ∈ Z≥0, k >max{0, λ(hα)− s`r∨α }.(1.5.2)

In particular, DF(`, λ) is a quotient of W c
F (λ).
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The algebra UF(g[t]) inherits a Z-grading from the grading on the polynomial
algebra C[t]. The ideals I c

F (λ) and IF(`, λ) are clearly graded and, hence, the
modules W c

F (λ) and DF(`, λ) are graded. If V is a graded module, let V [r ] be
its r-th graded piece. Given m ∈ Z, let τm(V ) be the UF(g[t])-module such that
τs(V )[r ] = V [r −m] for all r ∈ Z. Set

DF(`, λ,m)= τm(DF(`, λ)).

Remark 1.5.1. Local Weyl modules were simply called Weyl modules in [Chari and
Pressley 2001]. Certain infinite-dimensional modules, which were called maximal
integrable modules in the same work, are now called global Weyl modules. The
modern names, local and global Weyl modules were coined in [Feigin and Loktev
2004], where the authors introduced these modules in the context of generalized
current algebras. We will not consider the global Weyl modules in this paper. We
refer the reader to [Chari et al. 2010; Fourier et al. 2012; Fourier et al. 2014] and
references therein for recent developments in the theory of global and local Weyl
modules for (equivariant) map algebras. See also [Chamberlin 2013] for the initial
steps in the study of the hyperalgebras of (equivariant) map algebras.

We are ready to state the main theorem of the paper.

Theorem 1.5.2. Let λ ∈ P+.

(a) If g is simply laced, then DF(1, λ) and W c
F (λ) are isomorphic UF(g[t])-modules.

(b) There exist k ≥ 1,m j ∈ Z≥0, and λ j ∈ P+, j = 1, . . . , k, (independent of F)
such that the UF(g[t])-module W c

F (λ) admits a filtration (0) = W0 ⊂ W1 ⊂

· · · ⊂Wk−1 ⊂Wk =W c
F (λ), with

W j/W j−1 ∼= DF(1, λ j ,m j ).

(c) For any a ∈ F×, there exists an automorphism ϕa of UF(g[t]) such that the
pull-back of WF(ωλ,a) by ϕa is isomorphic to W c

F (λ).

(d) If ω =
∏m

j=1 ωλ j ,a j for some m ≥ 0, λ j ∈ P+, a j ∈ F×, j = 1, . . . ,m, with
ai 6= a j for i 6= j , then

WF(ω)∼=

m⊗
j=1

WF(ωλ j ,a j ).

Assume the characteristic of F is zero. Then part (a) of this theorem was proved
in [Chari and Pressley 2001] for g = sl2, in [Chari and Loktev 2006] for type A,
and in [Fourier and Littelmann 2007] for types ADE. Part (b) was proved in [Naoi
2012]. Part (c) for simply-laced g was proved in [Fourier and Littelmann 2007]
using part (a) (see Lemmas 1 and 3 and Equation (15) of that reference). The same
proof works in the nonsimply laced case once part (b) is established. The last part
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was proved in [Chari and Pressley 2001]. We will make use of Theorem 1.5.2 in
the characteristic zero setting for extending it to the positive characteristic context.
Both [Chari and Loktev 2006] and [Fourier and Littelmann 2007] use the sl2-case
of part (a) in the proofs. A characteristic-free proof of Theorem 1.5.2(a) for sl2 was
given in [Jakelić and Moura 2014].

We will see in Section 3.5 that the class of modules DF(`, λ) form a subclass
of the class of Demazure modules. In particular, it follows from [Mathieu 1988,
Lemme 8] that dim(DF(`, λ)) depends only on ` and λ, but not on F (see also
the remark on page 56 of [Mathieu 1989] and references therein). Together with
Theorem 1.5.2(b), this implies the following corollary.

Corollary 1.5.3. For all λ ∈ P+, we have dim W c
F (λ)= dim W c

C
(λ). �

As an application of this corollary, we will prove a conjecture of Jakelić and
Moura, which we recall after quoting a theorem of theirs.

Theorem 1.5.4 [Jakelić and Moura 2007]. Suppose ω ∈ P×A and let λ= wt(ω), v
be the image of 1 in WK(ω), and LA(ω)=UA(g̃)v. Then LA(ω) is a free A-module
such that K⊗A LA(ω)∼=WK(ω). �

Let $ be the image of ω in PF. It easily follows that F⊗A LA(ω) is a quotient
of WF($ ) and, hence,

(1.5.3) dim WK(ω)≤ dim WF($ ).

It was conjectured in [Jakelić and Moura 2007] that

(1.5.4) F⊗A LA(ω)∼=WF($ ).

We will prove (1.5.4) in Section 3.4. In particular, it follows that

(1.5.5) dim WF($ )= dim W c
C(λ).

Remark 1.5.5. Theorem 1.5.2(d) was also conjectured in [Jakelić and Moura 2007]
and it is false if F were not algebraically closed (see [Jakelić and Moura 2010] in
that case). Observe that for all$ ∈P+F there exists ω∈P×A such that$ is the image
of ω in PF. This is the main reason for considering A-forms instead of Z-forms.
The block decomposition of the categories of finite-dimensional representations of
hyper loop algebras was established in [Jakelić and Moura 2007; 2010] assuming
(1.5.4) and Theorem 1.5.2(d). The proof of one part of [Bianchi and Moura 2014,
Theorem 4.1] also relies on these two results. Therefore, by proving (1.5.4) and
Theorem 1.5.2(d), we confirm these results of [Bianchi and Moura 2014; Jakelić
and Moura 2007; 2010]. A version of Theorem 1.5.2 for twisted affine Kac–Moody
algebras was obtained in [Fourier and Kus 2013] in the characteristic-zero setting.
We will consider the characteristic-free twisted version of Theorem 1.5.2 elsewhere.
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2. Further notation and technical lemmas

2.1. Some commutation relations. We begin recalling the following well-known
relation in UZ(g)

(x+α )
(l)(x−α )

(k)
=

min{k,l}∑
m=0

(x−α )
(k−m)

(hα−k−l+2m
m

)
(x+α )

(l−m)(2.1.1)

for all α ∈ R+, l, k ∈ Z≥0. Since for all α ∈ R+, s ∈ Z, the span of x±α,±s, hα is a
subalgebra isomorphic to sl2, we get the following relation in UZ(g̃)

(x+α,s)
(l)(x−α,−s)

(k)
=

min{k,l}∑
m=0

(x−α,−s)
(k−m)

(hα−k−l+2m
m

)
(x+α,s)

(l−m).(2.1.2)

Next, we consider the case when the grades of the elements in the left-hand side is
not symmetric.

Given m > 0, consider the Lie algebra endomorphism τm of g̃ induced by the
ring endomorphism of C[t, t−1

], t 7→ tm . Notice that the restriction of τm to g[t]
gives rise to an endomorphism of g[t]. Moreover, denoting by τm its extension
to an algebra endomorphism of U (g̃), notice that UZ(a) is invariant under τm

for a = g, n±, h, ñ±, h̃, n±[t], h[t], h[t]+. In fact τm((x±α,r )
(k)) = (x±α,mr )

(k) and
τm(3α,r ) satisfies

∑
i≥0 τm(3α,r )ur

= exp
(
−
∑

s≥1
hα,ms

s us
)

for all r,m ∈ Z and
α ∈ R+. Consider the power series

X−α,m,s(u)=
∞∑

r=1

x−α,m(r−1)+sur and 3±α,m(u)= τm(3
±

α (u)).

Lemma 2.1.1. Let α ∈ R+, k, l ≥ 0,m > 0, s ∈ Z. Then

(x+α,m−s)
(l)(x−α,s)

(k)
= (−1)l

(
(X−α,m,s(u))

(k−l)3+α,m(u)
)

k mod UZ(g̃)UZ(ñ
+)0,

where the subindex k denotes the coefficient of uk of the above power series. More-
over, if 0≤ s ≤ m, the same holds modulo UZ(g[t])UZ(n

+
[t])0Z.

Proof. The case m=1, s=0 was proved in [Garland 1978, Lemma 7.5] (see [Jakelić
and Moura 2007, Equation (1-11)]). Consider the Lie algebra endomorphism
σs : s̃lα→ s̃lα given by x±α,r 7→ x±α,r∓s . The first statement of the lemma is obtained
from the case m = 1, s = 0 by applying (σs ◦ τm). The second statement is then
clear. �

Sometimes it will be convenient to work with a smaller set of generators for the
hyperalgebras.

Proposition 2.1.2 [Mitzman 1985, Corollary 4.4.12]. The ring UZ(ĝ
′) is generated

by (x±i )
(k), i ∈ Î , k ≥ 0 and UZ(g) is generated by (x±i )

(k), i ∈ I, k ≥ 0. �
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2.2. On certain automorphisms of hyper current algebras. Let a, b be such that
UZ(a) have been defined. Then, given a homomorphism of A-algebras f :UA(a)→

UA(b), we have an induced homomorphism UF(a)→UF(b). We will now use this
procedure to define certain homomorphism between hyperalgebras. As a rule, we
shall use the same symbol to denote the induced homomorphism in the hyperalgebra
level.

Recall that there exists a unique involutive Lie algebra automorphism ψ of g
such that x±i 7→ x∓i and hi 7→ −hi for all i ∈ I . It admits a unique extension to an
automorphism of g[t] such that ψ(x⊗ f (t))=ψ(x)⊗ f (t) for all x ∈ g, f ∈ C[t].
Keep denoting by ψ its extension to an automorphism of U (g[t]). In particular, it
easily follows that

(2.2.1) ψ((x±α,r )
(k))= (x∓α,r )

(k) for all α ∈ R+, r, k ≥ 0.

Since UZ(g[t]) is generated by the elements (x±α,r )
(k), it follows that the restriction

of ψ to UZ(a) induces an automorphism of UZ(a), for a = g, h, g[t], h[t], h[t]+.
We have an inclusion P ↪→ HomZ(UZ(h),Z) determined by

(2.2.2) µ
((hi

k

))
=

(
µ(hi )

k

)
and µ(xy)= µ(x)µ(y)

for all i ∈ I, k ≥ 0, x, y ∈UZ(h).

Therefore,

(2.2.3) µ
(
ψ
((hi

k

)))
=

(
−µ(hi )

k

)
for all i ∈ I, k > 0, µ ∈ P.

Suppose now that γ is a Dynkin diagram automorphism of g and keep denoting
by γ the g-automorphism determined by x±i 7→ x±γ (i), hi 7→ hγ (i), i ∈ I . It admits a
unique extension to an automorphism of g[t] such that γ (x ⊗ f (t))= γ (x)⊗ f (t)
for all x ∈ g, f ∈ C[t]. Keep denoting by γ its extension to an automorphism
of U (g[t]). Let γ also denote the associated automorphism of P determined by
γ (ωi ) = ωγ (i), i ∈ I . In particular, γ (αi ) = αγ (i), i ∈ I . It then follows that for
each α ∈ R+, k > 0, there exist ε±α,k ∈ {−1, 1} (depending on how the Chevalley
basis was chosen) such that

(2.2.4) γ
(
(x±α,r )

(k))
= ε±α,k(x

±

γ (α),r )
(k) for all r ≥ 0.

This implies that the restriction of γ to UZ(a) induces an automorphism of UZ(a),
for any a in the set {g, n±, h, g[t], n±[t], h[t], h[t]+}. It is also easy to see that

(2.2.5) µ
(
γ
((hi

k

)))
=

(
(γ−1(µ))(hi )

k

)
for all i ∈ I, k > 0, µ ∈ P.

We conclude this subsection by constructing the automorphism mentioned in
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Theorem 1.5.2(c). Thus, let a ∈ F and ã ∈ A be such that the image of ã in F is a,
and ϕã the Lie algebra automorphism of g[t]K given by x ⊗ t 7→ x ⊗ (t − ã). Keep
denoting by ϕã the induced automorphism of UK(g[t]) and observe that ϕã is the
identity on UK(g). One easily checks that

ϕã
(
(x±α,r )

(k))
=

∑
k0+···+kr=k

r∏
s=0

(r
s

)ks
(−ã)ks(r−s)(x±α,s)

(ks) ∈UA(g[t]).

Hence, ϕã induces an automorphism of UA(g[t]). Notice that in the hyperalgebra
level we have

(2.2.6) (x±α,r )
(k)
7→

∑
k0+···+kr=k

r∏
s=0

(r
s

)ks
(−a)ks(r−s)(x±α,s)

(ks).

This justifies a change of notation from ϕã to ϕa .

2.3. Subalgebras of rank 1 and 2. For any α∈ R+, consider the Lie subalgebra of g
generated by x±α which is isomorphic to sl2. Denote this subalgebra by slα . Consider
also n±α = Cx±α , hα = Chα and b±α = Chα ⊕ Cx±α . Notice that UZ(g) ∩U (slα)
coincides with the Z-subalgebra UZ(slα) of U (g) generated by (x±α )

(k), k ≥ 0
(see details in [Macedo 2013]). This implies that UZ(g) ∩ U (slα) is naturally
isomorphic to UZ(sl2) and, hence, the corresponding subalgebra UF(slα) of UF(g̃)

is naturally isomorphic to UF(sl2). Similarly, for any α ∈ R+, r ∈ Z, the Lie
subalgebra slα,r of g̃ generated by x±α,±r is isomorphic to sl2 and UZ(g̃)∩U (slα,r )
coincides with the Z-subalgebra of U (g̃) generated by (x±α,±r )

(k), k ≥ 0. We shall
denote the corresponding subalgebra of UF(g̃) by UF(slα,r ). We also consider
the subalgebra s̃lα of g̃ generated by x±α,r , r ∈ Z and the subalgebra slα[t] of g[t]
generated by x±α,r , r ≥ 0. The corresponding subalgebras UF(s̃lα) and UF(slα[t])
of UF(g̃) are naturally isomorphic to UF(s̃l2) and UF(sl2[t]).

We will also need to work with root subsystems of rank 2. Suppose α, β ∈ R+

form a simple system of a root subsystem R′ of rank 2 and let t denote a simple
Lie algebra of type R′. Denote by gα,β the subalgebra of g generated by x±α and
x±β , which is isomorphic to t. Notice that, for r, s ∈ Z, the subalgebra gr,s

α,β of g̃
generated by x±α,±r and x±β,±s is also isomorphic to t. Let U ′Z(gα,β) be the subalgebra
of UZ(g) generated by (x±α )

(k), (x±β )
(k), k≥0, and U ′Z(g

r,s
α,β) the subalgebra of UZ(g̃)

generated by (x±α,±r )
(k), (x±β,±s)

(k), k ≥ 0. Proposition 2.1.2 implies that U ′Z(gα,β)
and U ′Z(g

r,s
α,β) are naturally isomorphic to UZ(t). Recall that if a is a subalgebra

of U (g̃), then UZ(a)=U (a)∩UZ(g̃). As in the rank-1 case, we have

(2.3.1) U ′Z(gα,β)=UZ(gα,β) and U ′Z(g
r,s
α,β)=UZ(g

r,s
α,β).
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The details can be found in [Macedo 2013]. It follows from (2.3.1) that UF(gα,β)=

F⊗Z UZ(gα,β) ⊆ UF(g) and UF(g
r,s
α,β) = F⊗Z UZ(g

r,s
α,β) ⊆ UF(g̃) are isomorphic

to UF(t).

2.4. The algebra gsh. Another important subalgebra used in the proof of our main
result is the subalgebra gsh generated by the root vectors associated to short simple
roots.

Let 1sh = {α ∈1 : (α, α) < 2} denote the set of simple short roots. In particular,
if g is simply laced,1sh=∅. Let R+sh=Z1sh∩R+ and Rsh=Z1sh∩R (and notice
that if g is not simply laced, Rsh 6= {α ∈ R : (α, α) < 2}). Set Ish= {i ∈ I : αi ∈1sh}

and define Psh =
⊕

i∈Ish
Zωi and P+sh = Psh ∩ P+. Consider also the subalgebras

hsh=
⊕

i∈Ish
Chi , b

±

sh=hsh⊕n
±

sh, where n±sh=
⊕
±α∈R+sh

gα , and gsh=n−sh⊕hsh⊕n
+

sh.
Then if1sh 6=∅, gsh is a simply laced Lie subalgebra of g with Cartan subalgebra hsh
and 1sh can be identified with the choice of simple roots associated to the given
triangular decomposition. The subsets Qsh, Q+sh, and the Weyl group Wsh are
defined in the obvious way. The restriction of ( , ) to gsh is an invariant symmetric
and nondegenerate bilinear form on gsh, but the normalization is not the same as the
one we fixed for g. Indeed, (α, α)= 2/r∨ for all α ∈ Rsh. The set {x±α , hi : α ∈ R+sh,

i ∈ Ish} is a Chevalley basis for gsh.
Observe that UZ(g)∩U (gsh) coincides with the Z-subalgebra of U (g) generated

by (x±α )
(k), α ∈ 1sh; and, hence, Proposition 2.1.2 implies that UF(gsh) can be

naturally identified with a subalgebra of UF(g). Similar observation apply to UZ(a)

for a= n±sh, hsh.
Consider the linear map h∗→h∗sh, λ 7→λ, given by restriction and let ish :h

∗

sh→h∗

be the linear map such that ish(α)= α for all α ∈1sh. In particular, ish(µ)= µ for
all µ ∈ h∗sh. Given λ ∈ P , consider the function ηλ : Psh→ P given by

(2.4.1) ηλ(µ)= ish(µ)+ λ− ish(λ).

Lemma 2.4.1. If λ ∈ P+, µ ∈ P+sh , and µ≤ λ, then ηλ(µ) ∈ P+.

Proof. For each i ∈ Ish, take mi ∈ Z≥0 such that µ= λ−
∑

i∈Ish
miαi . In particular,

ηλ(µ)= λ−
∑

i∈Ish
miαi . Then for j ∈ Ish we have ηλ(µ)(h j )= µ(h j )≥ 0, while

for j ∈ I \ Ish we have ηλ(µ)(h j )= λ(h j )−
∑

i∈Ish
miαi (h j )≥ λ(h j )≥ 0. �

The affine Kac–Moody algebra associated to gsh is naturally isomorphic to the
subalgebra

ĝsh := gsh⊗C[t, t−1
]⊕Cc⊕Cd

of ĝ, and under this isomorphism ĥsh is identified with hsh⊕Cc⊕Cd. The sub-
algebras gsh[t] and n̂±sh, as well as P̂sh, Q̂sh, etc., are defined in the obvious way.
Moreover, UF(g̃sh) and UF(gsh[t]) can be naturally identified with a subalgebra
of UF(g̃).
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3. Finite-dimensional modules

3.1. Modules for hyperalgebras. We now review the finite-dimensional represen-
tation theory of UF(g). If the characteristic of F is zero, then UF(g)∼=U (gF) and
the results stated here can be found in [Humphreys 1978]. The literature for the
positive characteristic setting is more often found in the context of algebraic groups,
in which case UF(g) is known as the hyperalgebra or algebra of distributions of an
algebraic group of the same Lie type as g (see Part II of [Jantzen 2003]). A more
detailed review in the present context can be found in [Jakelić and Moura 2007,
Section 2].

Let V be a UF(g)-module. A nonzero vector v ∈ V is called a weight vector
if there exists µ ∈ UF(h)

∗ such that hv = µ(h)v for all h ∈ UF(h). The subspace
consisting of weight vectors of weight µ is called a weight space of weight µ and it
will be denoted by Vµ. If V =

⊕
µ∈UF(h)∗

Vµ, then V is said to be a weight module.
If Vµ 6= 0, µ is said to be a weight of V and wt(V )= {µ ∈UF(h)

∗
: Vµ 6= 0} is said

to be the set of weights of V . Notice that the inclusion (2.2.2) induces an inclusion
P ↪→UF(h)

∗. In particular, we can consider the partial order ≤ on UF(h)
∗ given

by µ≤ λ if λ−µ ∈ Q+ and we have

(3.1.1) (x±α )
(k)Vµ ⊆ Vµ±kα for all α ∈ R+, k > 0, µ ∈UF(h)

∗.

If V is a weight-module with finite-dimensional weight spaces, its character is the
function ch(V ) :UF(h)

∗
→ Z given by ch(V )(µ)= dim Vµ. As usual, if V is finite-

dimensional, ch(V ) can be regarded as an element of the group ring Z[UF(h)
∗
]

where we denote the element corresponding to µ ∈UF(h)
∗ by eµ. By the inclusion

(2.2.2) the group ring Z[P] can be regarded as a subring of Z[UF(h)
∗
] and, moreover,

the action of W on P induces an action of W on Z[P] by ring automorphisms
where w · eµ = ewµ.

If v ∈ V is weight vector such that (x+α )
(k)v = 0 for all α ∈ R+, k > 0, then v is

said to be a highest-weight vector. If V is generated by a highest-weight vector,
then it is said to be a highest-weight module. Similarly, one defines the notions of
lowest-weight vectors and modules by replacing (x+α )

(k) by (x−α )
(k).

Theorem 3.1.1. Let V be a UF(g)-module.

(a) If V is finite-dimensional, then V is a weight-module, wt(V ) ⊆ P , and
dim Vµ = dim Vσµ for all σ ∈W, µ ∈UF(h)

∗. In particular, ch(V ) ∈ Z[P]W.

(b) If V is a highest-weight module of highest weight λ, then dim(Vλ) = 1 and
Vµ is nonzero only if µ ≤ λ. Moreover, V has a unique maximal proper
submodule and, hence, also a unique irreducible quotient. In particular, V is
indecomposable.
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(c) For each λ ∈ P+, the UF(g)-module WF(λ) given by the quotient of UF(g) by
the left ideal IF(λ) generated by

UF(n
+)0, h− λ(h) and (x−α )

(k), for all h ∈UF(h), α ∈ R+, k > λ(hα),

is nonzero and finite-dimensional. Moreover, every finite-dimensional highest-
weight module of highest weight λ is a quotient of WF(λ).

(d) If V is finite-dimensional and irreducible, then there exists a unique λ ∈ P+

such that V is isomorphic to the irreducible quotient VF(λ) of WF(λ). If the
characteristic of F is zero, then WF(λ) is irreducible.

(e) For each λ ∈ P+, ch(WF(λ)) is given by the Weyl character formula. In
particular, µ ∈ wt(WF(λ)) if and only if σµ ≤ λ for all σ ∈W. Moreover,
WF(λ) is a lowest-weight module with lowest weight w0λ. �

Remark 3.1.2. The module WF(λ) defined in Theorem 3.1.1(c) is called the
Weyl module (or costandard module) of highest weight λ. The known proofs
of Theorem 3.1.1(e) make use of geometric results such as Kempf’s Vanishing
Theorem.

We shall need the following lemma in the proof of Lemma 5.2.5 below.

Lemma 3.1.3. Let V be a finite-dimensional UF(g)-module, µ ∈ P , and α ∈ R+.
If v ∈ Vµ \ {0} is such that (x−α )

(k)v = 0 for all k > 0, then µ(hα) ∈ Z≤0 and
(x+α )

(−µ(hα))v 6= 0. �

Remark 3.1.4. In characteristic zero, it is well known that the following stronger
statement holds: if v ∈ Vµ \ {0} is such that µ(hα) ∈ Z≤0, then (x+α )

(−µ(hα))v 6= 0.
In positive characteristic this stronger statement is not true for all finite-dimensional
representations.

The next lemma can be proved exactly as in [Naoi 2012, Lemma 4.5].

Lemma 3.1.5. Let mi ∈ Z≥0, i ∈ I, V be a finite-dimensional UF(n
−)-module, and

suppose v ∈ V satisfies (x−i )
(k)v = 0 for all i ∈ I, k > mi . Then, given α ∈ R+, we

have (x−α )
(k)v = 0 for all k >

∑
i∈I ni mi where ni are such that hα =

∑
i∈I ni hi .�

3.2. Modules for hyper loop algebras. We now recall some basic results about
the category of finite-dimensional UF(g̃)-modules in the same spirit as Section 3.1.
The results of this subsection can be found in [Jakelić and Moura 2007, Section 3]
and references therein.

Given a UF(g̃)-module V and ξ ∈UF(h̃)
∗, let

Vξ = {v ∈ V : for all x ∈UF(h̃), there exists k > 0 such that (x − ξ(x))kv = 0}.
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We say that V is an `-weight module if V =
⊕
ω∈PF

Vω. In this case, regarding V as a
UF(g)-module, we have

Vµ =
⊕
ω∈PF:

wt(ω)=µ

Vω for all µ ∈ P and V =
⊕
µ∈P

Vµ.

A nonzero element of Vω is said to be an `-weight vector of `-weight ω. An `-weight
vector v is said to be a highest-`-weight vector if UF(h̃)v = Fv and (x+α,r )

(k)v = 0
for all α ∈ R+ and all r, k ∈Z, k > 0. If V is generated by a highest-`-weight vector
of `-weight ω, V is said to be a highest-`-weight module of highest `-weight ω.

Theorem 3.2.1. Let V be a UF(g̃)-module.

(a) If V is finite-dimensional, then V is an `-weight module. Moreover, if V is
finite-dimensional and irreducible, then V is a highest-`-weight module whose
highest `-weight lies in P+F .

(b) If V is a highest-`-weight module of highest `-weight ω ∈P+F , then dim Vω = 1
and Vµ 6= 0 only if µ ≤ wt(ω). Moreover, V has a unique maximal proper
submodule and, hence, also a unique irreducible quotient. In particular, V is
indecomposable.

(c) For each ω ∈ P+F , the local Weyl module WF(ω) is nonzero and has finite
dimension. Moreover, every finite-dimensional highest-`-weight module of
highest `-weight ω is a quotient of WF(ω).

(d) If V is finite-dimensional and irreducible, then there exists a unique ω ∈ P+F
such that V is isomorphic to the irreducible quotient VF(ω) of WF(ω).

(e) For µ ∈ P and ω ∈ P+F , µ is in wt(WF(ω)) if and only if µ ∈ wt(WF(wt(ω))),
or equivalently if wµ≤ wt(ω) for all w ∈W. �

3.3. Graded modules for hyper current algebras. Recall the following elementary
fact.

Lemma 3.3.1. Let A be a ring, I ⊂ A a left ideal, B = F⊗Z A an F-algebra, and
J the image of I in B, that is, J is the F-span of {(1⊗ a) ∈ B : a ∈ I }. Then
F⊗Z (A/I ) is a left B-module, J is a left ideal of B, and we have an isomorphism
of left B-modules B/J ∼= F⊗Z (A/I ). �

We shall use Lemma 3.3.1 with A being one of the integral forms so that B is
the corresponding hyperalgebra.

Given λ ∈ P+, let I c
Z(λ)⊂UZ(g[t]) be the left ideal generated by

UZ(n
+
[t])0, UZ(h[t]+)0, h− λ(h), (x−α )

(k),

for all h ∈UZ(h), α ∈ R+, k > λ(hα), and set

W c
Z(λ)=UZ(g[t])/I c

Z(λ).
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Similarly, if `≥ 0 is also given, let IZ(`, λ) be the left ideal of UZ(g[t]) generated
by

UZ(n
+
[t])0, UZ(h[t]+)0, h− λ(h), (x−α,s)

(k),

for all h ∈UZ(h), α ∈ R+, s, k ∈ Z≥0, k >max{0, λ(hα)− r∨α `s}.

Then set
DZ(`, λ)=UZ(g[t])/IZ(`, λ).

Notice that W c
Z(λ) and DZ(`, λ) are weight modules.

Since the ideals defining W c
F (λ) and DF(`, λ) (see Section 1.5) are the images of

I c
Z(λ) and IZ(`, λ) in UF(g[t]), respectively, an application of Lemma 3.3.1 gives

isomorphisms of UF(g[t])-modules

W c
F (λ)
∼= F⊗Z W c

Z(λ) and DF(`, λ)∼= F⊗Z DZ(`, λ).

As before, DZ(`, λ) is a quotient of W c
Z(λ) for all λ ∈ P+ and all ` > 0. We

shall see next (Proposition 3.3.2) that the latter is a finitely generated Z-module
and, hence, so is the former. Together with Corollary 1.5.3, this implies that

(3.3.1) DZ(`, λ) is a free Z-module.

The proof of the next proposition is an adaptation of that of [Jakelić and Moura
2007, Theorem 3.11]. The extra details can be found in [Macedo 2013].

Proposition 3.3.2. For every λ ∈ P+, the UZ(g[t])-module W c
Z(λ) is a finitely

generated Z-module.

We now prove an analogue of Theorem 1.5.4 for graded local Weyl modules.

Corollary 3.3.3. Let λ ∈ P+ and v be the image of 1 in W c
C
(λ). Then UZ(g[t])v is

a free Z-module of rank dim(W c
C
(λ)). Moreover, UZ(g[t])v =

⊕
µ∈P(UZ(g[t])v ∩

W c
C
(λ)µ). In particular, UZ(g[t])v is an integral form for W c

C
(λ).

Proof. To simplify notation, set L = UZ(n
−)v. Let also ϑ be as in the proof of

Proposition 3.3.2. Since v satisfies the relations satisfied by ϑ, it follows that there
exists an epimorphism of UZ(g[t])-modules WZ(λ)→ L , ϑ 7→ v. Since WZ(λ) is
finitely generated, it follows that so is L . On the other hand, since L ⊆W c

C
(λ), it is

also torsion free and, hence, a free Z-module of finite rank. Since UZ(n
−) spans

U (n−) and W c
C
(λ) = U (n−)v, it follows that L contains a basis of W c

C
(λ). This

implies that the rank of L is at least dim(W c
C
(λ)). On the other hand, C⊗Z L is

a g[t]-module generated by the vector 1⊗ v which satisfies the relations (1.5.1).
Therefore, it is a quotient of W c

C
(λ). Since dim(C⊗Z L)= rank(L), the first and

the last statements follow. The second statement is clear since L is obviously a
weight module. �
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Consider the category GF of Z-graded finite-dimensional representations of
UF(g[t]). Recall the functors τm defined in the paragraph preceding Remark 1.5.1.
For each UF(g)-module V , let ev0(V ) be the module in GF obtained by extending
the action of UF(g) to one of UF(g[t]) on V by setting UF(g[t]+)V = 0. For
λ ∈ P+, r ∈ Z, set VF(λ, r)= evr (VF(λ)) where evr = τr ◦ ev0.

Theorem 3.3.4. Let λ ∈ P+.

(a) If V ∈GF is simple, then it is isomorphic to VF(λ, r) for unique (λ, r)∈ P+×Z.

(b) W c
F (λ) is finite-dimensional.

(c) If V is a graded finite-dimensional UF(g[t])-module generated by a weight
vector v of weight λ satisfying UF(n

+
[t])0v = UF(h[t]+)0v = 0, then V is a

quotient of W c
F (λ).

Proof. To prove part (a), suppose V ∈ GF is simple. If V [r ], V [s] 6= 0 for s < r ∈ Z,
(
⊕

k≥r V [k]) would be a proper submodule of V , contradicting the fact that it is
simple. Thus there must exist a unique r ∈ Z such that V [r ] 6= 0. Since UF(g[t]+)
changes degrees, V = V [r ] must be a simple UF(g)-module. This shows that
V ∼= VF(λ, r) for some λ ∈ P+, r ∈ Z.

To prove part (b), observe that W c
F (λ)
∼= F⊗Z W c

Z(λ) (see Lemma 3.3.1). Thus
the dimension of W c

F (λ) must be at most the number of generators of W c
Z(λ), which

is proved to be finite in Proposition 3.3.2.
To prove part (c), observe that the UF(g)-submodule V ′=UF(g)v⊆ V is a finite-

dimensional highest-weight module of highest weight λ. Thus, by Theorem 3.1.1(c),
V ′ is a quotient of WF(λ). The statement follows by comparing the defining relations
of V and W c

F (λ). �

Remark 3.3.5. Denote by v the image of 1 in W c
F (λ). From the defining relations

(1.5.1) it follows that F ⊗Z UZ(g[t])v is a quotient of W c
F (λ). It follows from

Theorem 1.5.2(b) that F⊗Z UZ(g[t])v ∼= W c
F (λ) for all λ ∈ P+ (see Section 3.4

below). Moreover, since F⊗Z WZ(λ)∼=W c
F (λ), Theorem 1.5.2(b) also implies that

WZ(λ) is free.

3.4. Proof of (1.5.4). The argument of the proof will use Corollary 1.5.3, the
characteristic-zero version of parts (c) and (d) of Theorem 1.5.2, and the following
proposition.

Proposition 3.4.1 [Naoi 2012, Corollary A]. Let λ ∈ P+. Then dim W c
C
(λ) =∏

i∈I (dim W c
C
(ωi ))

λ(hi ). �

We shall also need the following general construction. Given a Zs≥0-filtered
UF(g[t])-module W , we can consider the associated UF(g[t])-module gr(W ) =⊕

s≥0 Ws/Ws−1, which obviously has the same dimension as W . Suppose now
that W is any cyclic UF(g[t])-module and fix a generator w. Then the Z-grading
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on UF(g[t]) induces a filtration on W . Namely, set w to have degree zero and
define the s-th filtered piece of W by Ws = F sUF(g[t])w where F sUF(g[t]) =⊕

r≤s UF(g[t])[r ]. Then gr(W ) is cyclic since it is generated by the image of w in
gr(W ).

Recall the notation fixed for (1.5.4): ω ∈P×A , λ=wt(ω), $ is the image of ω in
PF. Also recall that, using (1.5.3), (1.5.4) will be proved if we show that

dim WF($ )≤ dim WK(ω).

Fix w ∈ WF($ )λ \ {0}. Not only does w generate WF($ ) as a UF(g̃)-module,
but it also follows from the proof of [Jakelić and Moura 2007, Theorem 3.11] (with
a correction incorporated in the proof of [Jakelić and Moura 2010, Theorem 3.7])
that UF(n

−
[t])w=WF($ ). Hence, we can apply the general construction reviewed

above to WF($ ). Set V = gr(WF($ )) and denote the image of w in V by v.
The module V is finite-dimensional and v is a highest-weight vector of weight λ
satisfying UF(h[t]+)0v = 0 (the latter follows since dim(Vλ)= 1, V is graded, and
UF(h[t]) is commutative). Hence, v satisfies the defining relations (1.5.1) of W c

F (λ).
In particular,

dim WF($ )≤ dim W c
F (λ).

Since dim W c
F (λ)= dim W c

K(λ) by Corollary 1.5.3, it now suffices to show that

dim W c
K(λ)= dim WK(ω).

For proving this, consider the decomposition of ω of the form

ω =

m∏
j=1

ωλ j ,a j

for some m ≥ 0, a j ∈ K×, ai 6= a j for i 6= j , λ j ∈ P+ such that λ=
∑m

j=1 λ j . By
Theorem 1.5.2(d), in characteristic zero, WK(ω)∼=⊗

m
j=1WK(ωλ j ,a j ). In character-

istic zero, Theorem 1.5.2(c) implies that dim WK(ωλ j ,a j )= dim W c
K(λ j ). Hence,

dim WK(ω)=

m∏
j=1

dim W c
K(λ j )=

m∏
j=1

∏
i∈I

dim W c
K(ωi )

λ j (hi )

=

∏
i∈I

W c
K(ωi )

λ(hi ) = dim W c
K(λ).

Here, the second and last equality follow from Proposition 3.4.1 and the others are
clear. This completes the proof of (1.5.4).

Notice that all equalities of dimensions proved here actually imply the corre-
sponding equalities of characters. In particular, it follows that

(3.4.1) ch(WF($ ))=
∏
i∈I

(ch(W c
C(ωi )))

wt($ )(hi ) for all $ ∈ P+F .



278 ANGELO BIANCHI, TIAGO MACEDO AND ADRIANO MOURA

3.5. Joseph–Mathieu–Polo relations for Demazure modules. We now explain the
reason we call the module DF(`, λ) a Demazure module. We begin with the
following lemma. Let γ be the Dynkin diagram automorphism of g induced by w0

and recall from Section 2.2 that it induces an automorphism of UF(g[t]) also denoted
by γ .

Lemma 3.5.1. Let λ ∈ P+, ` ≥ 0, and set λ∗ =−w0λ. Let W be the pull-back of
DF(`, λ

∗) by γ . Then DF(`, λ)∼=W .

Proof. Let v ∈ DF(`, λ
∗)λ∗ \ {0}. By (1.5.1) and (1.5.2) we have

UF(n
+
[t])0v =UF(h[t]+)0v = 0, hv = λ∗(h)v, (x−α,s)

(k)v = 0,

for all h ∈UF(h), α ∈ R+, s, k ∈Z≥0, k >max{0, λ∗(hα)−s`r∨α }. Denote by w the
vector v regarded as an element of W . Evidently, W =UF(g[t])w. Since γ restricts
to automorphisms of UF(n

+
[t]) and of UF(h[t]+), it follows that UF(n

+
[t])0w =

UF(h[t]+)0w = 0, while (2.2.5) implies that w ∈ Wλ. Finally, (2.2.4) and (2.2.5)
together imply that

(x−α,s)
(k)w = 0 for all α ∈ R+, s, k ∈ Z≥0, k >max{0, λ(hα)− s`r∨α }.

This shows that w satisfies the defining relations of DF(`, λ) and, hence, there
exists an epimorphism from DF(`, λ) onto W . Since (λ∗)∗ = λ, reversing the
roles of λ and λ∗ we get an epimorphism on the other direction. Since these are
finite-dimensional modules, we are done. �

In order to continue, we need the concepts of weight vectors, weight spaces,
weight modules and integrable modules for UF(ĝ

′) which are similar to those for
UF(g) (see Section 3.1) by replacing I with Î and P with P̂ ′. Also, using the
obvious analogue of (2.2.2), we obtain an inclusion P̂ ′ ↪→ UF(ĥ

′)∗. Let V be a
Z-graded UF(ĝ

′)-module whose weights lie in P̂ ′. As before, let V [r ] denote the
r -th graded piece of V . For µ ∈ P̂ , say µ= µ′+mδ with µ′ ∈ P̂ ′,m ∈ Z, set

Vµ = {v ∈ V [m] : hv = µ′(h)v for all h ∈UF(ĥ
′)}.

If Vµ 6= 0 we shall say that µ is a weight of V and let wt(V )= {µ ∈ P̂ : Vµ 6= 0}.
We record the following partial affine analogue of Theorem 3.1.1.

Theorem 3.5.2. Let V be a graded UF(ĝ
′)-module.

(a) If V is integrable, then V is a weight-module and wt(V ) ⊆ P̂. Moreover,
dim Vµ = dim Vσµ for all σ ∈ Ŵ, µ ∈ P̂.

(b) If V is a highest-weight module of highest weight λ, dim(Vλ)= 1 and Vµ 6= 0
only if µ ≤ λ. Moreover, V has a unique maximal proper submodule and,
hence, also a unique irreducible quotient. In particular, V is indecomposable.
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(c) Let 3 ∈ P̂+ and m =3(d). Then the UF(ĝ
′)-module ŴF(3) generated by a

vector v of degree m satisfying the defining relations

UF(n̂
+)0v = 0, hv =3(h)v and (x−i )

(k)v = 0,

for all h ∈UF(ĥ
′), i ∈ Î , k >3(hi ), is nonzero and integrable. Moreover, for

every positive real root α, we have

(3.5.1) (x−α )
(k)v = 0 for all k >3(hα).

Furthermore, every integrable highest-weight module of highest weight 3 is a
quotient of ŴF(3). �

Given 3 ∈ P̂+, σ ∈ Ŵ, the Demazure module V σ
F (3) is defined as the UF(b̂

′+)-
submodule generated by ŴF(3)σ3 (see [Fourier and Littelmann 2007; Mathieu
1989; Naoi 2012]). In particular, V σ

F (3)
∼= V σ ′

F (3) if σ3= σ ′3 for some σ ′ ∈ Ŵ.
Our focus is on the Demazure modules which are stable under the action of UF(g).
Since V σ

F (3) is defined as a UF(b̂
′+)-module, it is stable under the action of UF(g)

if, and only if,

(3.5.2) UF(n
−)0ŴF(3)σ3 = 0.

In particular, since V σ
F (3) is an integrable UF(slα)-module for any α∈ R+, it follows

that (σ3)(hα) ≤ 0 for all α ∈ R+. Conversely, using the exchange condition for
Coxeter groups (see [Humphreys 1990, Section 5.8]), one easily deduces that, for
all i ∈ Î , we have

(xεi )
(k)ŴF(3)σ3 = 0 for all k > 0

where ε=+ if σ3(hi )≥0 and ε=− if σ3(hi )≤0. This implies that if σ3(hi )≤0
for all i ∈ I , then V σ

F (3) is UF(g)-stable. Thus, henceforth, assume (σ3)(hi )≤ 0
for all i ∈ I and observe that this implies that σ3 must have the form

(3.5.3) σ3= `30+w0λ+mδ for some λ ∈ P+,m ∈ Z, and `=3(c).

Conversely, given ` ∈ Z≥0, λ ∈ P+, and m ∈ Z, since Ŵ acts simply transitively on
the set of alcoves of ĥ∗ (see [Humphreys 1990, Theorem 4.5.(c)]), there exists a
unique 3 ∈ P̂+ such that `30+w0λ+mδ ∈ Ŵ3. Thus, if σ ∈ Ŵ and 3 ∈ P̂+ are
such that

(3.5.4) σ3= `30+w0λ+mδ,

then V σ
F (3) is UF(g)-stable. Henceforth, we fix σ,3,w0, λ, and m as in (3.5.4).

Notice that if γ =±α+ sδ ∈ R̂+ with α ∈ R+, then

σ3(hγ )=±w0λ(hα)+ s`r∨α .
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The following lemma is a rewriting of [Mathieu 1989, Lemme 26] using the above
fixed notation.

Lemma 3.5.3. The UF(b̂
′+)-module V σ

F (3) is isomorphic to the UF(b̂
′+)-module

generated by a vector v of degree m satisfying the following defining relations:
hv = σ3(h)v, h ∈UF(ĥ

′), UF(h[t]+)0v =UF(n
−
[t]+)0v = 0, and

(3.5.5) (x+α,s)
(k)v = 0 for all α ∈ R+, s ≥ 0, k >max{0,−w0λ(hα)− s`r∨α }. �

Remark 3.5.4. Mathieu [1989] attributes Lemma 3.5.3 to Joseph and Polo. This
is the reason for the title of this subsection. The original version of this lemma in
[Mathieu 1989] gives generator and relations for any Demazure module, not only
for the UF(g)-stable ones.

The following is the main result of this subsection.

Proposition 3.5.5. The graded UF(g[t])-modules V σ
F (3) and DF(`, λ,m) are iso-

morphic.

Proof. It suffices to prove the statement for m = 0, so for simplicity we assume that
this is the case. Proceeding as in [Fourier and Littelmann 2007, Corollary 1] (see
also [Naoi 2012, Proposition 3.6]) we show that V σ

F (3) is a quotient of DF(`, λ).
Namely, let v be a nonzero vector in ŴF(3)µ where µ= w0σ3. Quite clearly v
generates V σ

F (3). It follows that v is an extremal weight vector and, hence, satisfies
the relations

(3.5.6) (x±γ )
(k)v = 0 for all k >max{0,∓µ(hγ )}

and all positive real roots γ . In particular, taking γ = α + sδ with α ∈ R+ and
s ≥ 0, it follows that

−µ(hγ )=−λ(hα)− `r∨α s ≤ 0,

showing (x+α,s)
(k)v = 0 for all k > 0. Similarly, taking γ =−α+ sδ, we get

−µ(hγ )= λ(hα)− `r∨α s,

which shows that v satisfies the relations determined by (1.5.2). It remains to be
shown that UF(h[t]+)0v = 0. This can be proved as in [Mathieu 1989, Lemme 26].
Alternatively, this can also be shown by proving that there exists a surjective
map from D(`, λ∗) to the pull-back of V σ

F (3) by the automorphism ψ defined in
Section 2.2 (similarly to what we do in the next paragraph), and then comparing
weights (one uses a vector as in Lemma 3.5.3 to prove the existence of such a map).
It now suffices to show that dim(DF(`, λ))≤ dim(V σ

F (3)).
Now let v be in DF(`, λ

∗)λ∗ \ {0}, W be the pull-back of DF(`, λ
∗) by ψ , and

w denote v when regarded as an element of W . Since UF(n
+
[t])0v = 0, and since
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(3.5.2) implies that ψ(UF(n
−
[t])0)=UF(n

+
[t])0, it follows that UF(n

−
[t])0w = 0.

Also, ψ restricts to an automorphism of UF(h[t]+) and, hence, UF(h[t]+)0w = 0.
Since hv = λ∗(h)v for all h ∈ UF(h), (2.2.3) implies that hw = w0λ(h)w for all
h ∈UF(h). Finally, the defining relations of v and (2.2.1) imply that

(x+α,s)
(k)w = (x−α,s)

(k)v = 0 for all α ∈ R+, s ≥ 0, k >max{0, λ∗(hα)− s`r∨α }.

Thus w satisfies all the defining relations of V σ
F (3) in Lemma 3.5.3. Hence, W is a

quotient of V σ
F (3) and therefore dim(W )≤ dim(V σ

F (3)). Since dim(DF(`, λ
∗))=

dim(DF(`, λ)) by Lemma 3.5.1, we are done. �

Corollary 3.5.6. DF(`, λ) is isomorphic to the quotient of UF(g[t]) by the left ideal
I−F (`, λ) generated by h−w0λ(h), h ∈UF(h), UF(h[t]+)0,UF(n

−
[t])0, and

(x+α,s)
(k) for all α ∈ R+, s ≥ 0, k >max{0,−w0λ(hα)− s`r∨α }. �

Remark 3.5.7. Observe that the difference between our first definition of DF(`, λ)

and the one given by Corollary 3.5.6 lies on exchanging a “highest-weight generator”
by a “lowest-weight” one. More precisely, let v be as in Lemma 3.5.3. Then the
isomorphism of Proposition 3.5.5 must send v to a nonzero element in DF(`, λ)w0λ.
In particular, if w is in DF(`, λ)w0λ, it satisfies the relations listed in Lemma 3.5.3.
The second part of our proof of Proposition 3.5.5 differs from the one given in
[Fourier and Littelmann 2007, Corollary 1] in characteristic zero. It is claimed
there that a vector in DF(`, λ)w0λ must satisfy several relations, including (3.5.5),
without further justification. Proposition 3.5.5 implies that this is true, but we do
not see how to deduce it so directly (even in characteristic zero) since we cannot
use extremal-weight vector theory to such vectors DF(`, λ) a priori contained in an
integrable module for the full affine hyperalgebra.

Corollary 3.5.8. Let g = sl2 and consider the subalgebra a = n−[t] ⊕ h[t] ⊕
n+[t]+ ⊆ g[t]. For `, λ ∈ Z≥0, let I ′F(`, λ) be the left ideal of UF(a) generated
by the generators of IF(`, λ) which lie in UF(a). Then, given k, l, s ∈ Z≥0 with
k >max{0, λ− s`}, we have

(3.5.7) (x+i )
(l)(x−i,s)

(k)
∈UF(a)UF(n

+)0⊕ I ′F(`, λ)

where i is the unique element of I .

Proof. The statement is a hyperalgebraic version of [Naoi 2012, Lemma 4.10] and
the proof follows a similar outline. Namely, by using the automorphism of g[t]
determined by x±i,r 7→ x∓i,r , i ∈ I, r ∈ Z≥0, we observe that (3.5.7) is equivalent to

(3.5.8) (x−i )
(l)(x+i,s)

(k)
∈UF(a

−)UF(n
−)0+ I ′′F (`, λ)

for all k, l, s ∈ Z≥0, k > max{0, λ− s`}, where a− = n−[t]+ ⊕ h[t] ⊕ n+[t] and
I ′′F (`, λ) is the left ideal of UF(a

−) generated by the generators of I−F (`, λ) given
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in Corollary 3.5.6 which lie in UF(a
−). Since g[t] = a−⊕ n−, the PBW theorem

implies that
UF(g[t])=UF(a

−)UF(n
−)0⊕UF(a

−),

and, hence, (x−i )
(l)(x+i,s)

(k)
= u + u′ with u ∈ UF(a

−)UF(n
−)0 and u′ ∈ UF(a

−).
Consider the Demazure module DF(`, λ) and let w ∈ DF(`, λ)−λ \ {0}. It follows
from the proof of Proposition 3.5.5 that if k >max{0, λ− s`}, then

u′w =
(
(x−i )

(l)(x+i,s)
(k)
− u

)
w = 0.

Since b̂′+ = a−⊕Cc and a− is an ideal of b̂′+, it follows from Lemma 3.5.3 that
I ′′F (`, λ) is the annihilating ideal of w inside UF(a), and, hence, u′ ∈ I ′′F (`, λ). �

4. Joseph’s Demazure flags

4.1. Quantum groups. Let C(q) be the field of rational functions on an indeter-
minate q. Let also C = (ci j )i, j∈ Î be the Cartan matrix of ĝ, and di , with i ∈ Î , be
nonnegative relatively prime integers such that the matrix DC , with D=diag(di )i∈I ,
is symmetric. Set qi = qdi and for m, n ∈ Z, n ≥ 0, set

[m]qi =
qm

i − q−m
i

qi − q−1
i

, [n]qi ! = [n]qi [n− 1]qi · · · [1]qi ,[
m
n

]
qi

=
[m]qi [m− 1]qi . . . [m− n+ 1]qi

[n]qi !
.

The quantum group Uq(ĝ
′) is a C(q)-associative algebra (with 1) with generators

x±i , k±1
i , i ∈ Î subject to the following defining relations for all i, j ∈ Î :

ki k−1
i = 1, ki k j = k j ki , ki x±j k−1

i = q±ci j
i x±j , [x

+

i , x−j ] = δi j
ki − k−1

i

qi − q−1
i

,

1−ci j∑
m=0

(−1)m
[

1− ci j

m

]
qi

(x±i )
1−ci j−m x±j (x

±

i )
m
= 0, i 6= j.

Let Uq(n̂
±) be the subalgebra generated by x±i , i ∈ Î , and Uq(b̂

±) be the subalgebra
generated by Uq(n̂

±) together with k±1
i , i ∈ Î .

We shall need an integral form of U (ĝ′). Let Zq = Z[q, q−1
], UZq (n̂

±) be the
Zq -subalgebra of Uq(n̂

±) generated by (x±i )
m/([m]qi !), i ∈ Î ,m ≥ 0, and UZq (ĝ

′)

be the Zq-subalgebra of Uq(ĝ
′) generated by UZq (n̂

±) and ki , i ∈ Î . Let also
UZq (b̂

±) = Uq(b̂
±) ∩UZq (ĝ

′). Then UZq (a), where a = ĝ′, n̂±, b̂±, is a free Zq-
module such that the natural map C(q)⊗Zq UZq (a)→ Uq(a) is a C(q)-algebra
isomorphism. In other words, UZq (a) is a Zq-form of Uq(a). Moreover, letting
Z be a Zq-module where q acts as 1, there exists an epimorphism of Z-algebras
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Z⊗Zq UZq (a)→UZ(a), which is an isomorphism if a= n̂±, and whose kernel is
the ideal generated by ki − 1, i ∈ Î , for a= ĝ′, b̂±.

Given 3 ∈ P̂+, let Vq(3) be the simple (type 1) Uq(ĝ
′)-module of highest

weight 3. Given a highest-weight vector v ∈ Vq(3), set VZq (3) = UZq (n̂
−)v,

which is a Zq-form of Vq(3). Given σ ∈ Ŵ and a nonzero vector v ∈ Vq(3)

of weight σ3, set V σ
Zq
(3) = UZq (n̂

+)v, which is a free Zq-module as well as a
UZq (b̂

+)-module, and C⊗Zq V σ
Zq
(3)∼= V σ

C
(3). In particular,

(4.1.1) V σ
Z (3) := Z⊗Zq V σ

Zq
(3)

is an integral form of V σ
C
(3).

4.2. Crystals. A normal crystal associated to the root data of ĝ defined as a set B
equipped with maps ẽi , f̃i : B → B t {0}, εi , ϕi : B → Z, for each i ∈ Î , and
wt : B→ P̂ satisfying

(1) εi (b)=max{n : ẽi b 6= 0}, ϕi (b)=max{n : f̃i b 6= 0}, for all i ∈ Î , b ∈ B;

(2) ϕi (b)− εi (b)= wt(b)(hi ), for all i ∈ Î , b ∈ B;

(3) for b, b′ ∈ B, b′ = ẽi b if and only if f̃i b′ = b;

(4) if b ∈ B and i ∈ Î are such that ẽi b 6= 0, then wt(ẽi b)= wt(b)+αi .

For convenience, we extend ẽi , f̃i , εi , ϕi ,wt to Bt{0} by setting them to map 0 to 0.
Denote by E the submonoid of the monoid of maps B t {0} → B t {0} generated
by {ẽi : i ∈ Î }, and similarly define F. A normal crystal is said to be of highest
weight 3 ∈ P̂+ if there exists b3 ∈ B satisfying

wt(b3)=3, Eb3 = {0}, and Fb3 = B.

Given B ′⊂ B and µ∈ P̂ , define B ′µ= {b ∈ B ′ :wt(b)=µ} and define the character
of B ′ as ch(B ′)=

∑
µ∈P̂ #B ′µeµ ∈ Z[P̂].

Given crystals B1 and B2, a morphism from B1 to B2 is a map ψ : B1→ B2t{0}
satisfying

(1) if ψ(b) 6= 0, then wt(ψ(b))= wt(b), εi (ψ(b))= εi (b), ϕi (ψ(b))= ϕi (b), for
all i ∈ Î ;

(2) if ẽi b 6= 0, then ψ(ẽi b)= ẽiψ(b);

(3) if f̃i b 6= 0, then ψ( f̃i b)= f̃iψ(b).

The set B1× B2 admits a structure of crystal denoted by B1⊗ B2 (see [Joseph 2003,
Section 2.4]). There is, up to isomorphism, exactly one family {B(3) :3 ∈ P̂+} of
normal highest-weight crystals such that for all λ,µ ∈ P̂+, the crystal structure of
B(λ)⊗ B(µ) induces a crystal structure on its subset F(bλ⊗bµ), the inclusion is a
homomorphism of crystals, and F(bλ⊗ bµ)∼= B(λ+µ).
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Given a crystal B and σ ∈ Ŵ with a fixed reduced expression σ = si1 . . . sin ,
define

Eσ = {ẽm1
i1
. . . ẽmn

in
: m j ∈ N} ⊂ E and Fσ

= { f̃ m1
i1
. . . f̃ mn

in
: m j ∈ N} ⊂ F.

If B = B(3), 3 ∈ P̂+ and σ ∈ Ŵ, define the Demazure subset Bσ (3)= Fσb3 ⊆
B(3). Then Bσ (3) is E-stable: EBσ (3)⊂ Bσ (3)t {0}. It was proved in [Joseph
2003, Section 4.6] that ch(V σ

C
(3)) = ch(Bσ (3)). This fact and the following

theorem are the main results of [Joseph 2003] that we shall need.

Theorem 4.2.1. Let 3,µ ∈ P̂+. For any σ ∈ Ŵ, there exist a finite set J and
elements σ j ∈ Ŵ, b j ∈ Bσ (3) for each j ∈ J , satisfying

(1) bµ⊗ Bσ (3)= t j∈J B j where B j := Fσ j (bµ⊗ b j );

(2) E(bµ⊗ b j )= {0};

(3) ch(B j )= ch(Bσ j (ν j )), where ν j = µ+wt(b j ) ∈ P̂+.

Remark 4.2.2. The proof of Theorem 4.2.1 establishes an algorithm to find the
set J and the elements σ j , b j .

4.3. Globalizing. The theory of global basis of Kashiwara shows, in particular,
that for each 3 ∈ P̂+, there is a map G : B(3)→ Vq(3) such that

(4.3.1) VZq (3)=
⊕

b∈B(3)

Zq G(b),

the weight of G(b) is wt(b) and G(b3) is a highest-weight vector of Vq(3).
Fix 3,µ ∈ P̂+, σ ∈ Ŵ and let J, b j , σ j , ν j , j be in J , be as in Theorem 4.2.1.

Let b be in B(3)σ3 and set V σ
Zq
(3) = UZq (n̂

+)G(b). Similarly, let b′j be the
unique element of B j such that wt(b′j ) = σ jν j . Choose a linear order on J such
that wt(b j ) < wt(bk) only if j > k. For j ∈ J , let Y j be the Zq-submodule of
Vq(µ)⊗ V σ

q (3) spanned by G(bµ)⊗G(b) with b ∈ Bk, k ≤ j , and set

(4.3.2) y j = G(bµ)⊗G(b′j ).

Let also Z j =
∑

k≤ j UZq (n̂
−)(G(bµ)⊗G(bk)). Since J is linearly ordered and finite,

say #J = n and identify it with {1, . . . , n}. For convenience, set Y0 = {0}. Observe
that 0= Y0⊂ Y1⊂ · · · ⊂ Yk is a filtration of the UZq (b̂

+)-module G(b30)⊗V σ
Zq
(3).

The following result was proved in [Joseph 2006, Corollary 5.10].

Theorem 4.3.1. Suppose g is simply laced and µ(hi )≤ 1 for all i ∈ Î . Then:

(a) The Zq -module Y j is UZq (n̂
+)-stable for all j ∈ J .

(b) For all j ∈ J , Y j/Y j−1 is isomorphic to V σ j
Zq
(ν j ). In particular, Y j/Y j−1 is a

free Zq -module.
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(c) For all j ∈ J , the image of {G(bµ)⊗G(b) : b ∈ B j } in Y j/Y j−1 is a Zq -basis
of Y j/Y j−1.

(d) For each j ∈ J , Z j is UZq (ĝ
′)-stable and Y j = Z j ∩

(
G(bµ)⊗ V σ

Zq
(3)

)
.

Remark 4.3.2. The above theorem was proved in [Joseph 2006] for any simply-
laced symmetric Kac–Moody Lie algebra. However, as pointed out in [Naoi 2012,
Remark 4.15], the proof also holds for ŝl2.

It follows from Theorem 4.3.1 and the fact that G(bµ) is a highest-weight vector
of Vq(3) (4.3.1) that

(4.3.3) Y j =
∑
k≤ j

UZq (n̂
+)y j .

4.4. Simply laced Demazure flags. Given `≥ 0, λ∈ P+,m ∈Z, let DF(`, λ,m)=
τm(DF(`, λ)) and DZ(`, λ,m)= τm(DZ(`, λ)).

Theorem 4.4.1. Suppose g is simply laced, let µ be in P+ and `′ > ` ≥ 0. Then
there exist k > 0, µ1, . . . , µk ∈ P+,m1, . . . ,mk ∈ Z≥0, and a filtration of UZ(g[t])-
modules 0= D0 ⊆ D1 ⊆ · · · ⊆ Dk = DZ(`, µ) such that D j and D j/D j−1 are free
Z-modules for all j = 1, . . . , k, and D j/D j−1 ∼= DZ(`

′, µ j ,m j ). Moreover, for all
j ∈ J , there exists ϑ j ∈ D j such that

(i) the image of ϑ j in D j/D j−1 satisfies the defining relations of DZ(`
′, µ j ,m j );

(ii) D j =
∑

k≤ j UZ(n
−
[t])ϑk .

Proof. The proof follows closely that of [Naoi 2012, Corollary 4.16]. First notice
that it is enough to prove the theorem for `′= `+1. Then let3∈ P̂+ and w ∈ Ŵ be
such that w3= `30+w0µ, and let Vw

Zq
(3)=UZq (n̂

+)G(b) where b ∈ B(3)w3.
From Section 4.3, we know that the UZq (b̂

+)-submodule G(b30)⊗ Vw
Zq
(3) ⊆

Vq(30)⊗Vq(3) admits a filtration 0= Y0 ⊂ Y1 ⊂ · · · ⊂ Yk . For each j = 1, . . . , k,
let D j = Z⊗Zq Y j , and observe that

Dk = Z⊗Zq

(
G(b30)⊗Zq Vw

Zq
(3)

)
∼=
(
Z⊗Zq G(b30)

)
⊗Z

(
Z⊗Zq Vw

Zq
(3)

)
∼= Z30 ⊗Z DZ(`, µ),

where Z30 is a UZ(b̂
+)-module on which UZ(n̂

+)0 and UZ(g)
0 act trivially and

UZ(ĥ) acts by 30. Moreover, as a Z-module it is free of rank 1. Thus Dk is
isomorphic to DZ(`, µ) as a UZ(g[t])-module. It follows from Theorem 4.3.1(d)
that D j is a UZ(g[t])-module for all j = 1, . . . , k and, hence, so is D j/D j−1. So
we have a filtration of UZ(g[t])-modules 0= D0 ⊂ D1 ⊂ · · · ⊂ Dk = DZ(`, µ).

By Theorem 4.3.1(b), Y j/Y j−1 ∼= V σ j
Zq
(ν j ) for some σ j ∈ Ŵ and ν j ∈ P̂+. By

(4.1.1) D j/D j−1 ∼= V σ j
Z (ν j ). Thus D j/D j−1 is isomorphic to DZ(` j , µ j ,m j )

for some µ j ∈ P+,m j ∈ Z and ` j = ν j (c); see (3.5.3). Since all the weights
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of Vq(30)⊗ Vq(3) are of the form 3+30− η for some η ∈ Q̂+, and αi (c)= 0
for all i ∈ Î , it follows that ` j = `+ 1 for all j .

Keep denoting the image of y j in D j by y j (see (4.3.2)). It follows that D j =∑
k≤ j UZ(n̂

+)y j by (4.3.3). As in Remark 3.5.7, we now replace the “lowest-weight”
generators y j by “highest-weight generators”. Thus, let b′′j be the unique element
of B j such that wt(b′′j ) = w0σ jν j = (`+ 1)30+µ j +m jδ and let ϑ j be defined
similarly to y j by replacing b′j by b′′j . �

The next corollary is now immediate.

Corollary 4.4.2. Let g, µ, `′, `, k, µ j , j = 1, . . . , k, be as in Theorem 4.4.1. Then
there exists a filtration of UF(g[t])-modules 0= D0 ⊆ D1 ⊆ · · · ⊆ Dk = DF(`, µ),
such that D j/D j−1 ∼= DF(`

′, µ j ) for all j = 1, . . . , k. �

5. Proof of Theorem 1.5.2

5.1. The isomorphism between Demazure and graded local Weyl modules. Re-
call that for g= sl2, a characteristic-free proof of Theorem 1.5.2(a) was given in
[Jakelić and Moura 2014]. Thus, assume g is simply laced of rank higher than 1
and recall from Remark 1.5.1 that DF(1, λ) is a quotient of W c

F (λ). To prove the
converse, let w be the image of 1 in W c

F (λ). In order to show that W c
F (λ) is a

quotient of DF(1, λ), it remains to prove that

(5.1.1) (x−α,s)
(k)w = 0 for all α ∈ R+, s > 0, k >max{0, λ(hα)− s}.

Given α ∈ R+, consider the subalgebra UF(slα[t]) (see Section 2.3) and let Wα be
the UF(slα[t])-submodule of W c

F (λ) generated by w. Clearly, Wα is a quotient of
the graded local Weyl module for UF(slα[t]) with highest weight λ(hα), where we
have identified the weight lattice of sl2 with Z as usual. Since we already know
that the theorem holds for sl2, it follows that w must satisfy the same relations as
the generator of the corresponding Demazure module for UF(slα[t]). In particular,
(5.1.1) holds and so does Theorem 1.5.2(a).

5.2. A smaller set of relations for nonsimply laced Demazure modules. In this
subsection we assume g is not simply laced and prove the following analogue of
[Naoi 2012, Proposition 4.1].

Proposition 5.2.1. For all λ ∈ P+, DF(1, λ) is isomorphic to the quotient of
UF(g[t]) by the left ideal IF(λ) generated by

UF(n
+
[t])0, UF(h[t]+)0, h− λ(h), (x−i )

(k), (x−α,s)
(`)(5.2.1)

for all h ∈UF(h), i ∈ I \ Ish, α ∈ R+sh, s ≥ 0, k > λ(hi ), ` >max{0, λ(hα)− sr∨}.

Let w be in DF(1, λ)λ \ {0} and V be the UF(g[t])-module generated by a vector
v with defining relations given by (5.2.1). In particular, there exists a unique
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epimorphism V → DF(1, λ) mapping v to w. To prove the converse, observe
first that since (x−i )

(k)v = 0 for all i ∈ I, k > λ(hi ), Lemma 3.1.5 implies that
(x−α )

(k)v= 0 for all α ∈ R+, k >λ(hα). In particular, V is a quotient of W c
F (λ) and,

hence, it is finite-dimensional. It remains to show that

(x−α,s)
(k)v = 0 for all α ∈ R+ \ R+sh, s > 0, k >max{0, λ(hα)− sr∨α }.

These relations will follow from the next few lemmas.

Lemma 5.2.2. Let V be a finite-dimensional UF(g[t])-module, λ be in P+, and
suppose v ∈ Vλ satisfies UF(n

+
[t])0v = UF(h[t]+)0v = 0. If α ∈ R+ is long, then

(x−α,s)
(k)v = 0 for all s ≥ 0, k >max{0, λ(hα)− s}.

Proof. Consider the subalgebra UF(slα[t]) (see Section 2.3). By Theorem 3.3.4
(c), the submodule W =UF(slα[t])v is a quotient of the local graded Weyl module
for UF(slα[t]) with highest weight λ(hα). Theorem 1.5.2 (a) implies that W ∼=
Dα

F (1, λ(hα))where the latter is the corresponding Demazure module for UF(slα[t]).
In particular, v satisfies the relations (1.5.2). �

Lemma 5.2.3. Assume g is not of type G2. Let V be a finite-dimensional UF(g[t])-
module, λ be in P+, and suppose v ∈ Vλ satisfies UF(n

+
[t])0v =UF(h[t]+)0v = 0

and (x−α,s)
(k)v = 0 for all α ∈ R+sh, k > max{0, λ(hα)− 2s}. Then for every short

root γ , we have (x−γ,s)
(k)v = 0 for all s ≥ 0, k >max{0, λ(hγ )− 2s}.

Proof. The proof will proceed by induction on ht(γ ). If ht(γ )= 1, then γ is simple
and, hence, γ ∈ R+sh. Thus, suppose ht(γ ) > 1 and that γ /∈ R+sh. By [Naoi 2012,
Lemma 4.6], there exist α, β ∈ R+ such that γ = α+ β with α long and β short.
Notice that {α, β} form a simple system of a rank-two root subsystem. In particular,
hγ = 2hα + hβ and, hence, λ(hγ )= 2λ(hα)+ λ(hβ).

Fix s ≥ 0 and suppose first that λ(hγ )− 2s ≥ 0. In this case, we can choose
a, b ∈ Z≥0 such that

a+ b = s, λ(hα)− a ≥ 0, and λ(hβ)− 2b ≥ 0.

Indeed, b = max{0, s − λ(hα)} and a = s − b satisfy these conditions. Then
Lemma 5.2.2 implies that (x−α,a)

(k)v = 0 for all k > λ(hα)− a, while the induction
hypothesis implies that (x−β,b)

(k)v= 0 for all k>λ(hβ)−2b. Applying Lemma 3.1.5
to the subalgebra UF(g

a,b
α,β) (see Section 2.3), it follows that (x−γ,s)

(k)v = 0 for all
k > 2(λ(hα)− a)+ (λ(hβ)− 2b)= λ(hγ )− 2s.

Now suppose λ(hγ )− 2s ≤ 0; this implies s−λ(hα)= s− 1
2(λ(hγ )−λ(hβ))≥

λ(hβ)/2≥ 0. We need to show that (x−γ,s)
(k)v = 0 for all k > 0. Letting a = λ(hα)

and b = s− λ(hα), we have

a+ b = s, λ(hα)− a ≤ 0, and λ(hβ)− 2b ≤ 0.
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Then Lemma 5.2.2 implies that (x−α,a)
(k)v = 0 for all k > 0, while the induction

hypothesis implies that (x−β,b)
(k)v = 0 for all k > 0. The result follows from an

application of Lemma 3.1.5 as before. �

It remains to prove an analogue of Lemma 5.2.3 for g of type G2. This is much
more technically complicated and will require that we assume that characteristic of
F is at least 5. For the remainder of this subsection we assume g is of type G2 and
set I = {1, 2} so that α1 is short. Given γ = sα1+ lα2 ∈ R+, set sγ = s. Set also

n+[t]>=
⊕
γ∈R+

⊕
s≥sγ

Cx+γ,s, n+[t]<=
⊕
γ∈R+

sγ−1⊕
s=0

Cx+γ,s, a=n−[t]⊕h[t]⊕n+[t]>,

and observe that n+[t]> and n+[t]< are subalgebras of n+[t] such that n+[t] =
n+[t]>⊕ n+[t]<. The hyperalgebras UF(n

+
[t]>),UF(n

+
[t]<), and UF(a) are then

defined in the usual way (see Section 1.3) and the PBW theorem implies that

(5.2.2) UF(n
+
[t])=UF(n

+
[t]>)⊕UF(n

+
[t])UF(n

+
[t]<)0.

We now prove a version of [Naoi 2012, Lemma 4.11] for hyperalgebras.

Lemma 5.2.4. Given λ ∈ P+, let I ′F(λ) be the left ideal of UF(a) generated by the
generators of IF(λ) described in (5.2.1) which lie in UF(a). Then

IF(λ)⊆ I ′F(λ)⊕UF(a)UF(n
+
[t]<)0.

Proof. Recall that IF(λ) is the left ideal of UF(g[t]) generated by the set I whose
elements are the elements in UF(n

+
[t])0, UF(h[t]+)0, together with the elements(hi

l

)
−

(
λ(hi )

l

)
, (x−2 )

(m), (x−1,s)
(k)

for i ∈ I, k, l,m, s ∈Z≥0,m>λ(h2), k>max{0, λ(h1)−3s}. To simplify notation,
set U<=UF(n

+
[t]<) and J = I ′F(λ)⊕UF(a)UF(n

+
[t]<)0. Observe that UF(a)J ⊆ J .

Therefore, since UF(g[t]) = UF(a)U< by (5.2.2) and we clearly have I ⊆ J , it
suffices to show that

U 0
<I⊆ J.

We will decompose the set I into parts, and prove the inclusion for each part.
Namely, we first decompose I into

(
I∩UF(n

+
[t])UF(h[t])

)
t
(
I∩UF(n

−
[t])

)
, and

then we further decompose I∩UF(n
−
[t]) as

{(x−2 )
(m)
: m > λ(h2)} t {(x−1,s)

(k)
: s ∈ Z≥0, k >max{0, λ(h1)− 3s}}.

Since h[t] ⊕ n+[t] is a subalgebra of g[t], the PBW theorem tells us that
UF(n

+
[t])UF(h[t])=UF(h[t])UF(n

+
[t]), and therefore

U 0
<

(
I∩UF(n

+
[t])UF(h[t])

)
⊆UF(h[t])UF(n

+
[t]).
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Now, by (5.2.2), UF(h[t])UF(n
+
[t]) ⊆ J , so U 0

<(I∩UF(n
+
[t])UF(h[t])) ⊆ J . In

particular, we have shown that

(5.2.3) UF(g[t])UF(n
+
[t])0 ⊆ J.

It remains to show that
U 0
<

(
I∩UF(n

−
[t])

)
⊆ J.

We begin by proving that U 0
<UF(n

−

2 )⊆ J , where n−2 is the subalgebra spanned
by x−2 . Consider the natural Q-grading on UF(g[t]), and for η ∈ Q let UF(g[t])η
denote the corresponding graded piece. Observe that m2 := n+[t]< ⊕ n−2 is a
subalgebra of g[t] and that

U 0
<UF(n

−

2 )⊆
⊕
η

UF(m2)η,

where the sum runs over Z>0α1 ⊕ Zα2. Together with the PBW theorem, this
implies that

U 0
<UF(n

−

2 )⊆UF(n
−

2 )U
0
< ⊆UF(a)U 0

< ⊆ J.

Finally, we show that U 0
<I1 ⊆ J , where I1 =

(
I ∩UF(n

−

1 [t])
)

and n−1 is the
subalgebra spanned by x−1 . Consider

n+[t]1< =
⊕

γ∈R+\{α1}

sγ−1⊕
s=0

Cx+γ,s,

which is a subalgebra of n+[t]< such that n+[t]< = n+1 ⊕n+[t]1<, where n+1 =Cx+1 .
Moreover, m1 := n+[t]1<⊕n−1 [t] is a subalgebra of g[t] such that U (m1)η 6= 0 only
if η ∈ Zα1⊕Z≥0α2 and U (m1)0 = C. This implies that

UF(n
+
[t]1<)

0UF(n
−

1 [t])=UF(n
−

1 [t])UF(n
+
[t]1<)

0.

Since U 0
< =UF(n

+

1 )UF(n
+
[t]1<)

0
⊕UF(n

+

1 )
0, we get

U 0
<I1 ⊆

(
UF(n

+

1 )UF(n
+
[t]1<)

0
+UF(n

+

1 )
0)I1

⊆UF(n
+

1 )UF(n
−

1 [t])UF(n
+
[t]1<)

0
+UF(n

+

1 )
0I1

⊆UF(g[t])UF(n
+
[t])0+UF(n

+

1 )
0I1.

The first summand in the last line is in J by (5.2.3) while the second one is in J by
Corollary 3.5.8 (with λ= λ(h1) and `= 3) together with (5.2.3). �

Set hi = Chi , i ∈ I , and b= n−[t]⊕ h[t]+⊕ h2⊕ n+[t]>. Observe that b is an
ideal of a such that a = b⊕ h1. One easily checks that there exists a unique Lie
algebra homomorphism φ : b→ g[t] such that

φ(x±γ,r )= x±γ,r∓sγ for all γ ∈ R+.
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Moreover, φ is the identity on h[t]+ + slα2 . Also, φ can be extended to a Lie
algebra map a→U (g[t]) by setting φ(h1)= h1−3 (see [Naoi 2012, Section 4.2]).
Proceeding as in Section 2.2, one sees that φ induces an algebra homomorphism
UF(a)→UF(g[t]) also denoted by φ.

We are ready to prove the analogue of Lemma 5.2.3 for type G2.

Lemma 5.2.5. Let V be a finite-dimensional UF(g[t])-module, λ∈ P+, and suppose
v ∈ Vλ satisfies UF(n

+
[t])0v = UF(h[t]+)0v = 0 and (x−1,s)

(k)v = 0 for all k >
max{0, λ(h1)− 3s}. Then for every short root γ , we have (x−γ,s)

(k)v = 0 for all
s ≥ 0, k >max{0, λ(hγ )− 3s}.

Proof. Notice that the conclusion of the lemma is equivalent to

(x−γ,s)
(k)
∈ IF(λ) for all s ≥ 0, k >max{0, λ(hγ )− 3s}

for every short root γ . Recall that the short roots in R+ are α1, α := α1+α2 and
ϑ := 2α1+α2 while the long roots are α2, β := 3α1+α2 and θ := 3α1+ 2α2. For
γ = α, we have hγ = h1+ 3h2 and the proof is similar to that of Lemma 5.2.3 (the
details can be found in [Macedo 2013]). We shall use that the lemma holds for
γ = α in the remainder of the proof. It remains to show that the lemma holds with
γ = ϑ . Notice that hϑ = 2h1+ 3h2 and thus we want to prove that

(5.2.4) (x−ϑ,s)
(k)
∈ IF(λ) for all s ≥ 0, k >max{0, 2λ(h1)+ 3λ(h2)− 3s}.

We prove (5.2.4) by induction on λ(h1). Following [Naoi 2012], we prove the cases
λ(h1) ∈ {0, 1, 2} and then we show that (5.2.4) for λ− 3ω1 in place of λ implies it
for λ. To shorten notation, set a = λ(h1), b = λ(h2).

(1) Assume a = 0. Since α1 ∈ R+sh, it follows that (x−1 )
(k)v = 0 for all k > 0.

By Lemma 5.2.2, we have (x−2,s)
(k)v = 0 for all k > max{0, b − s}. Applying

Lemma 3.1.5 to the subalgebra UF(g
0,s
α1,α2

), it follows that (x−ϑ,s)
(k)v = 0 for all

k > 3 max{0, b− s} =max{0, 2a+ 3b− 3s} as desired.

(2) Assume a = 1. This time we have (x−1 )
(k)v = 0 for all k > 1. We split in 3

subcases.
(2.1) Suppose b > s − 1, and notice 2a + 3b − 3s > 0. Lemma 5.2.2 implies
(x−2,s)

(k)v = 0 for all k > max{0, b− s} = b− s. Applying Lemma 3.1.5 to the
subalgebra UF(g

0,s
α1,α2

), it follows that (x−ϑ,s)
(k)v = 0 for all k > 2+ 3(b − s) =

2a+ 3b− 3s.
(2.2) Suppose b= s−1, in which case 2a+3b−3s < 0. Notice that hβ = h1+h2

and, hence, λ(hβ)= a+b= s. Lemma 5.2.2 then implies that (x−β,s)
(k)v = 0 for all

k > 0. Notice that {−α1, β} form a basis for R. Since, (x+1 )
(k)v = 0 for all k > 0,

Lemma 3.1.5 applied to the subalgebra UF(g
0,s
−α1,β

) implies that (x−ϑ,s)
(k)v = 0 for

all k > 0.
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(2.3) Suppose b < s − 1, in which case 2a + 3b− 3s < 0. This time we apply
Lemma 3.1.5 to the subalgebra UF(g

1,s−2
α1,α2

). Indeed, we have (x−1,1)
(k)v = 0 for

all k > max{0, a − 3} = 0 and Lemma 5.2.2 implies that (x−2,s−2)
(k)v = 0 for all

k > max{0, b − (s − 2)} = 0. Thus, since3(b − s) < −3 and a = 1, we have
max{0, 2a+3b−3s} = 0 and Lemma 3.1.5 implies that (x−ϑ,s)

(k)v= 0 for all k > 0.

(3) Assume a = 2. We split in subcases as before.
(3.1) If b > s− 1, the proof is similar to that of step (2.1).
(3.2) Suppose b = s − 1, and notice that 2a + 3b − 3s = 1. Hence, we want
to show that (5.2.4) holds for k > 1. For k > 3 we apply Lemma 3.1.5 to the
subalgebra UF(g

1,s−2
α1,α2

) in a similar fashion as we did in step (2.3) (the same can be
conclude using the argument from step (2.2). For k ∈ {2, 3} we need our hypothesis
on the characteristic of F. Assume we have chosen the Chevalley basis so that
x−ϑ = [x

+

1 , x−β ] and observe that (1.1.4) implies that [x+1 , x−ϑ ] = ±2x−α . Using this,
one easily checks that

(x−ϑ,s)
(2)
= (x+1 )

(2)(x−β,s)
(2)
−

1
2 x+1 (x

−

β,s)
(2)x+1 −

1
2 x−β,s x−ϑ,s x+1 ∓ x−β,s x−α,s .

Using the case γ = α and Lemma 5.2.2 we see that x−α,sv = (x
−

β,s)
(2)v = 0. Hence,

since 2 ∈ F×, (5.2.4) holds for k = 2. For k = 3, we have (x−ϑ,s)
(3)
=

1
3 x−ϑ,s(x

−

ϑ,s)
(2)

and, since 3 ∈ F×, (5.2.4) also holds for k = 3.
(3.3) If b < s− 1 the proof is similar to that of step (2.3).

(4) Assume a ≥ 3 and that (5.2.4) holds for λ− 3ω1.
(4.1) Suppose s ≥ 2 and recall the definition of the map φ :UF(a)→UF(g[t]). The
induction hypothesis together with Lemma 5.2.4 implies that

(x−ϑ,s−2)
(k)
∈ I ′F(λ− 3ω1) for all k >max{0, 2a+ 3b− 3s},

and therefore

(x−ϑ,s)
(k)
= φ

(
(x−ϑ,s−2)

(k))
∈ φ(I ′F(λ− 3ω1)) for all k >max{0, 2a+ 3b− 3s}.

One easily checks that φ sends the generators of I ′F(λ−3ω1) to generators of IF(λ),
completing the proof of (5.2.4) for s ≥ 2.
(4.2) For s = 0, notice that UF(g)v is a quotient of WF(λ), and (5.2.4) follows.
Equivalently, apply Lemma 3.1.5 to UF(g

0,0
α1,α2

)=UF(g) and the proof is similar to
that of step (2.1).
(4.3) If s = 1 and b ≥ 1, we have 2a+ 3b− 3s > 0 and the usual application of
Lemma 3.1.5 to UF(g

0,1
α1,α2

) completes the proof of (5.2.4). If s = 1 and b = 0, we
need to show that (x−ϑ,1)

(k)v = 0 for k > 2a− 3.
Consider the subalgebra UF(slϑ [t])∼=UF(sl2[t]) defined in Section 2.3. Since

λ(hϑ)= 2a, it follows that W :=UF(slϑ [t])v is a quotient of the UF(sl2[t])-module
W c

F (2a), where we identified the weight lattice of sl2 with Z as usual. Since
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W c
F (2a) ∼= DF(1, 2a) by Theorem 1.5.2(a), the defining relations of DF(1, 2a)

imply (x−ϑ,1)
(k)v = 0 for k > 2a − 1. It remains to check that (x−ϑ,1)

(k)v = 0 for
k ∈ {2a− 2, 2a− 1}.

Suppose by contradiction that (x−ϑ,1)
(2a−1)v 6= 0, and notice that

(5.2.5) (x−ϑ )
(k)(x−ϑ,1)

(2a−1)v = 0 for all k > 0.

Indeed,
(x−ϑ )

(k)(x−ϑ,1)
(2a−1)v ∈W c

F (2a)−2a−2(k−1)

is a vector of degree 2a − 1 > 1 for all k ≥ 0. By the Weyl group invariance of
the character of W c

F (2a), we know that W c
F (2a)−2a−2(k−1) = 0 if k > 1, and that

W c
F (2a)−2a−2(k−1) is one-dimensional concentrated in degree zero if k = 1. This

proves (5.2.5). Then Lemma 3.1.3 implies that

(x+ϑ )
(2a−2)(x−ϑ,1)

(2a−1)v 6= 0.

On the other hand, it follows from Lemma 2.1.1 that

(x+ϑ )
(2a−2)(x−ϑ,1)

(2a−1)v = x−ϑ,2a−1v.

Since 2a−1≥ 2 and 2a−3(2a−1)=−4a+3< 0, it follows from step (4.1) that
x−ϑ,2a−1v = 0 yielding a contradiction as desired.

Similarly, assume by contradiction that (x−ϑ,1)
(2a−2)v 6= 0 and notice that

(x−ϑ )
(k)(x−ϑ,1)

(2a−2)v = 0 for all k > 1.

Suppose first that x−ϑ (x
−

ϑ,1)
(2a−2)v = 0 as well. It then follows from Lemma 3.1.3

that
(x+ϑ )

(2a−4)(x−ϑ,1)
(2a−2)v 6= 0.

On the other hand, Lemma 2.1.1 implies that

(x+ϑ )
(2a−4)(x−ϑ,1)

(2a−2)v = (x−ϑ,a−1)
(2)v+

2a−2∑
r=a

x−ϑ,2a−2−r x−ϑ,rv.

Since a−1≥2, step (4.1) implies that (x−ϑ,r )
(k)v=0 for all r ≥a−1, k>0, implying

that the right-hand side is zero, which is a contradiction. It remains to check the
possibility that x−ϑ (x

−

ϑ,1)
(2a−2)v 6= 0. In this case it follows that x−ϑ (x

−

ϑ,1)
(2a−2)v is a

lowest-weight vector for the algebra UF(slϑ) and, hence, Lemma 3.1.3 implies that

(x+ϑ )
(2a−2)x−ϑ (x

−

ϑ,1)
(2a−2)v 6= 0.

Using (2.1.1) we get

(x+ϑ )
(2a−2)x−ϑ (x

−

ϑ,1)
(2a−2)v =

(
x−ϑ (x

+

ϑ )
(2a−2)

+ (x+ϑ )
(2a−3))(x−ϑ,1)(2a−2)v.

Lemma 2.1.1 together with step (4.1) will again imply that the right-hand side is
zero. This completes the proof. �
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5.3. Existence of Demazure flag. If g is simply laced, Theorem 1.5.2(b) follows
immediately from part (a) with k = 1. Thus, assume from now on that g is not
simply laced and recall the notation introduced in Section 2.4.

Given λ ∈ P+, let µ = λ ∈ P+sh and v be the image of 1 in W c
C
(λ). Consider

W sh
C
:=U (gsh[t])v and W sh

Z :=UZ(gsh[t])v. By [Naoi 2012, Lemma 4.17], there is
an isomorphism of U (gsh[t])-modules W sh

C
∼= DC(1, µ). By Corollary 3.3.3, W sh

Z

is an integral form of W c
C
(µ) ∼= DC(1, µ). Hence, we have an isomorphism of

UZ(gsh[t])-modules W sh
Z
∼= DZ(1, µ).

Since gsh is of type A, Theorem 4.4.1 implies that there exist k> 0, µ1, . . . , µk ∈

P+sh , m1, . . . ,mk ∈ Z≥0, and a filtration of UZ(gsh[t])-modules 0 = D0 ⊆ D1 ⊆

· · · ⊆ Dk =W sh
Z , such that D j and D j/D j−1 are free Z-modules, and D j/D j−1 ∼=

DZ(r∨, µ j ,m j ) for all j = 1, . . . , k. In particular,

(5.3.1) W sh
Z /D j is a free Z-module for all j = 0, . . . , k.

Set λ j = ηλ(µ j ) ∈ P+ where ηλ is defined in (2.4.1), W j
Z = UZ(g[t])D j and

W j
F = F⊗Z W j

Z . It is easy to see that we have 0 = W 0
F ⊆ W 1

F ⊆ · · · ⊆ W k
F , and

λk = λ since µk = µ. Hence, we are left to show that

W j
F /W j−1

F
∼= DF(1, λ j ,m j ) for all j = 1, . . . , k, and W k

F
∼=W c

F (λ).

Notice that W k
Z = UZ(g[t])v. Then Corollary 3.3.3 implies that W k

Z is an
integral form of W c

C
(λ). Since Z is a PID and W k

Z is a finitely generated, free
Z-module, it follows that W j

Z is a free Z-module of finite rank for all j = 1, . . . , k.
Set W j

C
= U (g[t])D j . It follows from [Naoi 2012, Proposition 4.18] (which is

Theorem 1.5.2(b) in characteristic zero) that W j
C
/W j−1

C
∼= DC(1, λ j ,m j ) for all

j = 1, . . . , k. Moreover, since W j
C
∼= C⊗Z W j

Z , we have

C⊗Z (W
j

Z/W j−1
Z )∼= (W j

C
/W j−1

C
)∼= DC(1, λ j ,m j ).

Therefore, W j
Z/W j−1

Z is a finitely generated Z-module of rank dim(DC(1, λ j ,m j ))

for all j = 1, . . . , k. Since W j
F /W j−1

F
∼= F⊗Z (W

j
Z/W j−1

Z ), it follows that

dim(W j
F /W j−1

F )≥ dim(DC(1, λ j ,m j ))= dim(DF(1, λ j ,m j )).

Now, let v j ∈ D j be as in Theorem 4.4.1, w be the image of v in W k
F , u j ∈UZ(n

−

sh[t])
be such that v j = u jv, and w j = u jw. It follows that

W j
Z =

∑
n≤ j

UZ(g[t])vn and W j
F =

∑
n≤ j

UF(g[t])wn.

We will show that the image w j of w j in W j
F /W j−1

F satisfies the relations described
in Proposition 5.2.1, which implies that W j

F /W j−1
F is a quotient of DF(1, λ j ,m j )

and, hence, W j
F /W j−1

F
∼= DF(1, λ j ,m j ) for all j = 1, . . . , k.
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By construction, v j is a weight vector of weight λ j and degree m j , and so is w j .
Since D j/D j−1 ∼= DZ(r∨, µ j ,m j ), it follows that

UF(n
+

sh[t])
0w j =UF(hsh[t]+)

0w j = 0 and (x−α,s)
(k)w j = 0

for all α ∈ R+sh, s ≥ 0, k >max{0, λ(hα)− sr∨}, j = 1, . . . , k. Thus, it remains to
show that

(x+α,s)
(m)w j =3i,rw j = (x−α )

(k)w j = 0

for all α ∈ R+ \ R+sh, s ≥ 0, r,m > 0, k > λ j (hi ), j = 1, . . . , k. Since,

(5.3.2) λ j +mα /∈ λ− Q+ for all α ∈ R+ \ R+sh,m > 0,

we get (x+α,s)
(m)w j = 0 for all m > 0, s ≥ 0. In particular, it follows that w j is

a highest-weight vector of weight λ j and, hence, (x−α )
(k)w j = 0 for all α ∈ R+,

k > λ(hα). Finally, we show that

(5.3.3) 3i,rw j = 0 for all i ∈ I \ Ish, r > 0, j = 1, . . . , k.

Observe that
3i,r u j ∈UZ(n

−

sh)UZ(h[t]+).

In particular, 3i,rv j ∈W sh
Z ∩W j

Z . We will show that 3i,rv j ∈ D j−1 which implies
(5.3.3). Let y j ∈ UZ(n

−

sh) be such that 3i,r u j = y j modulo UZ(n
−

sh)UZ(h[t]+)0.
Thus, we want to show that

(5.3.4) y jv ∈ D j−1.

We prove this recursively on j = 1, . . . , k. Notice that since C⊗Z (W
j

Z/W j−1
Z )∼=

DC(1, λ j ,m j ), there exists n j ∈ Z>0 such that n j y jv ∈ W j−1
Z , j = 1, . . . , k. In

particular, since W 0
Z = 0 and W 1

Z is a torsion-free Z-module, (5.3.4) follows for
j = 1. Next, we show that (5.3.4) implies

(5.3.5) W j
Z ∩W sh

Z = D j .

Indeed, it follows from (5.3.2) and (5.3.4) that

W j
Z =UZ(n

−
[t])UZ(gsh[t])v j +W j−1

Z .

Since UZ(hsh[t]+)0UZ(n
+

sh)
0v j ∈ D j−1 and, by the induction hypothesis, W j−1

Z ∩

W sh
Z = D j−1, (5.3.5) follows by observing that

(UZ(n
−
[t])v j )∩W sh

Z ⊆ D j

(which is easily verified by weight considerations). Finally, observe that since
n j+1 y j+1v is in W j

Z ∩W sh
Z = D j , (5.3.1) implies that y j+1v ∈ D j . Thus, (5.3.5) for

j implies (5.3.4) for j + 1 and the recursive step is proved.
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Remark 5.3.1. It follows from the above that W j
F /W j−1

F
∼= DF(1, λ j ,m j ) for any

field F. Hence, W j
Z/W j−1

Z must be isomorphic to DZ(1, λ j ,m j ) for all j =1, . . . , k.

It remains to show that W k
F
∼= W c

F (λ). Since Theorem 3.3.4(c) implies that
we have a projection W c

F (λ)� W k
F of UF(g[t])-modules, it suffices to show that

dim(W c
F (λ))≤ dim(W k

F ). This follows if we show that there exists a filtration 0=
W̃ 0

F ⊆ W̃ 1
F ⊆ · · · ⊆ W̃ k

F =W c
F (λ) such that W̃ j

F /W̃ j−1
F is a quotient of DF(1, λ j ,m j )

for all j = 1, . . . , k. Let w′ be the image of 1 in W c
F (λ), w

′

j = u jw
′
∈W c

F (λ), W̃ j
F :=∑

n≤ j UF(g[t])w′n⊆W c
F (λ), andw′j be the image ofw′j in W̃ j

F /W̃ j−1
F . Observe that

W̃ k
F =W c

F (λ). We need to show that w′j satisfies the defining relations of DF(1, λ j )

listed in Proposition 5.2.1. Let D̃ j =F⊗Z D j and D′j =
∑

n≤ j UF(gsh[t])w′n . Notice
that D′k is a quotient of W c

F (µ)
∼= D̃k and let π : D̃k→ D′k be a UF(gsh[t])-module

epimorphism such that vk 7→ w′k (we keep denoting the image of v j in D̃ j by
v j ). In particular, w′j = π(v j ) and π induces an epimorphism D̃ j → D′j for all
j = 1, . . . , k. Hence,

xw′j ∈ D′j−1 for all x ∈UZ(gsh[t]) such that xv j ∈ D j−1.

This immediately implies that

UF(n
+

sh[t])
0w′j =UF(h[t]+)0w′j = 0 and (x−α,s)

(k)w′j = 0

for all α ∈ R+sh, s ≥ 0, k >max{0, λ(hα)− sr∨}, j = 1, . . . , k. Note that (5.3.4) has
been used here. The relations

(x+α,s)
(m)w′j = (x

−

i )
(k)w′j = 0

for all α ∈ R+ \ R+sh, i ∈ I \ Ish, s ≥ 0,m > 0, k > λ j (hi ), j = 1, . . . , k follow from
(5.3.2) as before.

5.4. The isomorphism between local Weyl modules and graded local Weyl mod-
ules. We now prove Theorem 1.5.2(c). Recall the definition of the automorphism ϕa

of UF(g[t]) from Section 2.2. In particular, let ã ∈A× be such that its image in F is a.
Denote by ϕ∗a (WF(ωλ,a)) the pull-back of WF(ωλ,a) (regarded as a UF(g[t])-module)
by ϕa .

Notice that

dim WF(ωλ,a)= dim WK(ωλ,ã)= dim W c
K(λ)= dim W c

F (λ).

Here, the first equality follows from (1.5.4), the second from (3.4.1) (with F =

K) together with Proposition 3.4.1, and the third from Corollary 1.5.3. Since
dimϕ∗a (WF(ωλ,a)) = dim WF(ωλ,a), Theorem 1.5.2(c) follows if we show that
ϕ∗a (WF(ωλ,a)) is a quotient of W c

F (λ).
Let w ∈WF(ωλ,a)λ \{0} and use the symbol wa to denote w when regarded as an

element of ϕ∗a (WF(ωλ,a)). Since WF(ωλ,a)=UF(g[t])w and ϕa is an automorphism
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of UF(g[t]), it follows that ϕ∗a WF(ωλ,a) = UF(g[t])wa . Thus, we need to show
that wa satisfies the defining relations (1.5.1) of W c

F (λ). Since ϕa fixes every
element of UF(g), wa is a vector of weight λ annihilated by (x−α )

(k) for all α ∈
R+, k > λ(hα). Equation (2.2.6) implies that ϕa maps UF(n

+
[t]) to itself and,

hence, UF(n
+
[t])0wa = 0. Therefore, it remains to show that

UF(h[t]+)0wa = 0.

To show this, let v be in WK(ωλ,ã)λ \ {0} and L =UA(g[t])v. By (1.5.4), F⊗A L ∼=
WF(ωλ,a). In particular, the action of UF(h[t]+)0 on ϕ∗a (WF(ωλ,a)) is obtained from
the action of UA(h[t]+)0 on ϕ∗ã (WK(ωλ,ã)) which, in turn, is obtained from the
action of UK(h[t]+)0. Since UK(h[t]+) is generated by hi,r , i ∈ I, r > 0, we are
left to show that

hi,rva = 0,

where va is the vector v regarded as an element of ϕ∗ã (WK(ωλ,ã)). It is well known
that the irreducible quotient of WK(ωλ,ã) is the evaluation module with evaluation
parameter ã (see [Jakelić and Moura 2007, Section 3B]). Hence, hi,sv = ãsλ(hi )v

for all i ∈ I, s ∈ Z. Using this, it follows that, for all i ∈ I, r > 0, we have

hi,rva = (hi ⊗ (t − ã)r )v =
r∑

s=0

(r
s

)
(−ã)shi,r−sv = λ(hi )ãr

r∑
s=0

(r
s

)
(−1)sv = 0.

5.5. A tensor product theorem. We say that ω,π ∈ P+F are relatively prime if for
all i, j ∈ I the polynomials ωi (u) and π j (u) are relatively prime in F[u]. The goal
of this subsection is to prove the following theorem from which we will deduce
Theorem 1.5.2(d).

Theorem 5.5.1. Suppose ω,π ∈ P+F are relatively prime and that V and W are
quotients of WF(ω) and WF(π), respectively. Then V ⊗W is generated by its top
weight space.

Theorem 5.5.1 was proved in [Chari and Pressley 2001] in the case F = C.
Although the proof we present here follows the same general lines, there are several
extra technical issues to be taken care of arising from the fact that UC(g̃) is generated
by x±α,r , α ∈ R+, r ∈ Z, while, in the case of UF(g̃), we also need arbitrarily large
divided powers of these elements. We start the proof by establishing a few technical
lemmas. Recall the definition of X−α,m,s(u) in Section 2.1 and set

X−α;s(u)= X−α,1,s+1(u)

To shorten notation, we shall often write X−α;s instead of X−α;s(u).



ON DEMAZURE AND LOCAL WEYL MODULES FOR AFFINE HYPERALGEBRAS 297

Fix ω ∈ P+ and let w be a highest-`-weight vector of WF(ω). Given β ∈ R+,
define ωβ(u) ∈ F[u] by

ωβ(u)w =3β(u)w.

One can easily check (see [Chari and Pressley 2001, Lemma 3.1]) that if ϑ is the
highest short root of g and β ∈ R+, then there exists ωϑ,β ∈ P+ such that

ωϑ = ωβωϑ,β .

Lemma 5.5.2. For all β ∈ R+, k, l, s ∈ Z, 0≤ l ≤ k, k > λ(hβ), we have(
ωϑ X−β;s

(k−l))
k+deg(ωϑ,β )

w = 0.

Proof. We will need the following particular case of Lemma 2.1.1:
(5.5.1)
(x+β,−s)

(l)(x−β,s+1)
(k)
= (−1)l

(
(X−β;s(u))

(k−l)3β(u)
)

k mod UZ(g̃)UZ(ñ
+)0

for all k, l, s ∈ Z, 0≤ l ≤ k. It follows from (5.5.1) and the definition of ωβ that

(5.5.2)
(
ωβX−β;s

(k−l))
kw = 0 for all k, l, s ∈ Z, 0≤ l ≤ k, k > λ(hβ).

Hence, for such k, l, s, we have(
ωϑ X−β;s

(k−l))
k+deg(ωϑ,β )

w =
(
ωϑ,βωβX−β;s

(k−l))
k+deg(ωϑ,β )

w

=

deg(ωϑ,β )∑
j=0

(ωϑ,β) j
(
ωβX−β;s

(k−l))
k+deg(ωϑ,β )− jw = 0,

where the last equality follows from (5.5.2) since k+ deg(ωϑ,β)− j > λ(hβ). �

Let R = R+ × Z× Z≥0 and 4 be the set of functions ξ : N→ R given by
j 7→ ξ j = (β j , s j , k j ), such that k j = 0 for all j sufficiently large. Define the
degree of ξ to be d(ξ)=

∑
j k j . Let 4d be the subset of functions of degree d and

4<d =
⋃

d ′<d 4d ′ . Given ξ ∈4 such that ξ j = (β j , s j , k j ) for all j ∈N and k j = 0
for j > m, set

(5.5.3) xξ = (x−β1,s1
)(k1) · · · (x−βm ,sm

)(km) and wξ = xξw.

It will be convenient to write deg(wξ ) = d(ξ) = deg(xξ ). The next lemma is an
easy consequence of [Mitzman 1985, Lemma 4.2.13].

Lemma 5.5.3. Let α be in R+, s ∈ Z, d, k be in Z≥0, and ξ be in 4d . Then
xξ (x−α,s)

(k) is in the span of

{(x−α,s)
(k)xξ } ∪ {xς : ς ∈4<d+k}. �
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Lemma 5.5.4. Let β be in R+, k in Z, d, r, s in Z≥0, r ≤ s, s > λ(hβ) and ξ in 4d .
Then (ωϑ X−β;k

(r)
)sw

ξ is in the span of vectors of the form wς with ς ∈4<r+d .

Proof. If d = 0, it follows from (5.5.2) that (ωϑ X−β;k
(r)
)sw

ξ
= 0, which proves the

lemma in this case. We now proceed by induction on d . Thus, let d > 0 and write
wξ = (x−β1,s1

)(k1) · · · (x−βl ,sl
)(kl )w with k1 6= 0. Let also ξ ′ ∈4 be such that

ξ ′j =

{
ξ j , if j 6= 1,
(β1, s1, 0), if j = 1.

Then, by Lemma 5.5.3, we have(
ωϑ X−β;k

(r))
sw

ξ
=
(
ωϑ X−β;k

(r))
s(x
−

β1,s1
)(k1)wξ

′

= (x−β1,s1
)(k1)

(
ωϑ X−β;k

(r))
sw

ξ ′
+Xwξ

′

where X is in the span of {xς : ς ∈ 4<r+k1
}. In particular, Xwξ

′

is in the span of
vectors of the desired form. Since d(ξ ′) = d − k1 < d, the induction hypothesis
implies that (ωϑ X−β;k

(r)
)sw

ξ ′ is in the span of vectors associated to elements of
4<r+d−k1

. Therefore, (x−β1,s1
)(k1)(ωϑ X−β;k

(r)
)sw

ξ ′ is in the span of vectors associated
to elements of 4<r+d as desired. �

Proof of Theorem 5.5.1. Let wω and wπ be highest-`-weight vectors for V and W ,
respectively. Let also

M =UF(g̃)(wω⊗wπ )=UF(ñ
−)(wω⊗wπ ).

Our goal is to show that M = V ⊗W . Since the vectors wξω⊗w
ξ ′

π , ξ, ξ
′
∈4 span

V ⊗W , it suffices to show that these vectors are in M . We do this by induction
on d(ξ)+ d(ξ ′) which obviously starts when d(ξ)+ d(ξ ′)= 0 since, in this case,
w
ξ
ω⊗w

ξ ′

π = wω⊗wπ .
Let n ≥ 0, and suppose, by induction hypothesis, that

(5.5.4) wξω⊗w
ξ ′

π ∈ M for all ξ, ξ ′ ∈4 such that d(ξ)+ d(ξ ′)≤ n.

In order to complete the induction step, it suffices to show that

(5.5.5) wξω⊗ (x
−

β,l)
(r)wξ

′

π ∈ M and ((x−β,l)
(r)wξω)⊗w

ξ ′

π ∈ M

for all β ∈ R+, r, l ∈ Z, r ≥ 1, ξ, ξ ′ ∈ 4, such that d(ξ)+ d(ξ ′)+ r = n+ 1. We
prove (5.5.5) by a further induction on r ≥ 1. Henceforth we fix β ∈ R+.

Observe that the hypothesis on ω and π implies that ωϑ and πϑ are relatively
prime. Therefore, we can choose R, S ∈ F[u] such that

Rωϑ + Sπϑ = 1.
Set

δ = deg(Rωϑ)= deg(Sπϑ) and m =max{wt(ω)(hβ),wt(π)(hβ)}.

We claim that for all ξ ∈4 and k ∈ Z,

(5.5.6) (Rωϑ X−β;k
(r)
)sw

ξ
ω ∈ span({wςω : ς ∈4

<
d(ξ)+r }) for all s > m+ δ.
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Indeed,

(Rωθ X−β;k
(r)
)sw

ξ
ω =

deg R∑
j=0

R j (ωϑ X−β;k
(r)
)s− jw

ξ
ω

and, since s− j > m+ δ− j ≥ m+ deg(ωϑ)≥ wt(ω)(hβ), the claim follows from
Lemma 5.5.4. Similarly one proves that

(5.5.7) (Sπϑ X−β;k
(r)
)sw

ξ
π ∈ span({wςπ : ς ∈4

<
d(ξ)+r }) for all s > m+ δ.

We are ready to start the proof of (5.5.5). Suppose d(ξ)+ d(ξ ′) = n and let
` > m+ δ. Then

(Rωϑ X−β;k)`(w
ξ
ω⊗w

ξ ′

π )

= ((Rωϑ X−β;k)`w
ξ
ω)⊗w

ξ ′

π +w
ξ
ω⊗ ((1− Sπϑ)X−β;k)`w

ξ ′

π

= ((Rωϑ X−β;k)`w
ξ
ω)⊗w

ξ ′

π −w
ξ
ω⊗ (Sπϑ X−β;k)`w

ξ ′

π +w
ξ
ω⊗ x−β;`+kw

ξ ′

π .

It follows from (5.5.6), (5.5.7) and (5.5.4) that ((Rωϑ X−β;k)`w
ξ
ω)⊗w

ξ ′

π and wξω⊗
(Sπϑ X−β;k)`w

ξ ′

π are in M . Since (Rωϑ X−β;k)`(w
ξ
ω ⊗w

ξ ′

π ) is in M by definition, it
follows that wξω⊗ x−β;`+kw

ξ ′

π is in M for all k ∈ Z, which proves the first statement
in (5.5.5) with r = 1. The second statement is proved similarly by looking at
(Sπϑ X−β;k)`(w

ξ
ω⊗w

ξ ′

π ).
Let r > 1, ξ, ξ ′ ∈4 be such that r + d(ξ)+ d(ξ ′)= n+ 1 and set `= r`′ with

`′ such that ` > m+ δ. Then

(Rωϑ X−β;k
(r)
)`(w

ξ
ω⊗w

ξ ′

π )

= ((Rωϑ X−β;k
(r)
)`w

ξ
ω)⊗w

ξ ′

π +w
ξ ′

π ⊗ (Rωϑ X−β;k
(r)
)`w

ξ ′

π + v

= ((Rωϑ X−β;k
(r)
)`w

ξ
ω)⊗w

ξ ′

π +w
ξ
ω⊗ ((1− Sπϑ)X−β;k

(r)
)`w

ξ ′

π + v

= ((Rωϑ X−β;k
(r)
)`w

ξ
ω)⊗w

ξ ′

π −w
ξ
ω⊗ (Sπϑ X−β;k

(r)
)`w

ξ ′

π

+wξω⊗ (X
−

β;k
(r)
)`w

ξ ′

π + v

= ((Rωϑ X−β;k
(r)
)`w

ξ
ω)⊗w

ξ ′

π −w
ξ
ω⊗ (Sπϑ X−β;k

(r)
)`w

ξ ′

π

+wξω⊗ (x
−

β,`′+k)
(r)wξ

′

π +w
ξ
ω⊗ Xwξ

′

π + v,

where v is in the span of vectors of the form(∏
i

(x−β,si
)(ai )wξω

)
⊗

(∏
j

(x−β,s j
)(b j )wξ

′

π

)
with 1≤ ai , b j < r,

∑
i

ai +
∑

j

b j = r,

and X is in the span of elements of the form

(x−β,s1
)(r1)(x−β,s2

)(r2) · · · (x−β,sn
)(rn) with r1+ · · ·+ rn = r, 0< r j < r.
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Again, (Rωϑ X−β;k
(r)
)`(w

ξ
ω⊗w

ξ ′

π ) is in M by definition, while (5.5.6), (5.5.7), and
(5.5.4), imply that

((Rωϑ X−β;k
(r)
)`w

ξ
ω)⊗w

ξ ′

π ∈ M and wξω⊗ (Sπϑ X−β;k)`w
ξ ′

π ∈ M.

By induction hypothesis on r , it follows that v and wξω ⊗ Xwξ
′

π are in M , which
then implies that wξω⊗ (x−β,`′+k)

(r)w
ξ ′

π is in M for all k ∈ Z, completing the proof of
the first statement of (5.5.5). The second statement is proved similarly by looking
at (Sπϑ X−β;k

(r)
)`(w

ξ
ω⊗w

ξ ′

π ). �

5.6. The tensor product factorization of local Weyl modules. Theorem 1.5.2(d)
clearly follows if we prove

(5.6.1) WF($1)⊗WF($2)∼=WF($1$2)

whenever $1,$2 ∈ P+F are relatively prime.
In order to show (5.6.1), letw$1 andw$2 be highest-`-weight vectors for WF($1)

and WF($2), respectively. It is well known that w$1 ⊗ v$2 satisfies the defining
relations of WF($1$2), so there exists a UF(g̃)-module map φ : WF($1$2)→

WF($1)⊗WF($2) that sends w$1$2 to w$1 ⊗w$2 . Theorem 5.5.1 implies that φ
is surjective. Hence, it suffices to show that

(5.6.2) dim(WF($1$2))= dim(WF($1)⊗WF($2)).

In fact, recall from Remark 1.5.5 that there exist ω1,ω2 ∈P×A such that $1 and $2

are the images of ω1 and ω2 in P+F , respectively. It then follows from (1.5.4) that

(5.6.3)
dim(WF($1$2))= dim(WK(ω1ω2)) and

dim(WK(ωi ))= dim(WF($i )), i = 1, 2.

On the other hand, it follows from Theorem 1.5.2(d) in characteristic zero that

(5.6.4) dim(WK(ω1ω2))= dim(WK(ω1)) dim(WK(ω2)).

Since (5.6.3) and (5.6.4) clearly imply (5.6.2), we are done.

5.7. Fusion products. We finish the paper with an application of Theorems 1.5.2
and 5.5.1 related to the concept of fusion products originally introduced in the
characteristic-zero setting. Namely, we deduce the positive characteristic counterpart
of [Naoi 2012, Corollary B] (compare [Fourier and Littelmann 2007, Corollary A]
for simply-laced g).

Let V and W be as in Theorem 5.5.1, set λ = wt(ω) + wt(π), and fix v ∈
(V ⊗W )λ \ {0}. Then Theorem 5.5.1 implies that V ⊗W = UF(g̃)v. In fact, as
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mentioned in Section 3.4, we actually have

V ⊗W =UF(n
−
[t])v.

Define the fusion product of V and W , denoted V ∗W , as the UF(g[t])-module
gr(V ⊗W ) with the module structure determined by v as described in the paragraph
after Proposition 3.4.1. Evidently, if we have a collection ω1, . . . ,ωm of relatively
prime elements of P+F and, for each j ∈ {1, . . . ,m}, V j is a quotient of WF(ω j ),
we can define the fusion product V1 ∗ · · · ∗ Vm in a similar way.

Proposition 5.7.1. Let λ ∈ P+, m ∈ Z>0 and ω j ∈P+F , j = 1, . . . ,m, be relatively
prime and such that λ=

∑m
j=1 wt(ω j ). Then

W c
F (λ)
∼=WF(ω1) ∗ · · · ∗WF(ωm).

Proof. One easily checks that a vector in (WF(ω1) ∗ · · · ∗WF(ωm))λ satisfies the
defining relations of W c

F (λ) (compare the proof of (1.5.4) in Section 3.4), showing
that WF(ω1) ∗ · · · ∗ WF(ωm) is a quotient of W c

F (λ). On the other hand, setting
ω =

∏m
j=1 ω j , we have

dim(WF(ω1) ∗ · · · ∗WF(ωm))

= dim(WF(ω1)⊗ · · ·⊗WF(ωm))= dim(WF(ω))= dim(W c
F (λ)). �

The following corollary, which is the characteristic-free version of [Naoi 2012,
Corollary B], is now easily deduced.

Corollary 5.7.2. Let m ∈ Z>0, λ j ∈ P+ and a j ∈ F×, j = 1, . . . ,m, be such that
ai 6= a j for i 6= j . Then, for λ=

∑m
j=1 λ j , W c

F (λ)
∼=WF(ωλ1,a1) ∗ · · · ∗WF(ωλm ,am ).

�
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