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MOTION BY MIXED VOLUME PRESERVING
CURVATURE FUNCTIONS NEAR SPHERES

DAVID HARTLEY

In this paper we investigate the flow of hypersurfaces by a class of symmet-
ric functions of the principal curvatures with a mixed volume constraint.
We consider compact hypersurfaces without boundary that can be written
as a graph over a sphere. The linearisation of the resulting fully nonlinear
PDE is used to prove a short-time existence theorem for hypersurfaces that
are sufficiently close to a sphere and, using centre manifold analysis, the
stability of the sphere as a stationary solution to the flow is determined. We
will find that for initial hypersurfaces sufficiently close to a sphere, the flow
will exist for all time and the hypersurfaces will converge exponentially fast
to a sphere. This result was shown for the case where the symmetric func-
tion is the mean curvature and the constraint is on the (n + 1)-dimensional
enclosed volume by Escher and Simonett (1998).

1. Introduction

Given a sufficiently smooth hypersurface �0 = X0(Mn) ⊂ Rn+1 that is compact
without boundary, where Mn is an n-dimensional manifold, we are interested in
finding a family of embeddings X : Mn

×[0, T )→ Rn+1 such that
(1)
∂X
∂t
= (hk−F(κ))ν�t , X( · , 0)= X0, hk=

1´
Mn Ek+1 dµt

ˆ
Mn

F(κ)Ek+1 dµt ,

where κ = (κ1, . . . , κn), κi are the principal curvatures of the hypersurface �t =

X(Mn, t)= Xt(Mn), ν�t and dµt are the outward pointing unit normal and induced
measure of �t , respectively, and k is a fixed integer between −1 and n− 1. Here
El denotes the l-th elementary symmetric function of the principal curvatures:

El =

{
1 if l = 0,∑

1≤i1<···<il≤n κi1κi2 . . . κil if l = 1, . . . , n,

and F(κ) is a given smooth, symmetric function that satisfies (∂F/∂κi )(κ0) > 0,
where κ0 = (1/R, . . . , 1/R) for some fixed R ∈ R+. The flow can be seen to
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preserve the (n− k)-th mixed volume of the hypersurface (see Corollary 2.2). Note
that while such a quantity is usually only defined for convex hypersurfaces, there is
an obvious extension to all hypersurfaces (see Section 2).

This flow has been studied previously in [McCoy 2005]. There it was proved that
under some additional conditions on F , for example homogeneity of degree one and
convexity or concavity, initially convex hypersurfaces admit a solution for all time
and the hypersurfaces converge to a sphere as t→∞. This result had previously
been proved for the specific case where F(κ)= H , the mean curvature, in [McCoy
2004] and, if in addition, k =−1 (in which case the flow is the well-known volume
preserving mean curvature flow), in [Huisken 1987]. Other results for the volume
preserving mean curvature flow include average mean convex hypersurfaces with
initially small traceless second fundamental form converging to spheres (see [Li
2009]) and hypersurfaces that are graphs over spheres with a height function close
to zero, in a certain function space, converging to spheres (see [Escher and Simonett
1998b]). Techniques similar to those in this paper were used to study volume
preserving mean curvature flow for hypersurfaces close to a cylinder in [Hartley
2013] and spherical caps in [Abels et al. 2015].

The situation where F has homogeneity greater than one has been considered
in [Cabezas-Rivas and Sinestrari 2010]. There it was proved that if k = −1 and
F(κ)= Hβ

m , with mβ > 1 and Hm =
(n

m

)−1 Em the m-th mean curvature, the flow
takes initially convex hypersurfaces that satisfy a pinching condition to spheres; the
pinching condition is of the form En > CH n > 0, where C is a constant depending
on the parameters of the flow.

The main result of this paper is:

Theorem 1.1. Let F be a smooth, symmetric function of the principal curvatures
satisfying (∂F/∂κa)(κ0) > 0 for a = 1, . . . , n and some R ∈ R+. If �0 is a graph
over the sphere Sn

R with height function sufficiently small in h2+α(Sn
R), 0< α < 1

(see Section 2), then its flow by (1) exists for all time and converges exponentially
fast to a sphere as t→∞, with respect to the h2+α(Sn

R)-topology.

Part (c) of the main result in [Escher and Simonett 1998b] proves a similar result
for the specific case of the volume preserving mean curvature flow. Some differences
include that Escher and Simonett are able to use the quasilinear nature of the flow to
prove the hypersurfaces are smooth after the initial time. This also allows them to
obtain convergence with respect to the C l(Sn

R)-topology, for any fixed l, and only
requires the initial height function to be small in h1+α(Sn

R). In contrast, the current
paper deals with flows that are, in general, fully nonlinear, so the methods we use
require the initial height function to be small in h2+α(Sn

R), which gives a condition
on its curvature, and only give convergence in the h2+α(Sn

R)-topology. The key
theorems for nonlinear flow appear in [Lunardi 1995] and have been included in
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the Appendix for the reader’s ease.
In Section 2 of this paper we convert the flow (1) to a PDE for the graph function

and also introduce the spaces and notation that will be used throughout the paper.
The section ends with a corollary proving the flow preserves a certain mixed volume.
In Section 3 we consider the problem as an ODE on Banach spaces and determine
the linearisation of the speed. This leads to a new short-time existence theorem for
the flow that includes some initially h2+α(Sn

R) hypersurfaces. In the final section
the eigenvalues of the linearised operator are determined and a centre manifold is
constructed. The proof of the main result is finished by showing that the centre
manifold consists entirely of spheres and is exponentially attractive.

We note here that the (n− k)-th mixed volumes, for k ≥ 1, are only well defined
for convex hypersurfaces (see [Andrews 2001]). However, we will refer to the flow
(1) as mixed volume preserving for any �0, with the understanding that it preserves
a quantity that coincides with the (n− k)-th mixed volume when �0 is convex (see
Corollary 2.2).

2. Notation and preliminaries

In this paper we consider Mn
= Sn

R , a given sphere of radius R, and hypersurfaces
that are normal graphs over Sn

R , Xρ( p)= p+ ρ( p)νSn
R
( p), p ∈ Sn

R . The volume
form on such a hypersurface will be denoted by dµρ and we let µ(ρ) be the function
such that dµρ =µ(ρ) dµ0. We now proceed as in [Escher and Simonett 1998b] and
convert the flow to an evolution equation for the height function ρ :Sn

R×[0, T )→R.
Up to a tangential diffeomorphism the flow (1) is equivalent to solving the PDE

(2)
∂ρ

∂t
=

√
1+

R2

(R+ ρ)2
|∇ρ|2

(
hk(ρ)− F(κρ)

)
, ρ( · , 0)= ρ0,

where hk(ρ) =
´

Sn
R

Ek+1(ρ)F(κρ) dµρ
/´

Sn
R

Ek+1(ρ) dµρ , κρ is the principal cur-
vature vector of the hypersurface defined by ρ( · , t), and ∇ denotes the gradient on
Sn

R (see [McCoy 2005]).
The graph functions ρ are chosen in the little Hölder spaces, hl+α(Sn

R), for
α ∈ (0, 1), l ∈N. These spaces are defined for an open set U ⊂Rn and a multi-index
β = (β1, . . . , βn) with |β| =

∑n
i=1 βi as follows:

hα(Ū )=
{
ρ ∈ Cα(Ū ) : lim

r→0
sup

x,y∈Ū
0<|x−y|<r

|ρ(x)− ρ(y)|
|x − y|α

= 0
}
,

hl+α(Ū )=
{
ρ ∈ C l+α(Ū ) : Dβρ ∈ hα(Ū ) for all β, |β| = l

}
,

where D is the derivative operator on Rn and Cα , C l+α are the Hölder spaces (see
[Lunardi 1995]). The norm on the little Hölder space hl+α is inherited from C l+α.
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The little Hölder spaces can be extended to Sn
R by means of an atlas. In addition,

it is known that the little Hölder spaces are the continuous interpolation spaces
between themselves (see [Guenther et al. 2002, Equation 19]), that is, for real
numbers 0< α < β we have

(3)
(
hα(Sn

R), hβ(Sn
R)
)
θ
= h(β−α)θ+α(Sn

R),

provided (β − α)θ + α /∈ Z, where ( · , · )θ is an interpolation functor for each
θ ∈ (0, 1), defined for Y ⊂ X as

(X, Y )θ =
{

x ∈ X : lim
t→0+

t−θK (t, x, X, Y )= 0
}
,

where K (t, x, X, Y )= inf
a∈Y
(‖x − a‖X + t‖a‖Y ).

We will often abuse notation and use ρ to represent both a function on Sn
R×[0, T )

and the mapping from [0, T ) to a space of functions such that ρ(t)= ρ( · , t) for
all t ∈ [0, T ). In this regard we define the spaces C(I, X) and Ck(I, X) consisting
of continuous and continuously k-differentiable functions from an interval I ⊂ R

to a Banach space X . They have the norms ‖ρ‖Ck(I,X) =
∑k

j=0 supt∈I ‖ρ
( j)(t)‖X .

For an operator between function spaces G : Y → Ỹ we denote the Fréchet
derivative by ∂G. A linear operator, A : Y ⊂ X → X , is called sectorial if there
exist θ ∈

(
π
2 , π

)
, ω ∈ R and M > 0 such that

(i) ρ(A)⊃ Sθ,ω = {λ ∈ C : λ 6= ω, |arg(λ−ω)|< θ},

(ii) ‖R(λ, A)‖L(X,X) ≤
M
|λ−ω|

for all λ ∈ Sθ,ω.

Here ρ(A) is the resolvent set, R(λ, A)= (λI − A)−1 is the resolvent operator, and
‖ · ‖L(X,X) is the standard linear operator norm (see [Lunardi 1995]).

For all closed, compact hypersurfaces �⊂ Rn+1, we define the quantity

Vl(�)=

{(
(n+ 1)

(n
l

))−1 ´
M En−l dµ if l = 0, . . . , n,

Vol(8) if l = n+ 1,

where 8 is the (n+ 1)-dimensional region contained inside �; for convex hyper-
surfaces this agrees with the mixed volumes.

Lemma 2.1. For a family of hypersurfaces �t satisfying (1), the Weingarten map,
volume form and mixed volumes satisfy the evolution equations

∂hi
j

∂t
= gim

∇m∇ j F − (hk − F)hi
mhm

j ,
∂(dµ)
∂t
= (hk − F)H dµ,

dVl

dt
=

{
0 if l = 0,(n+1

l

)−1 ´
M En+1−l(hk − F) dµ if l = 1, . . . , n+ 1.
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Proof. The first two equations are well known; see [Andrews 1994], for example.
The last equation, except for the l = n+ 1 case, which can be found in [Cabezas-
Rivas and Sinestrari 2010], is given in Lemma 4.3 of [McCoy 2005] for the case
where the �t are convex hypersurfaces. McCoy uses the definition of mixed
volumes of convex hypersurfaces (see [Andrews 2001]), which is not valid unless
the hypersurface is convex. To obtain the result for all solutions to the flow we use
the following identity, found in Equation (5.86) of [Gerhardt 2008]:

(4)
∂Ea+1

∂hi
j
= Eaδ

j
i − h j

q
∂Ea

∂hi
q
,

where a = 0, . . . , n (in the a = n case we use the convention En+1 = 0). Now if
we take the divergence of this identity, we obtain

gim
∇m

(
∂Ea+1

∂hi
j

)
= g jm

∇m Ea − gim
∇mh j

q
∂Ea

∂hi
q
− gimh j

q∇m

(
∂Ea

∂hi
q

)
= g jm

∇mh p
q
∂Ea

∂h p
q
− gim g j p

∇mh pq
∂Ea

∂hi
q
− gimh j

q∇m

(
∂Ea

∂hi
q

)
= g jm g pi

∇mhiq
∂Ea

∂h p
q
− gim g j p

∇phmq
∂Ea

∂hi
q
− gimh j

q∇m

(
∂Ea

∂hi
q

)
=−h j

q gim
∇i

(
∂Ea

∂hm
q

)
,

using the Codazzi equation to get to the second last line. Since gim
∇i

(
∂E0

∂hm
j

)
vanishes, we see this equation implies

gim
∇i

(
∂Ea

∂hm
j

)
= 0 for all a = 0, . . . , n.

We can now derive the evolution equation:

(n+ 1)
(n

l

)dVl

dt

=

ˆ
M

∂En−l

∂t
+ (hk − F)HEn−l dµ

=

ˆ
M

∂En−l

∂hi
j

∂hi
j

∂t
+ (hk − F)HEn−l dµ

=

ˆ
M

∂En−l

∂hi
j

gim
∇m∇ j F − (hk − F)

∂En−l

∂hi
j

hi
mhm

j + (hk − F)HEn−l dµ
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=

ˆ
M
∇m

(
∂En−l

∂hi
j

gim
∇ j F

)
+ (hk − F)hi

m

(
∂En+1−l

∂hi
m
− En−lδ

m
i

)
+ (hk − F)HEn−l dµ

= (n+ 1− l)
ˆ

M
(hk − F)En+1−l dµ,

where the second last line is due to (4) and the last line is due to the homogeneity
of En+1−l . �

Corollary 2.2. For a compact hypersurface without boundary, �0, the flow (1)
preserves the value of Vn−k , i.e., Vn−k (�t)= Vn−k (�0) as long as the flow exists.

3. Graphs over spheres

The flow in (2) can be considered as an ordinary differential equation between
Banach spaces. Set 0< α < 1 and define

G : h2+α(Sn
R)→ hα(Sn

R),

G(ρ) := L(ρ)(hk(ρ)− F(κρ)), L(ρ) :=

√
1+

R2

(R+ ρ)2
|∇ρ|2.

The flow (2) is then rewritten as

(5) ρ ′(t)= G(ρ(t)), ρ(0)= ρ0 ∈ h2+α(Sn
R).

Lemma 3.1. The linearisation of G about zero is given by

∂G(0)u =
∂F
∂κ1

(κ0)

((
n
R2 +1Sn

R

)
u−

n
R2

 
Sn

R

u dµ0

)
,

for u ∈ h2+α(Sn
R).

Note that only the derivative of F(κ) with respect to κ1 appears in this formula
for convenience, since (∂F/∂κ1)(κ0)= (∂F/∂κi )(κ0) for all i = 1, . . . , n. We also
use the notation

ffl
Mn f dµ :=

´
Mn f dµ

/´
Mn dµ.

Proof. Firstly note L(0)= 1 and ∂L(0)= 0. By linearising the curvature function,
we find

∂F(κρ)
∣∣
ρ=0 =

n∑
i=1

∂F
∂κi

(κρ)∂κi (ρ)

∣∣∣∣
ρ=0
=
∂F
∂κ1

(κ0)

n∑
i=1

∂κi (0)=
∂F
∂κ1

(κ0)∂H(0).
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It follows that for u ∈ h2+α(Sn
R),

∂hk(0)u

= ∂

(
1´

Sn
R

Ek+1(ρ)µ(ρ) dµ0

ˆ
Sn

R

Ek+1(ρ)F(κρ)µ(ρ) dµ0

)∣∣∣∣
ρ=0

u

=
1(´

Sn
R

Ek+1(0) dµ0
)2

(ˆ
Sn

R

Ek+1(0) dµ0 ∂

(ˆ
Sn

R

Ek+1(ρ)F(κρ)µ(ρ) dµ0

)∣∣∣∣
ρ=0

u

−

ˆ
Sn

R

Ek+1(0)F(κ0) dµ0 ∂

(ˆ
Sn

R

Ek+1(ρ)µ(ρ) dµ0

)∣∣∣∣
ρ=0

u
)

=
1´

Sn
R

Ek+1(0) dµ0

×

(ˆ
Sn

R

(
Ek+1(0) ∂F(κρ)

∣∣
ρ=0u+ F(κ0) ∂

(
Ek+1(ρ)µ(ρ)

)∣∣
ρ=0u

)
dµ0

− F(κ0)

ˆ
Sn

R

∂
(
Ek+1(ρ)µ(ρ)

)∣∣
ρ=0u dµ0

)
=
∂F
∂κ1

(κ0)

 
Sn

R

∂H(0)u dµ0.

It was shown in [Escher and Simonett 1998a] that

∂H(0)=−
(

n
R2 +1Sn

R

)
,

so combining these results gives, for u ∈ h2+α(Sn
R),

(6) ∂G(0)u =
∂F
∂κ1

(κ0)

((
n
R2 +1Sn

R

)
u−

 
Sn

R

(
n
R2 +1Sn

R

)
u dµ0

)
.

The divergence theorem gives the result. �

Lemma 3.2. For any α0 such that 0< α0 < α, there exists a neighbourhood, O1,
of 0 ∈ h2+α(Sn

R) such that the operator ∂G(ρ) is the part in hα(Sn
R) of a sectorial

operator Aρ : h2+α0(Sn
R)→ hα0(Sn

R) for all ρ ∈ O1.

Proof. We set Ḡ : h2+α0(Sn
R)→ hα0(Sn

R) with Ḡ(ρ) := L(ρ)(hk(ρ)− F(κρ)) so
that with Aρ = ∂Ḡ(ρ) it is clear that ∂G(ρ) is the part in hα(Sn

R) of Aρ . It remains
to show that there exists O1 such that Aρ is sectorial for ρ ∈ O1.

As ∂H(0) = −(n/R2
+ 1Sn

R
) is a uniformly elliptic operator on a compact

manifold without boundary, its negative is sectorial as a map from h2+α0(Sn
R);

see [Guenther et al. 2002, Lemma 3.4], for example. Now the operator A0 :

h2+α0(Sn
R)→ hα0(Sn

R), defined by

A0u =
(

n
R2 +1Sn

R

)
u−

n
R2

 
Sn

R

u dµ0,
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is sectorial by the perturbation result in Proposition 2.4.1(ii) of [Lunardi 1995],
since the map u 7→ −(n/R2)

ffl
Sn

R
u dµ0 is in L(h2+α0(Sn

R), h2+α0(Sn
R)). This then

implies, by Proposition 2.4.2 of [Lunardi 1995], that Aρ = A0+(∂Ḡ(ρ)−∂Ḡ(0)) is
sectorial for all ρ in a neighbourhood of zero, O2 ⊂ h2+α0(Sn

R). The result follows
by setting O1 = O2 ∩ h2+α(Sn

R). �

Theorem 3.3. There are constants δ, r > 0 such that if ‖ρ0‖h2+α(Sn
R)
≤ r , then (5)

has a unique maximal solution:

ρ ∈ C
(
[0, δ), h2+α(Sn

R)
)
∩C1(

[0, δ), hα(Sn
R)
)
.

Proof. This existence theorem is a result of Theorem A.1, which is Theorem 8.4.1 in
[Lunardi 1995], by setting ū = 0. In order to satisfy the assumption of the theorem
it must be shown that there exists a neighbourhood of zero, O ⊂ h2+α(Sn

R), such
that G and ∂G are continuous on O and for every ρ ∈ O the operator ∂G(ρ) is the
part in hα(Sn

R) of a sectorial operator A : h2+α0(Sn
R)→ hα0(Sn

R).
As in [Andrews and McCoy 2012, Remark 1], since F is a smooth symmetric

function of the principal curvatures, it is also a smooth function of the elementary
symmetric functions, which depend smoothly on the components of the Weingarten
map. We now consider a neighbourhood of zero, O3, such that if ρ ∈ O3, then´

Sn
R

Ek+1(ρ) dµρ > 0 and ρ( p) > −R for all p ∈ Sn
R (note if k = −1 the former

is always satisfied). It is easily seen that the Weingarten map depends smoothly
on ρ ∈ O3 ⊂ h2+α(Sn

R), so that G depends smoothly on ρ ∈ O3. The sectorial
condition was established in Lemma 3.2 for a neighbourhood O1, so the proof is
complete by setting O = O3 ∩ O1. �

4. Stability around spheres

As we are considering the flow locally about ρ = 0, it is convenient to rewrite (5)
highlighting the dominant linear part:

(7) ρ ′(t)= ∂G(0)ρ(t)+ G̃(ρ(t)), G̃(u) := G(u)− ∂G(0)u.

Lemma 4.1. The spectrum, σ(∂G(0)), of ∂G(0) consists of a sequence of isolated
nonpositive eigenvalues where the multiplicity of the 0 eigenvalue is n+ 2.

Proof. This follows from [Escher and Simonett 1998b], as ∂G(0) is a positive
constant multiple of the linear operator in that paper. To be exact, we calculate all
the elements of the spectrum. Since h2+α(Sn

R) is compactly embedded in hα(Sn
R),

the spectrum consists entirely of eigenvalues. To characterise the spectrum we first
look at the spectrum of the L2-self adjoint operator:

Ãu =
∂F
∂κ1

(κ0)

(
n
R2 +1Sn

R

)
u.
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The eigenvalues of the spherical Laplacian are well known to be −l(l + n− 1)/R2

for l ∈ N ∪ {0} with eigenfunctions the spherical harmonics of order l, denoted
by Yl,p, 1≤ p ≤ Ml , where

Ml =


( l+n

n

)
−

( l+n−2
n

)
if l ≥ 2,( l+n

n

)
if l ∈ {0, 1}.

Therefore the eigenfunctions of Ã are also the spherical harmonics with eigenvalues

ξl =
∂F
∂κ1

(κ0)

(
n
R2 −

l(l + n− 1)
R2

)
=−

∂F
∂κ1

(κ0)
(l − 1)(l + n)

R2 .

Returning to the spectrum of ∂G(0), Y0,1 = 1 is still an eigenfunction but with
eigenvalue λ0 = 0. The operator ∂G(0) is also self-adjoint with respect to the
L2 inner product on h2+α(Sn

R). Therefore we need only consider eigenfunctions
orthogonal to Y0,1 in order to characterise the remainder of the spectrum. This
means that for an eigenfunction u we assumeˆ

Sn
R

u dµ0 = 0,

and hence by Lemma 3.1, ∂G(0)u = Ãu. The remaining eigenfunctions of ∂G(0)
are then the remaining eigenfunctions of Ã, with the same eigenvalues. So the
spectrum of ∂G(0) consists of the eigenvalues

λl =

0 if l = 0,

−
∂F
∂κ1

(κ0)
l(l + n+ 1)

R2 if l ∈ N,

with eigenfunctions

ul,p =

{
Y0,1 if l = p = 0,

Yl+1,p if l ∈ N∪ {0}, 1≤ p ≤ Ml+1.

The multiplicity of the 0 eigenvalue is then M1+ 1= n+ 2. �

In what follows, we set P to be the projection from hα(Sn
R) onto the λ = 0

eigenspace given by

Pu :=
n+1∑
p=0

〈u, u0,p〉u0,p,

where we use 〈 · , · 〉 to denote the L2 inner product on hα(Sn
R). Because ∂G(0) is

self-adjoint with respect to this inner product, clearly P∂G(0)u = ∂G(0)Pu = 0
for every u ∈ h2+α(Sn

R). Due to this, h2+α(Sn
R) can be split into the subspaces
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X c
= P(hα(Sn

R)) and X s
= (I − P)(h2+α(Sn

R)), called the centre subspace and
stable subspace, respectively. We are now in a position to apply Theorem A.3,
which is Theorem 9.2.2 in [Lunardi 1995].

Theorem 4.2. For any l ∈N, there is a function γ ∈C l−1(X c, X s) such that γ (l−1)

is Lipschitz continuous, γ (0)= ∂γ (0)= 0, and Mc
= graph(γ ) is a locally invariant

manifold for (7) of dimension n+ 2.

Note that by locally invariant it is meant that there exists a ball around zero,
Br (0)⊂ X c with r > 0, such that if ρ0 ∈ graph(γ |Br (0)) then the solution to (7) is
in graph(γ |Br (0)) for all time or until Pρ(t) /∈ Br (0). We now set

S :=
{
ρ ∈ h2+α(Sn

R) : graph(ρ) is a sphere
}
.

Lemma 4.3. Mc coincides with the set S in a neighbourhood of zero,3⊂h2+α(Sn
R).

Proof. By Theorem 2.4 in [Simonett 1995], the equation y′(t)=∂G(0)|X s y(t)+ f (t)
has a unique continuous, bounded solution for any continuous, bounded f : R→
(I − P)(hα(Sn

R)). Furthermore the solution is given by y(t) = (K f )(t), with
K ∈ L

(
BCη

(
R, (I − P)(hα(Sn

R))
)
, BCη(R, X s)

)
for any η ∈ [0,−λ1), where

BCη(R, X) :=
{
g ∈ C(R, X) : ‖g‖η := sup

t∈R

exp(−η|t |)‖g(t)‖X <∞
}
.

This is the key condition that allows us to apply Theorem 2.3 in [Vanderbauwhede
and Iooss 1992] and conclude that Mc contains all equilibria of (7) with Pρ0 ∈ Br (0).
It was shown in [Escher and Simonett 1998b] that (along with Mc) S is locally
a graph over X c, so since S ∩ (Br (0)× X s) ⊂ Mc, we conclude that S and Mc

coincide locally. Note that while [Vanderbauwhede and Iooss 1992] proves the
existence of a centre manifold differently than [Lunardi 1995], the two manifolds
can be seen to be equal over Br (0), possibly making r smaller. �

We now prove the main result.

Proof of Theorem 1.1. By Proposition A.4, which is Proposition 9.2.4 in [Lunardi
1995], when ‖ρ0‖h2+α(Sn

R)
is small enough we obtain the decay in (11), with x(t)=

Pρ(t) and y(t)= (I − P)ρ(t), for any ω ∈ (0,−λ1) and as long as Pρ(t) ∈ Br (0).
However, by using (11) evaluated at t = 0, we obtain

‖x̄‖hα(Sn
R)
≤ ‖Pρ0‖hα(Sn

R)
+‖Pρ0− x̄‖hα(Sn

R)

≤ ‖Pρ0‖hα(Sn
R)
+C(ω)‖(I − P)ρ0− γ (Pρ0)‖h2+α(Sn

R)
,

and since γ is Lipschitz and P is bounded, this leads to a bound of the form
‖x̄‖hα(Sn

R)
≤ C(ω)‖ρ0‖h2+α(Sn

R)
. Therefore we can ensure that x̄ ∈ P(3)∩ Br (0) by

taking ‖ρ0‖h2+α(Sn
R)

small enough, and Lemma 4.3 then implies that the function
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x̄ + γ (x̄) defines a sphere. Hence x̄ + γ (x̄) is a stationary solution to (2), which in
turn means that z(t)= x̄ is the solution to (12). So we can restate (11) as

(8) ‖Pρ(t)− x̄‖hα(Sn
R)
+‖(I − P)ρ(t)− γ (x̄)‖h2+α(Sn

R)

≤ C(ω)e−ωt
‖(I − P)ρ0− γ (Pρ0)‖h2+α(Sn

R)
,

for as long as Pρ(t) ∈ Br (0). However, using this bound and our bound for x̄ , it
follows that ‖Pρ(t)‖hα(Sn

R)
< C(ω)‖ρ0‖h2+α(Sn

R)
as long as ‖Pρ(t)‖hα(Sn

R)
< r . By

choosing ‖ρ0‖h2+α(Sn
R)

small enough, we can therefore ensure ‖Pρ(t)‖hα(Sn
R)
< r/2

for all t ≥ 0. Thus (8) is true for all t ≥ 0, and this proves that ρ(t) converges to
x̄ + γ (x̄) as t→∞, which is the height function of a sphere. �

Corollary 4.4. Let�0 be a graph over a sphere with height ρ0 such that the solution,
ρ(t), to the flow (2) with initial condition ρ0 exists for all time and converges to
zero. Suppose further that (∂F/∂κi )|κρ(t) > 0 for all t ∈ [0,∞) and i = 1, . . . , n.
Then there exists a neighbourhood, O , of ρ0 in h2+α(Sn

R), 0 < α < 1, such that
for every u0 ∈ O the solution to (2) with initial condition u0 exists for all time and
converges to a function near zero whose graph is a sphere.

Proof. This follows by the same arguments given in [Guenther et al. 2002] for
the Ricci flow. First we set U ⊂ h2+α(Sn

R) to be the neighbourhood of zero
given in Theorem 1.1. Since ρ(t) converges to zero in the h2+α-topology, there
exists a time T such that ρ(T ) ∈ U and, as U is open, there exists an open ball
Bε(ρ(T ))⊂U of radius ε centred at ρ(T ). The condition that (∂F/∂κi )|κρ(t) > 0
for all t ∈ [0,∞) and i = 1, . . . , n ensures that the operator L(ρ)F(κρ) is elliptic
around the point ρ(t) for every t ∈ [0,∞) (see [Andrews 1994]). As the global
term is in L(h2+β(Sn

R), hα(Sn
R)) for any β < α, we can use Proposition 2.4.1(i)

in [Lunardi 1995] to conclude that the linear operator ∂G(ρ(t)) is sectorial for all
t ∈ [0, T ], and hence in a neighbourhood of each point. By Theorem A.2, which
is Theorem 8.4.4 in [Lunardi 1995], the flow depends continuously on the initial
condition in a neighbourhood of ρ0. Therefore there exists a ball Bδ(ρ0) such that
if u0 ∈ Bδ(ρ0), then the solution, u(t), to (2) with initial condition u0 exists for
t ∈ [0, T ] and u(T ) ∈ Bε(ρ(T )). Since u(T ) is in U , by Theorem 1.1, the solution
to (2) with initial condition u(T ) converges to a function near zero that defines a
sphere. By uniqueness of the flow we get the result. �

Appendix: Key theorems

In this appendix we restate the key theorems from [Lunardi 1995] using the notation
of this paper. In the following, E1, E0 and E will represent Banach spaces with
E1 ⊂ E0 ⊂ E .
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Theorem A.1 [Lunardi 1995, Theorem 8.4.1]. Let O1 ⊂ E1 be a neighbourhood of
0 and let G : O1→ E0 and ∂G : O1→ L(E1, E0) be continuous. Assume that for
every v ∈ O1, the operator ∂G(v) : E1→ E0 is the part in E0 of a sectorial operator
A : D⊂ E→ E such that E0' (E, D)θ and E1'

{
x ∈ D : Ax ∈ (E, D)θ

}
, for some

θ ∈ (0, 1). Then for every ū ∈ O1 there are δ > 0, r > 0 such that if ‖u0− ū‖E1 ≤ r ,
then the problem

(9) u′(t)= G(u(t)), 0≤ t ≤ δ, u(0)= u0

has a unique solution u ∈ C([0, δ], E1)∩C1([0, δ], E0).

Theorem A.2 [Lunardi 1995, Theorem 8.4.4]. Let G be as in Theorem A.1. For
every ū ∈ O1 and for every τ̄ ∈ (0, τ (ū)), where τ(v) is the maximal time of a
solution to (9) with u0= v, there is r > 0 such that if ‖u0− ū‖D ≤ r , then τ(u0)≥ τ̄

and the mapping

8 : Br (ū)→ C([0, τ̄ ], E1)∩C1([0, τ̄ ], E0), 8(v)= u( · ; v),

where u( · ; v) solves (9) with u0 = v, is continuously differentiable with respect
to v. If in addition G is k times continuously differentiable or analytic, then so is 8.

We now set E0 = (E, D)θ , E1 = {x ∈ D : Ax ∈ (E, D)θ } for some θ ∈ (0, 1),
and let O1 be a neighbourhood of 0 ∈ E1. For a finite-dimensional space X we
also define η : X→ R to be a cutoff function such that 0≤ η(x)≤ 1 for all x ∈ X ,
η(x)= 1 if ‖x‖X ≤ 1, and η(x)= 0 if ‖x‖X ≥ 2.

Theorem A.3 [Lunardi 1995, Theorem 9.2.2]. Let A : D ⊂ E→ E be a sectorial
operator such that σ(A)\R− consists of a finite number of isolated eigenvalues,
each with finite algebraic multiplicity. Let G̃ ∈ C1(O1, E0) be a nonlinear function
such that G̃(0) = 0 and ∂G̃(0) = 0. Then there exists r1 > 0 such that for r ≤ r1

there is a Lipschitz continuous function γ : P(E0)→ (I − P)(E1) such that the
graph of γ is invariant for the system

(10) x ′(t)= A|P(E0)x(t)+ PG̃
(
η

(
x(t)

r

)
x(t)+ y(t)

)
, x(0)= x0 ∈ P(E0),

y′(t)= A|(I−P)(E1)y(t)+ (I − P)G̃
(
η

(
x(t)

r

)
x(t)+ y(t)

)
,

y(0)= y0 ∈ (I − P)(E1),

where P is the spectral projection associated with the set of nonnegative eigenvalues.
If in addition G̃ is k times continuously differentiable, with k ≥ 2, then there exists
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rk > 0 such that if r < rk , then γ ∈ Ck−1,1 and for x ∈ P(E0),

∂γ (x)
(

A|P(E0)x + PG̃
(
η

(
x
r

)
x + γ (x)

))
= A|(I−P)(E1)γ (x)+ (I − P)G̃

(
η

(
x
r

)
x + γ (x)

)
.

Proposition A.4 [Lunardi 1995, Proposition 9.2.4]. Take A and G̃ as in Theorem A.3.
For every ω ∈ (0, ω−), where ω−=− sup{<(λ) : λ∈ σ(A)∩R−}, there is C(ω)> 0
such that if ‖x0‖E0 and ‖y0‖E1 are small enough, then there exists x̄ ∈ P(E0) such
that for all t ≥ 0,

(11) ‖x(t)− z(t)‖E0 +‖y(t)− γ (z(t))‖E1 ≤ C(ω) exp(−ωt)‖y0− γ (x0)‖E1,

where (x(t), y(t)) is the solution to (10) and z(t) is the solution to

(12) z′(t)= A|P(E0)z(t)+ PG̃
(
η

(
z(t)

r

)
z(t)+ γ (z(t))

)
, z(0)= x̄ .

Note that throughout the paper we considered, for 0< α0 < α < 1, the spaces
E1 = h2+α(Sn

R), E0 = hα(Sn
R) and E = hα0(Sn

R), with D, the domain of a linear
operator A, given by h2+α0(Sn

R). The characterisation of hα(Sn
R) as an interpolation

space between hα0(Sn
R) and h2+α0(Sn

R) is given in (3).
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