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HOMOMORPHISMS ON INFINITE DIRECT PRODUCTS
OF GROUPS, RINGS AND MONOIDS

GEORGE M. BERGMAN

We study properties of a group, abelian group, ring, or monoid B which
(a) guarantee that every homomorphism from an infinite direct product∏

I Ai of objects of the same sort onto B factors through the direct product
of finitely many ultraproducts of the Ai (possibly after composition with
the natural map B → B/Z(B) or some variant), and/or (b) guarantee that
when a map does so factor (and the index set has reasonable cardinality),
the ultrafilters involved must be principal.

A number of open questions and topics for further investigation are noted.

1. Introduction

A direct product
∏

i∈I Ai of infinitely many nontrivial algebraic structures is in
general a “big” object: it has at least continuum cardinality, and if the operations of
the Ai include a vector-space structure, it has at least continuum dimension. But
there are many situations where the set of homomorphisms from such a product to
a fixed object B is unexpectedly restricted.

The poster child for this phenomenon is the case where the objects are abelian
groups, and B is the infinite cyclic group. In that situation, if the index set I is
countable (or, indeed, of less than an enormous cardinality — some details are
recalled in Section 4), then every homomorphism

∏
i∈I Ai → B factors through

the projection of
∏

i∈I Ai onto the product of finitely many of the Ai . An abelian
group B which, like the infinite cyclic group, has this property, is called “slender”.
Slender groups have been completely characterized [Nunke 1961], and slender
modules over general rings have been studied.
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Recent work [Bergman and Nahlus 2011 and 2012; Bergman 2014] on factoriza-
tion properties of homomorphisms on infinite direct products of not-necessarily-
associative algebras (motivated by the case of Lie algebras) has turned up interesting
variants on the above sort of behavior.

First, it turns out that in that context, a useful way to prove every surjective
homomorphism

∏
i∈I Ai→ B factors through finitely many of the Ai is by proving

(a) that every such homomorphism factors through the product of finitely many
ultraproducts of the Ai , and also (b) that whenever one has a map that factors in
that way, the ultrafilters involved must be principal. In this note, we shall consider
each of conditions (a) and (b) on an object B as of separate interest.

Secondly, we found that in many cases, though one cannot say that every sur-
jective homomorphism from a direct product to B will itself factor in one of
these ways, one can say that for every such homomorphism

∏
i∈I Ai → B, the

induced homomorphism
∏

i∈I Ai → B/Z(B) so factors, where Z(B) denotes the
zero-multiplication ideal, {b ∈ B | bB = Bb = {0}} (which for B a Lie algebra
is the center of B). In the next section, we shall get similar results for groups,
with Z(B) the center of the group B. (Note that these statements do not say that
every surjective homomorphism

∏
i∈I Ai → B/Z(B) factors as stated; such a

factorization is asserted only when the homomorphism
∏

i∈I Ai→ B/Z(B) can be
lifted to a homomorphism

∏
i∈I Ai → B.) Maalouf [2014] abstracts this property,

and strengthens some of the results of the papers cited.

In the classical case of abelian groups (and its generalization to modules), the
condition on an object B that every homomorphism from an infinite product onto B
yield a factorization through finitely many of the Ai , and the corresponding condition
for homomorphisms into B, are equivalent. Indeed, from any homomorphism∏

i∈I Ai → B, one can get, in an obvious way, a surjective homomorphism
B×

∏
i∈I Ai → B, and the original homomorphism factors through finitely many

of the Ai if and only if that surjective map factors through B and finitely many Ai .
This observation uses implicitly the fact that one can add homomorphisms of abelian
groups — in this case, the map B ×

∏
i∈I Ai → B induced by the given map on

the one hand, and the projection to B on the other. But one cannot do this for
homomorphisms of noncommutative groups, of algebras, etc.; so for these, the
condition involving arbitrary maps and the condition involving surjective maps are
not equivalent. In these cases, the condition on B defined in terms of surjective
homomorphisms is the more informative. Once one has characterized those B for
which all surjective homomorphisms

∏
i∈I Ai → B yield such a factorization, one

can, if one wishes, characterize the B with the corresponding property for general
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homomorphisms as the objects all of whose subobjects have the the property for
surjections.

In stating results of the sort we shall obtain, one has a choice between (i) saying
that if a structure B does not have one or another of a list of “messy” properties,
then every homomorphism from an infinite direct product onto B leads to a certain
kind of factorization, or (ii) the contrapositive statement, that if there exists a
homomorphism onto B that does not so factor, then B has one of those messy
properties. Each approach has its plusses and minuses; here I have followed (ii),
because it seems more straightforward to understand how a non-factorable map
forces B to have a messy property than to show that the absence of certain messy
properties implies that all maps factor; and also because some of the conditions on B
come in several versions, and I find it easier to parse a statement having a single
hypothesis and several conclusions than one with several alternative hypotheses
giving a single conclusion. (But the above choice also has its awkward aspects; I
can’t say which is really best.)

In Sections 2–4, we shall study the case where our structures are not-necessarily-
abelian groups, in Sections 5–7, abelian groups, then, briefly, in Section 8 and
Section 9, rings and monoids. In Section 10 we note why lattices are likely to be
another case worth examining.

For a short review, for the nonspecialist, of the concepts of filter, ultrafilter and
ultraproduct, see [Bergman and Nahlus 2011, Appendix A]; and for measurable
cardinals κ , and κ-complete ultrafilters, which come up in Sections 4–5 below,
[ibid., Appendix B]. For detailed developments of these concepts see, e.g., [Chang
and Keisler 1990] or [Comfort and Negrepontis 1974].

We remark that there is in the literature a concept of “noncommutative slender
group” that is quite different from the subject of Sections 2–4 below. The concept so
named can be arrived at by regarding the infinite direct product in the definition of a
slender abelian group as a completed direct sum, and using in the noncommutative
case, instead of the direct product, an analogously completed noncommutative
coproduct. For work on that topic see [Shelah and Strüngmann 2001] and references
given there.

2. Factoring group homomorphisms through finitely many ultraproducts.

Let (Gi )i∈I be a family of groups. By the support of an element g = (gi )i∈I ∈∏
i∈I Gi , we will understand the set

(1) supp(g)= {i ∈ I | gi 6= e} ⊆ I.

Given any subset S ⊆ I , we shall identify
∏

i∈S Gi in the obvious way with the
subgroup of

∏
i∈I Gi consisting of elements whose support is contained in S. In



454 GEORGE M. BERGMAN

particular, for g ∈
∏

i∈I Gi , the statement g ∈
∏

i∈S Gi will mean supp(g)⊆ S, and
the statement g ∈ Gi will mean supp(g)⊆ {i}.

Whereas the theory of slender abelian groups is based on delicate structural
properties of those groups, most of our results on nonabelian groups will be based on
a much simpler observation: Elements of

∏
i∈I Gi with disjoint supports centralize

one another. As a quick example, it is not hard to see that if B is a simple nonabelian
group, and we have any surjective homomorphism f :

∏
i∈I Gi → B, then for

each S ⊆ I , the map f must annihilate one of the mutually centralizing subgroups∏
i∈S Gi and

∏
i∈S−I Gi . From this one can deduce that the subsets S⊆ I such that f

factors through the projection
∏

i∈I Gi →
∏

i∈S Gi form an ultrafilter (principal or
nonprincipal) on I .

In the opposite direction, however, if we take for B a cyclic group of prime
order p (thus losing the leverage provided by noncommutativity), and let all the Gi

be copies of that group, then by linear algebra over the field of p elements, there
exist homomorphisms

∏
i∈I Gi → B that send every Gi onto B, and hence don’t

factor through any proper subproduct
∏

i∈S Gi .
As indicated in the introduction, we shall get around the problem created (as

above) by commutativity by composing homomorphisms
∏

i∈I Gi → B with the
quotient map B→ B/Z(B), where Z(B) is the center of B. Given a homomorphism
f :
∏

i∈I Gi → B, the key to our considerations will be the family of subsets

(2) F= {S ⊆ I | the composite map
∏

i∈I Gi → B→ B/Z(B)
factors through the projection

∏
i∈I Gi →

∏
i∈S Gi }

= {S ⊆ I | f (
∏

i∈I−S Gi )⊆ Z(B)}.

It is easy to see that F, so defined, is a filter on I , and that if we write

(3) π : B → B/Z(B)

for the quotient map, then F is the largest filter such that π f :
∏

i∈I Gi→ B/Z(B)
factors through the reduced product

∏
i∈I Gi/F. (The above observation, and the

next few, do not yet use the fact that we are working with a map of the form π f ,
but only that we are considering a homomorphism on a product group. The fact that
our map has the form π f will become significant starting with Lemma 1 below.)

If the filter F of (2) is a finite intersection of distinct ultrafilters, U0∩· · ·∩Un−1,
then

∏
i∈I Gi/F∼=

∏
i∈I Gi/U0×· · ·×

∏
i∈I Gi/Un−1, so π f factors through the

projection to that product; and conversely, if π f factors through the projection to
such a product, then F is the intersection of some subset of the Uk (the minimal
set of Uk allowing such a factorization). In this connection, we recall

(4) [Bergman 2014, Lemma 1.3, (3)⇐⇒(5)] A filter F on a set I can be written as
the intersection of finitely many ultrafilters on I if and only if for every partition
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of I into countably many sets Jm (m ∈ ω), there is at least one m ∈ ω such that
I − Jm ∈ F.

Here and below, we make the conventions that a partition may include one or
more instances of the empty set, and that the intersection of the empty family of
filters on a set is the set of all subsets of that set, i.e., the improper filter. (These
conventions are needed to make various statements correct in degenerate cases.)

Let us note what (4) tells us about homomorphisms on direct product groups.

Lemma 1. Let f :
∏

i∈I Gi → B be a homomorphism from a direct product of
groups Gi to a group B, which is surjective; or more generally, such that the com-
posite π f :

∏
i∈I Gi → B→ B/Z(B) is surjective. Then the following conditions

are equivalent.

(5) π f :
∏

i∈I Gi → B/Z(B) does not factor through the natural map
∏

i∈I Gi →∏
i∈I Gi/U0 × · · · ×

∏
i∈I Gi/Un−1 for any finite family U0, . . . ,Un−1 of

ultrafilters on I .

(6) There exists a partition of I into countably many subsets J0, J1, . . . , such that
each subgroup

∏
i∈Jn

Gi ⊆
∏

i∈I Gi contains a pair of elements xn , yn whose
images in B under f do not commute.

Proof. The easy direction is (6) =⇒ (5). The fact that f (xn) and f (yn) do not
commute tells us, in particular, that f (xn) /∈ Z(B). Hence for F defined by (2)
(noting in particular the last line thereof), I − Jn /∈ F. Since this is true for each n,
(4) tells us that the filter F is not a finite intersection of ultrafilters, giving (5).

To get the converse, note that if (5) holds, equivalently, if F is not a finite
intersection of ultrafilters, then by (4) we can partition I into subsets J0, J1, . . . ,
none of whose complements lies in F; i.e., by the last line of (2), such that each∏

i∈Jn
Gi contains an element xn which is mapped by f to a noncentral element

of B. Fixing n, this says that there exists an element b ∈ B which does not commute
with f (xn). I claim we can take such a b to be the image of an element y ∈

∏
i∈I Gi

under f . Indeed, if f is surjective, this is immediate. If instead we have the
weaker hypothesis that π f :

∏
i∈I Gi → B→ B/Z(B) is surjective, then we can

choose y ∈
∏

i∈I Gi whose image under f is congruent to b modulo Z(B). Since
multiplication by an element of Z(B) does not affect what members of B an element
commutes with, f (y) does not commute with f (xn).

Let us now write y = yn y′, where yn ∈
∏

i∈Jn
Gi while y′ ∈

∏
i∈I−Jn

Gi . Then
y′ commutes with xn , since they have disjoint supports in our product group.
Hence f (y′) commutes with f (xn); hence if f (yn) also commuted with f (xn),
then f (y) = f (yn) f (y′) would commute with f (xn), contradicting our choice
of y. Hence, rather, xn, yn ∈

∏
i∈Jn

Gi have images in B which do not commute,
giving (6). �
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We can now get the first of our results showing that any group B admitting a
map f satisfying (5) must be “big”.

Theorem 2. Let B be a group such that there exist a family of groups (Gi )i∈I , and
a group homomorphism f :

∏
i∈I Gi → B, for which the induced homomorphism

π f :
∏

i∈I Gi → B/Z(B) does not factor through the projection of
∏

i∈I Gi to
the product of finitely many ultraproducts of the Gi . Then B contains families of
elements (aS)S⊆ω, (bS)S⊆ω, indexed by the subsets S of ω, such that:

(7) All the elements aS (S ⊆ ω) commute with one another, and all the elements bS

(S ⊆ ω) likewise commute with one another.

(8) For S and T disjoint subsets of ω, one has aSaT = aS∪T , bSbT = bS∪T , and
aSbT = bT aS .

(9) For subsets S and T of ω with card(S ∩ T )= 1, aSbT 6= bT aS .

Proof. Given Gi and f as in the hypothesis, i.e., satisfying (5), Lemma 1 gives us
sets Jn ⊆ I and elements xn , yn (n ∈ ω) as in (6). Let Hn =

∏
i∈Jn

Gi ⊆
∏

i∈I Gi

(n ∈ ω), so that we can regard
∏

i∈I Gi as
∏

n∈ω Hn , the xn and yn as elements of
that group with singleton supports, and f as a homomorphism

∏
n∈ω Hn→ B.

For each subset S ⊆ ω, let xS be the element of
∏

n∈ω Hn whose component
at n is xn if n ∈ S, and e otherwise, and let elements yS be obtained similarly from
the yn . It is easy to see that any two elements xS and xT commute with one another
in
∏

n∈ω Hn , and similarly for the y’s; and that for S and T disjoint, xSxT = xS∪T ,
yS yT = yS∪T , and xS yT = yT xS . Hence, letting aS = f (xS), bS = f (yS), we get (7)
and (8).

For general S and T , the commutator [xS, yT ] will have n-th component [xn, yn]

if n ∈ S ∩ T , and e otherwise. So if S ∩ T is exactly {n} for some n ∈ ω, then
f ([xS, yT ])= f ([xn, yn]), which by choice of xn and yn is not e, giving (9). �

By restricting the elements bT that we consider, we can get a clearer view of the
behavior of the elements aS:

Corollary 3. In the situation of Theorem 2, an element aS (S ⊆ ω) commutes with
an element b{n} (n ∈ ω) if and only if n /∈ S. Thus, the elements aS exhibit all
possible combinations of which members of the countable set {b{n} | n ∈ ω} they
commute with. Hence they are distinct modulo Z(B); so their images in B/Z(B)
generate a commutative subgroup of continuum cardinality.

Proof. The first sentence is immediate from (8) and (9), and clearly implies the
second. Since multiplication by a member of Z(B) does not affect what elements a
member of B commutes with, elements which can be distinguished by the latter
properties are necessarily distinct modulo Z(B). The group generated by the aS is
commutative in view of (7), hence so is the image of that group in B/Z(B). �
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Above we have obtained “element-theoretic” consequences of the existence of a
map

∏
i∈I Ai → B that does not factor through finitely many ultrafilters. There are

also “subgroup-theoretic” consequences. We shall find it convenient to state some
of these, not in terms of image subgroups π f

(∏
i∈S Gi

)
⊆ B/Z(B), but in terms

of the inverse images f
(∏

i∈S Gi
)
Z(B) of those subgroups in B. Let us start by

noting some general properties of this construction, independent of whether π f
factors through finitely many ultraproducts.

Lemma 4. Let B be a group, (Gi )i∈I a family of groups, and f :
∏

i∈I Gi→ B a ho-
momorphism which is surjective (or more generally, satisfies B= f

(∏
i∈I Gi

)
Z(B)).

For every subset S ⊆ I , let

(10) BS = f
(∏

i∈S Gi
)
Z(B), a normal subgroup of B.

Then:

(11) B∅= Z(B), BI = B, and for S, T ⊆ I , one has BS BT = BS∪T and BS∩BT =

BS∩T .

(12) For S, T ⊆ I , the centralizer of BT in BS is BS−T .

Hence (again writing π : B→ B/Z(B) for the quotient map),

(13) For disjoint subsets S, T ⊆ I , π(BS∪T ) is the direct product of its subgroups
π(BS) and π(BT ).

Moreover,

(14) If (Sk)k∈K is a family of pairwise disjoint subsets of I , and we let S=
⋃

k∈K Sk ,
then the map π(BS)→

∏
k∈K π(BSk ) determined by the projections π(BS)→

π(BSk ) (which by (13) is an isomorphism if K is finite) is always surjective.

Proof. That each BS is normal in B, as asserted in (10), follows from the normality
of
∏

i∈S Gi in
∏

i∈I Gi , and the centrality of Z(B) in B.
The first three equalities of (11) are immediate, as is the direction BS∩BT ⊇ BS∩T

of the final equality. Before proving the reverse inclusion, let us note a case of (12)
which is also immediate:

(15) If S and T are disjoint subsets of I , then BS and BT centralize one another.

To get the remaining part of (11), BS ∩ BT ⊆ BS∩T , consider an element of the
left-hand side, which we may write

(16) f (u)z1 = f (v)z2, where u ∈
∏

i∈S Gi , v ∈
∏

i∈T Gi , and z1, z2 ∈ Z(B).

Let us write u = u′u′′, where u′ ∈
∏

i∈S∩T Gi and u′′ ∈
∏

i∈S−T Gi . Thus our
element (16) becomes f (u′) f (u′′)z1. Since u′ ∈

∏
i∈S∩T Gi , if we can show that

f (u′′) ∈ Z(B), then (16) will lie in f
(∏

i∈S∩T Gi
)
Z(B)= BS∩T , as required.
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Thus, we need to show that f (u′′) centralizes B = BI = BS−T BI−(S−T ). Since
f (u′′) ∈ BS−T , it certainly centralizes BI−(S−T ). On the other hand if we write the
equation in (16) as

f (u′) f (u′′)z1 = f (v)z2, equivalently, f (u′′)= f (u′)−1 f (v)z2z−1
1 ,

we see that all the factors on the right lie in BT , hence centralize BS−T . Hence so
does f (u′′), completing the proof of the last assertion of (11).

We can now easily prove (12). By (11), BS−T is contained in BS , and by (15),
it centralizes BT , so we need only show that conversely, any element of BS that
centralizes BT lies in BS−T . As in the preceding argument, we can write our
element of BS as f (u′) f (u′′)z, where u′ ∈

∏
i∈S∩T Gi and u′′ ∈

∏
i∈S−T Gi . This

time, we need to prove that f (u′) ∈ Z(B). Now since f (u′) f (u′′)z centralizes BT ,
and f (u′′) and z automatically do, we see that f (u′) centralizes BT . Also, since
f (u′) ∈ BS∩T , and S ∩ T is disjoint from I − T , f (u′) centralizes BI−T . Hence it
centralizes BT BI−T = B, so it lies in Z(B), as claimed.

The conclusion (13) follows easily from (12) and (11).
To establish (14), we take an element of

∏
k∈K π(BSk ), lift its component in each

π(BSk ) to an element of
∏

i∈Sk
Gi , and regard these together as giving an element of∏

i∈S Gi ; note that the image of this element in π(BS) has the desired property. �

Note that in the situation of the above lemma, the subgroups BS need not be
distinct for distinct S⊆ I . For instance, if we take a family (Gi )i∈I of noncommuta-
tive groups and an ultrafilter U on I , let B =

∏
i∈I Gi/U, and let f :

∏
i∈I Gi→ B

be the quotient map, then the above construction gives only two distinct subgroups
of B: BS = B if S ∈U, and BS = Z(B) otherwise.

We shall now get a factorization-through-ultraproducts result from the above
lemma. Let us (following [Bergman 2014, §4.3]) call subgroups B ′, B ′′ of a group B
almost direct factors if B = B ′B ′′, and each of B ′, B ′′ is the centralizer in B of the
other. A subgroup B ′ ⊆ B belonging to such a pair (equivalently, such that B ′ is
its own double centralizer in B, and B is the product of B ′ and its centralizer) will
thus be called an almost direct factor of B. We shall say B has chain condition on
almost direct factors if the partially ordered set of almost direct factors of B has
ascending chain condition, equivalently (since that partially ordered set is self-dual
under the operation of taking centralizers), if it has descending chain condition.
(As noted in [ibid.], these are the analogs for groups of definitions first made for
algebras in [Bergman and Nahlus 2011, §6].)

Observe that in the situation treated in Lemma 4, statements (12) and (11) show
that for every S ⊆ I , the subgroups BS , BI−S are a pair of almost direct factors
of B. We deduce:
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Theorem 5 (cf. [Bergman 2014, Proposition 4.1]). Let B be a group, and suppose
that there exist a family of groups (Gi )i∈I and a homomorphism f :

∏
i∈I Gi → B

such that the induced homomorphism π f :
∏

i∈I Gi → B/Z(B) is surjective and
does not factor through the natural projection of

∏
i∈I Gi to any finite product of

ultraproducts of the Gi .
Then B does not have chain condition on almost direct factors. In fact, it has a

family of almost direct factors order-isomorphic to the lattice 2ω, and forming a
sublattice of the lattice of subgroups of B.

Proof. Given (Gi )i∈I with the indicated non-factorization property, let J0, J1, . . .

be as in Lemma 1. To every subset S of ω, let us associate the subgroup B⋃
n∈S Jn .

From Lemma 4 we see that each of these subgroups is an almost direct factor
of B, and that the lattice relations among the subsets of ω are also satisfied by
the corresponding subgroups; so it will suffice to show that non-inclusions of
subsets of ω yield non-inclusions of subgroups. If S 6⊆ T , take m ∈ S− T . By our
assumption on the Jn , the subgroup BJm is not self-centralizing, hence though it
centralizes B⋃

n∈T Jn , it does not centralize B⋃
n∈S Jn ; so the latter is not contained in

the former. �

Neither of the conclusions of Theorem 2 and Theorem 5 implies the other. To
get examples of these non-implications, let G be a simple group.

If we embed Gω in any simple overgroup B, then B inherits from Gω families
of elements aS , bS as in Theorem 2; but being simple, B has no nontrivial almost
direct decompositions, hence it satisfies chain condition on almost direct factors,
i.e., fails to satisfy the conclusion of Theorem 5.

On the other hand, if we take for B the group
⊕

ω G of elements of Gω having
finite support, and let BS =

⊕
S G for each S ⊆ ω, we find that these subgroups sat-

isfy (11)–(13), hence constitute a system of almost direct factors lattice-isomorphic
to 2ω, as in Theorem 5. But if G is countable, B will also be so, so it cannot satisfy
the conclusion of Theorem 2.

So neither of these groups B admits a surjective homomorphism f from a direct
product group such that π f (which in both cases would be f , since Z(B) is trivial)
fails to factor through finitely many ultraproducts. However, in the first case, only
Theorem 5 rules this out, while in the second, only Theorem 2 does.

Though the above example with B =
⊕

ω G satisfies (11)–(13), it does not
satisfy (14), as can be seen by taking for the Sk the singleton subsets of ω. One
may ask whether for any group B, every system of subgroups BS (S ⊆ I ) of B that
satisfies all of (11)–(14) arises as in Lemma 4.

The answer is still negative. For instance, suppose B is a group which has trivial
center, and which cannot be written as a homomorphic image of a nonprincipal
ultraproduct of a family of groups indexed by ω. (We shall see in Section 4 that the
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free group on two generators, among many others, cannot be so written.) Suppose
we take a nonprincipal ultrafilter U on ω, and define BS ⊆ B to be all of B whenever
S ∈U, and {e} otherwise. It is not hard to verify that this family satisfies (11)–(14),
but that if it arose as in Lemma 4 (with ω for I ), then B would be a homomorphic
image of

∏
n∈ω Gn/U, contradicting our choice of B.

We record a special case of Theorem 5 for easy application to some later examples.

Corollary 6 (to Theorem 5 and its proof). Suppose B is a group with trivial center,
and having no nontrivial direct product decomposition. Then every homomorphism
from a direct product group

∏
i∈I Gi onto B factors through a single ultraproduct∏

i∈I Gi/U of the Gi . �

3. Further examples

Theorem 5 shows that a group B which admits a surjective homomorphism from an
infinite direct product group that does not factor through finitely many ultraproducts
looks, itself, in some ways, like an infinite direct product — at least after we divide
out Z(B). The next example shows that this behavior of B/Z(B) can coexist with
very un-product-like behavior in Z(B).

Example 7. Groups B and G and a homomorphism f : Gω
→ B such that the

induced subgroups BS (S ⊆ ω) are all distinct, but such that the center of each of
the given copies of G in Gω is mapped isomorphically to Z(B) 6= {e}; and which
also show that in (9), the hypothesis card(S∩ T )= 1 cannot be weakened to merely
say that S ∩ T is nonempty and finite.

Construction and proof. Let k be a field, and G the Heisenberg group over k;
that is, the multiplicative group of upper triangular 3× 3 matrices with 1’s on
the main diagonal; equivalently, the group of 3-tuples of elements of k under the
multiplication (a, a′, a′′)(b, b′, b′′) = (a+ b, a′+ b′, a′′+ b′′+ a′b). Clearly, the
countable power group Gω can be described as the group of 3-tuples of elements
of the power ring kω under the operation given by the same formula.

Let us now take the k-vector-space homomorphism s :
⊕

ω k → k which for
each n acts on the n-th direct summand by 1 7→ sn , for some specified elements
sn ∈ k−{0}, and by linear algebra, let us extend s to a vector-space homomorphism
σ : kω→ k. Let B be the homomorphic image of Gω gotten by dividing Z(Gω)= kω

by ker(σ ). This can be described as

(17) kω× kω× k, under the operation
(a, a′, a′′)(b, b′, b′′)= (a+ b, a′+ b′, a′′+ b′′+ σ(a′b)).

I claim that Z(B) = {0} × {0} × k. To see this, let us first show that every
(a, b, c) ∈ B with a 6= 0 is noncentral. Choose n such that a has n-th component
an 6= 0, and take b′ ∈ kω to have 1 in the n-th position and 0 in all others. Then we
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find that the commutator of (a, b, c) and (0, b′, 0) is (0, 0, snan) 6= e. The analogous
argument shows (a, b, c) noncentral if b 6= 0. Elements (0, 0, c) are clearly central,
so we get the asserted description of Z(B), and we see that this is the image in B of
the center of each of our copies of G in Gω, and indeed, of the center of GS

⊆ Gω

whenever ∅ 6= S ⊆ ω.
So though the images in B/Z(B) of these subgroups GS are the corresponding

factors (k× k)S
⊆ (k× k)ω, when we look at the images in Z(B) of their centers,

the distinctions among them disappear.
To get the final assertion of this example, let us partition ω into the singletons

Jn = {n}, so that in the notation of the proof of Theorem 2, each Hn is G. For
each n, let xn = (1, 0, 0), yn = (0, 1, 0) in Hn , and let us use these to construct
elements aS, bT ∈ B as in that proof. Then if S and T are subsets of ω which
intersect in a finite set {n0, . . . , nd−1}, we see that in B the commutator [aS, bT ] is
(0, 0, sn0 + · · ·+ snd−1). If d = 1 this is necessarily a nonidentity element, as stated
in (9); but if S and T intersect in more than one element, this may or may not be
true, depending on the choice of the sn . (In particular, if the field k is finite, then
whatever the sn , there must be some nonempty family of ≤ card(k) sn’s that sum to
zero.) So the restriction card(S ∩ T )= 1 in (9) cannot be dropped. �

In the above example, the focus was on the part of the map going into Z(B); the
map Gω

→ B/Z(B) was a straightforward homomorphism of direct products. But
this is not always the case; that is, the maps which (14) shows to be surjective need
not, in general, be isomorphisms. For instance, in the example mentioned imme-
diately after the proof of Lemma 4, where the Gi were arbitrary noncommutative
groups, and f was the map

∏
i∈I Gi →

(∏
i∈I Gi

)
/U, for U an ultrafilter on I , if

U is nonprincipal and we take for the Sk all the singletons {i} (i ∈ I ), so that S = I ,
then each π(BSk ) is trivial, but π(BS) is not.

One can, of course, modify this example to get one which also has the property
that every Gi has nontrivial image in B/Z(B):

Example 8. A group homomorphism
∏

n∈ω Gn→ B where all the B{n}/Z(B) are
nonzero (so that all the BS are distinct), but not all the surjections of (14) are
isomorphisms.

Construction. Let Gn (n ∈ ω) be groups with trivial centers, each having a
proper nontrivial normal subgroup Nn C Gn such that Gn/Nn also has trivial
center. Let U be any nonprincipal ultrafilter on ω, let H =

(∏
n∈ω Gn

)
/U, and

let f :
∏

n∈ω Gn → H ×
∏

n∈ω Gn/Nn be the map obtained from the obvious
homomorphisms

∏
n∈ω Gn → H and

∏
n∈ω Gn →

∏
n∈ω Gn/Nn . Let B be the

image of f .
For S⊆ω, what does BS look like? This depends on whether or not S ∈U. If not,

we see that BS=
∏

n∈S Gn/Nn; in particular, for every n ∈ω we have B{n}=Gn/Nn .
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Thus for S /∈ U, the group BS can be identified with
∏

n∈S B{n}. However, when
S ∈U, the H -component of BS will be the full group H , which carries structure
from the normal subgroups Nn which is ignored by each group B{n}; so in these
cases, the natural map BS→

∏
n∈S B{n} is not one-to-one. �

One can generalize the above construction by replacing U with an arbitrary filter
F, though the description of the groups BS is more complicated to state when S is
neither a member of F nor the complement of one. And, of course, one can set up ex-
amples based on more than one system of normal subgroups and more than one filter.

In the above example, though the system of subgroups BS described does not
have the property that the maps of (14) are isomorphisms, the group B has other
systems of subgroups that can be shown to have that property. Here is an example
having no such family.

Example 9. A group B having elements aS and bS (S ⊆ ω) satisfying (7)–(9), and
distinct subgroups BS (S⊆ω) satisfying (10)–(13), but having no such system of dis-
tinct subgroups also satisfying (14) for any infinite family of disjoint nonempty sets
(sk)k∈K ; so that B cannot admit a surjective homomorphism from a direct product
group which does not factor through the product of finitely many ultraproducts.

Construction and sketch of proof. Let G be an infinite simple group, and B the
subgroup of Gω consisting of those ω-tuples assuming only finitely many distinct
values in G. If we choose a pair of noncommuting elements x, y ∈ G, and for each
n∈ω let xn be the element x of the n-th copy of G, and yn the element y thereof, then
we see that the elements xS and yS (S⊆ω), constructed as in Theorem 2, will lie in B,
and, renamed aS and bS , will satisfy (7)–(9). Similarly, if we let BS be the subgroup
of B consisting of elements with support in S, then (11)–(13) are immediate.

I will now sketch why B admits no system of nontrivial almost direct factors
BSk and BS satisfying (14) for any infinite K . Note that B has trivial center, so that
almost direct factors are simply direct factors. Now it is easy to verify using the
simplicity of G that if B has a direct product decomposition B = B ′× B ′′, then
for each n ∈ ω, one of B ′, B ′′ has as n-th coordinates all members of G, while
the other has only e in that coordinate. From this one can deduce that every such
decomposition has the form B ′ = BS , B ′′ = Bω−S for some S ⊆ ω. We can now
combine the “finitely many distinct values” condition in the definition of B with
the fact that G is infinite to see the impossibility of an infinite family of nontrivial
almost direct factors BSk satisfying the surjectivity condition (14).

Lemma 4 and the method of proof of Theorem 5 now show that every homomor-
phism from a direct product onto B must factor through finitely many ultraproducts.

�
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(For some other results on the subgroup of a power group G I consisting of the
elements with only finitely many distinct coordinates — though for abelian groups —
see [Bergman 1972].)

4. Conditions forcing the ultrafilters to be principal

We have obtained conditions that force group homomorphisms
∏

i∈I Gi → B to
factor through the direct product of finitely many ultraproducts of the Gi . When
can we say that any map that so factors must in fact factor through the product of
finitely many Gi ; i.e., that the ultrafilters involved must be principal?

Here set-theoretic considerations come in. If κ is a measurable cardinal, then
sets I of cardinality ≥ κ admit nonprincipal κ-complete ultrafilters; that is, ultra-
filters closed under all <κ-fold intersections. (Two quick terminological notes:
(i) The condition of being closed under countable intersections, which by the above
definition is ℵ1-completeness, is also called countable completeness. (ii) We shall
follow the definition of measurable cardinal used in [Chang and Keisler 1990],
which counts ℵ0 as measurable; so we will write “uncountable measurable cardinal”
for what many authors simply call a measurable cardinal.)

If κ is an uncountable measurable cardinal and I a set of cardinality ≥ κ , and
we take a family (Gi )i∈I of groups (or more generally, of any sort of algebraic
structures defined by finitely many finitary operations) whose cardinalities have a
common bound <κ , then their ultraproducts with respect to κ-complete ultrafilters
behave very much as do ordinary ultraproducts of finite groups with a common finite
bound on their orders; to wit, every such ultraproduct is isomorphic to one of the Gi .
Hence, if there exists such a cardinal κ , then every group B of cardinality <κ can
be represented as an ultrapower of itself with respect to a nonprincipal κ-complete
ultrafilter U. So for every such B we get a surjective homomorphism B I

→ B
which factors through the ultrapower B I/U but not through finitely many projection
maps — which seems to be bad news for the type of result we are hoping for.

However, it is known that if uncountable measurable cardinals exist, they must be
quite enormous [Chang and Keisler 1990, Theorem 4.2.14], and that if the standard
set theory, ZFC, is consistent, it is consistent with the nonexistence of such cardinals.
Hence it would be reasonable to work under the assumption that no uncountable
measurable cardinals exist, or, if they exist, to restrict our index sets to cardinalities
less than all such cardinals.

The next observation shows that when doing the spade-work of our investigation,
we can in fact restrict attention to the case where our index set is countable.

Lemma 10. If B is a group, then the following conditions are equivalent.

(18) B is a homomorphic image of an ultraproduct of a family of groups indexed by
an arbitrary set I , with respect to some ultrafilter U on I that is not countably
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complete, equivalently, that is not κ-complete for any uncountable measurable
cardinal κ .

(19) B is a homomorphic image of an ultraproduct of a family of groups indexed
by ω, with respect to a nonprincipal ultrafilter on ω.

The same is true with “groups” replaced by objects of any other variety of finitary
algebras, in the sense of universal algebra.

Proof. The equivalence referred to in (18) follows from the fact that any countably
complete ultrafilter must be κ-complete for some uncountable measurable cardinal κ
[Chang and Keisler 1990, Proposition 4.2.7].

Since a nonprincipal ultrafilter on ω is not countably complete, we have (19) =⇒
(18). On the other hand, it is easy to show that if U is a non-countably-complete
ultrafilter on a set I , then I can be partitioned as

⋃
n∈ω Jn where no Jn belongs to U.

In this situation we find that {S ⊆ ω |
⋃

n∈S Jn ∈U} is a nonprincipal ultrafilter U′

on ω, and that given groups Gi (i ∈ I ), the natural map
∏

i∈I Gi →
∏

i∈I Gi/U

factors through
∏

n∈ω

(∏
i∈Jn

Gi
)
/U′. Hence, writing

∏
i∈Jn

Gi = Hn , we see that if,
as in (18), B is a homomorphic image of

∏
i∈I Gi/U, then it is also a homomorphic

image of
∏

n∈ω Hn/U
′, giving (19).

The final assertion is clear. (The assumption that our algebras are finitary is
needed to insure that algebra structures are induced on ultraproducts of such alge-
bras.) �

So below, it will suffice to examine which groups are homomorphic images of
nonprincipal ultraproducts of countable families of groups. For brevity, we shall
call an ultraproduct of a countable family a “countable ultraproduct”.

My first guess was that if B was such a homomorphic image, then the cardinality
of B/Z(B) would have to be either finite or at least the cardinality of the continuum.
But Tom Scanlon suggested the following counterexample.

Lemma 11 (T. Scanlon, personal communication). Let B be the semidirect product
of the additive group Q of rational numbers, and the 2-element group {±1}, deter-
mined by the multiplicative action of the latter on the former. (I.e., B has underlying
set {±1}×Q, and multiplication (α, a)(β, b)= (αβ, βa+ b).)

Then every ultrapower of B admits a homomorphism onto B. Hence though
B = B/Z(B) is countable, it is a homomorphic image of a nonprincipal countable
ultraproduct of groups.

Proof. Clearly, the only elements of B that commute with (−1, 0) are those with
second component 0, while the only elements that commute with (1, 1) are those
with first component 1; so Z(B)= {e}, justifying the formula B = B/Z(B).

It is easy to see that for any ultrafilter U on any index set I , the ultrapower B I/U

will be the semidirect product of {±1} and QI /U determined by the natural action
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of the former group on the latter. Now QI /U, like Q, is a nontrivial torsion-free
divisible group, i.e., a nontrivial Q-vector-space, and, as such, admits a surjective
homomorphism ϕ :QI /U→Q. The map B I/U→ B given by (α, β) 7→ (α, ϕ(β))

is easily seen to be a surjective homomorphism, as claimed. �

By Corollary 6, every homomorphism from a direct product group
∏

i∈I Gi onto
the above group B factors through a single ultraproduct of the Gi ; but the above
result shows that (even when the index set is countable) the ultrafilter involved need
not be principal.

In fact, the only condition I know that guarantees factorization through finitely
many of the Gi is based on requiring appropriate abelian subgroups of B to satisfy
similar factorization properties as abelian groups. The key observation is:

Lemma 12. Suppose B is a homomorphic image of a nonprincipal countable ultra-
product of groups,

(∏
n∈ω Gn

)
/U. Then every element b ∈ B lies in a homomorphic

image within B of Zω/U, a nonprincipal countable ultrapower of Z.

Proof. Given b ∈ B, let b be the image of (gn)n∈ω ∈
∏

n∈ω Gn . Then the homomor-
phism γ : Zω→

∏
n∈ω Gn taking (mn)n∈ω to (gmn

n )n∈ω induces a homomorphism
γ ′ : Zω/U→

(∏
n∈ω Gn

)
/U, with which it forms a commuting square. Hence the

composite map Zω→
∏

n∈ω Gn→
∏

n∈ω Gn/U→ B, which carries (1, 1, . . . )∈Zω

to b, factors through Zω/U; so b lies in a homomorphic image of that group. �

To see that this puts strong restrictions on groups B admitting such homomor-
phisms, note that every slender abelian group, in particular, the infinite cyclic group,
has the property of not being a homomorphic image of a nonprincipal countable
ultrapower of Z. We will see wider classes of abelian groups with this property in
the next section.

Though this note emphasizes the separate conditions that maps from infinite
products yield factorizations through finitely many ultraproducts, and that the
ultraproducts in all such factorizations are principal, let us record how the above
lemma allows one to combine results of the former sort obtained in Section 2
above, and results of the latter sort for abelian groups, which will be obtained in
Sections 5–6, to give sufficient conditions for all maps from a direct product of
groups to factor through finitely many projection maps.

Theorem 13. Let B be a group with the property that for every homomorphism
from a direct product group,

(20) f :
∏
i∈I

Gi→ B such that the composite homomorphism π f :
∏
i∈I

Gi→ B/Z(B)

is surjective,

the map π f factors through the projection to finitely many ultraproducts of the Gi

(cf. Section 2 above).
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Suppose, moreover, that for every almost direct factor B ′ 6= Z(B) of B, the
group B ′/Z(B) contains at least one element b which does not lie in any homo-
morphic image therein of a nonprincipal countable ultraproduct of copies of Z

(cf. Sections 5–7 below).
Then for every homomorphism (20) such that card(I ) is less than every un-

countable measurable cardinal (if any such cardinals exist), the composite π f :∏
i∈I Gi → B/Z(B) factors through the product of finitely many of the Gi .

Proof. Given a homomorphism (20) satisfying the indicated bound on card(I ),
let us factor π f through a direct product

∏
i∈I Gi/U0 × · · · ×

∏
i∈I Gi/Um−1,

where U0, . . . ,Um−1 are distinct ultrafilters on I . Without loss of generality, we
may assume that each

∏
i∈I Gi/Uk has nontrivial image in B/Z(B). Choosing a

partition I = J0 ∪ · · · ∪ Jm−1 with Jk ∈Uk , we get, by Lemma 4, an almost direct
decomposition of B into subgroups BJk . Now suppose one of our ultrafilters Uk

were not principal. By our assumption on the cardinality of I , Uk is not κ-complete
for any uncountable measurable cardinal κ , hence by Lemma 10, (18) =⇒ (19),
BJk/Z(B) satisfies the hypothesis of Lemma 12. But since BJk is an almost direct
factor of B, by assumption BJk/Z(B) has an element b whose properties contradict
the conclusion of that lemma. So, rather, every Uk must be principal, say generated
by a singleton {nk} ⊆ Jk . Hence our factorization through(∏

i∈I
Gi

)
/U0× · · ·×

(∏
i∈I

Gi

)
/Um−1

is in fact a factorization through Gn0 × · · ·×Gnm−1 . �

Quick examples of groups B to which the above result applies are free groups on
more than one generator, and the infinite dihedral group. Indeed, since both groups
have trivial center, the “/Z(B)” in the statement can be ignored, and since neither
has a nontrivial direct product decomposition, it suffices to verify that each has an
element b not contained in any homomorphic image of a nonprincipal countable
ultraproduct of copies of Z. In a free group, every nontrivial abelian subgroup is
infinite cyclic, hence slender, so any nonidentity element can serve as such a b.
In the dihedral group D = x, y | x2

= e = y2 , the element b = xy generates
an infinite cyclic subgroup which is its own centralizer, again establishing the
hypothesis of the theorem. Another class of examples is noted in:

Corollary 14 (to Lemma 12). Let X be an infinite set, and B a group of permuta-
tions of X having a cyclic subgroup b whose action on X has exactly one infinite
orbit (no restriction being assumed on the number of finite orbits of b ). Then the
centralizer of b in B admits a homomorphism to Z taking b to 1. Hence B is not a
homomorphic image of a nonprincipal ultraproduct of a countable family of groups.
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In particular, this is true if B is the full symmetric group on X , or more generally,
if for some filter F on X not consisting entirely of cofinite subsets, B is the group of
permutations of X whose fixed sets belong to F.

Proof. If two permutations a and b of a set X commute, it is easy to see that a will
carry orbits of b to orbits of b , and, of course, the image orbits will have the
same cardinalities as the original orbits. Hence, if b has a unique infinite orbit Y ,
then a must carry Y to itself; and it is easy to verify that it must act on Y by some
power bna of b. The function a 7→ na now gives the desired homomorphism of the
centralizer of b onto Z. Hence, every commutative subgroup of B containing b
admits a homomorphism onto Z, so as in the other examples discussed above, B
is not a homomorphic image of a nonprincipal ultraproduct of a countable family
of groups.

Now if F is a filter on X containing a set W which is not cofinite, we can take a
countably infinite subset Y ⊆ X −W , and let b be a permutation which has Y as an
orbit, and fixes all other points of X . This gives the final assertion of the corollary.
The full symmetric group on X is the particular case where F is the improper filter
on X . �

(With a little more work, one can get a result similar to the first paragraph of
the above corollary under the weaker assumption that b has at least one but
only finitely many distinct infinite orbits, say b x0, . . . , b xd−1 ⊆ X . In this
case, for each a centralizing b, we find that axi = bna,i xπa(i) (0≤ i < d) for some
permutation πa of {0, . . . , d − 1} and integers na,0, . . . , na,d−1. It is then easy to
verify that the map a 7→

∑
i na,i is a homomorphism from the centralizer of b to Z,

which carries b to d.)
The next result, in contrast, gives a large class of groups that do admit surjective

homomorphisms from nonprincipal countable ultraproducts. The construction
appears to be well known, but I have not been able to find a reference.

Proposition 15. If a group B admits a compact Hausdorff group topology, then
for any set I and any ultrafilter U on I , there exists a homomorphism B I/U→ B
left-inverse to the natural embedding B→ B I

→ B I/U (where the first arrow is
the diagonal map).

Hence, every group B admitting a compact Hausdorff group topology is a ho-
momorphic image of a nonprincipal countable ultraproduct of groups; hence so is
every homomorphic image of such a group.

These statements hold, more generally, with groups replaced by the objects of
any variety of finitary algebras, in the sense of universal algebra.

Sketch of proof. Fix a compact Hausdorff group topology on B. Given x ∈ B I , let
us associate to each S ∈U the set X S = {xi | i ∈ S} ⊆ B. These sets clearly have
the finite intersection property, hence so do their closures. On the other hand, with
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the help of the definition of ultrafilter and the Hausdorffness of our topology, it is
easy to verify that those closures can have no more than one common point. Hence
by compactness, the system of sets X S must converge to a single point of B. It is
immediate that the map associating to x the limit point of this system depends only
on the image of x in B I/U, and so induces a map B I/U→ B, and it is easy to
verify that this is a homomorphism with the asserted properties.

The statements in the second paragraph of the lemma clearly follow. The final
generalization holds by the same reasoning. �

By the above result, such a B is a homomorphic image of B I/U for every
ultrafilter U on every set I . This suggests the following question, where for
simplicity we limit ourselves to I = ω.

Question 16. If U, U′ are nonprincipal ultrafilters on ω, can every group B which
can be written as a homomorphic image of an ultraproduct of groups with respect
to U also be written as a homomorphic image of an ultraproduct of groups with
respect to U′?

Question 17. If the answer to Question 16 is negative, is it at least true that for any
two ultrafilters U and U′ on ω, there exists an ultrafilter U′′ on ω such that every
group which can be written as a homomorphic image of an ultraproduct of groups
with respect to U or with respect to U′ can be written as a homomorphic image of
an ultraproduct with respect to U′′?

If Question 17 has a positive answer, one can deduce that the class of groups which
can be written as homomorphic images of nonprincipal countable ultraproducts of
groups is closed under finite direct products.

Proposition 15 also leads one to wonder whether every group B which can
be written as a homomorphic image of a nonprincipal countable ultraproduct of
groups can in fact be written as a homomorphic image of a nonprincipal countable
ultrapower Bω/U of itself, via a left inverse to the natural embedding B→ Bω/U.
The answer is negative; we shall see in the second paragraph after Lemma 28 that
there exist abelian groups for which this is not true.

Let us note a couple of groups B for which the results of this section do not, as
far as I can see, give us any information.

Question 18. Can either of the following groups be written as a homomorphic
image of a nonprincipal ultraproduct of a countable family of groups?

(i) An infinite finitely generated Burnside group?

(ii) The group of those permutations of an infinite set that move only finitely many
elements? (Contrast Corollary 14.)

Let us also record, since we know no counterexample,
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Question 19. Is the converse to Lemma 12 true? That is, if U is an ultrafilter on ω,
and B is a group such that every b ∈ B lies in a homomorphic image within B of
Zω/U, must B be a homomorphic image of an ultraproduct group

∏
i∈ω Gi/U?

A positive answer seems extremely unlikely. It would imply, in particular, that
every torsion group was such a homomorphic image for every U. (So it would
imply positive answers to both parts of Question 18.)

We remark that the results we have obtained so far show that the two sorts of
properties of an object B that we are considering in this note — (a) that surjective
homomorphisms from direct products onto B yield factorizations through finitely
many ultraproducts, and (b) that when one has such a factorization, and the index
set of the product is countable, the ultraproducts involved must be principal — are
independent, for groups. Theorem 13 gave us examples satisfying both (a) and (b),
such as the free group on more than one generator, and the infinite dihedral group.
Any infinite direct product of free groups on more than one generator will still
satisfy (b) (since a homomorphism from a nonprincipal countable ultraproduct
group into such a product will have trivial composite with the projection onto each
factor, hence must be trivial), but will fail to satisfy (a), by virtue of being an infinite
direct product. Examples satisfying (a) but not (b) are given by groups satisfying
the hypotheses of both Corollary 6 and Proposition 15; for instance, finite simple
groups. Finally, infinite direct products of such examples satisfy neither (a) nor (b).

(Incidentally, if a map
∏

i∈I Gi → B factors as∏
i∈I

Gi →

(∏
i∈I

Gi

)
/U0× · · ·×

(∏
i∈I

Gi

)
/Um−1→ B,

one or more of the factors
(∏

i∈I Gi
)
/Uk may be irrelevant to the factorization, i.e.,

may map trivially to B. In condition (b) in the above discussion, we understand the
phrase “the ultraproducts involved” to exclude such “irrelevant” factors; if we did
not, (b) could never hold.)

5. Abelian groups

We have seen that in the study of homomorphisms on products of nonabelian groups,
the analogous questions for abelian groups are important. We now turn to that case.

Although, as just noted, the two sorts of condition we are interested in are inde-
pendent for nonabelian groups, we shall find that this is not true of the corresponding
conditions on abelian groups.

First, some notation, language, and basic observations.

Definition 20. In Sections 5–7, we shall use additive notation in abelian groups.
In groups Zω, (Z/pZ)ω, etc., we shall write δn (n ∈ ω) for the element having 1

in the n-th position and 0 in all other positions.
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An abelian group B is called slender if it is torsion-free, and every homomorphism
f : Zω→ B annihilates all but finitely many of the δn .

The above definition of a slender abelian group is standard, but the condition
that B be torsion-free is redundant: no B with torsion satisfies the condition on
homomorphisms. For in such a B, we can choose an element b of prime order p,
define the homomorphism

⊕
n∈ω Z/pZ→ b taking each δn to b, extend this,

by linear algebra over the field Z/pZ, to a homomorphism (Z/pZ)ω→ b , and
precompose with the natural map Zω→ (Z/pZ)ω, to get a map Zω→ B that does
not annihilate any δn .

The condition of slenderness is stronger than it looks. Indeed, our statement of
that condition in Section 1 implicitly incorporated the following striking comple-
mentary fact.

(21) [Fuchs 1973, fact (f) on p. 159] If B is a slender abelian group, then the only
homomorphism f : Zω→ B which annihilates all the elements δn (n ∈ ω) is 0.

We can now prove:

Proposition 21. The following conditions on an abelian group B are equivalent.

(22) There exists a surjective homomorphism f :
∏

i∈I Ai → B from the direct
product of a family of abelian groups to B, which does not factor through
the natural map from

∏
i∈I Ai to the direct product of finitely many countably

complete ultraproducts of the Ai .

(23) There exists a surjective homomorphism f :
∏

n∈ω An → B from the direct
product of a countable family of abelian groups to B, which does not fac-
tor through the projection of

∏
n∈ω An to the direct product of finitely many

ultraproducts (principal or nonprincipal) of the An .

(24) B is not slender.

These are also equivalent to the variants of conditions (22) and (23) without the
assumption that f be surjective.

Proof. We start with the final sentence. Conditions (23) and (22) certainly imply
the corresponding statements without the condition of surjectivity. Conversely (as
noted in Section 1), if we have an example of either of those conditions minus the
surjectivity restriction, we can get one satisfying that condition by passing from the
given map

∏
i∈I Ai → B to the obvious surjective map B×

∏
i∈I Ai → B.

Let us now show that (24) =⇒ (23)=⇒ (22) =⇒ (24).
Given (24), take a map f : Zω→ B witnessing the failure of slenderness, i.e.,

carrying infinitely many of the δn to nonzero values. If f factored through a product
of finitely many ultrapowers, Zω/U0× · · ·×Zω/Um−1, then the only elements δn

which could have nonzero image under f would be those such that one of the Uk
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was the principal ultrafilter generated by {n}, of which there can be at most finitely
many. So there is no such factorization, so f witnesses (23) (in its version without
the hypothesis of surjectivity).

Clearly, (23) =⇒ (22).
Given f as in (22), we shall prove (24) by considering two cases. First sup-

pose that f can be factored through a product of finitely many ultraproducts∏
i∈I Ai/U0×· · ·×

∏
i∈I Ai/Um−1, but that not all the Uk can be taken countably

complete. Note that f is the sum of homomorphisms fk (k = 0, . . . ,m− 1) that
factor through the respective ultraproducts

∏
i∈I Ai/Uk , and we can drop from this

sum, and hence from our factorization, any factors
∏

i∈I Ai/Uk such that fk is
zero. Hence for some k with Uk not countably complete, we must have a nonzero
homomorphism fk :

∏
i∈I Ai/Uk → B. The statement that Uk is not countably

complete is equivalent to saying that there exists a partition I = J0∪· · ·∪Jn∪· · · such
that none of the Jn lie in Uk ; in other words, such that for each n, fk |

∏
i∈Jn

Ai = 0.
If we regard fk as a map

∏
n∈ω

(∏
i∈Jn

Ai
)
→ B, the fact that it is nonzero means

that we can choose an element (xn)n∈ω ∈
∏

n∈ω

(∏
i∈Jn

Ai
)

which fk sends to a
nonzero element of B, though we know that it takes each xn to 0. Using this element
(xn)n∈ω, let us construct a map Zω→ B by taking each (dn)n∈ω ∈ Zω to (dnxn)n∈ω,
and applying fk to this ω-tuple. This gives a homomorphism Zω→ B which is zero
on each δn , but not on (1, . . . , 1, . . . ). Thus, by (21), B is not slender. (Alternatively,
we can get a direct contradiction to the definition of slenderness by choosing fk

and (xn)n∈ω as above, and mapping (dn)n∈ω ∈ Zω to fk((
∑

m<n dm)xn)n∈ω ∈ B.)
There remains the case where f cannot be factored through any product of

finitely many ultraproducts of the Ai . Then the filter F of subsets S⊆ I such that f
can be factored through

∏
i∈S Ai is not a finite intersection of ultrafilters, so by (4)

there exists a partition I = J0∪· · ·∪ Jn∪· · · such that I − Jn /∈F for all n; in other
words, such that each

∏
i∈Jn

Ai ⊆
∏

i∈I Ai has nonzero image under f . Choosing
an xn in each

∏
i∈Jn

Ai with nonzero image, we construct as in the preceding case
a homomorphism Zω → B. This time, that homomorphism will be nonzero on
every δn , showing that B does not satisfy the definition of slenderness. �

Slender abelian groups have been precisely characterized [Nunke 1961; Fuchs
1973, Proposition 95.2]: they are the abelian groups which have no torsion elements,
and contain no embedded copies of either Q, or the group of p-adic integers for
any prime p, or Zω.

In the statement of the above proposition, note that condition (22) is formally
weaker than (23) in two ways: it allows an arbitrary index set I , and it excludes
factorization only through countably complete ultraproducts (which in the context
I = ω of (23) would mean principal ultraproducts, i.e., the given groups An).
Since (22) and (23) are equivalent, they are also equivalent to two intermediate
conditions: the one obtained from (23) by replacing “ultraproducts (principal or
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nonprincipal)” by “principal ultraproducts”, and the one obtained from (22) by
deleting the words “countably complete”.

We can deduce from these observations that the two sorts of conditions on an
abelian group B that we are interested in — namely, (a) that maps to B from infinite
direct products factor through finitely many ultraproducts, and (b) that in the case
of a countable product, if we have a such a factorization, the ultrafilters involved
are all principal — are not independent; precisely, that (a) implies (b). Indeed, (a) is
equivalent to the negation of the version of (22) without the “countably complete”
condition, which by the above observations is equivalent to the negation of the
version of (23) in which the ultrafilters are assumed principal, i.e., the statement
that every homomorphism from a countable product into B factors through finitely
many An , which clearly entails (b). Bringing in (24), we see that both (a) and
(a)∧(b) are equivalent to slenderness.

On the other hand, the three cases not excluded by the implication (a) =⇒ (b)
all do occur. Slender groups, such as Z, satisfy both (a) and (b). An infinite direct
product of nontrivial slender groups, e.g., Zω, satisfies (b) but not (a). Finally, any
nonprincipal countable ultraproduct of nontrivial abelian groups will not satisfy (b),
hence, since (a) =⇒ (b), it will satisfy neither.

Having characterized the abelian groups B that satisfy (a), it remains to charac-
terize the larger class satisfying (b). As preparation, we shall first study the abelian
groups that are homomorphic images of a single nonprincipal countable ultraproduct.
We will need a few more definitions from the theory of infinite abelian groups.

Definition 22 [Fuchs 1970; Rotman 2009]. A subgroup B of an abelian group A is
called pure if for every positive integer n, B ∩ n A = nB.

An abelian group B is said to be algebraically compact if for every overgroup
A ⊇ B in which B is pure, B is a direct summand in A; equivalently [Fuchs 1970,
Theorem 38.1], if for every set X of group equations in constants from B and
B-valued variables, such that every finite subset of X has a solution in B, the whole
set X has a solution in B.

An abelian group B is said to be cotorsion if for every overgroup A ⊇ B such
that A/B is torsion-free (a stronger condition than B being pure in A), B is a direct
summand in A.

Of the two definitions of algebraic compactness quoted above, the first is the
one commonly used. I include the second because it motivates the name of the
condition. The theorem cited for their equivalence establishes several other diverse
conditions as also equivalent to algebraic compactness; below, I shall pull these out
of a hat as needed.
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The cotorsion abelian groups clearly include the algebraically compact abelian
groups. In fact, they are precisely the homomorphic images of such groups [Fuchs
1970, Proposition 54.1], a fact called on in condition (30) in the next result.

Proposition 23. For B an abelian group, the following conditions are equivalent.

(25) There exists a family of abelian groups (Ai )i∈I and a non-countably-complete
ultrafilter U on I such that B is a homomorphic image of the ultraproduct∏

i∈I Ai/U.

(26) There exists a countable family of abelian groups (An)n∈ω and a nonprincipal
ultrafilter U on ω such that B is a homomorphic image of the ultraproduct∏

n∈ω An/U.

(27) There exists a countable family of abelian groups (An)n∈ω and a filter F

on ω which is not contained in any principal ultrafilter (i.e., which satisfies⋂
S∈F S =∅), such that B is a homomorphic image of

∏
n∈ω An/F.

(28) There exists a countable family of abelian groups (An)n∈ω such that B is a
homomorphic image of the reduced product

(∏
n∈ω An

)
/
⊕

n∈ω An .

(29) B is a homomorphic image of an abelian group C admitting a compact
Hausdorff group topology.

(30) B is a cotorsion abelian group; i.e., a homomorphic image of an algebraically
compact abelian group.

Proof. We shall show (25) =⇒ (26) =⇒ (27) =⇒ (28) =⇒ (30) =⇒ (29) =⇒ (25).
In the situation of (25), the fact that U is not countably complete implies that

we can find a partition I =
⋃

n∈ω Jn such that no Jn belongs to U. Let us again
write

∏
i∈I Ai =

∏
n∈ω

(∏
i∈Jn

Ai
)
. As in the proof of Lemma 10, if we let U′ =

{S ⊆ ω |
⋃

n∈S Jn ∈U}, we find that U′ is a nonprincipal ultrafilter on ω, yielding
a factorization of the map from our product group to our original ultraproduct as∏

i∈I
Ai →

∏
n∈ω

( ∏
i∈Jn

Ai

)
/U′→

∏
i∈I

Ai/U.

Since B is a homomorphic image of
∏

i∈I Ai/U, it is a homomorphic image of the
factoring object, proving (26).

We get (26) =⇒ (27) by taking F=U.
Given (27), note that since the filter F on ω is not contained in a principal

ultrafilter, it contains the complement of every singleton, hence it contains the
Fréchet filter C of complements of finite sets. So the quotient map∏

n∈ω
An→

∏
n∈ω

An/F factors through
∏

n∈ω
An/C=

( ∏
n∈ω

An

)/⊕
n∈ω

An,

giving (28).
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Given (28), we call on [Fuchs 1970, Corollary 42.2] which says that every group
of the form

(∏
n∈ω An

)
/
⊕

n∈ω An is algebraically compact, yielding (30).
For the step (30)=⇒ (29), we call on [Fuchs 1970, Theorem 38.1] (or on [Rotman

2009, Theorem 7.42]) which, among the equivalent conditions for an abelian
group to be algebraically compact, includes that of being a direct summand in an
abelian group that admits a compact Hausdorff group topology. So an algebraically
compact abelian group is, in particular, a homomorphic image of an abelian group
admitting such a topology, hence so is any homomorphic image of an algebraically
compact group.

Finally, by Proposition 15 above, any abelian group A admitting a compact
Hausdorff group topology can be written as a homomorphic image of its ultrapower
AI /U for any ultrafilter U on any set I . So choosing a U which is not countably
complete (e.g., any nonprincipal ultrafilter on I = ω), we get (29) =⇒ (25). �

We note that for a nonzero abelian group B, the equivalent conditions of
Proposition 23 imply those of Proposition 21. Indeed, thinking in terms of the
conditions (a) and (b) that we have been discussing, if we write (b1) for the case
of (b) where there is only a single ultraproduct involved (i.e., the condition that
if there exists a nonzero homomorphism from an ultraproduct group

∏
n∈ω An/U

onto B, then the ultrafilter U is principal), then we have (a) =⇒ (b) =⇒ (b1), so
¬(b1)=⇒¬(a); moreover, we see that for B 6= {0}, (26) is equivalent to¬(b1), while
we have previously noted that the conditions of Proposition 21 are equivalent to¬(a).
(Alternatively, it not hard to see directly that for B 6= {0}, an example witnessing (26)
also witnesses (22).) Choosing the equivalent conditions of the two propositions
that have standard names, these observations say that for B 6= {0}, (30) =⇒ (24);
in other words, no nonzero cotorsion abelian group is slender. Since the class of
cotorsion abelian groups is closed under homomorphic images, this in fact gives:

Corollary 24. No cotorsion abelian group has a nonzero slender homomorphic
image. �

Corollary 24 allows us to apply Theorem 13 to many variants of the examples
immediately following it. For instance, one of those was the infinite dihedral group,
i.e., the semidirect product arising from the natural action of {±1} on the slender
group Z. I claim that we can replace Z in that example by any abelian group A
without 2-torsion that has Z as a homomorphic image; for instance, Zω, or Z×Z/nZ

for any odd n. Indeed, taking a homomorphism from such an abelian group A
onto Z, and any b ∈ A that maps to a generator of Z under that homomorphism, we
see from the above corollary that no subgroup B of A containing b is cotorsion,
equivalently, by Proposition 23, that no such subgroup B satisfies (26); hence b
satisfies the condition of the second paragraph of Theorem 13. (The assumption
that A has no 2-torsion keeps the center of the semidirect product trivial, to avoid
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complicating our considerations.) In Section 6 we will obtain more information on
which abelian groups are cotorsion.

We can now answer the question of which abelian groups B have the property
we called (b) in our earlier discussion, namely, that any map f from a countable
direct product of abelian groups An onto B which factors through finitely many
ultrafilters in fact factors through the projection to the product of finitely many of
the An . We shall see that this is true if and only if B contains no nontrivial cotorsion
subgroup. Although the class of cotorsion abelian groups is difficult to describe
exactly, a simple criterion is known for an abelian group to be cotorsion-free, i.e.,
to contain no nontrivial cotorsion subgroup: It is that the group be torsion-free,
and contain no copy of the additive group of Q, nor of the p-adic integers for
any prime p [Dugas and Göbel 1982, Theorem 2.4 (1) =⇒ (4)]. (So it is like
the condition characterizing slenderness, but without the exclusion of subgroups
isomorphic to Zω.) This condition is also equivalent to that of containing no nonzero
algebraically compact subgroup: it implies the latter because every algebraically
compact group is cotorsion, while the reverse implication holds because Q, and the
groups of p-adic integers, and all finite abelian groups, are algebraically compact.
As is usual in this note, the statement below will be the contrapositive of the version
suggested by this discussion.

Theorem 25. The following conditions on an abelian group B are equivalent.

(31) There exist a set I , a family of abelian groups (Ai )i∈I , and a surjective
homomorphism f :

∏
i∈I Ai → B such that f factors through the product

of finitely many ultraproducts
∏

i∈I Ai/Uk , but does not factor through the
product of finitely many countably complete ultraproducts.

(32) There exist a countable family (An)n∈ω of abelian groups and a surjective
homomorphism f :

∏
n∈ω An → B such that f factors through the product

of finitely many ultraproducts
∏

n∈ω An/Uk , but does not factor through the
product of finitely many of the An .

(33) B has a nontrivial cotorsion subgroup; equivalently (by the result from [Dugas
and Göbel 1982] quoted above), B either has nonzero elements of finite order,
or contains a copy of the additive group of Q, or contains a copy of the additive
group of the p-adic integers for some prime p; equivalently, B has a nontrivial
algebraically compact subgroup.

These conditions are also equivalent to the variants of (32) and (31) without the
assumption that f be surjective.

Proof. The equivalence of (31) and (32) to the corresponding conditions without
the assumption of surjectivity is seen as in the first paragraph of the proof of
Proposition 21. We shall use those variants to prove (33) =⇒ (32) =⇒ (31) =⇒ (33).
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Assuming (33), let C ⊆ B be a nonzero cotorsion subgroup. Then our earlier
result (30)=⇒ (26) gives a surjective homomorphism

∏
n∈ω An/U→C for a family

of abelian groups An and a nonprincipal ultrafilter U, which we regard as a nonzero
homomorphism into B. Since U is not principal, f annihilates each of the An , so
it cannot be factored through the product of finitely many of these, giving (32).

Clearly, (32) =⇒ (31), since the countably complete ultrafilters on ω are the
principal ultrafilters.

Assuming (31), let f :
∏

i∈I Ai → B be a homomorphism that factors through a
product of ultraproducts

∏
i∈I Ai/U0×· · ·×

∏
i∈I Ai/Um−1, but not through such

a product in which all the Uk are countably complete. As noted in the proof of
Proposition 21, the given factorization is equivalent to an expression of f as the sum
of maps that factor

∏
i∈I Ai→

∏
i∈I Ai/Uk→ B, and if any of these maps are zero,

we can drop them, leaving a factorization with all these maps nonzero, and which,
by choice of f , must still have at least one with Uk not countably complete. So
there exists a nonzero map g :

∏
i∈I Ai/U→ B for some non-countably-complete

ultrafilter U on I . Our earlier result (25) =⇒ (30) now tells us that the nonzero
image of g is a cotorsion submodule of B, proving (33). �

We have not yet said much about algebraically compact groups, except that the
cotorsion groups are their homomorphic images. We record:

Lemma 26. The following conditions on an abelian group B are equivalent.

(34) For every proper filter F on a nonempty set I , the natural embedding B→
B I/F has a left inverse.

(35) There exists a nonprincipal ultrafilter U on ω such that the natural embedding
B→ Bω/U has a left inverse.

(36) B is algebraically compact.

Proof. For any filter F on a set I , the natural embedding B→ B I/F is easily seen
to be pure, so the definition of algebraic compactness gives (36) =⇒ (34). Clearly,
(34) =⇒ (35).

To show that (35) =⇒ (36), we use the result [Eklof 1973, third sentence of §2],
that a nonprincipal countable ultrapower of any abelian group B is algebraically
compact. Hence (35) implies that B is a direct summand in an algebraically compact
abelian group, from which one easily sees that it itself is algebraically compact. �

Since the cotorsion abelian groups are the homomorphic images of the alge-
braically compact ones, the above result shows that the analog of Question 16
has a positive answer for abelian groups. (This can also be seen from the proof
of Proposition 23, where the closing step (29) =⇒ (25) allows us to choose U

essentially arbitrarily.)
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Another interesting necessary and sufficient condition for B to be algebraically
compact, obtained (in the more general context of modules) as [Jensen and Lenzing
1989, Theorem 7.1(vi)], is that for every set I , the summation map

⊕
i∈I B→ B

extend to a map B I
→ B.

6. More on algebraically compact and cotorsion abelian groups

The distinction between the class of cotorsion abelian groups and its subclass, the
algebraically compact abelian groups, is a subtle one. It follows from the definitions
that every cotorsion abelian group B that is torsion-free is algebraically compact
[Fuchs 1970, Corollary 54.5]. The only example I have found in the literature of a
cotorsion abelian group that is not algebraically compact, that of [Rotman 2009,
Proposition 7.48(ii)], is described as an Ext of other groups, rather than explicitly.
(It is known that for any abelian groups A and A′, Ext(A, A′) is cotorsion [Fuchs
1970, Theorem 54.6], [Rotman 2009, Corollary 7.47].) Let us begin this section by
constructing a more explicit example.

We will use the characterization of an algebraically compact abelian group as an
abelian group B such that whenever a system of equations has the property that all
its finite subsystems have solutions in B, then the whole system has such a solution.
An easy example of an infinite system of equations is the following, where p is a
prime, x0 is a given element of B, and x1, . . . , xn, . . . are to be found.

(37) x0 = px1, x1 = px2, . . . , xn−1 = pxn, . . . .

The necessary condition for algebraic compactness that this system yields is:

Lemma 27. If B is an algebraically compact group and p a prime, then the
subgroup B ′ =

⋂
n∈ω pn B ⊆ B is p-divisible, i.e., satisfies pB ′ = B ′.

Proof. Suppose x0 ∈ B ′. Let us fix n ≥ 0, and choose xn ∈ B such that x0 = pnxn .
If we now let xm = pn−m xn for 0<m < n, we see that x0, . . . , xn satisfy the first n
equations of (37). Since we can do this for any n, every finite subfamily of (37) has
a solution, so algebraic compactness implies that we can choose x1, . . . , xn, . . .

satisfying the full set of equations. For such x1, . . . , xn, . . . we see that x1 also
belongs to B ′; so x0 ∈ pB ′, as required. �

(It is also not hard to prove the above lemma from the definition of algebraic
compactness in terms of pure extensions: given algebraically compact B, and x0∈ B ′,
let B+ be the extension of B gotten by adjoining new generators x1, . . . , xn, . . .

and the relations (37). It is straightforward to show that B embeds in B+, and from
the fact that x0 ∈ B ′, one can deduce that B is pure in B+. Hence the definition
of algebraic compactness says that there exists a retraction of B+ onto B, i.e., a
solution to (37) in B; hence, as above, x0 = px1 ∈ pB ′.)
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So let us try to construct a cotorsion abelian group B with an element that we
force to lie in B ′, without creating any apparent reason why it should lie in pB ′. To
do this, let Zp denote the additive group of p-adic integers, which is algebraically
compact by Proposition 15 and Lemma 26; within its countable power Zωp , let δn

be, as usual, the element with 1 in the n-th coordinate and 0 in all others; and for a
first try, let B be the factor group of Zωp by the subgroup generated by the elements

(38) δ0− pnδn (n ∈ ω).

Letting x be the image of δ0 in B, we clearly have x ∈ B ′.
But this group is messy, making it hard to see whether some y ∈ B ′ might satisfy

x = py. It becomes nicer if we impose (38) as Zp-module relations rather than just
as additive group relations. If we then change coordinates in Zωp , so that the elements
δn − pδn+1 become the new δn (namely, we map (an)n∈ω to (

∑
m≤n pn−mam)n∈ω),

the resulting construction takes the form shown in the next lemma.

Lemma 28. Let p be a prime number, and B the group Zωp/
⊕

n∈ω pnZp. Then B
is cotorsion, but fails to satisfy the conclusion of Lemma 27; hence B is not alge-
braically compact.

Proof. As a homomorphic image of an algebraically compact group, B is cotorsion.
To see the failure of the conclusion of Lemma 27, let x ∈ B be the image of

(pn)n∈ω ∈ Zωp . (Note that the above coordinates pn are “ghosts”, in the sense that
any finite set of them may, by the definition of B, be changed to 0 without changing
the element x .) For each n > 0, if we let xn ∈ B be the image of the element of Zωp
whose coordinate in position m is 0 for m < n, and pm−n for m ≥ n, then we see
that x = pnxn . Hence x ∈ B ′.

Now let y be any element satisfying x = py. Writing y as the image of
(an)n∈ω ∈ Zωp , we see from the definition of B that for all but finitely many n
we must have an = pn−1. (And note that coordinates with this property are not
“ghosts”!) But for any n such that this equation holds, we can see by looking at the
n-th coordinate that y /∈ pn B. So y /∈ B ′; and since we have shown this for all y
with x = py, we have x /∈ pB ′. Since x ∈ B ′, this shows that B ′ 6= pB ′. �

(L. Fuchs (personal communication) points out another way to see that the
above group B is not algebraically compact: by noting that its torsion subgroup⊕

n∈ω Zp/pnZp is not torsion-complete, and calling on [Fuchs 1973, Theorem 68.4,
(ii) =⇒ (i)].)

Note that any group B which, like the one constructed above, is cotorsion but not
algebraically compact is, by the former fact, a homomorphic image of a nonprincipal
countable ultraproduct of groups, but by Lemma 26 (35) =⇒ (36), does not admit a
left inverse to a diagonal embedding B→ Bω/U, confirming the assertion made in
the second paragraph after Question 17.
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Let us obtain, next, some restrictions on the class of cotorsion abelian groups.
These will allow us to deduce that many sorts of groups are not cotorsion, and so give
more examples to which we can apply Theorem 13. In the next lemma we combine
the fact that the cotorsion groups are the homomorphic images of the algebraically
compact groups with another of the criteria for algebraic compactness given in
[Fuchs 1970, Theorem 38.1], namely, that an abelian group C is algebraically
compact if and only if it is pure-injective, meaning that for any pure subgroup A0 of
an abelian group A1, every homomorphism A0→ C extends to a homomorphism
A1→ C . In an earlier version of this note, I asked whether the direction “(39) =⇒
cotorsion” in the lemma held; I am indebted to K. M. Rangaswamy and Manfred
Dugas for (independently) showing me why it does.

Lemma 29. An abelian group B is cotorsion if and only if it satisfies

(39) For every abelian group A having a pure subgroup F which is free abelian,
every homomorphism F→ B extends to a homomorphism A→ B.

Proof. Assuming B cotorsion, let us write it as a homomorphic image of an
algebraically compact abelian group C . Since F is free, we can lift the given map
F→ B to a map F→ C , and then, since C is algebraically compact, equivalently,
pure-injective, we can extend that lifted map to a map A→ C . Composing with
our map C→ B, we get the desired extension to A of the given map F→ B.

Conversely, assuming (39), write B as a homomorphic image of a free abelian
group F . Now by [Fuchs 1970, §38, Exercise 8, p. 162], every abelian group embeds
as a pure subgroup in a group admitting a compact Hausdorff group topology; let A
be such an overgroup of F . (For an explicit embedding in this case, let Ẑ denote the
completion of Z with respect to its subgroup topology. Then Z is a pure subgroup
of the compact group Ẑ, so writing F =

⊕
I Z, we see that F is pure in the compact

group ẐI .) By (39), our homomorphism of F onto B extends to a homomorphism
of A onto B, so by Proposition 23, (29) =⇒ (30), B is cotorsion. �

Our first application of this result will show that in a cotorsion abelian group B,
highly divisible elements abound; for instance, that if p1 and p2 are distinct primes,
then every element of B is the sum of an element divisible by all powers of p1 and
an element divisible by all powers of p2. To state the result in greater generality,
let us, for any set P of primes, write Z[P−1

] for the subring of Q consisting of
elements whose denominators lie in the multiplicative monoid generated by P , and
call an element x of an abelian group A P-divisible if it lies in the image of a
homomorphism from the additive group of Z[P−1

] to A. We shall call an abelian
group P-divisible if all its elements are.

Proposition 30. If B is a cotorsion abelian group, and P0, . . . , Pm−1 are sets of
prime numbers such that P0 ∩ · · · ∩ Pm−1 = ∅, then every element b ∈ B can be
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written b0+ · · ·+ bm−1, where for each j , b j is Pj -divisible. Equivalently, B is a
sum of subgroups B0+ · · ·+ Bm−1 such that each group B j is Pj -divisible.

Proof. Let A be the additive group of Z[P−1
0 ]× · · · ×Z[P−1

m−1], and F the infinite
cyclic subgroup thereof generated by (1, . . . , 1). That the inclusion F ⊆ A is pure
follows from the fact that P0∩· · ·∩Pm−1=∅. Indeed, if an element d(1, . . . , 1)∈ F
is not divisible in F by some positive integer n, then d is not divisible by n, so n
has a prime power factor pi not dividing d. Choosing k such that p /∈ Pk , we see
that the k-th coordinate of d(1, . . . , 1) is not divisible by pi in Z[P−1

k ], so in A,
d(1, . . . , 1) is not divisible by pi , hence not divisible by n.

Hence by Lemma 29, for any b ∈ B, the map F → B taking (1, . . . , 1) to b
extends to A, giving a representation of b as the sum of the images of the elements
(0, . . . , 1, . . . , 0), each of which is Pj -divisible for some j . The equivalence of
this result to the final statement of the lemma follows from the fact that for any
set P of primes, the P-divisible elements of an abelian group form a subgroup. �

As a quick illustration, consider the group Zp of p-adic integers, which we have
seen is algebraically compact, and hence cotorsion. That group is P-divisible for P
the set of all primes other than p. Given P0, . . . , Pm−1 as in Proposition 30, at
least one Pj will fail to contain p, so Zp is Pj -divisible for that j , confirming the
conclusion of the proposition.

Of course, the much smaller group of rational numbers with denominators
relatively prime to p (of which the group Zp is a completion) is P-divisible for
the same set P , and so also satisfies the conclusion of Proposition 30. However,
that group is not cotorsion. Indeed, from the characterization of slender abelian
groups recalled immediately after the proof of Proposition 21, every abelian group
which is torsion-free and which contains no copy of Q and has less than continuum
cardinality is slender, hence, if nonzero, is non-cotorsion.

The next result generalizes the above restriction on cotorsion groups.

Proposition 31. If B is a cotorsion abelian group such that dB 6= {0} for every pos-
itive integer d, but

⋂
d∈Z, d>0 dB = {0}, then B has at least continuum cardinality.

Proof. We shall construct a homomorphism
⊕

ω Z→ B, extend it to a map Zω→ B
by Lemma 29, and show that under the extended map, continuum many elements
of Zω have distinct images. We begin by carefully selecting the elements to which
to send the free generators of

⊕
ω Z.

I claim that we can choose positive integers d0, d1, . . . , each a multiple of the one
before, and elements b0, b1, . . .∈ B, such that for each n∈ω, we have dnbn /∈dn+1 B.
We start with d0 = 1, and b0 any nonzero element of B. Assuming that for some
n≥0, dn and bn have been chosen with dnbn 6=0, the hypothesis

⋂
d∈Z, d>0 dB={0}

allows us to choose dn+1 > 0 such that dnbn /∈ dn+1 B. Replacing dn+1 by a proper
multiple if necessary, we may assume dn|dn+1. Using the fact that dn+1 B 6= {0},
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we can then choose bn+1 such that dn+1bn+1 6= 0. Continuing recursively, we get
d0, d1, . . . and b0, b1, . . . with the asserted properties.

We now map
⊕

ω Z to B by sending each δn to bn . Since
⊕

ω Z is a pure
subgroup of Zω, Lemma 29 allows us to extend this map to a homomorphism
f : Zω→ B, which still carries each δn to bn .

For each ε= (εn)n∈ω ∈ {0, 1}ω, let εd denote (ε0d0, . . . , εndn, . . . )∈Zω. I claim
that distinct strings ε yield distinct elements f (εd) ∈ B. Indeed, for ε 6= ε′, let
n ∈ ω be the least index such that εn 6= ε

′
n , and let us write

f (εd)= f (ε0d0, . . . , εndn, 0, 0, . . . )+ f (0, . . . , 0, εn+1dn+1, εn+2dn+2, . . . ).

If we compare this with the corresponding expression for f (ε′d), we see that the
left-hand summands in these expressions differ by exactly f (dnδn), i.e., dnbn , which
by assumption does not lie in dn+1 B; while the right-hand summands do lie in
dn+1 B, since for all m ≥ n we have dn+1|dm . Hence f (εd)− f (ε′d) 6= 0; so we
indeed have continuum many distinct elements of B. �

As an application, it is easy to deduce that no subgroup B of
∏

primes p Z/pZ

which is infinite, but of less than continuum cardinality, can be cotorsion. Hence, if
we take such a subgroup with no 2-torsion, containing an element b of infinite order,
its semidirect product with ±1 will again be a group to which Theorem 13 applies.

On the other hand, we saw in Lemma 11 that for the semidirect product of {±1}
with the group Q, the conclusion of Theorem 13 fails; and Proposition 15 shows the
same for the semidirect product of {±1} with any finite abelian group. In fact, Q and
all finite abelian groups are cotorsion; the next result includes these statements as
special cases. It is curious that its formulation is analogous to that of Proposition 15,
but the reasoning is quite different.

Proposition 32 (cf. [Fuchs 1970, p. 178, last paragraph of Notes]). Let B be an
abelian group which is divisible, or is of finite exponent, or more generally, is the
sum of a divisible group and one of finite exponent; or, still more generally, is
the underlying additive group of an injective module over some ring R. Then for
any set I and any ultrafilter U on I , there is a group homomorphism B I/U→ B
left-inverse to the natural embedding B→ B I

→ B I/U.
Hence by Lemma 26, (35) =⇒ (36), every such B is algebraically compact, and

so in particular is cotorsion.

Proof. First suppose B has the property introduced above by the words “still more
generally”. Then the maps B → B I

→ B I/U are R-module homomorphisms
whose composite is an embedding. The injectivity of B as an R-module thus yields
the desired left inverse map. Taking I = ω and U nonprincipal, we conclude that B
is algebraically compact (by Lemma 26, (35) =⇒ (36)).
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It remains to show that the various sorts of abelian groups named are indeed
injective modules over appropriate rings. Any divisible abelian group is an injective
Z-module by [Lam 1999, Proposition 3.19]. An abelian group B of finite exponent n
can be written as a direct product of free Z/dZ-modules as d ranges over the divisors
of n; and each of the rings Z/dZ is self-injective, so that its free modules are injective
by [ibid., Corollary 3.13(1) and Theorem 3.46(4) =⇒ (2)]. Finally, if B is the sum
of a divisible subgroup D and a subgroup E of finite exponent, then the injectivity
of D over Z allows us to split it off as a direct summand, and the complementary
summand will be a homomorphic image E ′ of E , hence again of finite exponent.
We can now make B = D⊕ E ′ a module over the direct product R of Z and finitely
many rings Z/dZ, in such a way that the component over each of these factor rings
is injective over that ring. The group B will then be injective over R. �

I do not know the answer to:1

Question 33. For an abelian group B to be cotorsion, is it sufficient that every
homomorphism

⊕
ω Z→ B extend to a homomorphism Zω→ B? (In other words,

in Lemma 29, is condition (39) equivalent to the special case where the inclusion
F ⊆ A is

⊕
ω Z⊆ Zω?)

The following example shows that the converse of Corollary 24 is not true: a
group B with no nonzero slender homomorphic image need not be cotorsion.

Lemma 34. Within the group A=
∏

primes p Z/pZ, let u be the element having 1 in
every coordinate, and let B consist of all elements b ∈ A such that db= nu for some
integer n and nonzero integer d (mnemonic for “numerator” and “denominator”).

Then B is a countable subgroup of A, such that every cotorsion subgroup of B is
torsion (so that B is not itself cotorsion), but the factor-group of B by its torsion
subgroup is isomorphic to Q, and so is cotorsion.

Hence B has no nonzero slender homomorphic images.

Proof. That B is a subgroup of A is immediate. It is countable because each b ∈ B
is determined by any choice of n and d satisfying db = nu, together with the
coordinates of b at the finitely many primes dividing d.

By the observation following the proof of Proposition 31, cotorsion subgroups
of B are finite, hence are torsion.

On the other hand, the factor group of B by its torsion subgroup is isomorphic
to Q via the map sending the image of each b ∈ B to the common value of n/d ∈Q

for all relations db = nu satisfied by b; and Q, being divisible, is cotorsion by
Proposition 32.

1See note added in proof, page 494.
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Since slender groups are torsion-free, a homomorphism f from B to a slender
group must annihilate the torsion subgroup of B, hence f (B) must be a homomor-
phic image of Q, hence by Corollary 24 must be zero. �

Here is a question of a different flavor.

Question 35. If an abelian group B can be written as a homomorphic image of a
nonprincipal countable ultraproduct of not necessarily abelian groups Gn , must
it be a homomorphic image of a nonprincipal countable ultraproduct of abelian
groups, i.e., must it be cotorsion?

The reason this question is nontrivial is that abelianization does not commute with
ultraproducts. For instance, let G be a group which is perfect (satisfies G = [G,G])
but which for each n has an element xn that cannot be written as the product of fewer
than n commutators. (The latter property is called “infinite commutator width”;
for examples of such G see [Muranov 2007].) Then no nonprincipal ultrapower
Gω/U will be perfect, because for such a family of elements xn , the image of
(xn)n∈ω ∈ Gω in Gω/U will not be a product of finitely many commutators. Hence
the abelianization B of

∏
n∈ω Gn/U is a nontrivial abelian group satisfying the

hypothesis of Question 35, but there is no obvious candidate for a representation
of B as in the conclusion of that question.

We can, however, prove a weak result in the direction of a positive answer.

Lemma 36. If an abelian group B can be written as a homomorphic image of a
nonprincipal countable ultraproduct

∏
n∈ω Gn/U of not necessarily abelian groups,

then B is a directed union of cotorsion abelian subgroups.

Proof. By Lemma 12, every cyclic subgroup of B is contained in a cotorsion
subgroup. Now the class of cotorsion abelian groups, as characterized by any of (27),
(28) or (29), is easily seen to be closed under finite direct sums, hence since it is
closed under homomorphic images, it is closed under finite sums in abelian over-
groups, so the cotorsion subgroups of such an overgroup form a directed system. �

But not every directed union of cotorsion groups is cotorsion. For instance,
every torsion abelian group is the directed union of its finite subgroups, which are
cotorsion by Proposition 32; but by Proposition 31, the group

⊕
primes p Z/pZ is

not cotorsion.
We remark that Questions 19 and 35 cannot both have positive answers, since as

noted earlier, a positive answer to Question 19 would make every torsion group,
including the abovementioned group

⊕
primes p Z/pZ, a homomorphic image of

a countable ultraproduct of (not necessarily abelian) groups. But as we also said
earlier, a positive answer to Question 19 seems highly unlikely.

A noticeable difference between our results on general groups in Sections 2–4
and our results on abelian groups in the above three sections is that in the former we
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composed maps
∏

i∈I Gi → B with the natural map B→ B/Z(B) before looking
at factorization properties, but we have done nothing of the sort for abelian groups.
It might be of interest to see whether one can improve the results of these sections
by composing homomorphisms

∏
i∈I Ai→ B with the map B→ B/X (B) for some

natural choice of X (B), such as the torsion subgroup of B, the subgroup of divisible
elements, their sum, or the sum of all cotorsion subgroups of B. (Lemma 34 shows
that for the last of these choices, B/X (B) may not itself be cotorsion-free; but
this need not be a problem; cf. the fact that for a nonabelian group B, the group
B/Z(B) need not have trivial center.) In the opposite direction, it might be possible
to strengthen the results of Sections 2–4 by dividing B, not by Z(B), but by a
smaller subgroup X (Z(B)) for one of the above constructions X . I leave these
ideas for others to explore.

7. Some related questions that have been studied

The direct sum
⊕

i∈I Ai of a family of abelian groups — or more generally, of a
family of modules over any ring R — is their coproduct in the category of abelian
groups or R-modules; hence for such objects, their coproduct can be regarded as
the subgroup or submodule of elements of finite support in their direct product∏

i∈I Ai . Now in any category, a homomorphism from a coproduct of objects Ai

to an arbitrary object B is determined simply by choosing a homomorphism from
each Ai to B. So the phenomena we have been investigating in the last two sections
can be looked at as consequences of the fact that not every such map on a coproduct
of abelian groups can be extended consistently to the elements of

∏
i∈I Ai with

infinite supports. The slender modules are those modules B for which this restriction
on maps to B is so strong that it can only be satisfied by maps that factor through
the product of finitely many of the Ai .

Dually, one gets homomorphisms from an abelian group or R-module B to a
direct product

∏
j∈J C j simply by choosing a homomorphism into each C j ; but if

we wish to map B into the coproduct
⊕

j∈J C j ⊆
∏

j∈J C j , we face the problem of
choosing those homomorphisms so that the resulting map takes each element of B
to an element of finite support. The question of which modules B have the property
that the only way to achieve this is by mapping into a finite subsum of

⊕
j∈J C j is

answered by El Bashir, Kepka and Němec in Proposition 4.1 of [El Bashir et al.
2003]; that paper also studies the corresponding questions for colimit constructions
other than coproducts.

Several workers, beginning with Chase [1962a; 1962b], have looked at the
two-headed situation of module homomorphisms f :

∏
i∈I Ai →

⊕
j∈J C j . Here

one may ask when every such map is a sum of one homomorphism which factors
through the projection of

∏
i∈I Ai onto a finite subproduct, and another which factors
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through the inclusion of a finite subsum in
⊕

j∈J C j . Just as, in studying nonabelian
groups in Sections 2–4, we found it desirable to divide out by Z(B) to avoid certain
easy ways that maps could involve infinitely many factors, so in the results of this
sort, two adjustments turn out to be useful: dividing out by submodules of “highly
divisible” elements of the C j , and multiplying the given homomorphism by some
nonzero ring element d; which essentially means restricting it to

∏
i∈I d Ai . Thus,

[Chase 1962b, Theorem 1.2], more or less the starting point for the development
of the subject, says, if restricted to the case where the base ring is Z and where
a certain filter of principal right ideals in the statement of that theorem consists
of all the nonzero ideals of Z, that given any homomorphism of abelian groups
f :
∏

n∈ω An→
⊕

i∈I Ci , there exists an integer d > 0 such that when f is applied
to
∏

n∈ω d An , and followed by the factor map
⊕

i∈I Ci →
⊕

i∈I (Ci/
⋂

e>0 eCi ),
it carries the product of some cofinite subfamily of the d An into the sum of a finite
subfamily of the Ci/

⋂
e>0 eCi .

That result (in its general module-theoretic form) is strengthened in [Dugas and
Zimmermann-Huisgen 1981, Theorem 2] to allow products

∏
i∈I Ai over any index

set I of cardinality less than all uncountable measurable cardinals, and to remove
the requirement that the right ideals considered be principal, while in [Bergman
2006, Theorem 9], the direct product is replaced by a general inverse limit. For
further related work, see references in the first paragraph of p. 46 of that paper.

(It is curious that the proof of the abovementioned theorem from [Chase 1962b],
and that of Proposition 31 of this note, use virtually the same construction, but for
very different purposes: in Chase’s paper, to obtain a contradiction by constructing
an element whose image in the direct sum would have infinitely many nonzero
components; in Proposition 31, to get continuum many distinct elements in the
image of our map.)

Turning back to the results of the three preceding sections, it would, of course,
be desirable to investigate the corresponding questions with abelian groups replaced
by modules over a general ring R. In [Jensen and Lenzing 1989, Chapters 7–8],
algebraically compact modules over general R are studied, but cotorsion modules
are not mentioned. (There are numerous MathSciNet results for “cotorsion module”,
but I have not had time to examine them.) One might also take a hint from [Chase
1962a; 1962b], and see whether one gets nonobvious variants of our results if
one considers those B such that all homomorphisms

∏
i∈I Ai → B acquire the

factorization properties we are looking for after multiplying
∏

i∈I Ai by some
integer (or ideal), and/or dividing B by an appropriate subgroup (or submodule) of
highly divisible elements. (This is related to the suggestion in the last paragraph of
the preceding section.)
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8. Rings

As mentioned in Section 1, the results of this note were inspired by investiga-
tions of factorization properties of homomorphisms on direct products of not-
necessarily-associative algebras over an infinite field [Bergman and Nahlus 2011;
2012; Bergman 2014; Maalouf 2014]. In those papers, the assumption of infinite
base field was used to show that, under appropriate bounds on the vector-space
dimension of B, the ultrafilters occurring had to be principal.

If we look at not-necessarily-associative rings, without assuming a structure of
algebra over a field, then as we shall see below, we can still get results analogous
to the main results of Section 2 (on when maps must factor through finitely many
ultraproducts) and those of Section 4 (saying that such ultraproducts must be
principal under appropriate assumptions on the additive structure of B). Between
these we shall insert Proposition 39, which will say that if our rings have unit,
then the absence of factorization through finitely many ultraproducts implies the
existence of an associative commutative subring of B with the cardinality of the
continuum, of an explicitly describable form, over which B becomes an algebra. I
will not repeat here the results on algebras over an infinite field from the papers cited
above; and having spent many words on those papers, I will be brief in this section.

In a direct product ring
∏

i∈I Ri , we define the support of an element x = (xi )i∈I

to be {i ∈ I | xi 6= 0}. Whereas in Sections 2–4, our basic tool was the commutativity
of elements with disjoint supports in a product group, and the phenomenon that
this tool could not handle was avoided by dividing out by the center, Z(B), the
corresponding tool in the four works cited above was the fact that ring elements
with disjoint supports have product zero; and the ideal one had to divide out by
(which was also denoted Z(B)) was the zero-multiplication ideal. In this section,
for B a ring, we will, as in those papers, write

(40) Z(B) = {b ∈ B | bB = Bb = 0}.

As in Sections 2–4, we let π : B→ B/Z(B) be the quotient homomorphism.
There was one commutativity result in Theorem 2 above that arose for a reason

other than that elements in different factors of a direct product commute, namely, (7),
which followed from the fact that every element commutes with itself. Thus, the
analog of that one statement, (41) below, again concerns commutativity, rather than
zero products.

The obvious analog of Lemma 1 holds for rings, and yields the following analog
of Theorem 2.

Theorem 37. Let B be a ring (understood here to mean an abelian group given
with an arbitrary bilinear multiplication B × B→ B), and suppose there exist a
family (Ri )i∈I of rings, and a surjective ring homomorphism f :

∏
i∈I Ri → B,
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such that the induced homomorphism π f :
∏

i∈I Ri → B/Z(B) does not factor
through the natural map from

∏
i∈I Ri to any finite product of ultraproducts of

the Ri . Then B contains families of elements (aS), (bS), indexed by the subsets
S ⊆ ω, such that:

(41) All the elements aS (S⊆ω) commute with one another, and all the elements bS

likewise commute with one another.

(42) For disjoint subsets S and T of ω, we have aS + aT = aS∪T , bS + bT = bS∪T ,
and 0= aSaT = aSbT = bSaT = bSbT .

(43) For subsets S and T of ω with card(S ∩ T )= 1, we have aSbT 6= 0. �

One gets from this the obvious analog of Corollary 3, which I will not write down,
only noting one minor way in which the statement is weaker than that corollary: in
a nonassociative ring, a family of pairwise commuting elements need not generate
a commutative subring, so the assertion of commutativity in the last sentence of
Corollary 3 disappears here.

One likewise has the analog of Theorem 5. Namely, following [Bergman and
Nahlus 2011, Definitions 13 and 15], we define an almost direct decomposition
of a ring B as an expression B = B ′+ B ′′, where B ′ and B ′′ are ideals of B, each
of which is the 2-sided annihilator of the other; and we shall say that B has chain
condition on almost direct factors if every chain of such ideals is finite. Then we get:

Theorem 38 (cf. [Bergman and Nahlus 2011, Proposition 16]). Let B again be
a ring such that there exist a family of rings (Ri )i∈I , and a surjective ring homo-
morphism f :

∏
i∈I Ri → B such that the induced homomorphism π f :

∏
i∈I Ri →

B/Z(B) does not factor through the natural map of
∏

i∈I Ri to any finite direct
product of ultraproducts of the Ri .

Then B does not have chain condition on almost direct factors. In fact, it has a
family of almost direct factors order-isomorphic to the lattice 2ω, and forming a
sublattice of the lattice of ideals of B.

So far we have not assumed our rings unital, since that hypothesis is unnatural
for many important classes of nonassociative rings. The next result shows how in
the unital case, the above theorems can be simplified and strengthened. For unital
rings B we have Z(B)= 0, so B/Z(B) everywhere becomes B. Moreover, we can
take each of the systems of elements xn, yn ∈

∏
i∈Jn

Ri from which we obtain the
elements aS and bS in Theorem 37 to consist of the multiplicative identity elements
of the rings

∏
i∈Jn

Ri . With a little further work, we shall get:

Proposition 39. Under the common hypotheses of Theorem 37 and 38, if the rings B
and Ri are unital, with homomorphisms preserving multiplicative identity elements,
then B is a faithful unital algebra over a commutative associative unital subring
of the form

∏
n∈ω Z/dnZ, where each dn is a nonnegative integer 6= 1. Moreover,
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one can take all but one of the dn to be equal, and that one to be a multiple (not
necessarily proper) of the common value of the others.

Sketch of proof. As in the proof of Theorem 2, the non-factorization of f tells us that
we can partition I into subsets Jn (n ∈ ω) such that for each n, f

(∏
i∈Jn

Ri
)
6= {0}.

(Here we regard the direct product of each subfamily of the Ri as an ideal of
∏

i∈I Ri .
Each of these ideals has a multiplicative identity element, generally different from
that of

∏
i∈I Ri .) For each S ⊆ ω, let xS denote the multiplicative identity element

of
∏

i∈
⋃

n∈S Jn
Ri ⊆

∏
i∈I Ri , and let aS = f (xS). We see that the operations of

multiplication by xS and xω−S are idempotent endomorphisms of the additive group
of
∏

i∈I Ri , which give the projection homomorphisms to the two factors of its
decomposition as ( ∏

i∈
⋃

n∈S Jn

Ri

)
×

( ∏
i∈
⋃

n∈ω−S Jn

Ri

)
.

Hence their images aS and aω−S likewise determine a direct product decomposition
of the ring B.

Now for every S ⊆ω, let cS denote the nonnegative integer such that the additive
subgroup of B generated by aS is isomorphic to Z/cSZ (the characteristic of the
ring f

(∏
i∈
⋃

n∈S Jn
Ri
)
). Note that for ∅ 6= T ⊆ S, we have 1 6= cT |cS .

The behavior of cS as a function of S can be complicated; but with the help
of the Noetherian property of the integers, we can find a family of subsets of ω
on which that function has an easy description. Namely, let us choose, among all
infinite S ⊆ ω, one which gives a maximal value for the ideal cSZ. Then for every
infinite subset T ⊆ S, we necessarily have cT = cS . Hence, let us partition S into
countably many infinite subsets, T0, . . . , Tm, . . . , and use these to partition ω into
subsets Sm , where for m > 0, we let Sm = Tm , while we let S0= (ω− S)∪T0. Thus,
for m > 0 we have cSm = cS by choice of S, while cS0 = lcm(cω−S, cT0), a multiple
of cT0 = cS .

Let us now map the ring Zω into
∏

i∈I Ri by sending each element (em)m∈ω to the
element whose value on each factor

∏
n∈Sm

(∏
i∈Jn

Ri
)

is em times the multiplicative
identity element, and then apply the map f :

∏
i∈I Ri → B. I claim that the image

of Zω in B will be isomorphic to
∏

m∈ω Z/dmZ, where dm = cSm . Indeed, it is easy
to verify that an element of Zω that goes to zero under the componentwise map
into

∏
m∈ω Z/dmZ goes to zero in B, as a result of our choice of S and the Sm .

Conversely, if an element (em)m∈ω ∈ Zω does not have zero image in
∏

m∈ω Z/dmZ,
we can choose an m0 such that em0 is not divisible by dm0 ; and taking the image,
in B, of the ring relation (em)m∈ωδm0 = em0δm0 in Zω, we see that the image of
(em)m∈ω in B is also nonzero.
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Finally, the fact that every ring R is a Z-algebra, and that if R has a multiplicative
identity element 1R , its Z-algebra structure is induced by the operations of multipli-
cation in R by members of Z · 1R , easily leads to the result that

∏
n∈Sm

(∏
i∈Jn

Ri
)

is a Zω-algebra, and that this structure leads to a structure of
∏

m∈ω Z/dmZ-algebra
on its homomorphic image B. �

Going back to not-necessarily-unital rings, and turning to the question of when
finitely many ultraproducts through which a map factors must all be principal, we
can combine Theorem 25 with the idea of Lemma 12 to get the following result.

Theorem 40. Suppose B is a ring which admits a surjective homomorphism from
a direct product ring, f :

∏
i∈I Ri → B, such that the composite

π f :
∏
i∈I

Ri → B→ B/Z(B)

factors through the product of finitely many ultraproducts of the Ri , but not through
the product of finitely many countably complete ultraproducts. (So if card(I ) is less
than all uncountable measure cardinals, if any exist, the latter condition simply says
that π f does not factor through any finite product of the Ai .)

Then the additive group of B/Z(B) has a nonzero cotorsion subgroup; equiva-
lently, it either contains nonzero elements of finite order, or a copy of the additive
group of Q, or a copy of the additive group of the p-adic integers for some prime p.

�

9. Monoids

In studying homomorphisms from direct product monoids onto a monoid B, it is
useful to assume some cancellation condition on B. One that will suffice for our
present purposes is

(44) xy = x =⇒ y = e for x, y ∈ B.

Note that (44) implies that one-sided inverses are two-sided, since if xy = e, we
get xyx = x , which by (44) gives yx = e.

We shall consider two sorts of obstruction to mapping infinite products onto B
in ways that indiscriminately merge the factors. On the one hand, there is the same
effect of noncommutativity that we took advantage of in the case of groups. On the
other hand, noninvertible elements create restrictions. For instance, though linear
algebra shows that the additive group Q admits homomorphisms from the additive
group Qω that behave arbitrarily on

⊕
ω Q, it is not hard to show that, writing Q≥0

for the additive monoid of nonnegative rational numbers, it is impossible to have a
homomorphism (Q≥0)ω→Q≥0 that acts in a nonzero way on infinitely many of
the summands of

⊕
ω Q≥0.
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In our factorization results for groups, we divided out by the center of B; in the
case of monoids, we will divide out by the group of central invertible elements.
There are two versions of this concept: Z(U (B)), the center of the group of
units (invertible elements) of B, and U (Z(B)), the group of units of the center;
the former may be larger than the latter. It is U (Z(B)), the smaller of the two,
that we will divide out by (though the other will make a brief appearance in a
proof). Note that since U (Z(B)) consists of B-centralizing invertible elements,
one can speak (without distinguishing right from left) of the orbits of B under
multiplication by that group, and the set of such orbits forms a factor monoid
B/U (Z(B)). Clearly, the noninvertible elements of this factor monoid are precisely
the cosets of the noninvertible elements of B. We shall write π for the projection
map B→ B/U (Z(B)).

Given a monoid homomorphism f :
∏

i∈I Mi → B, we define the analog of the
filter F of (2), namely

(45) F=
{

S ⊆ I | the composite map
∏

i∈I Mi → B→ B/U (Z(B))
factors through the projection

∏
i∈I Mi →

∏
i∈S Mi

}
=
{

S ⊆ I | f
(∏

i∈I−S Mi
)
⊆U (Z(B))

}
.

The version of Lemma 1 that we will use for monoids is not, as for rings, a
carbon copy of that lemma, so we shall give the statement and proof. (But we will
cut corners where the method of proof is the same; so the reader might want to
review the proof of Lemma 1 before beginning this one.) We do not yet assume the
cancellativity condition (44).

Lemma 41. Let f :
∏

i∈I Mi → B be a homomorphism from a direct product
of monoids Mi to a monoid B, which is surjective (or more generally, such that
the homomorphism π f :

∏
i∈I Mi → B → B/U (Z(B)) is surjective). Then the

following two conditions are equivalent.

(46) The homomorphism π f :
∏

i∈I Mi → B → B/U (Z(B)) does not factor
through the natural map

(∏
i∈I Mi

)
/U0 × · · · ×

(∏
i∈I Mi

)
/Un−1 for any

finite family of ultrafilters U0, . . . ,Un−1 on I .

(47) There exists a partition of I into countably many subsets J0, J1, . . . , such that
either

(47a) each submonoid
∏

i∈Jn
Mi ⊆

∏
i∈I Mi contains a pair of invertible

elements xn , yn whose images under f do not commute in B,

or

(47b) each submonoid
∏

i∈Jn
Mi ⊆

∏
i∈I Mi contains an element zn whose

image in B is noninvertible.
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Proof. To get (47)=⇒ (46), note that in the situation of (47a), since for each n, f (xn)

and f (yn) are invertible and do not commute in B, they do not lie in Z(U (B)).
Hence in particular f (xn) /∈U (Z(B)), so by the final line of (45), I − Jn /∈F. That
this implies (46) is seen as in Lemma 1.

If, rather, we are in the situation of (47b), then the fact that the f (zn) are nonunits
implies that they do not lie in U (Z(B)), giving the same result for the same reason.

The proof of the converse begins, as for Lemma 1, with the observation that (46)
implies that there exists a partition of I into countably many subsets J0, J1, . . . ,
such that each

∏
i∈Jn

Mi contains elements mapped by f to elements of B not
in U (Z(B)). Let Ln =

∏
i∈Jn

Mi , so that
∏

i∈I Mi =
∏

n∈ω Ln . Clearly, it will
either be true that for infinitely many n, the submonoid f (Ln) ⊆ B contains a
noninvertible element, or that for infinitely many n, that submonoid consists entirely
of invertible elements.

In the former case, those Jn such that f (Ln) contains a noninvertible element
of B will constitute a partition of some subset J ⊆ I into countably many subsets.
If we enlarge one of these sets by throwing in the complementary set I − J , we get
a partition of I of the sort described in (47b).

If, on the other hand, there are infinitely many n such that f (Ln) consists entirely
of invertible elements of B, then for each such n, let us choose an xn ∈ Ln such
that f (xn) /∈U (Z(B)), and then a y ∈

∏
m∈ω Lm such that f (y) does not commute

with f (xn). As in the proof of Lemma 1, we can obtain from y an element yn ∈ Ln

such that f (yn) still does not commute with f (xn). By assumption, f (Ln) consists
of invertible elements, so f (xn) and f (yn) belong to U (B). Thus, we have a
partition of some J ⊆ I into countably many subsets as in (47a). Again tacking
I − J onto one of these, we can take this to be a partition of the whole set I . �

This leads to an analog of Theorem 2 which, similarly, has two alternative
conclusions. We shall describe one of these by referring to that earlier theorem, and
spell out the other.

Theorem 42. Let B be a monoid satisfying the cancellation condition (44), and
suppose there exists a family (Mi )i∈I of monoids, and a monoid homomorphism f :∏

i∈I Mi→ B such that the induced homomorphism π f :
∏

i∈I Mi→ B/U (Z(B))
does not factor through any finite product of ultraproducts of the Mi .

Then either

(a) the group U(B) satisfies the hypothesis, and hence the conclusions, of Theorem 2,

or

(b) B contains a family of elements (aS) indexed by the subsets S⊆ω and satisfying
the following conditions:

(48) a∅ = e, and all the elements aS (S ⊆ ω) commute with one another.



492 GEORGE M. BERGMAN

(49) For disjoint sets S, T ⊆ ω, one has aSaT = aS∪T .

(50) For sets S ( T ⊆ ω, aT is a right multiple of aS , but aS is not a right multiple
of aT .

Proof. The two cases of (47) will yield the two alternative conclusions shown. It is
easy to verify that (47a) yields conclusion (a).

In case (47b), let Ln =
∏

i∈Jn
Mi , and take elements zn ∈ Ln with noninvertible

images in B. For each S ⊆ ω, let aS be the image under f of the element of∏
n∈S Ln ⊆

∏
n∈ω Ln whose n-th coordinate is zn for each n ∈ S. Then (48)

and (49) are immediate, and the first assertion of (50) follows from (49) applied
to S and T − S.

To get the final assertion of (50), choose any n ∈ T − S, and note that by (49),
we have

(51) aT = aS aT−(S∪{n}) a{n}.

If we also had aS = aT b for some b ∈ B, then substituting this into the right-
hand-side of (51) and canceling aT by (44), we could conclude that a{n} was left
invertible, hence by the observation following (44), invertible, contradicting our
choice of zn . �

In case (b) of Theorem 42, we cannot say, as we can in case (a), that distinct
sets S yield distinct elements aS ∈ B. For instance, let B be the factor monoid of
the additive monoid (Z≥0)ω by the relation that equates elements x and y if there
is some n ≥ 0 such that x and y agree at all but the first n coordinates, and such
that the sum of the entries at those first n coordinates is the same for x and y. Then
B is a cancellative abelian monoid with trivial group of units, and the quotient
map f : (Z≥0)ω→ B does not annihilate any of the δn (defined in (Z≥0)ω as in
Zω). Hence (47b) holds for this f , with the Jn taken to be the singletons {n}, and
zn = δn . But defining the aS in terms of these as in the proof of Theorem 42, we
find that for finite subsets S, T ⊆ ω of the same cardinality, we have aS = aT in B;
so the aS are not all distinct.

Nevertheless, in the situation of Theorem 42(b) we always get continuum many
distinct aS . For by (50), distinct comparable sets give distinct elements; and the
partially ordered set of subsets of any countably infinite set has chains of the order
type of the real numbers. (Indeed, the countable set of rational numbers has the
chain of Dedekind cuts, and any countably infinite set can be put in bijective
correspondence with the rationals.) Thus, we get:

Corollary 43. In the situation of conclusion (b) of Theorem 42, B has a set of
mutually commuting noninvertible elements which form, under the relation of
divisibility, a chain with the order type of the real numbers. In particular, B (and in
fact, B/U (Z(B)) has at least the cardinality of the continuum. �
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The results proved above are far from optimal. For instance, the conclusions
of Theorem 42 and Corollary 43 are consistent with B being the additive monoid
R≥0 of nonnegative real numbers; but that case is easy to exclude. Indeed, suppose
B = R≥0 admitted a map as in the hypothesis of Theorem 42. By the proof of
Lemma 41, since B has trivial group of units, we must have a homomorphism
f :
∏

n∈ω Ln→ B such that each Ln has an element xn making f (xn) a positive
real number. By the Archimedean property of the reals, we can modify our choices
of xn so that for each n we have f (xn) ≥ 1. Thus, when we construct elements
aS ∈ B as in the proof of the theorem, we get a{n} ≥ 1 for each n, from which it
follows that for any S ⊆ ω of ≥ m elements (m ∈ ω), aS ≥ m. For S infinite, this
gives a contradiction; so B admits no such map. It is not clear to me what the best
assertion that can be gotten by this technique is.

Let us also note that in place of the two-way subdivision of the sets Jn used in
the proof of Lemma 41, we could (at least if we assumed full cancellativity rather
than just (44)) have used a three-way subdivision, noting that for each n, f (Ln)

either contains noncommuting invertible elements of B, or contains noncommuting
noninvertible elements, or contains a central noninvertible element. (Cancellativity
is needed to show that if a nonunit x and a unit u fail to commute, then so do
the two nonunits x and xu.) So there must be infinitely many n for which one of
these statements holds, and we can deduce a three-alternative conclusion: either,
as before, we have invertible elements aS, bS ∈ B indexed by the subsets S ⊆ ω
which can be distinguished by their commutativity relations, or we have elements
aS, bS ∈ B which, except for a∅, b∅, are noninvertible, and satisfy the same relations
and can be distinguished in the same way, or we have central elements aS which
satisfy (48)–(50).

Though one could define “almost direct factors” for monoids, as for groups,
using submonoids that are each other’s centralizers, there doesn’t seem to be an
analogous way to “split” a monoid based on noninvertible central elements; so I
have not attempted to formulate an analog of Theorem 5. I leave further exploration
of these questions to those better versed than I in the study of monoids.

One can also consider for semigroups the same factorization properties studied
here for monoids. Since the above constructions involved elements of direct products
defined to have the value e on complements of given subsets S of our index set, the
absence of identity elements should lead to changes in what can be proved.

10. Lattices: a case worth looking at

One other class of mathematical structures suggests itself, to which similar methods
might be applicable — lattices. Just as a direct product decomposition of a group or
monoid leads to certain pairs of elements that must commute, and a direct product
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decomposition of a ring leads to certain pairs of elements that must have zero
product, so a direct product decomposition of a lattice leads to certain 3-tuples of
elements that must satisfy distributivity relations. Perhaps this observation can be
used to get lattice-theoretic analogs of some of the results of this note.

(In [Bergman 2014, §5] I speculate on very general properties of a variety of
algebras that would allow one to get such results; but I am not confident that that
approach will go anywhere.)

Note added in proof

Jan Šaroch (personal communication) has obtained a positive answer to Question 33,
which applies more generally to a module B over any countable ring R such that
Rω is a flat Mittag-Leffler module.
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