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HYPERSURFACES WITH CONSTANT CURVATURE
QUOTIENTS IN WARPED PRODUCT MANIFOLDS

JIE WU AND CHAO XIA

We study rigidity problems for hypersurfaces with constant curvature quo-
tients H2k+1/H2k in the warped product manifolds. Here H2k is the k-th
Gauss–Bonnet curvature and H2k+1 arises from the first variation of the
total integration of H2k. Hence the quotients considered here are in general
different from σ2k+1/σ2k, where σk are the usual mean curvatures. We prove
several rigidity and Bernstein-type results for compact or noncompact hy-
persurfaces corresponding to such quotients.

1. Introduction

Let 6n−1 be a closed smooth hypersurface isometrically immersed in an n-dimen-
sional Riemannian manifold (Mn, g). Assume that 6t is a variation of 6 with the
unit outward normal vector field νt as the variational vector field. It is well known
that the first variation of the area functional Area(6t) is given by

d
dt

∣∣∣∣
t=0

Area(6t)=

∫
6

H dµ,

where H is the mean curvature of 6 with respect to the inner normal and dµ is the
area element of 6. On the other hand, it is well known that the first variation of the
total scalar curvature functional

∫
6

R dµ is given by

d
dt

∣∣∣∣
t=0

∫
6t

R dµt =

∫
6

−2
n−1∑

i, j=1

E i j hi j dµ,

where E i j
= Ri j

−
1
2 Rgi j and hi j are respectively the Einstein tensor and the second

fundamental form of 6 with respect to the inner normal in the local coordinates.
There is a natural generalization of scalar curvature, called Gauss–Bonnet cur-

vatures Lk for an integer 1 ≤ k ≤ 1
2(n − 1) for (n − 1)-dimensional Riemannian
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manifolds. Lk are intrinsic curvature functions. When n− 1 is even, the highest
order Gauss–Bonnet curvature L(n−1)/2 is exactly the Pfaffian in the Gauss–Bonnet–
Chern formula. L2 appeared first in [Lanczos 1938] and has been intensively studied
in the theory of Gauss–Bonnet gravity, which is a generalization of Einstein gravity.

The first variation of the total Gauss–Bonnet curvature functional
∫
6

Lk dµ has
been considered long time ago by Lovelock [1971]. Li [1985] also computed the
first variation of these functionals as well as the second variation for submanifolds
in the general ambient Riemannian manifolds. Recently an alternative computation
was given by Labbi [2008b]:

d
dt

∣∣∣∣
t=0

∫
6t

Lk dµt =

∫
6

−2
n−1∑

i, j=1

E i j
(k)hi j dµ,

where E i j
(k) is the generalized Einstein tensor defined by (2-1). Labbi [2008a]

referred to the critical point of
∫
6

Lk dµ as 2k-minimal submanifolds. In this sense,
the ordinary minimal submanifolds are referred as 0-minimal submanifolds.

For the ambient space Mn
= Rn , by the Gauss equation, one can verify that

Lk = (2k)!σ2k and −2
∑n−1

i, j=1 E i j
(k)hi j = (2k + 1)!σ2k+1, where σk are the usual

mean curvatures defined by the elementary symmetric functions of the principal
curvatures of associated hypersurfaces. Hence the Gauss–Bonnet curvatures Lk as
well as the integrand −2

∑n−1
i, j=1 E i j

(k)hi j appear like higher order mean curvatures.
Throughout this paper, we use the notation

H2k := Lk, H2k+1 := −2
n−1∑

i, j=1

E i j
(k)hi j ,

and call them 2k-mean curvature and (2k+ 1)-mean curvature. By convention, we
use L0 = 1. We emphasize here that in general these mean curvatures are different
from the usual ones defined by σk except H0 and H1. The 0-mean curvature H0 is
equal to 1 and the 1-mean curvature H1 is equal to the usual mean curvature H .

We will consider some rigidity problems related to H2k and H2k+1 in a class of
Riemannian manifolds: warped product manifolds. A warped product manifold
(M, g) is the product manifold of an interval and an (n−1)-dimensional Riemannian
manifold with some smooth positive warping function. Precisely,

M = [0, r̄)×λ N n−1 (0< r̄ ≤∞)

is equipped with
g = dr2

+ λ(r)2gN ,

where λ : [0, r̄)→ R+ is a smooth positive function and (N n−1, gN ) is an (n− 1)-
dimensional Riemannian manifold.
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The rigidity problems for hypersurfaces in Riemannian manifolds with constant
curvature functions are one of the central problems in the classical differential
geometry. Historically, the rigidity problems for hypersurfaces in the Euclidean
space was studied by Liebmann [1899], Hsiung [1954], Süss [1952], Alexandrov
[1956; 1957; 1958a; 1958b], Alexandrov and Volkov [1958], Reilly [1977], Ros
[1988], Korevaar [1988], etc. Recently, many works concerning the rigidity for hy-
persurfaces in warped product manifolds have appeared, see, for example, [Montiel
1999; Alías et al. 2013; Brendle 2013; Brendle and Eichmair 2013; Wu and Xia
2014] and the references therein.

In all above works, the curvature functions are related to the elementary symmet-
ric functions σk of the principal curvatures of hypersurfaces. Our concern in this
paper is the curvature functions H2k and H2k+1. In view of the Gauss equation, for
hypersurfaces in general ambient Riemannian manifolds, H2k and H2k+1 depend not
only on σk but also on the Riemannian curvature tensor of the ambient manifolds.
Therefore, except for the case that the ambient spaces are the space forms, for which
H2k and H2k+1 can be written as linear combinations of σk , one cannot express
them as pure functions on the principal curvatures of hypersurfaces.

The first attempt in which we succeed is the rigidity on the curvature quotients
H2k+1/H2k in a class of warped product manifolds. These quotients can be viewed
as a generalization of the usual mean curvature H since the case k = 0 corresponds
to H . We remark that the rigidity on the quotients of σk in a class of warped product
manifolds has been considered in [Wu and Xia 2014]. However, as mentioned before,
these two kinds of quotients have large differences in general. Many techniques
seem to be difficult to apply for the quotients H2k+1/H2k considered here.

The first main result of this paper is stated as:

Theorem 1.1. Define (Mn, g) to be an n-dimensional warped product manifold
[0, r̄)×λ N n−1 whose warped product function satisfies

(1-1) λλ′′− (λ′)2 ≥ 0 (i.e., log λ is convex).

Let 6n−1 be a closed star-shaped hypersurface in M such that the generalized
Einstein tensor E(k) is semidefinite on 6. For any integer k with 0≤ k < 1

2(n− 1)
and H2k not vanishing on6, if the curvature quotient H2k+1/H2k is a constant, then
6 is a slice {r0}× N for some r0 ∈ [0, r̄) and the constant is (n− 1− 2k) log λ(r0).

The star-shapedness means that 6 can be written as a graph over N , alternatively,
〈∂/∂r , ν〉≥0, where ν is the outer normal of6. The method to prove Theorem 1.1 is
to apply the maximum principle to an elliptic equation. This method was previously
indicated by Montiel [1999] and was used widely in [Alías and Colares 2007; Alías
et al. 2012].
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The condition (1-1) imposed on M only depends on the warped product func-
tion λ, not the fiber manifold N . We notice that the condition excludes the
usual space forms Rn,Sn

+
(hemisphere) and Hn (hyperbolic space) in which cases

λλ′′ − (λ′)2 = −1. For Rn , since the quotient H2k+1/H2k is equal to σ2k+1/σ2k ,
the result still holds; see [Korevaar 1988; Koh 2000]. We will consider the case
Sn
+

and Hn elsewhere since the proof has a different flavor. We also notice that
the condition (1-1) is satisfied by some local space forms such as [0,∞)×er Rn−1

or [0,∞) ×cosh r Rn−1. There are also nonconstant curvature manifolds which
satisfy (1-1). A typical example for which the condition (1-1) is satisfied is the
so-called Kottler–Schwarzschild spaces [0,∞)×λ N (κ), whose warped product
fact λ satisfies λ′(r)=

√

κ + λ(r)2− 2mλ(r)2−n and N (κ) is a closed space form
of the constant sectional curvature κ = 0 or −1. See Appendix for a detailed
explanation.

Note that E i j
(1) = Ri j

−
1
2 Rgi j is the Einstein tensor, so that in k = 1 case, the

semidefinite condition of E(1) is just the semidefiniteness of the Einstein tensor. In
particular, if M = Rn , one readily sees that −E(k) = 1

2(2k)!T2k , where T2k is the
2k-Newton tensor associated to the hypersurface 6, and the seminegative definite
condition of E(k) relates to 2k-convexity.

In order to extend the above result to noncompact hypersurfaces, we need a
generalization of the Omori–Yau maximum principle for the trace-type semi-elliptic
operators. The classical Omori–Yau maximum principle is initially stated for the
Laplacian1. A Riemannian manifold 6 is said to satisfy the Omori–Yau maximum
principle if for any function u ∈C2(6) with sup6 u <+∞, there exists a sequence
{pi }i∈N ⊂6 such that for each i , the following inequalities hold:

u(pi ) > sup
6

u−
1
i
, |∇u|(pi ) <

1
i
, 1u(pi ) <

1
i
.

This principle was first proved by Omori [1967] and later generalized by Yau [1975]
under the condition that the Ricci curvature is bounded from below. It has proved to
be very useful in the framework of noncompact manifolds and attracted considerable
extending works. For example, it was improved by Chen and Xin [1992] and Ratto,
Rigoli and Setti [Ratto et al. 1995] by assuming that the radial curvature decays
slower than a certain decreasing function. Recently, the essence of the Omori–Yau
maximum principle was captured by Pigola, Rigoli and Setti (see [Pigola et al. 2005,
Theorem 1.9]) that the validity of the Omori–Yau maximum principle is assured
by the existence of some nonnegative C2 function satisfying some appropriate
requirements, and thus may not necessarily depend on the curvature bounds. Also,
they discussed the generalizations for the trace-type differential operators (see
Definition 3.1) which will be used in this paper. For a detailed discussion of the
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sufficient condition to guarantee the Omori–Yau maximum principle for the trace-
type differential operators to hold in the warped product manifolds, see [Alías et al.
2013] or Section 3 below.

We have a rigidity result for noncompact hypersurfaces:

Theorem 1.2. Define (Mn, g) to be an n-dimensional warped product manifold
[0, r̄) ×λ N n−1 whose warped product function satisfies λλ′′ − (λ′)2 ≥ 0 with
equality only at isolated points. Let (6n−1, g) be a complete noncompact star-
shaped hypersurface in M , which is contained in a slab [r1, r2]×N , 0≤ r1< r2< r̄ ,
such that the generalized Einstein tensor E(k) being semidefinite on 6. Assume the
Omori–Yau maximum principle holds for the trace-type operator trg(−2E(k)∇2

g)

on 6. For an integer k with 0 ≤ k < 1
2(n− 1) and H2k not vanishing on 6, if the

curvature quotient H2k+1/H2k is a constant, then 6 is a slice {r0} × N for some
r0 ∈ [r1, r2] and the constant is (n− 1− 2k) log λ(r0).

Motivated by the analogous Bernstein type result on the quotient of the usual
mean curvatures [Aquino and de Lima 2014], we can establish a corresponding
result in our case. More precisely, instead of assuming the curvature quotient
H2k+1/H2k being constant, we can establish the rigidity result via assuming a
natural comparison inequality between H2k+1/H2k and its value on the slices.

Theorem 1.3. Define (Mn, g) to be an n-dimensional warped product manifold
[0, r̄)×λ N. Let (6n−1, g) be a complete, star-shaped hypersurface in M , which is
contained in a slab [r1, r2]× N , 0≤ r1 < r2 < r̄ , such that the generalized Einstein
tensor E(k) is semidefinite on 6. Assume that the Omori–Yau maximum principle
holds for the trace-type operator trg(−2E(k)∇2

g) on 6 and that the Gauss–Bonnet
curvature H2k is bounded by two positive constants, i.e., 0< C1 ≤H2k ≤ C2. If

H2k+1

H2k
≤ (n− 1− 2k)

λ′(r)
λ(r)

and |∇gr |g ≤ inf
6

(
(n− 1− 2k)

λ′(r)
λ(r)
−

H2k+1

H2k

)
,

then the hypersurface 6 is a slice {r0}×M for some r0 ∈ [r1, r2].

We remark that we do not assume the log-convexity of the warped product
function for Theorem 1.3.

2. Preliminaries

In this section, we first recall the work of [Lovelock 1971] on the generalized
Einstein tensors and Gauss–Bonnet curvatures. Throughout this paper, we use the
notation Ri jkl , Ri j and R to indicate the Riemannian 4-tensor, the Ricci tensor in
local coordinates and the scalar curvature respectively. We use the metric g to lower
or raise an index and adopt the Einstein summation convention: repeated upper and
lower indices will automatically be summed unless otherwise noted.
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For an (n− 1)-dimensional Riemannian manifold (6n−1, g), the Einstein tensor
Ei j = Ri j−

1
2 Rgi j is very important in theoretical physics. It is a conversed quantity,

i.e.,
∇ j E j

i = 0,

where ∇ is the covariant derivative with respect to the metric g.
Lovelock [1971] studied the classification of tensors A satisfying

(i) Ai j
= A j i , i.e, A is symmetric.

(ii) Ai j
= Ai j (g, ∂g, ∂2g).

(iii) ∇ j Ai j
= 0, i.e., A is divergence-free.

(iv) Ai j is linear in the second derivatives of g.

It is clear that the Einstein tensor Ei j satisfies all above conditions. Lovelock
classified all 2-tensors satisfying (i)–(iii). For an integer 0≤ k ≤ 1

2(n− 1), let us
define a 2-tensor E(k) locally by

(2-1) E i j
(k) := −

1
2k+1 gl jδ

i i1i2···i2k−1i2k
l j1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1i2k

j2k−1 j2k .

Here the generalized Kronecker delta is defined by

δ
j1 j2··· jr
i1i2···ir

= det


δ

j1
i1
δ

j2
i1
· · · δ

jr
i1

δ
j1
i2
δ

j2
i2
· · · δ

jr
i2

...
...
. . .

...

δ
j1
ir
δ

j2
ir
· · · δ

jr
ir

 .
One can check that E(k) satisfies (i)–(iii). Lovelock proved that any 2-tensor
satisfying (i)–(iii) has the form ∑

k

αk E(k),

with certain constants αk , k ≥ 0. The E(k) are called the generalized Einstein
tensors.

For an integer 0≤ k ≤ 1
2(n−1), the Gauss–Bonnet curvatures Lk are defined by

(2-2) Lk :=
1
2k δ

i1i2···i2k−1i2k
j1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1i2k

j2k−1 j2k .

When 2k = n − 1, Lk is the Euler density. When k < 1
2(n − 1), Lk is called the

dimensional continued Euler density in physics. We set E(0) =−1
2 g and L0 = 1. It

is clear from the definitions (2-1) and (2-2) that

(2-3) trg(E(k)) := E i j
(k)gi j =−

n− 1− 2k
2

Lk .
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It is easy to see that (E(1))i j = Ri j −
1
2 Rgi j is the Einstein tensor and L1 = R is

the scalar curvature. One can also check that

E i j
(2) = 2R Ri j

− 4Ris Rs
j
− 4Rsl Rsil j

+ 2Ri
klm R jklm

−
1
2 gi j L2,

and
L2 =

1
4δ

i1i2i3i4
j1 j2 j3 j4 R j1 j2

i1i2 R j3 j4
i3i4 = Ri jsl Ri jsl

− 4Ri j Ri j
+ R2.

In [Lovelock 1971], the author proved that the first variational formula for the
total Gauss–Bonnet curvature functional is given in terms of the generalized Einstein
tensor. It was also presented in [Li 1985; Labbi 2008b], although with different
notation and formalism. For the convenience of readers, we include a proof here.

Proposition 2.1 [Lovelock 1971]. Let (6n−1, g) be a smooth closed manifold.
Assume that gt is a variation of g with ∂

∂t

∣∣
t=0 gi j = vi j for a symmetric 2-tensor v,

then

(2-4)
d
dt

∣∣∣∣
t=0

∫
6t

Lk dµt =

∫
6

−E i j
(k)vi j dµ.

In particular, if (6n−1, g) is a closed, smooth hypersurface immersed in an n-
dimensional Riemannian manifold (Mn, ḡ) and the variational vector field is given
by the outward unit normal ν, then

(2-5)
d
dt

∣∣∣∣
t=0

∫
6t

Lk dµt =

∫
6

−2E i j
(k)hi j dµ.

where hi j denotes the second fundamental form of 6 with respect to −ν.

Proof. By the simple fact that d
dt

∣∣
t=0 dµt =

1
2 trg v dµ and the definition of Lk , we

compute

(2-6)

d
dt

∣∣∣∣
t=0

∫
6t

Lk dµt =

∫
6

d
dt

∣∣∣∣
t=0

Lkdµ+
∫
6

1
2 Lk trg v dµ

=

∫
6

k P i j
(k)sl

d
dt

∣∣∣∣
t=0

Ri j
sl dµ+

∫
6

1
2 Lk trg v dµ,

where the 4-tensor P(k) is given by

(2-7) Pstl j
(k) :=

1
2k δ

i1i2···i2k−3i2k−2st
j1 j2··· j2k−3 j2k−2 j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−3i2k−2

j2k−3 j2k−2 g j2k−1l g j2k j ,

and
P i j
(k)sl
= P i j pq

(k) gspglq .

We remark that P(k) shares the same symmetry as the Riemann curvature tensor,
that is,

(2-8) Pst jl
(k) =−P ts jl

(k) =−Pstl j
(k) = P jlst

(k) .
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Furthermore, by applying the second Bianchi identity of the curvature tensor, one
can check that P(k) has the crucial property of being divergence-free (see [Ge et al.
2014, Lemma 2.2] for a proof)

(2-9) ∇s Pst jl
(k) = 0.

To calculate the first term in (2-6), we recall that if (∂/∂t)g = v, then the evolution
equation of the curvature tensor is given by (see [Chow et al. 2006, Equation (2.66)])

d
dt

Ri jsl =−
1
2(∇i∇ jvsl −∇i∇lvs j −∇s∇ jvil +∇s∇lvi j − Ri jsmv

m
l − Ri jmlv

m
s).

Then we use (2-8) and (2-9) to compute that

(2-10)
∫
6

k P i j
(k)sl

(
d
dt

∣∣∣∣
t=0

Ri j
sl
)

dµ

=

∫
6

k P i j
(k)sl

(1
2(−∇i∇ jv

sl
+∇i∇

lvs
j +∇

s
∇ jv

l
i −∇

s
∇

lvi j )

+
1
2(Ri jm

lvms
− Ri jm

svml)+ (−Ri j p
lvsp
− Ri jq

svlq)) dµ

=−

∫
6

k P i j
(k)sl

Ri jm
lvsm dµ,

where in the last equality we used (2-9), (2-8) and the simple observation that
(Ri jm

lvms
− Ri jm

svml) and (−Ri j p
lvsp
− R s

i j qv
lq) are both antisymmetric with

respect to the pair (s, l).
Going back to (2-6), we obtain that

d
dt

∣∣∣∣
t=0

∫
6t

Lk dµt =

∫
6

(−k P i js
(k) l

Ri j
ml
+

1
2 Lk gms)vms dµ.

On the other hand, from definitions (2-1), (2-2) and (2-7), it is direct to check that

Ems
(k) =−

1
2k+1 glsδ

mi1i2···i2k−1i2k
l j1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1i2k

j2k−1 j2k

=−
1

2k+1 gmsδ
mi1i2···i2k−1i2k
mj1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1i2k

j2k−1 j2k

−
2k

2k+1 gi1sδ
mi1i2···i2k−1i2k
i1 j1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1i2k

j2k−1 j2k

=−
1
2 Lk gms

+ k P i js
(k) l

Ri j
ml .

Hence we complete the proof of (2-4).
In the case that 6 is a hypersurface, one only needs to note that ∂

∂t gi j = 2hi j for
the evolving hypersurfaces. �

The second aim of this section is to give several simple facts on the warped
product manifolds. Let Mn

= [0, r̄)×λ N n−1 (0 < r̄ ≤∞) be a warped product
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manifold equipped with a Riemannian metric

g = dr2
+ λ(r)2gN .

where λ : [0, r̄)→R is a smooth positive function. Let 6 be a smooth hypersurface
in (M, g) with induced metric g. We denote by ∇ and ∇ the covariant derivatives
with respect to ḡ and g respectively. We define a vector field X on M by

X (r)= λ(r)
∂

∂r
.

Let {e1, . . . , en−1} be a local frame on 6, it is well known that X is a conformal
Killing vector field satisfying

(2-11) ∇ei X (r)= λ′(r)ei .

We denote by r the height function which is obtained by the projection of 6 in
M onto the first factor [0, r̄). Let φ(r) be a primitive of λ(r).

Proposition 2.2. The restriction of φ on 6, still denoted by φ, satisfies

(2-12) ∇i∇ jφ(r)= λ′(r)gi j −〈X, ν〉hi j .

The height function r on 6 satisfies

(2-13) ∇i∇ jr =
λ′(r)
λ(r)

gi j −
λ′(r)
λ(r)
∇ir∇ jr −〈∂r , ν〉hi j .

Consequently, we have

(2-14) −2E i j
(k)∇i∇ jφ(r)= (n− 1− 2k)λ′(r)H2k −〈X, ν〉H2k+1.

(2-15) −2E i j
(k)∇i∇ jr= (n−1−2k)

λ′(r)
λ(r)

H2k+
2λ′(r)
λ(r)

E i j
(k)∇ir∇ jr−〈∂r , ν〉H2k+1.

Proof. Using (2-11), we have

∇i∇ jφ(r)= ∇ i∇ jφ−〈∇φ(r), ν〉hi j = ∇ i X j −〈X, ν〉hi j

= λ′(r)gi j −〈X, ν〉hi j .

Equation (2-13) follows from (2-12) and

∇i∇ jr =∇i

(
1
λ(r)
∇ jφ(r)

)
=

1
λ(r)
∇i∇ jφ(r)−

λ′(r)
λ(r)
∇ir∇ jr.

For equations (2-14) and (2-15), we only need to notice that

−2E i j
(k)gi j = (n− 1− 2k)Lk = (n− 1− 2k)H2k

and
−2E i j

(k)hi j =H2k+1. �
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3. rigidity for the quotient
H2k+1

H2k
In this section, we prove our main theorems.

Proof of Theorem 1.1. Since 6 is compact, there exist points pmin, pmax ∈6 such
that the height function r attains its maximum and minimum values, i.e.,

min
6

r = r(pmin), max
6

r = r(pmax).

At these points,

∇r(pmin)=∇r(pmax)= 0,(3-1)

∇
2r(pmin)≥ 0, ∇2r(pmax)≤ 0.(3-2)

It follows from (3-1) and the star-shapedness of 6 that

(3-3) 〈∂r , ν〉(pmin)= 〈∂r , ν〉(pmax)= 1.

By using (3-1) and (3-3) in (2-15), we obtain

(3-4) −2E i j
(k)∇i∇ jr(pmin)= (n−1−2k)(log λ)′(min

6
r)H2k(pmin)−H2k+1(pmin),

(3-5) −2E i j
(k)∇i∇ jr(pmax)

= (n− 1− 2k)(log λ)′(max
6

r)H2k(pmax)−H2k+1(pmax).

We claim that the quotient H2k+1/H2k satisfies

(3-6)
min
6

(
H2k+1

H2k

)
≤ (n− 1− 2k)(log λ)′(min

6
r),

(n− 1− 2k)(log λ)′(max
6

r)≤max
6

(
H2k+1

H2k

)
.

Consider first the case that −2E i j
(k) is positive semidefinite. It follows from (3-2),

(3-4) and (3-5) that

(n− 1− 2k)(log λ)′(min
6

r)H2k(pmin)−H2k+1(pmin)≥ 0,(3-7)

(n− 1− 2k)(log λ)′(max
6

r)H2k(pmax)−H2k+1(pmax)≤ 0.(3-8)

From the fact that
−2E i j

(k)gi j = (n− 1− 2k)H2k,

together with the assumption that H2k is nonvanishing on 6, we know that H2k > 0.
Hence the claim in this case follows from (3-7) and (3-8) immediately. For the
second case that−2E i j

(k) is negative semidefinite, similar argument applies by taking
H2k < 0 into account. We finish the proof of the claim.
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Now using the assumption that log λ is convex, we obtain from (3-6) that

min
6

(
H2k+1

H2k

)
≤ (n− 1− 2k)(log λ)′(min

6
r)

≤ (n− 1− 2k)(log λ)′(max
6

r)≤max
6

(
H2k+1

H2k

)
.

Since the quotient H2k+1/H2k is constant, we have from above that

(3-9)
H2k+1

H2k
= (n− 1− 2k)(log λ)′(min

6
r)= (n− 1− 2k)(log λ)′(max

6
r),

which yields that (log λ)′(r) is a constant function on 6. Substituting (3-9) into
(2-14), we have

(3-10) −2E i j
(k)∇i∇ jφ(r)= λ(1−〈∂r , ν〉)H2k+1.

Notice that 〈∂r , ν〉 ≤ 1 and H2k+1 = cH2k does not change sign on 6. Applying
the classical maximum principle to the elliptic equation (3-10), we conclude that
φ(r) is a constant function on 6. Since φ is an increasing function with respect
to r due to the fact φ′ = λ > 0, we conclude that the height function r is a constant
function on 6, i.e., 6 is a slice {r0}× N . �

To extend the previous result to noncompact hypersurfaces, we will apply a
generalization of the Omori–Yau maximum principle for trace-type differential
operators. Consider a Riemannian manifold (6, g) and a semi-elliptic operator
L = trg(T ◦∇2

g), where T : T6→ T6 is a positive semidefinite symmetric tensor.
For simplicity we will omit the subscription g.

Definition 3.1. We say that the Omori–Yau maximum principle holds on6 for L , if
for any function u ∈C2(6) with sup6 u<+∞, there exists a sequence {pi }i∈N⊂6

such that for each i , the following holds:

u(pi ) > sup
6

u−
1
i
, |∇u|(pi ) <

1
i
, Lu(pi ) <

1
i
.

Since inf6 u = − sup6(−u), the above is equivalent to that for any function u ∈
C2(6) with inf6 u >−∞, there exists a sequence {pi }i∈N⊂6 such that for each i ,
the following holds:

u(pi ) < inf
6

u+
1
i
, |∇u|(pi ) <

1
i
, Lu(pi ) >−

1
i
.

Assume the generalized Omori–Yau maximum principle holds for the trace-type
operator L = tr(−2E(k)∇2), one can prove the analogous result for noncompact
hypersurfaces.
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Proof of Theorem 1.2. Due to the same argument as in the proof of Theorem 1.1,
we only need to prove the theorem in the case that −2E i j

(k) is positive semidefinite.
By the generalized Omori–Yau maximum principle, we have two sequences {pi }

and {qi } in 6 with properties

(i) lim
i→+∞

φ(r(pi ))= sup
6

φ(r), lim
i→+∞

φ(r(qi ))= inf
6
φ(r);

(ii) |∇φ(r)|(pi )= λ(r(pi ))|∇r |(pi ) <
1
i
, |∇φ(r)|(qi )= λ(r(pi ))|∇r |(qi ) <

1
i

;

(iii) tr(−2E(k)∇2φ(r))(pi ) <
1
i
, tr(−2E(k)∇2φ(r))(qi ) >−

1
i

.
Since φ(r) is strictly increasing due to φ′(r)= f (r) > 0, we have

lim
i→+∞

r(pi )= sup
6

r, lim
i→∞

r(qi )= inf
6

r,

and thus
lim

i→+∞
〈∂r , ν〉(pi )= lim

i→+∞
〈∂r , ν〉(qi )= 1.

Using the above facts in (2-14) and letting i→+∞, we get

(3-11) (n− 1− 2k)(log λ)′(sup
6

r)≤
H2k+1

H2k
≤ (n− 1− 2k)(log λ)′(inf

6
r).

By the assumption that (log λ)′′ ≥ 0 with equality only at isolated points, we obtain
the desired result that r is constant. That is, 6 is a slice {r0}×M . �

In the following, we discuss some sufficient condition to guarantee the generalized
Omori–Yau maximum principle to hold for6. Inspired by [Pigola et al. 2005], Alías
et al. [2013, Theorem 1 and Corollary 3] proved that the Omori–Yau maximum
principle holds for a trace-type elliptic operator L = tr(T ◦ ∇2) with positive
semidefinite T satisfying sup6 tr T <∞ on a Riemannian manifold 6, provided
that the radial sectional curvature (the sectional curvature of the 2-planes containing
∇ρ, where ρ is the distance function on 6 from a fixed point in 6) of 6 satisfies
the condition

(3-12) K rad
6 (∇ρ,∇ρ) >−G(ρ),

where G : [0,+∞)→ R is a smooth function satisfying

(3-13) G(0) > 0, G ′(t)≥ 0,
∫
+∞

0

1
√

G(t)
=+∞, lim sup

t→+∞

tG(
√

t)
G(t)

<+∞.

A special case for which (3-12) holds is that the sectional curvature of 6 is bounded
from below (one can choose G(ρ)= C(1+ ρ2), where C is a constant).

In the case of warped product manifolds, Alías et al. gave a detailed discussion
of (3-12). More precisely, they proved [ibid., Corollary 4] that for a hypersurface
6 in a slab of a warped product manifold [r1, r2] × N , (3-12) holds for L with
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positive semidefinite T satisfying sup6 tr T <∞, provided that the radial sectional
curvature of the fiber manifold N satisfies

(3-14) K rad
N (∇N ρ̂,∇N ρ̂) >−G(ρ̂),

where ρ̂ is the distance function on the fiber N from a fixed point in N and
G : [0,+∞)→ R is a smooth function satisfying the conditions listed in (3-13),
together with sup6 ‖h‖

2 <+∞ on 6. Geometrically, the condition (3-14) means
that the radial sectional curvature of the fiber manifold N has a strong quadratic
decay at infinity, that is, one can choose G(ρ)=C(1+ρ2 log2(2+ρ)) as shown in
[Chen and Xin 1992]. In particular, when N has sectional curvature bounded from
below or N is compact, (3-14) holds. As a direct result of Theorem 1.2, we have:

Corollary 3.2. Let (Mn, g) be as in Theorem 1.2. Assume that the radial sectional
curvature of N satisfies (3-14). Let 6n−1 be a complete, noncompact star-shaped
hypersurface in M which is contained in a slab [r1, r2]× N with sup6 ‖h‖

2 <+∞.
Assume −2E(k) is semidefinite on 6 and sup6 H2k < ∞ on 6. If the quotient
H2k+1/H2k is constant, then the hypersurface is a slice {r0}× N.

Following the argument close to the proof of Theorem 1.2, one may prove the
Bernstein-type result in this case.

Proof of Theorem 1.3. By the generalized Omori–Yau maximum principle to the
height function r , there exists a sequence {pi } ⊂6 such that

lim
i→∞

r(pi )= sup
6

r, lim
i→∞
|∇r |(pi )= 0, lim

i→∞
sup tr(−2E(k)∇2r)(pi )≤ 0.

It follows from the semidefiniteness of −2E(k) and the positivity of H2k that

0≤ 〈−2E(k)∇r,∇r〉 ≤ tr(−2E(k))|∇r |2 ≤ (n− 1− 2k)C2|∇r |2.

From the fact 〈∂r , ν〉
2
= 1− |∇r |2, we have

lim
i→∞
〈∂r , ν〉(pi )= 1,

and thus
lim

i→∞
〈−2E(k)∇r,∇r〉(pi )= 0.

Combining all the above facts together into (2-15), we have

0≥ lim
i→∞

sup tr(−2E(k)∇2r)(pi )≥ C1 lim
i→∞

(
(n−1−2k)

λ′(r)
λ(r)
−

H2k+1

H2k

)
(pi )≥ 0,

so that

lim
i→∞

(
(n− 1− 2k)

λ′(r)
λ(r)
−

H2k+1

H2k

)
(pi )= 0.
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From the hypothesis, we have inf6((n−1−2k)λ′(r)/λ(r)−H2k+1/H2k)= 0, and
thus |∇r | ≡ 0 on 6, which yields that 6 is a slice {r0}×M for some r0 ∈ [0, r̄). �

Appendix: Kottler–Schwarzschild manifolds

The Kottler manifolds, or Kottler–Schwarzschild manifolds, are analogues of the
Schwarzschild space in the setting of asymptotically locally hyperbolic manifolds.
For κ = 1, 0 or −1, let (N (κ), ĝ) be a closed space form of constant sectional
curvature κ . An n-dimensional Kottler–Schwarzschild manifold

Pκ,m = [ρκ,m,∞)× N (κ)

is equipped with the metric

(A-1) gκ,m =
dρ2

V 2
κ,m(ρ)

+ ρ2ĝ, Vκ,m =

√
ρ2+ κ −

2m
ρn−2 .

Let ρ0 := ρκ,m be the largest positive root of

φ(ρ) := ρ2
+ κ −

2m
ρn−2 = 0.

Remark that in (A-1), in order to have a positive root ρ0, if κ = 0 or 1, the parame-
ter m should be always positive; if κ = −1, the parameter m can be negative. In
fact, in this case, m ∈ [mc,+∞) and

mc =−
(n− 2)(n−2)/2

nn/2 .

Here the certain critical value mc comes from the following. If m ≤ 0, one can
solve the equation

φ′(ρ)= 2ρ+ (n− 2)
2m
ρn−1 = 0,

to get the root ρ1 = (−(n− 2)m)1/n . Note the fact that φ(ρ1)≤ 0, which yields

m ≥−
(n− 2)(n−2)/2

nn/2 .

By a change of variable r = r(ρ) with

r ′(ρ)=
1

Vκ,m(ρ)
, r(ρκ,m)= 0,

we can rewrite Pκ,m as a warped product manifold Pκ,m=[0,∞)×λκ N (κ) equipped
with the metric

gκ,m := ḡ := dr2
+ λκ(r)2ĝ,

where λκ : [0,∞)→ [ρκ,m,∞) is the inverse of r(ρ), i.e., λκ(r(ρ))= ρ.
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It is easy to check

λ′κ(r)= Vκ,m(ρ)=
√
κ + λκ(r)2− 2mλκ(r)2−n,

λ′′κ(r)= λκ(r)+ (n− 2)mλκ(r)1−n.

Hence
λκλ
′′

κ − (λ
′

κ)
2
=−κ + nmλ2−n

κ .

For the case κ = 0, m ≥ 0 and hence λκλ′′κ − (λ
′
κ)

2
= nmλ2−n

κ ≥ 0. For the case
κ =−1, if m ≥ 0, then λκλ′′κ − (λ

′
κ)

2
= 1+ nmλ2−n

κ > 0. If

m ∈
[
−
(n− 2)(n−2)/2

nn/2 , 0
)
,

then

λκλ
′′

κ − (λ
′

κ)
2
= 1+ nmλ2−n

κ ≥ 1+ nmρ2−n
0 ≥ 1+ nmρ2−n

1

= 1+ nm(−(n− 2)m)(2−n)/n
= 1− n(n− 2)(2−n)/n(−m)2/n

≥ 1− n(n− 2)(2−n)/n
(
(n− 2)(n−2)/2

nn/2

)2/n

= 0.

As a conclusion, the condition on the log convexity of λ holds for the Kottler–
Schwarzschild manifolds with κ = 0 and −1. We remark that the log convexity
of λ does not hold for the Kottler–Schwarzschild manifolds when κ = 1.
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