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THE FIRST TERMS IN THE EXPANSION OF
THE BERGMAN KERNEL IN HIGHER DEGREES

MARTIN PUCHOL AND JIALIN ZHU

We establish the cancellation of the first 2 j terms in the diagonal asymptotic
expansion of the restriction to the (0, 2 j)-forms of the Bergman kernel as-
sociated to the spinc Dirac operator on high tensor powers of a positive line
bundle twisted by a (not necessarily holomorphic) complex vector bundle,
over a compact Kähler manifold. Moreover, we give a local formula for the
first and the second (nonzero) leading coefficients, as well as for the third
assuming that the first two vanish.

Introduction

The Bergman kernel of a Kähler manifold endowed with a positive line bundle
L is the smooth kernel of the orthogonal projection on the kernel of the Kodaira
Laplacian �L

= ∂̄L ∂̄L ,∗
+∂̄L ,∗∂̄L . The existence of a diagonal asymptotic expansion

of the Bergman kernel associated with the p-th tensor power of L when p→+∞
and the form of the leading term were proved in [Tian 1990; Zelditch 1998; Catlin
1999]. Moreover, the coefficients in this expansion encode geometric information
about the underlying manifold, and therefore they have been studied closely: the
second and third terms were computed by Lu [2000], X. Wang [2005], L. Wang
[2003] and Ma and Marinescu [2012] in different degrees of generality (see also
the recent paper [Xu 2012]). This asymptotic analysis plays an important role in
various problems of Kähler geometry; see, for instance, [Donaldson 2001; Fine
2012]. We refer the reader to [Ma and Marinescu 2007] (henceforth abbreviated
[MM]) for a comprehensive study of the Bergman kernel and its applications. See
also the survey [Ma 2011].

In fact, Dai, Liu and Ma [Dai et al. 2006] established the asymptotic development
of the Bergman kernel in the symplectic case, using the heat kernel (see also [Ma
and Marinescu 2006]). In [Charbonneau and Stern 2011], these asymptotics in
the symplectic case have found an application in the study of the variation of
Hodge structures of vector bundles. In that setting, the Bergman kernel is the
kernel of a Kodaira-like Laplacian on a twisted bundle L ⊗ E , where E is a (not
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necessarily holomorphic) complex vector bundle. Because of that, the Bergman
kernel is no longer supported in degree 0 (unlike it did in the Kähler case), and
the asymptotic development of its restriction to the (0, 2 j)-forms is related to the
degree of ‘nonholomorphicity’ of E .

In this paper, we will show that the leading term in the asymptotics of the
restriction to the (0, 2 j)-forms of the Bergman kernel is of order pdim X−2 j and we
will compute it. That will lead to a local version of [Charbonneau and Stern 2011,
Equation (1.3)], which is the main technical result of their paper; see Remark 0.6.
After that, we will also compute the second term in the asymptotics, as well as the
third term in the case where the first two vanish.

We now give more detail about our results. Let (X, ω, J ) be a compact Kähler
manifold of complex dimension n. Let (L , hL) be a holomorphic Hermitian line
bundle on X , and (E, hE) a Hermitian complex vector bundle. We endow (L , hL)

with its Chern (i.e., holomorphic and Hermitian) connection ∇L , and (E, hE) with
a Hermitian connection ∇E , whose curvatures are RL

= (∇L)2 and RE
= (∇E)2.

Except in the beginning of Section 1A, we will always assume that (L , hL ,∇L)

satisfies the prequantization condition

(0-1) ω =

√
−1

2π
RL .

Let gT X ( · , · )=ω( · , J · ) be the Riemannian metric on T X induced by ω and J .
It induces a metric h3

0,•
on 30,•(T ∗X) :=3•(T ∗(0,1)X); see Section 1A.

Let L p
= L⊗p be the p-th tensor power of L . Let

(0-2) �0,•(X, L p
⊗ E)= C∞(X,30,•(T ∗X)⊗ L p

⊗ E)

and ∂̄L p
⊗E
: �0,•(X, L p

⊗ E)→ �0,•+1(X, L p
⊗ E) be the Dolbeault operator

induced by the (0, 1)-part of ∇E (see (1-3)). Let ∂̄L p
⊗E,∗ be its dual with respect

to the L2-product. We set (see (1-6))

(0-3) Dp =
√

2(∂̄L p
⊗E
+ ∂̄L p

⊗E,∗),

which exchanges odd and even forms.

Definition 0.1. Let

(0-4) Pp : �
0,•(X, L p

⊗ E)→ ker(Dp)

be the orthogonal projection onto the kernel of Dp. The operator Pp is called the
Bergman projection. It has a smooth kernel with respect to dvX (y), denoted by
Pp(x, y), which is called the Bergman kernel.

Remark 0.2. If E is holomorphic, then by Hodge theory and the Kodaira vanishing
theorem (see respectively [MM, Theorems 1.4.1 and 1.5.6]), we know that, for p
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large enough, Pp is the orthogonal projection C∞(X, L p
⊗ E)→ H 0(X, L p

⊗ E).
Here, by [Ma and Marinescu 2002, Theorem 1.1], we just know that

(0-5) ker(Dp �0,odd(X,L p⊗E))= 0

for p large, so that Pp : �
0,even(X, L p

⊗ E)→ ker(Dp). In particular, Pp(x, x) ∈
C∞(X,End(30,even(T ∗X)⊗ E)).

By Theorem 1.3, Dp is a Dirac operator, which enables us to apply this result:

Theorem 0.3 [Dai et al. 2006, Theorem 1.1]. There exist

(0-6) br ∈ C∞(X,End(30,even(T ∗X)⊗ E))

such that for any k ∈ N and p→+∞,

(0-7) p−n Pp(x, x)=
k∑

r=0

br (x)p−r
+ O(p−k−1),

that is, for every k, l ∈ N, there exists a constant Ck,l > 0 such that for any p ∈ N,

(0-8)
∣∣∣∣p−n Pp(x, x)−

k∑
r=0

br (x)p−r
∣∣∣∣
Cl (X)
≤ Ck,l p−k−1.

Here | · |Cl (X) is the Cl-norm for the variable x ∈ X.

To simplify the formulas, we denote by

(0-9) R= (RE)0,2 ∈�0,2(X,End(E))

the (0, 2)-part of RE (which is zero if E is holomorphic). For j ∈ J1, nK, let

(0-10) I j : 3
0,•(T ∗X)⊗ E→30, j (T ∗X)⊗ E

be the natural orthogonal projection. The first main result in this paper is:

Theorem 0.4. For any k ∈ N, k ≥ 2 j , we have when p→+∞,

(0-11) p−n I2 j Pp(x, x)I2 j =

k∑
r=2 j

I2 j br (x)I2 j p−r
+ O(p−k−1),

and moreover,

(0-12) I2 j b2 j (x)I2 j =
1

(4π)2 j

1
22 j ( j !)2

I2 j (R
j
x)(R

j
x)
∗ I2 j ,

where (R j
x)
∗ is the dual of R

j
x acting on (30,•(T ∗X)⊗ E)x .

Theorem 0.4 leads immediately to:
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Corollary 0.5. Uniformly in x ∈ X , when p→+∞, we have

(0-13) Tr((I2 j Pp I2 j )(x, x))=
1

(4π)2 j

1
22 j ( j !)2

‖R j
x‖

2 pn−2 j
+ O(pn−2 j−1).

Remark 0.6. By integrating (0-13) over X , we get

(0-14) Tr(I2 j Pp I2 j )=
1

(4π)2 j

1
22 j ( j !)2

‖R j
‖

2
L2 pn−2 j

+ O(pn−2 j−1),

which is the main technical result of [Charbonneau and Stern 2011, Equation (1.3)];
thus Corollary 0.5 can be viewed as a local version of it. The constant in (0-14)
differs from the one in [ibid.] because our conventions are not the same as theirs
(e.g., they chose ω =

√
−1RL ).

Let RE
3 := −

√
−1

∑
i RE(wi , wi ) for (w1, . . . , wn) an orthonormal frame of

T (0,1)X . Let RT X be the curvature of the Levi-Civita connection ∇T X of (X, gT X ),
and for (e1, . . . , e2n) an orthonormal frame of T X , let r X

=−
∑
i, j
〈RT X (ei , e j )ei , e j 〉

be the scalar curvature of X .
For j, k ∈ N and j ≥ k, we also define C j (k) by

(0-15) C j (k) :=
1

(4π) j

1
2kk!

1∏ j
s=k+1(2s+ 1)

,

with the convention that
∏

s∈∅ = 1.
Let ∇3

0,•
be the connection on 30,•(T ∗X) induced by ∇T X . Let ∇3

0,•
⊗E be the

connection on 30,•(T ∗X)⊗ E induced by ∇E and ∇3
0,•

, and let 13
0,•
⊗E be the

associated Laplacian. For precise definitions, see Section 1A.
For every operator A acting on a Hermitian space, we define the positive (not

necessarily definite) operator and the symmetric operator associated to A as

(0-16) Pos[A] = AA∗ and Sym[A] = A+ A∗.

Finally, to simplify the notation, we define T0( j), T1( j), T2( j) and T3( j) as:

• T0(0)= 0, and for j ≥ 1,

(0-17) T0( j)=
1
√

2π

n∑
i=0

j−1∑
k=0

I2 j (C j ( j)−C j (k))R j−k−1
x (∇3

0,•
⊗E

wi
R·)(x)Rk

x I0.
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• T1(0)= T1(1)= 0, and for j ≥ 2,

(0-18) T1( j)=
I2 j

2π

j−2∑
q=0

q∑
m=0

{
(C j ( j)−C j (q + 1))

×R j−(q+2)
x (∇3

0,•
⊗E

wi
R·)(x)Rq−m

x (∇3
0,•
⊗E

wi
R·)(x)Rm

x

+C j (m)
[ j∏

s=q+2

(
1+

1
2s

)
− 1

]
×R j−(q+2)

x (∇3
0,•
⊗E

wi
R·)(x)Rq−m

x (∇3
0,•
⊗E

wi
R·)(x)Rm

x

}
I0,

• T2(0)= 0, and for j ≥ 1,

(0-19) T2( j)=
1

4π
I2 j

j−1∑
k=0

{
(C j (k)−C j ( j))R j−(k+1)

x (13
0,•
⊗E R·)(x)Rk

x
}

I0,

• for j ≥ 0,

(0-20) T3( j)= I2 j

j∑
k=0

R j−k
x

[
1
6

(
C j+1( j + 1)−

C j (k)
2π(2k+ 1)

)
r X

x

−
C j (k)

4π(2k+ 1)

√
−1RE

3,x

]
Rk

x I0.

Our second goal is to compute the second term in the expansion (0-11).

Theorem 0.7. We can decompose I2 j b2 j+1(x)I2 j as the sum of four terms:

(0-21) I2 j b2 j+1(x)I2 j

= Pos[T0( j)] +C j ( j)Sym[(T1( j)+ T2( j)+ T3( j))(R j
x)
∗ I2 j ].

For instance, for j = 1, using the fact that (RE
3)
∗
= RE

3, we find

(0-22) 128π3 I2b3(x)I2

=
1
9

Pos
[

I2

n∑
i=0

(∇3
0,•
⊗E

wi
R·)(x)I0

]
−

1
6

Sym[I2(1
30,•
⊗E R·)(x)R∗x I2]

−

√
−1
6

I2(RE
3Rx R∗x+Rx R∗x RE

3)I2−
2
√
−1

3
I2Rx RE

3R∗x I2−
r X

x

4
I2Rx R∗x I2.

The last goal of this paper is to compute the third term in the expansion (0-11),
assuming that the first two vanish.

Theorem 0.8. Let j ∈ J1, nK. If

(0-23) I2 j b2 j (x)I2 j = I2 j b2 j+1(x)I2 j = 0,
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then T3 equals

(0-24) T ′3 ( j) := −
√
−1I2 j

j∑
k=0

C j (k)
4π(2k+ 1)

R j−k
x RE

3,x Rk
x I0,

and

(0-25) I2 j b2 j+2(x)I2 j = Pos[T1( j)+ T2( j)+ T ′3 ( j)].

Theorems 0.4, 0.7 and 0.8 yield to:

Corollary 0.9. We have

(0-26) I2 j Pp(x, x)I2 j = O(pn−2 j−3)⇐⇒


R

j
x = 0,

T0( j)= 0,
T1( j)+ T2( j)+ T ′3 ( j)= 0.

This paper is organized as follows. In Section 1 we compute the square of Dp

and use a local trivialization to rescale it, and then give the Taylor expansion of
the rescaled operator. In Section 2, we use this expansion to give a formula for the
coefficients br appearing in (0-7), which will lead to a proof of Theorem 0.4. In
Section 3, we prove Theorem 0.7 using the formula for br . Finally, in Section 4,
we prove Theorem 0.8 using the techniques and results of the preceding sections.

In this whole paper, when an index variable appears twice in a single term, it
means that we are summing over all its possible values.

1. Rescaling D2
p and Taylor expansion

In this section, we follow the method of [MM, Chapter 4] that enables to prove the
existence of br in (0-7) in the case of a holomorphic vector bundle E , and that still
applies here (as pointed out in [MM, Section 8.1.1]). Then, in Sections 2 and 3, we
will use this approach to understand I2 j br I2 j and prove Theorems 0.4 and 0.7.

In Section 1A, we will first prove Theorem 1.3, and then give a formula for the
square of Dp, which will be the starting point of our approach.

In Section 1B, we will rescale the operator D2
p to get an operator Lt , and then

give the Taylor expansion of the rescaled operator.
In Section 1C, we will study more precisely the limit operator L0.

1A. The square of Dp. For further details on the material of this subsection, the
lector can read [MM]. First of all let us give some notation.

The Riemannian volume form of (X, gT X ) is given by dvX = ω
n/n!. We will

denote by 〈 · , · 〉 the C-bilinear form on T X ⊗C induced by gT X .
For the rest of Section 1A, we will fix (w1, . . . , wn) a local orthonormal frame of

T (1,0)X with dual frame (w1, . . . , wn). Then (w1, . . . , wn) is a local orthonormal
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frame of T (0,1)X whose dual frame is denoted by (w1, . . . , wn), and the vectors

(1-1) e2 j−1 =
1
√

2
(w j +w j ) and e2 j =

√
−1
√

2
(w j −w j )

form a local orthonormal frame of T X .
We choose the Hermitian metric h3

0,•
on 30,•(T ∗X) :=3•(T ∗(0,1)X) such that

{w j1 ∧ · · · ∧w jk : 1≤ j1 < · · ·< jk ≤ n} is an orthonormal frame of 30,•(T ∗X).
For any Hermitian bundle (F, hF ) over X , let C∞(X, F) be the space of smooth

sections of F . It is endowed with the L2-Hermitian metric

(1-2) 〈s1, s2〉 =

∫
X
〈s1(x), s2(x)〉hF dvx(x).

The corresponding norm will be denoted by ‖ · ‖L2 , and the completion of C∞(X, F)
with respect to this norm by L2(X, F).

Let ∂̄E be the Dolbeault operator of E . It is the (0, 1)-part of the connection ∇E

(1-3) ∂̄E
:= (∇E)0,1 : C∞(X, E)→ C∞(X, T ∗(0,1)X ⊗ E).

We extend it to get an operator

(1-4) ∂̄E
: �0,•(X, E)→�0,•+1(X, E)

by the Leibniz formula: for s ∈ C∞(X, E) and α ∈ C∞(X,30,•(T ∗X)) homoge-
neous,

(1-5) ∂̄E(α⊗ s)= (∂̄α)⊗ s+ (−1)degαα⊗ ∂̄E s.

We can now define the operator

(1-6) DE
=
√

2(∂̄E
+ ∂̄E ,∗) : �0,•(X, E)→�0,•(X, E),

where the dual is taken with respect to the L2-norm associated with the Hermitian
metrics h3

0,•
and hE .

Let∇3(T
∗X) be the connection on3(T ∗X) induced by the Levi-Civita connection

∇
T X of X . Since X is Kähler, ∇T X preserves T (0,1)X and T (1,0)X . Thus, it induces

a connection ∇T ∗(0,1)X on T ∗(0,1)X , and then a Hermitian connection ∇3
0,•

on
30,•(T ∗X). We then have that for any α ∈ C∞(X,30,•(T ∗X)),

(1-7) ∇
30,•
α =∇3(T

∗X)α.

Note the important fact that ∇3(T
∗X) preserves the bi-grading on 3•,•(T ∗X).

Let ∇3
0,•
⊗E
:=∇

30,•
⊗1+1⊗∇E be the connection on30,•(T ∗X)⊗E induced

by ∇3
0,•

and ∇E .
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Proposition 1.1. On �0,•(X, E), we have

(1-8)
∂̄E
= w j

∧∇
30,•
⊗E

w j
,

∂̄E,∗
=−iw j∇

30,•
⊗E

w j
.

Proof. We still denote by ∇E the extension of the connection ∇E to �•,•(X, E)
by the usual formula ∇E(α⊗ s)= dα⊗ s+ (−1)degαα∧∇E s for s ∈ C∞(X, E)
and α ∈ C∞(X,3(T ∗X)) homogeneous. We know that d = ε ◦ ∇3(T

∗X) where
ε is the exterior multiplication (see [MM, Equation (1.2.44)]), so we get that
∇

E
= ε ◦∇3(T

∗X)⊗E . Using (1-7), it follows that

∂̄E
= (∇E)0,1 = w j

∧∇
30,•
⊗E

w j
,

which is the first part of (1-8).
The second part of our proposition follows classically from the first by exactly

the same computation as in [MM, Lemma 1.4.4]. �

Definition 1.2. Let v=v1,0
+v0,1

∈T X=T (1,0)X⊕T (0,1)X , and v̄(0,1),∗∈T ∗(0,1)X
the dual of v1,0 for 〈 · , · 〉. We define the Clifford action of T X on 30,•(T ∗X) by

(1-9) c(v)=
√

2(v̄(0,1),∗ ∧ −iv0,1).

We verify easily that for u, v ∈ T X ,

(1-10) c(u)c(v)+ c(v)c(u)=−2〈u, v〉,

and that for any skew-adjoint endomorphism A of T X ,

(1-11) 1
4〈Aei , e j 〉c(ei )c(e j )=−

1
2〈Aw j , w j 〉+ 〈Aw`, wm〉w

m
∧ iw`

+
1
2〈Aw`, wm〉iw` iwm +

1
2〈Aw`, wm〉w

`
∧wm

∧ .

Let ∇det be the Chern connection of det(T (1,0)X) :=3n(T (1,0)X), and ∇Cl the
Clifford connection on 30,•(T ∗X) induced by ∇T X and ∇det (see [MM, Equa-
tion (1.3.5)]). We also denote by ∇Cl the connection on 30,•(T ∗X)⊗ E induced
by ∇Cl and ∇E . By [loc. cit.], (1-11) and the fact that ∇det is holomorphic, we get

(1-12) ∇
Cl
=∇

30,•
.

Let Dc,E be the associated spinc Dirac operator

(1-13) Dc,E
=

2n∑
j=1

c(e j )∇
Cl
e j
: �0,•(X, E)→�0,•(X, E).

By (1-8) and (1-12), we have:

Theorem 1.3. DE is equal to the spinc Dirac operator Dc,E acting on �0,•(X, E).
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Remark 1.4. Note that all the results proved in the beginning of this subsection
hold without assuming the prequantization condition (0-1), but from now on we
will use it.

Let (F, hF ) be a Hermitian vector bundle on X and let ∇F be a Hermitian con-
nection on F . Then the Bochner Laplacian 1F acting on C∞(X, F) is defined by

(1-14) 1F
=−

2n∑
j=1

((∇F
e j
)2−∇F

∇T X
e j

e j
).

On �0,•(X), we define the number operator N by

(1-15) N �0, j (X) = j,

and we also denote by N the operator N ⊗ 1 acting on �0,•(X, F).
The bundle L p is endowed with the connection ∇L p

induced by ∇L (which is
also its Chern connection). Let ∇L p

⊗E
:= ∇

L p
⊗ 1+ 1⊗∇E be the connection on

L p
⊗ E induced by ∇L and ∇E . We will denote

(1-16) Dp = DL p
⊗E .

Theorem 1.5. The square of Dp is given by

(1-17) D2
p =1

30,•
⊗L p
⊗E
− RE(w j , w j )− 2πpn+ 4πpN

+ 2(RE
+

1
2 Rdet)(w`, wm)w

m
∧ iw` + RE(w`, wm)iw` iwm

+ RE(w`, wm)w
`
∧wm .

Proof. By Theorem 1.3, we can use [MM, Theorem 1.3.5]

(1-18) D2
p =1

Cl
+

1
4r X
+

1
2(R

L p
⊗E
+

1
2 Rdet)(ei , e j )c(ei )c(e j ),

where r X is the scalar curvature of X . From (1-12), we see that 1Cl
=13

0,•
⊗L p
⊗E .

Moreover, r X
= 2Rdet(w j , w j ) and RL p

⊗E
= RE

+ pRL . Using the equivalent of
(1-11) for 2-forms (substituting A( · , · ) for 〈A· , · 〉) and the fact that RL and Rdet

are (1, 1)-forms, (1-18) reads

D2
p=1

30,•
⊗L p
⊗E
+

1
2 Rdet(w j , w j )−(RE(w j , w j )+pRL(w j , w j )+

1
2 Rdet(w j , w j ))

+ 2(RE
+ pRL

+
1
2 Rdet)(w`, wm)w

m
∧ iw` + RE(w`, wm)iw` iwm

+ RE(w`, wm)w
`
∧wm .

Thanks to (0-1), we have RL(w`, wm) = 2πδ`m . Moreover, N =
∑̀
w` ∧ iw` ,

thus we get Theorem 1.5. �
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1B. Rescaling D2
p. In this subsection, we rescale D2

p, but to do this we must define
it on a vector space. Therefore, we will use normal coordinates to transfer the
problem on the tangent space to X at a fixed point. Then we give a Taylor expansion
of the rescaled operator, but the problem is that each operator acts on a different
space, namely,

Ep :=3
0,•(T ∗X)⊗ L p

⊗ E,

so we must first handle this issue.
Fix x0 ∈ X . For the rest of this paper, we fix {w j } an orthonormal basis of

T (1,0)
x0 X , with dual basis {w j

}, and we construct an orthonormal basis {ei } of Tx0 X
from {w j } as in (1-1).

For ε > 0, we denote by B X (x0, ε) and BTx0 X (0, ε) the open balls in X and Tx0 X
with center x0 and 0 and radius ε. If expX

x0
is the Riemannian exponential of X , then

for ε small enough, Z ∈ BTx0 X (0, ε) 7→ expX
x0
(Z) ∈ B X (x0, ε) is a diffeomorphism,

which gives local coordinates by identifying Tx0 X with R2n via the orthonormal
basis {ei }:

(1-19) (Z1, . . . , Z2n) ∈ R2n
7→

∑
i

Zi ei ∈ Tx0 X.

From now on, we will always identify BTx0 X (0, ε) and B X (x0, ε). Note that in this
identification, the radial vector field R =

∑
i

Zi ei becomes R = Z , so Z can be
viewed as a point or as a tangent vector.

For Z ∈ BTx0 X (0, ε), we identify (L Z , hL
Z ), (EZ , hE

Z ) and (30,•
Z (T ∗X), h3

0,•

Z )

with (L x0, hL
x0
), (Ex0, hE

x0
) and (30,•(T ∗x0

X), h3
0,•

x0
) by parallel transport with respect

to the connection ∇L , ∇E and ∇3
0,•

along the geodesic ray t ∈ [0, 1] 7→ t Z . We de-
note by 0L , 0E and 03

0,•
the corresponding connection forms of ∇L , ∇E and ∇3

0,•
.

Remark 1.6. As ∇3
0,•

preserves the degree, the identification between 30,•(T ∗X)
and 30,•(T ∗x0

X) is compatible with the degree. Thus, 03
0,•

Z ∈
⊕

j End(30, j (T ∗X)).

Let SL be a unit vector of L x0 . It gives an isometry L p
x0 ' C, which induces an

isometry

(1-20) Ep,x0 ' (3
0,•(T ∗X)⊗ E)x0 =: Ex0 .

Thus, in our trivialization, D2
p acts on Ex0 , but this action may a priori depend on

the choice of SL . In fact, since the operator D2
p takes values in End(Ep,x0) which is

canonically isomorphic to End(E)x0 (by the natural identification End(L p) ' C),
all our formulas do not depend on this choice.

Let dvT X be the Riemannian volume form of (Tx0 X, gTx0 X ), and let κ(Z) be the
smooth positive function defined for |Z | ≤ ε by

(1-21) dvX (Z)= κ(Z)dvT X (Z),



EXPANSION OF THE BERGMAN KERNEL IN HIGHER DEGREES 383

with κ(0)= 1.

Definition 1.7. We denote by ∇U the ordinary differentiation operator in the direc-
tion U on Tx0 X . For s ∈ C∞(R2n, Ex0) and t = 1/

√
p, set

(1-22)

(St s)(Z)= s(Z/t),

∇t = t S−1
t κ1/2

∇
Cl0κ−1/2St ,

∇0 =∇ +
1
2 RL

x0
(Z , ·),

Lt = t2S−1
t κ1/2 D2

pκ
−1/2St ,

L0 =−
∑

i

(∇0,ei )
2
+ 4πN − 2πn.

Let ‖ · ‖L2 be the L2-norm induced by hEx0 and dvT X . We can now state the key
result in our approach to Theorems 0.4 and 0.7:

Theorem 1.8. There exist second-order formally self-adjoint (with respect to ‖·‖L2)
differential operators Or with polynomial coefficients such that for all m ∈ N,

(1-23) Lt = L0+

m∑
r=1

trOr + O(tm+1).

Furthermore, each Or can be decomposed as

(1-24) Or =O0
r +O+2

r +O−2
r ,

where Ok
r changes the degree of the form it acts on by k.

Proof. The first part of the theorem (i.e., (1-23)) is contained in [Ma and Marinescu
2008, Theorem 1.4]. We will briefly recall how they obtained this result.

Let 8E be the smooth self-adjoint section of End(Ex0) on BTx0 X (0, ε):

(1-25) 8E =−RE(w j , w j )+ 2(RE
+

1
2 Rdet)(w`, wm)w

m
∧ iw`

+ RE(w`, wm)iw` iwm + RE(w`, wm)w
`
∧wm .

We can see that we can decompose 8E as 80
E +8

+2
E +8

−2
E , where

(1-26)
80

E = RE(w j , w j )+ 2(RE
+

1
2 Rdet)(w`, wm)w

m
∧ iw` preserves the degree,

8+2
E = RE(w`, wm)w

`
∧wm rises the degree by 2,

8−2
E = RE(w`, wm)iw` iwm lowers the degree by 2.

Using Theorem 1.5, we find that

(1-27) D2
p =1

30,•
⊗L p
⊗E
+ p(−2πn+ 4πN )+8E .
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Let gi j (Z)=gT X (ei , e j )(Z) and (gi j (Z))i j be the inverse of the matrix (gi j (Z))i j .
Let (∇T X

ei
e j )(Z)= 0k

i j (Z)ek . As in [MM, Equation (4.1.34)], by (1-22) and (1-27),
we get

(1-28)
∇t,· = κ

1/2(t Z)
(
∇·+ t03

0,•

t Z +
1
t
0L

t Z + t0E
t Z

)
κ−1/2(t Z),

Lt =−gi j (t Z)(∇t,ei∇t,e j − t0k
i j (t Z)∇t,ek )− 2πn+ 4πN + t28E(t Z).

Moreover, κ = (det(gi j ))
1/2, thus we can prove equation (1-23) as in [MM, Theo-

rem 4.1.7] by taking the Taylor expansion of each term appearing in (1-28). Note
that in [MM], every data has to be extended to Tx0 X to make the analysis work,
but as we admit the result, we do not have to worry about it and simply restrict
ourselves to a neighborhood of x0.

Now, it is clear that in the formula for Lt in (1-28), the term

(1-29) L0
t := −gi j (t Z)(∇t,ei∇t,e j − t0k

i j (t Z)∇t,ek )− 2πn+ 4πN + t280
E(t Z)

preserves the degree, because 03
0,•

does (as explained in Remark 1.6). Thus, using
(1-26) and taking Taylor expansion of Lt in (1-28), we can write

(1-30) L0
t = L0+

∞∑
r=1

trO0
r , t28±2

E (t Z)=
∞∑

r=2

trO±2
r .

From (1-30), we get (1-24).
Finally, due to the presence of the conjugation by κ1/2 in (1-22), Lt is a formally

self-adjoint operator on C∞(R2n,Ex0) with respect to ‖ · ‖L2 . So are L0 and Or . �

Recall that R= (RE)0,2 ∈�0,2(X,End(E)).

Proposition 1.9. We have

(1-31) O1 = 0.

For O2, we have the formulas

(1-32) O+2
2 =Rx0, O−2

2 = (Rx0)
∗,

and

(1-33) O0
2 =

1
3〈R

T X
x0
(Z , ei )Z , e j 〉∇0,ei∇0,e j − RE

x0
(w j , w j )−

1
6r X

x0

+(〈13 RT X
x0
(Z , ek)ek +

π
3 RT X

x0
(z, z̄)Z , e j 〉− RE

x0
(Z , e j ))∇0,e j .

Proof. For F = L , E or 30,•(T ∗X), it is known that (see, for instance, [MM,
Lemma 1.2.4])

(1-34)
∑
|α|=r

(∂α0F )x0(e j )
Zα

α!
=

1
r + 1

∑
|α|=r−1

(∂αRF )x0(Z , e j )
Zα

α!
,
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and in particular,

(1-35) 0F
Z (e j )=

1
2 RF

x0
(Z , e j )+ O(|Z |2).

Furthermore, we know from the Gauss lemma (see, e.g., [MM, Equation (1.2.19)])
that

(1-36) gi j (Z)= δi j + O(|Z |2)

This implies that

(1-37) κ(Z)= | det(gi j (Z))|1/2 = 1+ O(|Z |2).

Moreover, the second line of [MM, Equation (4.1.103)] entails

(1-38)
√
−1

2π
RL

Z (Z , e j )= 〈J Z , e j 〉+ O(|Z |3),

and thus by (1-34) and (1-38),

(1-39) 0L
Z =

1
2 RL

x0
(Z , e j )+ O(|Z |3).

Using (1-28), (1-35), (1-37) and (1-39), we see that

(1-40) ∇t =∇0+ O(t2).

Finally, using again (1-28), (1-36) and (1-40), we get O1 = 0.
Concerning O±2

2 , from (1-30), we see that

(1-41)
O+2

2 =8
+2
E (0)= RE

x0
(w`, wm)w

`
∧wm

= (RE
x0
)0,2 =Rx0,

O−2
2 =8

−2
E (0)= RE

x0
(w`, wm)iw` iwm = ((R

E
x0
)0,2)∗ = (Rx0)

∗.

Finally, by (1-29) and [MM, Equation (4.1.34)], we see that our L0
t corresponds to

Lt in [MM]. Thus, by (1-30) and [MM, Equation (4.1.31)], our O0
2 is equal to their

O2 (this is because in their case, E is holomorphic, so RE is a (1, 1)-form and there
is no term changing the degree in (∂̄L p

⊗E
+ ∂̄L p

⊗E,∗)2; but the terms preserving the
degree are the same as ours). Hence (1-33) follows from [MM, Theorem 4.1.25]. �

1C. Bergman kernel of the limit operator L0. In this subsection, we study more
precisely the operator L0.

We introduce the complex coordinates z = (z1, . . . , zn) on Cn
' R2n . Thus, we

get Z = z+ z̄, w j =
√

2∂/∂z j and w j =
√

2∂/∂ z̄ j . We will identify z to
∑

j
z j∂/∂z j

and z̄ to
∑

j
z̄ j∂/∂ z̄ j when we consider z and z̄ as vector fields.

Set

(1-42)
b j =−2∇0,∂/∂z j , b+j = 2∇0,∂/∂ z̄ j ,

b = (b1, . . . , bn), L=−
∑

i

(∇0,ei )
2
− 2πn.
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By definition, ∇0 =∇ +
1
2 RL

x0
(Z , · ) so we get

(1-43) bi =−2
∂

∂zi
+π z̄i , b+i = 2

∂

∂ z̄i
+π zi ,

and for any polynomial g(z, z̄) in z and z̄,

(1-44)
[bi , b+j ] = −4πδi j , [bi , b j ] = [b+i , b+j ] = 0,

[g(z, z̄), b j ] = 2
∂

∂z j
g(z, z̄), [g(z, z̄), b+j ] = −2

∂

∂ z̄ j
g(z, z̄).

Finally, a simple calculation shows

(1-45) L=
∑

i

bi b+i and L0 = L+ 4πN .

Recall that we denoted by ‖ · ‖L2 the L2-norm associated with hEx0 and dvT X .
For this form we have b+i = (bi )

∗, therefore L and L0 are self-adjoint.
The next theorem is proved in [MM, Theorem 4.1.20]:

Theorem 1.10. The spectrum of the restriction of L to L2(R2n) is Sp(L L2(R2n))=

4πN and an orthogonal basis of the eigenspace for the eigenvalue 4πk is

(1-46) bα
(

zβ exp
(
−
π

2
|z|2

))
with α, β ∈ Nn and

∑
i

αi = k.

In particular, an orthonormal basis of ker(L L2(R2n)) is

(1-47)
(
π |β|

β!

)1/2

zβ exp
(
−
π

2
|z|2

)
,

and thus if P(Z , Z ′) is the smooth kernel of P, the orthogonal projection from
(L2(R2n), ‖ · ‖0) onto ker(L) (where ‖ · ‖0 is the L2-norm associated to gT X

x0
) with

respect to dvT X (Z ′), we have

(1-48) P(Z , Z ′)= exp
(
−
π

2
(|z|2+ |z′|2− 2z · z̄′)

)
.

Now let P N be the orthogonal projection from (L2(R2n, Ex0), ‖ · ‖L2) onto N :=
ker(L0), and P N (Z , Z ′) be its smooth kernel with respect to dvT X (Z ′). From
(1-45), we have

(1-49) P N (Z , Z ′)= P(Z , Z ′)I0.
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2. The first coefficient in the asymptotic expansion

In this section we prove Theorem 0.4. We will proceed as follows. In Section 2A,
following [MM, Section 4.1.7], we will give a formula for br involving the Ok and
L0. In Section 2B, we will see how this formula entails Theorem 0.4.

2A. A formula for br . By Theorem 1.10 and (1-45), we know that for every λ ∈ δ
the unit circle in C, (λ−L0)

−1 exists.
Let f (λ, t) be a formal power series on t with values in End(L2(R2n, Ex0)):

(2-1) f (λ, t)=
+∞∑
r=0

tr fr (λ) with fr (λ) ∈ End(L2(R2n, Ex0)).

Consider the equation of formal power series on t for λ ∈ δ,

(2-2)
(
λ−L0−

+∞∑
r=1

trOr

)
f (λ, t)= IdL2(R2n,Ex0 )

.

We then find that

(2-3)

f0(λ)= (λ−L0)
−1,

fr (λ)= (λ−L0)
−1

r∑
j=1

O j fr− j (λ).

Thus by (1-31) and by induction,

(2-4) fr (λ)=

( ∑
r1+···+rk=r

r j≥2

(λ−L0)
−1Or1 · · · (λ−L0)

−1Ork

)
(λ−L0)

−1.

Definition 2.1. Following [MM, Equation (4.1.91)], we define Fr by

(2-5) Fr =
1

2π
√
−1

∫
δ

fr (λ) dλ,

and we denote by Fr (Z , Z ′) its smooth kernel with respect to dvT X (Z ′).

Theorem 2.2. The following equation holds:

(2-6) br (x0)= F2r (0, 0).

Proof. This formula follows from [MM, Theorem 8.1.4] as [MM, Equation (4.1.97)]
follows from [MM, Theorem 4.1.24], remembering that in our situation the Bergman
kernel Pp is not supported in degree 0. �
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2B. Proof of Theorem 0.4. Let Tr(λ)= (λ−L0)
−1Or1 · · · (λ−L0)

−1Ork (λ−L0)
−1

be the term in the sum (2-4) corresponding to r = (r1, . . . , rk). Let N⊥ be the
orthogonal of N in L2(R2n, Ex0), and P N⊥ the associated orthogonal projector. In
Tr(λ), each term (λ−L0)

−1 can be decomposed as

(2-7) (λ−L0)
−1
= (λ−L0)

−1 P N⊥
+

1
λ

P N .

Set

(2-8) L N⊥(λ)= (λ−L0)
−1 P N⊥, L N (λ)=

1
λ

P N .

By (1-45), L0 preserves the degree, and thus so do (λ−L0)
−1, L N⊥ and L N .

For η = (η1, . . . , ηk+1) ∈ {N , N⊥}k+1, let

(2-9) T η
r (λ)= Lη1(λ)Or1 · · · L

ηk (λ)Ork Lηk+1(λ).

We can decompose

(2-10) Tr(λ)=
∑

η=(η1,...,ηk+1)

T η
r (λ),

and by (2-4) and (2-5),

(2-11) F2r =
1

2π
√
−1

∑
r1+···+rk=2r
(η1,...,ηk+1)

∫
δ

T η
r (λ) dλ.

Note that L N⊥(λ) is an holomorphic function of λ, so

(2-12)
∫
δ

L N⊥(λ)Or1 · · · L
N⊥(λ)Ork L N⊥(λ) dλ= 0.

Thus, in (2-11), every nonzero term that appears contains at least one L N (λ),

(2-13)
∫
δ

T η
r (λ) dλ 6= 0 ⇒ there exists an i0 such that ηi0 = N .

Now fix k and j in N. Let s∈ L2(R2n, Ex0) be a form of degree 2 j , r ∈ (N\{0, 1})k

such that
∑

i ri = 2r and η = (η1, . . . , ηk+1) ∈ {N , N⊥}k+1 such that there is an i0

satisfying ηi0 = N . We want to find a necessary condition for I2 j T
η
r (λ)I2 j s to be

nonzero.
Suppose then that I2 j T

η
r (λ)I2 j s 6= 0. Since Lηi0 =

1
λ

P N , and N is concentrated
in degree 0, we must have

deg(Ori0
Lηi0+1(λ)Ori0+1 · · · L

ηk (λ)Ork Lηk+1(λ)I2 j s)= 0;
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but each Lηi (λ) preserves the degree, and by Theorem 1.8 each Ori lowers the
degree at most by 2, so

0= deg(Ori0
Lηi0+1(λ)Ori0+1 · · · L

ηk (λ)Ork Lηk+1(λ)I2 j s)≥ 2 j − 2(k− i0+ 1),
and thus

(2-14) 2 j ≤ 2(k− i0+ 1).

Similarly, Lη1(λ)Or1 · · · L
ηk (λ)Ork Lηk+1(λ)I2 j s must have a nonzero component

in degree 2 j and by Theorem 1.8 each Ori rises the degree at most by 2, so 2 j must
be less than or equal to the number of Ori appearing before Ori0

, that is,

(2-15) 2 j ≤ 2(i0− 1).

With (2-14) and (2-15), we find

(2-16) 4 j ≤ 2k.

Finally, since for every i , ri ≥ 2 and
∑k

i=1 ri = 2r , we have 2k ≤ 2r , and thus

(2-17) 4 j ≤ 2k ≤ 2r.

Consequently, if r < 2 j we have I2 j T
η
r (λ)I2 j = 0, and by (2-11), we find

I2 j F2r I2 j = 0. Using Theorem 2.2, we find

I2 j br I2 j = 0,

which, combined with Theorem 0.3, entails the first part of Theorem 0.4.
For the second part of this theorem, let us focus on the case r = 2 j . We also

suppose that j ≥ 1, because in the case j = 0, [MM, Equation (8.1.5)] implies that
b0(x0)= F0(0, 0)= I0P(0, 0)= I0, so Theorem 0.4 is true for j = 0.

In I2 j F4 j I2 j , there is only one term satisfying equations (2-14), (2-15) and (2-17).
First we see that (2-17) implies that r = k = 2 j and for all i , ri = 2, while (2-14)
and (2-15) imply that the i0 such that ηi0 = N is unique and equal to j . Moreover,
only O+2

2 and O−2
2 appear in I2 j F4 j I2 j , not O0

2, because the degree must decrease
by 2 j and then increase by 2 j with k = 2 j Ori available. To summarize,

(2-18) I2 j F4 j I2 j =
1

2π
√
−1

∫
δ

(
I2 j ((λ−L0)

−1 P N⊥O+2
2 ) j

×
1
λ

P N (O−2
2 (λ−L0)

−1 P N⊥) j I2 j

)
dλ

= I2 j (L0
−1 P N⊥O+2

2 ) j P N (O−2
2 L0

−1 P N⊥) j I2 j

= I2 j (L0
−1O+2

2 ) j P N (O−2
2 L0

−1) j I2 j .

Because by (1-45), L2(R2n, (30,>0(T ∗X)⊗ E)x0)⊂ N⊥, we removed the P N⊥ in
the last line.
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Let A = I2 j (L0
−1O+2

2 ) j P N . Since (O+2
2 )∗ =O−2

2 (see Proposition 1.9) and L0

is self-adjoint, the adjoint of A is A∗ = P N (O−2
2 L0

−1) j I2 j , and thus

(2-19) I2 j F4 j I2 j = AA∗.

Recall that P N
=PI0 (see (1-49)). Let s ∈ L2(R2n, Ex0); since L0 =L+ 4πN

and LPs = 0, (Ps)Rx0 is an eigenfunction of L0 for the eigenvalue 2×4π . Thus,

(2-20) L0
−1O+2

2 P N s = L0
−1O+2

2 Ps = L0
−1((Ps)Rx0)=

1
4π

1
2

Rx0Ps.

Now, an easy induction shows that

(2-21) A =
1

(4π) j

1
2× 4× · · ·× 2 j

I2 j R
j
x0

P=
1

(4π) j

1
2 j j !

I2 j R
j
x0

P.

Let A(Z , Z ′) and A∗(Z , Z ′) be the smooth kernels of A and A∗ with respect to
dvT X (Z ′). By (2-19), I2 j F4 j I2 j (0, 0)=

∫
R2n A(0, Z)A∗(Z , 0) d Z . Thanks to

(2-22)
∫

R2n
P(0, Z)P(Z , 0) d Z = (P ◦P)(0, 0)= P(0, 0)= 1

and (2-21), we find (0-12).

3. The second coefficient in the asymptotic expansion

In this section, we prove Theorem 0.7. Using (2-6), we know that

(3-1) I2 j b2 j+1 I2 j (0, 0)= I2 j F4 j+2 I2 j (0, 0).

In Section 3A, we decompose this into three terms, and then in Sections 3B and 3C
we handle them separately.

Fix j ∈ J0, nK. For every smoothing operator F acting on L2(R2n, Ex0) in this
section, we denote by F(Z , Z ′) its smooth kernel with respect to dvT X (Z ′).

3A. Decomposition of the problem. Applying inequality (2-17) with r = 2 j + 1,
we see that in I2 j F4 j+2 I2 j , the nonzero terms

∫
δ

T η
r (λ) dλ in the decomposition

(2-11) satisfy k = 2 j or k = 2 j+1. Since
∑

i ri = 4 j+2 and ri ≥ 2, we see that in
I2 j F4 j+2 I2 j there are three types of terms T η

r (λ) with nonzero integral, in which

• for k = 2 j ,
– there are 2 j − 2 Ori equal to O2 and 2 equal to O3 and we denote by I the

sum of these terms,
– there are 2 j − 1 Ori equal to O2 and 1 equal to O4 and we denote by II

the sum of these terms,

• for k = 2 j + 1,
– all the Ori are equal to O2 and we denote by III the sum of these terms.
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We thus have a decomposition

(3-2) I2 j F4 j+2 I2 j = I+ II+ III.

Remark 3.1. Note that for I and II to be nonzero, we must have j ≥ 1. Moreover,
in the first two cases, as k = 2 j , by the same reasoning as in Section 2B, (2-14)
and (2-15) imply that the i0 such that ηi0 = N is unique and equal to j , and that
only O±2

2 , O±2
3 and O±2

4 appear in I and II, not some O0
ri

.

3B. The term involving only O2.

Lemma 3.2. In any term T η
r (λ) appearing in the sum III (with nonvanishing inte-

gral), the i0 such that ηi0 = N is unique and equal to j or j + 1. If we denote by
IIIa and IIIb the sums corresponding to these two cases, we have

(3-3)

IIIa =

j∑
k=0

I2 j (L0
−1O+2

2 ) j−k(L0
−1O0

2)(L0
−1O+2

2 )k P N (O−2
2 L0

−1) j I2 j ,

IIIb = (IIIa)
∗,

III = IIIa + IIIb.

Remark 3.3. For the same reason as for (2-18), we have removed the P N⊥ in (3-3)
without getting any problem concerning the existence of L0

−1.

Proof. Fix a term T η
r (λ) appearing in the sum III with nonvanishing integral. Using

again the same reasoning as in Section 2B, we see that there exists at most two
indices i0 such that ηi0 = N , and that they are in { j, j+1}. Indeed, with only 2 j+1
Ori at our disposal, we need j of them before the first P N , and j after the last one.

Now, the only possible term with η j = η j+1 = N is

(3-4) (L0
−1O+2

2 ) j P NO0
2 P N (O−2

2 L0
−1) j .

To prove that this term is vanishing, using (1-33), [Ma and Marinescu 2012, Equa-
tions (3.13), (3.16b) and 4.1a], we see that PO0

2P= 0, and so

(3-5) P NO0
2 P N
= PO0

2PI0 = 0.

We have proved the first part of the lemma.
The second part follows from the reasoning made at the beginning of this proof,

and the facts that i0 is unique, O0
2 is self-adjoint and (L0

−1O+2
2 )∗ =O−2

2 L0
−1. �

Let us compute the term that appears in (3-3),

(3-6) IIIa,k := I2 j (L0
−1O+2

2 ) j−k(L0
−1O0

2)(L0
−1O+2

2 )k P N (O−2
2 L0

−1) j I2 j .
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With (2-21), we know that

(3-7) P N (O−2
2 L0

−1) j I2 j =
1

(4π) j

1
2 j j !

P(R j
x0
)∗ I2 j ,

and

(3-8) I2 j (L0
−1O+2

2 ) j−k(L0
−1O0

2)(L0
−1O+2

2 )k P N

=
1

(4π)k
1

2kk!
I2 j (L0

−1O+2
2 ) j−kL0

−1(O0
2Rk

x0
P)I0.

Let

(3-9) Rkm̄`q̄ =

〈
RT X

(
∂

∂zk
,
∂

∂ z̄m

)
∂

∂z`
,
∂

∂ z̄q

〉
x0

and RE
k ¯̀ = RE

x0

(
∂

∂zk
,
∂

∂ z̄`

)
.

By [ibid., Lemma 3.1], we know that

(3-10) Rkm̄`q̄ = R`m̄kq̄ = Rkq̄`m̄ = R`q̄km̄ and r X
x0
= 8Rmm̄qq̄ .

Once again, our O0
2 correspond to the O2 of [Ma and Marinescu 2012] (see

(1-33) and [ibid., Equations (3.13), (3.16b)]), so we can use [ibid., Equation (4.6)]
to get

(3-11) O0
2Rk

x0
P= ( 1

6 bmbq Rkm̄`q̄ zkz`+ 4
3 bq R`k̄kq̄ z`

−
1
3πbq Rkm̄`q̄ zkz` z̄′m + bq RE

`q̄ z`)Rk
x0

P,

Set

(3-12)
a = 1

6 bmbq Rkm̄`q̄ zkz`, b = 4
3 bq R`k̄kq̄ z`,

c =− 1
3πbq Rkm̄`q̄ zkz` z̄′m, d = bq RE

`q̄ z`.

Thanks to (1-45), (1-46) and (3-11), we find

(3-13) L0
−1O0

2Rk
x0

PI0 =

(
a

4π(2+ 2k)
+

b+ c+ d
4π(1+ 2k)

)
Rk

x0
PI0,

and by induction, (3-8) becomes

(3-14) I2 j (L0
−1O+2

2 ) j−k(L0
−1O0

2)(L0
−1O+2

2 )k P N

=
1

(4π) j+1

1
2kk!

I2 j R
j−k
x0

(
a

(2+2k) · · · (2+2 j)
+

b+ c+d
(1+2k) · · · (1+2 j)

)
Rk

x0
PI0.

Lemma 3.4. We have

(3-15)
(aRk

x0
P)(0, Z)= 1

6r X
x0

Rk
x0

P(0, Z), (bRk
x0

P)(0, Z)=− 1
3r X

x0
Rk

x0
P(0, Z),

(cRk
x0

P)(0, Z)= 0, (dRk
x0

P)(0, Z)=−2RE
qq̄Rk

x0
P(0, Z).
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Proof. This lemma is a consequence of the relations (1-44) and (3-10). For
demonstration, we will compute (bRk

x0
P)(0, Z); the other terms are similar.

(bRk
x0

P)(0, Z)= ( 4
3 bq R`k̄kq̄ z`Rk

x0
P)(0, Z)

=
4
3 R`k̄kq̄Rk

x0
((z`bq − 2δ`q)P)(0, Z)

=−
8
3 R`k̄k ¯̀R

k
x0

P(0, Z)=− 1
3r X

x0
Rk

x0
P(0, Z). �

Using (2-22), (3-6), (3-7) and (3-13), we find

(3-16) IIIa,k(0, 0)= I2 j C j ( j)R j−k
x0

[
1
6

(
C j+1( j + 1)−

C j (k)
2π(2k+ 1)

)
r X

x0

−
C j (k)

2π(2k+ 1)
RE

qq̄

]
Rk

x0
(R j

x0
)∗ I2 j .

Notice that 2RE
qq̄ = RE

x0

(√
2 ∂
∂zq
,
√

2 ∂
∂ z̄q

)
= RE

x0
(wq , wq)=

√
−1RE

3,x0
by definition.

Consequently,

(3-17) IIIa(0, 0)= I2 j C j ( j)
j∑

k=0

R j−k
x0

[
1
6

(
C j+1( j + 1)−

C j (k)
2π(2k+ 1)

)
r X

x0

−
C j (k)

4π(2k+ 1)

√
−1RE

3,x0

]
Rk

x0
(R j

x0
)∗ I2 j .

3C. The two other terms. In this subsection, we suppose that j≥1 (see Remark 3.1).
Moreover, the existence of any L0

−1 in this section follows from the reasoning
done in Remark 3.3, and this operator will be used without further precision.

Due to (1-30), we have

O+2
3 =

d
dt
8+2

E0
(t Z)

∣∣∣
t=0
= zi

∂R·

∂zi
(0)+ z̄i

∂R·

∂ z̄i
(0),(3-18)

O+2
4 =

zi z j

2
∂2R·

∂zi∂z j
(0)+ zi z̄ j

∂2R·

∂zi∂ z̄ j
(0)+

z̄i z̄ j

2
∂2R·

∂ z̄i∂ z̄ j
(0).(3-19)

The sum I can be decomposed into three subsums: Ia , Ib and Ic, in which the
two O3 appear respectively both at the left, on either side or both at the right of
P N (see Remark 3.1). As usual, we have Ic = (Ia)

∗.
In the same way, we can decompose II as IIa + IIb: in IIa the O4 appears at the

left of P N , and in IIb at the right. Once again, IIb = (IIa)
∗.

Computation of Ib(0, 0). To compute Ib, we first compute the kernel of

(3-20) Ak := I2 j (L0
−1O+2

2 ) j−k−1(L0
−1O+2

3 )(L0
−1O+2

2 )kPI0

at (0, Z).
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By (2-21) and (3-18),

(3-21) Ak = I2 j (L0
−1O+2

2 ) j−k−1(L0
−1O+2

3 )
1

(4π)k
1

2kk!
Rk

x0
PI0

=
1

(4π)k
1

2kk!
I2 j (L0

−1O+2
2 ) j−k−1L0

−1
[

zi
∂R·

∂zi
(0)+z̄i

∂R·

∂ z̄i
(0)
]

Rk
x0

PI0.

By Theorem 1.10, if s ∈ N , then zi s ∈ N , so by the same calculation as in (2-21),

(3-22)
1

(4π)k
1

2kk!

(
I2 j (L0

−1O+2
2 ) j−k−1L0

−1
[

zi
∂R·

∂zi
(0)
]

Rk
x0

PI0

)
(0, Z)

=
1

(4π) j

1
2 j j !

(
I2 j

[
R j−k−1

x0

∂R·

∂zi
(0)Rk

x0

]
zi PI0

)
(0, Z)= 0.

Now by (1-43) and the formula (1-48), we have

(3-23) (b+i P)(Z , Z ′)= 0 and (bi P)(Z , Z ′)= 2π(z̄i − z̄′i )P(Z , Z ′).

Thus,

(3-24)
1

(4π)k
1

2kk!

(
I2 j (L0

−1O+2
2 ) j−k−1L0

−1
[

z̄i
∂R·

∂ z̄i
(0)
]

Rk
x0

PI0

)
(Z , Z ′)

=
1

(4π)k
1

2kk!

(
I2 j (L0

−1O+2
2 ) j−k−1L0

−1
[
∂R·

∂ z̄i
(0)Rk

x0

](
bi

2π
+z̄′i

)
PI0

)
(Z , Z ′)

=
1

(4π)k
1

2kk!

(
I2 j (L0

−1O+2
2 ) j−k−1

[
∂R·

∂ z̄i
(0)Rk

x0

]
×

(
1

4π(2k+ 2+ 1)
bi

2π
+

1
4π(2k+ 2)

z̄′i

)
PI0

)
(Z , Z ′)

=
1

(4π) j

1
2 j j !

(
I2 j

[
R j−k−1

x0

∂R·

∂ z̄i
(0)Rk

x0

]
z̄′i PI0

)
(Z , Z ′)

+
1

(4π) j

1

2kk!
∏ j

k+1(2`+ 1)

(
I2 j

[
R j−k−1

x0

∂R·

∂ z̄i
(0)Rk

x0

]
bi

2π
PI0

)
(Z , Z ′).

For the last two lines, we used that if s ∈N , then L(bi s)=4πbi s (see Theorem 1.10).
Thus, by (0-15) and (3-21)–(3-24),

(3-25) Ak(0,Z)=
1

(4π)k
1

2kk!

(
I2 j (L0

−1O+2
2 ) j−k−1L0

−1
[̄
zi
∂R·

∂ z̄i
(0)
]

Rk
x0

PI0

)
(0,Z)

= (C j ( j)−C j (k))I2 j

[
R j−k−1

x0

∂R·

∂ z̄i
(0)Rk

x0

]
z̄i P(0, Z)I0.
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We know that (z̄i P)
∗
= zi P and

∫
Cn zm z̄qe−π |z|

2
d Z = 1

π
δmq , so

(3-26) (Ak1 Ak2
∗)(0, 0)=

1
π

I2 j

[
(C j ( j)−C j (k1))R

j−k1−1
x0

∂R·

∂ z̄i
(0)Rk1

x0

]
×

[
(C j ( j)−C j (k2))R

j−k2−1
x0

∂R·

∂ z̄i
(0)Rk2

x0

]∗
I2 j .

Finally,

(3-27) Ib(0, 0)=
1
π

I2 j

[ j−1∑
k=0

(
C j ( j)−C j (k)

)
R j−k−1

x0

∂R·

∂ z̄i
(0)Rk

x0

]
×

[ j−1∑
k=0

(
C j ( j)−C j (k)

)
R j−k−1

x0

∂R·

∂ z̄i
(0)Rk

x0

]∗
I2 j .

Computation of Ia(0, 0) and Ic(0, 0). First recall that Ic(0, 0)= (Ia(0, 0))∗, so we
just need to compute Ia(0, 0). By the definition of Ia(0, 0), for it to be nonzero, it
is necessary to have j ≥ 2, which will be assumed in this paragraph. Let

(3-28) Ak,` :=

I2 j (L0
−1O+2

2 ) j−k−`−2(L0
−1O+2

3 )(L0
−1O+2

2 )k(L0
−1O+2

3 )(L0
−1O+2

2 )`PI0,

the sum Ia(0, 0) is then given by

(3-29) Ia(0, 0)=
∫

R2n

(∑
k,`

Ak,`(0, Z)
)(

1
(4π) j

1
2 j j !

I2 j R
j
x0

PI0

)∗
(Z , 0) dvT X (Z).

In the following, we will set

(3-30) b̃i :=
bi

2π
.

Using the same method as in (1-44) and (3-22)–(3-24), we find that there exist
constants C1

k,`, C2
k,` given by

(3-31)

C1
k,` =

1
(4π)k+`+1

1
2k+`+1(k+ `+ 1)!

,

C2
k,` =

1
(4π)k+`+1

1

2``!
∏k+`+1
`+1 (2s+ 1)

,

such that
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(3-32) (L0
−1O+2

3 )(L0
−1O+2

2 )k(L0
−1O+2

3 )(L0
−1O+2

2 )`PI0

=L0
−1
{
∂R·

∂zi
(0)Rk

x0

∂R·

∂zi ′
(0)R`

x0
C1

k,`zi zi ′ +
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂zi ′
(0)R`

x0
C1

k,`zi ′(b̃i + z̄′i )

+
∂R·

∂zi
(0)Rk

x0

∂R·

∂ z̄i ′
(0)R`

x0
zi (C2

k,`b̃i ′ +C1
k,` z̄
′

i ′)

+
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂ z̄i ′
(0)R`

x0
(b̃i + z̄′i )(C

2
k,`b̃i ′ +C1

k,` z̄
′

i ′)

}
PI0

= L0
−1
{
∂R·

∂zi
(0)Rk

x0

∂R·

∂zi ′
(0)R`

x0
C1

k,`zi zi ′

+
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂zi ′
(0)R`

x0
C1

k,`

(
b̃i zi ′ +

δi i ′

π
+ zi ′ z̄′i

)
+
∂R·

∂zi
(0)Rk

x0

∂R·

∂ z̄i ′
(0)R`

x0

(
C2

k,`

(
b̃i ′zi +

δi i ′

π

)
+C1

k,`zi z̄′i ′
)

+
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂ z̄i ′
(0)R`

x0
(C2

k,`(b̃i b̃i ′+ z̄′i b̃i ′)+C1
k,`(b̃i z̄′i ′+ z̄′i z̄

′

i ′))

}
PI0,

Using Theorem 1.10, (1-44) and (3-23), we see that there exist constants C i
j,k,`,

i = 3, . . . , 10, such that

(3-33)

C3
j,k,` = C1

k,`
1

(4π) j−(k+`+1)

1∏ j
k+`+2(2s)

,

C4
j,k,` = C1

k,`
1

(4π) j−(k+`+1)

1∏ j
k+`+2(2s+ 1)

,

C5
j,k,` = C2

k,`
1

(4π) j−(k+`+1)

1∏ j
k+`+2(2s+ 1)

,

C6
j,k,` = C2

k,`
1

(4π) j−(k+`+1)

1∏ j
k+`+2(2s)

,

and

(3-34) Ak,`(0, Z)

= I2 j

(
R j−k−`−2

x0

{
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂zi ′
(0)
(

C3
j,k,`

δi i ′

π
+C4

j,k,`b̃i zi ′

)
+
∂R·

∂zi
(0)Rk

x0

∂R·

∂ z̄i ′
(0)
(

C5
j,k,`b̃i ′zi +

δi i ′

π
C6

j,k,`

)
+
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂ z̄i ′
(0)

× (C7
j,k,`b̃i b̃i ′ +C8

j,k,` z̄i b̃i ′ +C9
j,k,`b̃i z̄i ′ +C10

j,k,` z̄i z̄i ′)

}
R`

x0
PI0

)
(0, Z)
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= I2 j R
j−k−`−2
x0

{
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂zi
(0)

C3
j,k,`−C4

j,k,`

π

+
∂R·

∂zi
(0)Rk

x0

∂R·

∂ z̄i
(0)

C6
j,k,`−C5

j,k,`

π

+
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂ z̄i ′
(0)(4C7

j,k,`− 2C8
j,k,`− 2C9

j,k,`+C10
j,k,`)z̄i z̄i ′

}
R`

x0
P(0, Z)I0.

Now with
∫

z̄i z̄i ′P(0, Z)P(Z , 0) d Z = 0, we can rewrite (3-29),

(3-35) Ia(0, 0)=
C j ( j)
π

I2 j

∑
k,`

R j−k−`−2
x0

{
(C3

j,k,`−C4
j,k,`)

∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂zi
(0)

+ (C6
j,k,`−C5

j,k,`)
∂R·

∂zi
(0)Rk

x0

∂R·

∂ z̄i
(0)
}

R`
x0
(R j

x0
)∗ I2 j .

By (0-15), (3-31) and (3-33),

(3-36)

C3
j,k,` = C j ( j), C4

j,k,` = C j (k+ `+ 1),

C5
j,k,` = C j (`), C6

j,k,` = C j (`)

j∏
s=k+`+2

(
1+

1
2s

)
.

We can now write Ia(0, 0) in (3-35) more precisely as

(3-37)
C j ( j)
π

I2 j

j−2∑
q=0

q∑
m=0

{
(C j ( j)−C j (q+1))R j−(q+2)

x0

∂R·

∂ z̄i
(0)Rq−m

x0

∂R·

∂zi
(0)Rm

x0

+C j (m)
[ j∏

q+2

(
1+

1
2s

)
−1
]

R j−(q+2)
x0

∂R·

∂zi
(0)Rq−m

x0

∂R·

∂ z̄i
(0)Rm

x0

}
(R j

x0
)∗ I2 j .

Computation of II(0, 0). Recall that II(0, 0)= IIa(0, 0)+ (IIa(0, 0))∗. The compu-
tation of IIa(0, 0) is very similar to that of Ia(0, 0), only simpler. We will follow
the same method.

Let

Bk := I2 j (L0
−1O+2

2 ) j−k−1(L0
−1O+2

4 )(L0
−1O+2

2 )kPI0,

the sum IIa(0, 0) is then given by

(3-38) IIa(0, 0)=
∫

R2n

(∑
k

Bk(0, Z)
)(

1
(4π) j

1
2 j j !

I2 j R
j
x0

PI0

)∗
(Z , 0) dvT X (Z).
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Using (3-19), we can repeat what we have done for (3-32) and (3-34). We find
that there is a constant C (which we do not need to compute) such that

(3-39) Bk(0, Z)= I2 j

{
R j−(k+1)

x0

∂2R·

∂zi∂ z̄i
(0)Rk

x0

C j ( j)−C j (k)
π

+R j−(k+1)
x0

∂2R·

∂ z̄i∂ z̄i ′
(0)Rk

x0
C

z̄i z̄i ′

2

}
P(0, Z)I0.

Thus, we get

(3-40) IIa(0, 0)=
C j ( j)
π

I2 j

j−1∑
k=0

(C j ( j)−C j (k))R j−(k+1)
x0

∂2R·

∂zi∂ z̄i
(0)Rk

x0
(R j

x0
)∗ I2 j .

Conclusion. In order to conclude the proof of Theorem 0.7, we just need to put
the pieces together. But before that, to write the formulas in a more intrinsic way,
note that we trivialized 30,•(T ∗X)⊗ E with ∇3

0,•
⊗E and wi =

√
2 ∂
∂ z̄i

, so [Ma and
Marinescu 2012, Equations (5.44), (5.45)] imply

(3-41)

∂R·

∂ z̄i
(0)=

1
√

2
(∇3

0,•
⊗E

wi
R·)(x0),

∂R·

∂zi
(0)=

1
√

2
(∇3

0,•
⊗E

wi
R·)(x0),

∂2R·

∂zi∂ z̄i
(0)=−

1
4
(13

0,•
⊗E R·)(x0).

With these remarks and equations (3-3), (3-17), (3-27), (3-37), (3-40) used in
decomposition (3-2), we get Theorem 0.7.

4. The third coefficient in the asymptotic expansion when the first two vanish

In this section, we prove Theorem 0.8. Using (2-6), we know that

(4-1) I2 j b2 j+2 I2 j (0, 0)= I2 j F4 j+4 I2 j (0, 0).

Here again, we will first decompose this into several terms in Section 4A, and
then in Sections 4B, 4C and 4D we handle them separately.

Fix j ∈ J1, nK and suppose that

(4-2) I2 j b2 j I2 j (0, 0)= I2 j b2 j+1 I2 j (0, 0)= 0.

By Theorems 0.4 and 0.7, this is equivalent to

(4-3)
{

R
j
x = 0,

T0( j)= 0.

For every smoothing operator F acting on L2(R2n, Ex0) that appears in this
section, we will denote by F(Z , Z ′) its smooth kernel with respect to dvT X (Z ′).
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Moreover, recall that for every operator A we have

(4-4) Pos[A] = AA∗ and Sym[A] = A+ A∗.

4A. Decomposition of the computation. With the same reasoning as in Section 3A,
we see that the nonzero terms

∫
δ

T η
r (λ) dλ satisfy k = 2 j, 2 j + 1 or 2 j + 2 in the

decomposition (2-11) of I2 j F4 j+4 I2 j . Moreover, we can find the possible terms
by adding one term to or modifying the subscript of the terms we mentioned in
Section 3A. The list of possible terms is as follows:

(I) Terms satisfying k = 2 j + 2.
Here there are up to three indices i ∈ { j, j + 1, j + 2} such that ηi = N .

Moreover, the only O` appearing are some O2. The possibilities are now

(I-a) 2 j + 2 times O±2
2 ,

(I-a) 2 j times O±2
2 and 2 times O0

2.

(II) Terms satisfying k = 2 j + 1.
Here, there are one or two indices i ∈ { j, j+1} such that ηi = N , and there

is exactly one O0
` that appears in these terms. We regroup them in relation to

the Ori that they contain:

(II-b) 2 j times O±2
2 and 1 time O0

4,
(II-b) 2 j − 1 times O±2

2 , 1 time O0
2 and 1 time O±2

4 ,
(II-b) 2 j − 1 times O±2

2 , 1 time O±2
3 and 1 time O0

3,
(II-b) 2 j − 2 times O±2

2 , 1 time O0
2 and 2 times O±2

3 .

(III) Terms satisfying k = 2 j .
Here, the i0 such that ηi0 = N is unique and equal to j , and no O0

` appears
in these terms. We regroup them in relation to the Ori that they contain:

(III-c) 2 j − 4 times O±2
2 and 4 times O±2

3 ,
(III-c) 2 j − 3 times O±2

2 , 2 times O±2
3 and 1 time O±2

4 ,
(III-c) 2 j − 2 times O±2

2 and 2 times O±2
4 ,

(III-c) 2 j − 2 times O±2
2 , 1 time O±2

3 and 1 time O±2
5 ,

(III-c) 2 j − 1 times O±2
2 and 1 time O±2

6 .

This list seems quite long, but fortunately most of the terms will ultimately
vanish due to the fact that they are computed by means of some terms involved in
I2 j b2 j I2 j and I2 j b2 j+1 I2 j .

In the sequel, the contribution to the third coefficient of the terms of type I-a),
I-b), etc., will be denoted by TI-a), TI-b), etc.

4B. Terms of type I. We begin with an observation, whose proof is an easy exten-
sion of the computation (2-21), using the fact that R

j
x = 0.
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Lemma 4.1. For any j-tuple (a1, . . . , a j ) of positive integers, we have

(4-5) X(a1,...,a j ) := I2 j

( j∏
i=1

L0
−aiO+2

2

)
P N
= 0.

Terms of type I-a). In these terms, only some O±2
2 appear. So there is either a

unique i0 such that ηi0 = N which is then equal to j or j + 2, or exactly two such
i0 which are then j and j + 2.

Each term in the second case is a sum of terms of the form

(4-6) −X(a1,...,a j )O
−2
2 L0

−bO+2
2 X∗

(a′1,...,a
′

j )

with ai , a′k, b ∈ {1, 2} (exactly one is equal to 2). By Lemma 4.1, these terms vanish.
Now, each term in the first case is equal or adjoint to a term of the form

(4-7) I2 j

( j+2∏
i=1

L0
−1Oεi

2

)
PI0(I2 j (L0

−1O+2
2 ) j PI0)

∗,

where εi ∈ {−2,+2} (exactly one of the εi is equal to −2). By Lemma 4.1, these
terms vanish.

Finally, every term of type I-a) vanishes and TI-a) = 0.

Terms of type I-b). Using Lemma 4.1 as above, we see that the only nonzero terms
of this type satisfy the condition that before the first index i such that ηi = N and
after the last, there must be a O0

2 appearing. As a consequence, the cases where
two or three ηi are equal to N lead to vanishing terms. We now deal with the terms
where η j+1 = N and for i 6= j + 1, ηi = N⊥. Such terms are of the form

(4-8) (I2 j (L0
−1O+2

2 ) j−kL0
−1O0

2(L0
−1O+2

2 )kP)

× (I2 j (L0
−1O+2

2 ) j−k′L0
−1O0

2(L0
−1O+2

2 )k
′

P)∗,

for 0≤ k, k ′≤ j . By the computations in Section 3B, an in particular (3-16), we find

(4-9) I2 j ((L0
−1O+2

2 ) j−kL0
−1O0

2(L0
−1O+2

2 )k)PI0

= I2 j R
j−k
x

[
1
6

(
C j+1( j+1)−

C j (k)
2π(2k+ 1)

)
r X

x −
C j (k)

4π(2k+ 1)

√
−1RE

3,x

]
Rk

x PI0.

Observe that r X commutes with R and R j
= 0. So the contribution of the terms

of type I-b) is finally TI-b) = Pos[T ′3 ( j)].

4C. Terms of type II.

Terms of type II-a). In these terms, there are either only O−2
2 appearing at the right

of the first P N or only O+2
2 appearing at the left of the last P N . Either way, all

these terms vanish by Lemma 4.1. Hence TII-a) = 0.
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Terms of type II-b). For these terms, there are two possibilities.
Firstly, there are two indices i such that ηi = N , and then they are equal to j and

j + 1. In this case, either before the first P N or after the last, there appear j O+2
2

(or O−2
2 ), so all these terms vanish.

Secondly, there is a unique i0 such that ηi0 = N and it is equal to j or j + 1. We
denote by S1 (resp. S2) the sum of the terms for which i0 = j (resp. i0 = j + 1).
Then S1 = S∗2 and

(4-10) S2 =
∑
k,`

{I2 j (L0
−1O+2

2 ) j−k−1(L0
−1O+2

4 )(L0
−1O+2

2 )kPI0}

× {I2 j (L0
−1O+2

2 ) j−`L0
−1O0

2(L0
−1O+2

2 )`PI0}
∗

=

{∑
k

I2 j (L0
−1O+2

2 ) j−k−1(L0
−1O+2

4 )(L0
−1O+2

2 )kPI0

}
×

{∑
`

I2 j (L0
−1O+2

2 ) j−`L0
−1O0

2(L0
−1O+2

2 )`PI0

}∗
.

By (3-16) and (3-40) we find that the contribution of the terms of type II-b), i.e.,
S1(0, 0)+ S2(0, 0), is TII-b) = Sym[T2( j)T ′3 ( j)∗].

Terms of type II-c). The computation is the same as for terms of type II-b), except
that in the case of a unique i0 such that ηi0 = N , we must replace O+2

4 by O+2
3 and

O0
2 by O0

3 in (4-10). Recall that Ak has been defined in (3-20). By (3-25) and (4-3),
we find that the contribution of the terms of type II-c) is the symmetric operator
associated to

(4-11)
{∑

k

Ak

}{∑
`

I2 j (L
−1
0 O+2

2 ) j−`L−1
0 O0

3(L
−1
0 O+2

2 )`PI0

}∗
.

By (4-3) we get TII-c) = 0.

Terms of type II-d). Here again, we have the same possibilities concerning the
indices i such that ηi = N as for terms of types II-b) or II-c). If there are two such
indices, then they are equal to j and j + 1 and between the two corresponding P N

we will have the term O0
2. By (3-5), these terms vanish.

We now suppose that there is a unique i0 such that ηi0 = N . Then i0 = j or j+1.
As R

j
x = 0, any term in which the two O3 and the O0

2 appear on the same side of
P N will vanish. A term with one O3 at the left and one O3 at the right of P N is
equal or adjoint to

(4-12) I2 j

( j+1∏
i=1

L−1
0 Oεi

ai

)
PI0× A∗k ,
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where ai = 2 or 3 and εi = +2 except for exactly one i1 satisfying ai1 = 2 (for
which εi1 = 0). By (3-25) and (4-3), the sum of these terms vanishes.

Finally, the other possibility is that the two O3 appear on the same side of P N ,
and O0

2 on the other side. Recall that Ak,` has been defined in (3-28). The sum of
the remaining terms is equal to

(4-13) Sym
[{∑

k,`

Ak,`

}{∑
m

I2 j (L0
−1O+2

2 ) j−mL0
−1O0

2(L0
−1O+2

2 )mPI0

}∗]
.

As a result, the contribution of terms of type II-d) is TII-d) = Sym[T1( j)T ′3 ( j)∗].

4D. Terms of type III. The computations rely on similar arguments as in Sec-
tions 4B and 4C. We will therefore give the contribution of each sub-type directly.

Terms of type III-a). The contribution is TIII-a) = Pos[T1( j)].

Terms of type III-b). The contribution is TIII-b) = Sym[T1( j)T2( j)∗]

Terms of type III-c). The contribution is TIII-c) = Pos[T2( j)].

Terms of type III-d). The sum of all these terms vanishes, TIII-d) = 0.

Terms of type III-e). These terms vanish, so that TIII-e) = 0.
By all the computations in Sections 4B, 4C and 4D, we get Theorem 0.8.
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