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THE VIRTUAL FIRST BETTI NUMBER
OF SOLUBLE GROUPS

MARTIN R. BRIDSON AND DESSISLAVA H. KOCHLOUKOVA

We show that if a group G is finitely presented and nilpotent-by-abelian-
by-finite, then there is an upper bound on dimQ H1(M, Q), where M runs
through all subgroups of finite index in G.

1. Introduction

The virtual first betti number of a finitely generated group G is defined as

vb1(G)= sup{dim H1(S,Q) | S ≤ G of finite index}.

A group is said to be large if it has a subgroup of finite index that maps onto a
nonabelian free group. If G is large then vb1(G) =∞. It is easy to find finitely
generated groups G that are not large but have vb1(G)=∞. For example, in the
metabelian group Z oZ= 〈a, t | [a, t−natn

] = 1 for all n〉, the subgroup Sm < Z oZ

generated by tm and the conjugates of a has index m and H1(Sm,Z) = Zm+1. In
contrast, no example is known of a finitely presented group that is not large but
has vb1(G) = ∞ (see [Button 2010; Lackenby 2010]). Since amenable groups
do not contain nonabelian free subgroups, one might hope to resolve this issue by
finding a finitely presented amenable group with vb1(G)=∞, but this seems to be
a nontrivial matter.

We shall prove in this paper that for large classes of finitely presented soluble
groups vb1(G) is always finite. One would like to prove that the same is true for
all finitely presented soluble groups, but here one faces the profound difficulty of
deciding which soluble groups admit finite presentations; this is unknown even for
abelian-by-polycyclic and nilpotent-by-abelian groups.

In the case of metabelian groups, finite presentability is completely understood
in terms of the Bieri–Strebel invariant [Bieri and Strebel 1980]. Some sufficient
conditions for finite presentability of nilpotent-by-abelian groups were considered
by McIsaac [1984] and later Groves [1991]. In the case of S-arithmetic nilpotent-
by-abelian groups G one knows more thanks to the work of Abels [1987]: if G
is an extension of a nilpotent group N by an abelian group Q then G is finitely
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presented if and only if it is of type FP2, which it is if and only if H2(N ,Z) is
finitely generated as a ZQ-module (where the Q action is induced by conjugation)
and1 G/N ′ is finitely presented as a group. The first of these conditions is an easy
consequence of the fact that ZQ is a Noetherian ring, and the second is a corollary
of a result in [Bieri and Strebel 1980] that every metabelian quotient of a group
of type FP2 that does not contain noncyclic free subgroups is finitely presented.
The case where G is an extension of an abelian normal subgroup A by a polycyclic
group Q was approached by Brookes and Groves who studied modules over crossed
products of a division ring by a free abelian group; see [Brookes and Groves 1995;
2000; 2002].

Given this background, the natural place to begin our investigation into the virtual
first betti number of finitely presented soluble groups is in the setting of metabelian
groups. Using methods from commutative algebra, we prove (Theorem 4.3) that if
G is finitely presented and metabelian, then vb1(G) is finite. (The hypothesis that
one actually needs to impose on G is somewhat weaker than finite presentability;
see Remark 6.5.) The metabelian case is used in the proof of our main theorem,
which is the following.

Theorem A. Let G be a finitely presented group. If G is nilpotent-by-abelian-by-
finite, then vb1(G) is finite.

Our proof of this theorem relies on the fact that all metabelian quotients of soluble
groups of type FP2 are finitely presented [Bieri and Strebel 1980, Theorem 5.5],
as well as a technical result concerning the homology of subgroups of finite in-
dex (Proposition 6.2). Groves, Kochloukova and Rodrigues [Groves et al. 2008,
Theorem A] proved that if an abelian-by-polycyclic group G is of type FP3 then
it is nilpotent-by-abelian-by-finite, in which case vb1(G) is finite by Theorem A.
The same is true of all soluble groups of type FP∞, because they are constructible
[Kropholler 1986], hence nilpotent-by-abelian-by-finite, but in this case stronger
finiteness results were already known: constructible soluble groups are obtained
from the trivial group by finite sequences of ascending HNN extensions and finite
extensions, from which it follows that they have finite Prüfer rank (i.e., there is an
upper bound on the number of generators for the finitely generated subgroups).

It is natural to wonder if Theorem A might remain true when the field of rationals
Q in the definition of virtual betti number is replaced with other coefficient fields,
such as the field with p elements Fp. We shall see in Section 5 that it does not.

Conjecture. If G is finitely presented and soluble, then vb1(G) is finite.

It is difficult to construct finitely presented soluble groups that are not nilpotent-
by-abelian-by-finite. The examples provided by the constructions of Robinson and
Strebel [1982] all satisfy the conjecture.

1Throughout this article, H ′ denotes the commutator subgroup of a group H .
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While editing the final version of this work, we learnt that Andrei Jaikin-Zapirain
has, in unpublished work, also proved Theorem A in the metabelian case. Higher
dimensional analogues of Theorem A are considered in the forthcoming PhD thesis
of Fatemeh Mokari.

2. Preliminary results

2A. Preliminaries on finitely presented metabelian groups. We fix a short exact
sequence of groups A� G � Q, where A and Q are abelian and G is finitely
generated. The action of G on A by conjugation induces an action of Q, which
enables us to regard A as a right ZQ-module. Because G is finitely generated and
Q is finitely presented, A is finitely generated as a ZQ-module.

Associated to a nonzero real character χ : Q→ R one has the monoid

Qχ = {g ∈ Q | χ(g)≥ 0}.

The character sphere S(Q) is the set of equivalence classes in Hom(Q,R)r {0}
under the relation that identifies χ1 ∼ χ2 if χ1 = λχ2 for some λ > 0. We write [χ ]
for the class of χ . Following [Bieri and Strebel 1980], let

6A(Q)= {[χ ] | A is finitely generated as a ZQχ -module}.

By definition, the ZQ-module A is 2-tame if 6A(Q)c = S(Q)r6A(Q) contains
no pair of antipodal points. According to [op. cit., Theorem 5.4], G is finitely
presented if and only if A is a 2-tame ZQ-module, and this happens precisely when
G is of homological type FP2. We refer the reader to [Bieri 1981] for general
results concerning groups of type FPm . If A1� A2� A3 is an exact sequence of
finitely generated ZQ-modules, then 6A2(Q)

c
=6A1(Q)

c
∪6A3(Q)

c (see [Bieri
and Strebel 1980, Proposition 2.2]), hence every quotient of a 2-tame ZQ-module
is 2-tame.

2B. Tensor products and finite presentability. Let R be a noetherian commutative
ring with unit 1 and let W be a finitely generated RQ-module. As above, we have a
Sigma invariant 6W (Q)= {[χ ] |W is finitely generated as an RQχ -module}, and
W is defined to be 2-tame as an RQ-module if 6c

W (Q)= S(Q) \6W (Q) has no
pair of antipodal points.

The question of when the tensor square W ⊗R W is finitely generated as an
RQ-module (with Q acting diagonally) is addressed in [Bieri and Groves 1985],
where it is shown that [χ ] lies in6c

W (Q) if and only if the ring S= RQ/ annRQ(W )

admits a real valuation v : S→ R∪ {∞} (in the sense of Bourbaki) that extends
χ and is such that the restriction v0 of v to the image R of R in S is nonnegative
and discrete. By [loc. cit.], W ⊗R W is finitely generated as an RQ-module if
and only if there is no pair of antipodal elements [χ ], [−χ ] ∈6c

W (Q) that can be
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lifted to valuations of S that have the same restriction v0 to R, with v0 discrete and
nonnegative. (These last conditions on v0 are automatic if R is Z.)

Returning to the context of Section 2A, we apply these general considerations
with W = A⊗Q and R=Q, in which case W⊗R W ∼= (A⊗Z A)⊗Z Q. We deduce
that if there exists a group extension A� G� Q, with G finitely presented, then
W = A⊗Q is 2-tame as a QQ-module, and W ⊗R W ∼= (A⊗Z A)⊗Z Q is finitely
generated as a QQ-module via the diagonal Q-action.

We shall also need a refinement of this observation that involves the annihilator
annZQ(A) of A in ZQ, which we denote I . Bieri and Strebel [1981, (1.3)] prove
that

6A(Q)=6ZQ/I (Q).

Thus if A is 2-tame as a ZQ-module, then so is ZQ/I .

Lemma 2.1. If there exists a group extension A� G� Q with A and Q abelian
and G finitely presented, and I = annZQ(A), then (ZQ/I )⊗Z (ZQ/I )⊗Z Q is
finitely generated as a QQ-module via the diagonal Q-action.

2C. Preliminaries on commutative algebra. We will need the following basic
facts from commutative algebra; for details see, for example, [Bourbaki 1961–1965;
Atiyah and Macdonald 1969; Eisenbud 1995]. Let Q be a finitely generated abelian
group and recall that the Krull dimension of a commutative ring is the supremum
of the lengths of all chains of prime ideals in the ring.

(1) The radical
√

J of each ideal J CQQ is the intersection of the finitely many
prime ideals that contain J and are minimal subject to this condition.

(2) Finite dimensional Q-algebras are Artinian and thus have Krull dimension 0.

Throughout, if R is a commutative ring and m a positive integer, then Rm will
denote the subring generated by m-th powers, except that Zn and Qn will denote
Cartesian powers. Where no ring is specified, tensor products are assumed to be
taken over Z.

3. A finiteness result in commutative algebra

Lemma 2.1 assures us that the following theorem applies to the modules that arise
from short exact sequences N�G�Zn associated to finitely presented metabelian
groups.

Theorem 3.1. Let Q ∼= Zn be a group and let S = ZQ/I be a commutative ring
such that (S ⊗Z S)⊗Z Q is finitely generated as a QQ-module via the diagonal
Q-action. Then,

sup
m

dimQ(S⊗ZQm Q) <∞.
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Proof. Let B = S⊗Q=QQ/J and for each positive integer m define Jm CQ to
be (J, Qm

− 1) and

Bm := B⊗QQm Q=QQ/Jm ∼= S⊗ZQm Q.

As QQ/(Qm
− 1) is finite dimensional over Q, so is Bm = QQ/Jm . Hence Bm

has Krull dimension 0; i.e., every prime ideal in Bm is a maximal one. Therefore,
the finite collection of primes ideals Pm,t whose intersection is

√
Bm are the only

prime ideals in QQ above Jm , and each of the quotients QQ/Pm,t is a field.
We shall establish the theorem by proving the following:

Claim 1. There exist only finitely many fields F such that for some m≥1 (depending
on F) the field F is a quotient of Bm .

Claim 1 provides an integer m0 such that if a field F is a quotient of Bm then
the natural map QQ→ F factors through QQ/(Qm0 − 1).

Claim 2. If m0 divides m then Jm = Jmr for every r ∈ N.

To see that the theorem follows from these claims, note that for an arbitrary
positive integer m we have Jm ⊇ Jmm0 = Jm0 , whence

dimQ(QQ/Jm)≤ dimQ(QQ/Jm0)≤ dimQ(QQ/(Qm0 − 1))

= dimQ Q[Q/Qm0] = mn
0.

Proof of Claim 1. Our hypothesis on S implies that B⊗Q B is finitely generated as
QQ-module via the diagonal Q-action, by d elements say. Let F be a field quotient
of Bm and let θ :QQ→ F be the canonical projection; so Qm

− 1⊆ ker(θ). Then,
θ(Q) is a finitely generated multiplicative subgroup of F∗ that has finite exponent
and F , being finite dimensional over Q, embeds in C. Hence θ(Q) is a finite cyclic
group, generated by a root of unity, ε of order s, say. Thus we obtain a subgroup
H < Q such that Q/H is cyclic of order s and H−1⊆ker(θ). Now, F ∼=Q[x]/( f ),
where f is the minimal polynomial of ε over Q. And f is an irreducible factor
of x s

− 1 in Q[x], whose zeroes are distinct roots of unity with order precisely s.
Thus dimQ F = deg( f )= ϕ(s), where ϕ is Euler’s totient function. On the other
hand, F ⊗Q F is an epimorphic image of the QQ-module B⊗Q B and the action
of Q on F ⊗Q F factors through the action of Q/H , so F ⊗Q F is generated as a
Q[Q/H ]-module by d elements. Hence

ϕ(s)2 = (dimQ F)2 = dimQ(F ⊗Q F)≤ d dimQ Q[Q/H ] = ds.

An elementary calculation shows that ϕ(n)/
√

n→∞ as n→∞, so for fixed d
there are only finitely many possible values of s and ε. Let b be a natural number
such that the order of ε is at most b. Then, the order of ε is a divisor of m0 = b! and

F is a quotient of QQ/(Qm0 − 1).
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Since QQ/(Qm0 − 1) is finite dimensional over Q it has Krull dimension 0, so
has only finitely many prime ideals and finitely many field quotients. This completes
the proof of Claim 1. �

Proof of Claim 2. Since m0 divides m we have Jm ⊆ Jm0 , so the prime ideals
containing Jm0 also contain Jm . On the other hand, we saw earlier that for each
of the prime ideals Pm,i containing Jm , the quotient Fi :=QQ/Pm,i is a field. By
definition, m0 is such that QQ→ Fi factors through QQ/(Qm0−1), and therefore
Pm,i (which already contains J ⊂ Jm) contains Jm0 = (J, Qm0 − 1). The radical of
Jm is the intersection of the prime ideals containing it, so√

Jm =
√

Jm0 .

Arguing by induction on r , Claim 2 will follow if we can prove that for every
prime number p we have Jm = Jmp, which is equivalent to the assertion that
qm
− 1 ∈ Jmp for all q ∈ Q.

We now fix q ∈ Q. From the preceding argument,
√

Jm =
√

Jmp. In particular,
Qm
− 1⊆ Jm ⊆

√
Jm =

√
Jmp, so there is a natural number s (over which we have

no control) such that

(3-1) (qm
− 1)s ∈ Jmp.

As Qmp
− 1⊆ Jmp, we also have

(3-2) qmp
− 1 ∈ Jmp.

Let g(x) be the greatest common divisor of x pm
− 1 and (xm

− 1)s in Q[x]. In
characteristic zero, the polynomial x pm

− 1 has no repeated roots, so neither does
g(x). Since g(x) divides (xm

− 1)s , it must actually divide xm
− 1, so in fact

g(x)= xm
− 1. From (3-1), (3-2) and Bézout’s lemma, we have g(q) ∈ Jpm . Since

q ∈ Q is arbitrary, this implies that Jmp = Jm . �

4. The main theorem for metabelian groups

In this section we prove that all finitely presented metabelian groups have finite
virtual first betti number. The proof relies on the finiteness theorem proved in the
previous section and two technical lemmas, the first of which is a simple observation
about commensurable groups.

Lemma 4.1. Let G be a group. If G0 < G is a subgroup of finite index, then
vb1(G)= vb1(G0).

Proof. By definition, vb1(G)= supM dim H1(M,Q), where the supremum is taken
over finite-index subgroups of G. If M has finite index in G0, then it also has finite
index in G, so vb1(G) ≥ vb1(G0). Conversely, if S has finite index in G, then
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S0 = G0 ∩ S has finite index in G0, and since it also has finite index in S, we have
dim H1(S0,Q)≥ dim H1(S,Q), so vb1(G0)≥ vb1(G). �

Lemma 4.2. Let A� G� Q be a short exact sequence of groups with A and Q
abelian and let n be the torsion-free rank of Q. Then:

(a) Writing [G, A] =
〈
{[g, a] = g−1a−1ga

∣∣ g ∈ G, a ∈ A}
〉
, we have

dimQ H1(G,Q)≤ dimQ(A/[G, A]⊗Q)+ n.

In the split case, G = Ao Q, we have H1(G,Q)∼= (G/[G, A])⊗Z Q, and

dimQ H1(G,Q)= dimQ(A/[G, A]⊗Q)+ n.

(b) If Gm is a subgroup of finite index in G and Qm is the image of Gm in Q, then

dimQ H1(Gm,Q)≤ dimQ(A⊗ZQm Q)+ n.

In the split case, Gm = (A∩Gm)o Qm , equality is attained:

dimQ H1(Gm,Q)= dimQ(A⊗ZQm Q)+ n.

(c) If G = Ao Q and B denotes the set of subgroups of finite index in Q, then

vb1(G)= sup
S∈B

dimQ(A⊗ZS Q)+ n.

Proof. (a) As [G, A] ⊆ [G,G], we see that H1(G,Z)= G/[G,G] is a quotient
of G/[G, A]. So from the central extension A/[G, A]� G/[G, A]� Q, we get

dimQ H1(G,Q)≤dimQ(A/[G, A]⊗Q)+dimQ(Q⊗Q)=dimQ(A/[G, A]⊗Q)+n.

If G = A o Q then, using that A, Q are abelian and A is normal in G, we get
[G,G] = [AQ, AQ] = [Q, A] ⊆ [G, A] ⊆ [G,G], hence [G,G] = [G, A] and
A/[G, A]� G/[G,G]� Q is an exact sequence of abelian groups.

(b) We consider the short exact sequence Am � Gm � Qm , where Am = A∩Gm .
From part (a) we have

(4-1) dimQ H1(Gm,Q)≤ dimQ(Am ⊗ZQm Q)+ n,

with equality if the sequence splits. Furthermore, since A/Am is finite we have

0= TorZQm
1 (A/Am,Q) and (A/Am)⊗ZQm Q= 0.

Thus there is an exact sequence (part of the long exact sequence in Tor associated
to A∩Gm � A� A/(A∩Gm))

0= TorZQm
1 (A/Am,Q)→ Am ⊗ZQm Q→ A⊗ZQm Q→ (A/Am)⊗ZQm Q= 0,

whence Am ⊗ZQm Q∼= A⊗ZQm Q. Thus, we may replace Am ⊗ZQm Q in (4-1) by
A⊗ZQm Q, and (b) is proved.
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(c) From the first part of (b) we have

vb1(G)≤ sup
S∈B

dimQ(A⊗ZS Q)+ n,

and to obtain the reverse inequality, we use the second part of (b)

sup
S∈B

dimQ(A⊗ZS Q)+ n = sup
S∈B

dimQ H1(Ao S,Q),

noting that Ao S has finite index in G. �

Theorem 4.3. Let A� G� Q be a short exact sequence of groups with A and Q
abelian. If G is finitely presented then its virtual first betti number vb1(G) is finite.

Proof. By passing to a subgroup of finite index in Q and replacing G by the inverse
image of this subgroup, we may assume that Q is free abelian. Lemma 4.1 assures
us that it is enough to consider this case, and Lemma 4.2(b) tells us that we will be
done if we can establish an upper bound on dimQ(A⊗ZQm Q) as Qm ranges over
the subgroups of finite index in Q.

Recall that A is finitely generated as a ZQ-module, say by d elements. Thus, de-
noting the annihilator annZQ(A)={λ∈ZQ | Aλ=0} by I , we have an epimorphism
of ZQ-modules

(ZQ/I )[d] = ZQ/I ⊕ · · ·⊕ZQ/I → A

that induces an epimorphism of Q-vector spaces(
(ZQ/I )⊗ZQm Q

)[d]
= (ZQ/I )[d]⊗ZQm Q→ A⊗ZQm Q.

Thus,
dimQ(A⊗ZQm Q) ≤ d dimQ((ZQ/I )⊗ZQm Q)

and it suffices to show that

sup
m

dimQ((ZQ/I )⊗ZQm Q) <∞.

For every m there is a natural number αm such that Qαm ⊆ Qm , and ZQ/I ⊗ZQm Q

is a quotient of ZQ/I ⊗ZQαm Q. Thus,

dimQ((ZQ/I )⊗ZQm Q)≤ dimQ((ZQ/I )⊗ZQαm Q),

and we have reduced to showing that

sup
s

dimQ((ZQ/I )⊗ZQs Q) <∞.

The theorem now follows from Lemma 2.1 and Theorem 3.1. �
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5. Characteristic p case

In this section we shall construct examples which show that the restriction to fields
of characteristic 0 in Theorem A is essential, even in the metabelian case.2 To
this end, we consider the mod p virtual first betti number of a finitely generated
group G,

vb1
(p)(G)= sup{dim H1(S, Fp) | S < G of finite index}.

Proposition 5.1. For every prime p there exist finitely presented metabelian groups
0 such that vb1

(p)(0) is infinite.

Proof. Let Q be a free abelian group with generators x and y and let A = Fp Q/I ,
where I is the ideal of Fp Q generated by y− x2

+ x − 1. Then,

A ∼= Fp

[
x, x−1,

1
x2−x+1

]
.

Consider
Am = A⊗ZQ pm Fp ∼= Fp Q/(I, Q pm

− 1).

Since (x2
− x + 1)pm

− 1= x2pm
− x pm

+ 1− 1= x pm
(x pm
− 1), we have

Am = Fp

[
x, x−1,

1
x2−x+1

] / (
x pm
− 1, (x2

− x + 1)pm
− 1

)
= Fp

[
x, x−1,

1
x2−x+1

] / (
x pm
− 1

)
is the localisation

Bm S−1

where Bm = Fp[x, x−1
]/(x pm

− 1) and S is the image of {(x2
− x + 1) j

} j≥1 in Bm .
Note that x pm

− 1 and x2
− x + 1 do not have a common root in any finite field

extension of Fp, for if z were a common root we would have 1= z2pm
= (z−1)pm

=

z pm
−1=0, which is a contradiction. Thus the polynomials x pm

−1 and (x2
−x+1) j

are coprime in Fp[x, x−1
]; i.e., they generate the whole ring as an ideal, and so the

elements of S are invertible in Bm . Therefore Bm S−1
= Bm and

dimFp Am = dimFp Bm S−1
= dimFp Bm = pm .

Now define
0 = Ao Q and 0m = Ao Q pm

.

Then, as in the split case of Lemma 4.2(b) (with coefficients in Fp in place of Q),

dimFp H1(0m, Fp)= dimFp Am + 2= pm
+ 2,

2John Wilson [1998] proved that the dimension of H1(S, Fp) can grow at most like the square
root of the index [G : S]. Jack Button [2010] exhibited a finitely presented soluble group that exhibits
this growth for all p.
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which tends to infinity with m.
By the calculation [Bieri and Strebel 1981, Theorem 5.2] of 6A(Q) for A =

Fp Q/I , where the ideal I is 1-generated, or by the link between 6c
A(Q) and

valuation theory (as described in Section 2B), we have

6c
A(Q)= {[χ1], [χ2], [χ3]},

with
χ1(x)= 0, χ2(x)= 1, χ3(x)=−1,

χ1(y)= 1, χ2(y)= 0, χ3(y)=−2.

Thus, A is 2-tame as a ZQ-module, and by the classification of finitely presented
metabelian groups in [Bieri and Strebel 1980], 0 is finitely presented. �

Corollary 5.2. There exists a finitely presented metabelian group G such that for
the class A of all subgroups of finite index in G,

sup
M∈A

d(M)=∞,

where d(M) is the minimal number of generators of M.

Proof. Immediate, since d(M)≥ dimFp H1(M, Fp). �

It is natural to wonder if the lack of finiteness exhibited in the preceding propo-
sition might be avoided by restricting to subgroups whose index is coprime to p.
The following refinement shows that this is not the case.

Proposition 5.3. Let p be a prime. There exist finitely presented metabelian groups
G such that

sup{dimFp H1(S, Fp) | S ∈Ap} =∞,

where
Ap = {S ≤ G | [G : S] is finite and coprime to p}.

Proof. Let A = Fp[x, x−1, (x + 1)−1
] and let Q be a free abelian group of rank 2

whose generators x1, x2 act on A as multiplication by x and x+1, respectively. We
consider the group G = Ao Q. As an Fp[Q]-module, A∼= Fp[Q]/I where I is the
ideal generated by x2− x1−1, and the argument given in the preceding proposition
shows that 6A(Q)c consists of precisely 3 points, no pair of which is antipodal.
Therefore, G is finitely presented.

Let F be a finite field with pr elements, r ≥ 2. Let w be a generator of the
multiplicative group F∗ = F r {0}. Let Qr be the kernel of the homomorphism
Q→ F∗ defined by x1 7→ w and x2 7→ w+ 1. Let Gr = A o Qr and note that
|G/Gr | = |Q/Qr | = pr

− 1 is coprime to p.
The ring epimorphism A→ F sending x to w provides an epimorphism of the

underlying additive groups which extends to a group epimorphism AoQr→ F×Z2.
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Since dimFp F = r , it follows that dimFp H1(Gr , Fp) ≥ r + 2. And, r ≥ 2 was
arbitrary. �

6. Beyond the metabelian case

In this section we shall prove Theorem A, but first we present a consequence
of Theorem 4.3 that describes what one can deduce about towers of finite-index
subgroups above the commutator subgroup in amenable and related groups.

Proposition 6.1. Let G be a group of type FP2 that does not contain a nonabelian
free group and let C be the set of finite-index subgroups in G that contain the
commutator subgroup G ′. Then, supM∈C dimQ H1(M,Q) <∞.

Proof. By [Bieri and Strebel 1980, Theorem 5.5], G/G ′′ is finitely presented. Since
M ⊇ G ′, we have M ′ ⊇ G ′′ and can replace G by G/G ′′ and M by MG ′′/G ′′

without changing H1(M,Q). Then we can apply Theorem 4.3. �

Our proof of Theorem A relies on the following proposition, which is of interest
in its own right.

Proposition 6.2. Let N � G� Q be a short exact sequence of groups, where N
is nilpotent, Q is abelian and G is finitely generated. Let Gn be a subgroup of finite
index in G and let Gn be the image of Gn in the metabelian group G/N ′. Then,

dimQ H1(Gn,Q)= dimQ H1(Gn,Q).

Proof. We argue using the Malcev completion jN : N → N ∗ [Malcev 1949].
According to [Quillen 1969, Appendix A, Corollary 3.8], for any nilpotent group
N , the homomorphism jN : N → N ∗ is characterized up to isomorphism by the
following properties:

(a) N ∗ is nilpotent and uniquely divisible.

(b) ker jN is the torsion subgroup of N .

(c) For every x ∈ N ∗, there is a positive integer n such that xn
∈ N .

In any nilpotent group, the set
√

S of elements that have powers in a fixed
subgroup S is a subgroup. It follows that, for every subgroup M < N , the map
M →

√
jN (M) satisfies properties (a) to (c). Thus we may identify M∗ with

√
jN (M) < N ∗. If M < N has finite index, then M∗ =

√
jN (M) = N ∗. And

(N ∗)′ = (N ′)∗.
With these facts in hand, for all subgroups of finite index Gn < G we have

(G ′n)
∗
⊇ ((Gn ∩ N )′)∗ = ((Gn ∩ N )∗)′ = (N ∗)′ = (N ′)∗. Thus (G ′n N ′)∗ = (G ′n)

∗,
and from (c) we deduce that G ′n(N

′
∩Gn)/G ′n is torsion. As G ′n(N

′
∩Gn)/G ′n is

the kernel of the canonical epimorphism Gn/G ′n→ Gn N ′/G ′n N ′, we have

H1(Gn,Q)∼= (Gn/G ′n)⊗Q∼= (Gn N ′/G ′n N ′)⊗Q∼= H1(Gn,Q). �
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Theorem 6.3. Let N � G � Q be a short exact sequence of groups. If N is
nilpotent, Q is abelian and G is of type FP2, then the virtual first betti number
vb1(G) is finite.

Proof. In the light of Proposition 6.2, this follows directly from Theorem 4.3 and
the fact [Bieri and Strebel 1980, Theorem 5.5] that G/N ′ is a finitely presented
metabelian group. �

Corollary 6.4 (Theorem A). If a group G is nilpotent-by-abelian-by-finite and of
type FP2, then vb1(G) is finite.

Proof. Let G0 be a subgroup of finite index in G such that G0 is nilpotent-by-abelian.
Then, G0 has type FP2, so vb1(G0) is finite, by Theorem 6.3, and hence, so is G,
by Lemma 4.1. �

Remark 6.5. We did not use the full force of finite presentability in establishing
Theorem A: in fact, it is enough to assume that G has a subgroup of finite index G0

in which there is a nilpotent subgroup N C G0 such that Q = G0/N is free abelian
and, writing A = N/N ′, the QQ-module A⊗ A⊗Q, with diagonal action, should
be finitely generated. These requirements follow from the finite presentability of
G0/N ′ but are strictly weaker.

Corollary 6.6. Every soluble group of type FP∞ has finite virtual first betti number.

Proof. Soluble groups S of type FP∞ are constructible and hence nilpotent-by-
abelian-by-finite [Kropholler 1986]. �

Corollary 6.7. Every abelian-by-polycyclic group of type FP3 has finite virtual first
betti number.

Proof. By the main result of [Groves et al. 2008], abelian-by-polycyclic groups of
type FP3 are nilpotent-by-abelian-by-finite. �
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