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DETERMINANT RANK OF C �-ALGEBRAS

GUIHUA GONG, HUAXIN LIN AND YIFENG XUE

Dedicated to George A. Elliott on his seventieth birthday

Let A be a unital C �-algebra and let U0.A/ be the group of unitaries of
A which are path-connected to the identity. Denote by CU.A/ the clo-
sure of the commutator subgroup of U0.A/. Let i

.1;n/

A
W U0.A/=CU.A/ !

U0.Mn.A//=CU.Mn.A// be the homomorphism defined by sending u to
diag.u; 1n�1/. We study the problem of when the map i

.1;n/

A
is an isomor-

phism for all n. We show that it is always surjective and that it is injective
when A has stable rank one. It is also injective when A is a unital C�-algebra
of real rank zero, or A has no tracial state. We prove that the map is an
isomorphism when A is Villadsen’s simple AH-algebra of stable rank k > 1.
We also prove that the map is an isomorphism for all Blackadar’s unital
projectionless separable simple C �-algebras. Let A D Mn.C.X//, where X

is any compact metric space. We note that the map i
.1;n/

A
is an isomorphism

for all n. As a consequence, the map i
.1;n/

A
is always an isomorphism for any

unital C�-algebra A that is an inductive limit of the finite direct sum of C �-
algebras of the form Mn.C.X// as above. Nevertheless we show that there
is a unital C �-algebra A such that i

.1;2/

A
is not an isomorphism.

1. Introduction

Let A be a unital C�-algebra and let U.A/ be the unitary group. Denote by U0.A/
the normal subgroup which is the connected component of U.A/ containing the
identity ofA. Denote byDU.A/ the commutator subgroup ofU0.A/ and byCU.A/
the closure ofDU.A/. We will study the groupU0.A/=CU.A/. Recently this group
has become an important invariant for the structure of C�-algebras. It plays an
important role in the classification of C�-algebras (see [Elliott and Gong 1996;
Nielsen and Thomsen 1996; Elliott 1997; Thomsen 1997; Gong 2002; Elliott et al.
2007; Lin 2007; 2011; Gong et al. 2015], for example). It was shown in [Lin 2007]
that the map U0.A/=CU.A/! U0.Mn.A//=CU.Mn.A// is an isomorphism for
all n� 1 if A is a unital simple C�-algebra of tracial rank at most one (see also [Lin
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2010b, Corollary 3.5]). In general, whenA has stable rank k, it was shown by Rieffel
[1987] that the map U.Mk.A//=U0.Mk.A//! U.MkCm.A//=U0.MkCm.A// is
an isomorphism for all integers m � 1. In this case U.Mk.A//=U0.Mk.A// D

K1.A/. This fact plays an important role in the study of the structure of C�-
algebras, in particular those C�-algebras of stable rank one, since it simplifies
computations when K-theory involved. Therefore it seems natural to ask when
the map i .1;n/A WU0.A/=CU.A/!U0.Mn.A//=CU.Mn.A// is an isomorphism. It
will also greatly simplify our understanding and usage of the group when i .1;n/A

is an isomorphism for all n. The main tool to study U0.Mn.A//=CU.Mn.A//

is the de la Harpe–Skandalis determinant, studied early by K. Thomsen [1995]
(henceforth abbreviated [Th]), which involves the tracial state space T .A/ of A.
On the other hand, we observe that when T .A/D∅, U0.A/=CU.A/D f0g. So we
focus our attention on the case T .A/ 6D∅. One of the authors was asked repeatedly
if the map i .1;n/A is an isomorphism when A has stable rank one.

It turns out that it is easy to see that the map i .1;n/A is always surjective for all n.
Therefore the issue is when i .1;n/A is injective.

Definition 1.1. Let A be a unital C�-algebra. Consider the homomorphism

i
.m;n/
A WU0.Mm.A//=CU.Mm.A//! U0.Mn.A//=CU.Mn.A//

(induced by u 7! diag.u; 1n�m/) for integers n � m � 1. The determinant rank
of A is defined to be

DurADminfm 2 N j i
.m;n/
A is isomorphism for all n > mg:

If no such integer exists, we set DurAD1.

We show that if A D limn!1An, then DurA � supn�1fDurAng. We prove
that DurAD 1 for all C�-algebras of stable rank one, which answers the question
mentioned above. We also show that DurAD1 for any unitalC�-algebraAwith real
rank zero. A closely related and repeatedly used fact is that the map u!uC.1�e/

is an isomorphism from U.eAe/=CU.eAe/ onto U.A/=CU.A/ when A is a unital
simple C�-algebra of tracial rank at most one and e 2 A is a projection (see [Lin
2007, Theorem 6.7; 2010b, Theorem 3.4]). We show in this note that this holds for
any simple C�-algebra of stable rank one.

Given Rieffel’s early result mentioned above, one might be led to think that, when
A has higher stable rank, or at least when AD C.X/ for higher-dimensional finite
CW complexes, DurA is perhaps large. On the other hand it was suggested (see [Th,
Section 3]) that DurAD 1 may hold for most unital simple separable C�-algebras.
We found out, somewhat surprisingly, that the determinant rank of Mn.C.X// is
always 1 for any compact metric space X and for any integer n� 1. This, together
with previous mentioned result, shows that if AD limn!1An, where An is a finite
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direct sum of C�-algebras of the form Mn.C.X//, then DurAD 1. Furthermore,
we found out that DurAD 1 for all of Villadsen’s examples of unital simple AH-
algebras A with higher stable rank. This research suggests that when A has an
abundant amount of projections then DurA is likely to be 1 (see Proposition 3.6(3)).
In fact, we prove that if A is a unital simple AH-algebra with property (SP), then
DurAD 1. On the other hand, however, we show that if A is a unital projectionless
simple C�-algebra and �A.K0.A// D Z, then DurA D 1. Furthermore, if A is
one of Blackadar’s examples of unital projectionless simple separable C�-algebras
with infinite many extremal tracial states, then DurAD 1. Indeed, it seems that it
is difficult to find any example of unital separable simple C�-algebras for which
DurA is larger than 1. Nevertheless Proposition 3.12 below provides a necessary
condition for DurAD 1. In fact, we find that a certain unital separable C�-algebra
violates this condition, which, in turn, provides an example of a unital separable
C�-algebra A such that DurA > 1.

2. Preliminaries

In this section, we list some notation and basic known facts for convenience, many
of which are taken from [Th] and other sources.

Definition 2.1. Let A be a C�-algebra. Denote by Mn.A/ the n�n matrix algebra
of over A. If A is not unital, we will use zA, the unitization of A, so suppose that A
is unital. For u in U0.A/, let Œu� be the class of u in U0.A/=CU.A/.

We view An as the set of all n� 1 matrices over A. Set

Sn.A/D

�
.a1; : : : ; an/

T
2 An

ˇ̌̌ nX
iD1

a�i ai D 1

�
;

Lgn.A/D
�
.a1; : : : ; an/

T
2 An

ˇ̌̌ nX
iD1

biai D 1 for some b1; : : : ; bn 2 A
�
:

According to [Rieffel 1983; 1987], the topological stable rank and the connected
stable rank of A are defined as

tsrADminfn 2 N j Lgm.A/ is dense in Am for all m� ng

csrADminfn 2 N j U0.Mm.A// acts transitively on Sm.A/ for all m� ng:

If no such integer exists, we set tsrAD1 and csrAD1. These notions are very
useful tools in computing K-groups of C�-algebras (see, e.g., [Rieffel 1987; Xue
2000; 2001; 2010]).

Definition 2.2. Let A be a C�-algebra. Denote by Asa (resp. AC) the set of all
self-adjoint (resp. positive) elements in A. Denote by T .A/ the tracial state space
of A. Let � 2 T .A/. We will also use the notation � for the unnormalized trace
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� ˝Trn on Mn.A/, where Trn is the standard trace for Mn.C/. Every tracial state
on Mn.A/ has the form .1=n/� .

Definition 2.3. For a; b 2 A, set Œa; b�D ab� ba. Furthermore, set

ŒA;A�D

� nX
jD1

Œaj ; bj �
ˇ̌̌
aj ; bj 2 A; j D 1; : : : ; n; n� 1

�
:

Now, let A0 denote the subset of Asa consisting of elements of the form x�y for
x; y 2Asa with xD

P1
jD1 cj c

�
j and yD

P1
jD1 c

�
j cj (convergent in norm) for some

sequence fcj g in A. By [Cuntz and Pedersen 1979], A0 is a closed subspace of Asa.

Proposition 2.4 [Cuntz and Pedersen 1979; Thomsen 1995, Section 3]. Let A be a
C�-algebra with unit 1. The following statements are equivalent:

(1) A0 D Asa.

(2) 1 2 A0.

(3) T .A/D∅.

(4) AD ŒA;A�.

(5) Asa D spanfŒa�; a� j a 2 Ag.

Proof. .1/D) .2/ is obvious.

.2/D) .3/. If T .A/ 6D∅, then there is a tracial state � on A. Since 12A0, it follows
that there is a sequence faj g inA such that bD

P1
jD1 a

�
j aj and cD

P1
jD1 aja

�
j are

convergent in A and 1D b � c. Thus, �.b/D
P1
jD1 �.a

�
j aj /D �.c/ and �.1/D

�.b� c/D 0, a contradiction since �.1/D 1.

.3/D) .1/. This follows from the proof of [Th, Lemma 3.1].

.4/ () .5/. Let a; b 2 A and write a D a1 C ia2 and b D b1 C ib2, where
a1; a2; b1; b2 2 Asa. Then

(2-1) Œa; b�D Œa1; b1�� Œa2; b2�C i Œa2; b1�C i Œa1; b2�:

Put c1 D a1C ib1, c2 D a2C ib2, c3 D a2C ib1 and c4 D a1C ib2. Then, from
(2-1), we get that

(2-2) Œa; b�D
1

2i
Œc�1 ; c1��

1

2i
Œc�2 ; c2�C

1

2
Œc�3 ; c3�C

1

2
Œc�4 ; c4�:

So, by (2-2), (4) and (5) are equivalent.

.5/D) .1/. Let x2spanfŒa�; a� ja2Ag. Then there are elements a1; : : : ; ak 2A and
positive numbers �1; : : : ;�k such that xD

Pj
iD1�i Œa

�
i ; ai ��

Pk
iDjC1�i Œa

�
i ; ai �

for some j 2 f1; : : : ; kg. Put ci D
p
�i ai , i D 1; : : : ; j and c�i D

p
�i a

�
i when
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i D j C 1; : : : ; k. Then x D
Pk
iD1 c

�
i ci �

Pk
iD1 cic

�
i 2 A0. Since A0 is closed,

we get that
Asa D spanfŒa�; a� j a 2 Ag � A0 D A0 � Asa:

.1/ D) .5/. According to the definition of A0, every element x 2 A0 has the
form x D x1 � x2, where x1 D

P1
iD1 z

�
i zi and x2 D

P1
iD1 ziz

�
i . Thus, x 2

spanfŒa�; a� j a 2 Ag and hence Asa D spanfŒa�; a� j a 2 Ag. �

Combining Proposition 2.4 with Definition 2.2, we have:

Corollary 2.5. Let A be a unital C�-algebra with A0 D Asa. Then .Mn.A//0 D

.Mn.A//sa.

Let a; b 2 Asa. Then, for any n� 1,

exp.ia/ exp.ib/
�

exp
�
�i
a

n

�
exp

�
�i
b

n

��n
2DU.A/

and exp.�i.aCb//D limn!1.exp.�ia=n/ exp.�ib=n//n by the Trotter product
formula [Masani 1981, Theorem 2.2]. So exp.ia/ exp.ib/ exp.�i.aCb//2CU.A/.
Consequently,

(2-3) Œexp.ia/�Œexp.ib/�D Œexp.i.aC b//� in U0.A/=CU.A/:

The following is taken from the proof of [Th, Lemma 3.1].

Lemma 2.6. Let a 2 Asa.

(1) If a 2 A0, then Œexp.ia/�D 0 in U0.A/=CU.A/;

(2) If T .A/ 6D∅ and �.a/D �.b/ for all � 2T .A/, then a�b2A0 and Œexp.ia/�D
Œexp.ib/� in U0.A/=CU.A/.

Combining Lemma 2.6(1) with Corollary 2.5, we have

Corollary 2.7. If T .A/D∅, then U0.Mn.A//D CU.Mn.A// for n� 1.

Definition 2.8. Let A be a unital C�-algebra with T .A/ 6D∅. Let PU n0 .A/ denote
the set of all piecewise smooth maps � W Œ0; 1�!U0.Mn.A// with �.0/D 1n, where
1n is the unit of Mn.A/. For � 2 T .A/, the de la Harpe–Skandalis function �n� on
PU n0 .A/ is given by

�n� .�.t//D
1

2�i

Z 1

0

�.� 0.t/.�.t//�/ dt for all � 2 PU n0 .A/:

Note that we use an unnormalized trace � D � ˝ Trn on Mn.A/. This gives a
homomorphism �n WPU n0 .A/!Aff.T .A//, the space of all real affine continuous
functions on T .A/.

We list some properties of �n� . � /:
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Lemma 2.9 [de la Harpe and Skandalis 1984, Lemmas 1 and 3]. Let A be a unital
C�-algebra with T .A/ 6D∅. Let �1; �2; � 2 PU n0 .A/. Then:

(1) �n� .�1.t//D�
n
� .�2.t// for all � 2 T .A/, if �1.1/D �2.1/ and

�1�
�
2 2 U0.

H.C0.S1;Mn.A///:

(2) There are y1; : : : ; yk 2 Mn.A/sa such that �n� .�.t// D
kP

jD1

�.yj / for all
� 2 T .A/ and �.1/D exp.i2�y1/ � � � exp.i2�yk/.

Definition 2.10. Let A be a C�-algebra with T .A/ 6D∅. Let Aff.T .A// be the set
of all real continuous affine functions on T .A/. Define �A WK0.A/!Aff.T .A// by

�A.Œp�/.�/D �.p/ for all � 2 T .A/;

where p 2Mn.A/ is a projection.
Define Pn.A/ to be the subgroup of K0.A/ generated by projections in Mn.A/.

Denote by �nA.K0.A// the subgroup �A.Pn.A// of �A.K0.A//. In particular,
�1A.K0.A// is the subgroup of �A.K0.A// generated by the images of projections
in A under the map �A.

Definition 2.11. Let A be a unital C�-algebra. Denote by LU n0 .A/ the set of
piecewise smooth loops in

U.GC0.S1;Mn.A///:

Then, by Bott periodicity, �n.LU n0 .A//� �A.K0.A//. Denote by

qn W Aff.T .A//! Aff.T .A//=�n.LU n0 .A//

the quotient map. Put�nDqnı�n. Since�n vanishes onLU n0 .A/, we also use�n

for the homomorphism fromU0.Mn.A// into Aff.T .A//=�n.LU n0 .A//. An impor-
tant fact that we will repeatedly use is that the kernel of �n is exactly CU.Mn.A//;

by [Th, Lemma 3.1]. In other words, if u 2 U0.Mn.A// and �n.u/ D 0, then
u 2 CU.Mn.A//.

Corollary 2.12. Let A be a unital C�-algebra and let u 2 U0.Mn.A// for n � 1.
Then there are an a 2 Asa and a v 2 CU.Mn.A// such that

uD diag.exp.i2�a/; 1n�1/v

(in the case nD 1, we define diag.exp.i2�a/; 1n�1/D exp.i2�a//.
Moreover, if there is a u 2 PU n0 .A/ with u.1/D u, we can choose a self-adjoint

element a so that OaD�n.u.t//, where Oa.�/D �.a/ for all � 2 T .A/.
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Proof. Fix a piecewise smooth path u.t/ 2 PU n0 .A/ with u.0/D 1 and u.1/D u.
By Lemma 2.9(2), there are a1; a2; : : : ; am 2Mn.A/sa such that

uD

mY
jD1

exp.i2�aj / and �n� .u.t//D �

mX
jD1

aj for all � 2 T .A/:

Put a0D
nP

jD1

aj . Write a0D .bi;j /n�n. Define aD
nP
iD1

bi;i . Then a2Asa. Moreover,

�n.diag.exp.�i2�a/; 1n�1/u/D 0:

Thus, by [Th, Lemma 3.1], diag.exp.�i2�a/; 1n�1/u 2 CU.Mn.A//. Put v D
diag.exp.�i2�a/; 1n�1/u. Then uD diag.exp.i2�a/; 1n�1/v. �

3. Determinant rank

Let A be a unital C�-algebra. Consider the homomorphism

i
.m;n/
A W U0.Mm.A//=CU.Mm.A//! U0.Mn.A//=CU.Mn.A//

for integers n�m� 1.

Proposition 3.1. Let A be a unital C�-algebra with T .A/ 6D∅. Then

i
.m;n/
A W U0.Mm.A//=CU.Mm.A//! U0.Mn.A//=CU.Mn.A//

is surjective for n�m� 1.

Proof. It suffices to show that i .1;n/A is surjective. Let u 2 U0.Mn.A//. It follows
from Corollary 2.12 that uD diag.exp.i2�a/; 1n�1/v for some a 2 Asa and v 2
CU.Mn.A//. Then i .1;n/A .Œexp.i2�a/�/D Œu�. �

Lemma 3.2. LetA be a unitalC�-algebra with T .A/ 6D∅. Assume u2U0.Mm.A//.

(1) If�n.diag.u.t/; 1n�m/2�n.LU n0 .A// for some n>m, where fu.t/ W t 2 Œ0; 1�g
is a piecewise smooth path with u.0/D 1m and u.1/D u, then, for any � > 0,
there exist a 2Mm.A/sa with kak < �, b 2Mm.A/sa, v 2 CU.Mm.A// and
w 2 LU n0 .A/ such that

(3-1) uD exp.i2�a/ exp.i2�b/v and �.b/D�n� .w.t// for all � 2 T .A/:

(2) If �m.u.t// 2 �A.K0.A// for some u 2 PUm0 .A/ with u.1/D u, then, for any
�>0, there exist a2Mm.A/sa with kak<�, b2Mm.A/sa and v2CU.Mm.A//

such that

(3-2) uD exp.i2�a/ exp.i2�b/v and Ob 2 �A.K0.A//;

where Ob.�/D �.b/ for all � 2 T .A/.
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Proof. Let � > 0. For (1), there is a w 2 LU n0 .A/ such that

(3-3) supfj�n� .u.t//��
n
� .w.t//j W � 2 T .A/g< �=3�:

There is an a1 2Mm.A/sa by Corollary 2.12 such that

(3-4) �.a1/D�
n
� .u.t//��

n
� .w.t// for all � 2 T .A/:

Combining (3-3) with [Cuntz and Pedersen 1979] and the proof of [Th, Lemma 3.1],
we can find a 2Mm.A/sa such that �.a/D �.a1/ for all � 2 T .A/ and kak< �=2� .
There is also a b 2 Asa such that �.b/D��n� .w.t// for all � 2 T .A/. Put

(3-5) v.t/D exp.�i2�bt/ exp.�i2�at/u.t/ for t 2 Œ0; 1�

and vDv.1/. Then�n.v.t//D0. It follows from [Th, Lemma 3.1] that v2CU.A/.
Then uD exp.i2�a/ exp.i2�b/v.

For (2), there are an integer n�m and projections p; q 2Mn.A/ such that (for
a piecewise smooth path fu.t/ W t 2 Œ0; 1�g with u.0/D 1n and u.1/D u)

(3-6) k�m� .u.t//� �.p/C �.q/k< � for all � 2 T .A/:

Let b 2 Mm.A/sa such that �.b/ D �.p/� �.q/ for all � 2 T .A/ (see the proof
above); there is an a 2Mm.A/sa with kak< � such that

(3-7) �.a/D�m� .u.t//� �.p/C �.q/ for all � 2 T .A/:

Let v D u exp.�i2�a/ exp.�i2�b/ and v.t/ D u.t/ exp.�i2�at/ exp.�i2�bt/.
Then �n� .v.t//D 0. It follows from [Th, Lemma 3.1] that v 2 CU.Mm.A//. �

Let A be a unital C�-algebra. Let DurA be defined as in Definition 1.1. It follows
from Corollary 2.7 that if T .A/D∅ then DurAD 1.

Proposition 3.3. Let A be a unital C�-algebra. Then, for any integer n� 1,

Dur.Mn.A//�
jDurA�1

n

k
C 1;

where bxc is the integer part of x.

Proof. Note that n.b.DurA� 1/=ncC 1/� DurA. �

Theorem 3.4. Let A be a unital C�-algebra, and I � A a closed ideal of A such
that the quotient map � W A! A=I induces the surjective map from K0.A/ onto
K0.A=I /. Then Dur.A=I /� DurA.

Proof. Let mD DurA and n > m. Let u 2 U0.Mm.A=I // be a unitary such that
diag.u; 1n�m/ 2 CU.Mn.A=I //. We will show that u 2 CU.Mm.A=I //.
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Let � > 0. By Lemma 3.2, without loss of generality we may assume that there
are a1; b1 2 .Mm.A=I //sa such that

(3-8)
uD exp.i2�a1/ exp.i2�b1/v;

v 2 CU.Mm.A=I //; ka1k< � and �.b1/D �.q1/� �.q2/;

where q1; q2 2MK.A=I / are projections for some largeK �m, for all � 2T .A=I /.
By the assumption, without loss of generality we may assume further that there
are projections p1; p2 2 MK.A/ such that ��.Œp1 � Œp2�/ D Œq1� � Œq2�, where
�� WK0.A/!K0.A=I / is induced by � . Let b2 2 .Mm.A//sa such that �.b2/D
�.p1/��.p2/ for all � 2T .A/. There exists an a2 .Mm.A//sa such that �m.a/Da1,
where �mWMm.A/!Mm.A=I / is the map induced by � . Then, by (3-8),

(3-9) �m.exp.i2�a//�m.exp.i2�b2//u� 2 CU.Mm.A=I //:

Put u1D �m.exp.i2�a//�m.exp.i2�b2//. Let wD exp.i2�b2/. Then �.w/D 0.
Since m D DurA, this implies that w 2 CU.Mm.A//. It follows that �m.w/ 2
CU.Mm.A=I //, which implies by (3-9) that dist

�
u;CU.Mm.A=I //

�
< �. �

Theorem 3.5. Let AD limn!1.An; �n/ be a unital C�-algebra, where each An
is unital. Suppose that DurAn � r for all n. Then DurA� r .

Proof. We write �n1;n2 WAn1!An2 for �n2 ı�n2�1ı� � �ı�n1 and �n1;1 WAn1!A

for the map induced by the inductive limit system. Let u 2 U0.Mr.A// such
that u1 D diag.u; 1n�r/ 2 CU.Mn.A// for some n > r . Let � > 0. There is a
v 2DU.Mn.A// such that

(3-10) ku1� vk<
�

8n
:

Write v D
QK
jD1 vj , where vj D xjyjx

�
j yj and xj ; yj 2 U0.Mn.A// for j D

1; 2; : : : ; K. Choose a large N � 1 such that there are v0 2 U0.Mr.AN // and
x0j ; y

0
j 2 U0.Mn.AN // such that

(3-11) ku��N;1.u
0/k<

�

8nK
and k�N;1.x

0
j /� xj k<

�

8nK

for j D 1; 2; : : : ; K. Then we have by (3-10) and (3-11)

(3-12)
�N;1.u01/� KY

jD1

�N;1.v
0
j /

< �

4n
;

for j D 1; 2; : : : ; K, where u01 D diag.u0; 1n�r/ and v0j D x
0
jy
0
j .x
0
j /
�.y0j /

�. Then
(3-12) implies that there is an N1 >N such that

(3-13)
�N;N1.u01/� KY

jD1

�N;N1.v
0
j /

< �

2n
:
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Put U D �N;N1.u
0/, U1 D diag.U; 1n�r/ and wj D �N;N1.v

0
j /, j D 1; 2; : : : ; K.

Note that �N1;1.U /D�N;1.u
0/. There is an a2 .Mn.AN1//sa (by (3-13)) such that

(3-14) U1 D exp.i2�a/
KY
jD1

wj and kak< 2 arcsin
�

8n
:

There is a b 2 .Mr.AN1//sa such that

(3-15) �.b/D �.a/ for all � 2 T .A/ and kbk< 2n arcsin
�

8n
:

PutW Ddiag.U exp.�i2�b/; 1n�r/; thenW 2CU.Mn.AN1//. Since DurAN1�r ,
we conclude that U exp.�i2�b/ 2 CU.Mr.AN1//. It follows that

�N1;1.U exp.�i2�b// 2 CU.Mr.A//:

However, by (3-10), (3-11), (3-15),

ku��N1;1.U exp.�i2�b//k

� ku��N;1.u
0/kCk�N1;1.U /��N1;1.U exp.�i2�b//k

<
�

8nK
Ck1� exp.�i2��N1;1.b//k<

�

8nK
C �=4 < �:

Therefore, DurA� r . �

Proposition 3.6. Let A be a unital C�-algebra with T .A/ 6D ∅. Let a 2 Asa and
put Oa.�/D �.a/ for all � 2 T .A/.

(1) If exp.2�ia/ 2 CU.A/, then Oa 2 �A.K0.A//.

(2) If u2U0.A/ and for some piecewise smooth path fu.t/ W t 2 Œ0; 1�g with u.0/D
1 and u.1/D u, �1.u.t// 2 �kA.K0.A// for some k � 1, then diag.u; 1k�1/ 2
CU.Mk.A//.

(3) If �1A.K0.A//D �A.K0.A//, then DurAD 1.

Proof. Part (1) follows from [Th].

(2) By applying Corollary 2.12, there exists a v 2 CU.A/ such that

uD exp.i2�a/v and �.a/D�1� .u.t// for all � 2 T .A/:

So for any � 2 .0; 1/, there are projections p1; : : : ; pm1 , q1; : : : ; qm2 2Mk.A/ such
that

(3-16) sup
�ˇ̌̌̌ m1X
jD1

�.pj /�

m2X
jD1

�.qj /� �.a/

ˇ̌̌̌
W � 2 T .A/

�
<

arcsin.�=4/
�

:
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Set b D
m1P
jD1

pj �
m2P
jD1

qj and a0 D diag.a;

.k�1/‚ …„ ƒ
0; 0; : : : ; 0/. Then a0; b 2Mk.A/sa and

j�.a0/� �.b/j<
arcsin.�=4/

k�
for all � 2 T .Mk.A//

by (3-16). Thus, by the proof of [Th, Lemma 3.1], we have

inffka0� b� xk j x 2 .Mk.A//0g

D supfj�.a0� b/j j � 2 T .Mk.A//g �
arcsin.�=4/

k�
:

Choose x0 2 .Mk.A//0 such that ka0� b� x0k< 2 arcsin.�=4/=k� . Put y0 D
a0�b�x0. Then ky0k� 2 arcsin.�=4/=k� . Put u1D diag.u; 1k�1/ exp.�i2�y0/.
Define

w.t/D diag.u.t/; 1k�1/ exp.�i2�y0t /
m1Y
jD1

exp.�i2�pj t /
m2Y
jD1

exp.i2�qj t /

for t 2 Œ0; 1�. Then w.0/D 1, w.1/D u.1/ exp.�i2�y0/D u1 and, moreover,

�k� .w.t//D �.a/� �.y0/�

� m1X
jD1

�.pj /�

m2X
jD1

�.qj /

�
D �.a/� �.a0/C �.b/� �.x0/� �.b/

D �.a/� �.a0/D 0 for all � 2 T .A/:

It follows that w.1/D u1 2 CU.Mk.A//. Then

kdiag.u; 1k�1/�u1k D kexp.i2�y0/� 1kk< �:

(3) Let u 2 U0.A/ such that diag.u; 1n�1/ 2 CU.Mn.A//. Let u.t/ be a piecewise
smooth path with u.0/D 1 and u.1/D u. Then

�1.u.t// 2 �A.K0.A//D �
1
A.K0.A//:

By Part (2), u 2 CU.A/. This implies that DurAD 1. �

Proposition 3.7. Let X be a compact metric space. Then Dur
�
Mn.C.X//

�
D 1 for

all n� 1.

Proof. By Proposition 3.3, it suffices to consider the case AD C.X/. One has

�1A.K0.A//D C.X;Z/D �A.K0.A//:

It follows from Proposition 3.6(3) that DurAD 1. �

Combining Theorem 3.5 with Proposition 3.7, we have:
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Corollary 3.8. LetAD limn!1.An; �n/, whereAmD
Lm.n/
jD1 Mk.n;j /.Xn;j / and

each Xn;j is a compact metric space. Then DurAD 1.

Theorem 3.9. LetA be a unitalC�-algebra with real rank zero. Then �1A.K0.A//D
�A.K0.A// and DurAD 1.

Proof. By Corollary 2.7, we may assume that T .A/ 6D∅: SinceA is of real rank zero,
by [Zhang 1990, Theorem 3.3], for any n�2 and any nonzero projection p2Mn.A/,
there are projections p1; : : : ; pn 2 A such that p � diag.p1; : : : ; pn/ in Mn.A/.
Thus, �.p/ D

Pn
jD1 �.pj / for all � 2 T .A/ and, consequently, �1A.K0.A// D

�A.K0.A//. It follows from Proposition 3.6(3) that DurAD 1. �

Theorem 3.10. Let A be a unital C�-algebra with T .A/ 6D∅. If csr.C.S1; A//�
nC 1 for some n� 1, then DurA� n.

Proof. Let u2U0.Mn.A// such that diag.u; 1k/2CU.MnCk.A// for some integer
k � 1. Let fu.t/ W t 2 Œ0; 1�g be a piecewise smooth path with u.0/ D 1n and
u.1/D u. By [Th], �nCk.diag.u.t/; 1k// 2�nCk.LU

nCk
0 .A//. It follows from

Lemma 3.2(1) that, for any � > 0, there are a; b 2Mn.A/sa and v 2 CU.Mn.A//

with kak< 2 arcsin.�=4/=� such that

(3-17) uD exp.i2�a/ exp.i2�b/v and �.b/D�nCk� .w.t// for all � 2T .A/;

where w 2LU nCk0 .A/. Since csr.C.S1; A//�nC1, by Proposition 2.6 of [Rieffel
1987] there is a w1 2 LU n0 .A/ such that diag.w1; 1nCk/ is homotopy to w. In
particular, �n� .w1.t// D �

nCk
� .w.t// for all � 2 T .A/. Consider the piecewise

smooth path

U.t/D exp.�i2�at/ exp.i2�bt/w�1 .t/; t 2 Œ0; 1�:

Then U.0/D 1n and U.1/D exp.i2�b/. We compute that �n� .U.t//D 0 for all
� 2T .A/. It follows by [Th, Lemma 3.1] that exp.i2�b/2CU.Mn.A//. By (3-17),

Œu�D Œexp.i2�a/� in U0.Mn.A//=CU.Mn.A//;

Therefore dist
�
u;CU.Mn.A//

�
� kexp.i2�a/� 1nk< �. �

Corollary 3.11. Let A be a unital C�-algebra of stable rank one. Then DurAD 1.

Proof. This follows from the inequality csr.C.S1; A// � tsrAC 1 (see [Rieffel
1983, Corollary 8.6]) and Theorem 3.10. �

We end this section with the following:

Proposition 3.12. Let A be a unital C�-algebra. Suppose that there is a projection
p 2M2.A/ such that, for any x 2K0.A/ with �A.x/D �A.Œp�/, no unitary in U. zC/
represents x, where C D C0..0; 1/; A/. Then DurA > 1.
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Proof. There exists an a 2 AC such that �.a/D �A.Œp�/.�/ for all � 2 T .A/. Put
uD exp.i2�a/ and vD diag.u; 1/. Then it follows from Proposition 3.6(2) that v 2
CU.M2.A//. This implies that i .1;2/A .Œu�/D 0. Now we show that u 62CU.A/. Let

w.t/D exp.2i.1� t /�a/ for all t 2 Œ0; 1�:

Then w.0/D u and w.1/D 1A. If u2CU.A/, then, by [Th, Lemma 3.1], there is a
continuous and piecewise smooth path of unitaries � 2 zC , where C DC0..0; 1/; A/,
such that

(3-18) �� .�.t//D �.p/ for all � 2 T .A/:

The Bott map shows that the unitary � is homotopic to a projection loop which
corresponds to some x 2 K0.A/ with �A.x/ D �A.Œp�/, which contradicts the
assumption. �

4. Simple C�-algebras

Let us begin with the following:

Theorem 4.1. Let A be a unital infinite-dimensional simple C�-algebra of real rank
zero with T .A/ 6D∅. Then

�1A.K0.A//D Aff.T .A// and U0.A/D CU.A/:

Proof. Let p 2A be a nonzero projection, let �D n=m with n;m 2N and let � > 0.
Then by Zhang’s half theorem (see [Lin 2010a, Lemma 9.4]), there is a projection
e 2 A such that max�2T.A/ j�.p/�n�.e/j< n�=m. Thus,

max
�2T.A/

j��.p/�m�.e/j< �;

and consequently r�A.p/ 2 �1A.K0.A// for all r 2 R.
Let a2Asa. SinceA has real rank zero, a is a limit of the form

Pk
jD1 �jpj , where

p1; p2; : : : ; pk are mutually orthogonal projections in A and �1; �2; : : : ; �k 2 R.
Therefore Oa 2 �1A.K0.A// by the above argument, where Oa.�/ D �.a/ for all
� 2 T .A/. Since Aff.T .A//D fOa j a 2Asag by [Lin 2007, Theorem 9.3], it follows
from Theorem 3.9 that

Aff.T .A//� �1A.K0.A//D �A.K0.A//� Aff.T .A//;

that is, Aff.T .A//D �1A.K0.A//.
Note that

�1A.K0.A//��
1.LU 10 .A//� �A.K0.A//D �

1
A.K0.A//:
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So �1.LU 10 .A//D �
1
A.K0.A//D Aff.T .A//. Thus, �1 D 0 (see Definition 2.11),

and the assertion follows. �
For unital simple C�-algebras, we have:

Theorem 4.2. Let A be a unital infinite-dimensional simple C�-algebra. Then
DurAD 1 if one of the following holds:

(1) A is not stably finite.

(2) A has stable rank one.

(3) A has real rank zero.

(4) A is projectionless and �A.K0.A//D Z (with �A.Œ1A�/D 1).

(5) A has property (SP) and has a unique tracial state.

Proof. (1) In this case, there is a nonunitary isometry u 2Mk.A/ for some k � 2.
Since Mk.A/ is also simple, every tracial state on Mk.A/ is faithful if T .A/ 6D∅.
This implies that T .A/D∅. The assertion follows from Corollary 2.7.

(2) This follows from Corollary 3.11.

(3) This follows from Theorem 4.1 or Theorem 3.9.

(4) By the assumption, we have �1A.K0.A//D �A.K0.A//DZ. By Proposition 3.6,
DurAD 1.

(5) Let � > 0 and let � 2 T .A/ be the unique tracial state. Let k � 1 be an integer
and p 2 Mk.A/ a projection. Since A has (SP), there is a nonzero projection
q 2 A such that 0 < �.q/ < 1

2
� (see, for example, [Lin 2001, Lemma 3.5.7]).

Then, there is an integer m � 1 such that jm�.q/� �.p/j < �. This implies that
�1A.K0.A//D �A.K0.A//. Therefore, by Proposition 3.6, DurAD 1. �

For a unital simple C�-algebra A, Theorem 4.2 indicates that the only case when
DurA might not be 1 is when A is stably finite and has stable rank greater than 1.
The only example of this that we know so far is given by Villadsen [1999].

However, we have the following:

Theorem 4.3. For each integer n� 1, there is a unital simple AH-algebra A with
tsrAD n such that DurAD 1.

Proof. Fix an integer n > 1. Let A D limk!1.Ak; �k/ be the unital sim-
ple AH-algebra with tsrA D n constructed by Villadsen [1999]. Then A1 D
C.Dn/. The connecting maps �k are “diagonal” maps. More precisely, �k.f /DPn.k/
jD1 f .k;j /˝ pk;j for all f 2 Ak , where pk;1 is a trivial rank-1 projection,

AkC1 D �k.idAk /M.r.k/.C.Xk//�k.idAk / (for some large r.n/) for some spaces
Xk , and k;j W XkC1 ! Xk is a continuous map (these are �1iC1 and some
point evaluations as denoted in [Villadsen 1999, p. 1092]). Clearly A1 contains
a rank-1 projection. Suppose that Ak , as a unital hereditary C �-subalgebra of
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Mr.k/.C.Xk//, contains a rank-1 projection ek (of Mr.k/.C.Xk//). Then, since
.idAk ık;1/ ˝ pk;1 � �k.idAk /, we have .idAk ık;1/ ˝ pk;1 2 AkC1. Then
ek ı k;1˝pk;1 2 AkC1, which is a rank-1 projection.

The above shows every Ak contains a rank-1 projection.
Now let p 2Mm.A/ be a projection. We may assume that there is a projection

q2Mm.Ak0C1/ such that �k0C1;1.q/Dp. Let ek0 2Ak0C1 be a rank-1 projection.
Then there is an integer L� 1 such that L�.ek0/D �.q/ for all � 2 T .Ak0C1/. It
follows that

L�.�k0C1;1.ek0//D �.p/ for all � 2 T .A/:

So �1A.K0.A//D �A.K0.A// and hence DurAD 1 by Proposition 3.6. �

Theorem 4.4. Let A be a unital simple AH-algebra with (SP) property. Then
DurAD 1.

Proof. By Proposition 3.1, it suffices to show that i .1;n/A is injective, and by
Proposition 3.6 it suffices to show that �1A.K0.A//D �A.K0.A//.

Let p be a projection in Mn.A/. Since A is simple, inff�.p/ j � 2T .A/gDd >0.
Given a positive number � < minf1

2
; 1
2
dg. Choose an integer K � 1 such that

1=K < 1
2
�. Since A is a simple unital C�-algebra with (SP), it follows from [Lin

2001, Lemma 3.5.7] that there are mutually orthogonal and mutually equivalent
nonzero projections p1; p2; : : : ; pK 2A such that

PK
jD1 pj � p. We compute that

(4-1) �.p1/ < �=2 and �.p1/ < d=K for all � 2 T .A/:

Since A is simple and unital, there are x1; x2; : : : ; xN 2 A such that

NX
jD1

x�j p1xj D 1A:

Let A D lim
 ��
.Am; �m/, where Am D

Lr.m/
iD1 Pm;jMR.m;j /.C.Xm;j //Pn;j for

each m, Xn;j is a connected finite CW-complex and Pm;j 2MR.m;j /.C.Xm;j // is
a projection. Without loss of generality, we may assume that, there are projections
p01 2Am, p0 2Mn.Am/ and elements y1; y2; : : : ; yN 2Am such that �m;1.p01/D
p1, �m;1.yj /D xj , .�m;1˝ idMn/.p

0/D p and

(4-2)
 NX
jD1

y�j p
0
1yj � 1A

< 1:
Write p01 and p0 as

p01 D p
0
1;1˚p

0
1;2˚ � � �˚p

0
1;r.m/ and p0 D q1˚ q2˚ � � �˚ qr.m/;
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where, for each j D 1; : : : ; r.m/, p01;j 2 Pm;jMR.m;j /.C.Xm;j //Pm;j and qj 2
Mn.Pm;jMR.m;j /.C.Xm;j //Pm;j / are projections. Note that (4-2) implies that
p01;j 6D 0 for j D 1; 2; : : : ; r.m/. Define

r1;j D rankp01;j and rj D rank qj for j D 1; 2; : : : ; r.m/:

Then rj D lj r1;j C sj , where lj ; sj � 0 are integers and sj < r1;j . It follows that

(4-3)
ˇ̌̌̌
t .p0/�

r.m/X
jD1

lj t .p
0
1;j /

ˇ̌̌̌
< t.p01/ for all t 2 T .Am/:

Define q1;j D �m;1.p01;j / for j D 1; : : : ; r.m/. Then each q1;j is a projection
in A. Note that for each � 2 T .A/, � ı�m;1 is a tracial state on Am. So, by (4-3),ˇ̌̌̌

�.p/�

r.m/X
jD1

lj �.q1;j /

ˇ̌̌̌
< �.p1/ < � for all � 2 T .A/:

This implies that �1A.K0.A//D �A.K0.A//. �

Lemma 4.5. Let A be a unital simple C�-algebra with T .A/ 6D ∅, and let a 2
AC n f0g. Then, for any b 2 Asa, there is a c 2 Her a such that b� c 2 A0.

Proof. Since A is simple and unital, there are x1; x2; : : : ; xm 2 A such thatPm
jD1 x

�
j axj D 1A. Set c D

Pm
jD1 a

1=2xj bx
�
j a

1=2. Then c 2 Her a and

�.c/D

mX
jD1

�.a1=2xj bx
�
j a

1=2/D

mX
jD1

�.bx�j axj /D �.b/ for all � 2 T .A/:

It follows from Lemma 2.6(2) that b� c 2 A0. �

A special case of the following can be found in [Lin 2010b, Theorem 3.4]:

Theorem 4.6. Let A be a unital simple C�-algebra and let e 2 A be a nonzero
projection. Consider the map U0.eAe/=CU.eAe/ ! U0.A/=CU.A/ given by
ie.Œu�/D ŒuC.1�e/�. This map is always surjective, and is also injective if tsrAD1.

Proof. To see that ie is surjective, let u 2 U0.A/. Write uD
Qn
kD1 exp.iak/ for

ak 2 Asa, k D 1; 2; : : : ; n. By Lemma 4.5, there are b1; : : : ; bn 2 eAe such that
bk�ak 2A0. Put wD e

Qn
kD1 exp.ibk/. Then w 2U0.eAe/. Set vDwC.1�e/.

Then v D
Qn
kD1 exp.ibk/. Thus, by Lemma 2.6(1),

ie.Œw�/D Œv�D

nX
kD1

Œexp.ibk/�D
nX
kD1

Œexp.iak/�D Œu� in U0.A/=CU.A/;

that is, ie is surjective.
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To see that ie is injective when A has stable rank one, let w 2 U0.eAe/ such
that wC .1� e/ 2 CU.A/. Since A is simple, there are z1; : : : ; zn 2 A such that
1� e D

Pn
jD1 z

�
j ezj . Set

X D

264ez1 0 � � � 0:::
:::
: : :

:::

ezn 0 � � � 0

375 2Mn.A/:

Then

(4-4) diag.1� e;

n�1‚ …„ ƒ
0; : : : ; 0/DX�X; XX� � diag.

n‚ …„ ƒ
e; e; : : : ; e /:

Equation (4-4) indicates that Œ1� e�� nŒe� in K0.A/. Since tsrAD 1, we can find
a projection p 2Ms.A/ for some s � n and a unitary U 2MsC1.A/ such that

(4-5) diag.

n‚ …„ ƒ
e; : : : ; e;

r‚ …„ ƒ
0; : : : ; 0/D U diag.1� e; p/U �;

where r D s�nC 1. Write v D wC .1� e/ as v D
�
w
1�e

�
, and set

W D

�
e

U

�
and QD diag.

n‚ …„ ƒ
e; : : : ; e;

r‚ …„ ƒ
0; : : : ; 0/:

Then W diag.e; 1� e; p/MsC2.A/ diag.e; 1� e; p/W � �MnC1.eAe/˚ 0 and

(4-6) W

�
v

p

�
W � D

�
w

U diag.1� e; p/U �

�
D diag.w;Q/;

by (4-5). Note that diag.v; p/ 2 CU.diag.e; 1� e; p/MsC2.A/ diag.e; 1� e; p//.
So, by (4-6),

diag.w;
n‚ …„ ƒ

e; : : : ; e / 2 CU.MnC1.eAe//:

Since tsr.eAe/D 1, it follows from Theorem 4.2(2) that w 2 CU.eAe/. �

Lemma 4.7. LetC be a nonunitalC�-algebra andBD zC . Assume u1; u2; : : : ; un2
U.Mk.B// for some k � 2. Then, there are unitaries u01; u

0
2; : : : ; u

0
n 2M

k
. zC/ with

�
k
.u0j /D 1k and w; zj ; Nuj 2 U.Mk

.C// for j D 1; : : : ; n such that

nY
jD1

uj D

� nY
jD1

u0j

�
w; with u0j D z

�
j uj Nu

�
j zj for j D 1; : : : ; n;

w D �k

nY
jD1

uj ;
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where �.xC�/D � for all x 2C and � 2C and �k is the induced homomorphism
of � on Mk.B/.

Moreover, if uj 2 U0.Mk.B//, then we may assume that each u0j 2 U0.BMk.C //

for j D 1; : : : ; n.

Proof. Put Nuj D �k.uj / 2 U.Mk.C//. If nD 2, then

u1u2 D u1 Nu
�
1. Nu1u2 Nu

�
1/. Nu1 Nu

�
2 Nu
�
1/. Nu1 Nu2 Nu

�
1 Nu1/

D u1 Nu
�
1. Nu1u2 Nu

�
1/. Nu1 Nu

�
2 Nu
�
1/. Nu1 Nu2/:

Put u01 D u1 Nu
�
1 , u02 D Nu1u2 Nu

�
1 Nu1 Nu

�
2 Nu
�
1 , w1 D Nu1 Nu2, z1 D 1k , z2 D Nu1. Then

�k.u
0
1/D 1k; �k.u

0
2/D �k. Nu1.u2 Nu

�
2/ Nu
�
1/D 1k; w1 D �k.u1u2/:

Thus the lemma holds if nD 2. Suppose that the lemma holds for s. Then

u1u2 � � �ususC1 D .u
0
1u
0
2 � � �u

0
s/wsusC1;

where u0j 2 M
k
. zC/ are unitaries with �

k
.u0j / D 1k and u0j D z

�
j uj Nu

�
j zj , where

zj ; Nuj 2 U.Mk
.C//, j D 1; : : : ; s and ws D �k

Qs
jD1 uj . It follows that

sC1Y
jD1

uj D

� sY
jD1

u0j

�
wsusC1w

�
s .ws Nu

�
sC1w

�
s /.ws NusC1/:

Put u0sC1DwsusC1w
�
s .ws Nu

�
sC1w

�
s /Dws.usC1 Nu

�
sC1/w

�
s , zsC1Dw

�
s andwsC1D

ws NusC1. Then

�s.u
0
sC1/D �k.ws/�.usC1 Nu

�
sC1/�k.w

�
s /D 1k;

wsC1 D ws NusC1 D �k

�� sY
jD1

uj

�
usC1

�
D �k

sC1Y
jD1

uj :

The first part of the lemma follows.
To see the second part, we first assume that uj D exp.iaj / for some aj 2

.Mk.B//sa. Note that Nuj Dexp.i Naj /, where Naj D�k.aj /2 .Mk.C//sa, j D1; : : : ; n.
Consider the path u0j .t/D exp.i taj / exp.�i t Naj / for t 2 Œ0; 1�. Note that, for each
t 2 Œ0; 1� and j D 1; : : : ; n,

�k.exp.i taj / exp.�i t Naj //D exp.i t�k.aj // exp.�i t�k.aj //D 1k :

It follows that u0j .t/ 2BMk.C/ for all t 2 Œ0; 1� and j D 1; : : : ; n. The case that
uj D exp

�Qmj
kD1

.iak/
�

follows from this and what has been proved. �
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Lemma 4.8. Let C be a nonunital C�-algebra and B D zC . Suppose that z D
aba�b�, where a; b 2 U0.Mk.B//. Then z D yw, where y 2 CU.BMk.C // with
�k.y/ D 1k and w 2 CU.Mk.C//. Moreover, if u D

Qn
jD1 zj , where each

zj 2 CU.Mk.B//, then u D yv, where y 2 CU.BMk.C // with �k.y/ D 1k and
v 2 CU.Mk.C//.

Proof. Let Na D �k.a/ and Nb D �k.b/. Then Na; Nb 2 U.Mk.C//. It follows from
Lemma 4.7 that for j D 1; 2 there are aj ; bj 2U0.BMk.C// with �k.aj /D�k.bj /D
1k and zj 2 U.Mk.C// such that

ab D a1b1w1; a1 D a Na
�; b1 D z

�
1b
Nb�z1; w1 D Na

Nb;(4-7)

baD b2a2w2; b2 D b
Nb�; a2 D z

�
2a Na
�z2; w2 D

Nb Na:(4-8)

Set x1 D w1w
�
2z
�
2 and x2 D w1w

�
2z1. Then x1; x2 2 U0.Mk

.C// and

aba�b� D a1b1.w1w
�
2z
�
2 .a Na

�/z2w2w
�
1 /.w1w

�
2 .b
Nb�/w2w

�
1 //w1w

�
2

D a1b1.x1a
�
1x
�
1 /.x

�
2b
�
1x2/w1w

�
2

by (4-7) and (4-8).
Write a1 D

Qm1
jD1 exp.iy1j / and b1 D

Qm2
kD1

exp.iy2k/, where y1j ; y2k 2
.Mk.C //sa, j D 1; : : : ; m1, k D 1; : : : ; m2. Let

y1j D y
C
1j �y

�
1j and y

2k
D yC

2k
�y�2k;

with yC1j ; y
�
1j ; y

C

2k
; y�
2k
2 .Mk.C //C for j D 1; : : : ; m1 and k D 1; : : : ; m2. Set

c1 D

m1X
jD1

.yC1j C x1y
�
1jx
�
1 /C

m2X
kD1

.yC
2k
C x2y

�
2kx
�
2 /;

c2 D

m1X
jD1

.y�1j C x1y
C
1jx
�
1 /C

m2X
kD1

.y�2kC x2y
C

2k
x�2 /;

d1 D

m1X
jD1

.yC1j Cy
�
1j /C

m2X
kD1

.yC
2k
Cy�2k/;

d2 D

m1X
jD1

.y�1j Cy
C
1j /C

m2X
kD1

.y�2kCy
C

2k
/:

Then c1; c2; d1; d22 .M2.C //C and clearly c1�d1; c2�d22 .Mk.C //0. Therefore,
.c1�c2/�.d1�d2/2 .Mk

.C //0. Put yDa1b1.x1a
�
1x
�
1 /.x

�
2b
�
1x2/ andwDw1w

�
2 .

Then y 2 U0.BMk.C // with �k.y/D 1k and w D Na Nb Na� Nb� 2DUk.C/. Moreover,
in U0.BMk.C //=CU.BMk.C //,

Œy�D Œexp.i.c1� c2//�D Œexp.i.d1� d2//�D Œa1�Œb1�Œa�1 �Œb
�
1 �D 0:
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This proves the first part of the lemma. The second part follows. �

Theorem 4.9. Let A be an infinite-dimensional unital simple C�-algebra with
T .A/ 6D∅ such that there is an m� 1, for every hereditary C�-subalgebra C , with
Dur zC �m. Then DurAD 1.

Proof. Let n � 1. By Proposition 3.1, it suffices to show that i .1;n/A is injec-
tive. Let u 2 U0.A/ with diag.u; 1n�1/ 2 CU.Mn.A//. Since A is simple and
infinite-dimensional, we can find nonzero mutually orthogonal positive elements
c1; : : : ; cm 2 A and x1; : : : ; xm 2 A such that

x�j xj D c1 and xjx
�
j D cj ; j D 2; 3; : : : ; m:

Put Her c1 D C and B D zC . Then Her.c1C c2C � � �C cm/ŠMm.C /. Note that
Mm.B/ is not isomorphic to a subalgebra of Mm.A/.

By Lemma 4.5, we may assume, without loss of generality, that uD exp.2�ib/
for some b 2 Csa. Then, by Proposition 3.6(1), Ob 2 �A.K0.A//.

Since A is simple and C is � -unital, it follows from [Brown 1977, Theorem 2.8]
that there is a unitary element W in M.A˝K/ (the multiplier algebra of A˝K)
such that W �.C ˝K/W D A˝K, where K is the C�-algebra consisting of all
compact operators on l2. Note that since A is a unital simple C�-algebra, every
tracial state � on C is the normalization of a tracial state restricted on C . Therefore

(4-9) Ob 2 �A.K0.A//D �B.K0.C //� �B.K0.B//:

Viewing b in Bs:a, consider v D exp.i2�b/ 2 U0.B/ and v.t/ D exp.i2�tb/,
t 2 Œ0; 1�. Then (4-9) implies that �1.v.t// 2 �B.K0.B//. By Lemma 3.2(2), for
any � > 0, there are a 2 Bsa with kak < �, d 2 Bsa with Od 2 �B.K0.B// and
v0 2 CU.B/ such that

(4-10) v D exp.i2�a/ exp.i2�d/v0:

Choose projections p; q 2 Mn.B/ for some n > m such that for all � 2 T .B/,
�.diag.d; 0.n�1/�.n�1///D�.p/��.q/. So diag.exp.i2�d/; 1n�1/2CU.Mn.B//

by Lemma 2.6(2). By assumption, i .m;k/B is injective for all k > m. Therefore, we
have diag.v; 1m�1/ 2 CU.Mm.B// by (4-10).

Let �>0. Then there is a v12DU.Mm.B// such that kdiag.v; 1m�1/�v1k< 1
2
�.

We may write v1 D
Qr
jD1 zj , where zj 2Mm.B/ is a commutator. It follows from

Lemma 4.8 that there are y 2CU.BMm.C //with �m.y/D1m andw2DU.Mm.C//

such that v1 D yw. Noting that w D �m.w/ D �m.v1/ and �.v/ D 1, we have
k1m�wk<

1
2
�. Thus kdiag.v; 1m�1/�yk<�. Set v0Dv�1 and y0Dy�1m. Then

(4-11)
diag.v0; 0.m�1/�.m�1//; y0 2Mm.C /;

kdiag.v0; 0.m�1/�.m�1//�y0k< �:
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By identifying 1mCMm.C /with a unitalC�-subalgebra 1ACHer.c1Cc2C� � �Ccm/
ofA, we get that kexp.i2�b/�yk<� by (4-11). Since y 2CU.BMm.C //�CU.A/

and hence u 2 CU.A/, we have DurAD 1. �

Corollary 4.10. Let A be a unital simple C�-algebra. Suppose that there is an
integer K � 1 such that csr.C.S1; C //�K for every hereditary C�-subalgebra C .
Then DurAD 1.

Proof. It follows from Theorem 3.10 that Dur zC � maxfK � 1; 1g. Theorem 4.9
then applies. �

Definition 4.11. Let A be a C�-algebra with T .A/ 6D∅. Define

D
�
�1A.K0.A//; �A.K0.A//

�
D sup

˚
dist

�
x; �1A.K0.A//

�
j x 2 �A.K0.A//

	
D sup

˚
dist

�
x; �1A.K0.A//

�
j x 2 �A.K0.A//

	
:

Theorem 4.12. Let A be a unital simple C�-algebra with T .A/ 6D∅ such that there
is an M > 0 with D

�
�1C .K0.C //; �C .K0.C //

�
< M for all nonzero hereditary

C�-subalgebras C of A. Then DurAD 1.

Proof. Let u 2 U0.A/ such that diag.u; 1n�1/ 2 CU.Mn.A//. By Corollary 2.12,
we may assume that u D exp.i2�a/ for some a 2 Asa. Then Oa 2 �A.K0.A// by
Proposition 3.6(1).

Given � > 0, choose an integer N � 1 such that M=N < �=2� . There are
mutually orthogonal nonzero positive elements c1; c2; : : : ; cN in A and elements
x1; x2; : : : ; xN 2 A such that

(4-12) x�j xj D c1 and xjx
�
j D cj ; j D 2; 3; : : : ; N:

Let C DHer c1 and B D zC . It follows from Lemma 4.5 that there is a b 2Csa such
that a� b is in A0, i.e., �.a/D �.b/ for all � 2 T .A/. Therefore Œexp.i2�a/�D
Œexp.i2�b/� in U0.A/=CU.A/ by Lemma 2.6(2).

Since A is a unital simple C�-algebra and C is �-unital, it follows from the
proof of Theorem 4.9 that �C .b/ 2 �C .K0.C //. Therefore, by assumption, there
are projections p1; p2; : : : ; pk1 ; q1; q2; : : : ; qk2 2 C such that

sup
�2T.C/

ˇ̌̌̌
�.b/�

� k1X
iD1

�.pi /�

k2X
jD1

�.qj /

�ˇ̌̌̌
<M:

Put d D
Pk1
iD1 pi �

Pk2
jD1 qj and f D b�d . Then exp.i2�d/ 2 CU.A/ by (2-3)

and Œexp.i2�f /�D Œexp.i2�b� 2 U0.A/=CU.A/. Moreover, from

inffkf � xk j x 2 C0g D supfj�.f /j j � 2 T .C /g<M
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(see the proof of [Th, Lemma 3.1]), there are f0 2C0 and f1 2Csa with kf1k<M
such that f D f1Cf0. By Lemma 2.6(1), exp.i2�f0/ 2 CU.A/. Since f1 2 Csa,
by (4-12), for i D 1; 2; : : : ; N there are gi 2 Her ci with

(4-13) kgik � kf1k=N and �.gi /D �.f1=N/ for all � 2 T .A/:

Set g D
Pn
iD1 gi 2 A. Then, by (4-13),

(4-14) kexp.i2�g/�1Ak<M=N <� and �1.exp.i2�f / exp.�i2�g//D 0:

So exp.i2�f / exp.�i2�g/2CU.A/ and consequently dist.ei2�a; CU.A//<�. �

Bruce Blackadar [1981] constructed three examples of unital simple separable
nuclear C�-algebrasA;A4; AH with no nontrivial projections. By [Blackadar 1981,
Theorem 4.9],K0.A/DZ with a unique tracial state. It follows from Theorem 4.2(4)
that DurAD 1. We turn to his examples A4 and AH , which may have rich tracial
spaces. It should be also noted that, as Blackadar showed, when 4 is not trivial
(for example), M2.A4/ has a projection p with �.p/D 1 for all � 2 T .A4/. In
particular, this implies that

�1A4
.K0.A4// 6D N�A4.K0.A4//:

However, DurA4 D 1 as shown below. It follows that there is a unitary u 2 zC ,
where C D C0..0; 1/; A/, which represents a projection q with �.q/ D 1 for all
� 2 T .A4/.

Proposition 4.13. Let B be a unital AF-algebra and � an automorphism of B . Put
M� D ff 2 C.Œ0; 1�; B/ j f .1/D �.f .0//g. Then DurM� D 1.

Proof. Clearly, T .M� / 6D∅. From the exact sequence of C�-algebras

0 �! C0..0; 1/; B/ �!M� �! B �! 0;

we obtain the exact sequence of C�-algebras

(4-15) 0 �! C0..0; 1/�S
1; B/ �! C.S1;M� / �! C.S1; B/ �! 0:

Since B is an AF-algebra, it follows from [Nistor 1986, Corollary 2.11] that

csr.C.S1; B//D csr.C.S1//D 2;

csr.C0..0; 1/�S1; B//D csr.C0..0; 1/�S1//D 2;

and consequently, applying [Nagy 1987, Lemma 2] to (4-15), we get

csr.C.S1;M� //�maxfcsr.C.S1; B//; csr.C0..0; 1/�S1; B//g � 2:

Therefore DurAD 1 by Theorem 3.10. �

Corollary 4.14. DurA4 D 1 and DurAH D 1.
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Proof. Both C�-algebras are of the form limn!1An, where each AnŠM� , where
M� is as in Proposition 4.13, and thus DurAn D 1. By Theorem 3.5, DurA4 D 1
and DurAH D 1. �

5. C�-algebras with Dur A > 1

In this section, we will present a unital C�-algebra C such that DurC D 2. In
particular, we will show that there are C�-algebras which satisfy the condition
described in Proposition 3.12.

5.1. We first list some standard facts from elementary topology. We will give a
brief proof of each fact for the reader’s convenience.

Fact 1. Let

Bd .0/D
˚
.x1; x2; x3; x4/ 2 R4 j

p
x21 C x

2
2 C x

2
3 C x

2
4 � d

	
:

Let f W Bd .0/� S1! S3 D SU.2/ be a continuous map which is not surjective.
Then there is a homotopy

F W Bd .0/�S
1
� Œ0; 1�! S3 D SU.2/

such that F.x; ei� ; 0/ D f .x; ei� /, F.x; ei� ; s/ D f .x; ei� / if kxk D d (i.e., if
x 2 @Bd .0/) and g.x; ei� /D F.x; ei� ; 1/ satisfies

g.0; ei� /D F.0; ei� ; 1/D

�
1 0

0 1

�
2 SU.2/D S3:

Proof. Assume that f misses a point z 2 S3 D SU.2/ and that z 6D
�
1
0
0
1

�
2 SU.2/.

Then S3 n fzg is homeomorphic to D3 D f.x; y; z/ j x2Cy2C z2 < 1g, with the
identity matrix mapping to .0; 0; 0/. Without loss of generality, we can assume that
f is a map from Bd .0/�S

1 toD3. Let F WBd .0/�S1�Œ0; 1�!D3 be defined by

F.x; ei� ; s/D f .x; ei� /maxf1� s; kxk=dg;

which satisfies the condition. �

Fact 2. Let f; g W S4�S1! SU.n/�U.n/DUn.C/ (where n� 2) be continuous
maps. If f is homotopic to g in U.n/, then they are also homotopic in SU.n/.

Proof. This follows from the fact that there is a continuous map � W U.n/! SU.n/
with � ı i D id jSU.n/, where i W SU.n/! U.n/ is inclusion. �
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Fact 3. Let � 2 S4 be the north pole. Suppose that f; g W S4�S1! SU.n/ are two
continuous maps such that

f .�; ei� /D 1n D g.�; e
i� /

for all ei� 2 S1. If f and g are homotopic in SU.n/, then there is a homotopy

F W S4 �S1 � Œ0; 1�! SU.n/

such that F.x; ei� ; 0/Df .x; ei� /, F.x; ei� ; 1/Dg.x; ei� / for all x 2S4, ei� 2S1

and F.�; ei� ; t /D 1n for all ei� 2 S1.

Proof. Let G W S4�S1� Œ0; 1�! SU.n/ be a homotopy between f and g. That is,
G. � ; � ; 0/D f and G. � ; � ; 1/D g. Let F WS4�S1� Œ0; 1�! SU.n/ be defined by

F.x; ei� ; t /DG.x; ei� ; t /.G.�; ei� ; t //�:

Then F satisfies the condition. �

5.2. We will describe the projection P 2M4.C.S
4// of rank two which represents

the class of .2; 1/ 2 Z˚ Z Š K0.C.S
4// as follows: One can regard S4 as the

quotient space D4=@D4, where

D4 D f.z; w/ 2 C2 j jzj2Cjwj2 � 1g:

It is standard to construct a unitary

˛ WD4! U4.C/D U.M4.C//

such that ˛.0/D 14 and such that, for any .z; w/ 2 @D4 (i.e., jzj2Cjwj2 D 1),

˛.z; w/ WD

2664
z w 0 0

� Nw Nz 0 0

0 0 Nz �w

0 0 Nw z

3775, �ˇ.z; w/ 0

0 ˇ.z; w/�

�
;

where ˇ.z; w/ D
�

z
� Nw

w
Nz

�
, for .z; w/ 2 @D4 D S3, represents the generator of

K1.C.S
3//. Define P W S4! U4.C/ by

P.z;w/, ˛.z; w/
�
12 02
02 02

�
˛�.z; w/:

Note that ˛ is not defined as a function from S4DD4=@D4 to U.4/, but P is, since

P.z;w/D

�
12 02
02 02

�
for all .z; w/ 2 @D4

and @D4 is identified with the north pole � 2 S4. Hence P.�/D
�
12
02

02
02

�
.
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5.3. In the rest of the paper, for a compact metric space X with a given base
point and a C�-algebra A, by C0.X;A/ we mean the C�-algebra of the continuous
functions fromX to A which vanish at the base point (and C0.X;C/ will be denoted
by C0.X/). (Most spaces we used here have an obvious base point, which we will
not mention afterward.) Let AD C0.S1; PM4C.S

4/P /. Let zA be the unitization
of A. Let B D C0.S1; C.S4//. Since A is a corner of M4.B/ and B is a corner
of M2.A/ (note that a trivial projection of rank 1 is equivalent to a subprojection
of P ˚ P ), A is stably isomorphic to B . Let zB be a unitization of B . Then
zB D C.S4 �S1/ and

K1. zA/ŠK1.A/ŠK1.B/ŠK1. zB/Š Z˚Z:

5.4. For a unitary u2M4.C.S
4�S1//, in the identification of Œu�2K1.C.S4�S1//

with Z˚Z, the first component corresponds to the winding number of

S1 ,! S4 �S1
detu
����! S1 � C;

that is, the winding number of the map

ei� ! detu.�; ei� /;

where � is the north pole of S4. Hence, if u W S4 � S1 ! SU.n/, then the first
component of Œu� 2K1.C.S4 �S1//Š Z˚Z is automatically zero.

Lemma 5.5. Let u W S4 �S1! SU.2/. Then u 2M2.C.S
4 �S1// represents the

zero element in K1.C.S4 �S1//. In other words, if u 2 SUn.S4 �S1/ represents
a nonzero element in K-theory, then n� 3.

Proof. Let f WS4�S1!S5 be the standard quotient map sending f�g�S1[S4�f1g
to a single point. Consider u WS4�S1! SU.2/. Without loss of generality, assume
u.�; 1/D 12 2 SU.2/. Then ujS4�f1g W S

4! SU.2/D S3 represents an element in
�4.S

3/Š Z=2Z. Therefore u2jS4�f1g W S
4! SU.2/D S3 is homotopically trivial,

with .�; 1/ 2 S4�S1 as a fixed point. Evidently, u2jf�g�S1 W S
1! S3 D SU.2/ is

homotopically trivial with .�; 1/ 2 S4 �S1 as a fixed point. Consequently

u2jS4�f1g[f�g�S1 W S
4
� f1g[ f�g �S1! S3

is homotopically trivial with .�; 1/ 2 S4 � S1 as a fixed base point. There is a
homotopy

F W .S4 � f1g[ f�g �S1/� Œ0; 1�! S3

with F. � ; 0/D u2jS4�f1g[f�g�S1 and

F.x; 1/D 12 for all x 2 S4 � f1g[ f�g �S1:
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The following is a well-known easy fact: For any relative CW complex .X; Y /
(Y � X), any continuous map Y � I [X � f0g ! Z (where Z is any other CW
complex) can be extended to a continuous map X � I !Z.

Hence, there is a homotopy G W .S4�S1/� Œ0; 1�! S3 with G. � ; 0/D u2, and
GjS4�f1g[f�g�S1�Œ0;1�DF . Let v WS4�S1!SU.2/ be defined by v.x/DG.x; 1/;
then Œv�D Œu2� 2K1.C.S4�S1// and v maps S4�f1g[ f�g�S1 to 12 2 SU.2/.
Consequently, v passes to a map

v1 W S
5 , S4 �S1=S4 � f1g[ f�g �S1! S3 D SU.2/

and represents an element in �5.S
3/DZ=2Z. Hence v21 WS

5!S3 is homotopically
trivial, and therefore v2 is as well. So we have

4Œu�D 2Œu2�D 2Œv�D Œv2�D 0 2K1.C.S
4
�S1//;

which implies Œu�D 0 2K1.C.S4 �S1//. �

Remark 5.6. In the proof of Lemma 5.5, we in fact proved the following fact:
For any u WS4�S1!SU.2/, the map u4 WS4�S1!SU.2/ is homotopically trivial.

5.7. Note that P 2M4.C.S
4// can be regarded as a projection in M4.C.S

4�S1//,
still denoted by P , i.e., for fixed x 2 S4, P.x; � / is a constant projection along the
S1 direction. Then

(5-1) K1.A/ŠK1. zA/ŠK1.C.S
4
�S1//ŠK1.PM4.C.S

4
�S1//P /;

where AD C0.S1; PM4.C.S
4//P / is defined in Section 5.2. Let

EDf.�; u/ W � 2S4�S1; u2M4.C/ with P.x/uP.x/Du; u�uDuu�DP.x/g;

SE D f.�; u/ 2E W det.P.x/uP.x/C .14�P.x//D 1g:

ThenE!S4�S1 and SE!S4�S1 are fiber bundles with fibers U.2/ and SU.2/,
respectively. Also the unitaries in PM4.C.S

4 �S1//P correspond bijectively to
the cross-sections of a bundle E! S4�S1. For this reason, we will call a unitary
(of PM4.C.S

4�S1//P ) with determinant 1 everywhere a cross-section of a bundle
SE! S4 �S1.

Theorem 5.8. If u 2 PM4.C.S
4 �S1//P has determinant 1 everywhere, i.e., if u

is a cross-section of SE! S4 �S1, then Œu�D 0 in K1.PM4.C.S
4 �S1//P /.

Proof. Note that SE! S4�S1 is a smooth fiber bundle over the smooth manifold
S4 � S1. By a standard result in differential topology, u is homotopic to a C1-
section. Without loss of generality, we may assume that u itself is smooth. Identify
the north pole � 2 S4 with 0 2 R4 and a neighborhood of � with B�.0/� R4 for
� > 0. Since B�.0/ is contractible, SEjB�.0/�S1 is a trivial bundle. Note that the
projection P 2M4.C.S

4�S1// is constant along S1, hence SEŠSEjS4�f1g�S
1
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and SEjB�.0/�S1 Š SEjB�.0/�f1g �S
1; in other words, the fiber is constant along

S1 and SEjB�.0/�f1g is trivial and isomorphic to .B�.0/� f1g/� SU.2/. There is
a smooth bundle isomorphism

(5-2)  W SEjB�.0/�S1 ! .B�.0/�S
1/�SU.2/:

Then
 ıujB�.0/�S1 W B�.0/�S

1
! .B�.0/�S

1/�SU.2/

is a smooth map with

�1 ı . ıu/jB�.0/�S1 D idB�.0/�S1 ;

where �1 W .B�.0/ � S1/ � SU.2/! B�.0/ � S
1 is the projection onto the first

coordinate. Define � D �2 ı . ıujB�.0/�S1/, where �2 W .B�.0/�S1/�SU.2/!
SU.2/ is the projection onto the second coordinate. Since � is smooth, �jf�g�S1 is
not onto SU.2/ (note dim.SU.2//D 3 and dim.S1/D 1). Therefore, if � is small
enough, �jB�.0/�S1 is not onto. By Fact 1 of Section 5.1, � is homotopic to a
constant map �1 W B�.0/�S1! SU.2/ with

(5-3) �1.f�g �S
1/D

�
1 0

0 1

�
and �j@B�.0/�S1 D �1j@B�.0/�S1 ;

via a homotopy F W .B�.0/�S1/� Œ0; 1�! SU.2/ with F.x; ei� ; t / constant with
respect to t if x 2 @B�.0/.

Let u1 W B�.0/�S1! SE be the cross-section defined by

u1.x; e
i� /D �1..x; ei� /; �1.x; e

i� // 2 SE:

Then u1.x; ei� /Du.x; ei� / if x 2@B�.0/. We can extend u1 to S4�S1 by defining

u1.x; e
i� /D u.x; ei� / if .x; ei� / … B�.0/�S1:

Hence u1 is a section of SE with

u1.�; e
i� /D

�
12 02
02 02

�
D P.�/ for all ei� 2 S1:

Moreover, u1 is homotopic to u by a homotopy that is constant on .S4nB�.0//�S1

(on which u1 D u) and that agrees with F on B�.0/ � S1. Hence Œu� D Œu1� 2
K1.PM4.C.S

4 �S1//P /. Recall that S4 is obtained from

D4 D f.z; w/ 2 C2 j jzj2Cjwj2 � 1g

by identifying
@D4 D f.z; w/ 2 C2 j jzj2Cjwj2 D 1g
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with the north pole � 2 S4. Recall that P 2M4.C.S
4// (viewed as a projection in

M4.C.S
4 �S1// constant along the S1 direction) is defined as

P.z;w/D ˛.z; w/

�
12 02
02 02

�
˛�.z; w/;

where ˛.z; w/ is defined as in Section 5.2.
Define

v.z; w; ei� /D ˛�.z; w/u1.z; w; e
i� /˛.z; w/:

Then we have that

(i) v.z; w; ei� /D

�
12 02
02 02

�
for all .z; w/ 2 @D4;

and therefore v can be regarded as a map from S4 �S1 to M4.C/. Moreover,

(ii) v.z; w; ei� /D
�
12 02
02 02

�
v.z; w; ei� /

�
12 02
02 02

�
for all .z; w; ei� /2S4�S1:

By considering the upper-left corner of v (still denoted by v), we obtain a unitary
v W S4 �S1! SU.2/. By Lemma 5.5 and Remark 5.6, v4 is homotopically trivial.
Furthermore, by Fact 3 of Section 5.1, there is a homotopy F W S4 �S1 � Œ0; 1�!
SU.2/ such that

F.z;w; ei� ; 0/D v4.z; w; ei� / for all .z; w/ 2 S4; ei� 2 S1;(iii)

F.�; ei� ; t /D 12 for all ei� 2 S1;(iv)

F.z;w; ei� ; 1/D 12 for all .z; w/ 2 S4; ei� 2 S1:(v)

Define G WD4 �S1 � Œ0; 1�!M4.C/ by

G.z;w; ei� ; t /D ˛.z; w/

�
F.z;w; ei� ; t / 02

02 02

�
˛�.z; w/:

Then, by (iv), for .z; w/ 2 @D4 we have

G.z;w; ei� ; t /D

�
12 02
02 02

�
:

Hence G defines a map (still denoted by G) from S4 � S1 � Œ0; 1� ! M4.C/.
Furthermore G.z;w; ei� ; t / 2 P.z;w/M4.C/P.z; w/, and

G.z;w; ei� ; 0/D ˛.z; w/

�
v4 02
02 02

�
˛�.z; w/D u41:
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That is, G defines a homotopy between u41 and the unit P 2P
�
M4.C.S

4�S1//
�
P .

Consequently Œu41� D 0 and Œu1� D 0 2 K1
�
P
�
M4.C.S

4 � S1//
�
P
�
. Moreover,

Œu�D 0 2K1.C.S
4 �S1//, as desired. �

5.9. We identify P
�
M4.C.S

4 � S1//
�
P as a corner of M4.C.S

4 � S1//; then
K1
�
P.M4.C.S

4 �S1///P
�

is isomorphic to K1.C.S4 �S1//D Z˚Z naturally.
Let a 2 P

�
M4.C.S

4 �S1//
�
P be defined by

a.x; ei� /D ei�P.x/:

On the other hand, a could also be regarded as a unitary in M4.C.S
4 � S1// as

a.x; ei� /D ei�P.x/C.14�P.x//. Then Œa�D .2; 1/2Z˚ZŠK1.C.S
4�S1//,

since Œa� is the image of ŒP � 2K0.C.S4// under the exponential map

K1.C.S
4//!K1

�
C0.S

1; C.S4//
�
;

and ŒP �D .2; 1/ 2K0.C.S4//Š Z˚Z.

Theorem 5.10. No element .1; k/ 2K1.C.S4 �S1// can be realized by a unitary
b 2 PM4.C.S

4 �S1//P .

Proof. We argue by contradiction. Assume b 2 PM4.C.S
4 � S1//P satisfies

Œb�D .1; k/ 2 K1.PM4.C.S
4 � S1/P //. Without loss of generality, we assume

that b.�; 1/D P . Then

Œb2a��D .0; 2k� 1/ 2K1.PM4.C.S
4
�S1//P /:

In particular, the map

ei� ! det
�
P.�/.b2a�/.�; ei� /P.�/ 0

0 14�P.�/

�
8�8

has winding number 0. That is, it is homotopically trivial. Hence

.x; ei� /
h
��! det

�
P.�/.b2a�/.x; ei� /P.�/ 0

0 14�P.�/

�
8�8

defines a map h WS4�S1!S1 such that h� W�1.S4�S1/!�1.S
1/ is the zero map.

Hence there is a lifting Qh W S4 �S1! R with h.x; ei� /D exp.i Qh.x; ei� //. Define
a unitary b1 2 PM4.C.S

4�S1//P by b1.x; ei� /D exp.i 1
2
Qh.x; ei� //P.x/. Then

Œb1�D02K1.C.S
4�S1//, and b2a�b�1 2U.PM4C.S

4�S1/P / has determinant 1
everywhere. By Theorem 5.8, Œb2a�b�1 �D 02K1.C.S

4�S1//. On the other hand,

Œb2a�b�1 �D Œb
2a��D .0; 2k� 1/¤ 0 2K1.C.S

4
�S1//;

which is a contradiction. �
Remark 5.11. Similarly, we can show that for any unitary u2PM4.C.S

4�S1//P ,
Œu�D l Œa�D .2l; l/ 2K1.C.S

4 �S1// for some l 2 Z.
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Corollary 5.12. Let A D C0.S1; PC.S4/P /, and let zA be the unitization of A.
Then there is no unitary u 2 zA such that Œu�D .1; k/ 2 K1.A/. In particular, no
unitary u can correspond to a rank-1 projection in M4.C.S

4//.

Proof. Note that we may view P as a projection in M4.C.S
4 � S1// which is

constant along the direction of S1 (Section 5.7). So we may view zA as a unital C�-
subalgebra of PM4.C.S

4�S1//P . Thus, by the identification (5-1), Theorem 5.10
applies. �

Theorem 5.13. Let AD PM4.C.S
4//P . Then DurAD 2.

Proof. There is a projection e 2M2.A/ which is unitarily equivalent to a rank-1 pro-
jection in M8.C.S

4// corresponding to .1; 0/2K0.C.S4//. Let C DC0..0; 1/; A/.
By Corollary 5.12, there is no unitary in zC which represents a rank-1 projection. It
follows from Proposition 3.12 that DurA > 1.

However, since �C
�
K0.M2.C //

�
D
1
2

Z and M2.C / contains a rank-1 projection
(with trace 1

2
), by Proposition 3.6(3), Dur.M2.C //D 1. It follows that DurC D 2.

�

Acknowledgements

The majority of this work was done when Lin and Xue were in the Research Center
for Operator Algebras in the East China Normal University. They are both partially
supported by the center. Lin is also partially supported by a grant from the NSF.

References

[Blackadar 1981] B. E. Blackadar, “A simple unital projectionless C�-algebra”, J. Operator Theory
5:1 (1981), 63–71. MR 82h:46076 Zbl 0494.46056

[Brown 1977] L. G. Brown, “Stable isomorphism of hereditary subalgebras of C�-algebras”, Pacific
J. Math. 71:2 (1977), 335–348. MR 56 #12894 Zbl 0362.46042

[Cuntz and Pedersen 1979] J. Cuntz and G. K. Pedersen, “Equivalence and traces on C�-algebras”, J.
Funct. Anal. 33:2 (1979), 135–164. MR 80m:46053 Zbl 0427.46042

[Elliott 1997] G. A. Elliott, “A classification of certain simple C�-algebras, II”, J. Ramanujan Math.
Soc. 12:1 (1997), 97–134. MR 98j:46060 Zbl 0954.46035

[Elliott and Gong 1996] G. A. Elliott and G. Gong, “On the classification of C�-algebras of real rank
zero, II”, Ann. of Math. .2/ 144:3 (1996), 497–610. MR 98j:46055 Zbl 0867.46041

[Elliott et al. 2007] G. A. Elliott, G. Gong, and L. Li, “On the classification of simple inductive limit
C�-algebras, II: The isomorphism theorem”, Invent. Math. 168:2 (2007), 249–320. MR 2010g:46102
Zbl 1129.46051

[Gong 2002] G. Gong, “On the classification of simple inductive limit C�-algebras, I: The reduction
theorem”, Doc. Math. 7 (2002), 255–461. MR 2007h:46069 Zbl 1024.46018

[Gong et al. 2015] G. Gong, H. Lin, and Z. Niu, “Classification of finite simple amenable Z-stable
C�-algebras”, preprint, 2015. arXiv 1501.00135

http://www.theta.ro/jot/archive/1981-005-001/1981-005-001-006.html
http://msp.org/idx/mr/82h:46076
http://msp.org/idx/zbl/0494.46056
http://dx.doi.org/10.2140/pjm.1977.71.335
http://msp.org/idx/mr/56:12894
http://msp.org/idx/zbl/0362.46042
http://dx.doi.org/10.1016/0022-1236(79)90108-3
http://msp.org/idx/mr/80m:46053
http://msp.org/idx/zbl/0427.46042
http://msp.org/idx/mr/98j:46060
http://msp.org/idx/zbl/0954.46035
http://dx.doi.org/10.2307/2118565
http://dx.doi.org/10.2307/2118565
http://msp.org/idx/mr/98j:46055
http://msp.org/idx/zbl/0867.46041
http://dx.doi.org/10.1007/s00222-006-0033-y
http://dx.doi.org/10.1007/s00222-006-0033-y
http://msp.org/idx/mr/2010g:46102
http://msp.org/idx/zbl/1129.46051
http://www.math.uiuc.edu/documenta/vol-07/13.html
http://www.math.uiuc.edu/documenta/vol-07/13.html
http://msp.org/idx/mr/2007h:46069
http://msp.org/idx/zbl/1024.46018
http://msp.org/idx/arx/1501.00135


DETERMINANT RANK OF C�-ALGEBRAS 435

[de la Harpe and Skandalis 1984] P. de la Harpe and G. Skandalis, “Produits finis de commutateurs
dans les C�-algèbres”, Ann. Inst. Fourier .Grenoble/ 34:4 (1984), 169–202. MR 87i:46146b
Zbl 0536.46044

[Lin 2001] H. Lin, An introduction to the classification of amenable C�-algebras, World Scientific,
River Edge, NJ, 2001. MR 2002k:46141 Zbl 1013.46055

[Lin 2007] H. Lin, “Simple nuclear C�-algebras of tracial topological rank one”, J. Funct. Anal.
251:2 (2007), 601–679. MR 2008k:46164 Zbl 1206.46052

[Lin 2010a] H. Lin, Approximate homotopy of homomorphisms from C.X/ into a simple C�-algebra,
Memoirs of the American Mathematical Society 205:963, American Mathematical Society, Provi-
dence, RI, 2010. MR 2011g:46101 Zbl 1205.46037

[Lin 2010b] H. Lin, “Homotopy of unitaries in simple C�-algebras with tracial rank one”, J. Funct.
Anal. 258:6 (2010), 1822–1882. MR 2011g:46100 Zbl 1203.46038

[Lin 2011] H. Lin, “Asymptotic unitary equivalence and classification of simple amenable C�-
algebras”, Invent. Math. 183:2 (2011), 385–450. MR 2012c:46157 Zbl 1255.46031

[Masani 1981] P. Masani, “Multiplicative partial integration and the Trotter product formula”, Adv. in
Math. 40:1 (1981), 1–9. MR 82m:47030a Zbl 0485.47026

[Nagy 1987] G. Nagy, “Stable rank of C�-algebras of Toeplitz operators on polydisks”, pp. 227–235
in Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985),
edited by H. Helson et al., Oper. Theory Adv. Appl. 24, Birkhäuser, Basel, 1987. MR 89i:47045
Zbl 0642.47014

[Nielsen and Thomsen 1996] K. E. Nielsen and K. Thomsen, “Limits of circle algebras”, Exposition.
Math. 14:1 (1996), 17–56. MR 97e:46097 Zbl 0865.46037

[Nistor 1986] V. Nistor, “Stable range for tensor products of extensions of K by C.X/”, J. Operator
Theory 16:2 (1986), 387–396. MR 88b:46085

[Rieffel 1983] M. A. Rieffel, “Dimension and stable rank in the K-theory of C�-algebras”, Proc.
London Math. Soc. .3/ 46:2 (1983), 301–333. MR 84g:46085 Zbl 0533.46046

[Rieffel 1987] M. A. Rieffel, “The homotopy groups of the unitary groups of non-commutative tori”,
J. Operator Theory 17:2 (1987), 237–254. MR 88f:22018 Zbl 0656.46056

[Thomsen 1995] K. Thomsen, “Traces, unitary characters and crossed products by Z”, Publ. Res. Inst.
Math. Sci. 31:6 (1995), 1011–1029. MR 97a:46074 Zbl 0853.46073

[Thomsen 1997] K. Thomsen, Limits of certain subhomogeneous C�-algebras, Mémoires de la
Société Mathématique de France 71, Société Mathématique de France, Paris, 1997. MR 2000c:46110
Zbl 0922.46055

[Villadsen 1999] J. Villadsen, “On the stable rank of simple C�-algebras”, J. Amer. Math. Soc. 12:4
(1999), 1091–1102. MR 2000f:46075 Zbl 0937.46052

[Xue 2000] Y. Xue, “The general stable rank in nonstable K-theory”, Rocky Mountain J. Math. 30:2
(2000), 761–775. MR 2001h:46125 Zbl 0980.46053

[Xue 2001] Y. Xue, “The K-groups of C.M/�� Zp for certain pairs .M; �/”, J. Operator Theory
46:2 (2001), 337–354. MR 2003a:46098 Zbl 0998.46037

[Xue 2010] Y. Xue, “Approximate diagonalization of self-adjoint matrices over C.M/”, Funct. Anal.
Approx. Comput. 2:1 (2010), 53–65. MR 2012b:46112 Zbl 1289.46083 arXiv 1002.3962

[Zhang 1990] S. Zhang, “Diagonalizing projections in multiplier algebras and in matrices over a
C�-algebra”, Pacific J. Math. 145:1 (1990), 181–200. MR 92h:46088 Zbl 0673.46049

Received May 16, 2014.

http://dx.doi.org/10.5802/aif.993
http://dx.doi.org/10.5802/aif.993
http://msp.org/idx/mr/87i:46146b
http://msp.org/idx/zbl/0536.46044
http://dx.doi.org/10.1142/9789812799883
http://msp.org/idx/mr/2002k:46141
http://msp.org/idx/zbl/1013.46055
http://dx.doi.org/10.1016/j.jfa.2007.06.016
http://msp.org/idx/mr/2008k:46164
http://msp.org/idx/zbl/1206.46052
http://dx.doi.org/10.1090/S0065-9266-09-00611-5
http://msp.org/idx/mr/2011g:46101
http://msp.org/idx/zbl/1205.46037
http://dx.doi.org/10.1016/j.jfa.2009.11.020
http://msp.org/idx/mr/2011g:46100
http://msp.org/idx/zbl/1203.46038
http://dx.doi.org/10.1007/s00222-010-0280-9
http://dx.doi.org/10.1007/s00222-010-0280-9
http://msp.org/idx/mr/2012c:46157
http://msp.org/idx/zbl/1255.46031
http://dx.doi.org/10.1016/0001-8708(81)90030-X
http://msp.org/idx/mr/82m:47030a
http://msp.org/idx/zbl/0485.47026
http://msp.org/idx/mr/89i:47045
http://msp.org/idx/zbl/0642.47014
http://msp.org/idx/mr/97e:46097
http://msp.org/idx/zbl/0865.46037
http://www.theta.ro/jot/archive/1986-016-002/1986-016-002-014.html
http://msp.org/idx/mr/88b:46085
http://dx.doi.org/10.1112/plms/s3-46.2.301
http://msp.org/idx/mr/84g:46085
http://msp.org/idx/zbl/0533.46046
http://www.theta.ro/jot/archive/1987-017-002/1987-017-002-005.html
http://msp.org/idx/mr/88f:22018
http://msp.org/idx/zbl/0656.46056
http://dx.doi.org/10.2977/prims/1195163594
http://msp.org/idx/mr/97a:46074
http://msp.org/idx/zbl/0853.46073
http://www.numdam.org/item?id=MSMF_1997_2_71__1_0
http://msp.org/idx/mr/2000c:46110
http://msp.org/idx/zbl/0922.46055
http://dx.doi.org/10.1090/S0894-0347-99-00314-8
http://msp.org/idx/mr/2000f:46075
http://msp.org/idx/zbl/0937.46052
http://dx.doi.org/10.1216/rmjm/1022009295
http://msp.org/idx/mr/2001h:46125
http://msp.org/idx/zbl/0980.46053
http://www.theta.ro/jot/archive/2001-046-002/2001-046-002-007.html
http://msp.org/idx/mr/2003a:46098
http://msp.org/idx/zbl/0998.46037
http://operator.pmf.ni.ac.rs/www/pmf/publikacije/faac/2010/2-1-2010/faac2-1-5.pdf
http://msp.org/idx/mr/2012b:46112
http://msp.org/idx/zbl/1289.46083
http://msp.org/idx/arx/1002.3962
http://dx.doi.org/10.2140/pjm.1990.145.181
http://dx.doi.org/10.2140/pjm.1990.145.181
http://msp.org/idx/mr/92h:46088
http://msp.org/idx/zbl/0673.46049


436 GUIHUA GONG, HUAXIN LIN AND YIFENG XUE

GUIHUA GONG

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF PUERTO RICO

RIO PIEDRAS, 00931
PUERTO RICO

guihua.gong@upr.edu

HUAXIN LIN

RESEARCH CENTER FOR OPERATOR ALGEBRAS AND DEPARTMENT OF MATHEMATICS

SHANGHAI KEY LABORATORY OF PMMP
EAST CHINA NORMAL UNIVERSITY

SHANGHAI, 200062
CHINA

and

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF OREGON

EUGENE, OR 97403
UNITED STATES

hlin@uoregon.edu

YIFENG XUE

RESEARCH CENTER FOR OPERATOR ALGEBRAS AND DEPARTMENT OF MATHEMATICS

SHANGHAI KEY LABORATORY OF PMMP
EAST CHINA NORMAL UNIVERSITY

SHANGHAI, 200062
CHINA

yfxue@math.ecnu.edu.cn

mailto:guihua.gong@upr.edu
mailto:hlin@uoregon.edu
mailto:yfxue@math.ecnu.edu.cn


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2015 is US $420/year for the electronic version, and $570/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 274 No. 2 April 2015

257On Demazure and local Weyl modules for affine hyperalgebras
ANGELO BIANCHI, TIAGO MACEDO and ADRIANO MOURA

305On curves and polygons with the equiangular chord property
TARIK AOUGAB, XIDIAN SUN, SERGE TABACHNIKOV and
YUWEN WANG

325The well-posedness of nonlinear Schrödinger equations in Triebel-type
spaces

SHAOLEI RU and JIECHENG CHEN

355Hypersurfaces with constant curvature quotients in warped product
manifolds

JIE WU and CHAO XIA

373The first terms in the expansion of the Bergman kernel in higher
degrees

MARTIN PUCHOL and JIALIN ZHU

405Determinant rank of C∗-algebras
GUIHUA GONG, HUAXIN LIN and YIFENG XUE

437Motion by mixed volume preserving curvature functions near spheres
DAVID HARTLEY

451Homomorphisms on infinite direct products of groups, rings and
monoids

GEORGE M. BERGMAN

497The virtual first Betti number of soluble groups
MARTIN R. BRIDSON and DESSISLAVA H. KOCHLOUKOVA

0030-8730(201504)274:2;1-1

Pacific
JournalofM

athem
atics

2015
Vol.274,N

o.2


	1. Introduction
	2. Preliminaries
	3. Determinant rank
	4. Simple C`*-algebras
	5. C`*-algebras with DurA >1
	5.1. 
	5.2. 
	5.3. 
	5.4. 
	5.7. 
	5.9. 

	Acknowledgements
	References
	
	

