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ON DEMAZURE AND LOCAL WEYL MODULES
FOR AFFINE HYPERALGEBRAS

ANGELO BIANCHI, TIAGO MACEDO AND ADRIANO MOURA

We establish the existence of Demazure flags for graded local Weyl modules
for hyper current algebras in positive characteristic. If the underlying sim-
ple Lie algebra is simply laced, the flag has length one; that is, the graded
local Weyl modules are isomorphic to Demazure modules. This extends to
the positive characteristic setting results of Chari and Loktev, Fourier and
Littelmann, and Naoi for current algebras in characteristic zero. Using this
result, we prove that the character of local Weyl modules for hyper loop
algebras depend only on the highest weight, but not on the (algebraically
closed) ground field, and deduce a tensor product factorization for them.

Introduction

Let g be a semisimple finite-dimensional Lie algebra over the complex numbers
and, given an algebraically closed field F, let GF be a connected, simply connected,
semisimple algebraic group over F of the same Lie type as g. The category of
finite-dimensional GF-modules is equivalent to that of the hyperalgebra UF(g). The
hyperalgebra is a Hopf algebra obtained from the universal enveloping algebra of g
by first choosing a certain integral form and then changing scalars to F (this process
is often referred to as reduction modulo p). If the characteristic of F is positive,
the category of finite-dimensional GF-modules is not semisimple, and the modules
obtained by reduction modulo p of simple g-modules — called Weyl modules —
provide examples of indecomposable, reducible modules. The Weyl modules have
several interesting properties which are independent of F such as: a description in
terms of generators and relations, being the universal highest-weight modules of
the category of finite-dimensional GF-modules, their characters are given by the
Weyl character formula.

Consider now the loop algebra g̃ = g⊗C[t, t−1
]. The finite-dimensional rep-

resentation theory of g̃ was initiated by Chari and Presley [1986], where the
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simple modules were classified in terms of tensor products of evaluation modules.
Differently from the category of finite-dimensional g-modules, the category of
finite-dimensional g̃-modules is not semisimple. Therefore, it is natural to ask
if there is a notion analogue to that of Weyl modules for g̃. Chari and Presley
[2001] proved that the simple finite-dimensional g̃-modules are highest-weight in
an appropriate sense and introduced the Weyl modules for g̃ in terms of generator
and relations which are the natural analogues of the relations for the original Weyl
modules. The highest-weight vector is now an eigenvector for the action of the loop
algebra h̃ over the Cartan subalgebra h of g. Because of this, it eventually became
common practice to use the terms `-weight and highest-`-weight. In particular, it
was shown in [Chari and Pressley 2001] that the just-introduced Weyl modules share
a second property with their older relatives: they are the universal finite-dimensional
highest-`-weight modules. These results were immediately quantized and, still in
the same paper, the notion of Weyl modules for the quantum loop algebra Uq(g̃)

was introduced. Chari and Presley conjectured (and proved for g = sl2) that the
Weyl modules for g̃ were classical limits of quantum Weyl modules. Moreover, all
Weyl modules for g̃ could be obtained as classical limits of quantum Weyl modules
which are actually irreducible. This can be viewed as the analogue of the property
that the original Weyl modules are obtained by reduction modulo p from simple
g-modules.

Motivated by bringing the discussion of the last paragraph to the positive charac-
teristic setting, [Jakelić and Moura 2007] initiated the study of the finite-dimensional
representation theory of the hyperalgebras associated to g̃, which we refer to as
hyper loop algebras. Several basic properties of the underlying abelian category
were established and, in particular, the notion of Weyl modules was introduced.
Moreover, it was shown that certain Weyl modules for g̃ can be reduced modulo p.
In analogy with the previous paragraphs, it is natural to conjecture that the reduction
modulo p of a Weyl module is again a Weyl module (the difference is that now we
cannot restrict attention to Weyl modules which are irreducible since there are too
few of these).

In the meantime, two partial proofs of Chari and Presley’s conjecture appeared
[Chari and Loktev 2006; Fourier and Littelmann 2007]. Namely, it follows from a
tensor product factorization of the Weyl modules for g̃ proved in [Chari and Pressley
2001] together with the fact that the irreducible quantum Weyl modules are tensor
products of fundamental modules, that it suffices to compute the dimension of
graded analogues of Weyl modules for the current algebra g[t] = g⊗C[t]. These
graded analogues of Weyl modules were introduced in [Feigin and Loktev 2004] as
a particular case of a class of modules (named local Weyl modules) for algebras
of the form g⊗ A, where A is a commutative associative algebra (see also [Chari
et al. 2010; Fourier et al. 2012] and references therein for more on the recent
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development of the representation theory of such algebras). For g of type A, the
dimensions of the graded Weyl modules were computed in [Chari and Loktev 2006]
by explicitly exhibiting a vector space basis. As a consequence, it was observed that
they are isomorphic to certain Demazure modules. For a general simply-laced Lie
algebra, this isomorphism was proved in [Fourier and Littelmann 2007] by using a
certain presentation of Demazure modules by generators and relations as well as by
studying fusion products. In particular, the dimension of the graded Weyl modules
could be computed resulting in a proof of the conjecture. It was also shown in
[Fourier and Littelmann 2007] that such isomorphisms do not exist in general in
the non-simply laced case. It was pointed out by Nakajima that the general case
could be deduced by using global bases theory (this proof remains unpublished, but
a brief sketch is given in the introduction of [Fourier and Littelmann 2007]). The
relation with Demazure modules in the nonsimply laced case was finally established
in completely generality in [Naoi 2012] where it was shown that the graded Weyl
modules for g[t] admit Demazure flags, that is, filtrations whose quotients are
Demazure modules. Such flags are actually obtained from results of Joseph [2003;
2006] (see also [Littelmann 1998]) on global bases for tensor products of Demazure
modules. Therefore, in the nonsimply laced case, the relation between Weyl and
Demazure modules is, so far, dependent on the theory of global bases, although in
a different manner than Nakajima’s proposed proof.

The goal of the present paper is to extend to the positive characteristic context
the results of [Fourier and Littelmann 2007; Naoi 2012] and prove the conjecture of
[Jakelić and Moura 2007] on reduction modulo p of Weyl modules for hyper loop
algebras. Moreover, we prove a tensor product factorization of Weyl modules —
the hyperalgebraic analogue of that proved in [Chari and Pressley 2001]. However,
due to the extra technical difficulties which arise when dealing with hyperalgebras
in positive characteristic, there are several differences in our proofs from those
used in the characteristic zero setting. For instance, the tensor product factorization
was originally used to restrict the study to computing the dimension of the graded
Weyl modules for current algebras. In the positive characteristic setting, we actually
deduce the tensor product factorization from the computation of the dimension.
Also, for proving the existence of the Demazure flags, some arguments used in [Naoi
2012] do not admit a hyperalgebraic analogue. Our approach to overcome these
issues actually makes use of the characteristic-zero version of the same statements.
We also use the fact proved in [Mathieu 1988; 1989] that the characters of Demazure
modules do not depend on the ground field. Different presentations of Demazure
modules in terms of generator and relations are needed for different parts of the
argument. For g of type G2, technical issues for proving one of these presentations
require that we restrict ourselves to characteristic different than 2 and 3. Outside
type G2, there is no restriction in the characteristic of the ground field.
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While this paper was being finished, new ideas for studying Demazure, local
Weyl modules, and Kirillov–Reshetikhin modules are introduced. In particular,
several results of [Chari and Pressley 2001; Fourier and Littelmann 2007; Naoi
2012] are recovered and generalized. Moreover, new (and simpler) presentations in
terms of generators and relations for Demazure modules are obtained. It will be
interesting to study if the ideas and results of [Chari and Venkatesh 2014] can be
brought to the positive characteristic setting as well.

The paper is organized as follows. We start Section 1 fixing the notation regarding
finite and affine types, Kac–Moody algebras and reviewing the construction of the
hyperalgebras. Next, using generators and relations, we define the Weyl modules
for hyper loop algebras, their graded analogues for hyper current algebras, and
the subclass of the class of Demazure modules which is relevant for us. We then
state our main result (Theorem 1.5.2) and recall the precise statement (1.5.4) of the
conjecture in [Jakelić and Moura 2007]. Theorem 1.5.2 is stated in 4 parts. Part
(a) states the isomorphism between graded Weyl modules and Demazure modules
for simply laced g. Part (b) states the existence of Demazure flags for graded Weyl
modules. Part (c) establishes an isomorphism between a given graded Weyl module
and a twist of certain Weyl module for the hyper loop algebra. Finally, part (d) is
the aforementioned tensor product factorization. In Section 2, we fix some further
notation and establish a few technical results needed in the proofs.

Section 3.1 brings a review of the finite-dimensional representation theory of
the finite-type hyperalgebras while Section 3.2 gives a very brief account of the
relevant results from [Jakelić and Moura 2007]. Section 3.3 is concerned with the
category of finite-dimensional graded modules for the hyper current algebras. The
main results of this subsection are Theorem 3.3.4, where the basic properties of
the category are established, and Corollary 3.3.3 which states that the graded Weyl
modules for g[t] admit integral forms. Assuming Theorem 1.5.2(b), we prove (1.5.4)
in Section 3.4. The proof actually makes use of the characteristic-zero version
of all parts of Theorem 1.5.2 as well as [Naoi 2012, Corollary A] (stated here as
Proposition 3.4.1). In Section 3.5, we prove a second presentation of Demazure
modules in terms of generator and relations. It basically replaces a highest-weight
generator by a lowest-weight one. This is the presentation which allows us to
use the results of [Mathieu 1988; 1989] on the independence of the characters of
Demazure modules on the ground field.

In the first three subsections of Section 4 we collect the results of [Joseph 2003;
2006] on crystal and global bases which we need to prove Theorem 4.4.1 which is
an integral analogue of [Naoi 2012, Corollary 4.16] on the existence of higher level
Demazure flags for Demazure modules when the underlying simple Lie algebra
g is simply laced. We remark that the proof of Theorem 4.4.1 is the only one
where the theory of global bases is used. We further remark that, in order to prove
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Theorem 1.5.2(b), we only need the statement of Theorem 4.4.1 for g of type A. We
observe that the only other place quantum groups are being used here is in the proof
of the characteristic-zero version of Theorem 1.5.2(c); [Fourier and Littelmann
2007, Lemmas 1 and 3 and Equation (15)].

Theorem 1.5.2 is proved in Section 5. In particular, in Section 5.2, we prove a
positive characteristic analogue of [Naoi 2012, Proposition 4.1] which is a third
presentation of Demazure modules in terms of generator and relations in the case
that g is not simply laced. This is where the restriction on the characteristic of the
ground field for type G2 appears. Parts (b) and (c) of Theorem 1.5.2 are proved in
Sections 5.3 and 5.4, respectively. Finally, in Sections 5.5 and 5.6, we prove that
the tensor product of finite-dimensional highest-`-weight modules for hyper loop
algebras with relatively prime highest `-weights is itself a highest-`-weight module
and deduce Theorem 1.5.2(d). As an application of Theorem 1.5.2, we end the
paper proving that the graded Weyl modules are fusion products of Weyl modules
with “smaller” highest weights (Proposition 5.7.1).

1. The main results

1.1. Finite-type data. Let g be a finite-dimensional simple Lie algebra over C with
a fixed Cartan subalgebra h ⊂ g. The associated root system will be denoted by
R ⊂ h∗. We fix a simple system 1= {αi : i ∈ I } ⊂ R and denote the corresponding
set of positive roots by R+. The Borel subalgebra associated to R+ will be denoted
by b+ ⊂ g and the opposite Borel subalgebra will be denoted by b− ⊂ g. We fix
a Chevalley basis of the Lie algebra g consisting of x±α ∈ g±α, for each α ∈ R+,
and hi ∈ h, for each i ∈ I . We also define hα ∈ h, α ∈ R+, by hα = [x+α , x−α ]
(in particular, hi = hαi , i ∈ I ) and set R∨ = {hα ∈ h : α ∈ R}. We often simplify
notation and write x±i in place of x±αi

, i ∈ I . Let ( , ) denote the invariant symmetric
bilinear form on g such that (hθ , hθ ) = 2, where θ is the highest root of g. Let
ν : h→ h∗ be the linear isomorphism induced by ( , ) and keep denoting by ( , )
the nondegenerate bilinear form induced by ν on h∗. Notice that

(1.1.1) (x+α , x−α )=
2

(α, α)
for all α ∈ R+

and

(1.1.2) (α, α)=

{
2 if α is long,
2/r∨ if α is short,

where r∨ ∈ {1, 2, 3} is the lacing number of g. For notational convenience, set

(1.1.3) r∨α =
2

(α, α)
=

{
1, if α is long,
r∨, if α is short.
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We shall need the following fact [Carter 1972, Section 4.2]. Given α ∈ R, let
xα = x±±α according to whether α ∈±R+. For α, β ∈ R let p=max{n :β−nα ∈ R}.
Then there exists ε ∈ {−1, 1} such that

(1.1.4) [xα, xβ] = ε(p+ 1)xα+β .

We define the weight lattice P = {λ ∈ h∗ : λ(hα) ∈ Z for all α ∈ R}, the subset
of dominant weights P+ = {λ ∈ P : λ(hα) ∈N for all α ∈ R+}, the coweight lattice
P∨ = {h ∈ h : α(h) ∈ Z for all α ∈ R}, and the subset of dominant coweights
P∨+ = {h ∈ P∨ : α(h) ∈ N for all α ∈ R+}. We denote the fundamental weights
by ωi , i ∈ I , the root lattice of g by Q, and we let Q+ = Z≥0 R+. We consider the
usual partial order on h∗: µ≤ λ if and only if λ−µ ∈ Q+. The Weyl group W of g
is the subgroup of AutC(h∗) generated by the simple reflections si , i ∈ I , defined by
si (µ)=µ−µ(hi )αi for all µ ∈ h∗. As usual, w0 denotes the longest element in W.

1.2. Affine-type data. Consider the loop algebra g̃=g⊗C[t, t−1
], with Lie bracket

given by [x ⊗ tr , y⊗ t s
] = [x, y] ⊗ tr+s , for any x, y ∈ g, r, s ∈ Z. We identify g

with the subalgebra g⊗1 of g̃. The subalgebra g[t] = g⊗C[t] is the current algebra
of g. If a is a subalgebra of g, let ã= a⊗C[t, t−1

] and a[t] = a⊗C[t]. Let also
a[t]± := a⊗ (t±1C[t±1

]). In particular, as vector spaces,

g̃= ñ−⊕ h̃⊕ ñ+ and g[t] = n−[t]⊕ h[t]⊕ n+[t].

The affine Kac–Moody algebra ĝ is the 2-dimensional extension ĝ := g̃⊕Cc⊕Cd
of g̃ with Lie bracket given by

[x ⊗ tr , y⊗ t s
] = [x, y]⊗ tr+s

+ rδr,−s(x, y)c,

[c, ĝ] = {0}, and [d, x ⊗ tr
] = r x ⊗ tr

for any x, y ∈ g, r, s ∈ Z. Observe that if ĝ′ = [ĝ, ĝ] is the derived subalgebra of ĝ,
then ĝ′ = g̃⊕ Cc, and we have a nonsplit short exact sequence of Lie algebras
0→ Cc→ ĝ′→ g̃→ 0.

Set ĥ′ = h⊕Cc. Notice that g, g[t], and g[t]± remain subalgebras of ĝ. Set

ĥ= h⊕Cc⊕Cd, n̂± = n±⊕ g[t]±, and b̂± = n̂±⊕ ĥ.

The root system, positive root system, and set of simple roots associated to the
triangular decomposition ĝ = n̂− ⊕ ĥ ⊕ n̂+ will be denoted by R̂, R̂+ and 1̂,
respectively. Let Î = I t {0} and h0 = c− hθ , so that {hi : i ∈ Î } ∪ {d} is a basis
of ĥ. Identify h∗ with the subspace {λ ∈ ĥ∗ : λ(c) = λ(d) = 0}. Let also δ ∈ ĥ∗

be such that δ(d) = 1 and δ(hi ) = 0 for all i ∈ Î and define α0 = δ − θ . Then
1̂= {αi : i ∈ Î }, R̂+ = R+ ∪ {α+ rδ : α ∈ R ∪ {0}, r ∈ Z>0}, and ĝα+rδ = gα ⊗ tr

if α ∈ R, r ∈ Z, and ĝrδ = h⊗ tr , if r ∈ Z \ {0}. Observe that

(1.2.1) α(c)= 0 for all α ∈ R̂.
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A root γ ∈ R̂ is called real if γ = (α + rδ) with α ∈ R, r ∈ Z, and imaginary if
γ = rδ with r ∈ Z \ {0}. Set x±α,r = x±α ⊗ tr , hα,r = hα ⊗ tr , α ∈ R+, r ∈ Z. We
often simplify notation and write x±i,r and hi,r in place of x±αi ,r and hαi ,r , i ∈ I, r ∈Z.
Observe that {x±α,r , hi,r : α ∈ R+, i ∈ I, r ∈ Z} is a basis of g̃. Given α ∈ R+ and
r ∈ Z>0, set

x+
±α+rδ = x±α,r , x−

±α+rδ = x∓α,−r , h±α+rδ = [x+±α+rδ, x−
±α+rδ] = ±hα + rr∨α c.

Define also 3i ∈ ĥ∗, i ∈ Î , by the requirement 3i (d) = 0, 3i (h j ) = δi j for
all i, j ∈ Î . Set P̂ = Zδ⊕

⊕
i∈ Î Z3i , P̂+ = Zδ⊕

⊕
i∈ Î N3i , P̂ ′ =

⊕
i∈ Î Z3i , and

P̂ ′+ = P̂ ′ ∩ P̂+. Notice that

30(h)= 0 ⇐⇒ h ∈ h⊕Cd and 3i −ωi = ωi (hθ )30 for all i ∈ I.

Hence, P̂ =Z30⊕ P⊕Zδ. Given 3∈ P̂ , the number 3(c) is called the level of 3.
By (1.2.1), the level of 3 depends only on its class modulo the root lattice Q̂. Set
also Q̂+ = Z≥0 R̂+ and let Ŵ denote the affine Weyl group, which is generated by
the simple reflections si , i ∈ Î . Finally, observe that {30, δ} ∪1 is a basis of ĥ∗.

1.3. Integral forms and hyperalgebras. We use the following notation. Given a
Q-algebra U with unity, an element x ∈U , and k ∈ N, set

x (k) = 1
k!

xk and
( x

k

)
=

1
k!

x(x − 1) · · · (x − k+ 1).

In the case U =U (g̃), we also introduce elements 3x,±r ∈U (g̃), x ∈ g, r ∈ N, by
the following identity of power series in the variable u:

3±x (u) :=
∑
r≥0

3x,±r ur
= exp

(
−

∑
s>0

x ⊗ t±s

s
us
)
.

Most of the time we will work with such elements with x = hα for some α ∈ R+.
We then simplify notation and write 3±α (u)=3

±

hα (u), and if α = αi for some i ∈ I ,
we simply write 3±i (u)=3

±

hi
(u). To shorten notation, we also set 3x(u)=3+x (u).

Consider the Z-subalgebra UZ(ĝ
′) of U (ĝ′) generated by the set

{(x±α,r )
(k)
: α ∈ R+, r ∈ Z, k ∈ N}.

By [Garland 1978, Theorem 5.8], it is a free Z-submodule of U (ĝ′) and satisfies
C⊗ZUZ(ĝ

′)=U (ĝ′). In other words, UZ(ĝ
′) is an integral form of U (ĝ′). Moreover,

the image of UZ(ĝ
′) in U (g̃) is an integral form of U (g̃) denoted by UZ(g̃). For a

Lie subalgebra a of ĝ′ set

UZ(a)=U (a)∩UZ(ĝ
′),
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and similarly for subalgebras of g̃. The subalgebra UZ(g) coincides with the Z-
subalgebra of U (ĝ) generated by {(x±α )

(k)
:α ∈ R+, k ∈N}. The subalgebra UZ(n

±)

of UZ(g) is generated, as a Z-subalgebra, by the set {(x±α )
(k)
: α ∈ R+, k ∈ N}

while UZ(h) is generated, as a Z-subalgebra, by
{(hi

k

)
: i ∈ I, k ∈ N

}
. Similarly,

the subalgebra UZ(n
±
[t]) of UZ(g[t]) is generated, as a Z-subalgebra, by the set

{(x±α,r )
(k)
: α ∈ R+, k ∈ N, r ∈ Z≥0} while UZ(h[t]+) is generated by {3i,r : i ∈

I, r ∈ Z>0}. In fact, the latter is free commutative over the given set. The Poincaré–
Birkhoff–Witt (PBW) theorem implies that multiplication establishes isomorphisms
of Z-modules

UZ(ĝ
′)∼=UZ(n̂

−)⊗UZ(ĥ
′)⊗UZ(n̂

+),

UZ(g̃)∼=UZ(ñ
−)⊗UZ(h̃)⊗UZ(ñ

+),

UZ(g[t])∼=UZ(n
−
[t])⊗UZ(h[t])⊗UZ(n

+
[t]).

Moreover, restricted to UZ(h̃) this gives rise to an isomorphism of Z-algebras

UZ(h̃)∼=UZ(h[t]−)⊗UZ(h)⊗UZ(h[t]+).

In general, it may not be true that UZ(a) is an integral form of U (a). However, if a
has a basis consisting of real root vectors, an elementary use of the PBW theorem
implies that this is true. We shall make use of algebras of this form later on.

Given a field F, define the F-hyperalgebra of a by UF(a)= F⊗Z UZ(a), where a

is any of the Lie algebras with Z-forms defined above. Clearly, if the characteristic
of F is zero, the algebra UF(g̃) is naturally isomorphic to U (g̃F) where g̃F= F⊗Z g̃Z

and g̃Z is the Z-span of the Chevalley basis of g̃, and similarly for all algebras a
we have considered. For fields of positive characteristic we just have an algebra
homomorphism U (aF)→UF(a) which is neither injective nor surjective. We will
keep denoting by x the image of an element x ∈ UZ(a) in UF(a). Notice that we
have UF(g̃)=UF(ñ

−)UF(h̃)UF(ñ
+).

Given an algebraically closed field F, let A be a Henselian discrete valuation
ring of characteristic zero having F as its residue field. Set UA(a)= A⊗Z UZ(a).
Clearly UF(a)∼= F⊗A UA(a). We shall also fix an algebraic closure K of the field
of fractions of A. For an explanation why we shall need to move from integral
forms to A-forms, see Remark 1.5.5 (and [Jakelić and Moura 2007, Section 4C]).
As mentioned in the introduction, we assume the characteristic of F is either zero
or at least 5 if g is of type G2.

Notice that the Hopf algebra structure of the universal enveloping algebras induce
such structure on the hyperalgebras. For any Hopf algebra H , denote by H 0 its
augmentation ideal.

1.4. The `-weight lattice. For a ring A, we shall denote by A× its set of unities.
Consider the set P+F consisting of |I |-tuples ω = (ωi )i∈I , where ωi ∈ F[u] and
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ωi (0)= 1 for all i ∈ I . Endowed with coordinatewise polynomial multiplication,
P+F is a monoid. We denote by PF the multiplicative abelian group associated to P+F
which will be referred to as the `-weight lattice associated to g. One can describe
PF in another way. Given µ ∈ P and a ∈ F×, let ωµ,a be the element of PF defined
as

(ωµ,a)i (u)= (1− au)µ(hi ) for all i ∈ I.

If µ=ωi is a fundamental weight, we simplify notation and write ωωi ,a =ωi,a . We
refer to ωi,a as a fundamental `-weight, for all i ∈ I and a ∈ F×. Notice that PF is
the free abelian group on the set of fundamental `-weights. One defines PK in the
obvious way. Let also P×A be the submonoid of P+K generated by ωi,a, i ∈ I, a ∈A×.

Let wt : PF→ P be the unique group homomorphism such that wt(ωi,a)= ωi

for all i ∈ I, a ∈ F×. Let also ω 7→ ω− be the unique group automorphism of PF

mapping ωi,a to ωi,a−1 for all i ∈ I, a ∈ F×. For notational convenience we set
ω+ = ω.

The abelian group PF can be identified with a subgroup of the monoid of |I |-tuples
of formal power series with coefficients in F by identifying the rational function
(1−au)−1 with the corresponding geometric formal power series

∑
n≥0(au)n . This

allows us to define an inclusion PF ↪→ UF(h̃)
∗. Indeed, if ω ∈ PF is such that

ω±i (u)=
∑

r≥0 ωi,±r ur
∈ PF, set

ω
((hi

k

))
=

(wt(ω)(hi )

k

)
, ω(3i,r )= ωi,r , for all i ∈ I, r, k ∈ Z, k ≥ 0,

and ω(xy)= ω(x)ω(y), for all x, y ∈UF(h̃).

1.5. Demazure and local Weyl modules. Given ω ∈ P+F , the local Weyl module
WF(ω) is the quotient of UF(g̃) by the left ideal generated by

UF(ñ
+)0, h−ω(h), (x−α )

(k) for all h ∈UF(h̃), α ∈ R+, k > wt(ω)(hα).

It is known that the local Weyl modules are finite-dimensional (see Theorem 3.2.1(c)).
For λ ∈ P+, the graded local Weyl module W c

F (λ) is the quotient of UF(g[t]) by
the left ideal I c

F (λ) generated by

(1.5.1) UF(n
+
[t])0, UF(h[t]+)0, h− λ(h), (x−α )

(k)

for all h ∈UF(h), α ∈ R+, k > λ(hα).

Also, given ` ≥ 0, let DF(`, λ) denote the quotient of UF(g[t]) by the left ideal
IF(`, λ) generated by I c

F (λ) together with

(x−α,s)
(k) for all α ∈ R+, s, k ∈ Z≥0, k >max{0, λ(hα)− s`r∨α }.(1.5.2)

In particular, DF(`, λ) is a quotient of W c
F (λ).
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The algebra UF(g[t]) inherits a Z-grading from the grading on the polynomial
algebra C[t]. The ideals I c

F (λ) and IF(`, λ) are clearly graded and, hence, the
modules W c

F (λ) and DF(`, λ) are graded. If V is a graded module, let V [r ] be
its r-th graded piece. Given m ∈ Z, let τm(V ) be the UF(g[t])-module such that
τs(V )[r ] = V [r −m] for all r ∈ Z. Set

DF(`, λ,m)= τm(DF(`, λ)).

Remark 1.5.1. Local Weyl modules were simply called Weyl modules in [Chari and
Pressley 2001]. Certain infinite-dimensional modules, which were called maximal
integrable modules in the same work, are now called global Weyl modules. The
modern names, local and global Weyl modules were coined in [Feigin and Loktev
2004], where the authors introduced these modules in the context of generalized
current algebras. We will not consider the global Weyl modules in this paper. We
refer the reader to [Chari et al. 2010; Fourier et al. 2012; Fourier et al. 2014] and
references therein for recent developments in the theory of global and local Weyl
modules for (equivariant) map algebras. See also [Chamberlin 2013] for the initial
steps in the study of the hyperalgebras of (equivariant) map algebras.

We are ready to state the main theorem of the paper.

Theorem 1.5.2. Let λ ∈ P+.

(a) If g is simply laced, then DF(1, λ) and W c
F (λ) are isomorphic UF(g[t])-modules.

(b) There exist k ≥ 1,m j ∈ Z≥0, and λ j ∈ P+, j = 1, . . . , k, (independent of F)
such that the UF(g[t])-module W c

F (λ) admits a filtration (0) = W0 ⊂ W1 ⊂

· · · ⊂Wk−1 ⊂Wk =W c
F (λ), with

W j/W j−1 ∼= DF(1, λ j ,m j ).

(c) For any a ∈ F×, there exists an automorphism ϕa of UF(g[t]) such that the
pull-back of WF(ωλ,a) by ϕa is isomorphic to W c

F (λ).

(d) If ω =
∏m

j=1 ωλ j ,a j for some m ≥ 0, λ j ∈ P+, a j ∈ F×, j = 1, . . . ,m, with
ai 6= a j for i 6= j , then

WF(ω)∼=

m⊗
j=1

WF(ωλ j ,a j ).

Assume the characteristic of F is zero. Then part (a) of this theorem was proved
in [Chari and Pressley 2001] for g = sl2, in [Chari and Loktev 2006] for type A,
and in [Fourier and Littelmann 2007] for types ADE. Part (b) was proved in [Naoi
2012]. Part (c) for simply-laced g was proved in [Fourier and Littelmann 2007]
using part (a) (see Lemmas 1 and 3 and Equation (15) of that reference). The same
proof works in the nonsimply laced case once part (b) is established. The last part
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was proved in [Chari and Pressley 2001]. We will make use of Theorem 1.5.2 in
the characteristic zero setting for extending it to the positive characteristic context.
Both [Chari and Loktev 2006] and [Fourier and Littelmann 2007] use the sl2-case
of part (a) in the proofs. A characteristic-free proof of Theorem 1.5.2(a) for sl2 was
given in [Jakelić and Moura 2014].

We will see in Section 3.5 that the class of modules DF(`, λ) form a subclass
of the class of Demazure modules. In particular, it follows from [Mathieu 1988,
Lemme 8] that dim(DF(`, λ)) depends only on ` and λ, but not on F (see also
the remark on page 56 of [Mathieu 1989] and references therein). Together with
Theorem 1.5.2(b), this implies the following corollary.

Corollary 1.5.3. For all λ ∈ P+, we have dim W c
F (λ)= dim W c

C
(λ). �

As an application of this corollary, we will prove a conjecture of Jakelić and
Moura, which we recall after quoting a theorem of theirs.

Theorem 1.5.4 [Jakelić and Moura 2007]. Suppose ω ∈ P×A and let λ= wt(ω), v
be the image of 1 in WK(ω), and LA(ω)=UA(g̃)v. Then LA(ω) is a free A-module
such that K⊗A LA(ω)∼=WK(ω). �

Let $ be the image of ω in PF. It easily follows that F⊗A LA(ω) is a quotient
of WF($ ) and, hence,

(1.5.3) dim WK(ω)≤ dim WF($ ).

It was conjectured in [Jakelić and Moura 2007] that

(1.5.4) F⊗A LA(ω)∼=WF($ ).

We will prove (1.5.4) in Section 3.4. In particular, it follows that

(1.5.5) dim WF($ )= dim W c
C(λ).

Remark 1.5.5. Theorem 1.5.2(d) was also conjectured in [Jakelić and Moura 2007]
and it is false if F were not algebraically closed (see [Jakelić and Moura 2010] in
that case). Observe that for all$ ∈P+F there exists ω∈P×A such that$ is the image
of ω in PF. This is the main reason for considering A-forms instead of Z-forms.
The block decomposition of the categories of finite-dimensional representations of
hyper loop algebras was established in [Jakelić and Moura 2007; 2010] assuming
(1.5.4) and Theorem 1.5.2(d). The proof of one part of [Bianchi and Moura 2014,
Theorem 4.1] also relies on these two results. Therefore, by proving (1.5.4) and
Theorem 1.5.2(d), we confirm these results of [Bianchi and Moura 2014; Jakelić
and Moura 2007; 2010]. A version of Theorem 1.5.2 for twisted affine Kac–Moody
algebras was obtained in [Fourier and Kus 2013] in the characteristic-zero setting.
We will consider the characteristic-free twisted version of Theorem 1.5.2 elsewhere.
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2. Further notation and technical lemmas

2.1. Some commutation relations. We begin recalling the following well-known
relation in UZ(g)

(x+α )
(l)(x−α )

(k)
=

min{k,l}∑
m=0

(x−α )
(k−m)

(hα−k−l+2m
m

)
(x+α )

(l−m)(2.1.1)

for all α ∈ R+, l, k ∈ Z≥0. Since for all α ∈ R+, s ∈ Z, the span of x±α,±s, hα is a
subalgebra isomorphic to sl2, we get the following relation in UZ(g̃)

(x+α,s)
(l)(x−α,−s)

(k)
=

min{k,l}∑
m=0

(x−α,−s)
(k−m)

(hα−k−l+2m
m

)
(x+α,s)

(l−m).(2.1.2)

Next, we consider the case when the grades of the elements in the left-hand side is
not symmetric.

Given m > 0, consider the Lie algebra endomorphism τm of g̃ induced by the
ring endomorphism of C[t, t−1

], t 7→ tm . Notice that the restriction of τm to g[t]
gives rise to an endomorphism of g[t]. Moreover, denoting by τm its extension
to an algebra endomorphism of U (g̃), notice that UZ(a) is invariant under τm

for a = g, n±, h, ñ±, h̃, n±[t], h[t], h[t]+. In fact τm((x±α,r )
(k)) = (x±α,mr )

(k) and
τm(3α,r ) satisfies

∑
i≥0 τm(3α,r )ur

= exp
(
−
∑

s≥1
hα,ms

s us
)

for all r,m ∈ Z and
α ∈ R+. Consider the power series

X−α,m,s(u)=
∞∑

r=1

x−α,m(r−1)+sur and 3±α,m(u)= τm(3
±

α (u)).

Lemma 2.1.1. Let α ∈ R+, k, l ≥ 0,m > 0, s ∈ Z. Then

(x+α,m−s)
(l)(x−α,s)

(k)
= (−1)l

(
(X−α,m,s(u))

(k−l)3+α,m(u)
)

k mod UZ(g̃)UZ(ñ
+)0,

where the subindex k denotes the coefficient of uk of the above power series. More-
over, if 0≤ s ≤ m, the same holds modulo UZ(g[t])UZ(n

+
[t])0Z.

Proof. The case m=1, s=0 was proved in [Garland 1978, Lemma 7.5] (see [Jakelić
and Moura 2007, Equation (1-11)]). Consider the Lie algebra endomorphism
σs : s̃lα→ s̃lα given by x±α,r 7→ x±α,r∓s . The first statement of the lemma is obtained
from the case m = 1, s = 0 by applying (σs ◦ τm). The second statement is then
clear. �

Sometimes it will be convenient to work with a smaller set of generators for the
hyperalgebras.

Proposition 2.1.2 [Mitzman 1985, Corollary 4.4.12]. The ring UZ(ĝ
′) is generated

by (x±i )
(k), i ∈ Î , k ≥ 0 and UZ(g) is generated by (x±i )

(k), i ∈ I, k ≥ 0. �
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2.2. On certain automorphisms of hyper current algebras. Let a, b be such that
UZ(a) have been defined. Then, given a homomorphism of A-algebras f :UA(a)→

UA(b), we have an induced homomorphism UF(a)→UF(b). We will now use this
procedure to define certain homomorphism between hyperalgebras. As a rule, we
shall use the same symbol to denote the induced homomorphism in the hyperalgebra
level.

Recall that there exists a unique involutive Lie algebra automorphism ψ of g
such that x±i 7→ x∓i and hi 7→ −hi for all i ∈ I . It admits a unique extension to an
automorphism of g[t] such that ψ(x⊗ f (t))=ψ(x)⊗ f (t) for all x ∈ g, f ∈ C[t].
Keep denoting by ψ its extension to an automorphism of U (g[t]). In particular, it
easily follows that

(2.2.1) ψ((x±α,r )
(k))= (x∓α,r )

(k) for all α ∈ R+, r, k ≥ 0.

Since UZ(g[t]) is generated by the elements (x±α,r )
(k), it follows that the restriction

of ψ to UZ(a) induces an automorphism of UZ(a), for a = g, h, g[t], h[t], h[t]+.
We have an inclusion P ↪→ HomZ(UZ(h),Z) determined by

(2.2.2) µ
((hi

k

))
=

(
µ(hi )

k

)
and µ(xy)= µ(x)µ(y)

for all i ∈ I, k ≥ 0, x, y ∈UZ(h).

Therefore,

(2.2.3) µ
(
ψ
((hi

k

)))
=

(
−µ(hi )

k

)
for all i ∈ I, k > 0, µ ∈ P.

Suppose now that γ is a Dynkin diagram automorphism of g and keep denoting
by γ the g-automorphism determined by x±i 7→ x±γ (i), hi 7→ hγ (i), i ∈ I . It admits a
unique extension to an automorphism of g[t] such that γ (x ⊗ f (t))= γ (x)⊗ f (t)
for all x ∈ g, f ∈ C[t]. Keep denoting by γ its extension to an automorphism
of U (g[t]). Let γ also denote the associated automorphism of P determined by
γ (ωi ) = ωγ (i), i ∈ I . In particular, γ (αi ) = αγ (i), i ∈ I . It then follows that for
each α ∈ R+, k > 0, there exist ε±α,k ∈ {−1, 1} (depending on how the Chevalley
basis was chosen) such that

(2.2.4) γ
(
(x±α,r )

(k))
= ε±α,k(x

±

γ (α),r )
(k) for all r ≥ 0.

This implies that the restriction of γ to UZ(a) induces an automorphism of UZ(a),
for any a in the set {g, n±, h, g[t], n±[t], h[t], h[t]+}. It is also easy to see that

(2.2.5) µ
(
γ
((hi

k

)))
=

(
(γ−1(µ))(hi )

k

)
for all i ∈ I, k > 0, µ ∈ P.

We conclude this subsection by constructing the automorphism mentioned in
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Theorem 1.5.2(c). Thus, let a ∈ F and ã ∈ A be such that the image of ã in F is a,
and ϕã the Lie algebra automorphism of g[t]K given by x ⊗ t 7→ x ⊗ (t − ã). Keep
denoting by ϕã the induced automorphism of UK(g[t]) and observe that ϕã is the
identity on UK(g). One easily checks that

ϕã
(
(x±α,r )

(k))
=

∑
k0+···+kr=k

r∏
s=0

(r
s

)ks
(−ã)ks(r−s)(x±α,s)

(ks) ∈UA(g[t]).

Hence, ϕã induces an automorphism of UA(g[t]). Notice that in the hyperalgebra
level we have

(2.2.6) (x±α,r )
(k)
7→

∑
k0+···+kr=k

r∏
s=0

(r
s

)ks
(−a)ks(r−s)(x±α,s)

(ks).

This justifies a change of notation from ϕã to ϕa .

2.3. Subalgebras of rank 1 and 2. For any α∈ R+, consider the Lie subalgebra of g
generated by x±α which is isomorphic to sl2. Denote this subalgebra by slα . Consider
also n±α = Cx±α , hα = Chα and b±α = Chα ⊕ Cx±α . Notice that UZ(g) ∩U (slα)
coincides with the Z-subalgebra UZ(slα) of U (g) generated by (x±α )

(k), k ≥ 0
(see details in [Macedo 2013]). This implies that UZ(g) ∩ U (slα) is naturally
isomorphic to UZ(sl2) and, hence, the corresponding subalgebra UF(slα) of UF(g̃)

is naturally isomorphic to UF(sl2). Similarly, for any α ∈ R+, r ∈ Z, the Lie
subalgebra slα,r of g̃ generated by x±α,±r is isomorphic to sl2 and UZ(g̃)∩U (slα,r )
coincides with the Z-subalgebra of U (g̃) generated by (x±α,±r )

(k), k ≥ 0. We shall
denote the corresponding subalgebra of UF(g̃) by UF(slα,r ). We also consider
the subalgebra s̃lα of g̃ generated by x±α,r , r ∈ Z and the subalgebra slα[t] of g[t]
generated by x±α,r , r ≥ 0. The corresponding subalgebras UF(s̃lα) and UF(slα[t])
of UF(g̃) are naturally isomorphic to UF(s̃l2) and UF(sl2[t]).

We will also need to work with root subsystems of rank 2. Suppose α, β ∈ R+

form a simple system of a root subsystem R′ of rank 2 and let t denote a simple
Lie algebra of type R′. Denote by gα,β the subalgebra of g generated by x±α and
x±β , which is isomorphic to t. Notice that, for r, s ∈ Z, the subalgebra gr,s

α,β of g̃
generated by x±α,±r and x±β,±s is also isomorphic to t. Let U ′Z(gα,β) be the subalgebra
of UZ(g) generated by (x±α )

(k), (x±β )
(k), k≥0, and U ′Z(g

r,s
α,β) the subalgebra of UZ(g̃)

generated by (x±α,±r )
(k), (x±β,±s)

(k), k ≥ 0. Proposition 2.1.2 implies that U ′Z(gα,β)
and U ′Z(g

r,s
α,β) are naturally isomorphic to UZ(t). Recall that if a is a subalgebra

of U (g̃), then UZ(a)=U (a)∩UZ(g̃). As in the rank-1 case, we have

(2.3.1) U ′Z(gα,β)=UZ(gα,β) and U ′Z(g
r,s
α,β)=UZ(g

r,s
α,β).
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The details can be found in [Macedo 2013]. It follows from (2.3.1) that UF(gα,β)=

F⊗Z UZ(gα,β) ⊆ UF(g) and UF(g
r,s
α,β) = F⊗Z UZ(g

r,s
α,β) ⊆ UF(g̃) are isomorphic

to UF(t).

2.4. The algebra gsh. Another important subalgebra used in the proof of our main
result is the subalgebra gsh generated by the root vectors associated to short simple
roots.

Let 1sh = {α ∈1 : (α, α) < 2} denote the set of simple short roots. In particular,
if g is simply laced,1sh=∅. Let R+sh=Z1sh∩R+ and Rsh=Z1sh∩R (and notice
that if g is not simply laced, Rsh 6= {α ∈ R : (α, α) < 2}). Set Ish= {i ∈ I : αi ∈1sh}

and define Psh =
⊕

i∈Ish
Zωi and P+sh = Psh ∩ P+. Consider also the subalgebras

hsh=
⊕

i∈Ish
Chi , b

±

sh=hsh⊕n
±

sh, where n±sh=
⊕
±α∈R+sh

gα , and gsh=n−sh⊕hsh⊕n
+

sh.
Then if1sh 6=∅, gsh is a simply laced Lie subalgebra of g with Cartan subalgebra hsh
and 1sh can be identified with the choice of simple roots associated to the given
triangular decomposition. The subsets Qsh, Q+sh, and the Weyl group Wsh are
defined in the obvious way. The restriction of ( , ) to gsh is an invariant symmetric
and nondegenerate bilinear form on gsh, but the normalization is not the same as the
one we fixed for g. Indeed, (α, α)= 2/r∨ for all α ∈ Rsh. The set {x±α , hi : α ∈ R+sh,

i ∈ Ish} is a Chevalley basis for gsh.
Observe that UZ(g)∩U (gsh) coincides with the Z-subalgebra of U (g) generated

by (x±α )
(k), α ∈ 1sh; and, hence, Proposition 2.1.2 implies that UF(gsh) can be

naturally identified with a subalgebra of UF(g). Similar observation apply to UZ(a)

for a= n±sh, hsh.
Consider the linear map h∗→h∗sh, λ 7→λ, given by restriction and let ish :h

∗

sh→h∗

be the linear map such that ish(α)= α for all α ∈1sh. In particular, ish(µ)= µ for
all µ ∈ h∗sh. Given λ ∈ P , consider the function ηλ : Psh→ P given by

(2.4.1) ηλ(µ)= ish(µ)+ λ− ish(λ).

Lemma 2.4.1. If λ ∈ P+, µ ∈ P+sh , and µ≤ λ, then ηλ(µ) ∈ P+.

Proof. For each i ∈ Ish, take mi ∈ Z≥0 such that µ= λ−
∑

i∈Ish
miαi . In particular,

ηλ(µ)= λ−
∑

i∈Ish
miαi . Then for j ∈ Ish we have ηλ(µ)(h j )= µ(h j )≥ 0, while

for j ∈ I \ Ish we have ηλ(µ)(h j )= λ(h j )−
∑

i∈Ish
miαi (h j )≥ λ(h j )≥ 0. �

The affine Kac–Moody algebra associated to gsh is naturally isomorphic to the
subalgebra

ĝsh := gsh⊗C[t, t−1
]⊕Cc⊕Cd

of ĝ, and under this isomorphism ĥsh is identified with hsh⊕Cc⊕Cd. The sub-
algebras gsh[t] and n̂±sh, as well as P̂sh, Q̂sh, etc., are defined in the obvious way.
Moreover, UF(g̃sh) and UF(gsh[t]) can be naturally identified with a subalgebra
of UF(g̃).
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3. Finite-dimensional modules

3.1. Modules for hyperalgebras. We now review the finite-dimensional represen-
tation theory of UF(g). If the characteristic of F is zero, then UF(g)∼=U (gF) and
the results stated here can be found in [Humphreys 1978]. The literature for the
positive characteristic setting is more often found in the context of algebraic groups,
in which case UF(g) is known as the hyperalgebra or algebra of distributions of an
algebraic group of the same Lie type as g (see Part II of [Jantzen 2003]). A more
detailed review in the present context can be found in [Jakelić and Moura 2007,
Section 2].

Let V be a UF(g)-module. A nonzero vector v ∈ V is called a weight vector
if there exists µ ∈ UF(h)

∗ such that hv = µ(h)v for all h ∈ UF(h). The subspace
consisting of weight vectors of weight µ is called a weight space of weight µ and it
will be denoted by Vµ. If V =

⊕
µ∈UF(h)∗

Vµ, then V is said to be a weight module.
If Vµ 6= 0, µ is said to be a weight of V and wt(V )= {µ ∈UF(h)

∗
: Vµ 6= 0} is said

to be the set of weights of V . Notice that the inclusion (2.2.2) induces an inclusion
P ↪→UF(h)

∗. In particular, we can consider the partial order ≤ on UF(h)
∗ given

by µ≤ λ if λ−µ ∈ Q+ and we have

(3.1.1) (x±α )
(k)Vµ ⊆ Vµ±kα for all α ∈ R+, k > 0, µ ∈UF(h)

∗.

If V is a weight-module with finite-dimensional weight spaces, its character is the
function ch(V ) :UF(h)

∗
→ Z given by ch(V )(µ)= dim Vµ. As usual, if V is finite-

dimensional, ch(V ) can be regarded as an element of the group ring Z[UF(h)
∗
]

where we denote the element corresponding to µ ∈UF(h)
∗ by eµ. By the inclusion

(2.2.2) the group ring Z[P] can be regarded as a subring of Z[UF(h)
∗
] and, moreover,

the action of W on P induces an action of W on Z[P] by ring automorphisms
where w · eµ = ewµ.

If v ∈ V is weight vector such that (x+α )
(k)v = 0 for all α ∈ R+, k > 0, then v is

said to be a highest-weight vector. If V is generated by a highest-weight vector,
then it is said to be a highest-weight module. Similarly, one defines the notions of
lowest-weight vectors and modules by replacing (x+α )

(k) by (x−α )
(k).

Theorem 3.1.1. Let V be a UF(g)-module.

(a) If V is finite-dimensional, then V is a weight-module, wt(V ) ⊆ P , and
dim Vµ = dim Vσµ for all σ ∈W, µ ∈UF(h)

∗. In particular, ch(V ) ∈ Z[P]W.

(b) If V is a highest-weight module of highest weight λ, then dim(Vλ) = 1 and
Vµ is nonzero only if µ ≤ λ. Moreover, V has a unique maximal proper
submodule and, hence, also a unique irreducible quotient. In particular, V is
indecomposable.
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(c) For each λ ∈ P+, the UF(g)-module WF(λ) given by the quotient of UF(g) by
the left ideal IF(λ) generated by

UF(n
+)0, h− λ(h) and (x−α )

(k), for all h ∈UF(h), α ∈ R+, k > λ(hα),

is nonzero and finite-dimensional. Moreover, every finite-dimensional highest-
weight module of highest weight λ is a quotient of WF(λ).

(d) If V is finite-dimensional and irreducible, then there exists a unique λ ∈ P+

such that V is isomorphic to the irreducible quotient VF(λ) of WF(λ). If the
characteristic of F is zero, then WF(λ) is irreducible.

(e) For each λ ∈ P+, ch(WF(λ)) is given by the Weyl character formula. In
particular, µ ∈ wt(WF(λ)) if and only if σµ ≤ λ for all σ ∈W. Moreover,
WF(λ) is a lowest-weight module with lowest weight w0λ. �

Remark 3.1.2. The module WF(λ) defined in Theorem 3.1.1(c) is called the
Weyl module (or costandard module) of highest weight λ. The known proofs
of Theorem 3.1.1(e) make use of geometric results such as Kempf’s Vanishing
Theorem.

We shall need the following lemma in the proof of Lemma 5.2.5 below.

Lemma 3.1.3. Let V be a finite-dimensional UF(g)-module, µ ∈ P , and α ∈ R+.
If v ∈ Vµ \ {0} is such that (x−α )

(k)v = 0 for all k > 0, then µ(hα) ∈ Z≤0 and
(x+α )

(−µ(hα))v 6= 0. �

Remark 3.1.4. In characteristic zero, it is well known that the following stronger
statement holds: if v ∈ Vµ \ {0} is such that µ(hα) ∈ Z≤0, then (x+α )

(−µ(hα))v 6= 0.
In positive characteristic this stronger statement is not true for all finite-dimensional
representations.

The next lemma can be proved exactly as in [Naoi 2012, Lemma 4.5].

Lemma 3.1.5. Let mi ∈ Z≥0, i ∈ I, V be a finite-dimensional UF(n
−)-module, and

suppose v ∈ V satisfies (x−i )
(k)v = 0 for all i ∈ I, k > mi . Then, given α ∈ R+, we

have (x−α )
(k)v = 0 for all k >

∑
i∈I ni mi where ni are such that hα =

∑
i∈I ni hi .�

3.2. Modules for hyper loop algebras. We now recall some basic results about
the category of finite-dimensional UF(g̃)-modules in the same spirit as Section 3.1.
The results of this subsection can be found in [Jakelić and Moura 2007, Section 3]
and references therein.

Given a UF(g̃)-module V and ξ ∈UF(h̃)
∗, let

Vξ = {v ∈ V : for all x ∈UF(h̃), there exists k > 0 such that (x − ξ(x))kv = 0}.



274 ANGELO BIANCHI, TIAGO MACEDO AND ADRIANO MOURA

We say that V is an `-weight module if V =
⊕
ω∈PF

Vω. In this case, regarding V as a
UF(g)-module, we have

Vµ =
⊕
ω∈PF:

wt(ω)=µ

Vω for all µ ∈ P and V =
⊕
µ∈P

Vµ.

A nonzero element of Vω is said to be an `-weight vector of `-weight ω. An `-weight
vector v is said to be a highest-`-weight vector if UF(h̃)v = Fv and (x+α,r )

(k)v = 0
for all α ∈ R+ and all r, k ∈Z, k > 0. If V is generated by a highest-`-weight vector
of `-weight ω, V is said to be a highest-`-weight module of highest `-weight ω.

Theorem 3.2.1. Let V be a UF(g̃)-module.

(a) If V is finite-dimensional, then V is an `-weight module. Moreover, if V is
finite-dimensional and irreducible, then V is a highest-`-weight module whose
highest `-weight lies in P+F .

(b) If V is a highest-`-weight module of highest `-weight ω ∈P+F , then dim Vω = 1
and Vµ 6= 0 only if µ ≤ wt(ω). Moreover, V has a unique maximal proper
submodule and, hence, also a unique irreducible quotient. In particular, V is
indecomposable.

(c) For each ω ∈ P+F , the local Weyl module WF(ω) is nonzero and has finite
dimension. Moreover, every finite-dimensional highest-`-weight module of
highest `-weight ω is a quotient of WF(ω).

(d) If V is finite-dimensional and irreducible, then there exists a unique ω ∈ P+F
such that V is isomorphic to the irreducible quotient VF(ω) of WF(ω).

(e) For µ ∈ P and ω ∈ P+F , µ is in wt(WF(ω)) if and only if µ ∈ wt(WF(wt(ω))),
or equivalently if wµ≤ wt(ω) for all w ∈W. �

3.3. Graded modules for hyper current algebras. Recall the following elementary
fact.

Lemma 3.3.1. Let A be a ring, I ⊂ A a left ideal, B = F⊗Z A an F-algebra, and
J the image of I in B, that is, J is the F-span of {(1⊗ a) ∈ B : a ∈ I }. Then
F⊗Z (A/I ) is a left B-module, J is a left ideal of B, and we have an isomorphism
of left B-modules B/J ∼= F⊗Z (A/I ). �

We shall use Lemma 3.3.1 with A being one of the integral forms so that B is
the corresponding hyperalgebra.

Given λ ∈ P+, let I c
Z(λ)⊂UZ(g[t]) be the left ideal generated by

UZ(n
+
[t])0, UZ(h[t]+)0, h− λ(h), (x−α )

(k),

for all h ∈UZ(h), α ∈ R+, k > λ(hα), and set

W c
Z(λ)=UZ(g[t])/I c

Z(λ).
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Similarly, if `≥ 0 is also given, let IZ(`, λ) be the left ideal of UZ(g[t]) generated
by

UZ(n
+
[t])0, UZ(h[t]+)0, h− λ(h), (x−α,s)

(k),

for all h ∈UZ(h), α ∈ R+, s, k ∈ Z≥0, k >max{0, λ(hα)− r∨α `s}.

Then set
DZ(`, λ)=UZ(g[t])/IZ(`, λ).

Notice that W c
Z(λ) and DZ(`, λ) are weight modules.

Since the ideals defining W c
F (λ) and DF(`, λ) (see Section 1.5) are the images of

I c
Z(λ) and IZ(`, λ) in UF(g[t]), respectively, an application of Lemma 3.3.1 gives

isomorphisms of UF(g[t])-modules

W c
F (λ)
∼= F⊗Z W c

Z(λ) and DF(`, λ)∼= F⊗Z DZ(`, λ).

As before, DZ(`, λ) is a quotient of W c
Z(λ) for all λ ∈ P+ and all ` > 0. We

shall see next (Proposition 3.3.2) that the latter is a finitely generated Z-module
and, hence, so is the former. Together with Corollary 1.5.3, this implies that

(3.3.1) DZ(`, λ) is a free Z-module.

The proof of the next proposition is an adaptation of that of [Jakelić and Moura
2007, Theorem 3.11]. The extra details can be found in [Macedo 2013].

Proposition 3.3.2. For every λ ∈ P+, the UZ(g[t])-module W c
Z(λ) is a finitely

generated Z-module.

We now prove an analogue of Theorem 1.5.4 for graded local Weyl modules.

Corollary 3.3.3. Let λ ∈ P+ and v be the image of 1 in W c
C
(λ). Then UZ(g[t])v is

a free Z-module of rank dim(W c
C
(λ)). Moreover, UZ(g[t])v =

⊕
µ∈P(UZ(g[t])v ∩

W c
C
(λ)µ). In particular, UZ(g[t])v is an integral form for W c

C
(λ).

Proof. To simplify notation, set L = UZ(n
−)v. Let also ϑ be as in the proof of

Proposition 3.3.2. Since v satisfies the relations satisfied by ϑ, it follows that there
exists an epimorphism of UZ(g[t])-modules WZ(λ)→ L , ϑ 7→ v. Since WZ(λ) is
finitely generated, it follows that so is L . On the other hand, since L ⊆W c

C
(λ), it is

also torsion free and, hence, a free Z-module of finite rank. Since UZ(n
−) spans

U (n−) and W c
C
(λ) = U (n−)v, it follows that L contains a basis of W c

C
(λ). This

implies that the rank of L is at least dim(W c
C
(λ)). On the other hand, C⊗Z L is

a g[t]-module generated by the vector 1⊗ v which satisfies the relations (1.5.1).
Therefore, it is a quotient of W c

C
(λ). Since dim(C⊗Z L)= rank(L), the first and

the last statements follow. The second statement is clear since L is obviously a
weight module. �
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Consider the category GF of Z-graded finite-dimensional representations of
UF(g[t]). Recall the functors τm defined in the paragraph preceding Remark 1.5.1.
For each UF(g)-module V , let ev0(V ) be the module in GF obtained by extending
the action of UF(g) to one of UF(g[t]) on V by setting UF(g[t]+)V = 0. For
λ ∈ P+, r ∈ Z, set VF(λ, r)= evr (VF(λ)) where evr = τr ◦ ev0.

Theorem 3.3.4. Let λ ∈ P+.

(a) If V ∈GF is simple, then it is isomorphic to VF(λ, r) for unique (λ, r)∈ P+×Z.

(b) W c
F (λ) is finite-dimensional.

(c) If V is a graded finite-dimensional UF(g[t])-module generated by a weight
vector v of weight λ satisfying UF(n

+
[t])0v = UF(h[t]+)0v = 0, then V is a

quotient of W c
F (λ).

Proof. To prove part (a), suppose V ∈ GF is simple. If V [r ], V [s] 6= 0 for s < r ∈ Z,
(
⊕

k≥r V [k]) would be a proper submodule of V , contradicting the fact that it is
simple. Thus there must exist a unique r ∈ Z such that V [r ] 6= 0. Since UF(g[t]+)
changes degrees, V = V [r ] must be a simple UF(g)-module. This shows that
V ∼= VF(λ, r) for some λ ∈ P+, r ∈ Z.

To prove part (b), observe that W c
F (λ)
∼= F⊗Z W c

Z(λ) (see Lemma 3.3.1). Thus
the dimension of W c

F (λ) must be at most the number of generators of W c
Z(λ), which

is proved to be finite in Proposition 3.3.2.
To prove part (c), observe that the UF(g)-submodule V ′=UF(g)v⊆ V is a finite-

dimensional highest-weight module of highest weight λ. Thus, by Theorem 3.1.1(c),
V ′ is a quotient of WF(λ). The statement follows by comparing the defining relations
of V and W c

F (λ). �

Remark 3.3.5. Denote by v the image of 1 in W c
F (λ). From the defining relations

(1.5.1) it follows that F ⊗Z UZ(g[t])v is a quotient of W c
F (λ). It follows from

Theorem 1.5.2(b) that F⊗Z UZ(g[t])v ∼= W c
F (λ) for all λ ∈ P+ (see Section 3.4

below). Moreover, since F⊗Z WZ(λ)∼=W c
F (λ), Theorem 1.5.2(b) also implies that

WZ(λ) is free.

3.4. Proof of (1.5.4). The argument of the proof will use Corollary 1.5.3, the
characteristic-zero version of parts (c) and (d) of Theorem 1.5.2, and the following
proposition.

Proposition 3.4.1 [Naoi 2012, Corollary A]. Let λ ∈ P+. Then dim W c
C
(λ) =∏

i∈I (dim W c
C
(ωi ))

λ(hi ). �

We shall also need the following general construction. Given a Zs≥0-filtered
UF(g[t])-module W , we can consider the associated UF(g[t])-module gr(W ) =⊕

s≥0 Ws/Ws−1, which obviously has the same dimension as W . Suppose now
that W is any cyclic UF(g[t])-module and fix a generator w. Then the Z-grading
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on UF(g[t]) induces a filtration on W . Namely, set w to have degree zero and
define the s-th filtered piece of W by Ws = F sUF(g[t])w where F sUF(g[t]) =⊕

r≤s UF(g[t])[r ]. Then gr(W ) is cyclic since it is generated by the image of w in
gr(W ).

Recall the notation fixed for (1.5.4): ω ∈P×A , λ=wt(ω), $ is the image of ω in
PF. Also recall that, using (1.5.3), (1.5.4) will be proved if we show that

dim WF($ )≤ dim WK(ω).

Fix w ∈ WF($ )λ \ {0}. Not only does w generate WF($ ) as a UF(g̃)-module,
but it also follows from the proof of [Jakelić and Moura 2007, Theorem 3.11] (with
a correction incorporated in the proof of [Jakelić and Moura 2010, Theorem 3.7])
that UF(n

−
[t])w=WF($ ). Hence, we can apply the general construction reviewed

above to WF($ ). Set V = gr(WF($ )) and denote the image of w in V by v.
The module V is finite-dimensional and v is a highest-weight vector of weight λ
satisfying UF(h[t]+)0v = 0 (the latter follows since dim(Vλ)= 1, V is graded, and
UF(h[t]) is commutative). Hence, v satisfies the defining relations (1.5.1) of W c

F (λ).
In particular,

dim WF($ )≤ dim W c
F (λ).

Since dim W c
F (λ)= dim W c

K(λ) by Corollary 1.5.3, it now suffices to show that

dim W c
K(λ)= dim WK(ω).

For proving this, consider the decomposition of ω of the form

ω =

m∏
j=1

ωλ j ,a j

for some m ≥ 0, a j ∈ K×, ai 6= a j for i 6= j , λ j ∈ P+ such that λ=
∑m

j=1 λ j . By
Theorem 1.5.2(d), in characteristic zero, WK(ω)∼=⊗

m
j=1WK(ωλ j ,a j ). In character-

istic zero, Theorem 1.5.2(c) implies that dim WK(ωλ j ,a j )= dim W c
K(λ j ). Hence,

dim WK(ω)=

m∏
j=1

dim W c
K(λ j )=

m∏
j=1

∏
i∈I

dim W c
K(ωi )

λ j (hi )

=

∏
i∈I

W c
K(ωi )

λ(hi ) = dim W c
K(λ).

Here, the second and last equality follow from Proposition 3.4.1 and the others are
clear. This completes the proof of (1.5.4).

Notice that all equalities of dimensions proved here actually imply the corre-
sponding equalities of characters. In particular, it follows that

(3.4.1) ch(WF($ ))=
∏
i∈I

(ch(W c
C(ωi )))

wt($ )(hi ) for all $ ∈ P+F .
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3.5. Joseph–Mathieu–Polo relations for Demazure modules. We now explain the
reason we call the module DF(`, λ) a Demazure module. We begin with the
following lemma. Let γ be the Dynkin diagram automorphism of g induced by w0

and recall from Section 2.2 that it induces an automorphism of UF(g[t]) also denoted
by γ .

Lemma 3.5.1. Let λ ∈ P+, ` ≥ 0, and set λ∗ =−w0λ. Let W be the pull-back of
DF(`, λ

∗) by γ . Then DF(`, λ)∼=W .

Proof. Let v ∈ DF(`, λ
∗)λ∗ \ {0}. By (1.5.1) and (1.5.2) we have

UF(n
+
[t])0v =UF(h[t]+)0v = 0, hv = λ∗(h)v, (x−α,s)

(k)v = 0,

for all h ∈UF(h), α ∈ R+, s, k ∈Z≥0, k >max{0, λ∗(hα)−s`r∨α }. Denote by w the
vector v regarded as an element of W . Evidently, W =UF(g[t])w. Since γ restricts
to automorphisms of UF(n

+
[t]) and of UF(h[t]+), it follows that UF(n

+
[t])0w =

UF(h[t]+)0w = 0, while (2.2.5) implies that w ∈ Wλ. Finally, (2.2.4) and (2.2.5)
together imply that

(x−α,s)
(k)w = 0 for all α ∈ R+, s, k ∈ Z≥0, k >max{0, λ(hα)− s`r∨α }.

This shows that w satisfies the defining relations of DF(`, λ) and, hence, there
exists an epimorphism from DF(`, λ) onto W . Since (λ∗)∗ = λ, reversing the
roles of λ and λ∗ we get an epimorphism on the other direction. Since these are
finite-dimensional modules, we are done. �

In order to continue, we need the concepts of weight vectors, weight spaces,
weight modules and integrable modules for UF(ĝ

′) which are similar to those for
UF(g) (see Section 3.1) by replacing I with Î and P with P̂ ′. Also, using the
obvious analogue of (2.2.2), we obtain an inclusion P̂ ′ ↪→ UF(ĥ

′)∗. Let V be a
Z-graded UF(ĝ

′)-module whose weights lie in P̂ ′. As before, let V [r ] denote the
r -th graded piece of V . For µ ∈ P̂ , say µ= µ′+mδ with µ′ ∈ P̂ ′,m ∈ Z, set

Vµ = {v ∈ V [m] : hv = µ′(h)v for all h ∈UF(ĥ
′)}.

If Vµ 6= 0 we shall say that µ is a weight of V and let wt(V )= {µ ∈ P̂ : Vµ 6= 0}.
We record the following partial affine analogue of Theorem 3.1.1.

Theorem 3.5.2. Let V be a graded UF(ĝ
′)-module.

(a) If V is integrable, then V is a weight-module and wt(V ) ⊆ P̂. Moreover,
dim Vµ = dim Vσµ for all σ ∈ Ŵ, µ ∈ P̂.

(b) If V is a highest-weight module of highest weight λ, dim(Vλ)= 1 and Vµ 6= 0
only if µ ≤ λ. Moreover, V has a unique maximal proper submodule and,
hence, also a unique irreducible quotient. In particular, V is indecomposable.
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(c) Let 3 ∈ P̂+ and m =3(d). Then the UF(ĝ
′)-module ŴF(3) generated by a

vector v of degree m satisfying the defining relations

UF(n̂
+)0v = 0, hv =3(h)v and (x−i )

(k)v = 0,

for all h ∈UF(ĥ
′), i ∈ Î , k >3(hi ), is nonzero and integrable. Moreover, for

every positive real root α, we have

(3.5.1) (x−α )
(k)v = 0 for all k >3(hα).

Furthermore, every integrable highest-weight module of highest weight 3 is a
quotient of ŴF(3). �

Given 3 ∈ P̂+, σ ∈ Ŵ, the Demazure module V σ
F (3) is defined as the UF(b̂

′+)-
submodule generated by ŴF(3)σ3 (see [Fourier and Littelmann 2007; Mathieu
1989; Naoi 2012]). In particular, V σ

F (3)
∼= V σ ′

F (3) if σ3= σ ′3 for some σ ′ ∈ Ŵ.
Our focus is on the Demazure modules which are stable under the action of UF(g).
Since V σ

F (3) is defined as a UF(b̂
′+)-module, it is stable under the action of UF(g)

if, and only if,

(3.5.2) UF(n
−)0ŴF(3)σ3 = 0.

In particular, since V σ
F (3) is an integrable UF(slα)-module for any α∈ R+, it follows

that (σ3)(hα) ≤ 0 for all α ∈ R+. Conversely, using the exchange condition for
Coxeter groups (see [Humphreys 1990, Section 5.8]), one easily deduces that, for
all i ∈ Î , we have

(xεi )
(k)ŴF(3)σ3 = 0 for all k > 0

where ε=+ if σ3(hi )≥0 and ε=− if σ3(hi )≤0. This implies that if σ3(hi )≤0
for all i ∈ I , then V σ

F (3) is UF(g)-stable. Thus, henceforth, assume (σ3)(hi )≤ 0
for all i ∈ I and observe that this implies that σ3 must have the form

(3.5.3) σ3= `30+w0λ+mδ for some λ ∈ P+,m ∈ Z, and `=3(c).

Conversely, given ` ∈ Z≥0, λ ∈ P+, and m ∈ Z, since Ŵ acts simply transitively on
the set of alcoves of ĥ∗ (see [Humphreys 1990, Theorem 4.5.(c)]), there exists a
unique 3 ∈ P̂+ such that `30+w0λ+mδ ∈ Ŵ3. Thus, if σ ∈ Ŵ and 3 ∈ P̂+ are
such that

(3.5.4) σ3= `30+w0λ+mδ,

then V σ
F (3) is UF(g)-stable. Henceforth, we fix σ,3,w0, λ, and m as in (3.5.4).

Notice that if γ =±α+ sδ ∈ R̂+ with α ∈ R+, then

σ3(hγ )=±w0λ(hα)+ s`r∨α .
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The following lemma is a rewriting of [Mathieu 1989, Lemme 26] using the above
fixed notation.

Lemma 3.5.3. The UF(b̂
′+)-module V σ

F (3) is isomorphic to the UF(b̂
′+)-module

generated by a vector v of degree m satisfying the following defining relations:
hv = σ3(h)v, h ∈UF(ĥ

′), UF(h[t]+)0v =UF(n
−
[t]+)0v = 0, and

(3.5.5) (x+α,s)
(k)v = 0 for all α ∈ R+, s ≥ 0, k >max{0,−w0λ(hα)− s`r∨α }. �

Remark 3.5.4. Mathieu [1989] attributes Lemma 3.5.3 to Joseph and Polo. This
is the reason for the title of this subsection. The original version of this lemma in
[Mathieu 1989] gives generator and relations for any Demazure module, not only
for the UF(g)-stable ones.

The following is the main result of this subsection.

Proposition 3.5.5. The graded UF(g[t])-modules V σ
F (3) and DF(`, λ,m) are iso-

morphic.

Proof. It suffices to prove the statement for m = 0, so for simplicity we assume that
this is the case. Proceeding as in [Fourier and Littelmann 2007, Corollary 1] (see
also [Naoi 2012, Proposition 3.6]) we show that V σ

F (3) is a quotient of DF(`, λ).
Namely, let v be a nonzero vector in ŴF(3)µ where µ= w0σ3. Quite clearly v
generates V σ

F (3). It follows that v is an extremal weight vector and, hence, satisfies
the relations

(3.5.6) (x±γ )
(k)v = 0 for all k >max{0,∓µ(hγ )}

and all positive real roots γ . In particular, taking γ = α + sδ with α ∈ R+ and
s ≥ 0, it follows that

−µ(hγ )=−λ(hα)− `r∨α s ≤ 0,

showing (x+α,s)
(k)v = 0 for all k > 0. Similarly, taking γ =−α+ sδ, we get

−µ(hγ )= λ(hα)− `r∨α s,

which shows that v satisfies the relations determined by (1.5.2). It remains to be
shown that UF(h[t]+)0v = 0. This can be proved as in [Mathieu 1989, Lemme 26].
Alternatively, this can also be shown by proving that there exists a surjective
map from D(`, λ∗) to the pull-back of V σ

F (3) by the automorphism ψ defined in
Section 2.2 (similarly to what we do in the next paragraph), and then comparing
weights (one uses a vector as in Lemma 3.5.3 to prove the existence of such a map).
It now suffices to show that dim(DF(`, λ))≤ dim(V σ

F (3)).
Now let v be in DF(`, λ

∗)λ∗ \ {0}, W be the pull-back of DF(`, λ
∗) by ψ , and

w denote v when regarded as an element of W . Since UF(n
+
[t])0v = 0, and since
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(3.5.2) implies that ψ(UF(n
−
[t])0)=UF(n

+
[t])0, it follows that UF(n

−
[t])0w = 0.

Also, ψ restricts to an automorphism of UF(h[t]+) and, hence, UF(h[t]+)0w = 0.
Since hv = λ∗(h)v for all h ∈ UF(h), (2.2.3) implies that hw = w0λ(h)w for all
h ∈UF(h). Finally, the defining relations of v and (2.2.1) imply that

(x+α,s)
(k)w = (x−α,s)

(k)v = 0 for all α ∈ R+, s ≥ 0, k >max{0, λ∗(hα)− s`r∨α }.

Thus w satisfies all the defining relations of V σ
F (3) in Lemma 3.5.3. Hence, W is a

quotient of V σ
F (3) and therefore dim(W )≤ dim(V σ

F (3)). Since dim(DF(`, λ
∗))=

dim(DF(`, λ)) by Lemma 3.5.1, we are done. �

Corollary 3.5.6. DF(`, λ) is isomorphic to the quotient of UF(g[t]) by the left ideal
I−F (`, λ) generated by h−w0λ(h), h ∈UF(h), UF(h[t]+)0,UF(n

−
[t])0, and

(x+α,s)
(k) for all α ∈ R+, s ≥ 0, k >max{0,−w0λ(hα)− s`r∨α }. �

Remark 3.5.7. Observe that the difference between our first definition of DF(`, λ)

and the one given by Corollary 3.5.6 lies on exchanging a “highest-weight generator”
by a “lowest-weight” one. More precisely, let v be as in Lemma 3.5.3. Then the
isomorphism of Proposition 3.5.5 must send v to a nonzero element in DF(`, λ)w0λ.
In particular, if w is in DF(`, λ)w0λ, it satisfies the relations listed in Lemma 3.5.3.
The second part of our proof of Proposition 3.5.5 differs from the one given in
[Fourier and Littelmann 2007, Corollary 1] in characteristic zero. It is claimed
there that a vector in DF(`, λ)w0λ must satisfy several relations, including (3.5.5),
without further justification. Proposition 3.5.5 implies that this is true, but we do
not see how to deduce it so directly (even in characteristic zero) since we cannot
use extremal-weight vector theory to such vectors DF(`, λ) a priori contained in an
integrable module for the full affine hyperalgebra.

Corollary 3.5.8. Let g = sl2 and consider the subalgebra a = n−[t] ⊕ h[t] ⊕
n+[t]+ ⊆ g[t]. For `, λ ∈ Z≥0, let I ′F(`, λ) be the left ideal of UF(a) generated
by the generators of IF(`, λ) which lie in UF(a). Then, given k, l, s ∈ Z≥0 with
k >max{0, λ− s`}, we have

(3.5.7) (x+i )
(l)(x−i,s)

(k)
∈UF(a)UF(n

+)0⊕ I ′F(`, λ)

where i is the unique element of I .

Proof. The statement is a hyperalgebraic version of [Naoi 2012, Lemma 4.10] and
the proof follows a similar outline. Namely, by using the automorphism of g[t]
determined by x±i,r 7→ x∓i,r , i ∈ I, r ∈ Z≥0, we observe that (3.5.7) is equivalent to

(3.5.8) (x−i )
(l)(x+i,s)

(k)
∈UF(a

−)UF(n
−)0+ I ′′F (`, λ)

for all k, l, s ∈ Z≥0, k > max{0, λ− s`}, where a− = n−[t]+ ⊕ h[t] ⊕ n+[t] and
I ′′F (`, λ) is the left ideal of UF(a

−) generated by the generators of I−F (`, λ) given
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in Corollary 3.5.6 which lie in UF(a
−). Since g[t] = a−⊕ n−, the PBW theorem

implies that
UF(g[t])=UF(a

−)UF(n
−)0⊕UF(a

−),

and, hence, (x−i )
(l)(x+i,s)

(k)
= u + u′ with u ∈ UF(a

−)UF(n
−)0 and u′ ∈ UF(a

−).
Consider the Demazure module DF(`, λ) and let w ∈ DF(`, λ)−λ \ {0}. It follows
from the proof of Proposition 3.5.5 that if k >max{0, λ− s`}, then

u′w =
(
(x−i )

(l)(x+i,s)
(k)
− u

)
w = 0.

Since b̂′+ = a−⊕Cc and a− is an ideal of b̂′+, it follows from Lemma 3.5.3 that
I ′′F (`, λ) is the annihilating ideal of w inside UF(a), and, hence, u′ ∈ I ′′F (`, λ). �

4. Joseph’s Demazure flags

4.1. Quantum groups. Let C(q) be the field of rational functions on an indeter-
minate q. Let also C = (ci j )i, j∈ Î be the Cartan matrix of ĝ, and di , with i ∈ Î , be
nonnegative relatively prime integers such that the matrix DC , with D=diag(di )i∈I ,
is symmetric. Set qi = qdi and for m, n ∈ Z, n ≥ 0, set

[m]qi =
qm

i − q−m
i

qi − q−1
i

, [n]qi ! = [n]qi [n− 1]qi · · · [1]qi ,[
m
n

]
qi

=
[m]qi [m− 1]qi . . . [m− n+ 1]qi

[n]qi !
.

The quantum group Uq(ĝ
′) is a C(q)-associative algebra (with 1) with generators

x±i , k±1
i , i ∈ Î subject to the following defining relations for all i, j ∈ Î :

ki k−1
i = 1, ki k j = k j ki , ki x±j k−1

i = q±ci j
i x±j , [x

+

i , x−j ] = δi j
ki − k−1

i

qi − q−1
i

,

1−ci j∑
m=0

(−1)m
[

1− ci j

m

]
qi

(x±i )
1−ci j−m x±j (x

±

i )
m
= 0, i 6= j.

Let Uq(n̂
±) be the subalgebra generated by x±i , i ∈ Î , and Uq(b̂

±) be the subalgebra
generated by Uq(n̂

±) together with k±1
i , i ∈ Î .

We shall need an integral form of U (ĝ′). Let Zq = Z[q, q−1
], UZq (n̂

±) be the
Zq -subalgebra of Uq(n̂

±) generated by (x±i )
m/([m]qi !), i ∈ Î ,m ≥ 0, and UZq (ĝ

′)

be the Zq-subalgebra of Uq(ĝ
′) generated by UZq (n̂

±) and ki , i ∈ Î . Let also
UZq (b̂

±) = Uq(b̂
±) ∩UZq (ĝ

′). Then UZq (a), where a = ĝ′, n̂±, b̂±, is a free Zq-
module such that the natural map C(q)⊗Zq UZq (a)→ Uq(a) is a C(q)-algebra
isomorphism. In other words, UZq (a) is a Zq-form of Uq(a). Moreover, letting
Z be a Zq-module where q acts as 1, there exists an epimorphism of Z-algebras



ON DEMAZURE AND LOCAL WEYL MODULES FOR AFFINE HYPERALGEBRAS 283

Z⊗Zq UZq (a)→UZ(a), which is an isomorphism if a= n̂±, and whose kernel is
the ideal generated by ki − 1, i ∈ Î , for a= ĝ′, b̂±.

Given 3 ∈ P̂+, let Vq(3) be the simple (type 1) Uq(ĝ
′)-module of highest

weight 3. Given a highest-weight vector v ∈ Vq(3), set VZq (3) = UZq (n̂
−)v,

which is a Zq-form of Vq(3). Given σ ∈ Ŵ and a nonzero vector v ∈ Vq(3)

of weight σ3, set V σ
Zq
(3) = UZq (n̂

+)v, which is a free Zq-module as well as a
UZq (b̂

+)-module, and C⊗Zq V σ
Zq
(3)∼= V σ

C
(3). In particular,

(4.1.1) V σ
Z (3) := Z⊗Zq V σ

Zq
(3)

is an integral form of V σ
C
(3).

4.2. Crystals. A normal crystal associated to the root data of ĝ defined as a set B
equipped with maps ẽi , f̃i : B → B t {0}, εi , ϕi : B → Z, for each i ∈ Î , and
wt : B→ P̂ satisfying

(1) εi (b)=max{n : ẽi b 6= 0}, ϕi (b)=max{n : f̃i b 6= 0}, for all i ∈ Î , b ∈ B;

(2) ϕi (b)− εi (b)= wt(b)(hi ), for all i ∈ Î , b ∈ B;

(3) for b, b′ ∈ B, b′ = ẽi b if and only if f̃i b′ = b;

(4) if b ∈ B and i ∈ Î are such that ẽi b 6= 0, then wt(ẽi b)= wt(b)+αi .

For convenience, we extend ẽi , f̃i , εi , ϕi ,wt to Bt{0} by setting them to map 0 to 0.
Denote by E the submonoid of the monoid of maps B t {0} → B t {0} generated
by {ẽi : i ∈ Î }, and similarly define F. A normal crystal is said to be of highest
weight 3 ∈ P̂+ if there exists b3 ∈ B satisfying

wt(b3)=3, Eb3 = {0}, and Fb3 = B.

Given B ′⊂ B and µ∈ P̂ , define B ′µ= {b ∈ B ′ :wt(b)=µ} and define the character
of B ′ as ch(B ′)=

∑
µ∈P̂ #B ′µeµ ∈ Z[P̂].

Given crystals B1 and B2, a morphism from B1 to B2 is a map ψ : B1→ B2t{0}
satisfying

(1) if ψ(b) 6= 0, then wt(ψ(b))= wt(b), εi (ψ(b))= εi (b), ϕi (ψ(b))= ϕi (b), for
all i ∈ Î ;

(2) if ẽi b 6= 0, then ψ(ẽi b)= ẽiψ(b);

(3) if f̃i b 6= 0, then ψ( f̃i b)= f̃iψ(b).

The set B1× B2 admits a structure of crystal denoted by B1⊗ B2 (see [Joseph 2003,
Section 2.4]). There is, up to isomorphism, exactly one family {B(3) :3 ∈ P̂+} of
normal highest-weight crystals such that for all λ,µ ∈ P̂+, the crystal structure of
B(λ)⊗ B(µ) induces a crystal structure on its subset F(bλ⊗bµ), the inclusion is a
homomorphism of crystals, and F(bλ⊗ bµ)∼= B(λ+µ).
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Given a crystal B and σ ∈ Ŵ with a fixed reduced expression σ = si1 . . . sin ,
define

Eσ = {ẽm1
i1
. . . ẽmn

in
: m j ∈ N} ⊂ E and Fσ

= { f̃ m1
i1
. . . f̃ mn

in
: m j ∈ N} ⊂ F.

If B = B(3), 3 ∈ P̂+ and σ ∈ Ŵ, define the Demazure subset Bσ (3)= Fσb3 ⊆
B(3). Then Bσ (3) is E-stable: EBσ (3)⊂ Bσ (3)t {0}. It was proved in [Joseph
2003, Section 4.6] that ch(V σ

C
(3)) = ch(Bσ (3)). This fact and the following

theorem are the main results of [Joseph 2003] that we shall need.

Theorem 4.2.1. Let 3,µ ∈ P̂+. For any σ ∈ Ŵ, there exist a finite set J and
elements σ j ∈ Ŵ, b j ∈ Bσ (3) for each j ∈ J , satisfying

(1) bµ⊗ Bσ (3)= t j∈J B j where B j := Fσ j (bµ⊗ b j );

(2) E(bµ⊗ b j )= {0};

(3) ch(B j )= ch(Bσ j (ν j )), where ν j = µ+wt(b j ) ∈ P̂+.

Remark 4.2.2. The proof of Theorem 4.2.1 establishes an algorithm to find the
set J and the elements σ j , b j .

4.3. Globalizing. The theory of global basis of Kashiwara shows, in particular,
that for each 3 ∈ P̂+, there is a map G : B(3)→ Vq(3) such that

(4.3.1) VZq (3)=
⊕

b∈B(3)

Zq G(b),

the weight of G(b) is wt(b) and G(b3) is a highest-weight vector of Vq(3).
Fix 3,µ ∈ P̂+, σ ∈ Ŵ and let J, b j , σ j , ν j , j be in J , be as in Theorem 4.2.1.

Let b be in B(3)σ3 and set V σ
Zq
(3) = UZq (n̂

+)G(b). Similarly, let b′j be the
unique element of B j such that wt(b′j ) = σ jν j . Choose a linear order on J such
that wt(b j ) < wt(bk) only if j > k. For j ∈ J , let Y j be the Zq-submodule of
Vq(µ)⊗ V σ

q (3) spanned by G(bµ)⊗G(b) with b ∈ Bk, k ≤ j , and set

(4.3.2) y j = G(bµ)⊗G(b′j ).

Let also Z j =
∑

k≤ j UZq (n̂
−)(G(bµ)⊗G(bk)). Since J is linearly ordered and finite,

say #J = n and identify it with {1, . . . , n}. For convenience, set Y0 = {0}. Observe
that 0= Y0⊂ Y1⊂ · · · ⊂ Yk is a filtration of the UZq (b̂

+)-module G(b30)⊗V σ
Zq
(3).

The following result was proved in [Joseph 2006, Corollary 5.10].

Theorem 4.3.1. Suppose g is simply laced and µ(hi )≤ 1 for all i ∈ Î . Then:

(a) The Zq -module Y j is UZq (n̂
+)-stable for all j ∈ J .

(b) For all j ∈ J , Y j/Y j−1 is isomorphic to V σ j
Zq
(ν j ). In particular, Y j/Y j−1 is a

free Zq -module.



ON DEMAZURE AND LOCAL WEYL MODULES FOR AFFINE HYPERALGEBRAS 285

(c) For all j ∈ J , the image of {G(bµ)⊗G(b) : b ∈ B j } in Y j/Y j−1 is a Zq -basis
of Y j/Y j−1.

(d) For each j ∈ J , Z j is UZq (ĝ
′)-stable and Y j = Z j ∩

(
G(bµ)⊗ V σ

Zq
(3)

)
.

Remark 4.3.2. The above theorem was proved in [Joseph 2006] for any simply-
laced symmetric Kac–Moody Lie algebra. However, as pointed out in [Naoi 2012,
Remark 4.15], the proof also holds for ŝl2.

It follows from Theorem 4.3.1 and the fact that G(bµ) is a highest-weight vector
of Vq(3) (4.3.1) that

(4.3.3) Y j =
∑
k≤ j

UZq (n̂
+)y j .

4.4. Simply laced Demazure flags. Given `≥ 0, λ∈ P+,m ∈Z, let DF(`, λ,m)=
τm(DF(`, λ)) and DZ(`, λ,m)= τm(DZ(`, λ)).

Theorem 4.4.1. Suppose g is simply laced, let µ be in P+ and `′ > ` ≥ 0. Then
there exist k > 0, µ1, . . . , µk ∈ P+,m1, . . . ,mk ∈ Z≥0, and a filtration of UZ(g[t])-
modules 0= D0 ⊆ D1 ⊆ · · · ⊆ Dk = DZ(`, µ) such that D j and D j/D j−1 are free
Z-modules for all j = 1, . . . , k, and D j/D j−1 ∼= DZ(`

′, µ j ,m j ). Moreover, for all
j ∈ J , there exists ϑ j ∈ D j such that

(i) the image of ϑ j in D j/D j−1 satisfies the defining relations of DZ(`
′, µ j ,m j );

(ii) D j =
∑

k≤ j UZ(n
−
[t])ϑk .

Proof. The proof follows closely that of [Naoi 2012, Corollary 4.16]. First notice
that it is enough to prove the theorem for `′= `+1. Then let3∈ P̂+ and w ∈ Ŵ be
such that w3= `30+w0µ, and let Vw

Zq
(3)=UZq (n̂

+)G(b) where b ∈ B(3)w3.
From Section 4.3, we know that the UZq (b̂

+)-submodule G(b30)⊗ Vw
Zq
(3) ⊆

Vq(30)⊗Vq(3) admits a filtration 0= Y0 ⊂ Y1 ⊂ · · · ⊂ Yk . For each j = 1, . . . , k,
let D j = Z⊗Zq Y j , and observe that

Dk = Z⊗Zq

(
G(b30)⊗Zq Vw

Zq
(3)

)
∼=
(
Z⊗Zq G(b30)

)
⊗Z

(
Z⊗Zq Vw

Zq
(3)

)
∼= Z30 ⊗Z DZ(`, µ),

where Z30 is a UZ(b̂
+)-module on which UZ(n̂

+)0 and UZ(g)
0 act trivially and

UZ(ĥ) acts by 30. Moreover, as a Z-module it is free of rank 1. Thus Dk is
isomorphic to DZ(`, µ) as a UZ(g[t])-module. It follows from Theorem 4.3.1(d)
that D j is a UZ(g[t])-module for all j = 1, . . . , k and, hence, so is D j/D j−1. So
we have a filtration of UZ(g[t])-modules 0= D0 ⊂ D1 ⊂ · · · ⊂ Dk = DZ(`, µ).

By Theorem 4.3.1(b), Y j/Y j−1 ∼= V σ j
Zq
(ν j ) for some σ j ∈ Ŵ and ν j ∈ P̂+. By

(4.1.1) D j/D j−1 ∼= V σ j
Z (ν j ). Thus D j/D j−1 is isomorphic to DZ(` j , µ j ,m j )

for some µ j ∈ P+,m j ∈ Z and ` j = ν j (c); see (3.5.3). Since all the weights
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of Vq(30)⊗ Vq(3) are of the form 3+30− η for some η ∈ Q̂+, and αi (c)= 0
for all i ∈ Î , it follows that ` j = `+ 1 for all j .

Keep denoting the image of y j in D j by y j (see (4.3.2)). It follows that D j =∑
k≤ j UZ(n̂

+)y j by (4.3.3). As in Remark 3.5.7, we now replace the “lowest-weight”
generators y j by “highest-weight generators”. Thus, let b′′j be the unique element
of B j such that wt(b′′j ) = w0σ jν j = (`+ 1)30+µ j +m jδ and let ϑ j be defined
similarly to y j by replacing b′j by b′′j . �

The next corollary is now immediate.

Corollary 4.4.2. Let g, µ, `′, `, k, µ j , j = 1, . . . , k, be as in Theorem 4.4.1. Then
there exists a filtration of UF(g[t])-modules 0= D0 ⊆ D1 ⊆ · · · ⊆ Dk = DF(`, µ),
such that D j/D j−1 ∼= DF(`

′, µ j ) for all j = 1, . . . , k. �

5. Proof of Theorem 1.5.2

5.1. The isomorphism between Demazure and graded local Weyl modules. Re-
call that for g= sl2, a characteristic-free proof of Theorem 1.5.2(a) was given in
[Jakelić and Moura 2014]. Thus, assume g is simply laced of rank higher than 1
and recall from Remark 1.5.1 that DF(1, λ) is a quotient of W c

F (λ). To prove the
converse, let w be the image of 1 in W c

F (λ). In order to show that W c
F (λ) is a

quotient of DF(1, λ), it remains to prove that

(5.1.1) (x−α,s)
(k)w = 0 for all α ∈ R+, s > 0, k >max{0, λ(hα)− s}.

Given α ∈ R+, consider the subalgebra UF(slα[t]) (see Section 2.3) and let Wα be
the UF(slα[t])-submodule of W c

F (λ) generated by w. Clearly, Wα is a quotient of
the graded local Weyl module for UF(slα[t]) with highest weight λ(hα), where we
have identified the weight lattice of sl2 with Z as usual. Since we already know
that the theorem holds for sl2, it follows that w must satisfy the same relations as
the generator of the corresponding Demazure module for UF(slα[t]). In particular,
(5.1.1) holds and so does Theorem 1.5.2(a).

5.2. A smaller set of relations for nonsimply laced Demazure modules. In this
subsection we assume g is not simply laced and prove the following analogue of
[Naoi 2012, Proposition 4.1].

Proposition 5.2.1. For all λ ∈ P+, DF(1, λ) is isomorphic to the quotient of
UF(g[t]) by the left ideal IF(λ) generated by

UF(n
+
[t])0, UF(h[t]+)0, h− λ(h), (x−i )

(k), (x−α,s)
(`)(5.2.1)

for all h ∈UF(h), i ∈ I \ Ish, α ∈ R+sh, s ≥ 0, k > λ(hi ), ` >max{0, λ(hα)− sr∨}.

Let w be in DF(1, λ)λ \ {0} and V be the UF(g[t])-module generated by a vector
v with defining relations given by (5.2.1). In particular, there exists a unique
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epimorphism V → DF(1, λ) mapping v to w. To prove the converse, observe
first that since (x−i )

(k)v = 0 for all i ∈ I, k > λ(hi ), Lemma 3.1.5 implies that
(x−α )

(k)v= 0 for all α ∈ R+, k >λ(hα). In particular, V is a quotient of W c
F (λ) and,

hence, it is finite-dimensional. It remains to show that

(x−α,s)
(k)v = 0 for all α ∈ R+ \ R+sh, s > 0, k >max{0, λ(hα)− sr∨α }.

These relations will follow from the next few lemmas.

Lemma 5.2.2. Let V be a finite-dimensional UF(g[t])-module, λ be in P+, and
suppose v ∈ Vλ satisfies UF(n

+
[t])0v = UF(h[t]+)0v = 0. If α ∈ R+ is long, then

(x−α,s)
(k)v = 0 for all s ≥ 0, k >max{0, λ(hα)− s}.

Proof. Consider the subalgebra UF(slα[t]) (see Section 2.3). By Theorem 3.3.4
(c), the submodule W =UF(slα[t])v is a quotient of the local graded Weyl module
for UF(slα[t]) with highest weight λ(hα). Theorem 1.5.2 (a) implies that W ∼=
Dα

F (1, λ(hα))where the latter is the corresponding Demazure module for UF(slα[t]).
In particular, v satisfies the relations (1.5.2). �

Lemma 5.2.3. Assume g is not of type G2. Let V be a finite-dimensional UF(g[t])-
module, λ be in P+, and suppose v ∈ Vλ satisfies UF(n

+
[t])0v =UF(h[t]+)0v = 0

and (x−α,s)
(k)v = 0 for all α ∈ R+sh, k > max{0, λ(hα)− 2s}. Then for every short

root γ , we have (x−γ,s)
(k)v = 0 for all s ≥ 0, k >max{0, λ(hγ )− 2s}.

Proof. The proof will proceed by induction on ht(γ ). If ht(γ )= 1, then γ is simple
and, hence, γ ∈ R+sh. Thus, suppose ht(γ ) > 1 and that γ /∈ R+sh. By [Naoi 2012,
Lemma 4.6], there exist α, β ∈ R+ such that γ = α+ β with α long and β short.
Notice that {α, β} form a simple system of a rank-two root subsystem. In particular,
hγ = 2hα + hβ and, hence, λ(hγ )= 2λ(hα)+ λ(hβ).

Fix s ≥ 0 and suppose first that λ(hγ )− 2s ≥ 0. In this case, we can choose
a, b ∈ Z≥0 such that

a+ b = s, λ(hα)− a ≥ 0, and λ(hβ)− 2b ≥ 0.

Indeed, b = max{0, s − λ(hα)} and a = s − b satisfy these conditions. Then
Lemma 5.2.2 implies that (x−α,a)

(k)v = 0 for all k > λ(hα)− a, while the induction
hypothesis implies that (x−β,b)

(k)v= 0 for all k>λ(hβ)−2b. Applying Lemma 3.1.5
to the subalgebra UF(g

a,b
α,β) (see Section 2.3), it follows that (x−γ,s)

(k)v = 0 for all
k > 2(λ(hα)− a)+ (λ(hβ)− 2b)= λ(hγ )− 2s.

Now suppose λ(hγ )− 2s ≤ 0; this implies s−λ(hα)= s− 1
2(λ(hγ )−λ(hβ))≥

λ(hβ)/2≥ 0. We need to show that (x−γ,s)
(k)v = 0 for all k > 0. Letting a = λ(hα)

and b = s− λ(hα), we have

a+ b = s, λ(hα)− a ≤ 0, and λ(hβ)− 2b ≤ 0.
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Then Lemma 5.2.2 implies that (x−α,a)
(k)v = 0 for all k > 0, while the induction

hypothesis implies that (x−β,b)
(k)v = 0 for all k > 0. The result follows from an

application of Lemma 3.1.5 as before. �

It remains to prove an analogue of Lemma 5.2.3 for g of type G2. This is much
more technically complicated and will require that we assume that characteristic of
F is at least 5. For the remainder of this subsection we assume g is of type G2 and
set I = {1, 2} so that α1 is short. Given γ = sα1+ lα2 ∈ R+, set sγ = s. Set also

n+[t]>=
⊕
γ∈R+

⊕
s≥sγ

Cx+γ,s, n+[t]<=
⊕
γ∈R+

sγ−1⊕
s=0

Cx+γ,s, a=n−[t]⊕h[t]⊕n+[t]>,

and observe that n+[t]> and n+[t]< are subalgebras of n+[t] such that n+[t] =
n+[t]>⊕ n+[t]<. The hyperalgebras UF(n

+
[t]>),UF(n

+
[t]<), and UF(a) are then

defined in the usual way (see Section 1.3) and the PBW theorem implies that

(5.2.2) UF(n
+
[t])=UF(n

+
[t]>)⊕UF(n

+
[t])UF(n

+
[t]<)0.

We now prove a version of [Naoi 2012, Lemma 4.11] for hyperalgebras.

Lemma 5.2.4. Given λ ∈ P+, let I ′F(λ) be the left ideal of UF(a) generated by the
generators of IF(λ) described in (5.2.1) which lie in UF(a). Then

IF(λ)⊆ I ′F(λ)⊕UF(a)UF(n
+
[t]<)0.

Proof. Recall that IF(λ) is the left ideal of UF(g[t]) generated by the set I whose
elements are the elements in UF(n

+
[t])0, UF(h[t]+)0, together with the elements(hi

l

)
−

(
λ(hi )

l

)
, (x−2 )

(m), (x−1,s)
(k)

for i ∈ I, k, l,m, s ∈Z≥0,m>λ(h2), k>max{0, λ(h1)−3s}. To simplify notation,
set U<=UF(n

+
[t]<) and J = I ′F(λ)⊕UF(a)UF(n

+
[t]<)0. Observe that UF(a)J ⊆ J .

Therefore, since UF(g[t]) = UF(a)U< by (5.2.2) and we clearly have I ⊆ J , it
suffices to show that

U 0
<I⊆ J.

We will decompose the set I into parts, and prove the inclusion for each part.
Namely, we first decompose I into

(
I∩UF(n

+
[t])UF(h[t])

)
t
(
I∩UF(n

−
[t])

)
, and

then we further decompose I∩UF(n
−
[t]) as

{(x−2 )
(m)
: m > λ(h2)} t {(x−1,s)

(k)
: s ∈ Z≥0, k >max{0, λ(h1)− 3s}}.

Since h[t] ⊕ n+[t] is a subalgebra of g[t], the PBW theorem tells us that
UF(n

+
[t])UF(h[t])=UF(h[t])UF(n

+
[t]), and therefore

U 0
<

(
I∩UF(n

+
[t])UF(h[t])

)
⊆UF(h[t])UF(n

+
[t]).
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Now, by (5.2.2), UF(h[t])UF(n
+
[t]) ⊆ J , so U 0

<(I∩UF(n
+
[t])UF(h[t])) ⊆ J . In

particular, we have shown that

(5.2.3) UF(g[t])UF(n
+
[t])0 ⊆ J.

It remains to show that
U 0
<

(
I∩UF(n

−
[t])

)
⊆ J.

We begin by proving that U 0
<UF(n

−

2 )⊆ J , where n−2 is the subalgebra spanned
by x−2 . Consider the natural Q-grading on UF(g[t]), and for η ∈ Q let UF(g[t])η
denote the corresponding graded piece. Observe that m2 := n+[t]< ⊕ n−2 is a
subalgebra of g[t] and that

U 0
<UF(n

−

2 )⊆
⊕
η

UF(m2)η,

where the sum runs over Z>0α1 ⊕ Zα2. Together with the PBW theorem, this
implies that

U 0
<UF(n

−

2 )⊆UF(n
−

2 )U
0
< ⊆UF(a)U 0

< ⊆ J.

Finally, we show that U 0
<I1 ⊆ J , where I1 =

(
I ∩UF(n

−

1 [t])
)

and n−1 is the
subalgebra spanned by x−1 . Consider

n+[t]1< =
⊕

γ∈R+\{α1}

sγ−1⊕
s=0

Cx+γ,s,

which is a subalgebra of n+[t]< such that n+[t]< = n+1 ⊕n+[t]1<, where n+1 =Cx+1 .
Moreover, m1 := n+[t]1<⊕n−1 [t] is a subalgebra of g[t] such that U (m1)η 6= 0 only
if η ∈ Zα1⊕Z≥0α2 and U (m1)0 = C. This implies that

UF(n
+
[t]1<)

0UF(n
−

1 [t])=UF(n
−

1 [t])UF(n
+
[t]1<)

0.

Since U 0
< =UF(n

+

1 )UF(n
+
[t]1<)

0
⊕UF(n

+

1 )
0, we get

U 0
<I1 ⊆

(
UF(n

+

1 )UF(n
+
[t]1<)

0
+UF(n

+

1 )
0)I1

⊆UF(n
+

1 )UF(n
−

1 [t])UF(n
+
[t]1<)

0
+UF(n

+

1 )
0I1

⊆UF(g[t])UF(n
+
[t])0+UF(n

+

1 )
0I1.

The first summand in the last line is in J by (5.2.3) while the second one is in J by
Corollary 3.5.8 (with λ= λ(h1) and `= 3) together with (5.2.3). �

Set hi = Chi , i ∈ I , and b= n−[t]⊕ h[t]+⊕ h2⊕ n+[t]>. Observe that b is an
ideal of a such that a = b⊕ h1. One easily checks that there exists a unique Lie
algebra homomorphism φ : b→ g[t] such that

φ(x±γ,r )= x±γ,r∓sγ for all γ ∈ R+.
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Moreover, φ is the identity on h[t]+ + slα2 . Also, φ can be extended to a Lie
algebra map a→U (g[t]) by setting φ(h1)= h1−3 (see [Naoi 2012, Section 4.2]).
Proceeding as in Section 2.2, one sees that φ induces an algebra homomorphism
UF(a)→UF(g[t]) also denoted by φ.

We are ready to prove the analogue of Lemma 5.2.3 for type G2.

Lemma 5.2.5. Let V be a finite-dimensional UF(g[t])-module, λ∈ P+, and suppose
v ∈ Vλ satisfies UF(n

+
[t])0v = UF(h[t]+)0v = 0 and (x−1,s)

(k)v = 0 for all k >
max{0, λ(h1)− 3s}. Then for every short root γ , we have (x−γ,s)

(k)v = 0 for all
s ≥ 0, k >max{0, λ(hγ )− 3s}.

Proof. Notice that the conclusion of the lemma is equivalent to

(x−γ,s)
(k)
∈ IF(λ) for all s ≥ 0, k >max{0, λ(hγ )− 3s}

for every short root γ . Recall that the short roots in R+ are α1, α := α1+α2 and
ϑ := 2α1+α2 while the long roots are α2, β := 3α1+α2 and θ := 3α1+ 2α2. For
γ = α, we have hγ = h1+ 3h2 and the proof is similar to that of Lemma 5.2.3 (the
details can be found in [Macedo 2013]). We shall use that the lemma holds for
γ = α in the remainder of the proof. It remains to show that the lemma holds with
γ = ϑ . Notice that hϑ = 2h1+ 3h2 and thus we want to prove that

(5.2.4) (x−ϑ,s)
(k)
∈ IF(λ) for all s ≥ 0, k >max{0, 2λ(h1)+ 3λ(h2)− 3s}.

We prove (5.2.4) by induction on λ(h1). Following [Naoi 2012], we prove the cases
λ(h1) ∈ {0, 1, 2} and then we show that (5.2.4) for λ− 3ω1 in place of λ implies it
for λ. To shorten notation, set a = λ(h1), b = λ(h2).

(1) Assume a = 0. Since α1 ∈ R+sh, it follows that (x−1 )
(k)v = 0 for all k > 0.

By Lemma 5.2.2, we have (x−2,s)
(k)v = 0 for all k > max{0, b − s}. Applying

Lemma 3.1.5 to the subalgebra UF(g
0,s
α1,α2

), it follows that (x−ϑ,s)
(k)v = 0 for all

k > 3 max{0, b− s} =max{0, 2a+ 3b− 3s} as desired.

(2) Assume a = 1. This time we have (x−1 )
(k)v = 0 for all k > 1. We split in 3

subcases.
(2.1) Suppose b > s − 1, and notice 2a + 3b − 3s > 0. Lemma 5.2.2 implies
(x−2,s)

(k)v = 0 for all k > max{0, b− s} = b− s. Applying Lemma 3.1.5 to the
subalgebra UF(g

0,s
α1,α2

), it follows that (x−ϑ,s)
(k)v = 0 for all k > 2+ 3(b − s) =

2a+ 3b− 3s.
(2.2) Suppose b= s−1, in which case 2a+3b−3s < 0. Notice that hβ = h1+h2

and, hence, λ(hβ)= a+b= s. Lemma 5.2.2 then implies that (x−β,s)
(k)v = 0 for all

k > 0. Notice that {−α1, β} form a basis for R. Since, (x+1 )
(k)v = 0 for all k > 0,

Lemma 3.1.5 applied to the subalgebra UF(g
0,s
−α1,β

) implies that (x−ϑ,s)
(k)v = 0 for

all k > 0.
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(2.3) Suppose b < s − 1, in which case 2a + 3b− 3s < 0. This time we apply
Lemma 3.1.5 to the subalgebra UF(g

1,s−2
α1,α2

). Indeed, we have (x−1,1)
(k)v = 0 for

all k > max{0, a − 3} = 0 and Lemma 5.2.2 implies that (x−2,s−2)
(k)v = 0 for all

k > max{0, b − (s − 2)} = 0. Thus, since3(b − s) < −3 and a = 1, we have
max{0, 2a+3b−3s} = 0 and Lemma 3.1.5 implies that (x−ϑ,s)

(k)v= 0 for all k > 0.

(3) Assume a = 2. We split in subcases as before.
(3.1) If b > s− 1, the proof is similar to that of step (2.1).
(3.2) Suppose b = s − 1, and notice that 2a + 3b − 3s = 1. Hence, we want
to show that (5.2.4) holds for k > 1. For k > 3 we apply Lemma 3.1.5 to the
subalgebra UF(g

1,s−2
α1,α2

) in a similar fashion as we did in step (2.3) (the same can be
conclude using the argument from step (2.2). For k ∈ {2, 3} we need our hypothesis
on the characteristic of F. Assume we have chosen the Chevalley basis so that
x−ϑ = [x

+

1 , x−β ] and observe that (1.1.4) implies that [x+1 , x−ϑ ] = ±2x−α . Using this,
one easily checks that

(x−ϑ,s)
(2)
= (x+1 )

(2)(x−β,s)
(2)
−

1
2 x+1 (x

−

β,s)
(2)x+1 −

1
2 x−β,s x−ϑ,s x+1 ∓ x−β,s x−α,s .

Using the case γ = α and Lemma 5.2.2 we see that x−α,sv = (x
−

β,s)
(2)v = 0. Hence,

since 2 ∈ F×, (5.2.4) holds for k = 2. For k = 3, we have (x−ϑ,s)
(3)
=

1
3 x−ϑ,s(x

−

ϑ,s)
(2)

and, since 3 ∈ F×, (5.2.4) also holds for k = 3.
(3.3) If b < s− 1 the proof is similar to that of step (2.3).

(4) Assume a ≥ 3 and that (5.2.4) holds for λ− 3ω1.
(4.1) Suppose s ≥ 2 and recall the definition of the map φ :UF(a)→UF(g[t]). The
induction hypothesis together with Lemma 5.2.4 implies that

(x−ϑ,s−2)
(k)
∈ I ′F(λ− 3ω1) for all k >max{0, 2a+ 3b− 3s},

and therefore

(x−ϑ,s)
(k)
= φ

(
(x−ϑ,s−2)

(k))
∈ φ(I ′F(λ− 3ω1)) for all k >max{0, 2a+ 3b− 3s}.

One easily checks that φ sends the generators of I ′F(λ−3ω1) to generators of IF(λ),
completing the proof of (5.2.4) for s ≥ 2.
(4.2) For s = 0, notice that UF(g)v is a quotient of WF(λ), and (5.2.4) follows.
Equivalently, apply Lemma 3.1.5 to UF(g

0,0
α1,α2

)=UF(g) and the proof is similar to
that of step (2.1).
(4.3) If s = 1 and b ≥ 1, we have 2a+ 3b− 3s > 0 and the usual application of
Lemma 3.1.5 to UF(g

0,1
α1,α2

) completes the proof of (5.2.4). If s = 1 and b = 0, we
need to show that (x−ϑ,1)

(k)v = 0 for k > 2a− 3.
Consider the subalgebra UF(slϑ [t])∼=UF(sl2[t]) defined in Section 2.3. Since

λ(hϑ)= 2a, it follows that W :=UF(slϑ [t])v is a quotient of the UF(sl2[t])-module
W c

F (2a), where we identified the weight lattice of sl2 with Z as usual. Since
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W c
F (2a) ∼= DF(1, 2a) by Theorem 1.5.2(a), the defining relations of DF(1, 2a)

imply (x−ϑ,1)
(k)v = 0 for k > 2a − 1. It remains to check that (x−ϑ,1)

(k)v = 0 for
k ∈ {2a− 2, 2a− 1}.

Suppose by contradiction that (x−ϑ,1)
(2a−1)v 6= 0, and notice that

(5.2.5) (x−ϑ )
(k)(x−ϑ,1)

(2a−1)v = 0 for all k > 0.

Indeed,
(x−ϑ )

(k)(x−ϑ,1)
(2a−1)v ∈W c

F (2a)−2a−2(k−1)

is a vector of degree 2a − 1 > 1 for all k ≥ 0. By the Weyl group invariance of
the character of W c

F (2a), we know that W c
F (2a)−2a−2(k−1) = 0 if k > 1, and that

W c
F (2a)−2a−2(k−1) is one-dimensional concentrated in degree zero if k = 1. This

proves (5.2.5). Then Lemma 3.1.3 implies that

(x+ϑ )
(2a−2)(x−ϑ,1)

(2a−1)v 6= 0.

On the other hand, it follows from Lemma 2.1.1 that

(x+ϑ )
(2a−2)(x−ϑ,1)

(2a−1)v = x−ϑ,2a−1v.

Since 2a−1≥ 2 and 2a−3(2a−1)=−4a+3< 0, it follows from step (4.1) that
x−ϑ,2a−1v = 0 yielding a contradiction as desired.

Similarly, assume by contradiction that (x−ϑ,1)
(2a−2)v 6= 0 and notice that

(x−ϑ )
(k)(x−ϑ,1)

(2a−2)v = 0 for all k > 1.

Suppose first that x−ϑ (x
−

ϑ,1)
(2a−2)v = 0 as well. It then follows from Lemma 3.1.3

that
(x+ϑ )

(2a−4)(x−ϑ,1)
(2a−2)v 6= 0.

On the other hand, Lemma 2.1.1 implies that

(x+ϑ )
(2a−4)(x−ϑ,1)

(2a−2)v = (x−ϑ,a−1)
(2)v+

2a−2∑
r=a

x−ϑ,2a−2−r x−ϑ,rv.

Since a−1≥2, step (4.1) implies that (x−ϑ,r )
(k)v=0 for all r ≥a−1, k>0, implying

that the right-hand side is zero, which is a contradiction. It remains to check the
possibility that x−ϑ (x

−

ϑ,1)
(2a−2)v 6= 0. In this case it follows that x−ϑ (x

−

ϑ,1)
(2a−2)v is a

lowest-weight vector for the algebra UF(slϑ) and, hence, Lemma 3.1.3 implies that

(x+ϑ )
(2a−2)x−ϑ (x

−

ϑ,1)
(2a−2)v 6= 0.

Using (2.1.1) we get

(x+ϑ )
(2a−2)x−ϑ (x

−

ϑ,1)
(2a−2)v =

(
x−ϑ (x

+

ϑ )
(2a−2)

+ (x+ϑ )
(2a−3))(x−ϑ,1)(2a−2)v.

Lemma 2.1.1 together with step (4.1) will again imply that the right-hand side is
zero. This completes the proof. �
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5.3. Existence of Demazure flag. If g is simply laced, Theorem 1.5.2(b) follows
immediately from part (a) with k = 1. Thus, assume from now on that g is not
simply laced and recall the notation introduced in Section 2.4.

Given λ ∈ P+, let µ = λ ∈ P+sh and v be the image of 1 in W c
C
(λ). Consider

W sh
C
:=U (gsh[t])v and W sh

Z :=UZ(gsh[t])v. By [Naoi 2012, Lemma 4.17], there is
an isomorphism of U (gsh[t])-modules W sh

C
∼= DC(1, µ). By Corollary 3.3.3, W sh

Z

is an integral form of W c
C
(µ) ∼= DC(1, µ). Hence, we have an isomorphism of

UZ(gsh[t])-modules W sh
Z
∼= DZ(1, µ).

Since gsh is of type A, Theorem 4.4.1 implies that there exist k> 0, µ1, . . . , µk ∈

P+sh , m1, . . . ,mk ∈ Z≥0, and a filtration of UZ(gsh[t])-modules 0 = D0 ⊆ D1 ⊆

· · · ⊆ Dk =W sh
Z , such that D j and D j/D j−1 are free Z-modules, and D j/D j−1 ∼=

DZ(r∨, µ j ,m j ) for all j = 1, . . . , k. In particular,

(5.3.1) W sh
Z /D j is a free Z-module for all j = 0, . . . , k.

Set λ j = ηλ(µ j ) ∈ P+ where ηλ is defined in (2.4.1), W j
Z = UZ(g[t])D j and

W j
F = F⊗Z W j

Z . It is easy to see that we have 0 = W 0
F ⊆ W 1

F ⊆ · · · ⊆ W k
F , and

λk = λ since µk = µ. Hence, we are left to show that

W j
F /W j−1

F
∼= DF(1, λ j ,m j ) for all j = 1, . . . , k, and W k

F
∼=W c

F (λ).

Notice that W k
Z = UZ(g[t])v. Then Corollary 3.3.3 implies that W k

Z is an
integral form of W c

C
(λ). Since Z is a PID and W k

Z is a finitely generated, free
Z-module, it follows that W j

Z is a free Z-module of finite rank for all j = 1, . . . , k.
Set W j

C
= U (g[t])D j . It follows from [Naoi 2012, Proposition 4.18] (which is

Theorem 1.5.2(b) in characteristic zero) that W j
C
/W j−1

C
∼= DC(1, λ j ,m j ) for all

j = 1, . . . , k. Moreover, since W j
C
∼= C⊗Z W j

Z , we have

C⊗Z (W
j

Z/W j−1
Z )∼= (W j

C
/W j−1

C
)∼= DC(1, λ j ,m j ).

Therefore, W j
Z/W j−1

Z is a finitely generated Z-module of rank dim(DC(1, λ j ,m j ))

for all j = 1, . . . , k. Since W j
F /W j−1

F
∼= F⊗Z (W

j
Z/W j−1

Z ), it follows that

dim(W j
F /W j−1

F )≥ dim(DC(1, λ j ,m j ))= dim(DF(1, λ j ,m j )).

Now, let v j ∈ D j be as in Theorem 4.4.1, w be the image of v in W k
F , u j ∈UZ(n

−

sh[t])
be such that v j = u jv, and w j = u jw. It follows that

W j
Z =

∑
n≤ j

UZ(g[t])vn and W j
F =

∑
n≤ j

UF(g[t])wn.

We will show that the image w j of w j in W j
F /W j−1

F satisfies the relations described
in Proposition 5.2.1, which implies that W j

F /W j−1
F is a quotient of DF(1, λ j ,m j )

and, hence, W j
F /W j−1

F
∼= DF(1, λ j ,m j ) for all j = 1, . . . , k.
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By construction, v j is a weight vector of weight λ j and degree m j , and so is w j .
Since D j/D j−1 ∼= DZ(r∨, µ j ,m j ), it follows that

UF(n
+

sh[t])
0w j =UF(hsh[t]+)

0w j = 0 and (x−α,s)
(k)w j = 0

for all α ∈ R+sh, s ≥ 0, k >max{0, λ(hα)− sr∨}, j = 1, . . . , k. Thus, it remains to
show that

(x+α,s)
(m)w j =3i,rw j = (x−α )

(k)w j = 0

for all α ∈ R+ \ R+sh, s ≥ 0, r,m > 0, k > λ j (hi ), j = 1, . . . , k. Since,

(5.3.2) λ j +mα /∈ λ− Q+ for all α ∈ R+ \ R+sh,m > 0,

we get (x+α,s)
(m)w j = 0 for all m > 0, s ≥ 0. In particular, it follows that w j is

a highest-weight vector of weight λ j and, hence, (x−α )
(k)w j = 0 for all α ∈ R+,

k > λ(hα). Finally, we show that

(5.3.3) 3i,rw j = 0 for all i ∈ I \ Ish, r > 0, j = 1, . . . , k.

Observe that
3i,r u j ∈UZ(n

−

sh)UZ(h[t]+).

In particular, 3i,rv j ∈W sh
Z ∩W j

Z . We will show that 3i,rv j ∈ D j−1 which implies
(5.3.3). Let y j ∈ UZ(n

−

sh) be such that 3i,r u j = y j modulo UZ(n
−

sh)UZ(h[t]+)0.
Thus, we want to show that

(5.3.4) y jv ∈ D j−1.

We prove this recursively on j = 1, . . . , k. Notice that since C⊗Z (W
j

Z/W j−1
Z )∼=

DC(1, λ j ,m j ), there exists n j ∈ Z>0 such that n j y jv ∈ W j−1
Z , j = 1, . . . , k. In

particular, since W 0
Z = 0 and W 1

Z is a torsion-free Z-module, (5.3.4) follows for
j = 1. Next, we show that (5.3.4) implies

(5.3.5) W j
Z ∩W sh

Z = D j .

Indeed, it follows from (5.3.2) and (5.3.4) that

W j
Z =UZ(n

−
[t])UZ(gsh[t])v j +W j−1

Z .

Since UZ(hsh[t]+)0UZ(n
+

sh)
0v j ∈ D j−1 and, by the induction hypothesis, W j−1

Z ∩

W sh
Z = D j−1, (5.3.5) follows by observing that

(UZ(n
−
[t])v j )∩W sh

Z ⊆ D j

(which is easily verified by weight considerations). Finally, observe that since
n j+1 y j+1v is in W j

Z ∩W sh
Z = D j , (5.3.1) implies that y j+1v ∈ D j . Thus, (5.3.5) for

j implies (5.3.4) for j + 1 and the recursive step is proved.
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Remark 5.3.1. It follows from the above that W j
F /W j−1

F
∼= DF(1, λ j ,m j ) for any

field F. Hence, W j
Z/W j−1

Z must be isomorphic to DZ(1, λ j ,m j ) for all j =1, . . . , k.

It remains to show that W k
F
∼= W c

F (λ). Since Theorem 3.3.4(c) implies that
we have a projection W c

F (λ)� W k
F of UF(g[t])-modules, it suffices to show that

dim(W c
F (λ))≤ dim(W k

F ). This follows if we show that there exists a filtration 0=
W̃ 0

F ⊆ W̃ 1
F ⊆ · · · ⊆ W̃ k

F =W c
F (λ) such that W̃ j

F /W̃ j−1
F is a quotient of DF(1, λ j ,m j )

for all j = 1, . . . , k. Let w′ be the image of 1 in W c
F (λ), w

′

j = u jw
′
∈W c

F (λ), W̃ j
F :=∑

n≤ j UF(g[t])w′n⊆W c
F (λ), andw′j be the image ofw′j in W̃ j

F /W̃ j−1
F . Observe that

W̃ k
F =W c

F (λ). We need to show that w′j satisfies the defining relations of DF(1, λ j )

listed in Proposition 5.2.1. Let D̃ j =F⊗Z D j and D′j =
∑

n≤ j UF(gsh[t])w′n . Notice
that D′k is a quotient of W c

F (µ)
∼= D̃k and let π : D̃k→ D′k be a UF(gsh[t])-module

epimorphism such that vk 7→ w′k (we keep denoting the image of v j in D̃ j by
v j ). In particular, w′j = π(v j ) and π induces an epimorphism D̃ j → D′j for all
j = 1, . . . , k. Hence,

xw′j ∈ D′j−1 for all x ∈UZ(gsh[t]) such that xv j ∈ D j−1.

This immediately implies that

UF(n
+

sh[t])
0w′j =UF(h[t]+)0w′j = 0 and (x−α,s)

(k)w′j = 0

for all α ∈ R+sh, s ≥ 0, k >max{0, λ(hα)− sr∨}, j = 1, . . . , k. Note that (5.3.4) has
been used here. The relations

(x+α,s)
(m)w′j = (x

−

i )
(k)w′j = 0

for all α ∈ R+ \ R+sh, i ∈ I \ Ish, s ≥ 0,m > 0, k > λ j (hi ), j = 1, . . . , k follow from
(5.3.2) as before.

5.4. The isomorphism between local Weyl modules and graded local Weyl mod-
ules. We now prove Theorem 1.5.2(c). Recall the definition of the automorphism ϕa

of UF(g[t]) from Section 2.2. In particular, let ã ∈A× be such that its image in F is a.
Denote by ϕ∗a (WF(ωλ,a)) the pull-back of WF(ωλ,a) (regarded as a UF(g[t])-module)
by ϕa .

Notice that

dim WF(ωλ,a)= dim WK(ωλ,ã)= dim W c
K(λ)= dim W c

F (λ).

Here, the first equality follows from (1.5.4), the second from (3.4.1) (with F =

K) together with Proposition 3.4.1, and the third from Corollary 1.5.3. Since
dimϕ∗a (WF(ωλ,a)) = dim WF(ωλ,a), Theorem 1.5.2(c) follows if we show that
ϕ∗a (WF(ωλ,a)) is a quotient of W c

F (λ).
Let w ∈WF(ωλ,a)λ \{0} and use the symbol wa to denote w when regarded as an

element of ϕ∗a (WF(ωλ,a)). Since WF(ωλ,a)=UF(g[t])w and ϕa is an automorphism
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of UF(g[t]), it follows that ϕ∗a WF(ωλ,a) = UF(g[t])wa . Thus, we need to show
that wa satisfies the defining relations (1.5.1) of W c

F (λ). Since ϕa fixes every
element of UF(g), wa is a vector of weight λ annihilated by (x−α )

(k) for all α ∈
R+, k > λ(hα). Equation (2.2.6) implies that ϕa maps UF(n

+
[t]) to itself and,

hence, UF(n
+
[t])0wa = 0. Therefore, it remains to show that

UF(h[t]+)0wa = 0.

To show this, let v be in WK(ωλ,ã)λ \ {0} and L =UA(g[t])v. By (1.5.4), F⊗A L ∼=
WF(ωλ,a). In particular, the action of UF(h[t]+)0 on ϕ∗a (WF(ωλ,a)) is obtained from
the action of UA(h[t]+)0 on ϕ∗ã (WK(ωλ,ã)) which, in turn, is obtained from the
action of UK(h[t]+)0. Since UK(h[t]+) is generated by hi,r , i ∈ I, r > 0, we are
left to show that

hi,rva = 0,

where va is the vector v regarded as an element of ϕ∗ã (WK(ωλ,ã)). It is well known
that the irreducible quotient of WK(ωλ,ã) is the evaluation module with evaluation
parameter ã (see [Jakelić and Moura 2007, Section 3B]). Hence, hi,sv = ãsλ(hi )v

for all i ∈ I, s ∈ Z. Using this, it follows that, for all i ∈ I, r > 0, we have

hi,rva = (hi ⊗ (t − ã)r )v =
r∑

s=0

(r
s

)
(−ã)shi,r−sv = λ(hi )ãr

r∑
s=0

(r
s

)
(−1)sv = 0.

5.5. A tensor product theorem. We say that ω,π ∈ P+F are relatively prime if for
all i, j ∈ I the polynomials ωi (u) and π j (u) are relatively prime in F[u]. The goal
of this subsection is to prove the following theorem from which we will deduce
Theorem 1.5.2(d).

Theorem 5.5.1. Suppose ω,π ∈ P+F are relatively prime and that V and W are
quotients of WF(ω) and WF(π), respectively. Then V ⊗W is generated by its top
weight space.

Theorem 5.5.1 was proved in [Chari and Pressley 2001] in the case F = C.
Although the proof we present here follows the same general lines, there are several
extra technical issues to be taken care of arising from the fact that UC(g̃) is generated
by x±α,r , α ∈ R+, r ∈ Z, while, in the case of UF(g̃), we also need arbitrarily large
divided powers of these elements. We start the proof by establishing a few technical
lemmas. Recall the definition of X−α,m,s(u) in Section 2.1 and set

X−α;s(u)= X−α,1,s+1(u)

To shorten notation, we shall often write X−α;s instead of X−α;s(u).
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Fix ω ∈ P+ and let w be a highest-`-weight vector of WF(ω). Given β ∈ R+,
define ωβ(u) ∈ F[u] by

ωβ(u)w =3β(u)w.

One can easily check (see [Chari and Pressley 2001, Lemma 3.1]) that if ϑ is the
highest short root of g and β ∈ R+, then there exists ωϑ,β ∈ P+ such that

ωϑ = ωβωϑ,β .

Lemma 5.5.2. For all β ∈ R+, k, l, s ∈ Z, 0≤ l ≤ k, k > λ(hβ), we have(
ωϑ X−β;s

(k−l))
k+deg(ωϑ,β )

w = 0.

Proof. We will need the following particular case of Lemma 2.1.1:
(5.5.1)
(x+β,−s)

(l)(x−β,s+1)
(k)
= (−1)l

(
(X−β;s(u))

(k−l)3β(u)
)

k mod UZ(g̃)UZ(ñ
+)0

for all k, l, s ∈ Z, 0≤ l ≤ k. It follows from (5.5.1) and the definition of ωβ that

(5.5.2)
(
ωβX−β;s

(k−l))
kw = 0 for all k, l, s ∈ Z, 0≤ l ≤ k, k > λ(hβ).

Hence, for such k, l, s, we have(
ωϑ X−β;s

(k−l))
k+deg(ωϑ,β )

w =
(
ωϑ,βωβX−β;s

(k−l))
k+deg(ωϑ,β )

w

=

deg(ωϑ,β )∑
j=0

(ωϑ,β) j
(
ωβX−β;s

(k−l))
k+deg(ωϑ,β )− jw = 0,

where the last equality follows from (5.5.2) since k+ deg(ωϑ,β)− j > λ(hβ). �

Let R = R+ × Z× Z≥0 and 4 be the set of functions ξ : N→ R given by
j 7→ ξ j = (β j , s j , k j ), such that k j = 0 for all j sufficiently large. Define the
degree of ξ to be d(ξ)=

∑
j k j . Let 4d be the subset of functions of degree d and

4<d =
⋃

d ′<d 4d ′ . Given ξ ∈4 such that ξ j = (β j , s j , k j ) for all j ∈N and k j = 0
for j > m, set

(5.5.3) xξ = (x−β1,s1
)(k1) · · · (x−βm ,sm

)(km) and wξ = xξw.

It will be convenient to write deg(wξ ) = d(ξ) = deg(xξ ). The next lemma is an
easy consequence of [Mitzman 1985, Lemma 4.2.13].

Lemma 5.5.3. Let α be in R+, s ∈ Z, d, k be in Z≥0, and ξ be in 4d . Then
xξ (x−α,s)

(k) is in the span of

{(x−α,s)
(k)xξ } ∪ {xς : ς ∈4<d+k}. �
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Lemma 5.5.4. Let β be in R+, k in Z, d, r, s in Z≥0, r ≤ s, s > λ(hβ) and ξ in 4d .
Then (ωϑ X−β;k

(r)
)sw

ξ is in the span of vectors of the form wς with ς ∈4<r+d .

Proof. If d = 0, it follows from (5.5.2) that (ωϑ X−β;k
(r)
)sw

ξ
= 0, which proves the

lemma in this case. We now proceed by induction on d . Thus, let d > 0 and write
wξ = (x−β1,s1

)(k1) · · · (x−βl ,sl
)(kl )w with k1 6= 0. Let also ξ ′ ∈4 be such that

ξ ′j =

{
ξ j , if j 6= 1,
(β1, s1, 0), if j = 1.

Then, by Lemma 5.5.3, we have(
ωϑ X−β;k

(r))
sw

ξ
=
(
ωϑ X−β;k

(r))
s(x
−

β1,s1
)(k1)wξ

′

= (x−β1,s1
)(k1)

(
ωϑ X−β;k

(r))
sw

ξ ′
+Xwξ

′

where X is in the span of {xς : ς ∈ 4<r+k1
}. In particular, Xwξ

′

is in the span of
vectors of the desired form. Since d(ξ ′) = d − k1 < d, the induction hypothesis
implies that (ωϑ X−β;k

(r)
)sw

ξ ′ is in the span of vectors associated to elements of
4<r+d−k1

. Therefore, (x−β1,s1
)(k1)(ωϑ X−β;k

(r)
)sw

ξ ′ is in the span of vectors associated
to elements of 4<r+d as desired. �

Proof of Theorem 5.5.1. Let wω and wπ be highest-`-weight vectors for V and W ,
respectively. Let also

M =UF(g̃)(wω⊗wπ )=UF(ñ
−)(wω⊗wπ ).

Our goal is to show that M = V ⊗W . Since the vectors wξω⊗w
ξ ′

π , ξ, ξ
′
∈4 span

V ⊗W , it suffices to show that these vectors are in M . We do this by induction
on d(ξ)+ d(ξ ′) which obviously starts when d(ξ)+ d(ξ ′)= 0 since, in this case,
w
ξ
ω⊗w

ξ ′

π = wω⊗wπ .
Let n ≥ 0, and suppose, by induction hypothesis, that

(5.5.4) wξω⊗w
ξ ′

π ∈ M for all ξ, ξ ′ ∈4 such that d(ξ)+ d(ξ ′)≤ n.

In order to complete the induction step, it suffices to show that

(5.5.5) wξω⊗ (x
−

β,l)
(r)wξ

′

π ∈ M and ((x−β,l)
(r)wξω)⊗w

ξ ′

π ∈ M

for all β ∈ R+, r, l ∈ Z, r ≥ 1, ξ, ξ ′ ∈ 4, such that d(ξ)+ d(ξ ′)+ r = n+ 1. We
prove (5.5.5) by a further induction on r ≥ 1. Henceforth we fix β ∈ R+.

Observe that the hypothesis on ω and π implies that ωϑ and πϑ are relatively
prime. Therefore, we can choose R, S ∈ F[u] such that

Rωϑ + Sπϑ = 1.
Set

δ = deg(Rωϑ)= deg(Sπϑ) and m =max{wt(ω)(hβ),wt(π)(hβ)}.

We claim that for all ξ ∈4 and k ∈ Z,

(5.5.6) (Rωϑ X−β;k
(r)
)sw

ξ
ω ∈ span({wςω : ς ∈4

<
d(ξ)+r }) for all s > m+ δ.
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Indeed,

(Rωθ X−β;k
(r)
)sw

ξ
ω =

deg R∑
j=0

R j (ωϑ X−β;k
(r)
)s− jw

ξ
ω

and, since s− j > m+ δ− j ≥ m+ deg(ωϑ)≥ wt(ω)(hβ), the claim follows from
Lemma 5.5.4. Similarly one proves that

(5.5.7) (Sπϑ X−β;k
(r)
)sw

ξ
π ∈ span({wςπ : ς ∈4

<
d(ξ)+r }) for all s > m+ δ.

We are ready to start the proof of (5.5.5). Suppose d(ξ)+ d(ξ ′) = n and let
` > m+ δ. Then

(Rωϑ X−β;k)`(w
ξ
ω⊗w

ξ ′

π )

= ((Rωϑ X−β;k)`w
ξ
ω)⊗w

ξ ′

π +w
ξ
ω⊗ ((1− Sπϑ)X−β;k)`w

ξ ′

π

= ((Rωϑ X−β;k)`w
ξ
ω)⊗w

ξ ′

π −w
ξ
ω⊗ (Sπϑ X−β;k)`w

ξ ′

π +w
ξ
ω⊗ x−β;`+kw

ξ ′

π .

It follows from (5.5.6), (5.5.7) and (5.5.4) that ((Rωϑ X−β;k)`w
ξ
ω)⊗w

ξ ′

π and wξω⊗
(Sπϑ X−β;k)`w

ξ ′

π are in M . Since (Rωϑ X−β;k)`(w
ξ
ω ⊗w

ξ ′

π ) is in M by definition, it
follows that wξω⊗ x−β;`+kw

ξ ′

π is in M for all k ∈ Z, which proves the first statement
in (5.5.5) with r = 1. The second statement is proved similarly by looking at
(Sπϑ X−β;k)`(w

ξ
ω⊗w

ξ ′

π ).
Let r > 1, ξ, ξ ′ ∈4 be such that r + d(ξ)+ d(ξ ′)= n+ 1 and set `= r`′ with

`′ such that ` > m+ δ. Then

(Rωϑ X−β;k
(r)
)`(w

ξ
ω⊗w

ξ ′

π )

= ((Rωϑ X−β;k
(r)
)`w

ξ
ω)⊗w

ξ ′

π +w
ξ ′

π ⊗ (Rωϑ X−β;k
(r)
)`w

ξ ′

π + v

= ((Rωϑ X−β;k
(r)
)`w

ξ
ω)⊗w

ξ ′

π +w
ξ
ω⊗ ((1− Sπϑ)X−β;k

(r)
)`w

ξ ′

π + v

= ((Rωϑ X−β;k
(r)
)`w

ξ
ω)⊗w

ξ ′

π −w
ξ
ω⊗ (Sπϑ X−β;k

(r)
)`w

ξ ′

π

+wξω⊗ (X
−

β;k
(r)
)`w

ξ ′

π + v

= ((Rωϑ X−β;k
(r)
)`w

ξ
ω)⊗w

ξ ′

π −w
ξ
ω⊗ (Sπϑ X−β;k

(r)
)`w

ξ ′

π

+wξω⊗ (x
−

β,`′+k)
(r)wξ

′

π +w
ξ
ω⊗ Xwξ

′

π + v,

where v is in the span of vectors of the form(∏
i

(x−β,si
)(ai )wξω

)
⊗

(∏
j

(x−β,s j
)(b j )wξ

′

π

)
with 1≤ ai , b j < r,

∑
i

ai +
∑

j

b j = r,

and X is in the span of elements of the form

(x−β,s1
)(r1)(x−β,s2

)(r2) · · · (x−β,sn
)(rn) with r1+ · · ·+ rn = r, 0< r j < r.
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Again, (Rωϑ X−β;k
(r)
)`(w

ξ
ω⊗w

ξ ′

π ) is in M by definition, while (5.5.6), (5.5.7), and
(5.5.4), imply that

((Rωϑ X−β;k
(r)
)`w

ξ
ω)⊗w

ξ ′

π ∈ M and wξω⊗ (Sπϑ X−β;k)`w
ξ ′

π ∈ M.

By induction hypothesis on r , it follows that v and wξω ⊗ Xwξ
′

π are in M , which
then implies that wξω⊗ (x−β,`′+k)

(r)w
ξ ′

π is in M for all k ∈ Z, completing the proof of
the first statement of (5.5.5). The second statement is proved similarly by looking
at (Sπϑ X−β;k

(r)
)`(w

ξ
ω⊗w

ξ ′

π ). �

5.6. The tensor product factorization of local Weyl modules. Theorem 1.5.2(d)
clearly follows if we prove

(5.6.1) WF($1)⊗WF($2)∼=WF($1$2)

whenever $1,$2 ∈ P+F are relatively prime.
In order to show (5.6.1), letw$1 andw$2 be highest-`-weight vectors for WF($1)

and WF($2), respectively. It is well known that w$1 ⊗ v$2 satisfies the defining
relations of WF($1$2), so there exists a UF(g̃)-module map φ : WF($1$2)→

WF($1)⊗WF($2) that sends w$1$2 to w$1 ⊗w$2 . Theorem 5.5.1 implies that φ
is surjective. Hence, it suffices to show that

(5.6.2) dim(WF($1$2))= dim(WF($1)⊗WF($2)).

In fact, recall from Remark 1.5.5 that there exist ω1,ω2 ∈P×A such that $1 and $2

are the images of ω1 and ω2 in P+F , respectively. It then follows from (1.5.4) that

(5.6.3)
dim(WF($1$2))= dim(WK(ω1ω2)) and

dim(WK(ωi ))= dim(WF($i )), i = 1, 2.

On the other hand, it follows from Theorem 1.5.2(d) in characteristic zero that

(5.6.4) dim(WK(ω1ω2))= dim(WK(ω1)) dim(WK(ω2)).

Since (5.6.3) and (5.6.4) clearly imply (5.6.2), we are done.

5.7. Fusion products. We finish the paper with an application of Theorems 1.5.2
and 5.5.1 related to the concept of fusion products originally introduced in the
characteristic-zero setting. Namely, we deduce the positive characteristic counterpart
of [Naoi 2012, Corollary B] (compare [Fourier and Littelmann 2007, Corollary A]
for simply-laced g).

Let V and W be as in Theorem 5.5.1, set λ = wt(ω) + wt(π), and fix v ∈
(V ⊗W )λ \ {0}. Then Theorem 5.5.1 implies that V ⊗W = UF(g̃)v. In fact, as
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mentioned in Section 3.4, we actually have

V ⊗W =UF(n
−
[t])v.

Define the fusion product of V and W , denoted V ∗W , as the UF(g[t])-module
gr(V ⊗W ) with the module structure determined by v as described in the paragraph
after Proposition 3.4.1. Evidently, if we have a collection ω1, . . . ,ωm of relatively
prime elements of P+F and, for each j ∈ {1, . . . ,m}, V j is a quotient of WF(ω j ),
we can define the fusion product V1 ∗ · · · ∗ Vm in a similar way.

Proposition 5.7.1. Let λ ∈ P+, m ∈ Z>0 and ω j ∈P+F , j = 1, . . . ,m, be relatively
prime and such that λ=

∑m
j=1 wt(ω j ). Then

W c
F (λ)
∼=WF(ω1) ∗ · · · ∗WF(ωm).

Proof. One easily checks that a vector in (WF(ω1) ∗ · · · ∗WF(ωm))λ satisfies the
defining relations of W c

F (λ) (compare the proof of (1.5.4) in Section 3.4), showing
that WF(ω1) ∗ · · · ∗ WF(ωm) is a quotient of W c

F (λ). On the other hand, setting
ω =

∏m
j=1 ω j , we have

dim(WF(ω1) ∗ · · · ∗WF(ωm))

= dim(WF(ω1)⊗ · · ·⊗WF(ωm))= dim(WF(ω))= dim(W c
F (λ)). �

The following corollary, which is the characteristic-free version of [Naoi 2012,
Corollary B], is now easily deduced.

Corollary 5.7.2. Let m ∈ Z>0, λ j ∈ P+ and a j ∈ F×, j = 1, . . . ,m, be such that
ai 6= a j for i 6= j . Then, for λ=

∑m
j=1 λ j , W c

F (λ)
∼=WF(ωλ1,a1) ∗ · · · ∗WF(ωλm ,am ).

�
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ON CURVES AND POLYGONS
WITH THE EQUIANGULAR CHORD PROPERTY

TARIK AOUGAB, XIDIAN SUN, SERGE TABACHNIKOV AND YUWEN WANG

To the memory of Eugene Gutkin

Let C be a smooth, convex curve on either the sphere S2, the hyperbolic
plane H2 or the Euclidean plane E2 with the following property: there exists
α and parametrizations x(t) and y(t) of C such that, for each t , the angle
between the chord connecting x(t) to y(t) and C is α at both ends.

Assuming that C is not a circle, E. Gutkin completely characterized the
angles α for which such a curve exists in the Euclidean case. We study the
infinitesimal version of this problem in the context of the other two constant
curvature geometries, and in particular, we provide a complete characteri-
zation of the angles α for which there exists a nontrivial infinitesimal defor-
mation of a circle through such curves with corresponding angle α. We also
consider a discrete version of this property for Euclidean polygons, and in
this case, we give a complete description of all nontrivial solutions.

1. Introduction

Given a smooth, convex oriented closed curve C in the Euclidean plane E2 and
x, y ∈ C , x 6= y, let |xy| denote the oriented chord connecting x to y. Motivated
by his study of mathematical billiards, E. Gutkin [1993] asked the following:

Question 1. Assume the existence of parametrizations x(t) and y(t) of C such
that, for each t ,

(1) x ′(t), y′(t) 6= 0;

(2) x(t) 6= y(t);

(3) there exists α ∈ (0, π] such that both angles between C and |x(t)y(t)| equal α.

Then if C is not a circle, what are all possible values of α?

MSC2010: 37A45, 37E10, 52A10.
Keywords: mathematical billiards, capillary floating problem, geometric rigidity.

305

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.274-2
http://dx.doi.org/10.2140/pjm.2015.274.305


306 TARIK AOUGAB, XIDIAN SUN, SERGE TABACHNIKOV AND YUWEN WANG

Gutkin provides a complete answer to Question 1 by establishing the following
necessary and sufficient condition for α: there exists an integer k ≥ 2 such that

(1-1) k tanα = tan(kα);

see [Gutkin 1993; 2012; Tabachnikov 1995]. In particular, only a countable number
of values of the angle α are possible.

In terms of billiards, the billiard ball map on the interior of C has a horizontal
invariant circle given by the condition that the angle made by the trajectories with
the boundary of the table is equal to α. This statement can also be interpreted in
terms of capillary floating with zero gravity in neutral equilibrium; see [Finn 2009;
Finn and Sloss 2009].

We call a curve satisfying this equiangular chord property a Gutkin curve; we
will refer to the corresponding angle α as the contact angle.

We generalize Gutkin’s theorem in two directions: to curves in the standard
2-sphere S2 and the hyperbolic plane H2 and to polygons in E2 via a discretized
version of Question 1. For S2 and H2, we consider the following infinitesimal
version of Gutkin’s question:

Question 2. In either H2 or S2, for which angles α are there nontrivial infinitesimal
deformations of a radius-R circle through Gutkin curves with contact angle α?

Here, a nontrivial deformation of a circle is a deformation that does not corre-
spond to a circle solution (of a different radius).

Our first result yields an answer to Question 2:

Theorem 1.1. Assume that a circle of radius R in S2 or in H2 admits a nontrivial
infinitesimal deformation through Gutkin curves with contact angle α. Define
angles c via

cot c = cos R cotα

in the spherical case and
cot c = cosh R cotα

in the hyperbolic case. Then there exists k ∈ N, k ≥ 2, such that

k tan c = tan kc.

Thus, as in the Euclidean case, only a countable number of values of the contact
angle α are possible for a given radius R.

Note that, in the Euclidean plane, Gutkin curves with contact angle α = π/2 are
precisely the curves of constant width; the same holds in the spherical and hyperbolic
settings; see [Leichtweiss 2005] for curves of constant width in non-Euclidean
geometries.
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Figure 1. Gutkin (6, 2)-gon and (12, 4)-gon.

In Section 4, we consider the following analog of Gutkin’s theorem for polygons
in E2. Let P be a convex n-gon with vertices {v0, . . . , vn−1} in their cyclic order.
For k ∈ N, 2≤ k ≤ n/2, a k-diagonal is a straight line segment connecting vertices
of P whose indices differ by k modulo n. Then P is a nontrivial Gutkin (n, k)-gon
if P is not regular and there exists α such that, for any k-diagonal D, both contact
angles between D and P equal α (see Figure 1 for examples). That is, for each i ,

6 vi+1vivi+k = 6 vi+k−1vi+kvi = α,

where 6 vi+1vivi+k denotes the angle between the edge |vi+1vi | and the k-diagonal
|vivi+k |.

Our second result is a complete characterization of the pairs (n, k) for which a
nontrivial Gutkin (n, k)-gon exists:

Theorem 1.2. A nontrivial Gutkin (n, k)-gon in the Euclidean plane exists if and
only if n and k− 1 are not coprime.

Interestingly, the main ingredient of our proof is the Diophantine equation

tan krπ
n

tan π
n
= tan kπ

n
tan rπ

n
,

which is a discrete version of (1-1). This equation also appeared in [Tabachnikov
2006], and it was solved in [Connelly and Csikós 2009].

2. A proof of Gutkin’s theorem in E2

Although the existing proofs of Gutkin’s theorem in E2 [Gutkin 1993; 2012; Tabach-
nikov 1995] are very clear and simple, our goal in this paper is to study the situations
in S2 and H2. Therefore, in this section, we reprove (the necessary part of) Gutkin’s
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Figure 2. Curve 0 with chord xy.

theorem using methods that can be applied to the other constant-curvature settings.
This proof is motivated by the study of integrable billiards by M. Bialy [1993; 2013].

Let γ̃ : R→ R2 be a periodic unit-speed parametrization of a smooth strictly
convex curve 0. For x, y ∈ R, let X and Y be the points γ̃ (x) and γ̃ (y), φ and ψ
the angles made by the chord XY with 0, and L = |XY | the length of the chord,
the generating function of the billiard ball map. See Figure 2.

We have

(2-1)

L x =− cosφ, L y = cosψ,

L xy =
sinφ sinψ

L
, L xx =

sin2 φ

L
− κ(x) sinφ, L yy =

sin2 ψ

L
− κ(y) sinψ,

where κ is the curvature of the curve and subscripts denote partial differentiation;
see, e.g., [Bialy 1993].

We interpret L(x, y) as a function on the torus 0×0. If 0 is a Gutkin curve
with contact angle α, then there exists a curve s on this torus where both angles, φ
and ψ , have the same constant value α.

We seek a reparametrization γ (t (x))= γ̃ (x) so that the values t (x) and t (y) of
the new parameter at the points X and Y differ by a constant: 2c = t (y)− t (x).
Denote d/dt by a prime.

Proposition 2.1. The parameter t is determined by the condition x ′ = a/κ(x),
where a is a constant.

Proof. Since α is constant as a function of t ,

(2-2) 0= L xt = L xx x ′+ L xy y′ and 0= L yt = L xy x ′+ L yy y′.

This implies that L xx L yy = L2
xy along our curve, and substituting from (2-1), we

have

(2-3)
sinα
κ(x)
+

sinα
κ(y)

= L .
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We compute y′/x ′ from (2-1)–(2-3),

y′

x ′
=−

L xy

L yy
=

sinα
κ(y)L − sinα

=
κ(x)
κ(y)

,

which implies the claim. �

Since the curvature is the rate of turning of the direction of the curve, Proposition
2.1 defines (up to a multiplicative coefficient) the angular parameter along the curve.
Note that 0≤ x ≤ L(γ ) and 0≤ t ≤ T , where T is the upper bound of t and L(γ )
is the length of γ . It follows that

T =
∫ T

0
dt = 1

a

∫ L(γ )

0
κ(x) dx .

Choose a = 1 to make T = 2π , which agrees with the angle. Then c = α.
In view of Proposition 2.1, we set

f1 := f (t −α)=
sinα
κ(x)

and f2 := f (t +α)=
sinα
κ(y)

.

From (2-3), we have

L =
κ(x) sinα+ κ(y) sinα

κ(x)κ(y)
= f1+ f2.

It follows that L ′ = f ′1+ f ′2. By the chain rule, we have

L x x ′+ L y y′ = cotα( f2− f1)= f ′1+ f ′2,

and therefore,

(2-4) f ′(t +α)+ f ′(t −α)= cotα( f (t +α)− f (t −α)).

Since f (t) is a function with period 2π , using the Fourier expansion, we obtain
f (t)=

∑
bkeikt , where bk ∈ C and b−k = bk . Thus,

f (t ±α)=
∑

bke±ikαeikt and f ′(t ±α)=
∑

bkike±ikαeikt .

Let LHS be the left-hand side of (2-4) and RHS the right-hand side. It follows that

LHS=
∑

bkik(eikα
+ e−ikα)eikt and RHS= cotα

∑
bk(eikα

− e−ikα)eikt .

Equating both sides, we have

bk(k cos kα− cotα sin kα)= 0.

For k = 1, this automatically holds, and if bk 6= 0 for some k ≥ 2, then

k tanα = tan kα.
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If the curve is a circle, then f (t) is constant and all bk = 0, and if the curve is
not a circle, then bk 6= 0 for some k ≥ 1. It remains to show that b1 = 0.

Recall that x is arc length and t is the angular parameter on the curve γ . Then
γx = (cos t, sin t) and dt/dx = κ . Therefore,

γt =
1
κ
(cos t, sin t) and

∫ 2π

0
γt dt = 0.

Hence, ∫ 2π

0

cos t
κ

dt =
∫ 2π

0

sin t
κ

dt = 0;

that is, the function f is L2-orthogonal to the first harmonics. Hence, f has no first
harmonics in the Fourier expansion; that is, b1 = 0.

3. Infinitesimal analogs of Gutkin’s theorem in S2 and H2

We prove Theorem 1.1 in detail for S2. The hyperbolic case being analogous, we
only indicate the necessary changes.

Let γ be a Gutkin curve, and as before, let x and y be arc length parameters.
Then φ and ψ should have constant value, namely, the contact angle α. By [Bialy
2013], we have the following formulas for the first and second partials of L (valid
along the curve s ⊂ 0×0):

(3-1)

L x =− cosα, L y = cosα,

L xy =
sin2 α

sin L
, L xx =

sin2 α

tan L
− κ(x) sinα, L yy =

sin2 α

tan L
− κ(y) sinα.

(The function κ is the geodesic curvature of the curve.) Once again, we seek a
parametrization on the curve such that the values of the parameter at points x and y
differ by a constant: t (y)= t (x)+ 2c.

Proposition 3.1. The desired parametrization γ (t) is given by the equation

x ′ =
a√

κ2(x)+ sin2 α
,

where a is a constant.

Proof. Equation (2-2) holds along our curve as before, so L xx L yy = L2
xy . Substitute

from (3-1) to obtain the equation

(3-2)
(
κ(x)−

sinα
tan L

)(
κ(y)−

sinα
tan L

)
=

sin2 α

sin2 L
.
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Then we can compute y′/x ′ from (2-2),

(3-3)
y′

x ′
=−

L xx

L xy
=

(
κ(x)−

sinα
tan L

)
sin L
sinα

=

√
κ(x)−

sinα
tan L√

κ(y)−
sinα
tan L

,

with the last equality due to (3-2). Next, we claim that

(3-4)

√
κ(x)−

sinα
tan L√

κ(y)−
sinα
tan L

=

√
κ2(x)+ sin2 α√
κ2(y)+ sin2 α

,

which, along with (3-3), implies the statement of the proposition.
It remains to prove (3-4). Rewrite (3-2) as

κ(x)κ(y)−
sinα
tan L

(κ(x)+ κ(y))− sin2 α = 0,

and multiply by κ(y)− κ(x) to obtain

κ(x)κ2(y)−
sinα
tan L

κ2(y)+ κ(x) sin2 α = κ2(x)κ(y)−
sinα
tan L

κ2(x)+ κ(y) sin2 α,

or (
κ(x)−

sinα
tan L

)
(κ2(y)+ sin2 α)=

(
κ(y)−

sinα
tan L

)
(κ2(x)+ sin2 α).

This implies (3-4). �

We choose a in such a way that

(3-5) T = 1
a

∫ L(γ )

0

√
κ2(x)+ sin2 α dx = 2π

in order to make Fourier expansion more convenient.
Define a function f on the curve by

(3-6) cot f =
κ

sinα
.

Remark 3.2. The meaning of the function f is illustrated in Figure 3. Let O be
the center of the osculating circle at point x ∈ γ , and let R be its radius. Then
cot R = κ(x). Drop the perpendicular from O to the segment xy. Then we have a
right triangle Px O with an angle π/2−α. Solving a right spherical triangle yields
cot|Px | sinα = cot R. Hence, f = |Px |.

Denote by f1 and f2 the values of this function at points y and x .
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Figure 3. Geometric interpretation of the function f .

Proposition 3.3. One has

(3-7) a cotα(sin f1− sin f2)= f ′1+ f ′2.

Proof. First, note that Proposition 3.1 and (3-6) imply that

(3-8) x ′ =
a sin f
sinα

.

Next, as before, L xx L yy = L2
xy , and substituting from (3-1), we obtain

cot L =
κ(x)κ(y)− sin2 α

κ(x) sinα+ κ(y) sinα
.

Substituting κ(x) and κ(y) from (3-6) yields

cot L =
cot f1 cot f2− 1
cot f1+ cot f2

= cot( f1+ f2).

Thus, L = f1+ f2, and hence, L ′ = f ′1+ f ′2. By the chain rule,

L ′ = L x x ′L y y′ =
a cosα
sinα

(sin f1− sin f2),

where the last equality is due to (3-1) and (3-8). This implies the statement. �

Remark 3.4. Equation (3-7) appeared in [Tabachnikov 2006] in a study of a differ-
ent rigidity problem also related to a flotation problem (Ulam’s problem on bodies
that float in equilibrium in all positions) and to a problem of bicycle kinematics.

Equation (3-7) is an analog of (2-4), but unlike the Euclidean case, it is nonlinear,
and we do not know how to solve it. Thus, we resort to linearization of the problem,
that is, start from a circle γ0 of radius R and then deform it to find infinitesimal
solutions.
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Write f1(t)= f (t + c) and f2(t)= f (t − c), where the constant c depends on
the Gutkin curve and the contact angle (in the Euclidean case, c = α). For a circle
on S2, we compute the relation between R, α and c and the value of a.

Lemma 3.5. One has

cosα =
cos c√

sin2 R cos2 c+ cos2 R
or equivalently cot c = cos R cotα,

and

a =
√

cos2 R+ sin2 α sin2 R.

Proof. The circle of radius R is parametrized as

γ0(t)= (sin R cos t, sin R sin t, cos R),

where t ∈ [0, 2π ]. We need to find the angle α made by the geodesic segment
[γ0(−c), γ0(c)] with this circle.

The great circle through points γ0(−c) and γ0(c) is the parametric curve

0(s)=
cos c√

sin2 R cos2 c+ cos2 R
(sin R cos c, 0, cos R)+ sin s(0, 1, 0),

and 0(s0) = γ0(c) for sin s0 = sin R sin c. It remains to compute the velocity
vectors d0(s)/ds and dγ0(t)/dt , evaluate them at s = s0 and t = c, respectively,
and compute the angle between these vectors. This straightforward computation
yields the first formula of the lemma. A calculation using trigonometric identities
yields the simpler, equivalent, formula.

To obtain the formula for a, note that the length and the geodesic curvature of
the circle γ0 are equal to 2π sin R and cot R, respectively. Then (3-5) yields the
result. �

Remark 3.6. A referee pointed out that this lemma can be proved, in a simpler
way, by applying formulas of spherical trigonometry to the spherical triangle X P O
in Figure 3.

Now we are ready for the proof of Theorem 1.1 in the spherical case. Let γ0 be a
circle of radius R. Then the function f is a constant satisfying cot f = cot R/ sinα
(see (3-6)), and the constants c and a are as in Lemma 3.5. Consider an infinitesimal
deformation of the curve in the class of Gutkin curves with the contact angle α.
Then f , c and a deform as

f 7→ f + εg(t), c 7→ c+ εδ, a 7→ a+ εβ,
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where g(t) is a 2π -periodic function and all the previous relations hold. Substitute
into (3-7):

(a+ εβ) cotα
(
sin( f + εg(t + c+ εδ))− sin( f + εg(t − c− εδ))

)
= ε(g′(t + c+ εδ)+ g′(t − c− εδ)).

Computing modulo ε2 yields

a cotα cos f (g(t + c)− g(t − c))= g′(t + c)+ g′(t − c).

As before, this implies that, if g(t) is not a constant (which would correspond to a
trivial deformation to a circle of possibly different radius), then

k cos kc = a cotα cos f sin kc

for each k for which the Fourier coefficient bk 6= 0. Substituting the values of the
constants f and a and eliminating α using Lemma 3.5 yields, after a straightforward,
albeit tedious, computation,

k cos kc = cot c sin kc or k tan c = tan kc.

For k = 1, this formula holds for all c, and it remains to explain the condition
k ≥ 2 in the formulation of the theorem. The next proposition shows that the first
Fourier coefficient b1 vanishes.

Proposition 3.7. The function g(t) is L2-orthogonal to the first harmonics; that is,
its Fourier expansion does not contain cos t and sin t .

Proof. Let ϕ and θ be the spherical coordinates. Recall that the spherical metric is
sin2 θ dϕ2

+ dθ2. The unperturbed curve γ0(t), the circle of latitude of radius R,
has the coordinates (t, R). Consider its infinitesimal deformation

γε(t)= (t + ε f (t), R+ εg(t)),

where f and g are 2π-periodic functions. The curvature of γ0 is cot R. Let
cot R+εk(t) be the curvature of γε. Here and below, all computations are modulo ε2.

Due to (3-6),

sinα cot( f + εg(t))= cot R+ εk(t);

hence, up to a constant multiplier, g = k. We shall compute k(t) and show that it is
free from first harmonics.

We shall use Liouville’s formula for curvature of a curve in an orthogonal
coordinate system (u, v); see, e.g., [do Carmo 1976]. Recall this formula. Let ψ
be the angle made by the curve with the curves v = const, let Ku and Kv be the
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geodesic curvatures of the coordinate curves v = const and u = const and let x be
the arc length parameter on the curve. Then the curvature of the curve is

(3-9)
dψ
dx
+ Ku cosψ + Kv sinψ.

Here u and v are the longitude and latitude, so Kv = 0 and Ku(ϕ, θ)= cot θ .
Since

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ,

one has

γε =
(
sin R cos t + ε(g(t) cos R cos t − f (t) sin R sin t),

sin R sin t + ε(g(t) cos R sin t + f (t) sin R cos t), cos R− εg(t) sin R
)
.

Then

γ ′ε=
(
− sin R sin t+ε(−g cos R sin t+g′ cos R cos t− f sin R cos t− f ′ sin R sin t),

sin R cos t + ε(g cos R cos t + g′ cos R sin t − f sin R sin t + f ′ sin R cos t),

−εg′ sin R
)
.

It follows that

|γ ′ε| = sin R+ ε(g cos R+ f ′ sin R).

The angle ψ between γ ′ε and the circles of latitude is infinitesimal. Therefore,
cosψ = 1 (modulo ε2). Using the formula for γ ′ε, one computes this angle:

ψ =−ε
g′(t)
sin R

.

(The minus sign is due to the fact that increasing g pushes the curve down to the
equator.) Hence,

dψ
dx
=
ψ ′

x ′
=
ψ ′

|γ ′ε|
= −ε

g′′(t)

sin2 R
.

Finally,

cot θ = cot(R+ εg(t))= cot R− ε
g(t)

sin2 R
.

Now (3-9) implies that, up to a constant factor, k(t) = g(t)+ g′′(t). Since the
differential operator d2/dx2

+ 1 “kills” the first harmonics, the result follows. �

This concludes the proof in the spherical case.
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For the case of H2, we apply a similar method, so we briefly describe the
differences. The formulas for the partials of L read [Bialy 2013]

L x =− cosα, L y = cosα,

L xy =
sin2 α

sinh L
, L xx =

sin2 α

tanh L
− κ(x) sinα, L yy =

sin2 α

tanh L
− κ(y) sinα.

The parametrization of a Gutkin curve is given by xt = a/
√
κ(x)2− sin2 α,

where the constant a is normalized so that the parameter t takes values in [0, 2π ].
One defines the function f (t) by coth f = κ/ sinα, and as before, one obtains a
difference-differential equation

a cotα(sinh f1− sinh f2)= f ′1+ f ′2.

Analogs of Lemma 3.5 hold:

cosα =
cos c√

cosh2 R− sinh2 R cos2 c
or equivalently cot c = cosh R cotα

and
a =

√
cosh2 R− sin2 α sinh2 R.

The computations in Euclidean space R3 involving the unit sphere are replaced
by similar computations in the Minkowski space R1,2 involving a hyperboloid of
two sheets, used as a model of H2.

4. Gutkin polygons

Refer to the introduction for the definition of a Gutkin (n, k)-gon. Let G(n, k)
denote the set of all Gutkin (n, k)-gons. Given P ∈ G(n, k), it will be convenient
to think of P as being embedded in the complex plane C. Let li denote the side
length, |vi+1− vi |.

Notice that if n = 2k, for every index i , one has i − k = i + k. Therefore, in
this case, each vertex is the end point of exactly one diagonal. If n 6= 2k, then
i − k 6= i + k, so each vertex is the endpoint of two diagonals. In this case, for
each vi , we call the angle between the two diagonals βi ; i.e., βi = 6 vi−kvivi+k .

The first two propositions in this section will establish basic geometric properties
of a Gutkin (n, k)-gon.

Proposition 4.1. Given n and k, the associated contact angle is equal to π(k−1)/n
for any Gutkin (n, k)-gon.

Proof. Let P ∈G(2k, k) for some k≥2. For each i , 6 vi+kvivi+1= 6 vi+kvivi−1=α.
Then all interior angles of P are equal to 2α. Since the sum of the interior angles
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v1

v2

v3v4

v5

v0
v0 v1

v2

v3v4

v5

Figure 4. Two Gutkin polygons with angles labeled. Left: Gutkin
(6, 3)-gon. Right: Gutkin (6, 2)-gon.

of any n-gon is equal to π(n − 2), we have α = π(n − 2)/(2n), which is equal
to π(k− 1)/n.

Now assume that n 6= 2k. First, note that the sum of the interior angles of the
Gutkin polygon equals (n− 2)π and also equals

n−1∑
i=0

βi + 2nα;

see Figure 4. Therefore,

(4-1) α =
π(n− 2)−

∑n−1
i=0 βi

2n
.

For fixed n and k, let P ∈ G(n, k). For 1≤ j ≤ gcd(n, k), define the polygon

Q j = v jv j+kv j+2k · · · v j+(nk/ gcd(n,k))−1.

Two examples of the Q j are shown in Figure 5. Note that the sides of Q j are the
diagonals of P . The vertices of all Q j form a disjoint partition of {v0, v1, . . . , vn−1}

into gcd(n, k) subsets of equal size. Thus, the sum of the interior angles of all Q j

is
∑n−1

i=0 βi .
Each Q j is a star polygon with the number of vertices N = n/ gcd(n, k) and the

turning number W = k/ gcd(n, k). The sum of the interior angles of such a polygon
equals π(N − 2W ), that is, π(n− 2k)/ gcd(n, k). One has gcd(n, k) polygons Q j ;
hence, the total sum of their exterior angles is π(n− 2k). Substituting into (4-1)
yields the result. �

Proposition 4.2. In a Gutkin (n, k)-gon, the interior angles associated to vertices vi

and vi+k−1 are equal for all i .
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v0 v1

v2

v3

v4

v5
v6v7

v8

v9

v10

v11 v0

v1

v2

v3

v4

v5
v6

v7

v8

v9

v10

v11

v12
v13

Figure 5. Polygons Q0 on two Gutkin polygons. Left: Q0 for a
Gutkin (12, 4)-gon. Right: Q0 for a Gutkin (14, 6)-gon.

Proof. Consider the self-intersecting quadrilateral Bi = vivi+kvi+k+1vi+1; see
Figure 6. Let wi denote the intersection point of the two diagonals, vivi+k and
vi+1vi+k+1. Notice that Bi is comprised of two triangles meeting atwi . The opposite
angles at wi are equal, and the angle at vi and vi+k+1 is equal to α. Therefore, the
angles at vi+1 and vi+k are equal, which are also equal to α+βi+1 and α+βi+k ,
respectively. Then βi+1 = βi+k . Since the interior angle associated to any v j is
equal to 2α+β j , the desired result follows. �

Corollary 4.3. If n and k− 1 are coprime, then any P ∈ G(n, k) is equiangular.

v0 v1

v2

v3

v4

v5
v6v7

v8

v9

v10

v11

w4

Figure 6. A Gutkin (12, 4)-gon. The shaded region is B4.
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w1

v1

x1

v2

x2

v3y0v4

y1

v5

y2

v0 x0

Figure 7. A Gutkin (6, 3)-gon with side lengths labeled. The
shaded region is B1.

The case n = 2k is special in that Gutkin polygons abound (in the continuous
case, this corresponds to the contact angle π/2, that is, when Gutkin curves are
curves of constant width). Let Rn

+
be the positive orthant.

Proposition 4.4. The dimension of the space of Gutkin (2k, k)-gons, considered
modulo similarities, equals k − 2. This quotient space is the intersection of a
(k− 2)-dimensional affine subspace with an open cube in Rk .

Proof. Let P be a Gutkin (2k, k)-gon. Consider the diagonals vivi+k and vi+1vi+k+1

of G(2k, k); see Figure 7. Let wi denote the intersection of these two diagonals,
and let Bi be the bow-tie-shaped polygon vivi+1vi+k+1vi+k . Notice that 4vivi+1wi

and 4vi+k+1vi+kwi are both isosceles triangles and are similar.
Thus, viwi = vi+1wi and vi+kwi = vi+k+1wi . Hence, the diagonals vivi+k and

vi+1vi+k+1 have equal length. Since i is arbitrary and the indices are circular, all
diagonals have the same length, say, h. Since h is just a scaling factor, we set h = 1
for the remainder of the proof.

Notice that P is comprised of k polygons Bi . Let xi denote the length of vivi+1

for 0≤ i ≤ k− 1, and let yi denote the length of vi+kvi+k+1, where 0≤ i ≤ k− 1.
Note that xi and yi denote the lengths of the nonintersecting sides of Bi .

Assume that v0 is at the origin and v1 lies on the positive x axis, and recall that
the vertices are labeled in counterclockwise order. This factors out the action of the
isometry group of the plane. We shall show that x0, . . . , xk−1 uniquely determine
y0, . . . , yk−1 and study the condition that these sides form a closed polygon.

Since the diagonals have fixed length equal to 1, one has yi = 2 cosα− xi . Also,
vk is at the point (cosα, sinα). Viewing the sides of G(2k, k) as vectors, the i-th
side is xi (cos iθ, sin iθ), where θ = π − 2α = π/k, and the sum of these vectors
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must be equal to vk . Thus,

(4-2)
k−1∑
i=0

xi (cos iθ, sin iθ)= (cosα, sinα).

If the side lengths x0, . . . , xk−1, y0, . . . , yk−1 form a closed polygon, then the sides
with lengths yi must start at vk and end at v0. In other words, the side lengths satisfy

(4-3) vk +

k−1∑
i=0

yi (cos(π + iθ), sin(π + iθ))= v0.

Simplifying the left-hand side yields

(cosα, sinα)+
k−1∑
i=0

yi (− cos iθ,− sin iθ)

= (cosα, sinα)−
k−1∑
i=0

(2 cosα− xi )(cos iθ, sin iθ)

= (cosα, sinα)− 2 cosα
k−1∑
i=0

(cos iθ, sin iθ)+
k−1∑
i=0

xi (cos iθ, sin iθ)

= (cosα, sinα)− 2 cosα(1, tanα)+ (cosα, sinα)= (0, 0)= v0.

Thus, (4-2) implies (4-3).
Hence, G(2k, k) is determined by the k-tuple x0, . . . , xk−1 satisfying the two lin-

ear equations (4-2). In addition, 0< xi < 2 cosα for all i . This implies the result. �

Next we consider other equiangular cases.

Proposition 4.5. The quotient space of the space of equiangular Gutkin (n, k)-gons
by the group of similarities is identified with the intersection of an M-dimensional
affine subspace with Rn

+
, where M is equal to the number of positive integers

2≤ r ≤ n− 2 satisfying the equation

(4-4) tan krπ
n

tan π
n
= tan kπ

n
tan rπ

n
.

Proof. Let P ∈ G(n, k) be embedded in the complex plane with v0 = 0 and v1 on
the positive real axis. Let xi = |vi+1 − vi | for 0 ≤ i ≤ k − 1 be the side lengths
of P . Let ω = exp(2π/n). Notice that vi+1 − vi = xiω

i , and a diagonal can be
represented as

(4-5) vi+k − vi = aiω
i+m,
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where ai ∈ R, ai > 0 and m = (k− 1)/2. Notice that in this representation,

arg(vi+1− vi )= (2π i)/n,

arg(vi+k − vi+k−1)= 2π(i + k− 1)/n,

arg(vi+k − vi )= π(2i + k− 1)/n.

Then
6 vi+1vivi+k = 6 vi+k−1vi+kvi = π(k− 1)/n = α.

Moreover,

vi+k − vi = (vi+k − vi+k−1)+ (vi+k−1− vi+k−2)+ · · ·+ (vi+1− vi )

= ωi+k−1xi+k−1+ω
i+k−2xi+k−2+ · · ·+ω

i xi

= ωi xi +ω
i+1xi+1+ · · ·+ω

i+k−1xi+k−1.

From (4-5), vi+k − vi is also equal to aiω
i+m . Thus,

aiω
i+m
= ωi xi +ω

i+1xi+1+ · · ·+ω
i+k−1xi+k−1

ai = ω
−m xi +ω

1−m xi+1+ · · ·+ω
k−1−m xk−1.

Using ai − ai = 0, one has

(ω−m
−ωm)xi + (ω

1−m
−ωm−1)xi+1+ · · ·+ (ω

k−1−m
−ωm−k+1)xk−1 = 0.

This gives a system of n linear equations on variables xi . The coefficient matrix, A,
is a circulant matrix where the first row is equal to(
ω−m
−ωm ω1−m

−ωm−1
· · · ωk−1−m

−ωm−k+1 0 0 · · · 0
)
.

Then the eigenvalues of A are

(4-6) λr =

k−1∑
ν=0

(ων−m
−ωm−ν)ωνr

;

see [Davis 1979].
We expect one of the eigenvalues to be equal to zero because we have not

factorized by scaling yet. If no other eigenvalue equals zero, then only trivial
solutions exist. Now, we compute λr in three cases: r = 0, r = 1 or r = n− 1, and
2≤ r ≤ n− 2.

For r = 0, we have

λ0 = ω
−m

k−1∑
ν=0

ων −ωm .
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Let h be equal to |ωi
+· · ·+ωi+k

|. By rotational symmetry, h does not vary with i .
Now evaluating the above equation,

λ0 = hω−mωm
− hωmω−m

= 0.

Thus, for r = 0, A has eigenvalue λ0 equal to zero.
Assume that λr is equal to zero for some other r . Set (4-6) to zero and simplify:

(4-7)
k+1∑
ν=0

ω(r+1)ν
= ωk−1

k−1∑
ν=0

ω(r−1)ν .

For r = 1, (4-7) can be written as kωk−1
=
∑k−1

ν=0 ω
2ν . Then k =

∣∣∑k−1
ν=0 ω

2ν
∣∣.

This is true only if the ω2ν are collinear, which is clearly not the case. Thus, λ1 6= 0
and likewise for r = n− 1.

For 2≤ r ≤ n− 2, using geometric series, we can rewrite (4-7) as

(4-8)
ωk(r+1)

− 1
ωr+1− 1

= ωk−1ω
k(r−1)

− 1
ωr−1− 1

.

After expanding this equation in terms of sines and cosines and using trigonometric
identities, one rewrites it as (4-4). For any solution r , one obtains λr = 0. This
implies the claim. �

We are ready to prove Theorem 1.2.
If n and k−1 are coprime, then a Gutkin polygon is equiangular by Corollary 4.3.

Connelly and Csikós [2009] show that a solution to (4-4) for integer values 1< k
and r < n/2 must satisfy k+ r = n/2 and n | (k− 1)(r − 1). Since n and k− 1 are
coprime, there are no solutions. Note also that, if r is a solution, so is n−r . Thus, by
Proposition 4.5, the matrix A has corank 1 and the Gutkin polygon must be regular.

It remains to construct a nontrivial Gutkin polygon for noncoprime n and
k− 1. Let p = gcd(n, k − 1) and q = n/p. Choose angles θ1, . . . , θp such that
θ1+ · · ·+ θp = 2π/q. Divide a unit circle into q equal parts, and divide each of
these equal arcs into p arcs of lengths θ1, . . . , θp in this order. One obtains an
inscribed n-gon. See Figure 8 for n = 8 and k = 3.

Lemma 4.6. The constructed n-gon is a Gutkin polygon.

Proof. The angular measure of an inscribed angle is half that of the subtended arc.
It follows that

6 vi+1vivi+k = 6 vi+k−1vi+kvi =
θ1+ · · ·+ θp

2
=
π

q
. �

Since the choice of the angles θ1, . . . , θp was arbitrary, we obtain a (p − 1)-
parameter family of pairwise nonsimilar Gutkin polygons.
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Figure 8. Constructing a nontrivial Gutkin polygon.
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THE WELL-POSEDNESS OF
NONLINEAR SCHRÖDINGER EQUATIONS

IN TRIEBEL-TYPE SPACES

SHAOLEI RU AND JIECHENG CHEN

Sufficient and necessary conditions for embeddings between F s
p;q (Triebel

spaces) and N s
p;q (new spaces constructed by combining frequency-uniform

decomposition with Lp.`q/) are obtained. Moreover, we study the Cauchy
problem for generalized nonlinear Schrödinger equations in Lr.0; T; N s

p;q/.

1. Introduction and notation

We study NLS (nonlinear Schrödinger equations) by using frequency-uniform
decomposition techniques. Suppose that Qk is the unit cube centered at k and
fQkgk2Zn is a decomposition of Rn. Such decompositions go back to the work of
N. Wiener [1932], and we call them Wiener decompositions of Rn. We can write

(1) �k � F�1�QkF for k 2 Zn;

where �E denotes the characteristic function on the set E. Since Qk is just a
translation of Q0, the�k have the same localized structures in the frequency space,
and are called the frequency-uniform decomposition operators.

Compared with the dyadic decomposition, the frequency-uniform decomposition
has many advantages for the Schrödinger semigroup. It is known that

S.t/D eit� W Lp! Lp

if and only if p D 2. This is one of the main reasons that we can not solve NLS in
Lp.p¤2/. However, if we consider the frequency-uniform decomposition, we have

k�kS.t/f kLp . .1Cjt j/nj1=2�1=pjk�kf kLp ;

which enables us to solve NLS in frequency-uniform decomposition spaces.
Roughly speaking, combining dyadic decomposition operators with function

spaces Lp .̀ q/, we can introduce Triebel spaces [Triebel 1992]. Combining frequen-
cy-uniform decomposition operators with function spaces Lp.`q/, we can introduce
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Triebel-type spaces. From a PDE point of view, the combination of frequency-
uniform decomposition operators and Banach function spaces Lp.`q/ seems to be
important in making nonlinear estimates, which contains an automatic decomposi-
tion on high-low frequencies.

We now give an exact definition on frequency-uniform decomposition operators.
Since �Qk is not differentiable, one needs to replace �Qk in (1) by a smooth cut-off
function. We first denote j�j1 WDmaxiD1;:::;n j�i j. Let � 2 S.Rn/ W Rn! Œ0; 1� be
a smooth radial bump function adapted to f� W j�i j16 1g with �.�/D 1 if j�j16 1

2
,

and �.�/D 0 if j�j1 > 1. Let �k be a translation of �:

�k.�/D �.� � k/; k 2 Zn:

Since �k.�/D 1 in the unit closed cubeQk W f� 2Rn W j��kj16 1
2
g and fQkgk2Zn

is a covering of Rn, one has that for all � 2 Rn,
P
k2Zn �k.�/> 1. Set

�k.�/D �k.�/

�X
k2Zn

�k.�/

��1
; k 2 Zn:

Then we have

(])

8̂̂̂<̂
ˆ̂:
j�k.�/j> c � 2Qk;

supp �k � f� W j� � kj1 � 1g;P
k2Zn �k.�/� 1 for all � 2 Rn

jD˛�k.�/j6 Cj˛j; for all � 2 Rn; ˛ 2 .N [f0g/n:

Hence, the set
‡n D ff�kgk2Zn W f�kgk2Zn satisfies (])g

is nonempty. Let f�kgk2Zn 2 ‡n be a function sequence. We call f�kgk2Zn

the frequency-uniform decomposition operators, where �k WD F�1�kF , k 2 Zn.
If we combine these decompositions with Lp.`q/, we can introduce a new type
of function spaces as follows. For any k 2 Zn, we set jkj D jk1j C � � � C jknj,
hki D 1Cjkj. If 0 < p <1, 0 < q 61, for any s 2 R, we denote

N s
p;q.R

n/ WD

�
f 2 S 0.Rn/ W kf kN sp;q D





�X
k2Zn

hkisqj�kf jq
�1=q





p

<1

�
:

If p D1, 0 < q 61, for any s 2 R, we set

(3) N s
1;q.R

n/ WD
n
f 2 S 0.Rn/ W 9ffk.x/g

1
kD0 � L

1.Rn/ such that

f D
1P
kD0

F�1�kFfk 2 S 0.Rn/ and khkisfkkL1.Rn;`q/ <1
o
;

and
kf kN s1;q.Rn/ D inf khkisfkkL1.Rn;`q/;
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where the infimum is taken over all admissible representations of f in the sense of (3).
One purpose of this paper is to study the semilinear estimates, dual estimates,

Strichartz estimates and time-space estimates in the Triebel-type spaces. Further-
more, from the definitions, we see that Triebel spaces and Triebel-type spaces are
rather similar; both of them are the combinations of frequency decomposition oper-
ators and function spaces Lp.`q/. In fact, we have the following inclusion results:

Theorem 1.1. Let 0 < p <1, 0 < q 61, s1; s2 2 R.

(a) If s1 > s2C �.p; q/ (when �.p; q/D 0, s1 > s2), then N s1
p;q � F

s2
p;q , where

�.p; q/Dmax
n
0; n

�
1

p
�
1

q

�
; n
�
1�

1

q
�
1

p

�o
:

(b) If s1 > s2C �.p; q/ (when �.p; q/D 0, s1 > s2), then F s1p;q �N
s2
p;q , where

�.p; q/Dmax
n
0; n

�
1

q
�
1

p

�
; n
�
1

q
C
1

p
� 1

�o
:

Theorem 1.2. Let 0 < p <1, 0 < q 61, s1; s2 2 R.

(a) If F s1p;q �N
s2
p;q , then s1 > s2C �.p; q/, where

�.p; q/Dmax
n
0; n

�
1

q
�
1

p

�
; n
�
1

q
C
1

p
� 1

�o
:

(b) If N s1
p;q � F

s2
p;q , then s1 > s2C �.p; q/, where

�.p; q/Dmax
n
0; n

�
1

p
�
1

q

�
; n
�
1�

1

q
�
1

p

�o
:

In recent decades, a large amount of work has been devoted to the study of
well-posedness in Besov and modulation spaces (for example, see [Kato 1987;
1989; 1995; Cazenave and Weissler 1989; 1990; Wang 1993; Kenig et al. 1995;
Pecher 1997; Nakamura and Ozawa 1998; Cazenave 2003; Wang et al. 2006; 2009;
2011; Wang and Huang 2007; Wang and Hudzik 2007; Chen and Fan 2011]). Our
second goal is to explore solutions of NLS in the Triebel-type spaces. We will use
the smooth effect estimates, together with the frequency-uniform decomposition
techniques, to study NLS, and we show that it is locally well-posed in a class of
Triebel-type spaces.

Theorem 1.3. Assume f .u/D ujujk , k D 2m, m 2 ZC, 26 p 6 kC2, r > kC2;
then for any initial data u0 2H s , s > 1

2
n, there exists T � WD T �.ku0kH s / > 0 such

that the initial value problem

u.t/D S.t/u0� i

Z t

0

S.t � �/f .u.�// d�
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has a unique solution

u 2 C.0; T �;H s/\Lrloc.0; T
�
IN s
p;2/:

Moreover, if T � <1, then

kukC.0;T �;H s/\Lr .0;T �IN sp;2/
D1;

where S.t/D F�1e�it j�j
2

F .

Theorem 1.4. Assume f .u/D ujujk , k D 2m, m 2 ZC, 26 p 6 kC2, r > kC2,
p0 6 q 6 p, then for any initial data u0 2N s

p0;q , s > n.1� 1
q
/, there exists T such

that the initial value problem

u.t/D S.t/u0� i

Z t

0

S.t � �/f .u.�// d�

has a unique solution

u 2 Lrloc.0; T IN
s
p;q/:

The rest of this paper is divided into five sections and an appendix. In Section 2
we will state some properties ofN s

p;q , which are useful to establish the embedding in-
clusions between Triebel spaces and N s

p;q . In Section 3 we will prove Theorems 1.1
and 1.2. Section 4 is devoted to considering the multiplication algebra ofN s

p;q . Some
dispersive smooth effects for the Schrödinger semigroup will be given in Section 5
and Theorems 1.3 and 1.4 will be proved in Section 6. The Appendix derives a com-
plex interpolation in Triebel-type spaces (Theorem A.14) and shows some properties
of the modulation spaces (Theorems A.1–A.8) that are used in Sections 2–5.

Notation. Throughout the paper, we set

Lr.R; N s
p;q/ WD

�
f 2 S 0 W

�Z
R

kf krN sp;q
dt

�1=r
<1

�
:

We shall sometimes write X . Y to denote the estimate X 6 CY for some C . For
any s 2 R, 0 < p; q �1, we set

M s
p;q.R

n/D

�
f 2 S 0.Rn/ W kf kM s

p;q
D

�X
k2Zn

hkisqk�kf k
q
Lp

�1=q
<1

�
I

M s
p;q WDM

s
p;q.R

n/ is called a modulation space, first introduced by Feichtinger
[2003] in the case 16 p; q 61.
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2. Basic properties of N s
p;q

In order to study the Cauchy problem in N s
p;q , we first give some properties of N s

p;q:

Proposition 2.1. Let �1 < s < 1, 0 < p < 1, 0 < q 6 1. The following
inclusions hold:

(1) Let q1 � q2. Then

N s
p;q1
�N s

p;q2
:

(2) Let "q2 > n. Then

N sC"
p;q1
�N s

p;q2
:

(3) Let p <1. Then

M s
p;p^q �N

s
p;q �M

s
p;p_q:

Proof. Since `p � `pCa; a � 0, we can get (1) directly. Let us observe that�X
k2Zn

hkisq2 jakj
q2

�1=q2
D

�X
k2Zn

hki.sC"/q2hki�"q2 jakj
q2

�1=q2
. sup
k2Zn
hkisC"jakj ."q2 > n/:

Taking ak D�kf , we can show that (2) holds with the help of (1).
Finally we prove (3). Let bk D hkis�kf . There are two cases:

Case 1. q � p. In this case, we have

kbkk`p.Lp/ � kbkkLp.`q/ � kbkk`q.Lp/:

Actually, noticing that `q � `p , we have kbkk`p.Lp/ D kbkkLp.`p/ � kbkkLp.`q/.
So, the first part of the above inequality holds. Moreover, by Minkowski’s inequality,
we have

kbkkLp.`q/ D





 1X
kD0

jbkj
q





1=q
Lp=q
6
� 1X
kD0

kjbkj
q
kLp=q

�1=q
D kbkk`q.Lp/:

This proves the second part.

Case 2. p � q. By Minkowski’s inequality and `p � `q , we have

kbkk`q.Lp/ D

�



Z
Rn
jbkj

p dx






`q=p

�1=p
6
�Z

Rn
kjbkj

p
k`q=p dx

�1=p
D kbkkLp.`q/ 6 kbkk`p.Lp/; �
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Proposition 2.2 (completeness). For any s 2 R, 0 < p <1; 0 < q 61, we have:

(1) N s
p;q is a quasi-Banach space. Moreover, if 16 p <1, 16 q 61, then N s

p;q

is a Banach space.

(2) S.Rn/�N s
p;q � S 0.Rn/.

(3) If 0 < p; q <1, then S.Rn/ is dense in N s
p;q .

Proof.

Step 1. Thanks to [Wang and Hudzik 2007], we obtain that S �M s
p;1 � S 0.

Step 2. We prove that S � N s
p;q . From Step 1, we have that S � M sC"

p;1 . By
Proposition 2.1 and Theorem A.5, we know that M sC"

p;1 �M
s
p;p^q �M

s
p;q \N

s
p;q

(" > n=p^ q). Thus, we have the desired result.

Step 3. Similarly to Step 2, we can also prove that N s
p;q � S 0 (by M s

p;p_q � S 0).
We omit the details of the proof.

Step 4. N s
p;q is a quasinormed space. Now we prove completeness. Let ff`g1`D1

be a Cauchy sequence in N s
p;q (with respect to a fixed quasinorm in N s

p;q). Part (2)
of the theorem shows that ff`g1`D1 is also a Cauchy sequence in S 0. Because S 0

is a complete locally convex topological linear space, we can find a limit element
f 2 S 0. Then F�1�kFf` converges to F�1�kFf in S 0.Rn/ if `!1. On the
other hand, fF�1�kFf`g1`D1 is a Cauchy sequence in Lp.Rn/ (N s

p;q �M
s
p;q_p).

By Theorem A.2, it is also a Cauchy sequence in L1.Rn/. This shows that the
limiting element of fF�1�kFf`g1`D1 in Lp.Rn/ (which is the same as in L1.Rn/)
coincides with fF�1�kFf g. Now it follows by standard arguments that f belongs
to N s

p;q and that f` converges in N s
p;q to f . Hence, N s

p;q is complete.

Step 5. We prove that if �1 < s < 1 and 0 < p; q < 1, S.Rn/ is dense in
N s
p;q.R

n/. Let f 2N s
p;q; then we put

fN .x/D

NX
kD0

F�1�kFf:

Note fN 2N s
p;q.R

n/. Consequently (by Theorem A.6),

kf �fN kN sp;q.Rn/ 6 c




� 1X

kDN

1X
rD�1

hkisqjF�1�k�kCrFf j
q

�1=q




Lp.Rn/

6 c




� 1X

kDN

hkisqjF�1�kFf j
q

�1=q




Lp.Rn/

:

Lebesgue’s bounded convergence theorem proves that the right-hand side of above
inequality tends to zero if N !1. Hence, fN approximates f in N s

p;q.R
n/. Next,
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we let '2S with '.0/D1 and suppF'�fy W jyj61g. Let fı.x/D'.ıx/f .x/with
0< ı <1. Then .fN /ı 2S.Rn/ approximates fN in L�p WD ff 2L

p W supp Of ��g
with �D fy W jyj 6 2NC2g if ı! 0. But this is also an approximation of fN in
N s
p;q.R

n/. This proves that S.Rn/ is dense in N s
p;q.R

n/. �

Proposition 2.3 (dual space). Assume �1< s <1. The following inclusions hold:

(a) Let 16 p <1 and 1 < q <1. Then

.N s
p;q/
�
DN�sp0;q0 :

(b) Let 0 < p < 1 and 0 < q 6 1. Then

.N s
p;q/
�
DM�s1;1:

Proof.

Step 1. For 1 6 p <1, 0 < q <1, [Triebel 1983] showed similar results for
Triebel spaces. We can prove the result similarly as for Triebel spaces, and omit
the details.

Step 2. For 0 < p < 1 and 0 < q 6 1, by the property of N s
p;q , we have

M s
p;p^q.R

n/�N s
p;q.R

n/�M s
p;p_q.R

n/�M s
1;1.R

n/:

Then by Theorem A.3, we have

M�s1;1.R
n/� .N s

p;q.R
n//� �M�s1;1.R

n/:

This proves the second part of this proposition. �

Proposition 2.4 (equivalent norm). Assume f�kgk2Zn , f�kgk2Zn 2‡n, 0<p <1,
0 < q 61. Then f�kgk2Zn and f�kgk2Zn generate equivalent norms on N s

p;q .

Proof. Recall that [Feichtinger 2003; Wang and Hudzik 2007] showed the equiva-
lence of k �k�k

M s
p;q

and k �k�k
M s
p;q

. By a similar argument as for modulation spaces and

by Theorem A.6, we can obtain the claimed equivalence of k�k�k
N sp;q

and k�k�k
N sp;q

. �

Lemma 2.5. Assume .I ��/s=2f DF�1.1Cj�j2/s=2Ff , 0<p<1, 0<q61.
Then we have

k.I ��/s=2f kNp;q � kf kN sp;q :

Proof. Analogously to the case of modulation spaces, by Theorem A.6 we can
prove the consequence, and the details are omitted. �

Theorem 2.6. Assume 16 p2 6 p1 <1, 16 q 61. Then we have

kukN sp1;q
. kukN sp2;q :
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Proof. By the definition of N s
p;q , we have

kukN sp1;q
D





�X
i2Zn

hiiqsj�iujq
�1=q





Lp1

D





�X
i2Zn

hiiqs
ˇ̌̌̌
�i

X
j`j161

�iC`u
ˇ̌̌̌q�1=q





Lp1

6




�X

i2Zn

hiiqs
ˇ̌̌̌
j�_i j �

ˇ̌̌̌� X
j`j161

�iC`u
�ˇ̌̌̌ˇ̌̌̌q�1=q





Lp1

.




�X

i2Zn

hiiqs
ˇ̌̌̌� X
j`j161

�iC`u
�ˇ̌̌̌q�1=q





Lp2

.




�X

i2Zn

hiiqsj�iujq
�1=q





Lp2

;

which implies the result. In the above equation, we used Theorem A.7 and
kj�_0 j �f kLp1 6 kf kLp2 (p1 > p2, Young’s inequality). �

Theorem 2.7. Assume f 2 L2. Then for any s 2 R, we have

kf kH s � kf kN s2;2 :

Proof. First, we prove that kf kL2 . kf kN2;2 . By Plancherel’s inequality, we have

kf kL2 D

�Z
Rn

ˇ̌̌̌X
i2Zn

�if
ˇ̌̌̌2
dx

�1=2
D

�Z
Rn

ˇ̌̌̌X
i2Zn

�iFf

ˇ̌̌̌2
dx

�1=2
.
�Z

Rn

X
i2Zn

j�iFf j
2 dx

�1=2
D

�Z
Rn

��X
i2Zn

jF�1�iFf j
2

�1=2�2
dx

�1=2
D kf kN2;2 :

The inverse inequality can be proved similarly
� P
i2Zn
j�iFf j

2 .
ˇ̌̌ P
i2Zn

�iFf
ˇ̌̌2�

. �

Theorem 2.8. Assume s1; s2 2 R, 0 < q1; q2 61, 0 < p <1. Then, for q2 < q1,
s1� s2 > n=q2�n=q1, we have

N s1
p;q1

.Rn/�N s2
p;q2

.Rn/:
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Proof. By Hölder’s inequality, we have

kf k
N
s2
p;q2

D





�X
k2Zn

hkis2q2 j�kf jq2
�1=q2





Lp

D





�X
k2Zn

hki.s2�s1/q2hkis1q2 j�kf jq2
�1=q2





Lp

6 kf k
N
s1
p;q1

�X
k2Zn

hki.s2�s1/q1q2=.q1�q2/
�.q1�q2/=.q1q2/

:

Then by q2 < q1, s1� s2 > n=q2�n=q1 and

X
k2Zn

hki.s2�s1/q1q2=.q1�q2/ .
1X
iD0

hii.s2�s1/q1q2=.q1�q2/;

we obtain the results. �

3. Embedding between N s
p;q and Triebel spaces

The embedding theorem is of importance for the study of nonlinear PDEs and we
give the details of the proof. We start with the embedding for the same indices p, q.

Proof of Theorem 1.1.

Step 1. For 0 < p <1, 0 < q 61, " > 0 (a small positive number), we have

Np;q � Fp;q for all q 6 1^p;(4)

N n.1=.p^1/�1=q/C"
p;q � Fp;q for all 0 < p 6 q:(5)

Let akDmax.0; 2k�1�
p
n/, bkD2kC1C

p
n. We can easily find that�k�if D0

for ji j 2 Œak; bk�. First, we show the inclusion (4).

Case 1. p > 1, q 6 1. By Theorem A.6, we have

k�kf kLp.`q/ D





�X
k

j�kf j
q

�1=q




Lp
6




�X

k

ˇ̌̌̌ X
i2Zn

ji j2Œak ;bk�

�k�i�if
ˇ̌̌̌q�1=q





Lp

6 C




�X

k

X
i2Zn

ji j2Œak ;bk�

.jF�1.'k�i /F�if j/q
�1=q





Lp

. C




�X

k

X
i2Zn

ji j2Œak ;bk�

j�if jq
�1=q





Lp
. C





�X
i2Zn

j�if jq
�1=q





Lp
:
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Case 2. p < 1, p D q. By Theorem A.1, we have

Np;p �Mp;p � Bp;p � Fp;p:

Then by combining Cases 1 and 2, we obtain the result (4).
Next, we show the second inclusion. By Theorem A.1, we obtain that

N n.1=.p^1/�1=q/C"
p;q �M n.1=p^1�1=q/C"

p;q � B"p;q � Bp;p � Fp;q:

This proves (5). In the above discussion, we used Theorem A.15.

Step 2. We prove the following inclusions:

(a) If 0 < q 6 2, " > 0 (a small positive number), then we have

(6) F
n.1=q�1=2/C"
2;q �N2;q:

(b) If p > 2, " > 0 (a small positive number), then we have

(7) N n.1�1=p/C"
p;1 � Fp;1:

By Theorem A.1, one has that for 0 < q 6 2,

B
n.1=q�1=2/
2;q �M2;q:

Then by the embedding estimates in Proposition 2.1 and Theorem A.15, we have

F
n.1=q�1=2/C2"
2;q �F

n.1=q�1=2/C"
2;1 �B

n.1=q�1=2/C"
2;1 �B

n.1=q�1=2/
2;q �M2;q�N2;q;

which implies the result (6).
For the case p > 2, by Theorem A.1 and Proposition 2.1, we have that

N n.1�1=p/C"
p;1 �M n.1�1=p/C"

p;1 � B"p;1 � Bp;p^1 � Fp;1:

This proves (7).

Step 3. Assume 16 p <1, 16 q 61. Then for

�.p; q/Dmax
�
0; n

�
1

p^p0
�
1

q

��
and s1 > s2C �.p; q/ (if �.p; q/D 0, s1 > s2), we have

(8) N s1
p;q � F

s2
p;q:

Actually, thanks to (5), (7) and the dual versions of (6), we have

N nC"
p;1 � Fp;1; 16 p <1;

N n.1�1=p/C"
p;1 � Fp;1; p > 2;

N
n.1=2�1=q/C"
2;q � F2;q; 26 q 61:
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Taking p D 1;1� (i.e., a sufficient large number) and q D1, we have

N nC"
1;1 � F1;1; N

n=2C"
2;1 � F2;1; N

n.1�1=1�/C"
1�;1 � F1�;1:

Applying the complex interpolation theorem to these three estimates, we obtain

Nmax.n=p;n=p0/C"
p;1 � Fp;1; 16 p <1:

Moreover, by (4), we have

(9) Np;1 � Fp;1; 16 p <1:

Recall that

(10) N2;2 D F2;2:

Applying the complex interpolation theorem separately to the above three estimates
again, we obtain

N �.p;q/C"
p;q � Fp;q:

(When �.p; q/D 0, we apply the complex interpolation theorem to (9) and (10).)

Step 4. We show the sufficiency of N s1
p;q � F

s2
p;q . By Step 3, we see that the

conclusion holds if 1 6 p < 1, 1 6 q 6 1. By Step 1, we have the result if
0 < p 6 1 or 0 < q < 1.

Next, we prove the sufficiency of F s1p;q �N
s2
p;q . Set

R2CC D

n�
1

p
;
1

q

�
W
1

p
> 0;

1

q
> 0

o
;

S1 D
n�
1

p
;
1

q

�
2 R2CC W

1

q
> 1

p
;
1

p
6 1
2

o
;

S2 D
n�
1

p
;
1

q

�
2 R2CC W

1

q
<
1

p
;
1

p
C
1

q
6 1

o
;

S3 D R2CC� .S1[S2/:

Step 10. For 16 p <1, q D1, we have

(11) Fp;1 �Np;1:

Actually, by the definition of Np;1, Fp;1 and Theorem A.7, we have (ıj is the
Littlewood–Paley decomposition)

kf kNp;1 D



 sup
i2Zn
j�if j





Lp
D





 sup
i2Zn

ˇ̌̌̌
F�1�i

4X
`D�4

ıjC`Ff

ˇ̌̌̌




Lp

6



 sup
j2Zn
jF�1ıjFf j





Lp
D kf kFp;1 :
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Step 20. For 0 < p 6 1, we have

(12) F n.1=p�1/p;1 �Np;1:

By Theorem A.6, we have that for ji j 2 Œ2j�1; 2j /,

kf kNp;1 D



 sup
i2Zn
j�if j





Lp

D





 sup
i2Zn

ˇ̌̌̌
F�1�i

4X
`D�4

ıjC`Ff

ˇ̌̌̌




Lp

. k2�js�i .2j � /kHxkf kF sp;1 .s > n.1=p� 1//

. kf kF sp;1 .s > n.1=p� 1/; k2�js�i .2j � /kHx . C/;

which implies the result (12).

Step 30. .1=p; 1=q/ 2 S3, �.p; q/D n.1=pC 1=q� 1/. Let

1

p0
D
1

p
C
1

q
;

1

q0
D 0;

1

p1
D
1

2
;

1

q1
D
1

p
C
1

q
�
1

2
:

Assume � D 1=q.1=pC 1=q� 1
2
/�1, we have

1

p
D
1��

p0
C
�

p1
;

1

q
D
1��

q0
C
�

q1
;

1

p
C
1

q
� 1D .1� �/

�
1

p0
� 1

�
C

�
1

q1
�
1

2

�
�:

By (6) and (12), we have

F
n.1=q1�1=2/C"
2;q1

�N2;q1 ; F n.1=p0�1/p0;1
�Np0;1:

A complex interpolation yields

F n.1=pC1=q�1/C"p;q �Np;q:

Step 40. .1=p; 1=q/2S1, �.p; q/Dn.1=q�1=p/. Let .1=p; 1=q/2 PS1 (inner point
of s). Then .1=p; 1=q/ 2 PS1 is a point at the line segment connecting .1=1�; 0/
and some point .1=p1; 1=q1/ 2 f.1=p; 1=q/ W p D 2; q < 2g. By (11), Step 30 and
complex interpolation, we have

F n.1=q�1=p/C"p;q �Np;q:

Step 50. .1=p; 1=q/ 2 S2, �.p; q/D 0. We can obtain the results by F2;2 � N2;2
and the dual version of (4), i.e., for 16 p <1, Fp;1 �Np;1. �
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Proof of Theorem 1.2.

Step 1. For the first part, we need to show that for any 0<��1, F �.p;q/��p;q ªNp;q .

Case 1. .1=p; 1=q/2S3, �.p; q/D1=pC1=q�1. Let f DF�1ıj , j�1. We have

kf k
F
�.p;q/��
p;q

D





�X
j

2j.�.p;q/��/qj�jf j
q

�1=q




Lp

.
1X

`D�1

2j.�.p;q/��/.jC`/kF�1ıjC`ıj kLp . 2jn=q�j�:

Denote

ƒ0 D fk 2 Zn W B.k;
p
n/\f� W j�j 2 Œ0; 2/g ¤∅g;

ƒj D fk 2 Zn W B.k;
p
n/\f� W j�j 2 Œ2j�1; 2jC1/g ¤∅g:

If k 2 ƒj , then jkj � 2j . Noticing that at most O.2nj / unit cubes intersect with
ƒj , we have

kf kNp;q D





�X
k

j�kf jq
�1=q





Lp
>




� X

k2ƒj

j�kf jq
�1=q





Lp

&




� X

k2ƒj

jF�1�kıj j
q

�1=q




Lp
& 2jn=q:

Based on the above observation, we have

kf kNp;q & 2
�j
kf k

F
�.p;q/��
p;q

;

which implies that F �.p;q/��p;q ªNp;q .

Case 2. .1=p; 1=q/ 2 S2, �.p; q/ D 0. We consider the case q D 1. Taking
k.j /D .2j ; 0; : : : ; 0/ and f D F�1�k.j /, we have that

kf kNp;1 & 1& 2
�j
kf kF��p;1 :

If q <1, we need to show that

(13) Np;q ª F "p;r ; 16 p <1:

Assume f 2 S, supp Of � f� W j�i j< 1
2
; i D 1; : : : ; ng. Let N � 1, 0 < "� 1,

k.j /D .2Nj ; 0; : : : ; 0/ 2 Zn;

yF .�/D

1X
jD1

2�"Nj Of .� � k.j //:
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We see that

kF kNp;q D





�X
i

j�iF jq
�1=q





Lp

.




�X

j

X
j`j161

2�"Nqj jF�1�k.j /C` Of . � � k.j //j

�1=q




Lp
. 1

On the other hand, letting s > ", we have

kF kF sp;r D





�X
j

2jrsj�jF j
r

�1=r




Lp

D





�X
j

2NjrsjF�1ıNj 2
�"Nj Of . � � k.j //jr

�1=r




Lp

&




�X

j

2Njr.s�"/jF�1ıNj Of . � � k.j //j
r

�1=r




Lp

&




�X

j

2Njr.s�"/jF�1ıNj�Qk.j/
Of . � � k.j //jr

�1=r




Lp

D





�X
j

2Njr.s�"/jF�1�Qk.j/
Of . � � k.j //jr

�1=r




Lp

&1 .let ı.�/D 1; if j�j 2 Œ3
4
; 5
4
�/;

which implies (13). Then by its dual version, we obtain the claimed results.

Case 3. .1=p; 1=q/ 2 S1, �.p; q/D n.1=q� 1=p/. Let �k.�/D 0 if

� 2 QQk WD f� W j�i � ki j6 5
8
; 16 i 6 ng

and ıj .�/D 1 if � 2Dj WD f� W 542
j�1 6 j�j6 3

4
2jC1g. Assume

Aj D fk 2 Zn W zQk �Dj g; j � 1:

Let f 2 S, supp Of � B.0; 1
8
/ and

g.x/D
X
k2Aj

eixk.�kf /.x/; �kf D f . � � k/:
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It is easy to see that supp b�kf �B.0; 18/ and supp �k.b�kf /\supp �`D∅, if k¤ `.
Then, we have

kgkNp;q D





�X
i

j�igjq
�1=q





Lp
D





�X
i

ˇ̌̌̌
�i

X
k2Aj

eixk.�kf /.x/

ˇ̌̌̌q�1=q




Lp

D





�X
i2Aj

jF�1�iFgj
q

�1=q




Lp
D





�X
i2Aj

jF�1�0.b�kf /jq
�1=q





Lp

& 2jn=q:

On the other hand, by supp yg � f� W 2j�1 6 j�j6 2j g, we have

kgk
F
n.1=q�1=p/��
p;q

D





�X
j

2jq.n.1=q�1=p/��/j�jgj
q

�1=q




Lp

. 2j.n.1=q�1=p/��/k�jgkLp

. 2j.n.1=q�1=p/��/kgkLp

. 2j.n.1=q�1=p/��/kgk1�2=pL1 kgk
2=p

L2
:

By Plancherel’s identity, we have

kgkL2 D kygkL2 D

�Z
Rn

X
k2Aj

j�k.e
�ik� Of .�//j2 d�

�1=2
. 2nj=2:

We can further assume that f .x/D f .jxj/ is a decreasing function on jxj. Then
jf .x�k/j. .1Cjx�kj/�N , N � 1 and a straightforward computation will lead
to jg.x/j. 1.

Based on the above observation, we have

kgk
F
n.1=q�1=p/��
p;q

. 2nj=q��j :

This proves the results.

Step 2. We study the second embedding estimate. Set

R1 D
n�
1

p
;
1

q

�
2 R2CC W

1

q
> 1

p
;
1

p
C
1

q
> 1

o
;

R2 D
n�
1

p
;
1

q

�
2 R2CC W

1

q
6 1

p
;
1

p
> 1
2

o
;

R3 D R2CC� .R1[R2/:

We consider three cases:
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Case 10. .1=p; 1=q/ 2R1. We have discussed it in Case 2 (dual version).

Case 20. .1=p; 1=q/ 2 R3. For 1 6 p; q <1, we obtain the claimed results by
Case 1. For the case q D1, letting f D F�1ıj , we have

kf kFp;q & 2
jn.1�1=p/ and kf k

N
n.1�1=p/
p;1

. 2jn.1�1=p/;

which implies the result.

Case 30. .1=p; 1=q/ 2R2. Assume f 2 S, f .0/D 1 and

supp Of �Q0 WD f� W j�i j6 1
2
; 16 i 6 ng:

Choose 0 < a� 1. Denote fa.x/D f .x=a/. Then

supp Ofa �Q0;a WD
n
� W j�i j6

1

2a
; 16 i 6 n

o
:

Let

Dj D f� W
5
4
2j�1 6 j�j6 3

4
2jC1g and Qk.i/;a WD k.i/CQ0;a:

One has that Qk.i/;a and Dj overlap at most O.an2jn/ cubes. Moreover, there is
a ˇ > 0 such that fa.x/ > 1

2
, x 2B.0; ˇ/. Let Aj D fk.i/ W i D 1; : : : ; O.an2jn/g

and g.x/D
P
k2Aj

eixk.�kfa/.x/. By a straightforward computation, we obtain

kgkFp;q & .aˇ/
n=p2jn=p and kgk

N
n.1=p�1=q/
p;q

. 2jn=p:

This finishes the proof. �

4. Multiplication algebra

It is well known that Bsp;q is a multiplication algebra if s > n=p; see [Cazenave and
Weissler 1990]. The regularity indices, for which N s

p;q constitutes a multiplication
algebra, are quite different from those of Besov space. Set

R2CC D

n�
1

p
;
1

q

�
W
1

p
> 0;

1

q
> 0

o
; D1 D .0; 1�� Œ0; 1�;

D2 D
n�
1

p
;
1

q

�
2 R2CC W

1

q
� 1 <

1

p
6 1
q
;
1

q
> 1

o
;

D3 D
n�
1

p
;
1

q

�
2 R2CC W

1

p
> 1
q
;
1

p
> 1

o
:
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Theorem 4.1. Assume that p > 0, 1� 1=.pC 1/ < q 61 and

s >

8̂̂̂̂
<̂̂
ˆ̂̂̂:

n
�
1�

1

q

� �
1

p
;
1

q

�
2D1;

0
�
1

p
;
1

q

�
2D2;

np
�
1

p
�
1

q

� �
1

p
;
1

q

�
2D3:

Then N s
p;q is a multiplication algebra, i.e.,

kfgkN sp;q . kf kN sp;qkgkN sp;q

holds for all f; g 2N s
p;q .

Proof.

Step 1. 0 < p <1, q D1.

Case 1. 1 6 p <1, q D 1, s > n. Let ƒi;j D fk 2 Zn W ji � j � kj < C.n/g.
Then it is easy to see that �ifg D�i

P
j �jf

P
k.i;j /2ƒi;j

�k.i;j /g. Suppose
f; g 2N s

p;q , by Theorems A.6, 2.6, 2.8 and kai �bik`1 6 kaik`1kbik`1 , we have

kfgkN sp;1 D



sup
i

hiisj�ifgj




Lp

D





sup
i

hiis
ˇ̌̌̌
�i
X
j

�jf
X

k.i;j /2ƒi;j

�k.i;j /g
ˇ̌̌̌




Lp

.




sup
i

hiis
X
j

j�jf jj�k.i;j /gj





Lp

.ji � j � k.i; j /j< C.n//

.




sup
i

X
j

.hj isChk.i; j /is/j�jf jj�k.i;j /gj





Lp

.



sup
i

hiisj�igj




Lp1





X
j

j�jf j





Lp2

C




sup
i

hiisj�if j




Lp1





X
j

j�jgj





Lp2

. kgkN sp1;1kf kNp2;1 Ckf kN sp1;1kgkNp2;1 . kf kN sp;1kgkN sp;1 ;

where 1=p D 1=p1C 1=p2.
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Case 2. 0 < p < 1, q D1, s > n. By the similar argument as in Case 1, we have

kfgkN sp;1 .




sup
i

X
j

.hj isChk.i; j /is/j�jf jj�k.i;j /gj





Lp

.



sup
i

hiisj�igj




Lp





X
j

j�jf j





L1

C




sup
i

hiisj�if j




Lp





X
j

j�jgj





L1

:

On the other hand, by Theorem A.7, we have



X
j

j�jf j





L1
D





X
j

ˇ̌̌̌
�j

1X
`D�1

�jC`f
ˇ̌̌̌




L1

.




X
j

j�_j j�

ˇ̌̌̌ 1X
`D�1

�jC`f
ˇ̌̌̌




L1
.




X
j

j�jf j





L1
D kf kN1;1 :

Then by Proposition 2.1 and Theorem A.5, we have

kf kN1;1 D kf kM1;1 6 kf kM s
p;1
6 kf kN sp;1 for s > n:

This finishes the proof of Case 2.
Combining Cases 1 and 2, we have kfgkN sp;1 . kf kN sp;1kgkN sp;1 for s > n.

Step 2. 0<pDq61. Suppose f; g2Np;p; from Proposition 2.1 and Theorem A.4,
we have

kfgkNp;p D kfgkMp;p 6 kf kMp;pkgkMp;p D kf kNp;pkgkNp;p :

Step 3. 16p <1, qD 1, s > 0. Suppose f; g 2N s
p;q . By Theorems A.4, A.7, 2.6

and kai � bik`1 . kaik`1kbik`1 , we have

kfgkN sp;1 D





X
i

hiisj�ifgj





Lp

6




X
i

hiis
ˇ̌̌̌
jF�1.�i /j �

�X
j

�jf
X

k.i;j /2ƒi;j

�k.i;j /g
�ˇ̌̌̌





Lp

.




X
i

X
j

�
hj isj�jf j

X
k.i;j /2ƒi;j

hk.i; j /isj�k.i;j /gj
�





Lp

.




�X

i

hiisj�if j
��X

i

hiisj�igj
�





Lp
. kf kN sp;1kgkN sp;1 ;

where we used the fact that ji � j � k.i; j /j< c.n/.
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Step 4. Let .1=p; 1=q/ 2 D1. It is easy to see that .1=p; 1=q/ is a point of the
line segment connecting .1=p; 0/ and .1=p; 1/. At the point .1=p; 0/, in Step 1,
we have shown that N s

p;1 is a multiplication algebra if s > n. For .1=p; 1/, in
Step 3, we have shown that N s

p;1 is a multiplication algebra if s > 0. Using
complex interpolation (Theorem A.14), we obtain that for .1=p; 1=q/ 2D1, N s

p;q

is a multiplication algebra if s > n.1� 1=q/.
If .1=p; 1=q/ 2D2, then it belongs to the segment by connecting .1=p0; 1/ and

.1= Np; 1= Np/, where 1=p0<1=p�1=qC1 and NpD 1�p.1�q/.1�p0/=.p�p0q/.
In Step 3, we see that for s > 0, N s

P0;1
is a multiplication algebra; in Step 2, we see

that N Np; Np is a multiplication algebra, if s > 0. Then complex interpolation between
them gives that for .1=p; 1=q/ 2D2 and s > 0, N s

p;q is a multiplication algebra.
If .1=p; 1=q/ 2D3, then one can make a line segment connecting .1=p; 1=p/

and .1=p; 0/. For .1=p; 1=p/, we see that once s > 0, N s
p;p is a multiplication

algebra. For .1=p; 0/, we see that once s > n, N s
p;1 is a multiplication algebra.

Then we use complex interpolation to obtain that N s
p;q is a multiplication algebra

if s > np.1=p� 1=q/. �

Remark. Assume that k 2 ZC, p > 0, 1� 1=.pC 1/ < q 61 and

s >

8̂̂̂̂
<̂̂
ˆ̂̂̂:

n
�
1�

1

q

� �
1

p
;
1

q

�
2D1;

0
�
1

p
;
1

q

�
2D2;

np
�
1

p
�
1

q

� �
1

p
;
1

q

�
2D3:

Then N s
p;q is a multiplication algebra, i.e.,

kukkN sp;q . kuk
k
N sp;q

holds for all u 2N s
p;q (for p > 1, we obtain kukkN sp;q . kuk

k
N s
kp;q

).

Proof. We obtain the result by the similar argument as for the above theorem. �

5. Smooth effects of the Schrödinger semigroup

In this section we will discuss a kind of Strichartz estimates. This kind of estimate
was first introduced by R. S. Strichartz [1977], then developed by Pecher [1984],
Ginibre and Velo [1995] and Wang, Han, and Huang [2011]. Set

S.t/D F�1e�it j�j
2

F:

Our aim is to derive the estimates of S.t/ in the spaces N s
p;q .
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Theorem 5.1. Assume 2 6 p <1, p0 6 q 6 p, and 1=pC 1=p0 D 1. Then, for
any s 2 R, we have

kS.t/f kN sp;q . .1Cjt j/
�n.1=2�1=p/

kf kN s
p0;q

:

Proof. By Proposition 2.1 and Theorem A.8, we have

kS.t/f kN sp;q 6 kS.t/f kM s
p;q
6 .1C t /�n.1=2�1=p/kf kM s

p0;q

6 .1C t /�n.1=2�1=p/kf kN s
p0;q

:

In view of the estimates above, the theorem is proved. �

Theorem 5.2. Assume r>1, p06q6p, 26p<1, andAf D
R t
0 S.t��/f .�/ d� .

Then for any s 2 R, we have

kAf kLr .�T;T IN sp;q/ . T
2=r
kf kLr0 .�T;T IN s

p0;q
/:

Proof. By Theorem 5.1, we have

kAf kLr .�T;T IN sp;q/ 6




Z t

0

kS.t � �/f .�/kN sp;q d�






Lr .�T;T /

6




Z t

0

.1Cjt � � j/�n.1=2�1=p/kf .�/kN s
p0;q

d�






Lr .�T;T /

.




Z 1
0

��2Œ0;t�kf .�/kN s
p0;q






Lr .�T;T /

. T 1=r
�Z T

�T

kf .�/kr
Lr
0
.�T;T;N s

p0;q
/
dt

�1=r
. T 2=rkf kLr0 .�T;T IN s

p0;q
/: �

Theorem 5.3. Assume r > 1 and 26 p <1. Then we have

kS.t/f kLr .�T;T;N sp;2/ . T
1=r
kf kH s :

Proof. We show that for any T >0; ID.�T; T /, '2S and 2Cc.Œ0;T /;C1c .R
n//,ˇ̌̌̌Z T

�T

.S.t/';  .t// dt

ˇ̌̌̌
. T 1=rk'k2k kLr0 .I;Np0;2/:

Actually, we haveˇ̌̌̌Z T

�T

.S.t/';  .t// dt

ˇ̌̌̌
. k'k2





Z T

�T

S.�t / .t/ dt






2

:
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Thanks to Theorem 5.2, we have



Z T

�T

S.�t / .t/ dt





2
2

D

ˇ̌̌̌Z T

�T

�
 .t/;

Z T

�T

S.t � �/ .�/ d�

�
dt

ˇ̌̌̌
. k kLr0 .I;Np0;2/





Z T

�T

S.t � �/ .�/ d�






Lr .I;Np;2/

. T 2=rk k2
Lr
0
.I;Np0;2/

:

Then by k.I ��/s=2f kNp;2 � kf kN sp;2 (Lemma 2.5) and density, we are done. �

Lemma 5.4. Assume f .u/ D ujujk , k D 2m, m 2 ZC. Assume also r > k C 2,
2 6 p 6 k C 2, p0 6 q 6 p and A.f / D

R t
0 S.t � �/f .u.�// d� . Then for any

s > n.1� 1=q/, we obtain

kA.f /kLr .0;T IN sp;q/ . T
1�k=r

kukkC1
Lr .0;T IN sp;q/

:

Proof. By Theorems 2.6, 5.2 and 4.1, we have

kA.f /kLr .0;T IN sp;q/ D





Z t

0

S.t � �/f .u.�// d�






Lr .0;T IN sp;q/

. T 2=rkf kLr0 .0;T IN s
p0;q

/

D T 2=r
�Z T

0

kf .u.�//kr
0

N s
p0;q

d�

�1=r 0
. T 2=r

�Z T

0

ku.�/k
.kC1/r 0

N s
.kC1/p0;q

d�

�1=r 0
. T 2=r

�Z T

0

ku.�/krN sp;q
d�

�.kC1/=r
T .r�k�2/=r

. T 1�k=rkukkC1
Lr .0;T IN sp;q/

: �

Lemma 5.5. Assume f .u/ D ujujk , k D 2m, m 2 ZC. Assume also r > k C 1,
1 6 p 6 2.k C 1/ and A.f / D

R t
0 S.t � �/f .u.�// d� . Then for any s > 1

2
n,

we obtain
kA.f /kC.0;T IH s

2 /
. T 1�.kC1/=rkukkC1

Lr .0;T IN sp;2/
:

Proof. By Theorems 2.6, 2.7, 4.1 and 5.1, we have

kA.f /kC.0;T IH s
2 /
6
Z T

0

kf .u.�//kH s
2
d� 6

Z T

0

kukkC1
N s
2.kC1/;2

d�

6
Z T

0

kukkC1
N sp;2

d� 6 T 1�.kC1/=rkukkC1
Lr .0;T IN sp;2/

: �
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6. Well-posedness of nonlinear Schrödinger equations

In this section we study the well-posedness of the Schrödinger equations

iut C�uD f .u/; u.0; x/D u0.x/:

The solution, u.x; t/, of the above Cauchy problem is given by

(14) u.t/D S.t/u0� i

Z t

0

S.t � �/f .u.�// d�;

where S.t/D F�1eit j�j
2

F .

Proof of Theorem 1.3. Fix T > 0, ı > 0 to be chosen later. Let

DD fu 2C.0; T IH s/\Lr.0; T IN s
p;2/ W kukLr .0;T IN sp;2/ < ı; kukC.0;T IH

s/ < ıg

be equipped with the metric

d.u; �/D ku� �kLr .0;T IN sp;2/\C.0;T IH s/:

It is easy to see that .D; d / is a complete metric space. Now we consider the map

J W u.t/! S.t/u0� i

Z t

0

S.t � �/f .u.�// d�:

We shall prove that there exists T; ı > 0 such that J W .D; d /! .D; d / is a strict
contraction map.

By the nonlinear term estimate (Theorems 4.1, 5.4 and 5.5) and Theorem 5.3,
we have

kJukLr .0;T IN sp;2/ . T
1=r
ku0kH s CT 1�k=rkukkC1

Lr .0;T IN sp;2/

and
kJukC.0;T IH s/ . ku0kH s CT 1�.kC1/=rkukkC1

Lr .0;T IN sp;2/
:

Then we let
ı D 2Cku0kH s ; T < 1

and take T such that
2CT .1�.kC1/=r/ık 6 1

2
:

Then we have
kJukC.0;T IH s/\Lr .0;T IN sp;2/

< ı

and

kJu�J�kC.0;T IH s/\Lr .0;T IN sp;2/
6 1
2
ku� �kC.0;T IH s/\Lr .0;T IN sp;2/

:
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In this way, we obtain that J W .D; d /! .D; d / is a strict contraction map. So,
there exists a u 2 D satisfying (14). Using standard argument, we can extend the
solution (considering the mapping

(15) J W u.t/! S.t �T /uT � i

Z t

T

S.t � �/f .u.�// d�;

and noticing that u.T / 2H s [Li and Chen 1989], we can use the same way as in
the above to solve (15)). And we can find a maximum T � > 0 which satisfies the
conditions in the theorem. �

Proof of Theorem 1.4. Fix T > 0, ı > 0 to be chosen later. Let

DD fu 2 Lr.0; T IN s
p;q/ W kukLr .0;T IN sp;q/ < ıg;

which is equipped with the metric

d.u; �/D ku� �kLr .0;T IN sp;q/:

It is easy to see that .D; d / is a complete metric space. Now we consider the map

J W u.t/! S.t/u0� i

Z t

0

S.t � �/f .u.�// d�:

By the nonlinear term estimate (Theorems 4.1 and 5.4) and Theorem 5.1, we have

kJukLr .0;T IN sp;q/ . T
1=r
ku0kN s

p0;q
CT 1�k=rkukkC1

Lr .0;T IN sp;q/
:

Then we let

ı D 2Cku0kN s
p0;q

; T < 1

and take T such that

2CT .1�k=r/ık 6 1
2
:

Then we have

kJukLr .0;T IN sp;q/ < ı

and

kJu�J�kLr .0;T IN sp;q/ 6
1
2
ku� �kLr .0;T IN sp;q/:

In this way, we proved that J W .D; d /! .D; d / is a strict contraction map. So,
there exists a u 2 D satisfying (14). �
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Appendix

We list some properties of modulation spaces and some inequalities used in this
paper; most of them are well-known to those familiar with PDEs. Moreover, we
sketch a proof of complex interpolation on N s

p;q .

Theorem A.1. Assume 0 < p; q 61 and s1; s2 2 R. Then we have:

(1) Bs1p;q �M
s2
p;q if and only if s1 > s2C �.p; q/, where

�.p; q/Dmax
n
0; n

�
1

q
�
1

p

�
; n
�
1

q
C
1

p
� 1

�o
:

(2) M s1
p;q � B

s2
p;q if and only if s1 > s2C �.p; q/, where

�.p; q/Dmax
n
0; n

�
1

p
�
1

q

�
; n
�
1�

1

q
�
1

p

�o
:

For details of the proof, refer to [Toft 2004; Wang et al. 2006; Sugimoto and
Tomita 2007].

Theorem A.2. Assume 0<p6q61. Let��Rn be a compact set, diam�<2R.
Then there exists C.p; q;R/ > 0 such that

kf kLq 6 Ckf kLp for all f 2 Lp�;

where Lp� D ff 2 L
p W supp Of ��g.

For details of the proof, refer to [Wang et al. 2009; 2011].

Theorem A.3. Suppose 0 < p; q <1. Then we have

.M s
p;q/
�
DM�s.1_p/0;.1_q/0 :

For details of the proof, refer to [Han and Wang 2012].

Theorem A.4. Assume that

s >

8̂<̂
:
n
�
1� 1^

1

q

�
;

�
1

p
;
1

q

�
2D1;

n
�
1_

1

p
_
1

q
�
1

q

�
;
�
1

p
;
1

q

�
2D2:

Then M s
p;q is a multiplication algebra, i.e.,

kfgkM s
p;q
. kf kM s

p;q
kgkM s

p;q

holds for all f; g 2M s
p;q .

For details of the proof, refer to [Han and Wang 2012]. Note that

D1 D
n�
1

p
;
1

q

�
2 R2C W

1

q
> 2

p
;
1

p
6 1
2

o
; D2 D R2CnD1:
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Theorem A.5 (embedding). Assume s1; s22R and 0<p1; p2; q1; q261. We have:

(a) If s2 6 s1, p1 6 p2, q1 6 q2, then M s1
p1;q1 �M

s2
p2;q2 .

(b) If q2 < q1, s1� s2 > n=q2�n=q1, then M s1
p;q1 �M

s2
p;q2 .

For details of the proof, refer to [Wang et al. 2011; Han and Wang 2012].

Theorem A.6 (further multiplier assertions). Let 0 < p <1 and 0 < q 61. Let
�D f�kg

1
kD0

be a sequence of compact subsets of Rn. Let dk > 0 be the diameter
of �k . If x > n.n=min.1; p; q/� 1

2
/, then there exists a constant C such that

kF�1MkFfkkLp.`q/ 6 C sup
i

kMi .di � /kHxkfkkLp.`q/

holds for all systems ffkg1kD0 2 L
p
�.`

q/ and all sequences fMk.x/g
1
kD0
�Hx .

For details of the proof, refer to [Triebel 1983]. Note that Lp�.`
q/ is defined as

ff W f D ffkg
1
kD0 � S

0; suppFfk ��k if kD 0; 1; 2; : : : and kfkkLp.`q/ <1g:

Theorem A.7. Let 0 < p; q 61 and .X; �/; .Y; �/ be two measure spaces. Let T
be a positive linear operator mapping Lp.X/ into Lq.Y / (resp. Lq;1(Y)) with
norm A. Let B be a Banach space. Then T has a B-valued extension ET that maps
Lp.X;B/ into Lq.Y; B/ (resp. Lq;1.Y; B/) with the same norm.

For details of the proof, refer to [Grafakos 2004].

Theorem A.8. Assume s 2 R, 26 p <1, 0 < q <1 and 1=pC 1=p0 D 1. Then
we have

k�kS.t/f kLp . .1Cjt j/�n.1=2�1=p/k�kf kLp0 ;

kS.t/f kM s
p;q
. .1Cjt j/�n.1=2�1=p/kf kM s

p0;q
:

For details of the proof, refer to [Wang et al. 2011].
We start with some abstract theory about complex interpolation on quasi-Banach

spaces. Let S D fz W 0 < Re z < 1g be a strip in the complex plane. Its closure
fz W 06 Re z 6 1g is denoted by S. We say that f .z/ is an S 0-analytic function in
S if the following properties are satisfied:

(a) For every fixed z 2 S, f .z/ 2 S 0.Rn/.

(b) For any ' 2 S.Rn/ with compact support, F�1'Ff .x; z/ is a uniformly
continuous and bounded function in Rn �S.

(c) For any ' 2 S.Rn/ with compact support, F�1'Ff .x; z/ is an analytic func-
tion in S for every fixed x 2 Rn.
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We denote the set of all S 0-analytic functions in S by A.S 0.Rn//. The idea we
used here is due to [Triebel 1983; Han and Wang 2012].

Definition A.9. Let A0 and A1 be quasi-Banach spaces, and 0 < � < 1. We define

F.A0; A1/D
n
'.z/ 2 A.S 0.Rn// W '.`C i t/ 2 A`; `D 0; 1; for all t 2 R;

k'.z/kF.A0;A1/ D max
`D0;1

sup
t2R

k'.`C i t/kA`

o
and

.A0; A1/� D
n
f 2 S 0 W 9'.z/ 2 F.A0; A1/;

such that f D '.�/; kf k.A0;A1/� D inf
'
k'.z/kF.A0;A1/

o
;

where the infimum is taken over all '.z/ 2 F.A0; A1/ such that '.�/D f .

The following three propositions are essentially known in [Triebel 1983; Han
and Wang 2012].

Proposition A.10. Adopt the notation in Definition A.9; then

..A0; A1/� ; k � k.A0;A1/� /

is a quasi-Banach space.

Proposition A.11. Adopt the notation in Definition A.9; then we have

kf k.A0;A1/� D inf
'

�
sup
t2R

k'.it/k1��A0
sup
t2R

k'.1C i t/k�A1

�
;

where the infimum is taken over all '.z/ 2 F.A0; A1/ such that '.�/D f .

Proposition A.12. Let T be a continuous multilinear operator from

A
.1/
0 �A

.2/
0 � � � � �A

.m/
0

to B0 and from A
.1/
1 �A

.2/
1 � � � � �A

.m/
1 to B1, satisfying

kT .f .1/; f .2/; : : : ; f .m//kB0 6 C0
mY
jD1

kf .j /k
A
.j/
0

;

kT .f .1/; f .2/; : : : ; f .m//kB1 6 C1
mY
jD1

kf .j /k
A
.j/
1

;

f .j / 2 A
.j /
0 \A

.j /
1 :

Then T is continuous from .A
.1/
0 ; A

.1/
1 /� � .A

.2/
0 ; A

.2/
1 /� � � � � � .A

.m/
0 ; A

.m/
1 /� to

.B0; B1/� with norm at most C 1��0 C �0 , provided 06 � 6 1.
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Theorem A.13 (complex interpolation). Suppose 0 < � < 1, 0 < p0; p1 < 1,
0 < q0; q1 61 and

s D .1� �/s0C �s1;
1

p
D
1��

p0
C
�

p1
;

1

q
D
1��

q0
C
�

q1
;

then we have

.N s0
p0;q0

; N s1
p1;q1

/� DN
s
p;q:

Sketch of proof. Let g 2 N s
p;q.R

n/ and gk.x/ D F�1�kFg. Let also  k.x/ DP1
`D�1 �kC`.x/ for k D 0; 1; 2; : : : (with ��1 D 0). In particular,  k.x/ D 1 if

x 2 supp �k .
Set

g�k.x/D sup
x2Rn

jgk.x�y/j

1Cjhkiyja
; x 2 Rn; a >

n

min.p; q/
:

For z 2 S, we write8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

a1.z/D sq
�
1�z

q0
C
z

q1

�
� .1� z/s0� zs1;

a2.z/D p
�
1�z

p0
C
z

p1

�
� q

�
1�z

q0
C
z

q1

�
;

a3.z/D 1�p
�
1�z

p0
C
z

p1

�
;

a4.z/D q
�
1�z

q0
C
z

q1

�
:

We put

f .z/D

1X
kD0

F�1 kF

�
hkia1.z/

� kX
`D0

jh`isg�` j
q

�a2.z/
q

kh`isg�` k
az3
Lp.Rn;`q/

g
a4.z/

k
.x/

�
:

Obviously, f .z/ 2 A.S 0/ and f .�/D g. Direct calculation shows

kf .`C i t/k
N
s`
p`;q`

. kgkN sp;q ; `D 0; 1:

This proves that N s
p;q � .N

s0
p0;q0 ; N

s1
p1;q1/� .

Conversely, let f 2 F.N s0
p0;q0 ; N

s1
p1;q1/. If ' 2 A.S 0/ such that '.�/ D f , for

some � 2 .0; 1/, we can find two positive functions�0.�; t/ and�1.�; t/ in .0; 1/�R

satisfying

jf .z/jr 6
�

1

1� �

Z
R

jf .it/jr�0.�; t/ dt

�1���1
�

Z
R

jf .1C i t/jr�1.�; t/ dt

��
;
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with 1=.1� �/
R

R
�0.�; t/ dt D 1=�

R
R
�1.�; t/ dt D 1. Taking the N s

p;q norm of
both sides and then applying Minkowski’s inequality imply that

kf kN sp;q 6 sup
t2R

khkis0F�1�kF'.it/k
1��
Lp0 .R;q0/

� sup
t2R

khkis1F�1�kF'.1C i t/k
1��
Lp1 .R;q1/

6 kf k
F.N

s0
p0;q0

;N
s1
p1;q1

/
:

This proves that .N s0
p0;q0 ; N

s1
p1;q1/� �N

s
p;q . �

Theorem A.14 (complex interpolation). Let�1<s0; s1<1, 0<p.j /0 ; p
.j /
1 <1,

0 < q
.j /
0 ; q

.j /
1 61, j D 1; : : : ; m. If T is a continuous multilinear mapping from

N
s
.1/
0

p
.1/
0 ;q

.1/
0

� � � � �N
s
.m/
0

p
.m/
0 ;q

.m/
0

to N s0
p0;q0 with norm M0, and also continuous multilinear from

N
s
.1/
1

p
.1/
1 ;q

.1/
1

� � � � �N
s
.m/
1

p
.m/
1 ;q

.m/
1

to N s1
p1;q1 with norm M1, then T is continuous and multilinear from

N s.1/

p.1/;q.1/
� � � � �N s.m/

p.m/;q.m/

to N s
p;q with norm at most M 1��

0 M �
1 , provided 06 � 6 1, and

s.j / D .1� �/s
.j /
0 C �s

j
1 ;

1

p.j /
D
1� �

p
.j /
0

C
�

p
.j /
1

;
1

q.j /
D
1� �

q
.j /
0

C
�

q
.j /
1

; j D 1; : : : ; m

This theorem is a natural consequence of Proposition A.12 and Theorem A.13.

Theorem A.15. Let s 2R, 0 < p; q 61. We have:

(1) If " > 0, then
F sC"p;q1

� F sp;q2 ; BsC"p;q1
� Bsp;q2 :

(2) If p <1, then
Bsp;p^q � F

s
p;q � B

s
p;p_q:

For details of the proof, refer to [Triebel 1983].
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HYPERSURFACES WITH CONSTANT CURVATURE
QUOTIENTS IN WARPED PRODUCT MANIFOLDS

JIE WU AND CHAO XIA

We study rigidity problems for hypersurfaces with constant curvature quo-
tients H2k+1/H2k in the warped product manifolds. Here H2k is the k-th
Gauss–Bonnet curvature and H2k+1 arises from the first variation of the
total integration of H2k. Hence the quotients considered here are in general
different from σ2k+1/σ2k, where σk are the usual mean curvatures. We prove
several rigidity and Bernstein-type results for compact or noncompact hy-
persurfaces corresponding to such quotients.

1. Introduction

Let 6n−1 be a closed smooth hypersurface isometrically immersed in an n-dimen-
sional Riemannian manifold (Mn, g). Assume that 6t is a variation of 6 with the
unit outward normal vector field νt as the variational vector field. It is well known
that the first variation of the area functional Area(6t) is given by

d
dt

∣∣∣∣
t=0

Area(6t)=

∫
6

H dµ,

where H is the mean curvature of 6 with respect to the inner normal and dµ is the
area element of 6. On the other hand, it is well known that the first variation of the
total scalar curvature functional

∫
6

R dµ is given by

d
dt

∣∣∣∣
t=0

∫
6t

R dµt =

∫
6

−2
n−1∑

i, j=1

E i j hi j dµ,

where E i j
= Ri j

−
1
2 Rgi j and hi j are respectively the Einstein tensor and the second

fundamental form of 6 with respect to the inner normal in the local coordinates.
There is a natural generalization of scalar curvature, called Gauss–Bonnet cur-

vatures Lk for an integer 1 ≤ k ≤ 1
2(n − 1) for (n − 1)-dimensional Riemannian
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manifolds. Lk are intrinsic curvature functions. When n− 1 is even, the highest
order Gauss–Bonnet curvature L(n−1)/2 is exactly the Pfaffian in the Gauss–Bonnet–
Chern formula. L2 appeared first in [Lanczos 1938] and has been intensively studied
in the theory of Gauss–Bonnet gravity, which is a generalization of Einstein gravity.

The first variation of the total Gauss–Bonnet curvature functional
∫
6

Lk dµ has
been considered long time ago by Lovelock [1971]. Li [1985] also computed the
first variation of these functionals as well as the second variation for submanifolds
in the general ambient Riemannian manifolds. Recently an alternative computation
was given by Labbi [2008b]:

d
dt

∣∣∣∣
t=0

∫
6t

Lk dµt =

∫
6

−2
n−1∑

i, j=1

E i j
(k)hi j dµ,

where E i j
(k) is the generalized Einstein tensor defined by (2-1). Labbi [2008a]

referred to the critical point of
∫
6

Lk dµ as 2k-minimal submanifolds. In this sense,
the ordinary minimal submanifolds are referred as 0-minimal submanifolds.

For the ambient space Mn
= Rn , by the Gauss equation, one can verify that

Lk = (2k)!σ2k and −2
∑n−1

i, j=1 E i j
(k)hi j = (2k + 1)!σ2k+1, where σk are the usual

mean curvatures defined by the elementary symmetric functions of the principal
curvatures of associated hypersurfaces. Hence the Gauss–Bonnet curvatures Lk as
well as the integrand −2

∑n−1
i, j=1 E i j

(k)hi j appear like higher order mean curvatures.
Throughout this paper, we use the notation

H2k := Lk, H2k+1 := −2
n−1∑

i, j=1

E i j
(k)hi j ,

and call them 2k-mean curvature and (2k+ 1)-mean curvature. By convention, we
use L0 = 1. We emphasize here that in general these mean curvatures are different
from the usual ones defined by σk except H0 and H1. The 0-mean curvature H0 is
equal to 1 and the 1-mean curvature H1 is equal to the usual mean curvature H .

We will consider some rigidity problems related to H2k and H2k+1 in a class of
Riemannian manifolds: warped product manifolds. A warped product manifold
(M, g) is the product manifold of an interval and an (n−1)-dimensional Riemannian
manifold with some smooth positive warping function. Precisely,

M = [0, r̄)×λ N n−1 (0< r̄ ≤∞)

is equipped with
g = dr2

+ λ(r)2gN ,

where λ : [0, r̄)→ R+ is a smooth positive function and (N n−1, gN ) is an (n− 1)-
dimensional Riemannian manifold.
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The rigidity problems for hypersurfaces in Riemannian manifolds with constant
curvature functions are one of the central problems in the classical differential
geometry. Historically, the rigidity problems for hypersurfaces in the Euclidean
space was studied by Liebmann [1899], Hsiung [1954], Süss [1952], Alexandrov
[1956; 1957; 1958a; 1958b], Alexandrov and Volkov [1958], Reilly [1977], Ros
[1988], Korevaar [1988], etc. Recently, many works concerning the rigidity for hy-
persurfaces in warped product manifolds have appeared, see, for example, [Montiel
1999; Alías et al. 2013; Brendle 2013; Brendle and Eichmair 2013; Wu and Xia
2014] and the references therein.

In all above works, the curvature functions are related to the elementary symmet-
ric functions σk of the principal curvatures of hypersurfaces. Our concern in this
paper is the curvature functions H2k and H2k+1. In view of the Gauss equation, for
hypersurfaces in general ambient Riemannian manifolds, H2k and H2k+1 depend not
only on σk but also on the Riemannian curvature tensor of the ambient manifolds.
Therefore, except for the case that the ambient spaces are the space forms, for which
H2k and H2k+1 can be written as linear combinations of σk , one cannot express
them as pure functions on the principal curvatures of hypersurfaces.

The first attempt in which we succeed is the rigidity on the curvature quotients
H2k+1/H2k in a class of warped product manifolds. These quotients can be viewed
as a generalization of the usual mean curvature H since the case k = 0 corresponds
to H . We remark that the rigidity on the quotients of σk in a class of warped product
manifolds has been considered in [Wu and Xia 2014]. However, as mentioned before,
these two kinds of quotients have large differences in general. Many techniques
seem to be difficult to apply for the quotients H2k+1/H2k considered here.

The first main result of this paper is stated as:

Theorem 1.1. Define (Mn, g) to be an n-dimensional warped product manifold
[0, r̄)×λ N n−1 whose warped product function satisfies

(1-1) λλ′′− (λ′)2 ≥ 0 (i.e., log λ is convex).

Let 6n−1 be a closed star-shaped hypersurface in M such that the generalized
Einstein tensor E(k) is semidefinite on 6. For any integer k with 0≤ k < 1

2(n− 1)
and H2k not vanishing on6, if the curvature quotient H2k+1/H2k is a constant, then
6 is a slice {r0}× N for some r0 ∈ [0, r̄) and the constant is (n− 1− 2k) log λ(r0).

The star-shapedness means that 6 can be written as a graph over N , alternatively,
〈∂/∂r , ν〉≥0, where ν is the outer normal of6. The method to prove Theorem 1.1 is
to apply the maximum principle to an elliptic equation. This method was previously
indicated by Montiel [1999] and was used widely in [Alías and Colares 2007; Alías
et al. 2012].
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The condition (1-1) imposed on M only depends on the warped product func-
tion λ, not the fiber manifold N . We notice that the condition excludes the
usual space forms Rn,Sn

+
(hemisphere) and Hn (hyperbolic space) in which cases

λλ′′ − (λ′)2 = −1. For Rn , since the quotient H2k+1/H2k is equal to σ2k+1/σ2k ,
the result still holds; see [Korevaar 1988; Koh 2000]. We will consider the case
Sn
+

and Hn elsewhere since the proof has a different flavor. We also notice that
the condition (1-1) is satisfied by some local space forms such as [0,∞)×er Rn−1

or [0,∞) ×cosh r Rn−1. There are also nonconstant curvature manifolds which
satisfy (1-1). A typical example for which the condition (1-1) is satisfied is the
so-called Kottler–Schwarzschild spaces [0,∞)×λ N (κ), whose warped product
fact λ satisfies λ′(r)=

√

κ + λ(r)2− 2mλ(r)2−n and N (κ) is a closed space form
of the constant sectional curvature κ = 0 or −1. See Appendix for a detailed
explanation.

Note that E i j
(1) = Ri j

−
1
2 Rgi j is the Einstein tensor, so that in k = 1 case, the

semidefinite condition of E(1) is just the semidefiniteness of the Einstein tensor. In
particular, if M = Rn , one readily sees that −E(k) = 1

2(2k)!T2k , where T2k is the
2k-Newton tensor associated to the hypersurface 6, and the seminegative definite
condition of E(k) relates to 2k-convexity.

In order to extend the above result to noncompact hypersurfaces, we need a
generalization of the Omori–Yau maximum principle for the trace-type semi-elliptic
operators. The classical Omori–Yau maximum principle is initially stated for the
Laplacian1. A Riemannian manifold 6 is said to satisfy the Omori–Yau maximum
principle if for any function u ∈C2(6) with sup6 u <+∞, there exists a sequence
{pi }i∈N ⊂6 such that for each i , the following inequalities hold:

u(pi ) > sup
6

u−
1
i
, |∇u|(pi ) <

1
i
, 1u(pi ) <

1
i
.

This principle was first proved by Omori [1967] and later generalized by Yau [1975]
under the condition that the Ricci curvature is bounded from below. It has proved to
be very useful in the framework of noncompact manifolds and attracted considerable
extending works. For example, it was improved by Chen and Xin [1992] and Ratto,
Rigoli and Setti [Ratto et al. 1995] by assuming that the radial curvature decays
slower than a certain decreasing function. Recently, the essence of the Omori–Yau
maximum principle was captured by Pigola, Rigoli and Setti (see [Pigola et al. 2005,
Theorem 1.9]) that the validity of the Omori–Yau maximum principle is assured
by the existence of some nonnegative C2 function satisfying some appropriate
requirements, and thus may not necessarily depend on the curvature bounds. Also,
they discussed the generalizations for the trace-type differential operators (see
Definition 3.1) which will be used in this paper. For a detailed discussion of the
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sufficient condition to guarantee the Omori–Yau maximum principle for the trace-
type differential operators to hold in the warped product manifolds, see [Alías et al.
2013] or Section 3 below.

We have a rigidity result for noncompact hypersurfaces:

Theorem 1.2. Define (Mn, g) to be an n-dimensional warped product manifold
[0, r̄) ×λ N n−1 whose warped product function satisfies λλ′′ − (λ′)2 ≥ 0 with
equality only at isolated points. Let (6n−1, g) be a complete noncompact star-
shaped hypersurface in M , which is contained in a slab [r1, r2]×N , 0≤ r1< r2< r̄ ,
such that the generalized Einstein tensor E(k) being semidefinite on 6. Assume the
Omori–Yau maximum principle holds for the trace-type operator trg(−2E(k)∇2

g)

on 6. For an integer k with 0 ≤ k < 1
2(n− 1) and H2k not vanishing on 6, if the

curvature quotient H2k+1/H2k is a constant, then 6 is a slice {r0} × N for some
r0 ∈ [r1, r2] and the constant is (n− 1− 2k) log λ(r0).

Motivated by the analogous Bernstein type result on the quotient of the usual
mean curvatures [Aquino and de Lima 2014], we can establish a corresponding
result in our case. More precisely, instead of assuming the curvature quotient
H2k+1/H2k being constant, we can establish the rigidity result via assuming a
natural comparison inequality between H2k+1/H2k and its value on the slices.

Theorem 1.3. Define (Mn, g) to be an n-dimensional warped product manifold
[0, r̄)×λ N. Let (6n−1, g) be a complete, star-shaped hypersurface in M , which is
contained in a slab [r1, r2]× N , 0≤ r1 < r2 < r̄ , such that the generalized Einstein
tensor E(k) is semidefinite on 6. Assume that the Omori–Yau maximum principle
holds for the trace-type operator trg(−2E(k)∇2

g) on 6 and that the Gauss–Bonnet
curvature H2k is bounded by two positive constants, i.e., 0< C1 ≤H2k ≤ C2. If

H2k+1

H2k
≤ (n− 1− 2k)

λ′(r)
λ(r)

and |∇gr |g ≤ inf
6

(
(n− 1− 2k)

λ′(r)
λ(r)
−

H2k+1

H2k

)
,

then the hypersurface 6 is a slice {r0}×M for some r0 ∈ [r1, r2].

We remark that we do not assume the log-convexity of the warped product
function for Theorem 1.3.

2. Preliminaries

In this section, we first recall the work of [Lovelock 1971] on the generalized
Einstein tensors and Gauss–Bonnet curvatures. Throughout this paper, we use the
notation Ri jkl , Ri j and R to indicate the Riemannian 4-tensor, the Ricci tensor in
local coordinates and the scalar curvature respectively. We use the metric g to lower
or raise an index and adopt the Einstein summation convention: repeated upper and
lower indices will automatically be summed unless otherwise noted.
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For an (n− 1)-dimensional Riemannian manifold (6n−1, g), the Einstein tensor
Ei j = Ri j−

1
2 Rgi j is very important in theoretical physics. It is a conversed quantity,

i.e.,
∇ j E j

i = 0,

where ∇ is the covariant derivative with respect to the metric g.
Lovelock [1971] studied the classification of tensors A satisfying

(i) Ai j
= A j i , i.e, A is symmetric.

(ii) Ai j
= Ai j (g, ∂g, ∂2g).

(iii) ∇ j Ai j
= 0, i.e., A is divergence-free.

(iv) Ai j is linear in the second derivatives of g.

It is clear that the Einstein tensor Ei j satisfies all above conditions. Lovelock
classified all 2-tensors satisfying (i)–(iii). For an integer 0≤ k ≤ 1

2(n− 1), let us
define a 2-tensor E(k) locally by

(2-1) E i j
(k) := −

1
2k+1 gl jδ

i i1i2···i2k−1i2k
l j1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1i2k

j2k−1 j2k .

Here the generalized Kronecker delta is defined by

δ
j1 j2··· jr
i1i2···ir

= det


δ

j1
i1
δ

j2
i1
· · · δ

jr
i1

δ
j1
i2
δ

j2
i2
· · · δ

jr
i2

...
...
. . .

...

δ
j1
ir
δ

j2
ir
· · · δ

jr
ir

 .
One can check that E(k) satisfies (i)–(iii). Lovelock proved that any 2-tensor
satisfying (i)–(iii) has the form ∑

k

αk E(k),

with certain constants αk , k ≥ 0. The E(k) are called the generalized Einstein
tensors.

For an integer 0≤ k ≤ 1
2(n−1), the Gauss–Bonnet curvatures Lk are defined by

(2-2) Lk :=
1
2k δ

i1i2···i2k−1i2k
j1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1i2k

j2k−1 j2k .

When 2k = n − 1, Lk is the Euler density. When k < 1
2(n − 1), Lk is called the

dimensional continued Euler density in physics. We set E(0) =−1
2 g and L0 = 1. It

is clear from the definitions (2-1) and (2-2) that

(2-3) trg(E(k)) := E i j
(k)gi j =−

n− 1− 2k
2

Lk .
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It is easy to see that (E(1))i j = Ri j −
1
2 Rgi j is the Einstein tensor and L1 = R is

the scalar curvature. One can also check that

E i j
(2) = 2R Ri j

− 4Ris Rs
j
− 4Rsl Rsil j

+ 2Ri
klm R jklm

−
1
2 gi j L2,

and
L2 =

1
4δ

i1i2i3i4
j1 j2 j3 j4 R j1 j2

i1i2 R j3 j4
i3i4 = Ri jsl Ri jsl

− 4Ri j Ri j
+ R2.

In [Lovelock 1971], the author proved that the first variational formula for the
total Gauss–Bonnet curvature functional is given in terms of the generalized Einstein
tensor. It was also presented in [Li 1985; Labbi 2008b], although with different
notation and formalism. For the convenience of readers, we include a proof here.

Proposition 2.1 [Lovelock 1971]. Let (6n−1, g) be a smooth closed manifold.
Assume that gt is a variation of g with ∂

∂t

∣∣
t=0 gi j = vi j for a symmetric 2-tensor v,

then

(2-4)
d
dt

∣∣∣∣
t=0

∫
6t

Lk dµt =

∫
6

−E i j
(k)vi j dµ.

In particular, if (6n−1, g) is a closed, smooth hypersurface immersed in an n-
dimensional Riemannian manifold (Mn, ḡ) and the variational vector field is given
by the outward unit normal ν, then

(2-5)
d
dt

∣∣∣∣
t=0

∫
6t

Lk dµt =

∫
6

−2E i j
(k)hi j dµ.

where hi j denotes the second fundamental form of 6 with respect to −ν.

Proof. By the simple fact that d
dt

∣∣
t=0 dµt =

1
2 trg v dµ and the definition of Lk , we

compute

(2-6)

d
dt

∣∣∣∣
t=0

∫
6t

Lk dµt =

∫
6

d
dt

∣∣∣∣
t=0

Lkdµ+
∫
6

1
2 Lk trg v dµ

=

∫
6

k P i j
(k)sl

d
dt

∣∣∣∣
t=0

Ri j
sl dµ+

∫
6

1
2 Lk trg v dµ,

where the 4-tensor P(k) is given by

(2-7) Pstl j
(k) :=

1
2k δ

i1i2···i2k−3i2k−2st
j1 j2··· j2k−3 j2k−2 j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−3i2k−2

j2k−3 j2k−2 g j2k−1l g j2k j ,

and
P i j
(k)sl
= P i j pq

(k) gspglq .

We remark that P(k) shares the same symmetry as the Riemann curvature tensor,
that is,

(2-8) Pst jl
(k) =−P ts jl

(k) =−Pstl j
(k) = P jlst

(k) .
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Furthermore, by applying the second Bianchi identity of the curvature tensor, one
can check that P(k) has the crucial property of being divergence-free (see [Ge et al.
2014, Lemma 2.2] for a proof)

(2-9) ∇s Pst jl
(k) = 0.

To calculate the first term in (2-6), we recall that if (∂/∂t)g = v, then the evolution
equation of the curvature tensor is given by (see [Chow et al. 2006, Equation (2.66)])

d
dt

Ri jsl =−
1
2(∇i∇ jvsl −∇i∇lvs j −∇s∇ jvil +∇s∇lvi j − Ri jsmv

m
l − Ri jmlv

m
s).

Then we use (2-8) and (2-9) to compute that

(2-10)
∫
6

k P i j
(k)sl

(
d
dt

∣∣∣∣
t=0

Ri j
sl
)

dµ

=

∫
6

k P i j
(k)sl

(1
2(−∇i∇ jv

sl
+∇i∇

lvs
j +∇

s
∇ jv

l
i −∇

s
∇

lvi j )

+
1
2(Ri jm

lvms
− Ri jm

svml)+ (−Ri j p
lvsp
− Ri jq

svlq)) dµ

=−

∫
6

k P i j
(k)sl

Ri jm
lvsm dµ,

where in the last equality we used (2-9), (2-8) and the simple observation that
(Ri jm

lvms
− Ri jm

svml) and (−Ri j p
lvsp
− R s

i j qv
lq) are both antisymmetric with

respect to the pair (s, l).
Going back to (2-6), we obtain that

d
dt

∣∣∣∣
t=0

∫
6t

Lk dµt =

∫
6

(−k P i js
(k) l

Ri j
ml
+

1
2 Lk gms)vms dµ.

On the other hand, from definitions (2-1), (2-2) and (2-7), it is direct to check that

Ems
(k) =−

1
2k+1 glsδ

mi1i2···i2k−1i2k
l j1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1i2k

j2k−1 j2k

=−
1

2k+1 gmsδ
mi1i2···i2k−1i2k
mj1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1i2k

j2k−1 j2k

−
2k

2k+1 gi1sδ
mi1i2···i2k−1i2k
i1 j1 j2··· j2k−1 j2k

Ri1i2
j1 j2 · · · Ri2k−1i2k

j2k−1 j2k

=−
1
2 Lk gms

+ k P i js
(k) l

Ri j
ml .

Hence we complete the proof of (2-4).
In the case that 6 is a hypersurface, one only needs to note that ∂

∂t gi j = 2hi j for
the evolving hypersurfaces. �

The second aim of this section is to give several simple facts on the warped
product manifolds. Let Mn

= [0, r̄)×λ N n−1 (0 < r̄ ≤∞) be a warped product
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manifold equipped with a Riemannian metric

g = dr2
+ λ(r)2gN .

where λ : [0, r̄)→R is a smooth positive function. Let 6 be a smooth hypersurface
in (M, g) with induced metric g. We denote by ∇ and ∇ the covariant derivatives
with respect to ḡ and g respectively. We define a vector field X on M by

X (r)= λ(r)
∂

∂r
.

Let {e1, . . . , en−1} be a local frame on 6, it is well known that X is a conformal
Killing vector field satisfying

(2-11) ∇ei X (r)= λ′(r)ei .

We denote by r the height function which is obtained by the projection of 6 in
M onto the first factor [0, r̄). Let φ(r) be a primitive of λ(r).

Proposition 2.2. The restriction of φ on 6, still denoted by φ, satisfies

(2-12) ∇i∇ jφ(r)= λ′(r)gi j −〈X, ν〉hi j .

The height function r on 6 satisfies

(2-13) ∇i∇ jr =
λ′(r)
λ(r)

gi j −
λ′(r)
λ(r)
∇ir∇ jr −〈∂r , ν〉hi j .

Consequently, we have

(2-14) −2E i j
(k)∇i∇ jφ(r)= (n− 1− 2k)λ′(r)H2k −〈X, ν〉H2k+1.

(2-15) −2E i j
(k)∇i∇ jr= (n−1−2k)

λ′(r)
λ(r)

H2k+
2λ′(r)
λ(r)

E i j
(k)∇ir∇ jr−〈∂r , ν〉H2k+1.

Proof. Using (2-11), we have

∇i∇ jφ(r)= ∇ i∇ jφ−〈∇φ(r), ν〉hi j = ∇ i X j −〈X, ν〉hi j

= λ′(r)gi j −〈X, ν〉hi j .

Equation (2-13) follows from (2-12) and

∇i∇ jr =∇i

(
1
λ(r)
∇ jφ(r)

)
=

1
λ(r)
∇i∇ jφ(r)−

λ′(r)
λ(r)
∇ir∇ jr.

For equations (2-14) and (2-15), we only need to notice that

−2E i j
(k)gi j = (n− 1− 2k)Lk = (n− 1− 2k)H2k

and
−2E i j

(k)hi j =H2k+1. �
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3. rigidity for the quotient
H2k+1

H2k
In this section, we prove our main theorems.

Proof of Theorem 1.1. Since 6 is compact, there exist points pmin, pmax ∈6 such
that the height function r attains its maximum and minimum values, i.e.,

min
6

r = r(pmin), max
6

r = r(pmax).

At these points,

∇r(pmin)=∇r(pmax)= 0,(3-1)

∇
2r(pmin)≥ 0, ∇2r(pmax)≤ 0.(3-2)

It follows from (3-1) and the star-shapedness of 6 that

(3-3) 〈∂r , ν〉(pmin)= 〈∂r , ν〉(pmax)= 1.

By using (3-1) and (3-3) in (2-15), we obtain

(3-4) −2E i j
(k)∇i∇ jr(pmin)= (n−1−2k)(log λ)′(min

6
r)H2k(pmin)−H2k+1(pmin),

(3-5) −2E i j
(k)∇i∇ jr(pmax)

= (n− 1− 2k)(log λ)′(max
6

r)H2k(pmax)−H2k+1(pmax).

We claim that the quotient H2k+1/H2k satisfies

(3-6)
min
6

(
H2k+1

H2k

)
≤ (n− 1− 2k)(log λ)′(min

6
r),

(n− 1− 2k)(log λ)′(max
6

r)≤max
6

(
H2k+1

H2k

)
.

Consider first the case that −2E i j
(k) is positive semidefinite. It follows from (3-2),

(3-4) and (3-5) that

(n− 1− 2k)(log λ)′(min
6

r)H2k(pmin)−H2k+1(pmin)≥ 0,(3-7)

(n− 1− 2k)(log λ)′(max
6

r)H2k(pmax)−H2k+1(pmax)≤ 0.(3-8)

From the fact that
−2E i j

(k)gi j = (n− 1− 2k)H2k,

together with the assumption that H2k is nonvanishing on 6, we know that H2k > 0.
Hence the claim in this case follows from (3-7) and (3-8) immediately. For the
second case that−2E i j

(k) is negative semidefinite, similar argument applies by taking
H2k < 0 into account. We finish the proof of the claim.
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Now using the assumption that log λ is convex, we obtain from (3-6) that

min
6

(
H2k+1

H2k

)
≤ (n− 1− 2k)(log λ)′(min

6
r)

≤ (n− 1− 2k)(log λ)′(max
6

r)≤max
6

(
H2k+1

H2k

)
.

Since the quotient H2k+1/H2k is constant, we have from above that

(3-9)
H2k+1

H2k
= (n− 1− 2k)(log λ)′(min

6
r)= (n− 1− 2k)(log λ)′(max

6
r),

which yields that (log λ)′(r) is a constant function on 6. Substituting (3-9) into
(2-14), we have

(3-10) −2E i j
(k)∇i∇ jφ(r)= λ(1−〈∂r , ν〉)H2k+1.

Notice that 〈∂r , ν〉 ≤ 1 and H2k+1 = cH2k does not change sign on 6. Applying
the classical maximum principle to the elliptic equation (3-10), we conclude that
φ(r) is a constant function on 6. Since φ is an increasing function with respect
to r due to the fact φ′ = λ > 0, we conclude that the height function r is a constant
function on 6, i.e., 6 is a slice {r0}× N . �

To extend the previous result to noncompact hypersurfaces, we will apply a
generalization of the Omori–Yau maximum principle for trace-type differential
operators. Consider a Riemannian manifold (6, g) and a semi-elliptic operator
L = trg(T ◦∇2

g), where T : T6→ T6 is a positive semidefinite symmetric tensor.
For simplicity we will omit the subscription g.

Definition 3.1. We say that the Omori–Yau maximum principle holds on6 for L , if
for any function u ∈C2(6) with sup6 u<+∞, there exists a sequence {pi }i∈N⊂6

such that for each i , the following holds:

u(pi ) > sup
6

u−
1
i
, |∇u|(pi ) <

1
i
, Lu(pi ) <

1
i
.

Since inf6 u = − sup6(−u), the above is equivalent to that for any function u ∈
C2(6) with inf6 u >−∞, there exists a sequence {pi }i∈N⊂6 such that for each i ,
the following holds:

u(pi ) < inf
6

u+
1
i
, |∇u|(pi ) <

1
i
, Lu(pi ) >−

1
i
.

Assume the generalized Omori–Yau maximum principle holds for the trace-type
operator L = tr(−2E(k)∇2), one can prove the analogous result for noncompact
hypersurfaces.
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Proof of Theorem 1.2. Due to the same argument as in the proof of Theorem 1.1,
we only need to prove the theorem in the case that −2E i j

(k) is positive semidefinite.
By the generalized Omori–Yau maximum principle, we have two sequences {pi }

and {qi } in 6 with properties

(i) lim
i→+∞

φ(r(pi ))= sup
6

φ(r), lim
i→+∞

φ(r(qi ))= inf
6
φ(r);

(ii) |∇φ(r)|(pi )= λ(r(pi ))|∇r |(pi ) <
1
i
, |∇φ(r)|(qi )= λ(r(pi ))|∇r |(qi ) <

1
i

;

(iii) tr(−2E(k)∇2φ(r))(pi ) <
1
i
, tr(−2E(k)∇2φ(r))(qi ) >−

1
i

.
Since φ(r) is strictly increasing due to φ′(r)= f (r) > 0, we have

lim
i→+∞

r(pi )= sup
6

r, lim
i→∞

r(qi )= inf
6

r,

and thus
lim

i→+∞
〈∂r , ν〉(pi )= lim

i→+∞
〈∂r , ν〉(qi )= 1.

Using the above facts in (2-14) and letting i→+∞, we get

(3-11) (n− 1− 2k)(log λ)′(sup
6

r)≤
H2k+1

H2k
≤ (n− 1− 2k)(log λ)′(inf

6
r).

By the assumption that (log λ)′′ ≥ 0 with equality only at isolated points, we obtain
the desired result that r is constant. That is, 6 is a slice {r0}×M . �

In the following, we discuss some sufficient condition to guarantee the generalized
Omori–Yau maximum principle to hold for6. Inspired by [Pigola et al. 2005], Alías
et al. [2013, Theorem 1 and Corollary 3] proved that the Omori–Yau maximum
principle holds for a trace-type elliptic operator L = tr(T ◦ ∇2) with positive
semidefinite T satisfying sup6 tr T <∞ on a Riemannian manifold 6, provided
that the radial sectional curvature (the sectional curvature of the 2-planes containing
∇ρ, where ρ is the distance function on 6 from a fixed point in 6) of 6 satisfies
the condition

(3-12) K rad
6 (∇ρ,∇ρ) >−G(ρ),

where G : [0,+∞)→ R is a smooth function satisfying

(3-13) G(0) > 0, G ′(t)≥ 0,
∫
+∞

0

1
√

G(t)
=+∞, lim sup

t→+∞

tG(
√

t)
G(t)

<+∞.

A special case for which (3-12) holds is that the sectional curvature of 6 is bounded
from below (one can choose G(ρ)= C(1+ ρ2), where C is a constant).

In the case of warped product manifolds, Alías et al. gave a detailed discussion
of (3-12). More precisely, they proved [ibid., Corollary 4] that for a hypersurface
6 in a slab of a warped product manifold [r1, r2] × N , (3-12) holds for L with
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positive semidefinite T satisfying sup6 tr T <∞, provided that the radial sectional
curvature of the fiber manifold N satisfies

(3-14) K rad
N (∇N ρ̂,∇N ρ̂) >−G(ρ̂),

where ρ̂ is the distance function on the fiber N from a fixed point in N and
G : [0,+∞)→ R is a smooth function satisfying the conditions listed in (3-13),
together with sup6 ‖h‖

2 <+∞ on 6. Geometrically, the condition (3-14) means
that the radial sectional curvature of the fiber manifold N has a strong quadratic
decay at infinity, that is, one can choose G(ρ)=C(1+ρ2 log2(2+ρ)) as shown in
[Chen and Xin 1992]. In particular, when N has sectional curvature bounded from
below or N is compact, (3-14) holds. As a direct result of Theorem 1.2, we have:

Corollary 3.2. Let (Mn, g) be as in Theorem 1.2. Assume that the radial sectional
curvature of N satisfies (3-14). Let 6n−1 be a complete, noncompact star-shaped
hypersurface in M which is contained in a slab [r1, r2]× N with sup6 ‖h‖

2 <+∞.
Assume −2E(k) is semidefinite on 6 and sup6 H2k < ∞ on 6. If the quotient
H2k+1/H2k is constant, then the hypersurface is a slice {r0}× N.

Following the argument close to the proof of Theorem 1.2, one may prove the
Bernstein-type result in this case.

Proof of Theorem 1.3. By the generalized Omori–Yau maximum principle to the
height function r , there exists a sequence {pi } ⊂6 such that

lim
i→∞

r(pi )= sup
6

r, lim
i→∞
|∇r |(pi )= 0, lim

i→∞
sup tr(−2E(k)∇2r)(pi )≤ 0.

It follows from the semidefiniteness of −2E(k) and the positivity of H2k that

0≤ 〈−2E(k)∇r,∇r〉 ≤ tr(−2E(k))|∇r |2 ≤ (n− 1− 2k)C2|∇r |2.

From the fact 〈∂r , ν〉
2
= 1− |∇r |2, we have

lim
i→∞
〈∂r , ν〉(pi )= 1,

and thus
lim

i→∞
〈−2E(k)∇r,∇r〉(pi )= 0.

Combining all the above facts together into (2-15), we have

0≥ lim
i→∞

sup tr(−2E(k)∇2r)(pi )≥ C1 lim
i→∞

(
(n−1−2k)

λ′(r)
λ(r)
−

H2k+1

H2k

)
(pi )≥ 0,

so that

lim
i→∞

(
(n− 1− 2k)

λ′(r)
λ(r)
−

H2k+1

H2k

)
(pi )= 0.
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From the hypothesis, we have inf6((n−1−2k)λ′(r)/λ(r)−H2k+1/H2k)= 0, and
thus |∇r | ≡ 0 on 6, which yields that 6 is a slice {r0}×M for some r0 ∈ [0, r̄). �

Appendix: Kottler–Schwarzschild manifolds

The Kottler manifolds, or Kottler–Schwarzschild manifolds, are analogues of the
Schwarzschild space in the setting of asymptotically locally hyperbolic manifolds.
For κ = 1, 0 or −1, let (N (κ), ĝ) be a closed space form of constant sectional
curvature κ . An n-dimensional Kottler–Schwarzschild manifold

Pκ,m = [ρκ,m,∞)× N (κ)

is equipped with the metric

(A-1) gκ,m =
dρ2

V 2
κ,m(ρ)

+ ρ2ĝ, Vκ,m =

√
ρ2+ κ −

2m
ρn−2 .

Let ρ0 := ρκ,m be the largest positive root of

φ(ρ) := ρ2
+ κ −

2m
ρn−2 = 0.

Remark that in (A-1), in order to have a positive root ρ0, if κ = 0 or 1, the parame-
ter m should be always positive; if κ = −1, the parameter m can be negative. In
fact, in this case, m ∈ [mc,+∞) and

mc =−
(n− 2)(n−2)/2

nn/2 .

Here the certain critical value mc comes from the following. If m ≤ 0, one can
solve the equation

φ′(ρ)= 2ρ+ (n− 2)
2m
ρn−1 = 0,

to get the root ρ1 = (−(n− 2)m)1/n . Note the fact that φ(ρ1)≤ 0, which yields

m ≥−
(n− 2)(n−2)/2

nn/2 .

By a change of variable r = r(ρ) with

r ′(ρ)=
1

Vκ,m(ρ)
, r(ρκ,m)= 0,

we can rewrite Pκ,m as a warped product manifold Pκ,m=[0,∞)×λκ N (κ) equipped
with the metric

gκ,m := ḡ := dr2
+ λκ(r)2ĝ,

where λκ : [0,∞)→ [ρκ,m,∞) is the inverse of r(ρ), i.e., λκ(r(ρ))= ρ.
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It is easy to check

λ′κ(r)= Vκ,m(ρ)=
√
κ + λκ(r)2− 2mλκ(r)2−n,

λ′′κ(r)= λκ(r)+ (n− 2)mλκ(r)1−n.

Hence
λκλ
′′

κ − (λ
′

κ)
2
=−κ + nmλ2−n

κ .

For the case κ = 0, m ≥ 0 and hence λκλ′′κ − (λ
′
κ)

2
= nmλ2−n

κ ≥ 0. For the case
κ =−1, if m ≥ 0, then λκλ′′κ − (λ

′
κ)

2
= 1+ nmλ2−n

κ > 0. If

m ∈
[
−
(n− 2)(n−2)/2

nn/2 , 0
)
,

then

λκλ
′′

κ − (λ
′

κ)
2
= 1+ nmλ2−n

κ ≥ 1+ nmρ2−n
0 ≥ 1+ nmρ2−n

1

= 1+ nm(−(n− 2)m)(2−n)/n
= 1− n(n− 2)(2−n)/n(−m)2/n

≥ 1− n(n− 2)(2−n)/n
(
(n− 2)(n−2)/2

nn/2

)2/n

= 0.

As a conclusion, the condition on the log convexity of λ holds for the Kottler–
Schwarzschild manifolds with κ = 0 and −1. We remark that the log convexity
of λ does not hold for the Kottler–Schwarzschild manifolds when κ = 1.
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celom, III”, Vestnik Leningrad. Univ. 13:7 (1958), 14–26. Translated as “Uniqueness theorems
for surfaces in the large, III” in Amer. Math. Soc. Transl. (2) 21 (1962), 389–403. MR 21 #907
Zbl 0269.53024

[Alexandrov 1958b] A. D. Alexandrov, “Teoremy edinstvennosti dl� poverhnosteĭ v
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THE FIRST TERMS IN THE EXPANSION OF
THE BERGMAN KERNEL IN HIGHER DEGREES

MARTIN PUCHOL AND JIALIN ZHU

We establish the cancellation of the first 2 j terms in the diagonal asymptotic
expansion of the restriction to the (0, 2 j)-forms of the Bergman kernel as-
sociated to the spinc Dirac operator on high tensor powers of a positive line
bundle twisted by a (not necessarily holomorphic) complex vector bundle,
over a compact Kähler manifold. Moreover, we give a local formula for the
first and the second (nonzero) leading coefficients, as well as for the third
assuming that the first two vanish.

Introduction

The Bergman kernel of a Kähler manifold endowed with a positive line bundle
L is the smooth kernel of the orthogonal projection on the kernel of the Kodaira
Laplacian �L

= ∂̄L ∂̄L ,∗
+∂̄L ,∗∂̄L . The existence of a diagonal asymptotic expansion

of the Bergman kernel associated with the p-th tensor power of L when p→+∞
and the form of the leading term were proved in [Tian 1990; Zelditch 1998; Catlin
1999]. Moreover, the coefficients in this expansion encode geometric information
about the underlying manifold, and therefore they have been studied closely: the
second and third terms were computed by Lu [2000], X. Wang [2005], L. Wang
[2003] and Ma and Marinescu [2012] in different degrees of generality (see also
the recent paper [Xu 2012]). This asymptotic analysis plays an important role in
various problems of Kähler geometry; see, for instance, [Donaldson 2001; Fine
2012]. We refer the reader to [Ma and Marinescu 2007] (henceforth abbreviated
[MM]) for a comprehensive study of the Bergman kernel and its applications. See
also the survey [Ma 2011].

In fact, Dai, Liu and Ma [Dai et al. 2006] established the asymptotic development
of the Bergman kernel in the symplectic case, using the heat kernel (see also [Ma
and Marinescu 2006]). In [Charbonneau and Stern 2011], these asymptotics in
the symplectic case have found an application in the study of the variation of
Hodge structures of vector bundles. In that setting, the Bergman kernel is the
kernel of a Kodaira-like Laplacian on a twisted bundle L ⊗ E , where E is a (not

MSC2010: 32A25, 53D50.
Keywords: Bergman kernel, quantization, asymptotic expansion.
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necessarily holomorphic) complex vector bundle. Because of that, the Bergman
kernel is no longer supported in degree 0 (unlike it did in the Kähler case), and
the asymptotic development of its restriction to the (0, 2 j)-forms is related to the
degree of ‘nonholomorphicity’ of E .

In this paper, we will show that the leading term in the asymptotics of the
restriction to the (0, 2 j)-forms of the Bergman kernel is of order pdim X−2 j and we
will compute it. That will lead to a local version of [Charbonneau and Stern 2011,
Equation (1.3)], which is the main technical result of their paper; see Remark 0.6.
After that, we will also compute the second term in the asymptotics, as well as the
third term in the case where the first two vanish.

We now give more detail about our results. Let (X, ω, J ) be a compact Kähler
manifold of complex dimension n. Let (L , hL) be a holomorphic Hermitian line
bundle on X , and (E, hE) a Hermitian complex vector bundle. We endow (L , hL)

with its Chern (i.e., holomorphic and Hermitian) connection ∇L , and (E, hE) with
a Hermitian connection ∇E , whose curvatures are RL

= (∇L)2 and RE
= (∇E)2.

Except in the beginning of Section 1A, we will always assume that (L , hL ,∇L)

satisfies the prequantization condition

(0-1) ω =

√
−1

2π
RL .

Let gT X ( · , · )=ω( · , J · ) be the Riemannian metric on T X induced by ω and J .
It induces a metric h3

0,•
on 30,•(T ∗X) :=3•(T ∗(0,1)X); see Section 1A.

Let L p
= L⊗p be the p-th tensor power of L . Let

(0-2) �0,•(X, L p
⊗ E)= C∞(X,30,•(T ∗X)⊗ L p

⊗ E)

and ∂̄L p
⊗E
: �0,•(X, L p

⊗ E)→ �0,•+1(X, L p
⊗ E) be the Dolbeault operator

induced by the (0, 1)-part of ∇E (see (1-3)). Let ∂̄L p
⊗E,∗ be its dual with respect

to the L2-product. We set (see (1-6))

(0-3) Dp =
√

2(∂̄L p
⊗E
+ ∂̄L p

⊗E,∗),

which exchanges odd and even forms.

Definition 0.1. Let

(0-4) Pp : �
0,•(X, L p

⊗ E)→ ker(Dp)

be the orthogonal projection onto the kernel of Dp. The operator Pp is called the
Bergman projection. It has a smooth kernel with respect to dvX (y), denoted by
Pp(x, y), which is called the Bergman kernel.

Remark 0.2. If E is holomorphic, then by Hodge theory and the Kodaira vanishing
theorem (see respectively [MM, Theorems 1.4.1 and 1.5.6]), we know that, for p
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large enough, Pp is the orthogonal projection C∞(X, L p
⊗ E)→ H 0(X, L p

⊗ E).
Here, by [Ma and Marinescu 2002, Theorem 1.1], we just know that

(0-5) ker(Dp �0,odd(X,L p⊗E))= 0

for p large, so that Pp : �
0,even(X, L p

⊗ E)→ ker(Dp). In particular, Pp(x, x) ∈
C∞(X,End(30,even(T ∗X)⊗ E)).

By Theorem 1.3, Dp is a Dirac operator, which enables us to apply this result:

Theorem 0.3 [Dai et al. 2006, Theorem 1.1]. There exist

(0-6) br ∈ C∞(X,End(30,even(T ∗X)⊗ E))

such that for any k ∈ N and p→+∞,

(0-7) p−n Pp(x, x)=
k∑

r=0

br (x)p−r
+ O(p−k−1),

that is, for every k, l ∈ N, there exists a constant Ck,l > 0 such that for any p ∈ N,

(0-8)
∣∣∣∣p−n Pp(x, x)−

k∑
r=0

br (x)p−r
∣∣∣∣
Cl (X)
≤ Ck,l p−k−1.

Here | · |Cl (X) is the Cl-norm for the variable x ∈ X.

To simplify the formulas, we denote by

(0-9) R= (RE)0,2 ∈�0,2(X,End(E))

the (0, 2)-part of RE (which is zero if E is holomorphic). For j ∈ J1, nK, let

(0-10) I j : 3
0,•(T ∗X)⊗ E→30, j (T ∗X)⊗ E

be the natural orthogonal projection. The first main result in this paper is:

Theorem 0.4. For any k ∈ N, k ≥ 2 j , we have when p→+∞,

(0-11) p−n I2 j Pp(x, x)I2 j =

k∑
r=2 j

I2 j br (x)I2 j p−r
+ O(p−k−1),

and moreover,

(0-12) I2 j b2 j (x)I2 j =
1

(4π)2 j

1
22 j ( j !)2

I2 j (R
j
x)(R

j
x)
∗ I2 j ,

where (R j
x)
∗ is the dual of R

j
x acting on (30,•(T ∗X)⊗ E)x .

Theorem 0.4 leads immediately to:
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Corollary 0.5. Uniformly in x ∈ X , when p→+∞, we have

(0-13) Tr((I2 j Pp I2 j )(x, x))=
1

(4π)2 j

1
22 j ( j !)2

‖R j
x‖

2 pn−2 j
+ O(pn−2 j−1).

Remark 0.6. By integrating (0-13) over X , we get

(0-14) Tr(I2 j Pp I2 j )=
1

(4π)2 j

1
22 j ( j !)2

‖R j
‖

2
L2 pn−2 j

+ O(pn−2 j−1),

which is the main technical result of [Charbonneau and Stern 2011, Equation (1.3)];
thus Corollary 0.5 can be viewed as a local version of it. The constant in (0-14)
differs from the one in [ibid.] because our conventions are not the same as theirs
(e.g., they chose ω =

√
−1RL ).

Let RE
3 := −

√
−1

∑
i RE(wi , wi ) for (w1, . . . , wn) an orthonormal frame of

T (0,1)X . Let RT X be the curvature of the Levi-Civita connection ∇T X of (X, gT X ),
and for (e1, . . . , e2n) an orthonormal frame of T X , let r X

=−
∑
i, j
〈RT X (ei , e j )ei , e j 〉

be the scalar curvature of X .
For j, k ∈ N and j ≥ k, we also define C j (k) by

(0-15) C j (k) :=
1

(4π) j

1
2kk!

1∏ j
s=k+1(2s+ 1)

,

with the convention that
∏

s∈∅ = 1.
Let ∇3

0,•
be the connection on 30,•(T ∗X) induced by ∇T X . Let ∇3

0,•
⊗E be the

connection on 30,•(T ∗X)⊗ E induced by ∇E and ∇3
0,•

, and let 13
0,•
⊗E be the

associated Laplacian. For precise definitions, see Section 1A.
For every operator A acting on a Hermitian space, we define the positive (not

necessarily definite) operator and the symmetric operator associated to A as

(0-16) Pos[A] = AA∗ and Sym[A] = A+ A∗.

Finally, to simplify the notation, we define T0( j), T1( j), T2( j) and T3( j) as:

• T0(0)= 0, and for j ≥ 1,

(0-17) T0( j)=
1
√

2π

n∑
i=0

j−1∑
k=0

I2 j (C j ( j)−C j (k))R j−k−1
x (∇3

0,•
⊗E

wi
R·)(x)Rk

x I0.
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• T1(0)= T1(1)= 0, and for j ≥ 2,

(0-18) T1( j)=
I2 j

2π

j−2∑
q=0

q∑
m=0

{
(C j ( j)−C j (q + 1))

×R j−(q+2)
x (∇3

0,•
⊗E

wi
R·)(x)Rq−m

x (∇3
0,•
⊗E

wi
R·)(x)Rm

x

+C j (m)
[ j∏

s=q+2

(
1+

1
2s

)
− 1

]
×R j−(q+2)

x (∇3
0,•
⊗E

wi
R·)(x)Rq−m

x (∇3
0,•
⊗E

wi
R·)(x)Rm

x

}
I0,

• T2(0)= 0, and for j ≥ 1,

(0-19) T2( j)=
1

4π
I2 j

j−1∑
k=0

{
(C j (k)−C j ( j))R j−(k+1)

x (13
0,•
⊗E R·)(x)Rk

x
}

I0,

• for j ≥ 0,

(0-20) T3( j)= I2 j

j∑
k=0

R j−k
x

[
1
6

(
C j+1( j + 1)−

C j (k)
2π(2k+ 1)

)
r X

x

−
C j (k)

4π(2k+ 1)

√
−1RE

3,x

]
Rk

x I0.

Our second goal is to compute the second term in the expansion (0-11).

Theorem 0.7. We can decompose I2 j b2 j+1(x)I2 j as the sum of four terms:

(0-21) I2 j b2 j+1(x)I2 j

= Pos[T0( j)] +C j ( j)Sym[(T1( j)+ T2( j)+ T3( j))(R j
x)
∗ I2 j ].

For instance, for j = 1, using the fact that (RE
3)
∗
= RE

3, we find

(0-22) 128π3 I2b3(x)I2

=
1
9

Pos
[

I2

n∑
i=0

(∇3
0,•
⊗E

wi
R·)(x)I0

]
−

1
6

Sym[I2(1
30,•
⊗E R·)(x)R∗x I2]

−

√
−1
6

I2(RE
3Rx R∗x+Rx R∗x RE

3)I2−
2
√
−1

3
I2Rx RE

3R∗x I2−
r X

x

4
I2Rx R∗x I2.

The last goal of this paper is to compute the third term in the expansion (0-11),
assuming that the first two vanish.

Theorem 0.8. Let j ∈ J1, nK. If

(0-23) I2 j b2 j (x)I2 j = I2 j b2 j+1(x)I2 j = 0,
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then T3 equals

(0-24) T ′3 ( j) := −
√
−1I2 j

j∑
k=0

C j (k)
4π(2k+ 1)

R j−k
x RE

3,x Rk
x I0,

and

(0-25) I2 j b2 j+2(x)I2 j = Pos[T1( j)+ T2( j)+ T ′3 ( j)].

Theorems 0.4, 0.7 and 0.8 yield to:

Corollary 0.9. We have

(0-26) I2 j Pp(x, x)I2 j = O(pn−2 j−3)⇐⇒


R

j
x = 0,

T0( j)= 0,
T1( j)+ T2( j)+ T ′3 ( j)= 0.

This paper is organized as follows. In Section 1 we compute the square of Dp

and use a local trivialization to rescale it, and then give the Taylor expansion of
the rescaled operator. In Section 2, we use this expansion to give a formula for the
coefficients br appearing in (0-7), which will lead to a proof of Theorem 0.4. In
Section 3, we prove Theorem 0.7 using the formula for br . Finally, in Section 4,
we prove Theorem 0.8 using the techniques and results of the preceding sections.

In this whole paper, when an index variable appears twice in a single term, it
means that we are summing over all its possible values.

1. Rescaling D2
p and Taylor expansion

In this section, we follow the method of [MM, Chapter 4] that enables to prove the
existence of br in (0-7) in the case of a holomorphic vector bundle E , and that still
applies here (as pointed out in [MM, Section 8.1.1]). Then, in Sections 2 and 3, we
will use this approach to understand I2 j br I2 j and prove Theorems 0.4 and 0.7.

In Section 1A, we will first prove Theorem 1.3, and then give a formula for the
square of Dp, which will be the starting point of our approach.

In Section 1B, we will rescale the operator D2
p to get an operator Lt , and then

give the Taylor expansion of the rescaled operator.
In Section 1C, we will study more precisely the limit operator L0.

1A. The square of Dp. For further details on the material of this subsection, the
lector can read [MM]. First of all let us give some notation.

The Riemannian volume form of (X, gT X ) is given by dvX = ω
n/n!. We will

denote by 〈 · , · 〉 the C-bilinear form on T X ⊗C induced by gT X .
For the rest of Section 1A, we will fix (w1, . . . , wn) a local orthonormal frame of

T (1,0)X with dual frame (w1, . . . , wn). Then (w1, . . . , wn) is a local orthonormal
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frame of T (0,1)X whose dual frame is denoted by (w1, . . . , wn), and the vectors

(1-1) e2 j−1 =
1
√

2
(w j +w j ) and e2 j =

√
−1
√

2
(w j −w j )

form a local orthonormal frame of T X .
We choose the Hermitian metric h3

0,•
on 30,•(T ∗X) :=3•(T ∗(0,1)X) such that

{w j1 ∧ · · · ∧w jk : 1≤ j1 < · · ·< jk ≤ n} is an orthonormal frame of 30,•(T ∗X).
For any Hermitian bundle (F, hF ) over X , let C∞(X, F) be the space of smooth

sections of F . It is endowed with the L2-Hermitian metric

(1-2) 〈s1, s2〉 =

∫
X
〈s1(x), s2(x)〉hF dvx(x).

The corresponding norm will be denoted by ‖ · ‖L2 , and the completion of C∞(X, F)
with respect to this norm by L2(X, F).

Let ∂̄E be the Dolbeault operator of E . It is the (0, 1)-part of the connection ∇E

(1-3) ∂̄E
:= (∇E)0,1 : C∞(X, E)→ C∞(X, T ∗(0,1)X ⊗ E).

We extend it to get an operator

(1-4) ∂̄E
: �0,•(X, E)→�0,•+1(X, E)

by the Leibniz formula: for s ∈ C∞(X, E) and α ∈ C∞(X,30,•(T ∗X)) homoge-
neous,

(1-5) ∂̄E(α⊗ s)= (∂̄α)⊗ s+ (−1)degαα⊗ ∂̄E s.

We can now define the operator

(1-6) DE
=
√

2(∂̄E
+ ∂̄E ,∗) : �0,•(X, E)→�0,•(X, E),

where the dual is taken with respect to the L2-norm associated with the Hermitian
metrics h3

0,•
and hE .

Let∇3(T
∗X) be the connection on3(T ∗X) induced by the Levi-Civita connection

∇
T X of X . Since X is Kähler, ∇T X preserves T (0,1)X and T (1,0)X . Thus, it induces

a connection ∇T ∗(0,1)X on T ∗(0,1)X , and then a Hermitian connection ∇3
0,•

on
30,•(T ∗X). We then have that for any α ∈ C∞(X,30,•(T ∗X)),

(1-7) ∇
30,•
α =∇3(T

∗X)α.

Note the important fact that ∇3(T
∗X) preserves the bi-grading on 3•,•(T ∗X).

Let ∇3
0,•
⊗E
:=∇

30,•
⊗1+1⊗∇E be the connection on30,•(T ∗X)⊗E induced

by ∇3
0,•

and ∇E .
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Proposition 1.1. On �0,•(X, E), we have

(1-8)
∂̄E
= w j

∧∇
30,•
⊗E

w j
,

∂̄E,∗
=−iw j∇

30,•
⊗E

w j
.

Proof. We still denote by ∇E the extension of the connection ∇E to �•,•(X, E)
by the usual formula ∇E(α⊗ s)= dα⊗ s+ (−1)degαα∧∇E s for s ∈ C∞(X, E)
and α ∈ C∞(X,3(T ∗X)) homogeneous. We know that d = ε ◦ ∇3(T

∗X) where
ε is the exterior multiplication (see [MM, Equation (1.2.44)]), so we get that
∇

E
= ε ◦∇3(T

∗X)⊗E . Using (1-7), it follows that

∂̄E
= (∇E)0,1 = w j

∧∇
30,•
⊗E

w j
,

which is the first part of (1-8).
The second part of our proposition follows classically from the first by exactly

the same computation as in [MM, Lemma 1.4.4]. �

Definition 1.2. Let v=v1,0
+v0,1

∈T X=T (1,0)X⊕T (0,1)X , and v̄(0,1),∗∈T ∗(0,1)X
the dual of v1,0 for 〈 · , · 〉. We define the Clifford action of T X on 30,•(T ∗X) by

(1-9) c(v)=
√

2(v̄(0,1),∗ ∧ −iv0,1).

We verify easily that for u, v ∈ T X ,

(1-10) c(u)c(v)+ c(v)c(u)=−2〈u, v〉,

and that for any skew-adjoint endomorphism A of T X ,

(1-11) 1
4〈Aei , e j 〉c(ei )c(e j )=−

1
2〈Aw j , w j 〉+ 〈Aw`, wm〉w

m
∧ iw`

+
1
2〈Aw`, wm〉iw` iwm +

1
2〈Aw`, wm〉w

`
∧wm

∧ .

Let ∇det be the Chern connection of det(T (1,0)X) :=3n(T (1,0)X), and ∇Cl the
Clifford connection on 30,•(T ∗X) induced by ∇T X and ∇det (see [MM, Equa-
tion (1.3.5)]). We also denote by ∇Cl the connection on 30,•(T ∗X)⊗ E induced
by ∇Cl and ∇E . By [loc. cit.], (1-11) and the fact that ∇det is holomorphic, we get

(1-12) ∇
Cl
=∇

30,•
.

Let Dc,E be the associated spinc Dirac operator

(1-13) Dc,E
=

2n∑
j=1

c(e j )∇
Cl
e j
: �0,•(X, E)→�0,•(X, E).

By (1-8) and (1-12), we have:

Theorem 1.3. DE is equal to the spinc Dirac operator Dc,E acting on �0,•(X, E).
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Remark 1.4. Note that all the results proved in the beginning of this subsection
hold without assuming the prequantization condition (0-1), but from now on we
will use it.

Let (F, hF ) be a Hermitian vector bundle on X and let ∇F be a Hermitian con-
nection on F . Then the Bochner Laplacian 1F acting on C∞(X, F) is defined by

(1-14) 1F
=−

2n∑
j=1

((∇F
e j
)2−∇F

∇T X
e j

e j
).

On �0,•(X), we define the number operator N by

(1-15) N �0, j (X) = j,

and we also denote by N the operator N ⊗ 1 acting on �0,•(X, F).
The bundle L p is endowed with the connection ∇L p

induced by ∇L (which is
also its Chern connection). Let ∇L p

⊗E
:= ∇

L p
⊗ 1+ 1⊗∇E be the connection on

L p
⊗ E induced by ∇L and ∇E . We will denote

(1-16) Dp = DL p
⊗E .

Theorem 1.5. The square of Dp is given by

(1-17) D2
p =1

30,•
⊗L p
⊗E
− RE(w j , w j )− 2πpn+ 4πpN

+ 2(RE
+

1
2 Rdet)(w`, wm)w

m
∧ iw` + RE(w`, wm)iw` iwm

+ RE(w`, wm)w
`
∧wm .

Proof. By Theorem 1.3, we can use [MM, Theorem 1.3.5]

(1-18) D2
p =1

Cl
+

1
4r X
+

1
2(R

L p
⊗E
+

1
2 Rdet)(ei , e j )c(ei )c(e j ),

where r X is the scalar curvature of X . From (1-12), we see that 1Cl
=13

0,•
⊗L p
⊗E .

Moreover, r X
= 2Rdet(w j , w j ) and RL p

⊗E
= RE

+ pRL . Using the equivalent of
(1-11) for 2-forms (substituting A( · , · ) for 〈A· , · 〉) and the fact that RL and Rdet

are (1, 1)-forms, (1-18) reads

D2
p=1

30,•
⊗L p
⊗E
+

1
2 Rdet(w j , w j )−(RE(w j , w j )+pRL(w j , w j )+

1
2 Rdet(w j , w j ))

+ 2(RE
+ pRL

+
1
2 Rdet)(w`, wm)w

m
∧ iw` + RE(w`, wm)iw` iwm

+ RE(w`, wm)w
`
∧wm .

Thanks to (0-1), we have RL(w`, wm) = 2πδ`m . Moreover, N =
∑̀
w` ∧ iw` ,

thus we get Theorem 1.5. �
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1B. Rescaling D2
p. In this subsection, we rescale D2

p, but to do this we must define
it on a vector space. Therefore, we will use normal coordinates to transfer the
problem on the tangent space to X at a fixed point. Then we give a Taylor expansion
of the rescaled operator, but the problem is that each operator acts on a different
space, namely,

Ep :=3
0,•(T ∗X)⊗ L p

⊗ E,

so we must first handle this issue.
Fix x0 ∈ X . For the rest of this paper, we fix {w j } an orthonormal basis of

T (1,0)
x0 X , with dual basis {w j

}, and we construct an orthonormal basis {ei } of Tx0 X
from {w j } as in (1-1).

For ε > 0, we denote by B X (x0, ε) and BTx0 X (0, ε) the open balls in X and Tx0 X
with center x0 and 0 and radius ε. If expX

x0
is the Riemannian exponential of X , then

for ε small enough, Z ∈ BTx0 X (0, ε) 7→ expX
x0
(Z) ∈ B X (x0, ε) is a diffeomorphism,

which gives local coordinates by identifying Tx0 X with R2n via the orthonormal
basis {ei }:

(1-19) (Z1, . . . , Z2n) ∈ R2n
7→

∑
i

Zi ei ∈ Tx0 X.

From now on, we will always identify BTx0 X (0, ε) and B X (x0, ε). Note that in this
identification, the radial vector field R =

∑
i

Zi ei becomes R = Z , so Z can be
viewed as a point or as a tangent vector.

For Z ∈ BTx0 X (0, ε), we identify (L Z , hL
Z ), (EZ , hE

Z ) and (30,•
Z (T ∗X), h3

0,•

Z )

with (L x0, hL
x0
), (Ex0, hE

x0
) and (30,•(T ∗x0

X), h3
0,•

x0
) by parallel transport with respect

to the connection ∇L , ∇E and ∇3
0,•

along the geodesic ray t ∈ [0, 1] 7→ t Z . We de-
note by 0L , 0E and 03

0,•
the corresponding connection forms of ∇L , ∇E and ∇3

0,•
.

Remark 1.6. As ∇3
0,•

preserves the degree, the identification between 30,•(T ∗X)
and 30,•(T ∗x0

X) is compatible with the degree. Thus, 03
0,•

Z ∈
⊕

j End(30, j (T ∗X)).

Let SL be a unit vector of L x0 . It gives an isometry L p
x0 ' C, which induces an

isometry

(1-20) Ep,x0 ' (3
0,•(T ∗X)⊗ E)x0 =: Ex0 .

Thus, in our trivialization, D2
p acts on Ex0 , but this action may a priori depend on

the choice of SL . In fact, since the operator D2
p takes values in End(Ep,x0) which is

canonically isomorphic to End(E)x0 (by the natural identification End(L p) ' C),
all our formulas do not depend on this choice.

Let dvT X be the Riemannian volume form of (Tx0 X, gTx0 X ), and let κ(Z) be the
smooth positive function defined for |Z | ≤ ε by

(1-21) dvX (Z)= κ(Z)dvT X (Z),
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with κ(0)= 1.

Definition 1.7. We denote by ∇U the ordinary differentiation operator in the direc-
tion U on Tx0 X . For s ∈ C∞(R2n, Ex0) and t = 1/

√
p, set

(1-22)

(St s)(Z)= s(Z/t),

∇t = t S−1
t κ1/2

∇
Cl0κ−1/2St ,

∇0 =∇ +
1
2 RL

x0
(Z , ·),

Lt = t2S−1
t κ1/2 D2

pκ
−1/2St ,

L0 =−
∑

i

(∇0,ei )
2
+ 4πN − 2πn.

Let ‖ · ‖L2 be the L2-norm induced by hEx0 and dvT X . We can now state the key
result in our approach to Theorems 0.4 and 0.7:

Theorem 1.8. There exist second-order formally self-adjoint (with respect to ‖·‖L2)
differential operators Or with polynomial coefficients such that for all m ∈ N,

(1-23) Lt = L0+

m∑
r=1

trOr + O(tm+1).

Furthermore, each Or can be decomposed as

(1-24) Or =O0
r +O+2

r +O−2
r ,

where Ok
r changes the degree of the form it acts on by k.

Proof. The first part of the theorem (i.e., (1-23)) is contained in [Ma and Marinescu
2008, Theorem 1.4]. We will briefly recall how they obtained this result.

Let 8E be the smooth self-adjoint section of End(Ex0) on BTx0 X (0, ε):

(1-25) 8E =−RE(w j , w j )+ 2(RE
+

1
2 Rdet)(w`, wm)w

m
∧ iw`

+ RE(w`, wm)iw` iwm + RE(w`, wm)w
`
∧wm .

We can see that we can decompose 8E as 80
E +8

+2
E +8

−2
E , where

(1-26)
80

E = RE(w j , w j )+ 2(RE
+

1
2 Rdet)(w`, wm)w

m
∧ iw` preserves the degree,

8+2
E = RE(w`, wm)w

`
∧wm rises the degree by 2,

8−2
E = RE(w`, wm)iw` iwm lowers the degree by 2.

Using Theorem 1.5, we find that

(1-27) D2
p =1

30,•
⊗L p
⊗E
+ p(−2πn+ 4πN )+8E .
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Let gi j (Z)=gT X (ei , e j )(Z) and (gi j (Z))i j be the inverse of the matrix (gi j (Z))i j .
Let (∇T X

ei
e j )(Z)= 0k

i j (Z)ek . As in [MM, Equation (4.1.34)], by (1-22) and (1-27),
we get

(1-28)
∇t,· = κ

1/2(t Z)
(
∇·+ t03

0,•

t Z +
1
t
0L

t Z + t0E
t Z

)
κ−1/2(t Z),

Lt =−gi j (t Z)(∇t,ei∇t,e j − t0k
i j (t Z)∇t,ek )− 2πn+ 4πN + t28E(t Z).

Moreover, κ = (det(gi j ))
1/2, thus we can prove equation (1-23) as in [MM, Theo-

rem 4.1.7] by taking the Taylor expansion of each term appearing in (1-28). Note
that in [MM], every data has to be extended to Tx0 X to make the analysis work,
but as we admit the result, we do not have to worry about it and simply restrict
ourselves to a neighborhood of x0.

Now, it is clear that in the formula for Lt in (1-28), the term

(1-29) L0
t := −gi j (t Z)(∇t,ei∇t,e j − t0k

i j (t Z)∇t,ek )− 2πn+ 4πN + t280
E(t Z)

preserves the degree, because 03
0,•

does (as explained in Remark 1.6). Thus, using
(1-26) and taking Taylor expansion of Lt in (1-28), we can write

(1-30) L0
t = L0+

∞∑
r=1

trO0
r , t28±2

E (t Z)=
∞∑

r=2

trO±2
r .

From (1-30), we get (1-24).
Finally, due to the presence of the conjugation by κ1/2 in (1-22), Lt is a formally

self-adjoint operator on C∞(R2n,Ex0) with respect to ‖ · ‖L2 . So are L0 and Or . �

Recall that R= (RE)0,2 ∈�0,2(X,End(E)).

Proposition 1.9. We have

(1-31) O1 = 0.

For O2, we have the formulas

(1-32) O+2
2 =Rx0, O−2

2 = (Rx0)
∗,

and

(1-33) O0
2 =

1
3〈R

T X
x0
(Z , ei )Z , e j 〉∇0,ei∇0,e j − RE

x0
(w j , w j )−

1
6r X

x0

+(〈13 RT X
x0
(Z , ek)ek +

π
3 RT X

x0
(z, z̄)Z , e j 〉− RE

x0
(Z , e j ))∇0,e j .

Proof. For F = L , E or 30,•(T ∗X), it is known that (see, for instance, [MM,
Lemma 1.2.4])

(1-34)
∑
|α|=r

(∂α0F )x0(e j )
Zα

α!
=

1
r + 1

∑
|α|=r−1

(∂αRF )x0(Z , e j )
Zα

α!
,
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and in particular,

(1-35) 0F
Z (e j )=

1
2 RF

x0
(Z , e j )+ O(|Z |2).

Furthermore, we know from the Gauss lemma (see, e.g., [MM, Equation (1.2.19)])
that

(1-36) gi j (Z)= δi j + O(|Z |2)

This implies that

(1-37) κ(Z)= | det(gi j (Z))|1/2 = 1+ O(|Z |2).

Moreover, the second line of [MM, Equation (4.1.103)] entails

(1-38)
√
−1

2π
RL

Z (Z , e j )= 〈J Z , e j 〉+ O(|Z |3),

and thus by (1-34) and (1-38),

(1-39) 0L
Z =

1
2 RL

x0
(Z , e j )+ O(|Z |3).

Using (1-28), (1-35), (1-37) and (1-39), we see that

(1-40) ∇t =∇0+ O(t2).

Finally, using again (1-28), (1-36) and (1-40), we get O1 = 0.
Concerning O±2

2 , from (1-30), we see that

(1-41)
O+2

2 =8
+2
E (0)= RE

x0
(w`, wm)w

`
∧wm

= (RE
x0
)0,2 =Rx0,

O−2
2 =8

−2
E (0)= RE

x0
(w`, wm)iw` iwm = ((R

E
x0
)0,2)∗ = (Rx0)

∗.

Finally, by (1-29) and [MM, Equation (4.1.34)], we see that our L0
t corresponds to

Lt in [MM]. Thus, by (1-30) and [MM, Equation (4.1.31)], our O0
2 is equal to their

O2 (this is because in their case, E is holomorphic, so RE is a (1, 1)-form and there
is no term changing the degree in (∂̄L p

⊗E
+ ∂̄L p

⊗E,∗)2; but the terms preserving the
degree are the same as ours). Hence (1-33) follows from [MM, Theorem 4.1.25]. �

1C. Bergman kernel of the limit operator L0. In this subsection, we study more
precisely the operator L0.

We introduce the complex coordinates z = (z1, . . . , zn) on Cn
' R2n . Thus, we

get Z = z+ z̄, w j =
√

2∂/∂z j and w j =
√

2∂/∂ z̄ j . We will identify z to
∑

j
z j∂/∂z j

and z̄ to
∑

j
z̄ j∂/∂ z̄ j when we consider z and z̄ as vector fields.

Set

(1-42)
b j =−2∇0,∂/∂z j , b+j = 2∇0,∂/∂ z̄ j ,

b = (b1, . . . , bn), L=−
∑

i

(∇0,ei )
2
− 2πn.
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By definition, ∇0 =∇ +
1
2 RL

x0
(Z , · ) so we get

(1-43) bi =−2
∂

∂zi
+π z̄i , b+i = 2

∂

∂ z̄i
+π zi ,

and for any polynomial g(z, z̄) in z and z̄,

(1-44)
[bi , b+j ] = −4πδi j , [bi , b j ] = [b+i , b+j ] = 0,

[g(z, z̄), b j ] = 2
∂

∂z j
g(z, z̄), [g(z, z̄), b+j ] = −2

∂

∂ z̄ j
g(z, z̄).

Finally, a simple calculation shows

(1-45) L=
∑

i

bi b+i and L0 = L+ 4πN .

Recall that we denoted by ‖ · ‖L2 the L2-norm associated with hEx0 and dvT X .
For this form we have b+i = (bi )

∗, therefore L and L0 are self-adjoint.
The next theorem is proved in [MM, Theorem 4.1.20]:

Theorem 1.10. The spectrum of the restriction of L to L2(R2n) is Sp(L L2(R2n))=

4πN and an orthogonal basis of the eigenspace for the eigenvalue 4πk is

(1-46) bα
(

zβ exp
(
−
π

2
|z|2

))
with α, β ∈ Nn and

∑
i

αi = k.

In particular, an orthonormal basis of ker(L L2(R2n)) is

(1-47)
(
π |β|

β!

)1/2

zβ exp
(
−
π

2
|z|2

)
,

and thus if P(Z , Z ′) is the smooth kernel of P, the orthogonal projection from
(L2(R2n), ‖ · ‖0) onto ker(L) (where ‖ · ‖0 is the L2-norm associated to gT X

x0
) with

respect to dvT X (Z ′), we have

(1-48) P(Z , Z ′)= exp
(
−
π

2
(|z|2+ |z′|2− 2z · z̄′)

)
.

Now let P N be the orthogonal projection from (L2(R2n, Ex0), ‖ · ‖L2) onto N :=
ker(L0), and P N (Z , Z ′) be its smooth kernel with respect to dvT X (Z ′). From
(1-45), we have

(1-49) P N (Z , Z ′)= P(Z , Z ′)I0.
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2. The first coefficient in the asymptotic expansion

In this section we prove Theorem 0.4. We will proceed as follows. In Section 2A,
following [MM, Section 4.1.7], we will give a formula for br involving the Ok and
L0. In Section 2B, we will see how this formula entails Theorem 0.4.

2A. A formula for br . By Theorem 1.10 and (1-45), we know that for every λ ∈ δ
the unit circle in C, (λ−L0)

−1 exists.
Let f (λ, t) be a formal power series on t with values in End(L2(R2n, Ex0)):

(2-1) f (λ, t)=
+∞∑
r=0

tr fr (λ) with fr (λ) ∈ End(L2(R2n, Ex0)).

Consider the equation of formal power series on t for λ ∈ δ,

(2-2)
(
λ−L0−

+∞∑
r=1

trOr

)
f (λ, t)= IdL2(R2n,Ex0 )

.

We then find that

(2-3)

f0(λ)= (λ−L0)
−1,

fr (λ)= (λ−L0)
−1

r∑
j=1

O j fr− j (λ).

Thus by (1-31) and by induction,

(2-4) fr (λ)=

( ∑
r1+···+rk=r

r j≥2

(λ−L0)
−1Or1 · · · (λ−L0)

−1Ork

)
(λ−L0)

−1.

Definition 2.1. Following [MM, Equation (4.1.91)], we define Fr by

(2-5) Fr =
1

2π
√
−1

∫
δ

fr (λ) dλ,

and we denote by Fr (Z , Z ′) its smooth kernel with respect to dvT X (Z ′).

Theorem 2.2. The following equation holds:

(2-6) br (x0)= F2r (0, 0).

Proof. This formula follows from [MM, Theorem 8.1.4] as [MM, Equation (4.1.97)]
follows from [MM, Theorem 4.1.24], remembering that in our situation the Bergman
kernel Pp is not supported in degree 0. �
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2B. Proof of Theorem 0.4. Let Tr(λ)= (λ−L0)
−1Or1 · · · (λ−L0)

−1Ork (λ−L0)
−1

be the term in the sum (2-4) corresponding to r = (r1, . . . , rk). Let N⊥ be the
orthogonal of N in L2(R2n, Ex0), and P N⊥ the associated orthogonal projector. In
Tr(λ), each term (λ−L0)

−1 can be decomposed as

(2-7) (λ−L0)
−1
= (λ−L0)

−1 P N⊥
+

1
λ

P N .

Set

(2-8) L N⊥(λ)= (λ−L0)
−1 P N⊥, L N (λ)=

1
λ

P N .

By (1-45), L0 preserves the degree, and thus so do (λ−L0)
−1, L N⊥ and L N .

For η = (η1, . . . , ηk+1) ∈ {N , N⊥}k+1, let

(2-9) T η
r (λ)= Lη1(λ)Or1 · · · L

ηk (λ)Ork Lηk+1(λ).

We can decompose

(2-10) Tr(λ)=
∑

η=(η1,...,ηk+1)

T η
r (λ),

and by (2-4) and (2-5),

(2-11) F2r =
1

2π
√
−1

∑
r1+···+rk=2r
(η1,...,ηk+1)

∫
δ

T η
r (λ) dλ.

Note that L N⊥(λ) is an holomorphic function of λ, so

(2-12)
∫
δ

L N⊥(λ)Or1 · · · L
N⊥(λ)Ork L N⊥(λ) dλ= 0.

Thus, in (2-11), every nonzero term that appears contains at least one L N (λ),

(2-13)
∫
δ

T η
r (λ) dλ 6= 0 ⇒ there exists an i0 such that ηi0 = N .

Now fix k and j in N. Let s∈ L2(R2n, Ex0) be a form of degree 2 j , r ∈ (N\{0, 1})k

such that
∑

i ri = 2r and η = (η1, . . . , ηk+1) ∈ {N , N⊥}k+1 such that there is an i0

satisfying ηi0 = N . We want to find a necessary condition for I2 j T
η
r (λ)I2 j s to be

nonzero.
Suppose then that I2 j T

η
r (λ)I2 j s 6= 0. Since Lηi0 =

1
λ

P N , and N is concentrated
in degree 0, we must have

deg(Ori0
Lηi0+1(λ)Ori0+1 · · · L

ηk (λ)Ork Lηk+1(λ)I2 j s)= 0;
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but each Lηi (λ) preserves the degree, and by Theorem 1.8 each Ori lowers the
degree at most by 2, so

0= deg(Ori0
Lηi0+1(λ)Ori0+1 · · · L

ηk (λ)Ork Lηk+1(λ)I2 j s)≥ 2 j − 2(k− i0+ 1),
and thus

(2-14) 2 j ≤ 2(k− i0+ 1).

Similarly, Lη1(λ)Or1 · · · L
ηk (λ)Ork Lηk+1(λ)I2 j s must have a nonzero component

in degree 2 j and by Theorem 1.8 each Ori rises the degree at most by 2, so 2 j must
be less than or equal to the number of Ori appearing before Ori0

, that is,

(2-15) 2 j ≤ 2(i0− 1).

With (2-14) and (2-15), we find

(2-16) 4 j ≤ 2k.

Finally, since for every i , ri ≥ 2 and
∑k

i=1 ri = 2r , we have 2k ≤ 2r , and thus

(2-17) 4 j ≤ 2k ≤ 2r.

Consequently, if r < 2 j we have I2 j T
η
r (λ)I2 j = 0, and by (2-11), we find

I2 j F2r I2 j = 0. Using Theorem 2.2, we find

I2 j br I2 j = 0,

which, combined with Theorem 0.3, entails the first part of Theorem 0.4.
For the second part of this theorem, let us focus on the case r = 2 j . We also

suppose that j ≥ 1, because in the case j = 0, [MM, Equation (8.1.5)] implies that
b0(x0)= F0(0, 0)= I0P(0, 0)= I0, so Theorem 0.4 is true for j = 0.

In I2 j F4 j I2 j , there is only one term satisfying equations (2-14), (2-15) and (2-17).
First we see that (2-17) implies that r = k = 2 j and for all i , ri = 2, while (2-14)
and (2-15) imply that the i0 such that ηi0 = N is unique and equal to j . Moreover,
only O+2

2 and O−2
2 appear in I2 j F4 j I2 j , not O0

2, because the degree must decrease
by 2 j and then increase by 2 j with k = 2 j Ori available. To summarize,

(2-18) I2 j F4 j I2 j =
1

2π
√
−1

∫
δ

(
I2 j ((λ−L0)

−1 P N⊥O+2
2 ) j

×
1
λ

P N (O−2
2 (λ−L0)

−1 P N⊥) j I2 j

)
dλ

= I2 j (L0
−1 P N⊥O+2

2 ) j P N (O−2
2 L0

−1 P N⊥) j I2 j

= I2 j (L0
−1O+2

2 ) j P N (O−2
2 L0

−1) j I2 j .

Because by (1-45), L2(R2n, (30,>0(T ∗X)⊗ E)x0)⊂ N⊥, we removed the P N⊥ in
the last line.
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Let A = I2 j (L0
−1O+2

2 ) j P N . Since (O+2
2 )∗ =O−2

2 (see Proposition 1.9) and L0

is self-adjoint, the adjoint of A is A∗ = P N (O−2
2 L0

−1) j I2 j , and thus

(2-19) I2 j F4 j I2 j = AA∗.

Recall that P N
=PI0 (see (1-49)). Let s ∈ L2(R2n, Ex0); since L0 =L+ 4πN

and LPs = 0, (Ps)Rx0 is an eigenfunction of L0 for the eigenvalue 2×4π . Thus,

(2-20) L0
−1O+2

2 P N s = L0
−1O+2

2 Ps = L0
−1((Ps)Rx0)=

1
4π

1
2

Rx0Ps.

Now, an easy induction shows that

(2-21) A =
1

(4π) j

1
2× 4× · · ·× 2 j

I2 j R
j
x0

P=
1

(4π) j

1
2 j j !

I2 j R
j
x0

P.

Let A(Z , Z ′) and A∗(Z , Z ′) be the smooth kernels of A and A∗ with respect to
dvT X (Z ′). By (2-19), I2 j F4 j I2 j (0, 0)=

∫
R2n A(0, Z)A∗(Z , 0) d Z . Thanks to

(2-22)
∫

R2n
P(0, Z)P(Z , 0) d Z = (P ◦P)(0, 0)= P(0, 0)= 1

and (2-21), we find (0-12).

3. The second coefficient in the asymptotic expansion

In this section, we prove Theorem 0.7. Using (2-6), we know that

(3-1) I2 j b2 j+1 I2 j (0, 0)= I2 j F4 j+2 I2 j (0, 0).

In Section 3A, we decompose this into three terms, and then in Sections 3B and 3C
we handle them separately.

Fix j ∈ J0, nK. For every smoothing operator F acting on L2(R2n, Ex0) in this
section, we denote by F(Z , Z ′) its smooth kernel with respect to dvT X (Z ′).

3A. Decomposition of the problem. Applying inequality (2-17) with r = 2 j + 1,
we see that in I2 j F4 j+2 I2 j , the nonzero terms

∫
δ

T η
r (λ) dλ in the decomposition

(2-11) satisfy k = 2 j or k = 2 j+1. Since
∑

i ri = 4 j+2 and ri ≥ 2, we see that in
I2 j F4 j+2 I2 j there are three types of terms T η

r (λ) with nonzero integral, in which

• for k = 2 j ,
– there are 2 j − 2 Ori equal to O2 and 2 equal to O3 and we denote by I the

sum of these terms,
– there are 2 j − 1 Ori equal to O2 and 1 equal to O4 and we denote by II

the sum of these terms,

• for k = 2 j + 1,
– all the Ori are equal to O2 and we denote by III the sum of these terms.
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We thus have a decomposition

(3-2) I2 j F4 j+2 I2 j = I+ II+ III.

Remark 3.1. Note that for I and II to be nonzero, we must have j ≥ 1. Moreover,
in the first two cases, as k = 2 j , by the same reasoning as in Section 2B, (2-14)
and (2-15) imply that the i0 such that ηi0 = N is unique and equal to j , and that
only O±2

2 , O±2
3 and O±2

4 appear in I and II, not some O0
ri

.

3B. The term involving only O2.

Lemma 3.2. In any term T η
r (λ) appearing in the sum III (with nonvanishing inte-

gral), the i0 such that ηi0 = N is unique and equal to j or j + 1. If we denote by
IIIa and IIIb the sums corresponding to these two cases, we have

(3-3)

IIIa =

j∑
k=0

I2 j (L0
−1O+2

2 ) j−k(L0
−1O0

2)(L0
−1O+2

2 )k P N (O−2
2 L0

−1) j I2 j ,

IIIb = (IIIa)
∗,

III = IIIa + IIIb.

Remark 3.3. For the same reason as for (2-18), we have removed the P N⊥ in (3-3)
without getting any problem concerning the existence of L0

−1.

Proof. Fix a term T η
r (λ) appearing in the sum III with nonvanishing integral. Using

again the same reasoning as in Section 2B, we see that there exists at most two
indices i0 such that ηi0 = N , and that they are in { j, j+1}. Indeed, with only 2 j+1
Ori at our disposal, we need j of them before the first P N , and j after the last one.

Now, the only possible term with η j = η j+1 = N is

(3-4) (L0
−1O+2

2 ) j P NO0
2 P N (O−2

2 L0
−1) j .

To prove that this term is vanishing, using (1-33), [Ma and Marinescu 2012, Equa-
tions (3.13), (3.16b) and 4.1a], we see that PO0

2P= 0, and so

(3-5) P NO0
2 P N
= PO0

2PI0 = 0.

We have proved the first part of the lemma.
The second part follows from the reasoning made at the beginning of this proof,

and the facts that i0 is unique, O0
2 is self-adjoint and (L0

−1O+2
2 )∗ =O−2

2 L0
−1. �

Let us compute the term that appears in (3-3),

(3-6) IIIa,k := I2 j (L0
−1O+2

2 ) j−k(L0
−1O0

2)(L0
−1O+2

2 )k P N (O−2
2 L0

−1) j I2 j .
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With (2-21), we know that

(3-7) P N (O−2
2 L0

−1) j I2 j =
1

(4π) j

1
2 j j !

P(R j
x0
)∗ I2 j ,

and

(3-8) I2 j (L0
−1O+2

2 ) j−k(L0
−1O0

2)(L0
−1O+2

2 )k P N

=
1

(4π)k
1

2kk!
I2 j (L0

−1O+2
2 ) j−kL0

−1(O0
2Rk

x0
P)I0.

Let

(3-9) Rkm̄`q̄ =

〈
RT X

(
∂

∂zk
,
∂

∂ z̄m

)
∂

∂z`
,
∂

∂ z̄q

〉
x0

and RE
k ¯̀ = RE

x0

(
∂

∂zk
,
∂

∂ z̄`

)
.

By [ibid., Lemma 3.1], we know that

(3-10) Rkm̄`q̄ = R`m̄kq̄ = Rkq̄`m̄ = R`q̄km̄ and r X
x0
= 8Rmm̄qq̄ .

Once again, our O0
2 correspond to the O2 of [Ma and Marinescu 2012] (see

(1-33) and [ibid., Equations (3.13), (3.16b)]), so we can use [ibid., Equation (4.6)]
to get

(3-11) O0
2Rk

x0
P= ( 1

6 bmbq Rkm̄`q̄ zkz`+ 4
3 bq R`k̄kq̄ z`

−
1
3πbq Rkm̄`q̄ zkz` z̄′m + bq RE

`q̄ z`)Rk
x0

P,

Set

(3-12)
a = 1

6 bmbq Rkm̄`q̄ zkz`, b = 4
3 bq R`k̄kq̄ z`,

c =− 1
3πbq Rkm̄`q̄ zkz` z̄′m, d = bq RE

`q̄ z`.

Thanks to (1-45), (1-46) and (3-11), we find

(3-13) L0
−1O0

2Rk
x0

PI0 =

(
a

4π(2+ 2k)
+

b+ c+ d
4π(1+ 2k)

)
Rk

x0
PI0,

and by induction, (3-8) becomes

(3-14) I2 j (L0
−1O+2

2 ) j−k(L0
−1O0

2)(L0
−1O+2

2 )k P N

=
1

(4π) j+1

1
2kk!

I2 j R
j−k
x0

(
a

(2+2k) · · · (2+2 j)
+

b+ c+d
(1+2k) · · · (1+2 j)

)
Rk

x0
PI0.

Lemma 3.4. We have

(3-15)
(aRk

x0
P)(0, Z)= 1

6r X
x0

Rk
x0

P(0, Z), (bRk
x0

P)(0, Z)=− 1
3r X

x0
Rk

x0
P(0, Z),

(cRk
x0

P)(0, Z)= 0, (dRk
x0

P)(0, Z)=−2RE
qq̄Rk

x0
P(0, Z).
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Proof. This lemma is a consequence of the relations (1-44) and (3-10). For
demonstration, we will compute (bRk

x0
P)(0, Z); the other terms are similar.

(bRk
x0

P)(0, Z)= ( 4
3 bq R`k̄kq̄ z`Rk

x0
P)(0, Z)

=
4
3 R`k̄kq̄Rk

x0
((z`bq − 2δ`q)P)(0, Z)

=−
8
3 R`k̄k ¯̀R

k
x0

P(0, Z)=− 1
3r X

x0
Rk

x0
P(0, Z). �

Using (2-22), (3-6), (3-7) and (3-13), we find

(3-16) IIIa,k(0, 0)= I2 j C j ( j)R j−k
x0

[
1
6

(
C j+1( j + 1)−

C j (k)
2π(2k+ 1)

)
r X

x0

−
C j (k)

2π(2k+ 1)
RE

qq̄

]
Rk

x0
(R j

x0
)∗ I2 j .

Notice that 2RE
qq̄ = RE

x0

(√
2 ∂
∂zq
,
√

2 ∂
∂ z̄q

)
= RE

x0
(wq , wq)=

√
−1RE

3,x0
by definition.

Consequently,

(3-17) IIIa(0, 0)= I2 j C j ( j)
j∑

k=0

R j−k
x0

[
1
6

(
C j+1( j + 1)−

C j (k)
2π(2k+ 1)

)
r X

x0

−
C j (k)

4π(2k+ 1)

√
−1RE

3,x0

]
Rk

x0
(R j

x0
)∗ I2 j .

3C. The two other terms. In this subsection, we suppose that j≥1 (see Remark 3.1).
Moreover, the existence of any L0

−1 in this section follows from the reasoning
done in Remark 3.3, and this operator will be used without further precision.

Due to (1-30), we have

O+2
3 =

d
dt
8+2

E0
(t Z)

∣∣∣
t=0
= zi

∂R·

∂zi
(0)+ z̄i

∂R·

∂ z̄i
(0),(3-18)

O+2
4 =

zi z j

2
∂2R·

∂zi∂z j
(0)+ zi z̄ j

∂2R·

∂zi∂ z̄ j
(0)+

z̄i z̄ j

2
∂2R·

∂ z̄i∂ z̄ j
(0).(3-19)

The sum I can be decomposed into three subsums: Ia , Ib and Ic, in which the
two O3 appear respectively both at the left, on either side or both at the right of
P N (see Remark 3.1). As usual, we have Ic = (Ia)

∗.
In the same way, we can decompose II as IIa + IIb: in IIa the O4 appears at the

left of P N , and in IIb at the right. Once again, IIb = (IIa)
∗.

Computation of Ib(0, 0). To compute Ib, we first compute the kernel of

(3-20) Ak := I2 j (L0
−1O+2

2 ) j−k−1(L0
−1O+2

3 )(L0
−1O+2

2 )kPI0

at (0, Z).
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By (2-21) and (3-18),

(3-21) Ak = I2 j (L0
−1O+2

2 ) j−k−1(L0
−1O+2

3 )
1

(4π)k
1

2kk!
Rk

x0
PI0

=
1

(4π)k
1

2kk!
I2 j (L0

−1O+2
2 ) j−k−1L0

−1
[

zi
∂R·

∂zi
(0)+z̄i

∂R·

∂ z̄i
(0)
]

Rk
x0

PI0.

By Theorem 1.10, if s ∈ N , then zi s ∈ N , so by the same calculation as in (2-21),

(3-22)
1

(4π)k
1

2kk!

(
I2 j (L0

−1O+2
2 ) j−k−1L0

−1
[

zi
∂R·

∂zi
(0)
]

Rk
x0

PI0

)
(0, Z)

=
1

(4π) j

1
2 j j !

(
I2 j

[
R j−k−1

x0

∂R·

∂zi
(0)Rk

x0

]
zi PI0

)
(0, Z)= 0.

Now by (1-43) and the formula (1-48), we have

(3-23) (b+i P)(Z , Z ′)= 0 and (bi P)(Z , Z ′)= 2π(z̄i − z̄′i )P(Z , Z ′).

Thus,

(3-24)
1

(4π)k
1

2kk!

(
I2 j (L0

−1O+2
2 ) j−k−1L0

−1
[

z̄i
∂R·

∂ z̄i
(0)
]

Rk
x0

PI0

)
(Z , Z ′)

=
1

(4π)k
1

2kk!

(
I2 j (L0

−1O+2
2 ) j−k−1L0

−1
[
∂R·

∂ z̄i
(0)Rk

x0

](
bi

2π
+z̄′i

)
PI0

)
(Z , Z ′)

=
1

(4π)k
1

2kk!

(
I2 j (L0

−1O+2
2 ) j−k−1

[
∂R·

∂ z̄i
(0)Rk

x0

]
×

(
1

4π(2k+ 2+ 1)
bi

2π
+

1
4π(2k+ 2)

z̄′i

)
PI0

)
(Z , Z ′)

=
1

(4π) j

1
2 j j !

(
I2 j

[
R j−k−1

x0

∂R·

∂ z̄i
(0)Rk

x0

]
z̄′i PI0

)
(Z , Z ′)

+
1

(4π) j

1

2kk!
∏ j

k+1(2`+ 1)

(
I2 j

[
R j−k−1

x0

∂R·

∂ z̄i
(0)Rk

x0

]
bi

2π
PI0

)
(Z , Z ′).

For the last two lines, we used that if s ∈N , then L(bi s)=4πbi s (see Theorem 1.10).
Thus, by (0-15) and (3-21)–(3-24),

(3-25) Ak(0,Z)=
1

(4π)k
1

2kk!

(
I2 j (L0

−1O+2
2 ) j−k−1L0

−1
[̄
zi
∂R·

∂ z̄i
(0)
]

Rk
x0

PI0

)
(0,Z)

= (C j ( j)−C j (k))I2 j

[
R j−k−1

x0

∂R·

∂ z̄i
(0)Rk

x0

]
z̄i P(0, Z)I0.
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We know that (z̄i P)
∗
= zi P and

∫
Cn zm z̄qe−π |z|

2
d Z = 1

π
δmq , so

(3-26) (Ak1 Ak2
∗)(0, 0)=

1
π

I2 j

[
(C j ( j)−C j (k1))R

j−k1−1
x0

∂R·

∂ z̄i
(0)Rk1

x0

]
×

[
(C j ( j)−C j (k2))R

j−k2−1
x0

∂R·

∂ z̄i
(0)Rk2

x0

]∗
I2 j .

Finally,

(3-27) Ib(0, 0)=
1
π

I2 j

[ j−1∑
k=0

(
C j ( j)−C j (k)

)
R j−k−1

x0

∂R·

∂ z̄i
(0)Rk

x0

]
×

[ j−1∑
k=0

(
C j ( j)−C j (k)

)
R j−k−1

x0

∂R·

∂ z̄i
(0)Rk

x0

]∗
I2 j .

Computation of Ia(0, 0) and Ic(0, 0). First recall that Ic(0, 0)= (Ia(0, 0))∗, so we
just need to compute Ia(0, 0). By the definition of Ia(0, 0), for it to be nonzero, it
is necessary to have j ≥ 2, which will be assumed in this paragraph. Let

(3-28) Ak,` :=

I2 j (L0
−1O+2

2 ) j−k−`−2(L0
−1O+2

3 )(L0
−1O+2

2 )k(L0
−1O+2

3 )(L0
−1O+2

2 )`PI0,

the sum Ia(0, 0) is then given by

(3-29) Ia(0, 0)=
∫

R2n

(∑
k,`

Ak,`(0, Z)
)(

1
(4π) j

1
2 j j !

I2 j R
j
x0

PI0

)∗
(Z , 0) dvT X (Z).

In the following, we will set

(3-30) b̃i :=
bi

2π
.

Using the same method as in (1-44) and (3-22)–(3-24), we find that there exist
constants C1

k,`, C2
k,` given by

(3-31)

C1
k,` =

1
(4π)k+`+1

1
2k+`+1(k+ `+ 1)!

,

C2
k,` =

1
(4π)k+`+1

1

2``!
∏k+`+1
`+1 (2s+ 1)

,

such that
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(3-32) (L0
−1O+2

3 )(L0
−1O+2

2 )k(L0
−1O+2

3 )(L0
−1O+2

2 )`PI0

=L0
−1
{
∂R·

∂zi
(0)Rk

x0

∂R·

∂zi ′
(0)R`

x0
C1

k,`zi zi ′ +
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂zi ′
(0)R`

x0
C1

k,`zi ′(b̃i + z̄′i )

+
∂R·

∂zi
(0)Rk

x0

∂R·

∂ z̄i ′
(0)R`

x0
zi (C2

k,`b̃i ′ +C1
k,` z̄
′

i ′)

+
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂ z̄i ′
(0)R`

x0
(b̃i + z̄′i )(C

2
k,`b̃i ′ +C1

k,` z̄
′

i ′)

}
PI0

= L0
−1
{
∂R·

∂zi
(0)Rk

x0

∂R·

∂zi ′
(0)R`

x0
C1

k,`zi zi ′

+
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂zi ′
(0)R`

x0
C1

k,`

(
b̃i zi ′ +

δi i ′

π
+ zi ′ z̄′i

)
+
∂R·

∂zi
(0)Rk

x0

∂R·

∂ z̄i ′
(0)R`

x0

(
C2

k,`

(
b̃i ′zi +

δi i ′

π

)
+C1

k,`zi z̄′i ′
)

+
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂ z̄i ′
(0)R`

x0
(C2

k,`(b̃i b̃i ′+ z̄′i b̃i ′)+C1
k,`(b̃i z̄′i ′+ z̄′i z̄

′

i ′))

}
PI0,

Using Theorem 1.10, (1-44) and (3-23), we see that there exist constants C i
j,k,`,

i = 3, . . . , 10, such that

(3-33)

C3
j,k,` = C1

k,`
1

(4π) j−(k+`+1)

1∏ j
k+`+2(2s)

,

C4
j,k,` = C1

k,`
1

(4π) j−(k+`+1)

1∏ j
k+`+2(2s+ 1)

,

C5
j,k,` = C2

k,`
1

(4π) j−(k+`+1)

1∏ j
k+`+2(2s+ 1)

,

C6
j,k,` = C2

k,`
1

(4π) j−(k+`+1)

1∏ j
k+`+2(2s)

,

and

(3-34) Ak,`(0, Z)

= I2 j

(
R j−k−`−2

x0

{
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂zi ′
(0)
(

C3
j,k,`

δi i ′

π
+C4

j,k,`b̃i zi ′

)
+
∂R·

∂zi
(0)Rk

x0

∂R·

∂ z̄i ′
(0)
(

C5
j,k,`b̃i ′zi +

δi i ′

π
C6

j,k,`

)
+
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂ z̄i ′
(0)

× (C7
j,k,`b̃i b̃i ′ +C8

j,k,` z̄i b̃i ′ +C9
j,k,`b̃i z̄i ′ +C10

j,k,` z̄i z̄i ′)

}
R`

x0
PI0

)
(0, Z)
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= I2 j R
j−k−`−2
x0

{
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂zi
(0)

C3
j,k,`−C4

j,k,`

π

+
∂R·

∂zi
(0)Rk

x0

∂R·

∂ z̄i
(0)

C6
j,k,`−C5

j,k,`

π

+
∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂ z̄i ′
(0)(4C7

j,k,`− 2C8
j,k,`− 2C9

j,k,`+C10
j,k,`)z̄i z̄i ′

}
R`

x0
P(0, Z)I0.

Now with
∫

z̄i z̄i ′P(0, Z)P(Z , 0) d Z = 0, we can rewrite (3-29),

(3-35) Ia(0, 0)=
C j ( j)
π

I2 j

∑
k,`

R j−k−`−2
x0

{
(C3

j,k,`−C4
j,k,`)

∂R·

∂ z̄i
(0)Rk

x0

∂R·

∂zi
(0)

+ (C6
j,k,`−C5

j,k,`)
∂R·

∂zi
(0)Rk

x0

∂R·

∂ z̄i
(0)
}

R`
x0
(R j

x0
)∗ I2 j .

By (0-15), (3-31) and (3-33),

(3-36)

C3
j,k,` = C j ( j), C4

j,k,` = C j (k+ `+ 1),

C5
j,k,` = C j (`), C6

j,k,` = C j (`)

j∏
s=k+`+2

(
1+

1
2s

)
.

We can now write Ia(0, 0) in (3-35) more precisely as

(3-37)
C j ( j)
π

I2 j

j−2∑
q=0

q∑
m=0

{
(C j ( j)−C j (q+1))R j−(q+2)

x0

∂R·

∂ z̄i
(0)Rq−m

x0

∂R·

∂zi
(0)Rm

x0

+C j (m)
[ j∏

q+2

(
1+

1
2s

)
−1
]

R j−(q+2)
x0

∂R·

∂zi
(0)Rq−m

x0

∂R·

∂ z̄i
(0)Rm

x0

}
(R j

x0
)∗ I2 j .

Computation of II(0, 0). Recall that II(0, 0)= IIa(0, 0)+ (IIa(0, 0))∗. The compu-
tation of IIa(0, 0) is very similar to that of Ia(0, 0), only simpler. We will follow
the same method.

Let

Bk := I2 j (L0
−1O+2

2 ) j−k−1(L0
−1O+2

4 )(L0
−1O+2

2 )kPI0,

the sum IIa(0, 0) is then given by

(3-38) IIa(0, 0)=
∫

R2n

(∑
k

Bk(0, Z)
)(

1
(4π) j

1
2 j j !

I2 j R
j
x0

PI0

)∗
(Z , 0) dvT X (Z).
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Using (3-19), we can repeat what we have done for (3-32) and (3-34). We find
that there is a constant C (which we do not need to compute) such that

(3-39) Bk(0, Z)= I2 j

{
R j−(k+1)

x0

∂2R·

∂zi∂ z̄i
(0)Rk

x0

C j ( j)−C j (k)
π

+R j−(k+1)
x0

∂2R·

∂ z̄i∂ z̄i ′
(0)Rk

x0
C

z̄i z̄i ′

2

}
P(0, Z)I0.

Thus, we get

(3-40) IIa(0, 0)=
C j ( j)
π

I2 j

j−1∑
k=0

(C j ( j)−C j (k))R j−(k+1)
x0

∂2R·

∂zi∂ z̄i
(0)Rk

x0
(R j

x0
)∗ I2 j .

Conclusion. In order to conclude the proof of Theorem 0.7, we just need to put
the pieces together. But before that, to write the formulas in a more intrinsic way,
note that we trivialized 30,•(T ∗X)⊗ E with ∇3

0,•
⊗E and wi =

√
2 ∂
∂ z̄i

, so [Ma and
Marinescu 2012, Equations (5.44), (5.45)] imply

(3-41)

∂R·

∂ z̄i
(0)=

1
√

2
(∇3

0,•
⊗E

wi
R·)(x0),

∂R·

∂zi
(0)=

1
√

2
(∇3

0,•
⊗E

wi
R·)(x0),

∂2R·

∂zi∂ z̄i
(0)=−

1
4
(13

0,•
⊗E R·)(x0).

With these remarks and equations (3-3), (3-17), (3-27), (3-37), (3-40) used in
decomposition (3-2), we get Theorem 0.7.

4. The third coefficient in the asymptotic expansion when the first two vanish

In this section, we prove Theorem 0.8. Using (2-6), we know that

(4-1) I2 j b2 j+2 I2 j (0, 0)= I2 j F4 j+4 I2 j (0, 0).

Here again, we will first decompose this into several terms in Section 4A, and
then in Sections 4B, 4C and 4D we handle them separately.

Fix j ∈ J1, nK and suppose that

(4-2) I2 j b2 j I2 j (0, 0)= I2 j b2 j+1 I2 j (0, 0)= 0.

By Theorems 0.4 and 0.7, this is equivalent to

(4-3)
{

R
j
x = 0,

T0( j)= 0.

For every smoothing operator F acting on L2(R2n, Ex0) that appears in this
section, we will denote by F(Z , Z ′) its smooth kernel with respect to dvT X (Z ′).
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Moreover, recall that for every operator A we have

(4-4) Pos[A] = AA∗ and Sym[A] = A+ A∗.

4A. Decomposition of the computation. With the same reasoning as in Section 3A,
we see that the nonzero terms

∫
δ

T η
r (λ) dλ satisfy k = 2 j, 2 j + 1 or 2 j + 2 in the

decomposition (2-11) of I2 j F4 j+4 I2 j . Moreover, we can find the possible terms
by adding one term to or modifying the subscript of the terms we mentioned in
Section 3A. The list of possible terms is as follows:

(I) Terms satisfying k = 2 j + 2.
Here there are up to three indices i ∈ { j, j + 1, j + 2} such that ηi = N .

Moreover, the only O` appearing are some O2. The possibilities are now

(I-a) 2 j + 2 times O±2
2 ,

(I-a) 2 j times O±2
2 and 2 times O0

2.

(II) Terms satisfying k = 2 j + 1.
Here, there are one or two indices i ∈ { j, j+1} such that ηi = N , and there

is exactly one O0
` that appears in these terms. We regroup them in relation to

the Ori that they contain:

(II-b) 2 j times O±2
2 and 1 time O0

4,
(II-b) 2 j − 1 times O±2

2 , 1 time O0
2 and 1 time O±2

4 ,
(II-b) 2 j − 1 times O±2

2 , 1 time O±2
3 and 1 time O0

3,
(II-b) 2 j − 2 times O±2

2 , 1 time O0
2 and 2 times O±2

3 .

(III) Terms satisfying k = 2 j .
Here, the i0 such that ηi0 = N is unique and equal to j , and no O0

` appears
in these terms. We regroup them in relation to the Ori that they contain:

(III-c) 2 j − 4 times O±2
2 and 4 times O±2

3 ,
(III-c) 2 j − 3 times O±2

2 , 2 times O±2
3 and 1 time O±2

4 ,
(III-c) 2 j − 2 times O±2

2 and 2 times O±2
4 ,

(III-c) 2 j − 2 times O±2
2 , 1 time O±2

3 and 1 time O±2
5 ,

(III-c) 2 j − 1 times O±2
2 and 1 time O±2

6 .

This list seems quite long, but fortunately most of the terms will ultimately
vanish due to the fact that they are computed by means of some terms involved in
I2 j b2 j I2 j and I2 j b2 j+1 I2 j .

In the sequel, the contribution to the third coefficient of the terms of type I-a),
I-b), etc., will be denoted by TI-a), TI-b), etc.

4B. Terms of type I. We begin with an observation, whose proof is an easy exten-
sion of the computation (2-21), using the fact that R

j
x = 0.
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Lemma 4.1. For any j-tuple (a1, . . . , a j ) of positive integers, we have

(4-5) X(a1,...,a j ) := I2 j

( j∏
i=1

L0
−aiO+2

2

)
P N
= 0.

Terms of type I-a). In these terms, only some O±2
2 appear. So there is either a

unique i0 such that ηi0 = N which is then equal to j or j + 2, or exactly two such
i0 which are then j and j + 2.

Each term in the second case is a sum of terms of the form

(4-6) −X(a1,...,a j )O
−2
2 L0

−bO+2
2 X∗

(a′1,...,a
′

j )

with ai , a′k, b ∈ {1, 2} (exactly one is equal to 2). By Lemma 4.1, these terms vanish.
Now, each term in the first case is equal or adjoint to a term of the form

(4-7) I2 j

( j+2∏
i=1

L0
−1Oεi

2

)
PI0(I2 j (L0

−1O+2
2 ) j PI0)

∗,

where εi ∈ {−2,+2} (exactly one of the εi is equal to −2). By Lemma 4.1, these
terms vanish.

Finally, every term of type I-a) vanishes and TI-a) = 0.

Terms of type I-b). Using Lemma 4.1 as above, we see that the only nonzero terms
of this type satisfy the condition that before the first index i such that ηi = N and
after the last, there must be a O0

2 appearing. As a consequence, the cases where
two or three ηi are equal to N lead to vanishing terms. We now deal with the terms
where η j+1 = N and for i 6= j + 1, ηi = N⊥. Such terms are of the form

(4-8) (I2 j (L0
−1O+2

2 ) j−kL0
−1O0

2(L0
−1O+2

2 )kP)

× (I2 j (L0
−1O+2

2 ) j−k′L0
−1O0

2(L0
−1O+2

2 )k
′

P)∗,

for 0≤ k, k ′≤ j . By the computations in Section 3B, an in particular (3-16), we find

(4-9) I2 j ((L0
−1O+2

2 ) j−kL0
−1O0

2(L0
−1O+2

2 )k)PI0

= I2 j R
j−k
x

[
1
6

(
C j+1( j+1)−

C j (k)
2π(2k+ 1)

)
r X

x −
C j (k)

4π(2k+ 1)

√
−1RE

3,x

]
Rk

x PI0.

Observe that r X commutes with R and R j
= 0. So the contribution of the terms

of type I-b) is finally TI-b) = Pos[T ′3 ( j)].

4C. Terms of type II.

Terms of type II-a). In these terms, there are either only O−2
2 appearing at the right

of the first P N or only O+2
2 appearing at the left of the last P N . Either way, all

these terms vanish by Lemma 4.1. Hence TII-a) = 0.
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Terms of type II-b). For these terms, there are two possibilities.
Firstly, there are two indices i such that ηi = N , and then they are equal to j and

j + 1. In this case, either before the first P N or after the last, there appear j O+2
2

(or O−2
2 ), so all these terms vanish.

Secondly, there is a unique i0 such that ηi0 = N and it is equal to j or j + 1. We
denote by S1 (resp. S2) the sum of the terms for which i0 = j (resp. i0 = j + 1).
Then S1 = S∗2 and

(4-10) S2 =
∑
k,`

{I2 j (L0
−1O+2

2 ) j−k−1(L0
−1O+2

4 )(L0
−1O+2

2 )kPI0}

× {I2 j (L0
−1O+2

2 ) j−`L0
−1O0

2(L0
−1O+2

2 )`PI0}
∗

=

{∑
k

I2 j (L0
−1O+2

2 ) j−k−1(L0
−1O+2

4 )(L0
−1O+2

2 )kPI0

}
×

{∑
`

I2 j (L0
−1O+2

2 ) j−`L0
−1O0

2(L0
−1O+2

2 )`PI0

}∗
.

By (3-16) and (3-40) we find that the contribution of the terms of type II-b), i.e.,
S1(0, 0)+ S2(0, 0), is TII-b) = Sym[T2( j)T ′3 ( j)∗].

Terms of type II-c). The computation is the same as for terms of type II-b), except
that in the case of a unique i0 such that ηi0 = N , we must replace O+2

4 by O+2
3 and

O0
2 by O0

3 in (4-10). Recall that Ak has been defined in (3-20). By (3-25) and (4-3),
we find that the contribution of the terms of type II-c) is the symmetric operator
associated to

(4-11)
{∑

k

Ak

}{∑
`

I2 j (L
−1
0 O+2

2 ) j−`L−1
0 O0

3(L
−1
0 O+2

2 )`PI0

}∗
.

By (4-3) we get TII-c) = 0.

Terms of type II-d). Here again, we have the same possibilities concerning the
indices i such that ηi = N as for terms of types II-b) or II-c). If there are two such
indices, then they are equal to j and j + 1 and between the two corresponding P N

we will have the term O0
2. By (3-5), these terms vanish.

We now suppose that there is a unique i0 such that ηi0 = N . Then i0 = j or j+1.
As R

j
x = 0, any term in which the two O3 and the O0

2 appear on the same side of
P N will vanish. A term with one O3 at the left and one O3 at the right of P N is
equal or adjoint to

(4-12) I2 j

( j+1∏
i=1

L−1
0 Oεi

ai

)
PI0× A∗k ,
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where ai = 2 or 3 and εi = +2 except for exactly one i1 satisfying ai1 = 2 (for
which εi1 = 0). By (3-25) and (4-3), the sum of these terms vanishes.

Finally, the other possibility is that the two O3 appear on the same side of P N ,
and O0

2 on the other side. Recall that Ak,` has been defined in (3-28). The sum of
the remaining terms is equal to

(4-13) Sym
[{∑

k,`

Ak,`

}{∑
m

I2 j (L0
−1O+2

2 ) j−mL0
−1O0

2(L0
−1O+2

2 )mPI0

}∗]
.

As a result, the contribution of terms of type II-d) is TII-d) = Sym[T1( j)T ′3 ( j)∗].

4D. Terms of type III. The computations rely on similar arguments as in Sec-
tions 4B and 4C. We will therefore give the contribution of each sub-type directly.

Terms of type III-a). The contribution is TIII-a) = Pos[T1( j)].

Terms of type III-b). The contribution is TIII-b) = Sym[T1( j)T2( j)∗]

Terms of type III-c). The contribution is TIII-c) = Pos[T2( j)].

Terms of type III-d). The sum of all these terms vanishes, TIII-d) = 0.

Terms of type III-e). These terms vanish, so that TIII-e) = 0.
By all the computations in Sections 4B, 4C and 4D, we get Theorem 0.8.
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DETERMINANT RANK OF C �-ALGEBRAS

GUIHUA GONG, HUAXIN LIN AND YIFENG XUE

Dedicated to George A. Elliott on his seventieth birthday

Let A be a unital C �-algebra and let U0.A/ be the group of unitaries of
A which are path-connected to the identity. Denote by CU.A/ the clo-
sure of the commutator subgroup of U0.A/. Let i

.1;n/

A
W U0.A/=CU.A/ !

U0.Mn.A//=CU.Mn.A// be the homomorphism defined by sending u to
diag.u; 1n�1/. We study the problem of when the map i

.1;n/

A
is an isomor-

phism for all n. We show that it is always surjective and that it is injective
when A has stable rank one. It is also injective when A is a unital C�-algebra
of real rank zero, or A has no tracial state. We prove that the map is an
isomorphism when A is Villadsen’s simple AH-algebra of stable rank k > 1.
We also prove that the map is an isomorphism for all Blackadar’s unital
projectionless separable simple C �-algebras. Let A D Mn.C.X//, where X

is any compact metric space. We note that the map i
.1;n/

A
is an isomorphism

for all n. As a consequence, the map i
.1;n/

A
is always an isomorphism for any

unital C�-algebra A that is an inductive limit of the finite direct sum of C �-
algebras of the form Mn.C.X// as above. Nevertheless we show that there
is a unital C �-algebra A such that i

.1;2/

A
is not an isomorphism.

1. Introduction

Let A be a unital C�-algebra and let U.A/ be the unitary group. Denote by U0.A/
the normal subgroup which is the connected component of U.A/ containing the
identity ofA. Denote byDU.A/ the commutator subgroup ofU0.A/ and byCU.A/
the closure ofDU.A/. We will study the groupU0.A/=CU.A/. Recently this group
has become an important invariant for the structure of C�-algebras. It plays an
important role in the classification of C�-algebras (see [Elliott and Gong 1996;
Nielsen and Thomsen 1996; Elliott 1997; Thomsen 1997; Gong 2002; Elliott et al.
2007; Lin 2007; 2011; Gong et al. 2015], for example). It was shown in [Lin 2007]
that the map U0.A/=CU.A/! U0.Mn.A//=CU.Mn.A// is an isomorphism for
all n� 1 if A is a unital simple C�-algebra of tracial rank at most one (see also [Lin

Huaxin Lin is the corresponding author.
MSC2010: primary 46L06, 46L35; secondary 46L80.
Keywords: determinant rank for C�-algebras.
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2010b, Corollary 3.5]). In general, whenA has stable rank k, it was shown by Rieffel
[1987] that the map U.Mk.A//=U0.Mk.A//! U.MkCm.A//=U0.MkCm.A// is
an isomorphism for all integers m � 1. In this case U.Mk.A//=U0.Mk.A// D

K1.A/. This fact plays an important role in the study of the structure of C�-
algebras, in particular those C�-algebras of stable rank one, since it simplifies
computations when K-theory involved. Therefore it seems natural to ask when
the map i .1;n/A WU0.A/=CU.A/!U0.Mn.A//=CU.Mn.A// is an isomorphism. It
will also greatly simplify our understanding and usage of the group when i .1;n/A

is an isomorphism for all n. The main tool to study U0.Mn.A//=CU.Mn.A//

is the de la Harpe–Skandalis determinant, studied early by K. Thomsen [1995]
(henceforth abbreviated [Th]), which involves the tracial state space T .A/ of A.
On the other hand, we observe that when T .A/D∅, U0.A/=CU.A/D f0g. So we
focus our attention on the case T .A/ 6D∅. One of the authors was asked repeatedly
if the map i .1;n/A is an isomorphism when A has stable rank one.

It turns out that it is easy to see that the map i .1;n/A is always surjective for all n.
Therefore the issue is when i .1;n/A is injective.

Definition 1.1. Let A be a unital C�-algebra. Consider the homomorphism

i
.m;n/
A WU0.Mm.A//=CU.Mm.A//! U0.Mn.A//=CU.Mn.A//

(induced by u 7! diag.u; 1n�m/) for integers n � m � 1. The determinant rank
of A is defined to be

DurADminfm 2 N j i
.m;n/
A is isomorphism for all n > mg:

If no such integer exists, we set DurAD1.

We show that if A D limn!1An, then DurA � supn�1fDurAng. We prove
that DurAD 1 for all C�-algebras of stable rank one, which answers the question
mentioned above. We also show that DurAD1 for any unitalC�-algebraAwith real
rank zero. A closely related and repeatedly used fact is that the map u!uC.1�e/

is an isomorphism from U.eAe/=CU.eAe/ onto U.A/=CU.A/ when A is a unital
simple C�-algebra of tracial rank at most one and e 2 A is a projection (see [Lin
2007, Theorem 6.7; 2010b, Theorem 3.4]). We show in this note that this holds for
any simple C�-algebra of stable rank one.

Given Rieffel’s early result mentioned above, one might be led to think that, when
A has higher stable rank, or at least when AD C.X/ for higher-dimensional finite
CW complexes, DurA is perhaps large. On the other hand it was suggested (see [Th,
Section 3]) that DurAD 1 may hold for most unital simple separable C�-algebras.
We found out, somewhat surprisingly, that the determinant rank of Mn.C.X// is
always 1 for any compact metric space X and for any integer n� 1. This, together
with previous mentioned result, shows that if AD limn!1An, where An is a finite
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direct sum of C�-algebras of the form Mn.C.X//, then DurAD 1. Furthermore,
we found out that DurAD 1 for all of Villadsen’s examples of unital simple AH-
algebras A with higher stable rank. This research suggests that when A has an
abundant amount of projections then DurA is likely to be 1 (see Proposition 3.6(3)).
In fact, we prove that if A is a unital simple AH-algebra with property (SP), then
DurAD 1. On the other hand, however, we show that if A is a unital projectionless
simple C�-algebra and �A.K0.A// D Z, then DurA D 1. Furthermore, if A is
one of Blackadar’s examples of unital projectionless simple separable C�-algebras
with infinite many extremal tracial states, then DurAD 1. Indeed, it seems that it
is difficult to find any example of unital separable simple C�-algebras for which
DurA is larger than 1. Nevertheless Proposition 3.12 below provides a necessary
condition for DurAD 1. In fact, we find that a certain unital separable C�-algebra
violates this condition, which, in turn, provides an example of a unital separable
C�-algebra A such that DurA > 1.

2. Preliminaries

In this section, we list some notation and basic known facts for convenience, many
of which are taken from [Th] and other sources.

Definition 2.1. Let A be a C�-algebra. Denote by Mn.A/ the n�n matrix algebra
of over A. If A is not unital, we will use zA, the unitization of A, so suppose that A
is unital. For u in U0.A/, let Œu� be the class of u in U0.A/=CU.A/.

We view An as the set of all n� 1 matrices over A. Set

Sn.A/D

�
.a1; : : : ; an/

T
2 An

ˇ̌̌ nX
iD1

a�i ai D 1

�
;

Lgn.A/D
�
.a1; : : : ; an/

T
2 An

ˇ̌̌ nX
iD1

biai D 1 for some b1; : : : ; bn 2 A
�
:

According to [Rieffel 1983; 1987], the topological stable rank and the connected
stable rank of A are defined as

tsrADminfn 2 N j Lgm.A/ is dense in Am for all m� ng

csrADminfn 2 N j U0.Mm.A// acts transitively on Sm.A/ for all m� ng:

If no such integer exists, we set tsrAD1 and csrAD1. These notions are very
useful tools in computing K-groups of C�-algebras (see, e.g., [Rieffel 1987; Xue
2000; 2001; 2010]).

Definition 2.2. Let A be a C�-algebra. Denote by Asa (resp. AC) the set of all
self-adjoint (resp. positive) elements in A. Denote by T .A/ the tracial state space
of A. Let � 2 T .A/. We will also use the notation � for the unnormalized trace
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� ˝Trn on Mn.A/, where Trn is the standard trace for Mn.C/. Every tracial state
on Mn.A/ has the form .1=n/� .

Definition 2.3. For a; b 2 A, set Œa; b�D ab� ba. Furthermore, set

ŒA;A�D

� nX
jD1

Œaj ; bj �
ˇ̌̌
aj ; bj 2 A; j D 1; : : : ; n; n� 1

�
:

Now, let A0 denote the subset of Asa consisting of elements of the form x�y for
x; y 2Asa with xD

P1
jD1 cj c

�
j and yD

P1
jD1 c

�
j cj (convergent in norm) for some

sequence fcj g in A. By [Cuntz and Pedersen 1979], A0 is a closed subspace of Asa.

Proposition 2.4 [Cuntz and Pedersen 1979; Thomsen 1995, Section 3]. Let A be a
C�-algebra with unit 1. The following statements are equivalent:

(1) A0 D Asa.

(2) 1 2 A0.

(3) T .A/D∅.

(4) AD ŒA;A�.

(5) Asa D spanfŒa�; a� j a 2 Ag.

Proof. .1/D) .2/ is obvious.

.2/D) .3/. If T .A/ 6D∅, then there is a tracial state � on A. Since 12A0, it follows
that there is a sequence faj g inA such that bD

P1
jD1 a

�
j aj and cD

P1
jD1 aja

�
j are

convergent in A and 1D b � c. Thus, �.b/D
P1
jD1 �.a

�
j aj /D �.c/ and �.1/D

�.b� c/D 0, a contradiction since �.1/D 1.

.3/D) .1/. This follows from the proof of [Th, Lemma 3.1].

.4/ () .5/. Let a; b 2 A and write a D a1 C ia2 and b D b1 C ib2, where
a1; a2; b1; b2 2 Asa. Then

(2-1) Œa; b�D Œa1; b1�� Œa2; b2�C i Œa2; b1�C i Œa1; b2�:

Put c1 D a1C ib1, c2 D a2C ib2, c3 D a2C ib1 and c4 D a1C ib2. Then, from
(2-1), we get that

(2-2) Œa; b�D
1

2i
Œc�1 ; c1��

1

2i
Œc�2 ; c2�C

1

2
Œc�3 ; c3�C

1

2
Œc�4 ; c4�:

So, by (2-2), (4) and (5) are equivalent.

.5/D) .1/. Let x2spanfŒa�; a� ja2Ag. Then there are elements a1; : : : ; ak 2A and
positive numbers �1; : : : ;�k such that xD

Pj
iD1�i Œa

�
i ; ai ��

Pk
iDjC1�i Œa

�
i ; ai �

for some j 2 f1; : : : ; kg. Put ci D
p
�i ai , i D 1; : : : ; j and c�i D

p
�i a

�
i when
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i D j C 1; : : : ; k. Then x D
Pk
iD1 c

�
i ci �

Pk
iD1 cic

�
i 2 A0. Since A0 is closed,

we get that
Asa D spanfŒa�; a� j a 2 Ag � A0 D A0 � Asa:

.1/ D) .5/. According to the definition of A0, every element x 2 A0 has the
form x D x1 � x2, where x1 D

P1
iD1 z

�
i zi and x2 D

P1
iD1 ziz

�
i . Thus, x 2

spanfŒa�; a� j a 2 Ag and hence Asa D spanfŒa�; a� j a 2 Ag. �

Combining Proposition 2.4 with Definition 2.2, we have:

Corollary 2.5. Let A be a unital C�-algebra with A0 D Asa. Then .Mn.A//0 D

.Mn.A//sa.

Let a; b 2 Asa. Then, for any n� 1,

exp.ia/ exp.ib/
�

exp
�
�i
a

n

�
exp

�
�i
b

n

��n
2DU.A/

and exp.�i.aCb//D limn!1.exp.�ia=n/ exp.�ib=n//n by the Trotter product
formula [Masani 1981, Theorem 2.2]. So exp.ia/ exp.ib/ exp.�i.aCb//2CU.A/.
Consequently,

(2-3) Œexp.ia/�Œexp.ib/�D Œexp.i.aC b//� in U0.A/=CU.A/:

The following is taken from the proof of [Th, Lemma 3.1].

Lemma 2.6. Let a 2 Asa.

(1) If a 2 A0, then Œexp.ia/�D 0 in U0.A/=CU.A/;

(2) If T .A/ 6D∅ and �.a/D �.b/ for all � 2T .A/, then a�b2A0 and Œexp.ia/�D
Œexp.ib/� in U0.A/=CU.A/.

Combining Lemma 2.6(1) with Corollary 2.5, we have

Corollary 2.7. If T .A/D∅, then U0.Mn.A//D CU.Mn.A// for n� 1.

Definition 2.8. Let A be a unital C�-algebra with T .A/ 6D∅. Let PU n0 .A/ denote
the set of all piecewise smooth maps � W Œ0; 1�!U0.Mn.A// with �.0/D 1n, where
1n is the unit of Mn.A/. For � 2 T .A/, the de la Harpe–Skandalis function �n� on
PU n0 .A/ is given by

�n� .�.t//D
1

2�i

Z 1

0

�.� 0.t/.�.t//�/ dt for all � 2 PU n0 .A/:

Note that we use an unnormalized trace � D � ˝ Trn on Mn.A/. This gives a
homomorphism �n WPU n0 .A/!Aff.T .A//, the space of all real affine continuous
functions on T .A/.

We list some properties of �n� . � /:
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Lemma 2.9 [de la Harpe and Skandalis 1984, Lemmas 1 and 3]. Let A be a unital
C�-algebra with T .A/ 6D∅. Let �1; �2; � 2 PU n0 .A/. Then:

(1) �n� .�1.t//D�
n
� .�2.t// for all � 2 T .A/, if �1.1/D �2.1/ and

�1�
�
2 2 U0.

H.C0.S1;Mn.A///:

(2) There are y1; : : : ; yk 2 Mn.A/sa such that �n� .�.t// D
kP

jD1

�.yj / for all
� 2 T .A/ and �.1/D exp.i2�y1/ � � � exp.i2�yk/.

Definition 2.10. Let A be a C�-algebra with T .A/ 6D∅. Let Aff.T .A// be the set
of all real continuous affine functions on T .A/. Define �A WK0.A/!Aff.T .A// by

�A.Œp�/.�/D �.p/ for all � 2 T .A/;

where p 2Mn.A/ is a projection.
Define Pn.A/ to be the subgroup of K0.A/ generated by projections in Mn.A/.

Denote by �nA.K0.A// the subgroup �A.Pn.A// of �A.K0.A//. In particular,
�1A.K0.A// is the subgroup of �A.K0.A// generated by the images of projections
in A under the map �A.

Definition 2.11. Let A be a unital C�-algebra. Denote by LU n0 .A/ the set of
piecewise smooth loops in

U.GC0.S1;Mn.A///:

Then, by Bott periodicity, �n.LU n0 .A//� �A.K0.A//. Denote by

qn W Aff.T .A//! Aff.T .A//=�n.LU n0 .A//

the quotient map. Put�nDqnı�n. Since�n vanishes onLU n0 .A/, we also use�n

for the homomorphism fromU0.Mn.A// into Aff.T .A//=�n.LU n0 .A//. An impor-
tant fact that we will repeatedly use is that the kernel of �n is exactly CU.Mn.A//;

by [Th, Lemma 3.1]. In other words, if u 2 U0.Mn.A// and �n.u/ D 0, then
u 2 CU.Mn.A//.

Corollary 2.12. Let A be a unital C�-algebra and let u 2 U0.Mn.A// for n � 1.
Then there are an a 2 Asa and a v 2 CU.Mn.A// such that

uD diag.exp.i2�a/; 1n�1/v

(in the case nD 1, we define diag.exp.i2�a/; 1n�1/D exp.i2�a//.
Moreover, if there is a u 2 PU n0 .A/ with u.1/D u, we can choose a self-adjoint

element a so that OaD�n.u.t//, where Oa.�/D �.a/ for all � 2 T .A/.
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Proof. Fix a piecewise smooth path u.t/ 2 PU n0 .A/ with u.0/D 1 and u.1/D u.
By Lemma 2.9(2), there are a1; a2; : : : ; am 2Mn.A/sa such that

uD

mY
jD1

exp.i2�aj / and �n� .u.t//D �

mX
jD1

aj for all � 2 T .A/:

Put a0D
nP

jD1

aj . Write a0D .bi;j /n�n. Define aD
nP
iD1

bi;i . Then a2Asa. Moreover,

�n.diag.exp.�i2�a/; 1n�1/u/D 0:

Thus, by [Th, Lemma 3.1], diag.exp.�i2�a/; 1n�1/u 2 CU.Mn.A//. Put v D
diag.exp.�i2�a/; 1n�1/u. Then uD diag.exp.i2�a/; 1n�1/v. �

3. Determinant rank

Let A be a unital C�-algebra. Consider the homomorphism

i
.m;n/
A W U0.Mm.A//=CU.Mm.A//! U0.Mn.A//=CU.Mn.A//

for integers n�m� 1.

Proposition 3.1. Let A be a unital C�-algebra with T .A/ 6D∅. Then

i
.m;n/
A W U0.Mm.A//=CU.Mm.A//! U0.Mn.A//=CU.Mn.A//

is surjective for n�m� 1.

Proof. It suffices to show that i .1;n/A is surjective. Let u 2 U0.Mn.A//. It follows
from Corollary 2.12 that uD diag.exp.i2�a/; 1n�1/v for some a 2 Asa and v 2
CU.Mn.A//. Then i .1;n/A .Œexp.i2�a/�/D Œu�. �

Lemma 3.2. LetA be a unitalC�-algebra with T .A/ 6D∅. Assume u2U0.Mm.A//.

(1) If�n.diag.u.t/; 1n�m/2�n.LU n0 .A// for some n>m, where fu.t/ W t 2 Œ0; 1�g
is a piecewise smooth path with u.0/D 1m and u.1/D u, then, for any � > 0,
there exist a 2Mm.A/sa with kak < �, b 2Mm.A/sa, v 2 CU.Mm.A// and
w 2 LU n0 .A/ such that

(3-1) uD exp.i2�a/ exp.i2�b/v and �.b/D�n� .w.t// for all � 2 T .A/:

(2) If �m.u.t// 2 �A.K0.A// for some u 2 PUm0 .A/ with u.1/D u, then, for any
�>0, there exist a2Mm.A/sa with kak<�, b2Mm.A/sa and v2CU.Mm.A//

such that

(3-2) uD exp.i2�a/ exp.i2�b/v and Ob 2 �A.K0.A//;

where Ob.�/D �.b/ for all � 2 T .A/.
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Proof. Let � > 0. For (1), there is a w 2 LU n0 .A/ such that

(3-3) supfj�n� .u.t//��
n
� .w.t//j W � 2 T .A/g< �=3�:

There is an a1 2Mm.A/sa by Corollary 2.12 such that

(3-4) �.a1/D�
n
� .u.t//��

n
� .w.t// for all � 2 T .A/:

Combining (3-3) with [Cuntz and Pedersen 1979] and the proof of [Th, Lemma 3.1],
we can find a 2Mm.A/sa such that �.a/D �.a1/ for all � 2 T .A/ and kak< �=2� .
There is also a b 2 Asa such that �.b/D��n� .w.t// for all � 2 T .A/. Put

(3-5) v.t/D exp.�i2�bt/ exp.�i2�at/u.t/ for t 2 Œ0; 1�

and vDv.1/. Then�n.v.t//D0. It follows from [Th, Lemma 3.1] that v2CU.A/.
Then uD exp.i2�a/ exp.i2�b/v.

For (2), there are an integer n�m and projections p; q 2Mn.A/ such that (for
a piecewise smooth path fu.t/ W t 2 Œ0; 1�g with u.0/D 1n and u.1/D u)

(3-6) k�m� .u.t//� �.p/C �.q/k< � for all � 2 T .A/:

Let b 2 Mm.A/sa such that �.b/ D �.p/� �.q/ for all � 2 T .A/ (see the proof
above); there is an a 2Mm.A/sa with kak< � such that

(3-7) �.a/D�m� .u.t//� �.p/C �.q/ for all � 2 T .A/:

Let v D u exp.�i2�a/ exp.�i2�b/ and v.t/ D u.t/ exp.�i2�at/ exp.�i2�bt/.
Then �n� .v.t//D 0. It follows from [Th, Lemma 3.1] that v 2 CU.Mm.A//. �

Let A be a unital C�-algebra. Let DurA be defined as in Definition 1.1. It follows
from Corollary 2.7 that if T .A/D∅ then DurAD 1.

Proposition 3.3. Let A be a unital C�-algebra. Then, for any integer n� 1,

Dur.Mn.A//�
jDurA�1

n

k
C 1;

where bxc is the integer part of x.

Proof. Note that n.b.DurA� 1/=ncC 1/� DurA. �

Theorem 3.4. Let A be a unital C�-algebra, and I � A a closed ideal of A such
that the quotient map � W A! A=I induces the surjective map from K0.A/ onto
K0.A=I /. Then Dur.A=I /� DurA.

Proof. Let mD DurA and n > m. Let u 2 U0.Mm.A=I // be a unitary such that
diag.u; 1n�m/ 2 CU.Mn.A=I //. We will show that u 2 CU.Mm.A=I //.
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Let � > 0. By Lemma 3.2, without loss of generality we may assume that there
are a1; b1 2 .Mm.A=I //sa such that

(3-8)
uD exp.i2�a1/ exp.i2�b1/v;

v 2 CU.Mm.A=I //; ka1k< � and �.b1/D �.q1/� �.q2/;

where q1; q2 2MK.A=I / are projections for some largeK �m, for all � 2T .A=I /.
By the assumption, without loss of generality we may assume further that there
are projections p1; p2 2 MK.A/ such that ��.Œp1 � Œp2�/ D Œq1� � Œq2�, where
�� WK0.A/!K0.A=I / is induced by � . Let b2 2 .Mm.A//sa such that �.b2/D
�.p1/��.p2/ for all � 2T .A/. There exists an a2 .Mm.A//sa such that �m.a/Da1,
where �mWMm.A/!Mm.A=I / is the map induced by � . Then, by (3-8),

(3-9) �m.exp.i2�a//�m.exp.i2�b2//u� 2 CU.Mm.A=I //:

Put u1D �m.exp.i2�a//�m.exp.i2�b2//. Let wD exp.i2�b2/. Then �.w/D 0.
Since m D DurA, this implies that w 2 CU.Mm.A//. It follows that �m.w/ 2
CU.Mm.A=I //, which implies by (3-9) that dist

�
u;CU.Mm.A=I //

�
< �. �

Theorem 3.5. Let AD limn!1.An; �n/ be a unital C�-algebra, where each An
is unital. Suppose that DurAn � r for all n. Then DurA� r .

Proof. We write �n1;n2 WAn1!An2 for �n2 ı�n2�1ı� � �ı�n1 and �n1;1 WAn1!A

for the map induced by the inductive limit system. Let u 2 U0.Mr.A// such
that u1 D diag.u; 1n�r/ 2 CU.Mn.A// for some n > r . Let � > 0. There is a
v 2DU.Mn.A// such that

(3-10) ku1� vk<
�

8n
:

Write v D
QK
jD1 vj , where vj D xjyjx

�
j yj and xj ; yj 2 U0.Mn.A// for j D

1; 2; : : : ; K. Choose a large N � 1 such that there are v0 2 U0.Mr.AN // and
x0j ; y

0
j 2 U0.Mn.AN // such that

(3-11) ku��N;1.u
0/k<

�

8nK
and k�N;1.x

0
j /� xj k<

�

8nK

for j D 1; 2; : : : ; K. Then we have by (3-10) and (3-11)

(3-12)




�N;1.u01/� KY

jD1

�N;1.v
0
j /





< �

4n
;

for j D 1; 2; : : : ; K, where u01 D diag.u0; 1n�r/ and v0j D x
0
jy
0
j .x
0
j /
�.y0j /

�. Then
(3-12) implies that there is an N1 >N such that

(3-13)




�N;N1.u01/� KY

jD1

�N;N1.v
0
j /





< �

2n
:
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Put U D �N;N1.u
0/, U1 D diag.U; 1n�r/ and wj D �N;N1.v

0
j /, j D 1; 2; : : : ; K.

Note that �N1;1.U /D�N;1.u
0/. There is an a2 .Mn.AN1//sa (by (3-13)) such that

(3-14) U1 D exp.i2�a/
KY
jD1

wj and kak< 2 arcsin
�

8n
:

There is a b 2 .Mr.AN1//sa such that

(3-15) �.b/D �.a/ for all � 2 T .A/ and kbk< 2n arcsin
�

8n
:

PutW Ddiag.U exp.�i2�b/; 1n�r/; thenW 2CU.Mn.AN1//. Since DurAN1�r ,
we conclude that U exp.�i2�b/ 2 CU.Mr.AN1//. It follows that

�N1;1.U exp.�i2�b// 2 CU.Mr.A//:

However, by (3-10), (3-11), (3-15),

ku��N1;1.U exp.�i2�b//k

� ku��N;1.u
0/kCk�N1;1.U /��N1;1.U exp.�i2�b//k

<
�

8nK
Ck1� exp.�i2��N1;1.b//k<

�

8nK
C �=4 < �:

Therefore, DurA� r . �

Proposition 3.6. Let A be a unital C�-algebra with T .A/ 6D ∅. Let a 2 Asa and
put Oa.�/D �.a/ for all � 2 T .A/.

(1) If exp.2�ia/ 2 CU.A/, then Oa 2 �A.K0.A//.

(2) If u2U0.A/ and for some piecewise smooth path fu.t/ W t 2 Œ0; 1�g with u.0/D
1 and u.1/D u, �1.u.t// 2 �kA.K0.A// for some k � 1, then diag.u; 1k�1/ 2
CU.Mk.A//.

(3) If �1A.K0.A//D �A.K0.A//, then DurAD 1.

Proof. Part (1) follows from [Th].

(2) By applying Corollary 2.12, there exists a v 2 CU.A/ such that

uD exp.i2�a/v and �.a/D�1� .u.t// for all � 2 T .A/:

So for any � 2 .0; 1/, there are projections p1; : : : ; pm1 , q1; : : : ; qm2 2Mk.A/ such
that

(3-16) sup
�ˇ̌̌̌ m1X
jD1

�.pj /�

m2X
jD1

�.qj /� �.a/

ˇ̌̌̌
W � 2 T .A/

�
<

arcsin.�=4/
�

:
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Set b D
m1P
jD1

pj �
m2P
jD1

qj and a0 D diag.a;

.k�1/‚ …„ ƒ
0; 0; : : : ; 0/. Then a0; b 2Mk.A/sa and

j�.a0/� �.b/j<
arcsin.�=4/

k�
for all � 2 T .Mk.A//

by (3-16). Thus, by the proof of [Th, Lemma 3.1], we have

inffka0� b� xk j x 2 .Mk.A//0g

D supfj�.a0� b/j j � 2 T .Mk.A//g �
arcsin.�=4/

k�
:

Choose x0 2 .Mk.A//0 such that ka0� b� x0k< 2 arcsin.�=4/=k� . Put y0 D
a0�b�x0. Then ky0k� 2 arcsin.�=4/=k� . Put u1D diag.u; 1k�1/ exp.�i2�y0/.
Define

w.t/D diag.u.t/; 1k�1/ exp.�i2�y0t /
m1Y
jD1

exp.�i2�pj t /
m2Y
jD1

exp.i2�qj t /

for t 2 Œ0; 1�. Then w.0/D 1, w.1/D u.1/ exp.�i2�y0/D u1 and, moreover,

�k� .w.t//D �.a/� �.y0/�

� m1X
jD1

�.pj /�

m2X
jD1

�.qj /

�
D �.a/� �.a0/C �.b/� �.x0/� �.b/

D �.a/� �.a0/D 0 for all � 2 T .A/:

It follows that w.1/D u1 2 CU.Mk.A//. Then

kdiag.u; 1k�1/�u1k D kexp.i2�y0/� 1kk< �:

(3) Let u 2 U0.A/ such that diag.u; 1n�1/ 2 CU.Mn.A//. Let u.t/ be a piecewise
smooth path with u.0/D 1 and u.1/D u. Then

�1.u.t// 2 �A.K0.A//D �
1
A.K0.A//:

By Part (2), u 2 CU.A/. This implies that DurAD 1. �

Proposition 3.7. Let X be a compact metric space. Then Dur
�
Mn.C.X//

�
D 1 for

all n� 1.

Proof. By Proposition 3.3, it suffices to consider the case AD C.X/. One has

�1A.K0.A//D C.X;Z/D �A.K0.A//:

It follows from Proposition 3.6(3) that DurAD 1. �

Combining Theorem 3.5 with Proposition 3.7, we have:
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Corollary 3.8. LetAD limn!1.An; �n/, whereAmD
Lm.n/
jD1 Mk.n;j /.Xn;j / and

each Xn;j is a compact metric space. Then DurAD 1.

Theorem 3.9. LetA be a unitalC�-algebra with real rank zero. Then �1A.K0.A//D
�A.K0.A// and DurAD 1.

Proof. By Corollary 2.7, we may assume that T .A/ 6D∅: SinceA is of real rank zero,
by [Zhang 1990, Theorem 3.3], for any n�2 and any nonzero projection p2Mn.A/,
there are projections p1; : : : ; pn 2 A such that p � diag.p1; : : : ; pn/ in Mn.A/.
Thus, �.p/ D

Pn
jD1 �.pj / for all � 2 T .A/ and, consequently, �1A.K0.A// D

�A.K0.A//. It follows from Proposition 3.6(3) that DurAD 1. �

Theorem 3.10. Let A be a unital C�-algebra with T .A/ 6D∅. If csr.C.S1; A//�
nC 1 for some n� 1, then DurA� n.

Proof. Let u2U0.Mn.A// such that diag.u; 1k/2CU.MnCk.A// for some integer
k � 1. Let fu.t/ W t 2 Œ0; 1�g be a piecewise smooth path with u.0/ D 1n and
u.1/D u. By [Th], �nCk.diag.u.t/; 1k// 2�nCk.LU

nCk
0 .A//. It follows from

Lemma 3.2(1) that, for any � > 0, there are a; b 2Mn.A/sa and v 2 CU.Mn.A//

with kak< 2 arcsin.�=4/=� such that

(3-17) uD exp.i2�a/ exp.i2�b/v and �.b/D�nCk� .w.t// for all � 2T .A/;

where w 2LU nCk0 .A/. Since csr.C.S1; A//�nC1, by Proposition 2.6 of [Rieffel
1987] there is a w1 2 LU n0 .A/ such that diag.w1; 1nCk/ is homotopy to w. In
particular, �n� .w1.t// D �

nCk
� .w.t// for all � 2 T .A/. Consider the piecewise

smooth path

U.t/D exp.�i2�at/ exp.i2�bt/w�1 .t/; t 2 Œ0; 1�:

Then U.0/D 1n and U.1/D exp.i2�b/. We compute that �n� .U.t//D 0 for all
� 2T .A/. It follows by [Th, Lemma 3.1] that exp.i2�b/2CU.Mn.A//. By (3-17),

Œu�D Œexp.i2�a/� in U0.Mn.A//=CU.Mn.A//;

Therefore dist
�
u;CU.Mn.A//

�
� kexp.i2�a/� 1nk< �. �

Corollary 3.11. Let A be a unital C�-algebra of stable rank one. Then DurAD 1.

Proof. This follows from the inequality csr.C.S1; A// � tsrAC 1 (see [Rieffel
1983, Corollary 8.6]) and Theorem 3.10. �

We end this section with the following:

Proposition 3.12. Let A be a unital C�-algebra. Suppose that there is a projection
p 2M2.A/ such that, for any x 2K0.A/ with �A.x/D �A.Œp�/, no unitary in U. zC/
represents x, where C D C0..0; 1/; A/. Then DurA > 1.
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Proof. There exists an a 2 AC such that �.a/D �A.Œp�/.�/ for all � 2 T .A/. Put
uD exp.i2�a/ and vD diag.u; 1/. Then it follows from Proposition 3.6(2) that v 2
CU.M2.A//. This implies that i .1;2/A .Œu�/D 0. Now we show that u 62CU.A/. Let

w.t/D exp.2i.1� t /�a/ for all t 2 Œ0; 1�:

Then w.0/D u and w.1/D 1A. If u2CU.A/, then, by [Th, Lemma 3.1], there is a
continuous and piecewise smooth path of unitaries � 2 zC , where C DC0..0; 1/; A/,
such that

(3-18) �� .�.t//D �.p/ for all � 2 T .A/:

The Bott map shows that the unitary � is homotopic to a projection loop which
corresponds to some x 2 K0.A/ with �A.x/ D �A.Œp�/, which contradicts the
assumption. �

4. Simple C�-algebras

Let us begin with the following:

Theorem 4.1. Let A be a unital infinite-dimensional simple C�-algebra of real rank
zero with T .A/ 6D∅. Then

�1A.K0.A//D Aff.T .A// and U0.A/D CU.A/:

Proof. Let p 2A be a nonzero projection, let �D n=m with n;m 2N and let � > 0.
Then by Zhang’s half theorem (see [Lin 2010a, Lemma 9.4]), there is a projection
e 2 A such that max�2T.A/ j�.p/�n�.e/j< n�=m. Thus,

max
�2T.A/

j��.p/�m�.e/j< �;

and consequently r�A.p/ 2 �1A.K0.A// for all r 2 R.
Let a2Asa. SinceA has real rank zero, a is a limit of the form

Pk
jD1 �jpj , where

p1; p2; : : : ; pk are mutually orthogonal projections in A and �1; �2; : : : ; �k 2 R.
Therefore Oa 2 �1A.K0.A// by the above argument, where Oa.�/ D �.a/ for all
� 2 T .A/. Since Aff.T .A//D fOa j a 2Asag by [Lin 2007, Theorem 9.3], it follows
from Theorem 3.9 that

Aff.T .A//� �1A.K0.A//D �A.K0.A//� Aff.T .A//;

that is, Aff.T .A//D �1A.K0.A//.
Note that

�1A.K0.A//��
1.LU 10 .A//� �A.K0.A//D �

1
A.K0.A//:
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So �1.LU 10 .A//D �
1
A.K0.A//D Aff.T .A//. Thus, �1 D 0 (see Definition 2.11),

and the assertion follows. �
For unital simple C�-algebras, we have:

Theorem 4.2. Let A be a unital infinite-dimensional simple C�-algebra. Then
DurAD 1 if one of the following holds:

(1) A is not stably finite.

(2) A has stable rank one.

(3) A has real rank zero.

(4) A is projectionless and �A.K0.A//D Z (with �A.Œ1A�/D 1).

(5) A has property (SP) and has a unique tracial state.

Proof. (1) In this case, there is a nonunitary isometry u 2Mk.A/ for some k � 2.
Since Mk.A/ is also simple, every tracial state on Mk.A/ is faithful if T .A/ 6D∅.
This implies that T .A/D∅. The assertion follows from Corollary 2.7.

(2) This follows from Corollary 3.11.

(3) This follows from Theorem 4.1 or Theorem 3.9.

(4) By the assumption, we have �1A.K0.A//D �A.K0.A//DZ. By Proposition 3.6,
DurAD 1.

(5) Let � > 0 and let � 2 T .A/ be the unique tracial state. Let k � 1 be an integer
and p 2 Mk.A/ a projection. Since A has (SP), there is a nonzero projection
q 2 A such that 0 < �.q/ < 1

2
� (see, for example, [Lin 2001, Lemma 3.5.7]).

Then, there is an integer m � 1 such that jm�.q/� �.p/j < �. This implies that
�1A.K0.A//D �A.K0.A//. Therefore, by Proposition 3.6, DurAD 1. �

For a unital simple C�-algebra A, Theorem 4.2 indicates that the only case when
DurA might not be 1 is when A is stably finite and has stable rank greater than 1.
The only example of this that we know so far is given by Villadsen [1999].

However, we have the following:

Theorem 4.3. For each integer n� 1, there is a unital simple AH-algebra A with
tsrAD n such that DurAD 1.

Proof. Fix an integer n > 1. Let A D limk!1.Ak; �k/ be the unital sim-
ple AH-algebra with tsrA D n constructed by Villadsen [1999]. Then A1 D
C.Dn/. The connecting maps �k are “diagonal” maps. More precisely, �k.f /DPn.k/
jD1 f .
k;j /˝ pk;j for all f 2 Ak , where pk;1 is a trivial rank-1 projection,

AkC1 D �k.idAk /M.r.k/.C.Xk//�k.idAk / (for some large r.n/) for some spaces
Xk , and 
k;j W XkC1 ! Xk is a continuous map (these are �1iC1 and some
point evaluations as denoted in [Villadsen 1999, p. 1092]). Clearly A1 contains
a rank-1 projection. Suppose that Ak , as a unital hereditary C �-subalgebra of



DETERMINANT RANK OF C�-ALGEBRAS 419

Mr.k/.C.Xk//, contains a rank-1 projection ek (of Mr.k/.C.Xk//). Then, since
.idAk ı
k;1/ ˝ pk;1 � �k.idAk /, we have .idAk ı
k;1/ ˝ pk;1 2 AkC1. Then
ek ı 
k;1˝pk;1 2 AkC1, which is a rank-1 projection.

The above shows every Ak contains a rank-1 projection.
Now let p 2Mm.A/ be a projection. We may assume that there is a projection

q2Mm.Ak0C1/ such that �k0C1;1.q/Dp. Let ek0 2Ak0C1 be a rank-1 projection.
Then there is an integer L� 1 such that L�.ek0/D �.q/ for all � 2 T .Ak0C1/. It
follows that

L�.�k0C1;1.ek0//D �.p/ for all � 2 T .A/:

So �1A.K0.A//D �A.K0.A// and hence DurAD 1 by Proposition 3.6. �

Theorem 4.4. Let A be a unital simple AH-algebra with (SP) property. Then
DurAD 1.

Proof. By Proposition 3.1, it suffices to show that i .1;n/A is injective, and by
Proposition 3.6 it suffices to show that �1A.K0.A//D �A.K0.A//.

Let p be a projection in Mn.A/. Since A is simple, inff�.p/ j � 2T .A/gDd >0.
Given a positive number � < minf1

2
; 1
2
dg. Choose an integer K � 1 such that

1=K < 1
2
�. Since A is a simple unital C�-algebra with (SP), it follows from [Lin

2001, Lemma 3.5.7] that there are mutually orthogonal and mutually equivalent
nonzero projections p1; p2; : : : ; pK 2A such that

PK
jD1 pj � p. We compute that

(4-1) �.p1/ < �=2 and �.p1/ < d=K for all � 2 T .A/:

Since A is simple and unital, there are x1; x2; : : : ; xN 2 A such that

NX
jD1

x�j p1xj D 1A:

Let A D lim
 ��
.Am; �m/, where Am D

Lr.m/
iD1 Pm;jMR.m;j /.C.Xm;j //Pn;j for

each m, Xn;j is a connected finite CW-complex and Pm;j 2MR.m;j /.C.Xm;j // is
a projection. Without loss of generality, we may assume that, there are projections
p01 2Am, p0 2Mn.Am/ and elements y1; y2; : : : ; yN 2Am such that �m;1.p01/D
p1, �m;1.yj /D xj , .�m;1˝ idMn/.p

0/D p and

(4-2)




 NX
jD1

y�j p
0
1yj � 1A





< 1:
Write p01 and p0 as

p01 D p
0
1;1˚p

0
1;2˚ � � �˚p

0
1;r.m/ and p0 D q1˚ q2˚ � � �˚ qr.m/;
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where, for each j D 1; : : : ; r.m/, p01;j 2 Pm;jMR.m;j /.C.Xm;j //Pm;j and qj 2
Mn.Pm;jMR.m;j /.C.Xm;j //Pm;j / are projections. Note that (4-2) implies that
p01;j 6D 0 for j D 1; 2; : : : ; r.m/. Define

r1;j D rankp01;j and rj D rank qj for j D 1; 2; : : : ; r.m/:

Then rj D lj r1;j C sj , where lj ; sj � 0 are integers and sj < r1;j . It follows that

(4-3)
ˇ̌̌̌
t .p0/�

r.m/X
jD1

lj t .p
0
1;j /

ˇ̌̌̌
< t.p01/ for all t 2 T .Am/:

Define q1;j D �m;1.p01;j / for j D 1; : : : ; r.m/. Then each q1;j is a projection
in A. Note that for each � 2 T .A/, � ı�m;1 is a tracial state on Am. So, by (4-3),ˇ̌̌̌

�.p/�

r.m/X
jD1

lj �.q1;j /

ˇ̌̌̌
< �.p1/ < � for all � 2 T .A/:

This implies that �1A.K0.A//D �A.K0.A//. �

Lemma 4.5. Let A be a unital simple C�-algebra with T .A/ 6D ∅, and let a 2
AC n f0g. Then, for any b 2 Asa, there is a c 2 Her a such that b� c 2 A0.

Proof. Since A is simple and unital, there are x1; x2; : : : ; xm 2 A such thatPm
jD1 x

�
j axj D 1A. Set c D

Pm
jD1 a

1=2xj bx
�
j a

1=2. Then c 2 Her a and

�.c/D

mX
jD1

�.a1=2xj bx
�
j a

1=2/D

mX
jD1

�.bx�j axj /D �.b/ for all � 2 T .A/:

It follows from Lemma 2.6(2) that b� c 2 A0. �

A special case of the following can be found in [Lin 2010b, Theorem 3.4]:

Theorem 4.6. Let A be a unital simple C�-algebra and let e 2 A be a nonzero
projection. Consider the map U0.eAe/=CU.eAe/ ! U0.A/=CU.A/ given by
ie.Œu�/D ŒuC.1�e/�. This map is always surjective, and is also injective if tsrAD1.

Proof. To see that ie is surjective, let u 2 U0.A/. Write uD
Qn
kD1 exp.iak/ for

ak 2 Asa, k D 1; 2; : : : ; n. By Lemma 4.5, there are b1; : : : ; bn 2 eAe such that
bk�ak 2A0. Put wD e

Qn
kD1 exp.ibk/. Then w 2U0.eAe/. Set vDwC.1�e/.

Then v D
Qn
kD1 exp.ibk/. Thus, by Lemma 2.6(1),

ie.Œw�/D Œv�D

nX
kD1

Œexp.ibk/�D
nX
kD1

Œexp.iak/�D Œu� in U0.A/=CU.A/;

that is, ie is surjective.
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To see that ie is injective when A has stable rank one, let w 2 U0.eAe/ such
that wC .1� e/ 2 CU.A/. Since A is simple, there are z1; : : : ; zn 2 A such that
1� e D

Pn
jD1 z

�
j ezj . Set

X D

264ez1 0 � � � 0:::
:::
: : :

:::

ezn 0 � � � 0

375 2Mn.A/:

Then

(4-4) diag.1� e;

n�1‚ …„ ƒ
0; : : : ; 0/DX�X; XX� � diag.

n‚ …„ ƒ
e; e; : : : ; e /:

Equation (4-4) indicates that Œ1� e�� nŒe� in K0.A/. Since tsrAD 1, we can find
a projection p 2Ms.A/ for some s � n and a unitary U 2MsC1.A/ such that

(4-5) diag.

n‚ …„ ƒ
e; : : : ; e;

r‚ …„ ƒ
0; : : : ; 0/D U diag.1� e; p/U �;

where r D s�nC 1. Write v D wC .1� e/ as v D
�
w
1�e

�
, and set

W D

�
e

U

�
and QD diag.

n‚ …„ ƒ
e; : : : ; e;

r‚ …„ ƒ
0; : : : ; 0/:

Then W diag.e; 1� e; p/MsC2.A/ diag.e; 1� e; p/W � �MnC1.eAe/˚ 0 and

(4-6) W

�
v

p

�
W � D

�
w

U diag.1� e; p/U �

�
D diag.w;Q/;

by (4-5). Note that diag.v; p/ 2 CU.diag.e; 1� e; p/MsC2.A/ diag.e; 1� e; p//.
So, by (4-6),

diag.w;
n‚ …„ ƒ

e; : : : ; e / 2 CU.MnC1.eAe//:

Since tsr.eAe/D 1, it follows from Theorem 4.2(2) that w 2 CU.eAe/. �

Lemma 4.7. LetC be a nonunitalC�-algebra andBD zC . Assume u1; u2; : : : ; un2
U.Mk.B// for some k � 2. Then, there are unitaries u01; u

0
2; : : : ; u

0
n 2M

k
. zC/ with

�
k
.u0j /D 1k and w; zj ; Nuj 2 U.Mk

.C// for j D 1; : : : ; n such that

nY
jD1

uj D

� nY
jD1

u0j

�
w; with u0j D z

�
j uj Nu

�
j zj for j D 1; : : : ; n;

w D �k

nY
jD1

uj ;
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where �.xC�/D � for all x 2C and � 2C and �k is the induced homomorphism
of � on Mk.B/.

Moreover, if uj 2 U0.Mk.B//, then we may assume that each u0j 2 U0.BMk.C //

for j D 1; : : : ; n.

Proof. Put Nuj D �k.uj / 2 U.Mk.C//. If nD 2, then

u1u2 D u1 Nu
�
1. Nu1u2 Nu

�
1/. Nu1 Nu

�
2 Nu
�
1/. Nu1 Nu2 Nu

�
1 Nu1/

D u1 Nu
�
1. Nu1u2 Nu

�
1/. Nu1 Nu

�
2 Nu
�
1/. Nu1 Nu2/:

Put u01 D u1 Nu
�
1 , u02 D Nu1u2 Nu

�
1 Nu1 Nu

�
2 Nu
�
1 , w1 D Nu1 Nu2, z1 D 1k , z2 D Nu1. Then

�k.u
0
1/D 1k; �k.u

0
2/D �k. Nu1.u2 Nu

�
2/ Nu
�
1/D 1k; w1 D �k.u1u2/:

Thus the lemma holds if nD 2. Suppose that the lemma holds for s. Then

u1u2 � � �ususC1 D .u
0
1u
0
2 � � �u

0
s/wsusC1;

where u0j 2 M
k
. zC/ are unitaries with �

k
.u0j / D 1k and u0j D z

�
j uj Nu

�
j zj , where

zj ; Nuj 2 U.Mk
.C//, j D 1; : : : ; s and ws D �k

Qs
jD1 uj . It follows that

sC1Y
jD1

uj D

� sY
jD1

u0j

�
wsusC1w

�
s .ws Nu

�
sC1w

�
s /.ws NusC1/:

Put u0sC1DwsusC1w
�
s .ws Nu

�
sC1w

�
s /Dws.usC1 Nu

�
sC1/w

�
s , zsC1Dw

�
s andwsC1D

ws NusC1. Then

�s.u
0
sC1/D �k.ws/�.usC1 Nu

�
sC1/�k.w

�
s /D 1k;

wsC1 D ws NusC1 D �k

�� sY
jD1

uj

�
usC1

�
D �k

sC1Y
jD1

uj :

The first part of the lemma follows.
To see the second part, we first assume that uj D exp.iaj / for some aj 2

.Mk.B//sa. Note that Nuj Dexp.i Naj /, where Naj D�k.aj /2 .Mk.C//sa, j D1; : : : ; n.
Consider the path u0j .t/D exp.i taj / exp.�i t Naj / for t 2 Œ0; 1�. Note that, for each
t 2 Œ0; 1� and j D 1; : : : ; n,

�k.exp.i taj / exp.�i t Naj //D exp.i t�k.aj // exp.�i t�k.aj //D 1k :

It follows that u0j .t/ 2BMk.C/ for all t 2 Œ0; 1� and j D 1; : : : ; n. The case that
uj D exp

�Qmj
kD1

.iak/
�

follows from this and what has been proved. �
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Lemma 4.8. Let C be a nonunital C�-algebra and B D zC . Suppose that z D
aba�b�, where a; b 2 U0.Mk.B//. Then z D yw, where y 2 CU.BMk.C // with
�k.y/ D 1k and w 2 CU.Mk.C//. Moreover, if u D

Qn
jD1 zj , where each

zj 2 CU.Mk.B//, then u D yv, where y 2 CU.BMk.C // with �k.y/ D 1k and
v 2 CU.Mk.C//.

Proof. Let Na D �k.a/ and Nb D �k.b/. Then Na; Nb 2 U.Mk.C//. It follows from
Lemma 4.7 that for j D 1; 2 there are aj ; bj 2U0.BMk.C// with �k.aj /D�k.bj /D
1k and zj 2 U.Mk.C// such that

ab D a1b1w1; a1 D a Na
�; b1 D z

�
1b
Nb�z1; w1 D Na

Nb;(4-7)

baD b2a2w2; b2 D b
Nb�; a2 D z

�
2a Na
�z2; w2 D

Nb Na:(4-8)

Set x1 D w1w
�
2z
�
2 and x2 D w1w

�
2z1. Then x1; x2 2 U0.Mk

.C// and

aba�b� D a1b1.w1w
�
2z
�
2 .a Na

�/z2w2w
�
1 /.w1w

�
2 .b
Nb�/w2w

�
1 //w1w

�
2

D a1b1.x1a
�
1x
�
1 /.x

�
2b
�
1x2/w1w

�
2

by (4-7) and (4-8).
Write a1 D

Qm1
jD1 exp.iy1j / and b1 D

Qm2
kD1

exp.iy2k/, where y1j ; y2k 2
.Mk.C //sa, j D 1; : : : ; m1, k D 1; : : : ; m2. Let

y1j D y
C
1j �y

�
1j and y

2k
D yC

2k
�y�2k;

with yC1j ; y
�
1j ; y

C

2k
; y�
2k
2 .Mk.C //C for j D 1; : : : ; m1 and k D 1; : : : ; m2. Set

c1 D

m1X
jD1

.yC1j C x1y
�
1jx
�
1 /C

m2X
kD1

.yC
2k
C x2y

�
2kx
�
2 /;

c2 D

m1X
jD1

.y�1j C x1y
C
1jx
�
1 /C

m2X
kD1

.y�2kC x2y
C

2k
x�2 /;

d1 D

m1X
jD1

.yC1j Cy
�
1j /C

m2X
kD1

.yC
2k
Cy�2k/;

d2 D

m1X
jD1

.y�1j Cy
C
1j /C

m2X
kD1

.y�2kCy
C

2k
/:

Then c1; c2; d1; d22 .M2.C //C and clearly c1�d1; c2�d22 .Mk.C //0. Therefore,
.c1�c2/�.d1�d2/2 .Mk

.C //0. Put yDa1b1.x1a
�
1x
�
1 /.x

�
2b
�
1x2/ andwDw1w

�
2 .

Then y 2 U0.BMk.C // with �k.y/D 1k and w D Na Nb Na� Nb� 2DUk.C/. Moreover,
in U0.BMk.C //=CU.BMk.C //,

Œy�D Œexp.i.c1� c2//�D Œexp.i.d1� d2//�D Œa1�Œb1�Œa�1 �Œb
�
1 �D 0:
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This proves the first part of the lemma. The second part follows. �

Theorem 4.9. Let A be an infinite-dimensional unital simple C�-algebra with
T .A/ 6D∅ such that there is an m� 1, for every hereditary C�-subalgebra C , with
Dur zC �m. Then DurAD 1.

Proof. Let n � 1. By Proposition 3.1, it suffices to show that i .1;n/A is injec-
tive. Let u 2 U0.A/ with diag.u; 1n�1/ 2 CU.Mn.A//. Since A is simple and
infinite-dimensional, we can find nonzero mutually orthogonal positive elements
c1; : : : ; cm 2 A and x1; : : : ; xm 2 A such that

x�j xj D c1 and xjx
�
j D cj ; j D 2; 3; : : : ; m:

Put Her c1 D C and B D zC . Then Her.c1C c2C � � �C cm/ŠMm.C /. Note that
Mm.B/ is not isomorphic to a subalgebra of Mm.A/.

By Lemma 4.5, we may assume, without loss of generality, that uD exp.2�ib/
for some b 2 Csa. Then, by Proposition 3.6(1), Ob 2 �A.K0.A//.

Since A is simple and C is � -unital, it follows from [Brown 1977, Theorem 2.8]
that there is a unitary element W in M.A˝K/ (the multiplier algebra of A˝K)
such that W �.C ˝K/W D A˝K, where K is the C�-algebra consisting of all
compact operators on l2. Note that since A is a unital simple C�-algebra, every
tracial state � on C is the normalization of a tracial state restricted on C . Therefore

(4-9) Ob 2 �A.K0.A//D �B.K0.C //� �B.K0.B//:

Viewing b in Bs:a, consider v D exp.i2�b/ 2 U0.B/ and v.t/ D exp.i2�tb/,
t 2 Œ0; 1�. Then (4-9) implies that �1.v.t// 2 �B.K0.B//. By Lemma 3.2(2), for
any � > 0, there are a 2 Bsa with kak < �, d 2 Bsa with Od 2 �B.K0.B// and
v0 2 CU.B/ such that

(4-10) v D exp.i2�a/ exp.i2�d/v0:

Choose projections p; q 2 Mn.B/ for some n > m such that for all � 2 T .B/,
�.diag.d; 0.n�1/�.n�1///D�.p/��.q/. So diag.exp.i2�d/; 1n�1/2CU.Mn.B//

by Lemma 2.6(2). By assumption, i .m;k/B is injective for all k > m. Therefore, we
have diag.v; 1m�1/ 2 CU.Mm.B// by (4-10).

Let �>0. Then there is a v12DU.Mm.B// such that kdiag.v; 1m�1/�v1k< 1
2
�.

We may write v1 D
Qr
jD1 zj , where zj 2Mm.B/ is a commutator. It follows from

Lemma 4.8 that there are y 2CU.BMm.C //with �m.y/D1m andw2DU.Mm.C//

such that v1 D yw. Noting that w D �m.w/ D �m.v1/ and �.v/ D 1, we have
k1m�wk<

1
2
�. Thus kdiag.v; 1m�1/�yk<�. Set v0Dv�1 and y0Dy�1m. Then

(4-11)
diag.v0; 0.m�1/�.m�1//; y0 2Mm.C /;

kdiag.v0; 0.m�1/�.m�1//�y0k< �:
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By identifying 1mCMm.C /with a unitalC�-subalgebra 1ACHer.c1Cc2C� � �Ccm/
ofA, we get that kexp.i2�b/�yk<� by (4-11). Since y 2CU.BMm.C //�CU.A/

and hence u 2 CU.A/, we have DurAD 1. �

Corollary 4.10. Let A be a unital simple C�-algebra. Suppose that there is an
integer K � 1 such that csr.C.S1; C //�K for every hereditary C�-subalgebra C .
Then DurAD 1.

Proof. It follows from Theorem 3.10 that Dur zC � maxfK � 1; 1g. Theorem 4.9
then applies. �

Definition 4.11. Let A be a C�-algebra with T .A/ 6D∅. Define

D
�
�1A.K0.A//; �A.K0.A//

�
D sup

˚
dist

�
x; �1A.K0.A//

�
j x 2 �A.K0.A//

	
D sup

˚
dist

�
x; �1A.K0.A//

�
j x 2 �A.K0.A//

	
:

Theorem 4.12. Let A be a unital simple C�-algebra with T .A/ 6D∅ such that there
is an M > 0 with D

�
�1C .K0.C //; �C .K0.C //

�
< M for all nonzero hereditary

C�-subalgebras C of A. Then DurAD 1.

Proof. Let u 2 U0.A/ such that diag.u; 1n�1/ 2 CU.Mn.A//. By Corollary 2.12,
we may assume that u D exp.i2�a/ for some a 2 Asa. Then Oa 2 �A.K0.A// by
Proposition 3.6(1).

Given � > 0, choose an integer N � 1 such that M=N < �=2� . There are
mutually orthogonal nonzero positive elements c1; c2; : : : ; cN in A and elements
x1; x2; : : : ; xN 2 A such that

(4-12) x�j xj D c1 and xjx
�
j D cj ; j D 2; 3; : : : ; N:

Let C DHer c1 and B D zC . It follows from Lemma 4.5 that there is a b 2Csa such
that a� b is in A0, i.e., �.a/D �.b/ for all � 2 T .A/. Therefore Œexp.i2�a/�D
Œexp.i2�b/� in U0.A/=CU.A/ by Lemma 2.6(2).

Since A is a unital simple C�-algebra and C is �-unital, it follows from the
proof of Theorem 4.9 that �C .b/ 2 �C .K0.C //. Therefore, by assumption, there
are projections p1; p2; : : : ; pk1 ; q1; q2; : : : ; qk2 2 C such that

sup
�2T.C/

ˇ̌̌̌
�.b/�

� k1X
iD1

�.pi /�

k2X
jD1

�.qj /

�ˇ̌̌̌
<M:

Put d D
Pk1
iD1 pi �

Pk2
jD1 qj and f D b�d . Then exp.i2�d/ 2 CU.A/ by (2-3)

and Œexp.i2�f /�D Œexp.i2�b� 2 U0.A/=CU.A/. Moreover, from

inffkf � xk j x 2 C0g D supfj�.f /j j � 2 T .C /g<M
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(see the proof of [Th, Lemma 3.1]), there are f0 2C0 and f1 2Csa with kf1k<M
such that f D f1Cf0. By Lemma 2.6(1), exp.i2�f0/ 2 CU.A/. Since f1 2 Csa,
by (4-12), for i D 1; 2; : : : ; N there are gi 2 Her ci with

(4-13) kgik � kf1k=N and �.gi /D �.f1=N/ for all � 2 T .A/:

Set g D
Pn
iD1 gi 2 A. Then, by (4-13),

(4-14) kexp.i2�g/�1Ak<M=N <� and �1.exp.i2�f / exp.�i2�g//D 0:

So exp.i2�f / exp.�i2�g/2CU.A/ and consequently dist.ei2�a; CU.A//<�. �

Bruce Blackadar [1981] constructed three examples of unital simple separable
nuclear C�-algebrasA;A4; AH with no nontrivial projections. By [Blackadar 1981,
Theorem 4.9],K0.A/DZ with a unique tracial state. It follows from Theorem 4.2(4)
that DurAD 1. We turn to his examples A4 and AH , which may have rich tracial
spaces. It should be also noted that, as Blackadar showed, when 4 is not trivial
(for example), M2.A4/ has a projection p with �.p/D 1 for all � 2 T .A4/. In
particular, this implies that

�1A4
.K0.A4// 6D N�A4.K0.A4//:

However, DurA4 D 1 as shown below. It follows that there is a unitary u 2 zC ,
where C D C0..0; 1/; A/, which represents a projection q with �.q/ D 1 for all
� 2 T .A4/.

Proposition 4.13. Let B be a unital AF-algebra and � an automorphism of B . Put
M� D ff 2 C.Œ0; 1�; B/ j f .1/D �.f .0//g. Then DurM� D 1.

Proof. Clearly, T .M� / 6D∅. From the exact sequence of C�-algebras

0 �! C0..0; 1/; B/ �!M� �! B �! 0;

we obtain the exact sequence of C�-algebras

(4-15) 0 �! C0..0; 1/�S
1; B/ �! C.S1;M� / �! C.S1; B/ �! 0:

Since B is an AF-algebra, it follows from [Nistor 1986, Corollary 2.11] that

csr.C.S1; B//D csr.C.S1//D 2;

csr.C0..0; 1/�S1; B//D csr.C0..0; 1/�S1//D 2;

and consequently, applying [Nagy 1987, Lemma 2] to (4-15), we get

csr.C.S1;M� //�maxfcsr.C.S1; B//; csr.C0..0; 1/�S1; B//g � 2:

Therefore DurAD 1 by Theorem 3.10. �

Corollary 4.14. DurA4 D 1 and DurAH D 1.
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Proof. Both C�-algebras are of the form limn!1An, where each AnŠM� , where
M� is as in Proposition 4.13, and thus DurAn D 1. By Theorem 3.5, DurA4 D 1
and DurAH D 1. �

5. C�-algebras with Dur A > 1

In this section, we will present a unital C�-algebra C such that DurC D 2. In
particular, we will show that there are C�-algebras which satisfy the condition
described in Proposition 3.12.

5.1. We first list some standard facts from elementary topology. We will give a
brief proof of each fact for the reader’s convenience.

Fact 1. Let

Bd .0/D
˚
.x1; x2; x3; x4/ 2 R4 j

p
x21 C x

2
2 C x

2
3 C x

2
4 � d

	
:

Let f W Bd .0/� S1! S3 D SU.2/ be a continuous map which is not surjective.
Then there is a homotopy

F W Bd .0/�S
1
� Œ0; 1�! S3 D SU.2/

such that F.x; ei� ; 0/ D f .x; ei� /, F.x; ei� ; s/ D f .x; ei� / if kxk D d (i.e., if
x 2 @Bd .0/) and g.x; ei� /D F.x; ei� ; 1/ satisfies

g.0; ei� /D F.0; ei� ; 1/D

�
1 0

0 1

�
2 SU.2/D S3:

Proof. Assume that f misses a point z 2 S3 D SU.2/ and that z 6D
�
1
0
0
1

�
2 SU.2/.

Then S3 n fzg is homeomorphic to D3 D f.x; y; z/ j x2Cy2C z2 < 1g, with the
identity matrix mapping to .0; 0; 0/. Without loss of generality, we can assume that
f is a map from Bd .0/�S

1 toD3. Let F WBd .0/�S1�Œ0; 1�!D3 be defined by

F.x; ei� ; s/D f .x; ei� /maxf1� s; kxk=dg;

which satisfies the condition. �

Fact 2. Let f; g W S4�S1! SU.n/�U.n/DUn.C/ (where n� 2) be continuous
maps. If f is homotopic to g in U.n/, then they are also homotopic in SU.n/.

Proof. This follows from the fact that there is a continuous map � W U.n/! SU.n/
with � ı i D id jSU.n/, where i W SU.n/! U.n/ is inclusion. �



428 GUIHUA GONG, HUAXIN LIN AND YIFENG XUE

Fact 3. Let � 2 S4 be the north pole. Suppose that f; g W S4�S1! SU.n/ are two
continuous maps such that

f .�; ei� /D 1n D g.�; e
i� /

for all ei� 2 S1. If f and g are homotopic in SU.n/, then there is a homotopy

F W S4 �S1 � Œ0; 1�! SU.n/

such that F.x; ei� ; 0/Df .x; ei� /, F.x; ei� ; 1/Dg.x; ei� / for all x 2S4, ei� 2S1

and F.�; ei� ; t /D 1n for all ei� 2 S1.

Proof. Let G W S4�S1� Œ0; 1�! SU.n/ be a homotopy between f and g. That is,
G. � ; � ; 0/D f and G. � ; � ; 1/D g. Let F WS4�S1� Œ0; 1�! SU.n/ be defined by

F.x; ei� ; t /DG.x; ei� ; t /.G.�; ei� ; t //�:

Then F satisfies the condition. �

5.2. We will describe the projection P 2M4.C.S
4// of rank two which represents

the class of .2; 1/ 2 Z˚ Z Š K0.C.S
4// as follows: One can regard S4 as the

quotient space D4=@D4, where

D4 D f.z; w/ 2 C2 j jzj2Cjwj2 � 1g:

It is standard to construct a unitary

˛ WD4! U4.C/D U.M4.C//

such that ˛.0/D 14 and such that, for any .z; w/ 2 @D4 (i.e., jzj2Cjwj2 D 1),

˛.z; w/ WD

2664
z w 0 0

� Nw Nz 0 0

0 0 Nz �w

0 0 Nw z

3775, �ˇ.z; w/ 0

0 ˇ.z; w/�

�
;

where ˇ.z; w/ D
�

z
� Nw

w
Nz

�
, for .z; w/ 2 @D4 D S3, represents the generator of

K1.C.S
3//. Define P W S4! U4.C/ by

P.z;w/, ˛.z; w/
�
12 02
02 02

�
˛�.z; w/:

Note that ˛ is not defined as a function from S4DD4=@D4 to U.4/, but P is, since

P.z;w/D

�
12 02
02 02

�
for all .z; w/ 2 @D4

and @D4 is identified with the north pole � 2 S4. Hence P.�/D
�
12
02

02
02

�
.



DETERMINANT RANK OF C�-ALGEBRAS 429

5.3. In the rest of the paper, for a compact metric space X with a given base
point and a C�-algebra A, by C0.X;A/ we mean the C�-algebra of the continuous
functions fromX to A which vanish at the base point (and C0.X;C/ will be denoted
by C0.X/). (Most spaces we used here have an obvious base point, which we will
not mention afterward.) Let AD C0.S1; PM4C.S

4/P /. Let zA be the unitization
of A. Let B D C0.S1; C.S4//. Since A is a corner of M4.B/ and B is a corner
of M2.A/ (note that a trivial projection of rank 1 is equivalent to a subprojection
of P ˚ P ), A is stably isomorphic to B . Let zB be a unitization of B . Then
zB D C.S4 �S1/ and

K1. zA/ŠK1.A/ŠK1.B/ŠK1. zB/Š Z˚Z:

5.4. For a unitary u2M4.C.S
4�S1//, in the identification of Œu�2K1.C.S4�S1//

with Z˚Z, the first component corresponds to the winding number of

S1 ,! S4 �S1
detu
����! S1 � C;

that is, the winding number of the map

ei� ! detu.�; ei� /;

where � is the north pole of S4. Hence, if u W S4 � S1 ! SU.n/, then the first
component of Œu� 2K1.C.S4 �S1//Š Z˚Z is automatically zero.

Lemma 5.5. Let u W S4 �S1! SU.2/. Then u 2M2.C.S
4 �S1// represents the

zero element in K1.C.S4 �S1//. In other words, if u 2 SUn.S4 �S1/ represents
a nonzero element in K-theory, then n� 3.

Proof. Let f WS4�S1!S5 be the standard quotient map sending f�g�S1[S4�f1g
to a single point. Consider u WS4�S1! SU.2/. Without loss of generality, assume
u.�; 1/D 12 2 SU.2/. Then ujS4�f1g W S

4! SU.2/D S3 represents an element in
�4.S

3/Š Z=2Z. Therefore u2jS4�f1g W S
4! SU.2/D S3 is homotopically trivial,

with .�; 1/ 2 S4�S1 as a fixed point. Evidently, u2jf�g�S1 W S
1! S3 D SU.2/ is

homotopically trivial with .�; 1/ 2 S4 �S1 as a fixed point. Consequently

u2jS4�f1g[f�g�S1 W S
4
� f1g[ f�g �S1! S3

is homotopically trivial with .�; 1/ 2 S4 � S1 as a fixed base point. There is a
homotopy

F W .S4 � f1g[ f�g �S1/� Œ0; 1�! S3

with F. � ; 0/D u2jS4�f1g[f�g�S1 and

F.x; 1/D 12 for all x 2 S4 � f1g[ f�g �S1:
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The following is a well-known easy fact: For any relative CW complex .X; Y /
(Y � X), any continuous map Y � I [X � f0g ! Z (where Z is any other CW
complex) can be extended to a continuous map X � I !Z.

Hence, there is a homotopy G W .S4�S1/� Œ0; 1�! S3 with G. � ; 0/D u2, and
GjS4�f1g[f�g�S1�Œ0;1�DF . Let v WS4�S1!SU.2/ be defined by v.x/DG.x; 1/;
then Œv�D Œu2� 2K1.C.S4�S1// and v maps S4�f1g[ f�g�S1 to 12 2 SU.2/.
Consequently, v passes to a map

v1 W S
5 , S4 �S1=S4 � f1g[ f�g �S1! S3 D SU.2/

and represents an element in �5.S
3/DZ=2Z. Hence v21 WS

5!S3 is homotopically
trivial, and therefore v2 is as well. So we have

4Œu�D 2Œu2�D 2Œv�D Œv2�D 0 2K1.C.S
4
�S1//;

which implies Œu�D 0 2K1.C.S4 �S1//. �

Remark 5.6. In the proof of Lemma 5.5, we in fact proved the following fact:
For any u WS4�S1!SU.2/, the map u4 WS4�S1!SU.2/ is homotopically trivial.

5.7. Note that P 2M4.C.S
4// can be regarded as a projection in M4.C.S

4�S1//,
still denoted by P , i.e., for fixed x 2 S4, P.x; � / is a constant projection along the
S1 direction. Then

(5-1) K1.A/ŠK1. zA/ŠK1.C.S
4
�S1//ŠK1.PM4.C.S

4
�S1//P /;

where AD C0.S1; PM4.C.S
4//P / is defined in Section 5.2. Let

EDf.�; u/ W � 2S4�S1; u2M4.C/ with P.x/uP.x/Du; u�uDuu�DP.x/g;

SE D f.�; u/ 2E W det.P.x/uP.x/C .14�P.x//D 1g:

ThenE!S4�S1 and SE!S4�S1 are fiber bundles with fibers U.2/ and SU.2/,
respectively. Also the unitaries in PM4.C.S

4 �S1//P correspond bijectively to
the cross-sections of a bundle E! S4�S1. For this reason, we will call a unitary
(of PM4.C.S

4�S1//P ) with determinant 1 everywhere a cross-section of a bundle
SE! S4 �S1.

Theorem 5.8. If u 2 PM4.C.S
4 �S1//P has determinant 1 everywhere, i.e., if u

is a cross-section of SE! S4 �S1, then Œu�D 0 in K1.PM4.C.S
4 �S1//P /.

Proof. Note that SE! S4�S1 is a smooth fiber bundle over the smooth manifold
S4 � S1. By a standard result in differential topology, u is homotopic to a C1-
section. Without loss of generality, we may assume that u itself is smooth. Identify
the north pole � 2 S4 with 0 2 R4 and a neighborhood of � with B�.0/� R4 for
� > 0. Since B�.0/ is contractible, SEjB�.0/�S1 is a trivial bundle. Note that the
projection P 2M4.C.S

4�S1// is constant along S1, hence SEŠSEjS4�f1g�S
1
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and SEjB�.0/�S1 Š SEjB�.0/�f1g �S
1; in other words, the fiber is constant along

S1 and SEjB�.0/�f1g is trivial and isomorphic to .B�.0/� f1g/� SU.2/. There is
a smooth bundle isomorphism

(5-2) 
 W SEjB�.0/�S1 ! .B�.0/�S
1/�SU.2/:

Then

 ıujB�.0/�S1 W B�.0/�S

1
! .B�.0/�S

1/�SU.2/

is a smooth map with

�1 ı .
 ıu/jB�.0/�S1 D idB�.0/�S1 ;

where �1 W .B�.0/ � S1/ � SU.2/! B�.0/ � S
1 is the projection onto the first

coordinate. Define � D �2 ı .
 ıujB�.0/�S1/, where �2 W .B�.0/�S1/�SU.2/!
SU.2/ is the projection onto the second coordinate. Since � is smooth, �jf�g�S1 is
not onto SU.2/ (note dim.SU.2//D 3 and dim.S1/D 1). Therefore, if � is small
enough, �jB�.0/�S1 is not onto. By Fact 1 of Section 5.1, � is homotopic to a
constant map �1 W B�.0/�S1! SU.2/ with

(5-3) �1.f�g �S
1/D

�
1 0

0 1

�
and �j@B�.0/�S1 D �1j@B�.0/�S1 ;

via a homotopy F W .B�.0/�S1/� Œ0; 1�! SU.2/ with F.x; ei� ; t / constant with
respect to t if x 2 @B�.0/.

Let u1 W B�.0/�S1! SE be the cross-section defined by

u1.x; e
i� /D 
�1..x; ei� /; �1.x; e

i� // 2 SE:

Then u1.x; ei� /Du.x; ei� / if x 2@B�.0/. We can extend u1 to S4�S1 by defining

u1.x; e
i� /D u.x; ei� / if .x; ei� / … B�.0/�S1:

Hence u1 is a section of SE with

u1.�; e
i� /D

�
12 02
02 02

�
D P.�/ for all ei� 2 S1:

Moreover, u1 is homotopic to u by a homotopy that is constant on .S4nB�.0//�S1

(on which u1 D u) and that agrees with F on B�.0/ � S1. Hence Œu� D Œu1� 2
K1.PM4.C.S

4 �S1//P /. Recall that S4 is obtained from

D4 D f.z; w/ 2 C2 j jzj2Cjwj2 � 1g

by identifying
@D4 D f.z; w/ 2 C2 j jzj2Cjwj2 D 1g
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with the north pole � 2 S4. Recall that P 2M4.C.S
4// (viewed as a projection in

M4.C.S
4 �S1// constant along the S1 direction) is defined as

P.z;w/D ˛.z; w/

�
12 02
02 02

�
˛�.z; w/;

where ˛.z; w/ is defined as in Section 5.2.
Define

v.z; w; ei� /D ˛�.z; w/u1.z; w; e
i� /˛.z; w/:

Then we have that

(i) v.z; w; ei� /D

�
12 02
02 02

�
for all .z; w/ 2 @D4;

and therefore v can be regarded as a map from S4 �S1 to M4.C/. Moreover,

(ii) v.z; w; ei� /D
�
12 02
02 02

�
v.z; w; ei� /

�
12 02
02 02

�
for all .z; w; ei� /2S4�S1:

By considering the upper-left corner of v (still denoted by v), we obtain a unitary
v W S4 �S1! SU.2/. By Lemma 5.5 and Remark 5.6, v4 is homotopically trivial.
Furthermore, by Fact 3 of Section 5.1, there is a homotopy F W S4 �S1 � Œ0; 1�!
SU.2/ such that

F.z;w; ei� ; 0/D v4.z; w; ei� / for all .z; w/ 2 S4; ei� 2 S1;(iii)

F.�; ei� ; t /D 12 for all ei� 2 S1;(iv)

F.z;w; ei� ; 1/D 12 for all .z; w/ 2 S4; ei� 2 S1:(v)

Define G WD4 �S1 � Œ0; 1�!M4.C/ by

G.z;w; ei� ; t /D ˛.z; w/

�
F.z;w; ei� ; t / 02

02 02

�
˛�.z; w/:

Then, by (iv), for .z; w/ 2 @D4 we have

G.z;w; ei� ; t /D

�
12 02
02 02

�
:

Hence G defines a map (still denoted by G) from S4 � S1 � Œ0; 1� ! M4.C/.
Furthermore G.z;w; ei� ; t / 2 P.z;w/M4.C/P.z; w/, and

G.z;w; ei� ; 0/D ˛.z; w/

�
v4 02
02 02

�
˛�.z; w/D u41:
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That is, G defines a homotopy between u41 and the unit P 2P
�
M4.C.S

4�S1//
�
P .

Consequently Œu41� D 0 and Œu1� D 0 2 K1
�
P
�
M4.C.S

4 � S1//
�
P
�
. Moreover,

Œu�D 0 2K1.C.S
4 �S1//, as desired. �

5.9. We identify P
�
M4.C.S

4 � S1//
�
P as a corner of M4.C.S

4 � S1//; then
K1
�
P.M4.C.S

4 �S1///P
�

is isomorphic to K1.C.S4 �S1//D Z˚Z naturally.
Let a 2 P

�
M4.C.S

4 �S1//
�
P be defined by

a.x; ei� /D ei�P.x/:

On the other hand, a could also be regarded as a unitary in M4.C.S
4 � S1// as

a.x; ei� /D ei�P.x/C.14�P.x//. Then Œa�D .2; 1/2Z˚ZŠK1.C.S
4�S1//,

since Œa� is the image of ŒP � 2K0.C.S4// under the exponential map

K1.C.S
4//!K1

�
C0.S

1; C.S4//
�
;

and ŒP �D .2; 1/ 2K0.C.S4//Š Z˚Z.

Theorem 5.10. No element .1; k/ 2K1.C.S4 �S1// can be realized by a unitary
b 2 PM4.C.S

4 �S1//P .

Proof. We argue by contradiction. Assume b 2 PM4.C.S
4 � S1//P satisfies

Œb�D .1; k/ 2 K1.PM4.C.S
4 � S1/P //. Without loss of generality, we assume

that b.�; 1/D P . Then

Œb2a��D .0; 2k� 1/ 2K1.PM4.C.S
4
�S1//P /:

In particular, the map

ei� ! det
�
P.�/.b2a�/.�; ei� /P.�/ 0

0 14�P.�/

�
8�8

has winding number 0. That is, it is homotopically trivial. Hence

.x; ei� /
h
��! det

�
P.�/.b2a�/.x; ei� /P.�/ 0

0 14�P.�/

�
8�8

defines a map h WS4�S1!S1 such that h� W�1.S4�S1/!�1.S
1/ is the zero map.

Hence there is a lifting Qh W S4 �S1! R with h.x; ei� /D exp.i Qh.x; ei� //. Define
a unitary b1 2 PM4.C.S

4�S1//P by b1.x; ei� /D exp.i 1
2
Qh.x; ei� //P.x/. Then

Œb1�D02K1.C.S
4�S1//, and b2a�b�1 2U.PM4C.S

4�S1/P / has determinant 1
everywhere. By Theorem 5.8, Œb2a�b�1 �D 02K1.C.S

4�S1//. On the other hand,

Œb2a�b�1 �D Œb
2a��D .0; 2k� 1/¤ 0 2K1.C.S

4
�S1//;

which is a contradiction. �
Remark 5.11. Similarly, we can show that for any unitary u2PM4.C.S

4�S1//P ,
Œu�D l Œa�D .2l; l/ 2K1.C.S

4 �S1// for some l 2 Z.
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Corollary 5.12. Let A D C0.S1; PC.S4/P /, and let zA be the unitization of A.
Then there is no unitary u 2 zA such that Œu�D .1; k/ 2 K1.A/. In particular, no
unitary u can correspond to a rank-1 projection in M4.C.S

4//.

Proof. Note that we may view P as a projection in M4.C.S
4 � S1// which is

constant along the direction of S1 (Section 5.7). So we may view zA as a unital C�-
subalgebra of PM4.C.S

4�S1//P . Thus, by the identification (5-1), Theorem 5.10
applies. �

Theorem 5.13. Let AD PM4.C.S
4//P . Then DurAD 2.

Proof. There is a projection e 2M2.A/ which is unitarily equivalent to a rank-1 pro-
jection in M8.C.S

4// corresponding to .1; 0/2K0.C.S4//. Let C DC0..0; 1/; A/.
By Corollary 5.12, there is no unitary in zC which represents a rank-1 projection. It
follows from Proposition 3.12 that DurA > 1.

However, since �C
�
K0.M2.C //

�
D
1
2

Z and M2.C / contains a rank-1 projection
(with trace 1

2
), by Proposition 3.6(3), Dur.M2.C //D 1. It follows that DurC D 2.

�
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MOTION BY MIXED VOLUME PRESERVING
CURVATURE FUNCTIONS NEAR SPHERES

DAVID HARTLEY

In this paper we investigate the flow of hypersurfaces by a class of symmet-
ric functions of the principal curvatures with a mixed volume constraint.
We consider compact hypersurfaces without boundary that can be written
as a graph over a sphere. The linearisation of the resulting fully nonlinear
PDE is used to prove a short-time existence theorem for hypersurfaces that
are sufficiently close to a sphere and, using centre manifold analysis, the
stability of the sphere as a stationary solution to the flow is determined. We
will find that for initial hypersurfaces sufficiently close to a sphere, the flow
will exist for all time and the hypersurfaces will converge exponentially fast
to a sphere. This result was shown for the case where the symmetric func-
tion is the mean curvature and the constraint is on the (n + 1)-dimensional
enclosed volume by Escher and Simonett (1998).

1. Introduction

Given a sufficiently smooth hypersurface �0 = X0(Mn) ⊂ Rn+1 that is compact
without boundary, where Mn is an n-dimensional manifold, we are interested in
finding a family of embeddings X : Mn

×[0, T )→ Rn+1 such that
(1)
∂X
∂t
= (hk−F(κ))ν�t , X( · , 0)= X0, hk=

1´
Mn Ek+1 dµt

ˆ
Mn

F(κ)Ek+1 dµt ,

where κ = (κ1, . . . , κn), κi are the principal curvatures of the hypersurface �t =

X(Mn, t)= Xt(Mn), ν�t and dµt are the outward pointing unit normal and induced
measure of �t , respectively, and k is a fixed integer between −1 and n− 1. Here
El denotes the l-th elementary symmetric function of the principal curvatures:

El =

{
1 if l = 0,∑

1≤i1<···<il≤n κi1κi2 . . . κil if l = 1, . . . , n,

and F(κ) is a given smooth, symmetric function that satisfies (∂F/∂κi )(κ0) > 0,
where κ0 = (1/R, . . . , 1/R) for some fixed R ∈ R+. The flow can be seen to

MSC2010: 53C44, 35K93.
Keywords: curvature flows, mixed volume, stability, centre manifolds.
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preserve the (n− k)-th mixed volume of the hypersurface (see Corollary 2.2). Note
that while such a quantity is usually only defined for convex hypersurfaces, there is
an obvious extension to all hypersurfaces (see Section 2).

This flow has been studied previously in [McCoy 2005]. There it was proved that
under some additional conditions on F , for example homogeneity of degree one and
convexity or concavity, initially convex hypersurfaces admit a solution for all time
and the hypersurfaces converge to a sphere as t→∞. This result had previously
been proved for the specific case where F(κ)= H , the mean curvature, in [McCoy
2004] and, if in addition, k =−1 (in which case the flow is the well-known volume
preserving mean curvature flow), in [Huisken 1987]. Other results for the volume
preserving mean curvature flow include average mean convex hypersurfaces with
initially small traceless second fundamental form converging to spheres (see [Li
2009]) and hypersurfaces that are graphs over spheres with a height function close
to zero, in a certain function space, converging to spheres (see [Escher and Simonett
1998b]). Techniques similar to those in this paper were used to study volume
preserving mean curvature flow for hypersurfaces close to a cylinder in [Hartley
2013] and spherical caps in [Abels et al. 2015].

The situation where F has homogeneity greater than one has been considered
in [Cabezas-Rivas and Sinestrari 2010]. There it was proved that if k = −1 and
F(κ)= Hβ

m , with mβ > 1 and Hm =
(n

m

)−1 Em the m-th mean curvature, the flow
takes initially convex hypersurfaces that satisfy a pinching condition to spheres; the
pinching condition is of the form En > CH n > 0, where C is a constant depending
on the parameters of the flow.

The main result of this paper is:

Theorem 1.1. Let F be a smooth, symmetric function of the principal curvatures
satisfying (∂F/∂κa)(κ0) > 0 for a = 1, . . . , n and some R ∈ R+. If �0 is a graph
over the sphere Sn

R with height function sufficiently small in h2+α(Sn
R), 0< α < 1

(see Section 2), then its flow by (1) exists for all time and converges exponentially
fast to a sphere as t→∞, with respect to the h2+α(Sn

R)-topology.

Part (c) of the main result in [Escher and Simonett 1998b] proves a similar result
for the specific case of the volume preserving mean curvature flow. Some differences
include that Escher and Simonett are able to use the quasilinear nature of the flow to
prove the hypersurfaces are smooth after the initial time. This also allows them to
obtain convergence with respect to the C l(Sn

R)-topology, for any fixed l, and only
requires the initial height function to be small in h1+α(Sn

R). In contrast, the current
paper deals with flows that are, in general, fully nonlinear, so the methods we use
require the initial height function to be small in h2+α(Sn

R), which gives a condition
on its curvature, and only give convergence in the h2+α(Sn

R)-topology. The key
theorems for nonlinear flow appear in [Lunardi 1995] and have been included in
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the Appendix for the reader’s ease.
In Section 2 of this paper we convert the flow (1) to a PDE for the graph function

and also introduce the spaces and notation that will be used throughout the paper.
The section ends with a corollary proving the flow preserves a certain mixed volume.
In Section 3 we consider the problem as an ODE on Banach spaces and determine
the linearisation of the speed. This leads to a new short-time existence theorem for
the flow that includes some initially h2+α(Sn

R) hypersurfaces. In the final section
the eigenvalues of the linearised operator are determined and a centre manifold is
constructed. The proof of the main result is finished by showing that the centre
manifold consists entirely of spheres and is exponentially attractive.

We note here that the (n− k)-th mixed volumes, for k ≥ 1, are only well defined
for convex hypersurfaces (see [Andrews 2001]). However, we will refer to the flow
(1) as mixed volume preserving for any �0, with the understanding that it preserves
a quantity that coincides with the (n− k)-th mixed volume when �0 is convex (see
Corollary 2.2).

2. Notation and preliminaries

In this paper we consider Mn
= Sn

R , a given sphere of radius R, and hypersurfaces
that are normal graphs over Sn

R , Xρ( p)= p+ ρ( p)νSn
R
( p), p ∈ Sn

R . The volume
form on such a hypersurface will be denoted by dµρ and we let µ(ρ) be the function
such that dµρ =µ(ρ) dµ0. We now proceed as in [Escher and Simonett 1998b] and
convert the flow to an evolution equation for the height function ρ :Sn

R×[0, T )→R.
Up to a tangential diffeomorphism the flow (1) is equivalent to solving the PDE

(2)
∂ρ

∂t
=

√
1+

R2

(R+ ρ)2
|∇ρ|2

(
hk(ρ)− F(κρ)

)
, ρ( · , 0)= ρ0,

where hk(ρ) =
´

Sn
R

Ek+1(ρ)F(κρ) dµρ
/´

Sn
R

Ek+1(ρ) dµρ , κρ is the principal cur-
vature vector of the hypersurface defined by ρ( · , t), and ∇ denotes the gradient on
Sn

R (see [McCoy 2005]).
The graph functions ρ are chosen in the little Hölder spaces, hl+α(Sn

R), for
α ∈ (0, 1), l ∈N. These spaces are defined for an open set U ⊂Rn and a multi-index
β = (β1, . . . , βn) with |β| =

∑n
i=1 βi as follows:

hα(Ū )=
{
ρ ∈ Cα(Ū ) : lim

r→0
sup

x,y∈Ū
0<|x−y|<r

|ρ(x)− ρ(y)|
|x − y|α

= 0
}
,

hl+α(Ū )=
{
ρ ∈ C l+α(Ū ) : Dβρ ∈ hα(Ū ) for all β, |β| = l

}
,

where D is the derivative operator on Rn and Cα , C l+α are the Hölder spaces (see
[Lunardi 1995]). The norm on the little Hölder space hl+α is inherited from C l+α.
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The little Hölder spaces can be extended to Sn
R by means of an atlas. In addition,

it is known that the little Hölder spaces are the continuous interpolation spaces
between themselves (see [Guenther et al. 2002, Equation 19]), that is, for real
numbers 0< α < β we have

(3)
(
hα(Sn

R), hβ(Sn
R)
)
θ
= h(β−α)θ+α(Sn

R),

provided (β − α)θ + α /∈ Z, where ( · , · )θ is an interpolation functor for each
θ ∈ (0, 1), defined for Y ⊂ X as

(X, Y )θ =
{

x ∈ X : lim
t→0+

t−θK (t, x, X, Y )= 0
}
,

where K (t, x, X, Y )= inf
a∈Y
(‖x − a‖X + t‖a‖Y ).

We will often abuse notation and use ρ to represent both a function on Sn
R×[0, T )

and the mapping from [0, T ) to a space of functions such that ρ(t)= ρ( · , t) for
all t ∈ [0, T ). In this regard we define the spaces C(I, X) and Ck(I, X) consisting
of continuous and continuously k-differentiable functions from an interval I ⊂ R

to a Banach space X . They have the norms ‖ρ‖Ck(I,X) =
∑k

j=0 supt∈I ‖ρ
( j)(t)‖X .

For an operator between function spaces G : Y → Ỹ we denote the Fréchet
derivative by ∂G. A linear operator, A : Y ⊂ X → X , is called sectorial if there
exist θ ∈

(
π
2 , π

)
, ω ∈ R and M > 0 such that

(i) ρ(A)⊃ Sθ,ω = {λ ∈ C : λ 6= ω, |arg(λ−ω)|< θ},

(ii) ‖R(λ, A)‖L(X,X) ≤
M
|λ−ω|

for all λ ∈ Sθ,ω.

Here ρ(A) is the resolvent set, R(λ, A)= (λI − A)−1 is the resolvent operator, and
‖ · ‖L(X,X) is the standard linear operator norm (see [Lunardi 1995]).

For all closed, compact hypersurfaces �⊂ Rn+1, we define the quantity

Vl(�)=

{(
(n+ 1)

(n
l

))−1 ´
M En−l dµ if l = 0, . . . , n,

Vol(8) if l = n+ 1,

where 8 is the (n+ 1)-dimensional region contained inside �; for convex hyper-
surfaces this agrees with the mixed volumes.

Lemma 2.1. For a family of hypersurfaces �t satisfying (1), the Weingarten map,
volume form and mixed volumes satisfy the evolution equations

∂hi
j

∂t
= gim

∇m∇ j F − (hk − F)hi
mhm

j ,
∂(dµ)
∂t
= (hk − F)H dµ,

dVl

dt
=

{
0 if l = 0,(n+1

l

)−1 ´
M En+1−l(hk − F) dµ if l = 1, . . . , n+ 1.
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Proof. The first two equations are well known; see [Andrews 1994], for example.
The last equation, except for the l = n+ 1 case, which can be found in [Cabezas-
Rivas and Sinestrari 2010], is given in Lemma 4.3 of [McCoy 2005] for the case
where the �t are convex hypersurfaces. McCoy uses the definition of mixed
volumes of convex hypersurfaces (see [Andrews 2001]), which is not valid unless
the hypersurface is convex. To obtain the result for all solutions to the flow we use
the following identity, found in Equation (5.86) of [Gerhardt 2008]:

(4)
∂Ea+1

∂hi
j
= Eaδ

j
i − h j

q
∂Ea

∂hi
q
,

where a = 0, . . . , n (in the a = n case we use the convention En+1 = 0). Now if
we take the divergence of this identity, we obtain

gim
∇m

(
∂Ea+1

∂hi
j

)
= g jm

∇m Ea − gim
∇mh j

q
∂Ea

∂hi
q
− gimh j

q∇m

(
∂Ea

∂hi
q

)
= g jm

∇mh p
q
∂Ea

∂h p
q
− gim g j p

∇mh pq
∂Ea

∂hi
q
− gimh j

q∇m

(
∂Ea

∂hi
q

)
= g jm g pi

∇mhiq
∂Ea

∂h p
q
− gim g j p

∇phmq
∂Ea

∂hi
q
− gimh j

q∇m

(
∂Ea

∂hi
q

)
=−h j

q gim
∇i

(
∂Ea

∂hm
q

)
,

using the Codazzi equation to get to the second last line. Since gim
∇i

(
∂E0

∂hm
j

)
vanishes, we see this equation implies

gim
∇i

(
∂Ea

∂hm
j

)
= 0 for all a = 0, . . . , n.

We can now derive the evolution equation:

(n+ 1)
(n

l

)dVl

dt

=

ˆ
M

∂En−l

∂t
+ (hk − F)HEn−l dµ

=

ˆ
M

∂En−l

∂hi
j

∂hi
j

∂t
+ (hk − F)HEn−l dµ

=

ˆ
M

∂En−l

∂hi
j

gim
∇m∇ j F − (hk − F)

∂En−l

∂hi
j

hi
mhm

j + (hk − F)HEn−l dµ
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=

ˆ
M
∇m

(
∂En−l

∂hi
j

gim
∇ j F

)
+ (hk − F)hi

m

(
∂En+1−l

∂hi
m
− En−lδ

m
i

)
+ (hk − F)HEn−l dµ

= (n+ 1− l)
ˆ

M
(hk − F)En+1−l dµ,

where the second last line is due to (4) and the last line is due to the homogeneity
of En+1−l . �

Corollary 2.2. For a compact hypersurface without boundary, �0, the flow (1)
preserves the value of Vn−k , i.e., Vn−k (�t)= Vn−k (�0) as long as the flow exists.

3. Graphs over spheres

The flow in (2) can be considered as an ordinary differential equation between
Banach spaces. Set 0< α < 1 and define

G : h2+α(Sn
R)→ hα(Sn

R),

G(ρ) := L(ρ)(hk(ρ)− F(κρ)), L(ρ) :=

√
1+

R2

(R+ ρ)2
|∇ρ|2.

The flow (2) is then rewritten as

(5) ρ ′(t)= G(ρ(t)), ρ(0)= ρ0 ∈ h2+α(Sn
R).

Lemma 3.1. The linearisation of G about zero is given by

∂G(0)u =
∂F
∂κ1

(κ0)

((
n
R2 +1Sn

R

)
u−

n
R2

 
Sn

R

u dµ0

)
,

for u ∈ h2+α(Sn
R).

Note that only the derivative of F(κ) with respect to κ1 appears in this formula
for convenience, since (∂F/∂κ1)(κ0)= (∂F/∂κi )(κ0) for all i = 1, . . . , n. We also
use the notation

ffl
Mn f dµ :=

´
Mn f dµ

/´
Mn dµ.

Proof. Firstly note L(0)= 1 and ∂L(0)= 0. By linearising the curvature function,
we find

∂F(κρ)
∣∣
ρ=0 =

n∑
i=1

∂F
∂κi

(κρ)∂κi (ρ)

∣∣∣∣
ρ=0
=
∂F
∂κ1

(κ0)

n∑
i=1

∂κi (0)=
∂F
∂κ1

(κ0)∂H(0).
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It follows that for u ∈ h2+α(Sn
R),

∂hk(0)u

= ∂

(
1´

Sn
R

Ek+1(ρ)µ(ρ) dµ0

ˆ
Sn

R

Ek+1(ρ)F(κρ)µ(ρ) dµ0

)∣∣∣∣
ρ=0

u

=
1(´

Sn
R

Ek+1(0) dµ0
)2

(ˆ
Sn

R

Ek+1(0) dµ0 ∂

(ˆ
Sn

R

Ek+1(ρ)F(κρ)µ(ρ) dµ0

)∣∣∣∣
ρ=0

u

−

ˆ
Sn

R

Ek+1(0)F(κ0) dµ0 ∂

(ˆ
Sn

R

Ek+1(ρ)µ(ρ) dµ0

)∣∣∣∣
ρ=0

u
)

=
1´

Sn
R

Ek+1(0) dµ0

×

(ˆ
Sn

R

(
Ek+1(0) ∂F(κρ)

∣∣
ρ=0u+ F(κ0) ∂

(
Ek+1(ρ)µ(ρ)

)∣∣
ρ=0u

)
dµ0

− F(κ0)

ˆ
Sn

R

∂
(
Ek+1(ρ)µ(ρ)

)∣∣
ρ=0u dµ0

)
=
∂F
∂κ1

(κ0)

 
Sn

R

∂H(0)u dµ0.

It was shown in [Escher and Simonett 1998a] that

∂H(0)=−
(

n
R2 +1Sn

R

)
,

so combining these results gives, for u ∈ h2+α(Sn
R),

(6) ∂G(0)u =
∂F
∂κ1

(κ0)

((
n
R2 +1Sn

R

)
u−

 
Sn

R

(
n
R2 +1Sn

R

)
u dµ0

)
.

The divergence theorem gives the result. �

Lemma 3.2. For any α0 such that 0< α0 < α, there exists a neighbourhood, O1,
of 0 ∈ h2+α(Sn

R) such that the operator ∂G(ρ) is the part in hα(Sn
R) of a sectorial

operator Aρ : h2+α0(Sn
R)→ hα0(Sn

R) for all ρ ∈ O1.

Proof. We set Ḡ : h2+α0(Sn
R)→ hα0(Sn

R) with Ḡ(ρ) := L(ρ)(hk(ρ)− F(κρ)) so
that with Aρ = ∂Ḡ(ρ) it is clear that ∂G(ρ) is the part in hα(Sn

R) of Aρ . It remains
to show that there exists O1 such that Aρ is sectorial for ρ ∈ O1.

As ∂H(0) = −(n/R2
+ 1Sn

R
) is a uniformly elliptic operator on a compact

manifold without boundary, its negative is sectorial as a map from h2+α0(Sn
R);

see [Guenther et al. 2002, Lemma 3.4], for example. Now the operator A0 :

h2+α0(Sn
R)→ hα0(Sn

R), defined by

A0u =
(

n
R2 +1Sn

R

)
u−

n
R2

 
Sn

R

u dµ0,
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is sectorial by the perturbation result in Proposition 2.4.1(ii) of [Lunardi 1995],
since the map u 7→ −(n/R2)

ffl
Sn

R
u dµ0 is in L(h2+α0(Sn

R), h2+α0(Sn
R)). This then

implies, by Proposition 2.4.2 of [Lunardi 1995], that Aρ = A0+(∂Ḡ(ρ)−∂Ḡ(0)) is
sectorial for all ρ in a neighbourhood of zero, O2 ⊂ h2+α0(Sn

R). The result follows
by setting O1 = O2 ∩ h2+α(Sn

R). �

Theorem 3.3. There are constants δ, r > 0 such that if ‖ρ0‖h2+α(Sn
R)
≤ r , then (5)

has a unique maximal solution:

ρ ∈ C
(
[0, δ), h2+α(Sn

R)
)
∩C1(

[0, δ), hα(Sn
R)
)
.

Proof. This existence theorem is a result of Theorem A.1, which is Theorem 8.4.1 in
[Lunardi 1995], by setting ū = 0. In order to satisfy the assumption of the theorem
it must be shown that there exists a neighbourhood of zero, O ⊂ h2+α(Sn

R), such
that G and ∂G are continuous on O and for every ρ ∈ O the operator ∂G(ρ) is the
part in hα(Sn

R) of a sectorial operator A : h2+α0(Sn
R)→ hα0(Sn

R).
As in [Andrews and McCoy 2012, Remark 1], since F is a smooth symmetric

function of the principal curvatures, it is also a smooth function of the elementary
symmetric functions, which depend smoothly on the components of the Weingarten
map. We now consider a neighbourhood of zero, O3, such that if ρ ∈ O3, then´

Sn
R

Ek+1(ρ) dµρ > 0 and ρ( p) > −R for all p ∈ Sn
R (note if k = −1 the former

is always satisfied). It is easily seen that the Weingarten map depends smoothly
on ρ ∈ O3 ⊂ h2+α(Sn

R), so that G depends smoothly on ρ ∈ O3. The sectorial
condition was established in Lemma 3.2 for a neighbourhood O1, so the proof is
complete by setting O = O3 ∩ O1. �

4. Stability around spheres

As we are considering the flow locally about ρ = 0, it is convenient to rewrite (5)
highlighting the dominant linear part:

(7) ρ ′(t)= ∂G(0)ρ(t)+ G̃(ρ(t)), G̃(u) := G(u)− ∂G(0)u.

Lemma 4.1. The spectrum, σ(∂G(0)), of ∂G(0) consists of a sequence of isolated
nonpositive eigenvalues where the multiplicity of the 0 eigenvalue is n+ 2.

Proof. This follows from [Escher and Simonett 1998b], as ∂G(0) is a positive
constant multiple of the linear operator in that paper. To be exact, we calculate all
the elements of the spectrum. Since h2+α(Sn

R) is compactly embedded in hα(Sn
R),

the spectrum consists entirely of eigenvalues. To characterise the spectrum we first
look at the spectrum of the L2-self adjoint operator:

Ãu =
∂F
∂κ1

(κ0)

(
n
R2 +1Sn

R

)
u.
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The eigenvalues of the spherical Laplacian are well known to be −l(l + n− 1)/R2

for l ∈ N ∪ {0} with eigenfunctions the spherical harmonics of order l, denoted
by Yl,p, 1≤ p ≤ Ml , where

Ml =


( l+n

n

)
−

( l+n−2
n

)
if l ≥ 2,( l+n

n

)
if l ∈ {0, 1}.

Therefore the eigenfunctions of Ã are also the spherical harmonics with eigenvalues

ξl =
∂F
∂κ1

(κ0)

(
n
R2 −

l(l + n− 1)
R2

)
=−

∂F
∂κ1

(κ0)
(l − 1)(l + n)

R2 .

Returning to the spectrum of ∂G(0), Y0,1 = 1 is still an eigenfunction but with
eigenvalue λ0 = 0. The operator ∂G(0) is also self-adjoint with respect to the
L2 inner product on h2+α(Sn

R). Therefore we need only consider eigenfunctions
orthogonal to Y0,1 in order to characterise the remainder of the spectrum. This
means that for an eigenfunction u we assumeˆ

Sn
R

u dµ0 = 0,

and hence by Lemma 3.1, ∂G(0)u = Ãu. The remaining eigenfunctions of ∂G(0)
are then the remaining eigenfunctions of Ã, with the same eigenvalues. So the
spectrum of ∂G(0) consists of the eigenvalues

λl =

0 if l = 0,

−
∂F
∂κ1

(κ0)
l(l + n+ 1)

R2 if l ∈ N,

with eigenfunctions

ul,p =

{
Y0,1 if l = p = 0,

Yl+1,p if l ∈ N∪ {0}, 1≤ p ≤ Ml+1.

The multiplicity of the 0 eigenvalue is then M1+ 1= n+ 2. �

In what follows, we set P to be the projection from hα(Sn
R) onto the λ = 0

eigenspace given by

Pu :=
n+1∑
p=0

〈u, u0,p〉u0,p,

where we use 〈 · , · 〉 to denote the L2 inner product on hα(Sn
R). Because ∂G(0) is

self-adjoint with respect to this inner product, clearly P∂G(0)u = ∂G(0)Pu = 0
for every u ∈ h2+α(Sn

R). Due to this, h2+α(Sn
R) can be split into the subspaces
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X c
= P(hα(Sn

R)) and X s
= (I − P)(h2+α(Sn

R)), called the centre subspace and
stable subspace, respectively. We are now in a position to apply Theorem A.3,
which is Theorem 9.2.2 in [Lunardi 1995].

Theorem 4.2. For any l ∈N, there is a function γ ∈C l−1(X c, X s) such that γ (l−1)

is Lipschitz continuous, γ (0)= ∂γ (0)= 0, and Mc
= graph(γ ) is a locally invariant

manifold for (7) of dimension n+ 2.

Note that by locally invariant it is meant that there exists a ball around zero,
Br (0)⊂ X c with r > 0, such that if ρ0 ∈ graph(γ |Br (0)) then the solution to (7) is
in graph(γ |Br (0)) for all time or until Pρ(t) /∈ Br (0). We now set

S :=
{
ρ ∈ h2+α(Sn

R) : graph(ρ) is a sphere
}
.

Lemma 4.3. Mc coincides with the set S in a neighbourhood of zero,3⊂h2+α(Sn
R).

Proof. By Theorem 2.4 in [Simonett 1995], the equation y′(t)=∂G(0)|X s y(t)+ f (t)
has a unique continuous, bounded solution for any continuous, bounded f : R→
(I − P)(hα(Sn

R)). Furthermore the solution is given by y(t) = (K f )(t), with
K ∈ L

(
BCη

(
R, (I − P)(hα(Sn

R))
)
, BCη(R, X s)

)
for any η ∈ [0,−λ1), where

BCη(R, X) :=
{
g ∈ C(R, X) : ‖g‖η := sup

t∈R

exp(−η|t |)‖g(t)‖X <∞
}
.

This is the key condition that allows us to apply Theorem 2.3 in [Vanderbauwhede
and Iooss 1992] and conclude that Mc contains all equilibria of (7) with Pρ0 ∈ Br (0).
It was shown in [Escher and Simonett 1998b] that (along with Mc) S is locally
a graph over X c, so since S ∩ (Br (0)× X s) ⊂ Mc, we conclude that S and Mc

coincide locally. Note that while [Vanderbauwhede and Iooss 1992] proves the
existence of a centre manifold differently than [Lunardi 1995], the two manifolds
can be seen to be equal over Br (0), possibly making r smaller. �

We now prove the main result.

Proof of Theorem 1.1. By Proposition A.4, which is Proposition 9.2.4 in [Lunardi
1995], when ‖ρ0‖h2+α(Sn

R)
is small enough we obtain the decay in (11), with x(t)=

Pρ(t) and y(t)= (I − P)ρ(t), for any ω ∈ (0,−λ1) and as long as Pρ(t) ∈ Br (0).
However, by using (11) evaluated at t = 0, we obtain

‖x̄‖hα(Sn
R)
≤ ‖Pρ0‖hα(Sn

R)
+‖Pρ0− x̄‖hα(Sn

R)

≤ ‖Pρ0‖hα(Sn
R)
+C(ω)‖(I − P)ρ0− γ (Pρ0)‖h2+α(Sn

R)
,

and since γ is Lipschitz and P is bounded, this leads to a bound of the form
‖x̄‖hα(Sn

R)
≤ C(ω)‖ρ0‖h2+α(Sn

R)
. Therefore we can ensure that x̄ ∈ P(3)∩ Br (0) by

taking ‖ρ0‖h2+α(Sn
R)

small enough, and Lemma 4.3 then implies that the function
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x̄ + γ (x̄) defines a sphere. Hence x̄ + γ (x̄) is a stationary solution to (2), which in
turn means that z(t)= x̄ is the solution to (12). So we can restate (11) as

(8) ‖Pρ(t)− x̄‖hα(Sn
R)
+‖(I − P)ρ(t)− γ (x̄)‖h2+α(Sn

R)

≤ C(ω)e−ωt
‖(I − P)ρ0− γ (Pρ0)‖h2+α(Sn

R)
,

for as long as Pρ(t) ∈ Br (0). However, using this bound and our bound for x̄ , it
follows that ‖Pρ(t)‖hα(Sn

R)
< C(ω)‖ρ0‖h2+α(Sn

R)
as long as ‖Pρ(t)‖hα(Sn

R)
< r . By

choosing ‖ρ0‖h2+α(Sn
R)

small enough, we can therefore ensure ‖Pρ(t)‖hα(Sn
R)
< r/2

for all t ≥ 0. Thus (8) is true for all t ≥ 0, and this proves that ρ(t) converges to
x̄ + γ (x̄) as t→∞, which is the height function of a sphere. �

Corollary 4.4. Let�0 be a graph over a sphere with height ρ0 such that the solution,
ρ(t), to the flow (2) with initial condition ρ0 exists for all time and converges to
zero. Suppose further that (∂F/∂κi )|κρ(t) > 0 for all t ∈ [0,∞) and i = 1, . . . , n.
Then there exists a neighbourhood, O , of ρ0 in h2+α(Sn

R), 0 < α < 1, such that
for every u0 ∈ O the solution to (2) with initial condition u0 exists for all time and
converges to a function near zero whose graph is a sphere.

Proof. This follows by the same arguments given in [Guenther et al. 2002] for
the Ricci flow. First we set U ⊂ h2+α(Sn

R) to be the neighbourhood of zero
given in Theorem 1.1. Since ρ(t) converges to zero in the h2+α-topology, there
exists a time T such that ρ(T ) ∈ U and, as U is open, there exists an open ball
Bε(ρ(T ))⊂U of radius ε centred at ρ(T ). The condition that (∂F/∂κi )|κρ(t) > 0
for all t ∈ [0,∞) and i = 1, . . . , n ensures that the operator L(ρ)F(κρ) is elliptic
around the point ρ(t) for every t ∈ [0,∞) (see [Andrews 1994]). As the global
term is in L(h2+β(Sn

R), hα(Sn
R)) for any β < α, we can use Proposition 2.4.1(i)

in [Lunardi 1995] to conclude that the linear operator ∂G(ρ(t)) is sectorial for all
t ∈ [0, T ], and hence in a neighbourhood of each point. By Theorem A.2, which
is Theorem 8.4.4 in [Lunardi 1995], the flow depends continuously on the initial
condition in a neighbourhood of ρ0. Therefore there exists a ball Bδ(ρ0) such that
if u0 ∈ Bδ(ρ0), then the solution, u(t), to (2) with initial condition u0 exists for
t ∈ [0, T ] and u(T ) ∈ Bε(ρ(T )). Since u(T ) is in U , by Theorem 1.1, the solution
to (2) with initial condition u(T ) converges to a function near zero that defines a
sphere. By uniqueness of the flow we get the result. �

Appendix: Key theorems

In this appendix we restate the key theorems from [Lunardi 1995] using the notation
of this paper. In the following, E1, E0 and E will represent Banach spaces with
E1 ⊂ E0 ⊂ E .
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Theorem A.1 [Lunardi 1995, Theorem 8.4.1]. Let O1 ⊂ E1 be a neighbourhood of
0 and let G : O1→ E0 and ∂G : O1→ L(E1, E0) be continuous. Assume that for
every v ∈ O1, the operator ∂G(v) : E1→ E0 is the part in E0 of a sectorial operator
A : D⊂ E→ E such that E0' (E, D)θ and E1'

{
x ∈ D : Ax ∈ (E, D)θ

}
, for some

θ ∈ (0, 1). Then for every ū ∈ O1 there are δ > 0, r > 0 such that if ‖u0− ū‖E1 ≤ r ,
then the problem

(9) u′(t)= G(u(t)), 0≤ t ≤ δ, u(0)= u0

has a unique solution u ∈ C([0, δ], E1)∩C1([0, δ], E0).

Theorem A.2 [Lunardi 1995, Theorem 8.4.4]. Let G be as in Theorem A.1. For
every ū ∈ O1 and for every τ̄ ∈ (0, τ (ū)), where τ(v) is the maximal time of a
solution to (9) with u0= v, there is r > 0 such that if ‖u0− ū‖D ≤ r , then τ(u0)≥ τ̄

and the mapping

8 : Br (ū)→ C([0, τ̄ ], E1)∩C1([0, τ̄ ], E0), 8(v)= u( · ; v),

where u( · ; v) solves (9) with u0 = v, is continuously differentiable with respect
to v. If in addition G is k times continuously differentiable or analytic, then so is 8.

We now set E0 = (E, D)θ , E1 = {x ∈ D : Ax ∈ (E, D)θ } for some θ ∈ (0, 1),
and let O1 be a neighbourhood of 0 ∈ E1. For a finite-dimensional space X we
also define η : X→ R to be a cutoff function such that 0≤ η(x)≤ 1 for all x ∈ X ,
η(x)= 1 if ‖x‖X ≤ 1, and η(x)= 0 if ‖x‖X ≥ 2.

Theorem A.3 [Lunardi 1995, Theorem 9.2.2]. Let A : D ⊂ E→ E be a sectorial
operator such that σ(A)\R− consists of a finite number of isolated eigenvalues,
each with finite algebraic multiplicity. Let G̃ ∈ C1(O1, E0) be a nonlinear function
such that G̃(0) = 0 and ∂G̃(0) = 0. Then there exists r1 > 0 such that for r ≤ r1

there is a Lipschitz continuous function γ : P(E0)→ (I − P)(E1) such that the
graph of γ is invariant for the system

(10) x ′(t)= A|P(E0)x(t)+ PG̃
(
η

(
x(t)

r

)
x(t)+ y(t)

)
, x(0)= x0 ∈ P(E0),

y′(t)= A|(I−P)(E1)y(t)+ (I − P)G̃
(
η

(
x(t)

r

)
x(t)+ y(t)

)
,

y(0)= y0 ∈ (I − P)(E1),

where P is the spectral projection associated with the set of nonnegative eigenvalues.
If in addition G̃ is k times continuously differentiable, with k ≥ 2, then there exists
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rk > 0 such that if r < rk , then γ ∈ Ck−1,1 and for x ∈ P(E0),

∂γ (x)
(

A|P(E0)x + PG̃
(
η

(
x
r

)
x + γ (x)

))
= A|(I−P)(E1)γ (x)+ (I − P)G̃

(
η

(
x
r

)
x + γ (x)

)
.

Proposition A.4 [Lunardi 1995, Proposition 9.2.4]. Take A and G̃ as in Theorem A.3.
For every ω ∈ (0, ω−), where ω−=− sup{<(λ) : λ∈ σ(A)∩R−}, there is C(ω)> 0
such that if ‖x0‖E0 and ‖y0‖E1 are small enough, then there exists x̄ ∈ P(E0) such
that for all t ≥ 0,

(11) ‖x(t)− z(t)‖E0 +‖y(t)− γ (z(t))‖E1 ≤ C(ω) exp(−ωt)‖y0− γ (x0)‖E1,

where (x(t), y(t)) is the solution to (10) and z(t) is the solution to

(12) z′(t)= A|P(E0)z(t)+ PG̃
(
η

(
z(t)

r

)
z(t)+ γ (z(t))

)
, z(0)= x̄ .

Note that throughout the paper we considered, for 0< α0 < α < 1, the spaces
E1 = h2+α(Sn

R), E0 = hα(Sn
R) and E = hα0(Sn

R), with D, the domain of a linear
operator A, given by h2+α0(Sn

R). The characterisation of hα(Sn
R) as an interpolation

space between hα0(Sn
R) and h2+α0(Sn

R) is given in (3).
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HOMOMORPHISMS ON INFINITE DIRECT PRODUCTS
OF GROUPS, RINGS AND MONOIDS

GEORGE M. BERGMAN

We study properties of a group, abelian group, ring, or monoid B which
(a) guarantee that every homomorphism from an infinite direct product∏

I Ai of objects of the same sort onto B factors through the direct product
of finitely many ultraproducts of the Ai (possibly after composition with
the natural map B → B/Z(B) or some variant), and/or (b) guarantee that
when a map does so factor (and the index set has reasonable cardinality),
the ultrafilters involved must be principal.

A number of open questions and topics for further investigation are noted.

1. Introduction

A direct product
∏

i∈I Ai of infinitely many nontrivial algebraic structures is in
general a “big” object: it has at least continuum cardinality, and if the operations of
the Ai include a vector-space structure, it has at least continuum dimension. But
there are many situations where the set of homomorphisms from such a product to
a fixed object B is unexpectedly restricted.

The poster child for this phenomenon is the case where the objects are abelian
groups, and B is the infinite cyclic group. In that situation, if the index set I is
countable (or, indeed, of less than an enormous cardinality — some details are
recalled in Section 4), then every homomorphism

∏
i∈I Ai → B factors through

the projection of
∏

i∈I Ai onto the product of finitely many of the Ai . An abelian
group B which, like the infinite cyclic group, has this property, is called “slender”.
Slender groups have been completely characterized [Nunke 1961], and slender
modules over general rings have been studied.

Recent work [Bergman and Nahlus 2011 and 2012; Bergman 2014] on factoriza-
tion properties of homomorphisms on infinite direct products of not-necessarily-
associative algebras (motivated by the case of Lie algebras) has turned up interesting
variants on the above sort of behavior.
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First, it turns out that in that context, a useful way to prove every surjective
homomorphism

∏
i∈I Ai→ B factors through finitely many of the Ai is by proving

(a) that every such homomorphism factors through the product of finitely many
ultraproducts of the Ai , and also (b) that whenever one has a map that factors in
that way, the ultrafilters involved must be principal. In this note, we shall consider
each of conditions (a) and (b) on an object B as of separate interest.

Secondly, we found that in many cases, though one cannot say that every sur-
jective homomorphism from a direct product to B will itself factor in one of
these ways, one can say that for every such homomorphism

∏
i∈I Ai → B, the

induced homomorphism
∏

i∈I Ai → B/Z(B) so factors, where Z(B) denotes the
zero-multiplication ideal, {b ∈ B | bB = Bb = {0}} (which for B a Lie algebra
is the center of B). In the next section, we shall get similar results for groups,
with Z(B) the center of the group B. (Note that these statements do not say that
every surjective homomorphism

∏
i∈I Ai → B/Z(B) factors as stated; such a

factorization is asserted only when the homomorphism
∏

i∈I Ai→ B/Z(B) can be
lifted to a homomorphism

∏
i∈I Ai → B.) Maalouf [2014] abstracts this property,

and strengthens some of the results of the papers cited.
In the classical case of abelian groups (and its generalization to modules), the

condition on an object B that every homomorphism from an infinite product onto B
yield a factorization through finitely many of the Ai , and the corresponding condition
for homomorphisms into B, are equivalent. Indeed, from any homomorphism∏

i∈I Ai → B, one can get, in an obvious way, a surjective homomorphism
B×

∏
i∈I Ai → B, and the original homomorphism factors through finitely many

of the Ai if and only if that surjective map factors through B and finitely many Ai .
This observation uses implicitly the fact that one can add homomorphisms of abelian
groups — in this case, the map B ×

∏
i∈I Ai → B induced by the given map on

the one hand, and the projection to B on the other. But one cannot do this for
homomorphisms of noncommutative groups, of algebras, etc.; so for these, the
condition involving arbitrary maps and the condition involving surjective maps are
not equivalent. In these cases, the condition on B defined in terms of surjective
homomorphisms is the more informative. Once one has characterized those B for
which all surjective homomorphisms

∏
i∈I Ai → B yield such a factorization, one

can, if one wishes, characterize the B with the corresponding property for general
homomorphisms as the objects all of whose subobjects have the the property for
surjections.

In stating results of the sort we shall obtain, one has a choice between (i) saying
that if a structure B does not have one or another of a list of “messy” properties,
then every homomorphism from an infinite direct product onto B leads to a certain
kind of factorization, or (ii) the contrapositive statement, that if there exists a
homomorphism onto B that does not so factor, then B has one of those messy
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properties. Each approach has its plusses and minuses; here I have followed (ii),
because it seems more straightforward to understand how a non-factorable map
forces B to have a messy property than to show that the absence of certain messy
properties implies that all maps factor; and also because some of the conditions on B
come in several versions, and I find it easier to parse a statement having a single
hypothesis and several conclusions than one with several alternative hypotheses
giving a single conclusion. (But the above choice also has its awkward aspects; I
can’t say which is really best.)

In Sections 2–4, we shall study the case where our structures are not-necessarily-
abelian groups, in Sections 5–7, abelian groups, then, briefly, in Section 8 and
Section 9, rings and monoids. In Section 10 we note why lattices are likely to be
another case worth examining.

For a short review, for the nonspecialist, of the concepts of filter, ultrafilter and
ultraproduct, see [Bergman and Nahlus 2011, Appendix A]; and for measurable
cardinals κ , and κ-complete ultrafilters, which come up in Sections 4–5 below,
[ibid., Appendix B]. For detailed developments of these concepts see, e.g., [Chang
and Keisler 1990] or [Comfort and Negrepontis 1974].

We remark that there is in the literature a concept of “noncommutative slender
group” that is quite different from the subject of Sections 2–4 below. The concept so
named can be arrived at by regarding the infinite direct product in the definition of a
slender abelian group as a completed direct sum, and using in the noncommutative
case, instead of the direct product, an analogously completed noncommutative
coproduct. For work on that topic see [Shelah and Strüngmann 2001] and references
given there.

2. Factoring group homomorphisms through finitely many ultraproducts.

Let (Gi )i∈I be a family of groups. By the support of an element g = (gi )i∈I ∈∏
i∈I Gi , we will understand the set

(1) supp(g)= {i ∈ I | gi 6= e} ⊆ I.

Given any subset S ⊆ I , we shall identify
∏

i∈S Gi in the obvious way with the
subgroup of

∏
i∈I Gi consisting of elements whose support is contained in S. In

particular, for g ∈
∏

i∈I Gi , the statement g ∈
∏

i∈S Gi will mean supp(g)⊆ S, and
the statement g ∈ Gi will mean supp(g)⊆ {i}.

Whereas the theory of slender abelian groups is based on delicate structural
properties of those groups, most of our results on nonabelian groups will be based on
a much simpler observation: Elements of

∏
i∈I Gi with disjoint supports centralize

one another. As a quick example, it is not hard to see that if B is a simple nonabelian
group, and we have any surjective homomorphism f :

∏
i∈I Gi → B, then for
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each S ⊆ I , the map f must annihilate one of the mutually centralizing subgroups∏
i∈S Gi and

∏
i∈S−I Gi . From this one can deduce that the subsets S⊆ I such that f

factors through the projection
∏

i∈I Gi →
∏

i∈S Gi form an ultrafilter (principal or
nonprincipal) on I .

In the opposite direction, however, if we take for B a cyclic group of prime
order p (thus losing the leverage provided by noncommutativity), and let all the Gi

be copies of that group, then by linear algebra over the field of p elements, there
exist homomorphisms

∏
i∈I Gi → B that send every Gi onto B, and hence don’t

factor through any proper subproduct
∏

i∈S Gi .
As indicated in the introduction, we shall get around the problem created (as

above) by commutativity by composing homomorphisms
∏

i∈I Gi → B with the
quotient map B→ B/Z(B), where Z(B) is the center of B. Given a homomorphism
f :
∏

i∈I Gi → B, the key to our considerations will be the family of subsets

(2) F= {S ⊆ I | the composite map
∏

i∈I Gi → B→ B/Z(B)
factors through the projection

∏
i∈I Gi →

∏
i∈S Gi }

= {S ⊆ I | f (
∏

i∈I−S Gi )⊆ Z(B)}.

It is easy to see that F, so defined, is a filter on I , and that if we write

(3) π : B → B/Z(B)

for the quotient map, then F is the largest filter such that π f :
∏

i∈I Gi→ B/Z(B)
factors through the reduced product

∏
i∈I Gi/F. (The above observation, and the

next few, do not yet use the fact that we are working with a map of the form π f ,
but only that we are considering a homomorphism on a product group. The fact that
our map has the form π f will become significant starting with Lemma 1 below.)

If the filter F of (2) is a finite intersection of distinct ultrafilters, U0∩· · ·∩Un−1,
then

∏
i∈I Gi/F∼=

∏
i∈I Gi/U0×· · ·×

∏
i∈I Gi/Un−1, so π f factors through the

projection to that product; and conversely, if π f factors through the projection to
such a product, then F is the intersection of some subset of the Uk (the minimal
set of Uk allowing such a factorization). In this connection, we recall

(4) [Bergman 2014, Lemma 1.3, (3)⇐⇒(5)] A filter F on a set I can be written as
the intersection of finitely many ultrafilters on I if and only if for every partition
of I into countably many sets Jm (m ∈ ω), there is at least one m ∈ ω such that
I − Jm ∈ F.

Here and below, we make the conventions that a partition may include one or
more instances of the empty set, and that the intersection of the empty family of
filters on a set is the set of all subsets of that set, i.e., the improper filter. (These
conventions are needed to make various statements correct in degenerate cases.)

Let us note what (4) tells us about homomorphisms on direct product groups.
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Lemma 1. Let f :
∏

i∈I Gi → B be a homomorphism from a direct product of
groups Gi to a group B, which is surjective; or more generally, such that the com-
posite π f :

∏
i∈I Gi → B→ B/Z(B) is surjective. Then the following conditions

are equivalent.

(5) π f :
∏

i∈I Gi → B/Z(B) does not factor through the natural map
∏

i∈I Gi →∏
i∈I Gi/U0 × · · · ×

∏
i∈I Gi/Un−1 for any finite family U0, . . . ,Un−1 of

ultrafilters on I .

(6) There exists a partition of I into countably many subsets J0, J1, . . . , such that
each subgroup

∏
i∈Jn

Gi ⊆
∏

i∈I Gi contains a pair of elements xn , yn whose
images in B under f do not commute.

Proof. The easy direction is (6) =⇒ (5). The fact that f (xn) and f (yn) do not
commute tells us, in particular, that f (xn) /∈ Z(B). Hence for F defined by (2)
(noting in particular the last line thereof), I − Jn /∈ F. Since this is true for each n,
(4) tells us that the filter F is not a finite intersection of ultrafilters, giving (5).

To get the converse, note that if (5) holds, equivalently, if F is not a finite
intersection of ultrafilters, then by (4) we can partition I into subsets J0, J1, . . . ,
none of whose complements lies in F; i.e., by the last line of (2), such that each∏

i∈Jn
Gi contains an element xn which is mapped by f to a noncentral element

of B. Fixing n, this says that there exists an element b ∈ B which does not commute
with f (xn). I claim we can take such a b to be the image of an element y ∈

∏
i∈I Gi

under f . Indeed, if f is surjective, this is immediate. If instead we have the
weaker hypothesis that π f :

∏
i∈I Gi → B→ B/Z(B) is surjective, then we can

choose y ∈
∏

i∈I Gi whose image under f is congruent to b modulo Z(B). Since
multiplication by an element of Z(B) does not affect what members of B an element
commutes with, f (y) does not commute with f (xn).

Let us now write y = yn y′, where yn ∈
∏

i∈Jn
Gi while y′ ∈

∏
i∈I−Jn

Gi . Then
y′ commutes with xn , since they have disjoint supports in our product group.
Hence f (y′) commutes with f (xn); hence if f (yn) also commuted with f (xn),
then f (y) = f (yn) f (y′) would commute with f (xn), contradicting our choice
of y. Hence, rather, xn, yn ∈

∏
i∈Jn

Gi have images in B which do not commute,
giving (6). �

We can now get the first of our results showing that any group B admitting a
map f satisfying (5) must be “big”.

Theorem 2. Let B be a group such that there exist a family of groups (Gi )i∈I , and
a group homomorphism f :

∏
i∈I Gi → B, for which the induced homomorphism

π f :
∏

i∈I Gi → B/Z(B) does not factor through the projection of
∏

i∈I Gi to
the product of finitely many ultraproducts of the Gi . Then B contains families of
elements (aS)S⊆ω, (bS)S⊆ω, indexed by the subsets S of ω, such that:
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(7) All the elements aS (S ⊆ ω) commute with one another, and all the elements bS

(S ⊆ ω) likewise commute with one another.

(8) For S and T disjoint subsets of ω, one has aSaT = aS∪T , bSbT = bS∪T , and
aSbT = bT aS .

(9) For subsets S and T of ω with card(S ∩ T )= 1, aSbT 6= bT aS .

Proof. Given Gi and f as in the hypothesis, i.e., satisfying (5), Lemma 1 gives us
sets Jn ⊆ I and elements xn , yn (n ∈ ω) as in (6). Let Hn =

∏
i∈Jn

Gi ⊆
∏

i∈I Gi

(n ∈ ω), so that we can regard
∏

i∈I Gi as
∏

n∈ω Hn , the xn and yn as elements of
that group with singleton supports, and f as a homomorphism

∏
n∈ω Hn→ B.

For each subset S ⊆ ω, let xS be the element of
∏

n∈ω Hn whose component
at n is xn if n ∈ S, and e otherwise, and let elements yS be obtained similarly from
the yn . It is easy to see that any two elements xS and xT commute with one another
in
∏

n∈ω Hn , and similarly for the y’s; and that for S and T disjoint, xSxT = xS∪T ,
yS yT = yS∪T , and xS yT = yT xS . Hence, letting aS = f (xS), bS = f (yS), we get (7)
and (8).

For general S and T , the commutator [xS, yT ] will have n-th component [xn, yn]

if n ∈ S ∩ T , and e otherwise. So if S ∩ T is exactly {n} for some n ∈ ω, then
f ([xS, yT ])= f ([xn, yn]), which by choice of xn and yn is not e, giving (9). �

By restricting the elements bT that we consider, we can get a clearer view of the
behavior of the elements aS:

Corollary 3. In the situation of Theorem 2, an element aS (S ⊆ ω) commutes with
an element b{n} (n ∈ ω) if and only if n /∈ S. Thus, the elements aS exhibit all
possible combinations of which members of the countable set {b{n} | n ∈ ω} they
commute with. Hence they are distinct modulo Z(B); so their images in B/Z(B)
generate a commutative subgroup of continuum cardinality.

Proof. The first sentence is immediate from (8) and (9), and clearly implies the
second. Since multiplication by a member of Z(B) does not affect what elements a
member of B commutes with, elements which can be distinguished by the latter
properties are necessarily distinct modulo Z(B). The group generated by the aS is
commutative in view of (7), hence so is the image of that group in B/Z(B). �

Above we have obtained “element-theoretic” consequences of the existence of a
map

∏
i∈I Ai → B that does not factor through finitely many ultrafilters. There are

also “subgroup-theoretic” consequences. We shall find it convenient to state some
of these, not in terms of image subgroups π f

(∏
i∈S Gi

)
⊆ B/Z(B), but in terms

of the inverse images f
(∏

i∈S Gi
)
Z(B) of those subgroups in B. Let us start by

noting some general properties of this construction, independent of whether π f
factors through finitely many ultraproducts.
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Lemma 4. Let B be a group, (Gi )i∈I a family of groups, and f :
∏

i∈I Gi→ B a ho-
momorphism which is surjective (or more generally, satisfies B= f

(∏
i∈I Gi

)
Z(B)).

For every subset S ⊆ I , let

(10) BS = f
(∏

i∈S Gi
)
Z(B), a normal subgroup of B.

Then:

(11) B∅= Z(B), BI = B, and for S, T ⊆ I , one has BS BT = BS∪T and BS∩BT =

BS∩T .

(12) For S, T ⊆ I , the centralizer of BT in BS is BS−T .

Hence (again writing π : B→ B/Z(B) for the quotient map),

(13) For disjoint subsets S, T ⊆ I , π(BS∪T ) is the direct product of its subgroups
π(BS) and π(BT ).

Moreover,

(14) If (Sk)k∈K is a family of pairwise disjoint subsets of I , and we let S=
⋃

k∈K Sk ,
then the map π(BS)→

∏
k∈K π(BSk ) determined by the projections π(BS)→

π(BSk ) (which by (13) is an isomorphism if K is finite) is always surjective.

Proof. That each BS is normal in B, as asserted in (10), follows from the normality
of
∏

i∈S Gi in
∏

i∈I Gi , and the centrality of Z(B) in B.
The first three equalities of (11) are immediate, as is the direction BS∩BT ⊇ BS∩T

of the final equality. Before proving the reverse inclusion, let us note a case of (12)
which is also immediate:

(15) If S and T are disjoint subsets of I , then BS and BT centralize one another.

To get the remaining part of (11), BS ∩ BT ⊆ BS∩T , consider an element of the
left-hand side, which we may write

(16) f (u)z1 = f (v)z2, where u ∈
∏

i∈S Gi , v ∈
∏

i∈T Gi , and z1, z2 ∈ Z(B).

Let us write u = u′u′′, where u′ ∈
∏

i∈S∩T Gi and u′′ ∈
∏

i∈S−T Gi . Thus our
element (16) becomes f (u′) f (u′′)z1. Since u′ ∈

∏
i∈S∩T Gi , if we can show that

f (u′′) ∈ Z(B), then (16) will lie in f
(∏

i∈S∩T Gi
)
Z(B)= BS∩T , as required.

Thus, we need to show that f (u′′) centralizes B = BI = BS−T BI−(S−T ). Since
f (u′′) ∈ BS−T , it certainly centralizes BI−(S−T ). On the other hand if we write the
equation in (16) as

f (u′) f (u′′)z1 = f (v)z2, equivalently, f (u′′)= f (u′)−1 f (v)z2z−1
1 ,

we see that all the factors on the right lie in BT , hence centralize BS−T . Hence so
does f (u′′), completing the proof of the last assertion of (11).

We can now easily prove (12). By (11), BS−T is contained in BS , and by (15),
it centralizes BT , so we need only show that conversely, any element of BS that
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centralizes BT lies in BS−T . As in the preceding argument, we can write our
element of BS as f (u′) f (u′′)z, where u′ ∈

∏
i∈S∩T Gi and u′′ ∈

∏
i∈S−T Gi . This

time, we need to prove that f (u′) ∈ Z(B). Now since f (u′) f (u′′)z centralizes BT ,
and f (u′′) and z automatically do, we see that f (u′) centralizes BT . Also, since
f (u′) ∈ BS∩T , and S ∩ T is disjoint from I − T , f (u′) centralizes BI−T . Hence it
centralizes BT BI−T = B, so it lies in Z(B), as claimed.

The conclusion (13) follows easily from (12) and (11).
To establish (14), we take an element of

∏
k∈K π(BSk ), lift its component in each

π(BSk ) to an element of
∏

i∈Sk
Gi , and regard these together as giving an element of∏

i∈S Gi ; note that the image of this element in π(BS) has the desired property. �

Note that in the situation of the above lemma, the subgroups BS need not be
distinct for distinct S⊆ I . For instance, if we take a family (Gi )i∈I of noncommuta-
tive groups and an ultrafilter U on I , let B =

∏
i∈I Gi/U, and let f :

∏
i∈I Gi→ B

be the quotient map, then the above construction gives only two distinct subgroups
of B: BS = B if S ∈U, and BS = Z(B) otherwise.

We shall now get a factorization-through-ultraproducts result from the above
lemma. Let us (following [Bergman 2014, §4.3]) call subgroups B ′, B ′′ of a group B
almost direct factors if B = B ′B ′′, and each of B ′, B ′′ is the centralizer in B of the
other. A subgroup B ′ ⊆ B belonging to such a pair (equivalently, such that B ′ is
its own double centralizer in B, and B is the product of B ′ and its centralizer) will
thus be called an almost direct factor of B. We shall say B has chain condition on
almost direct factors if the partially ordered set of almost direct factors of B has
ascending chain condition, equivalently (since that partially ordered set is self-dual
under the operation of taking centralizers), if it has descending chain condition.
(As noted in [ibid.], these are the analogs for groups of definitions first made for
algebras in [Bergman and Nahlus 2011, §6].)

Observe that in the situation treated in Lemma 4, statements (12) and (11) show
that for every S ⊆ I , the subgroups BS , BI−S are a pair of almost direct factors
of B. We deduce:

Theorem 5 (cf. [Bergman 2014, Proposition 4.1]). Let B be a group, and suppose
that there exist a family of groups (Gi )i∈I and a homomorphism f :

∏
i∈I Gi → B

such that the induced homomorphism π f :
∏

i∈I Gi → B/Z(B) is surjective and
does not factor through the natural projection of

∏
i∈I Gi to any finite product of

ultraproducts of the Gi .
Then B does not have chain condition on almost direct factors. In fact, it has a

family of almost direct factors order-isomorphic to the lattice 2ω, and forming a
sublattice of the lattice of subgroups of B.

Proof. Given (Gi )i∈I with the indicated non-factorization property, let J0, J1, . . .

be as in Lemma 1. To every subset S of ω, let us associate the subgroup B⋃
n∈S Jn .
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From Lemma 4 we see that each of these subgroups is an almost direct factor
of B, and that the lattice relations among the subsets of ω are also satisfied by
the corresponding subgroups; so it will suffice to show that non-inclusions of
subsets of ω yield non-inclusions of subgroups. If S 6⊆ T , take m ∈ S− T . By our
assumption on the Jn , the subgroup BJm is not self-centralizing, hence though it
centralizes B⋃

n∈T Jn , it does not centralize B⋃
n∈S Jn ; so the latter is not contained in

the former. �

Neither of the conclusions of Theorem 2 and Theorem 5 implies the other. To
get examples of these non-implications, let G be a simple group.

If we embed Gω in any simple overgroup B, then B inherits from Gω families
of elements aS , bS as in Theorem 2; but being simple, B has no nontrivial almost
direct decompositions, hence it satisfies chain condition on almost direct factors,
i.e., fails to satisfy the conclusion of Theorem 5.

On the other hand, if we take for B the group
⊕

ω G of elements of Gω having
finite support, and let BS =

⊕
S G for each S ⊆ ω, we find that these subgroups sat-

isfy (11)–(13), hence constitute a system of almost direct factors lattice-isomorphic
to 2ω, as in Theorem 5. But if G is countable, B will also be so, so it cannot satisfy
the conclusion of Theorem 2.

So neither of these groups B admits a surjective homomorphism f from a direct
product group such that π f (which in both cases would be f , since Z(B) is trivial)
fails to factor through finitely many ultraproducts. However, in the first case, only
Theorem 5 rules this out, while in the second, only Theorem 2 does.

Though the above example with B =
⊕

ω G satisfies (11)–(13), it does not
satisfy (14), as can be seen by taking for the Sk the singleton subsets of ω. One
may ask whether for any group B, every system of subgroups BS (S ⊆ I ) of B that
satisfies all of (11)–(14) arises as in Lemma 4.

The answer is still negative. For instance, suppose B is a group which has trivial
center, and which cannot be written as a homomorphic image of a nonprincipal
ultraproduct of a family of groups indexed by ω. (We shall see in Section 4 that the
free group on two generators, among many others, cannot be so written.) Suppose
we take a nonprincipal ultrafilter U on ω, and define BS ⊆ B to be all of B whenever
S ∈U, and {e} otherwise. It is not hard to verify that this family satisfies (11)–(14),
but that if it arose as in Lemma 4 (with ω for I ), then B would be a homomorphic
image of

∏
n∈ω Gn/U, contradicting our choice of B.

We record a special case of Theorem 5 for easy application to some later examples.

Corollary 6 (to Theorem 5 and its proof). Suppose B is a group with trivial center,
and having no nontrivial direct product decomposition. Then every homomorphism
from a direct product group

∏
i∈I Gi onto B factors through a single ultraproduct∏

i∈I Gi/U of the Gi . �



460 GEORGE M. BERGMAN

3. Further examples

Theorem 5 shows that a group B which admits a surjective homomorphism from an
infinite direct product group that does not factor through finitely many ultraproducts
looks, itself, in some ways, like an infinite direct product — at least after we divide
out Z(B). The next example shows that this behavior of B/Z(B) can coexist with
very un-product-like behavior in Z(B).

Example 7. Groups B and G and a homomorphism f : Gω
→ B such that the

induced subgroups BS (S ⊆ ω) are all distinct, but such that the center of each of
the given copies of G in Gω is mapped isomorphically to Z(B) 6= {e}; and which
also show that in (9), the hypothesis card(S∩ T )= 1 cannot be weakened to merely
say that S ∩ T is nonempty and finite.

Construction and proof. Let k be a field, and G the Heisenberg group over k;
that is, the multiplicative group of upper triangular 3× 3 matrices with 1’s on
the main diagonal; equivalently, the group of 3-tuples of elements of k under the
multiplication (a, a′, a′′)(b, b′, b′′) = (a+ b, a′+ b′, a′′+ b′′+ a′b). Clearly, the
countable power group Gω can be described as the group of 3-tuples of elements
of the power ring kω under the operation given by the same formula.

Let us now take the k-vector-space homomorphism s :
⊕

ω k → k which for
each n acts on the n-th direct summand by 1 7→ sn , for some specified elements
sn ∈ k−{0}, and by linear algebra, let us extend s to a vector-space homomorphism
σ : kω→ k. Let B be the homomorphic image of Gω gotten by dividing Z(Gω)= kω

by ker(σ ). This can be described as

(17) kω× kω× k, under the operation
(a, a′, a′′)(b, b′, b′′)= (a+ b, a′+ b′, a′′+ b′′+ σ(a′b)).

I claim that Z(B) = {0} × {0} × k. To see this, let us first show that every
(a, b, c) ∈ B with a 6= 0 is noncentral. Choose n such that a has n-th component
an 6= 0, and take b′ ∈ kω to have 1 in the n-th position and 0 in all others. Then we
find that the commutator of (a, b, c) and (0, b′, 0) is (0, 0, snan) 6= e. The analogous
argument shows (a, b, c) noncentral if b 6= 0. Elements (0, 0, c) are clearly central,
so we get the asserted description of Z(B), and we see that this is the image in B of
the center of each of our copies of G in Gω, and indeed, of the center of GS

⊆ Gω

whenever ∅ 6= S ⊆ ω.
So though the images in B/Z(B) of these subgroups GS are the corresponding

factors (k× k)S
⊆ (k× k)ω, when we look at the images in Z(B) of their centers,

the distinctions among them disappear.
To get the final assertion of this example, let us partition ω into the singletons

Jn = {n}, so that in the notation of the proof of Theorem 2, each Hn is G. For
each n, let xn = (1, 0, 0), yn = (0, 1, 0) in Hn , and let us use these to construct
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elements aS, bT ∈ B as in that proof. Then if S and T are subsets of ω which
intersect in a finite set {n0, . . . , nd−1}, we see that in B the commutator [aS, bT ] is
(0, 0, sn0 + · · ·+ snd−1). If d = 1 this is necessarily a nonidentity element, as stated
in (9); but if S and T intersect in more than one element, this may or may not be
true, depending on the choice of the sn . (In particular, if the field k is finite, then
whatever the sn , there must be some nonempty family of ≤ card(k) sn’s that sum to
zero.) So the restriction card(S ∩ T )= 1 in (9) cannot be dropped. �

In the above example, the focus was on the part of the map going into Z(B); the
map Gω

→ B/Z(B) was a straightforward homomorphism of direct products. But
this is not always the case; that is, the maps which (14) shows to be surjective need
not, in general, be isomorphisms. For instance, in the example mentioned imme-
diately after the proof of Lemma 4, where the Gi were arbitrary noncommutative
groups, and f was the map

∏
i∈I Gi →

(∏
i∈I Gi

)
/U, for U an ultrafilter on I , if

U is nonprincipal and we take for the Sk all the singletons {i} (i ∈ I ), so that S = I ,
then each π(BSk ) is trivial, but π(BS) is not.

One can, of course, modify this example to get one which also has the property
that every Gi has nontrivial image in B/Z(B):

Example 8. A group homomorphism
∏

n∈ω Gn→ B where all the B{n}/Z(B) are
nonzero (so that all the BS are distinct), but not all the surjections of (14) are
isomorphisms.

Construction. Let Gn (n ∈ ω) be groups with trivial centers, each having a
proper nontrivial normal subgroup Nn C Gn such that Gn/Nn also has trivial
center. Let U be any nonprincipal ultrafilter on ω, let H =

(∏
n∈ω Gn

)
/U, and

let f :
∏

n∈ω Gn → H ×
∏

n∈ω Gn/Nn be the map obtained from the obvious
homomorphisms

∏
n∈ω Gn → H and

∏
n∈ω Gn →

∏
n∈ω Gn/Nn . Let B be the

image of f .
For S⊆ω, what does BS look like? This depends on whether or not S ∈U. If not,

we see that BS=
∏

n∈S Gn/Nn; in particular, for every n ∈ω we have B{n}=Gn/Nn .
Thus for S /∈ U, the group BS can be identified with

∏
n∈S B{n}. However, when

S ∈U, the H -component of BS will be the full group H , which carries structure
from the normal subgroups Nn which is ignored by each group B{n}; so in these
cases, the natural map BS→

∏
n∈S B{n} is not one-to-one. �

One can generalize the above construction by replacing U with an arbitrary filter
F, though the description of the groups BS is more complicated to state when S is
neither a member of F nor the complement of one. And, of course, one can set up ex-
amples based on more than one system of normal subgroups and more than one filter.

In the above example, though the system of subgroups BS described does not
have the property that the maps of (14) are isomorphisms, the group B has other
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systems of subgroups that can be shown to have that property. Here is an example
having no such family.

Example 9. A group B having elements aS and bS (S ⊆ ω) satisfying (7)–(9), and
distinct subgroups BS (S⊆ω) satisfying (10)–(13), but having no such system of dis-
tinct subgroups also satisfying (14) for any infinite family of disjoint nonempty sets
(sk)k∈K ; so that B cannot admit a surjective homomorphism from a direct product
group which does not factor through the product of finitely many ultraproducts.

Construction and sketch of proof. Let G be an infinite simple group, and B the
subgroup of Gω consisting of those ω-tuples assuming only finitely many distinct
values in G. If we choose a pair of noncommuting elements x, y ∈ G, and for each
n∈ω let xn be the element x of the n-th copy of G, and yn the element y thereof, then
we see that the elements xS and yS (S⊆ω), constructed as in Theorem 2, will lie in B,
and, renamed aS and bS , will satisfy (7)–(9). Similarly, if we let BS be the subgroup
of B consisting of elements with support in S, then (11)–(13) are immediate.

I will now sketch why B admits no system of nontrivial almost direct factors
BSk and BS satisfying (14) for any infinite K . Note that B has trivial center, so that
almost direct factors are simply direct factors. Now it is easy to verify using the
simplicity of G that if B has a direct product decomposition B = B ′× B ′′, then
for each n ∈ ω, one of B ′, B ′′ has as n-th coordinates all members of G, while
the other has only e in that coordinate. From this one can deduce that every such
decomposition has the form B ′ = BS , B ′′ = Bω−S for some S ⊆ ω. We can now
combine the “finitely many distinct values” condition in the definition of B with
the fact that G is infinite to see the impossibility of an infinite family of nontrivial
almost direct factors BSk satisfying the surjectivity condition (14).

Lemma 4 and the method of proof of Theorem 5 now show that every homomor-
phism from a direct product onto B must factor through finitely many ultraproducts.

�

(For some other results on the subgroup of a power group G I consisting of the
elements with only finitely many distinct coordinates — though for abelian groups —
see [Bergman 1972].)

4. Conditions forcing the ultrafilters to be principal

We have obtained conditions that force group homomorphisms
∏

i∈I Gi → B to
factor through the direct product of finitely many ultraproducts of the Gi . When
can we say that any map that so factors must in fact factor through the product of
finitely many Gi ; i.e., that the ultrafilters involved must be principal?

Here set-theoretic considerations come in. If κ is a measurable cardinal, then
sets I of cardinality ≥ κ admit nonprincipal κ-complete ultrafilters; that is, ultra-
filters closed under all <κ-fold intersections. (Two quick terminological notes:
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(i) The condition of being closed under countable intersections, which by the above
definition is ℵ1-completeness, is also called countable completeness. (ii) We shall
follow the definition of measurable cardinal used in [Chang and Keisler 1990],
which counts ℵ0 as measurable; so we will write “uncountable measurable cardinal”
for what many authors simply call a measurable cardinal.)

If κ is an uncountable measurable cardinal and I a set of cardinality ≥ κ , and
we take a family (Gi )i∈I of groups (or more generally, of any sort of algebraic
structures defined by finitely many finitary operations) whose cardinalities have a
common bound <κ , then their ultraproducts with respect to κ-complete ultrafilters
behave very much as do ordinary ultraproducts of finite groups with a common finite
bound on their orders; to wit, every such ultraproduct is isomorphic to one of the Gi .
Hence, if there exists such a cardinal κ , then every group B of cardinality <κ can
be represented as an ultrapower of itself with respect to a nonprincipal κ-complete
ultrafilter U. So for every such B we get a surjective homomorphism B I

→ B
which factors through the ultrapower B I/U but not through finitely many projection
maps — which seems to be bad news for the type of result we are hoping for.

However, it is known that if uncountable measurable cardinals exist, they must be
quite enormous [Chang and Keisler 1990, Theorem 4.2.14], and that if the standard
set theory, ZFC, is consistent, it is consistent with the nonexistence of such cardinals.
Hence it would be reasonable to work under the assumption that no uncountable
measurable cardinals exist, or, if they exist, to restrict our index sets to cardinalities
less than all such cardinals.

The next observation shows that when doing the spade-work of our investigation,
we can in fact restrict attention to the case where our index set is countable.

Lemma 10. If B is a group, then the following conditions are equivalent.

(18) B is a homomorphic image of an ultraproduct of a family of groups indexed by
an arbitrary set I , with respect to some ultrafilter U on I that is not countably
complete, equivalently, that is not κ-complete for any uncountable measurable
cardinal κ .

(19) B is a homomorphic image of an ultraproduct of a family of groups indexed
by ω, with respect to a nonprincipal ultrafilter on ω.

The same is true with “groups” replaced by objects of any other variety of finitary
algebras, in the sense of universal algebra.

Proof. The equivalence referred to in (18) follows from the fact that any countably
complete ultrafilter must be κ-complete for some uncountable measurable cardinal κ
[Chang and Keisler 1990, Proposition 4.2.7].

Since a nonprincipal ultrafilter on ω is not countably complete, we have (19) =⇒
(18). On the other hand, it is easy to show that if U is a non-countably-complete
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ultrafilter on a set I , then I can be partitioned as
⋃

n∈ω Jn where no Jn belongs to U.
In this situation we find that {S ⊆ ω |

⋃
n∈S Jn ∈U} is a nonprincipal ultrafilter U′

on ω, and that given groups Gi (i ∈ I ), the natural map
∏

i∈I Gi →
∏

i∈I Gi/U

factors through
∏

n∈ω

(∏
i∈Jn

Gi
)
/U′. Hence, writing

∏
i∈Jn

Gi = Hn , we see that if,
as in (18), B is a homomorphic image of

∏
i∈I Gi/U, then it is also a homomorphic

image of
∏

n∈ω Hn/U
′, giving (19).

The final assertion is clear. (The assumption that our algebras are finitary is
needed to insure that algebra structures are induced on ultraproducts of such alge-
bras.) �

So below, it will suffice to examine which groups are homomorphic images of
nonprincipal ultraproducts of countable families of groups. For brevity, we shall
call an ultraproduct of a countable family a “countable ultraproduct”.

My first guess was that if B was such a homomorphic image, then the cardinality
of B/Z(B) would have to be either finite or at least the cardinality of the continuum.
But Tom Scanlon suggested the following counterexample.

Lemma 11 (T. Scanlon, personal communication). Let B be the semidirect product
of the additive group Q of rational numbers, and the 2-element group {±1}, deter-
mined by the multiplicative action of the latter on the former. (I.e., B has underlying
set {±1}×Q, and multiplication (α, a)(β, b)= (αβ, βa+ b).)

Then every ultrapower of B admits a homomorphism onto B. Hence though
B = B/Z(B) is countable, it is a homomorphic image of a nonprincipal countable
ultraproduct of groups.

Proof. Clearly, the only elements of B that commute with (−1, 0) are those with
second component 0, while the only elements that commute with (1, 1) are those
with first component 1; so Z(B)= {e}, justifying the formula B = B/Z(B).

It is easy to see that for any ultrafilter U on any index set I , the ultrapower B I/U

will be the semidirect product of {±1} and QI /U determined by the natural action
of the former group on the latter. Now QI /U, like Q, is a nontrivial torsion-free
divisible group, i.e., a nontrivial Q-vector-space, and, as such, admits a surjective
homomorphism ϕ :QI /U→Q. The map B I/U→ B given by (α, β) 7→ (α, ϕ(β))

is easily seen to be a surjective homomorphism, as claimed. �

By Corollary 6, every homomorphism from a direct product group
∏

i∈I Gi onto
the above group B factors through a single ultraproduct of the Gi ; but the above
result shows that (even when the index set is countable) the ultrafilter involved need
not be principal.

In fact, the only condition I know that guarantees factorization through finitely
many of the Gi is based on requiring appropriate abelian subgroups of B to satisfy
similar factorization properties as abelian groups. The key observation is:
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Lemma 12. Suppose B is a homomorphic image of a nonprincipal countable ultra-
product of groups,

(∏
n∈ω Gn

)
/U. Then every element b ∈ B lies in a homomorphic

image within B of Zω/U, a nonprincipal countable ultrapower of Z.

Proof. Given b ∈ B, let b be the image of (gn)n∈ω ∈
∏

n∈ω Gn . Then the homomor-
phism γ : Zω→

∏
n∈ω Gn taking (mn)n∈ω to (gmn

n )n∈ω induces a homomorphism
γ ′ : Zω/U→

(∏
n∈ω Gn

)
/U, with which it forms a commuting square. Hence the

composite map Zω→
∏

n∈ω Gn→
∏

n∈ω Gn/U→ B, which carries (1, 1, . . . )∈Zω

to b, factors through Zω/U; so b lies in a homomorphic image of that group. �

To see that this puts strong restrictions on groups B admitting such homomor-
phisms, note that every slender abelian group, in particular, the infinite cyclic group,
has the property of not being a homomorphic image of a nonprincipal countable
ultrapower of Z. We will see wider classes of abelian groups with this property in
the next section.

Though this note emphasizes the separate conditions that maps from infinite
products yield factorizations through finitely many ultraproducts, and that the
ultraproducts in all such factorizations are principal, let us record how the above
lemma allows one to combine results of the former sort obtained in Section 2
above, and results of the latter sort for abelian groups, which will be obtained in
Sections 5–6, to give sufficient conditions for all maps from a direct product of
groups to factor through finitely many projection maps.

Theorem 13. Let B be a group with the property that for every homomorphism
from a direct product group,

(20) f :
∏
i∈I

Gi→ B such that the composite homomorphism π f :
∏
i∈I

Gi→ B/Z(B)

is surjective,

the map π f factors through the projection to finitely many ultraproducts of the Gi

(cf. Section 2 above).
Suppose, moreover, that for every almost direct factor B ′ 6= Z(B) of B, the

group B ′/Z(B) contains at least one element b which does not lie in any homo-
morphic image therein of a nonprincipal countable ultraproduct of copies of Z

(cf. Sections 5–7 below).
Then for every homomorphism (20) such that card(I ) is less than every un-

countable measurable cardinal (if any such cardinals exist), the composite π f :∏
i∈I Gi → B/Z(B) factors through the product of finitely many of the Gi .

Proof. Given a homomorphism (20) satisfying the indicated bound on card(I ),
let us factor π f through a direct product

∏
i∈I Gi/U0 × · · · ×

∏
i∈I Gi/Um−1,

where U0, . . . ,Um−1 are distinct ultrafilters on I . Without loss of generality, we
may assume that each

∏
i∈I Gi/Uk has nontrivial image in B/Z(B). Choosing a

partition I = J0 ∪ · · · ∪ Jm−1 with Jk ∈Uk , we get, by Lemma 4, an almost direct
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decomposition of B into subgroups BJk . Now suppose one of our ultrafilters Uk

were not principal. By our assumption on the cardinality of I , Uk is not κ-complete
for any uncountable measurable cardinal κ , hence by Lemma 10, (18) =⇒ (19),
BJk/Z(B) satisfies the hypothesis of Lemma 12. But since BJk is an almost direct
factor of B, by assumption BJk/Z(B) has an element b whose properties contradict
the conclusion of that lemma. So, rather, every Uk must be principal, say generated
by a singleton {nk} ⊆ Jk . Hence our factorization through(∏

i∈I
Gi

)
/U0× · · ·×

(∏
i∈I

Gi

)
/Um−1

is in fact a factorization through Gn0 × · · ·×Gnm−1 . �

Quick examples of groups B to which the above result applies are free groups on
more than one generator, and the infinite dihedral group. Indeed, since both groups
have trivial center, the “/Z(B)” in the statement can be ignored, and since neither
has a nontrivial direct product decomposition, it suffices to verify that each has an
element b not contained in any homomorphic image of a nonprincipal countable
ultraproduct of copies of Z. In a free group, every nontrivial abelian subgroup is
infinite cyclic, hence slender, so any nonidentity element can serve as such a b.
In the dihedral group D = x, y | x2

= e = y2 , the element b = xy generates
an infinite cyclic subgroup which is its own centralizer, again establishing the
hypothesis of the theorem. Another class of examples is noted in:

Corollary 14 (to Lemma 12). Let X be an infinite set, and B a group of permuta-
tions of X having a cyclic subgroup b whose action on X has exactly one infinite
orbit (no restriction being assumed on the number of finite orbits of b ). Then the
centralizer of b in B admits a homomorphism to Z taking b to 1. Hence B is not a
homomorphic image of a nonprincipal ultraproduct of a countable family of groups.

In particular, this is true if B is the full symmetric group on X , or more generally,
if for some filter F on X not consisting entirely of cofinite subsets, B is the group of
permutations of X whose fixed sets belong to F.

Proof. If two permutations a and b of a set X commute, it is easy to see that a will
carry orbits of b to orbits of b , and, of course, the image orbits will have the
same cardinalities as the original orbits. Hence, if b has a unique infinite orbit Y ,
then a must carry Y to itself; and it is easy to verify that it must act on Y by some
power bna of b. The function a 7→ na now gives the desired homomorphism of the
centralizer of b onto Z. Hence, every commutative subgroup of B containing b
admits a homomorphism onto Z, so as in the other examples discussed above, B
is not a homomorphic image of a nonprincipal ultraproduct of a countable family
of groups.

Now if F is a filter on X containing a set W which is not cofinite, we can take a
countably infinite subset Y ⊆ X −W , and let b be a permutation which has Y as an
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orbit, and fixes all other points of X . This gives the final assertion of the corollary.
The full symmetric group on X is the particular case where F is the improper filter
on X . �

(With a little more work, one can get a result similar to the first paragraph of
the above corollary under the weaker assumption that b has at least one but
only finitely many distinct infinite orbits, say b x0, . . . , b xd−1 ⊆ X . In this
case, for each a centralizing b, we find that axi = bna,i xπa(i) (0≤ i < d) for some
permutation πa of {0, . . . , d − 1} and integers na,0, . . . , na,d−1. It is then easy to
verify that the map a 7→

∑
i na,i is a homomorphism from the centralizer of b to Z,

which carries b to d.)
The next result, in contrast, gives a large class of groups that do admit surjective

homomorphisms from nonprincipal countable ultraproducts. The construction
appears to be well known, but I have not been able to find a reference.

Proposition 15. If a group B admits a compact Hausdorff group topology, then
for any set I and any ultrafilter U on I , there exists a homomorphism B I/U→ B
left-inverse to the natural embedding B→ B I

→ B I/U (where the first arrow is
the diagonal map).

Hence, every group B admitting a compact Hausdorff group topology is a ho-
momorphic image of a nonprincipal countable ultraproduct of groups; hence so is
every homomorphic image of such a group.

These statements hold, more generally, with groups replaced by the objects of
any variety of finitary algebras, in the sense of universal algebra.

Sketch of proof. Fix a compact Hausdorff group topology on B. Given x ∈ B I , let
us associate to each S ∈U the set X S = {xi | i ∈ S} ⊆ B. These sets clearly have
the finite intersection property, hence so do their closures. On the other hand, with
the help of the definition of ultrafilter and the Hausdorffness of our topology, it is
easy to verify that those closures can have no more than one common point. Hence
by compactness, the system of sets X S must converge to a single point of B. It is
immediate that the map associating to x the limit point of this system depends only
on the image of x in B I/U, and so induces a map B I/U→ B, and it is easy to
verify that this is a homomorphism with the asserted properties.

The statements in the second paragraph of the lemma clearly follow. The final
generalization holds by the same reasoning. �

By the above result, such a B is a homomorphic image of B I/U for every
ultrafilter U on every set I . This suggests the following question, where for
simplicity we limit ourselves to I = ω.

Question 16. If U, U′ are nonprincipal ultrafilters on ω, can every group B which
can be written as a homomorphic image of an ultraproduct of groups with respect
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to U also be written as a homomorphic image of an ultraproduct of groups with
respect to U′?

Question 17. If the answer to Question 16 is negative, is it at least true that for any
two ultrafilters U and U′ on ω, there exists an ultrafilter U′′ on ω such that every
group which can be written as a homomorphic image of an ultraproduct of groups
with respect to U or with respect to U′ can be written as a homomorphic image of
an ultraproduct with respect to U′′?

If Question 17 has a positive answer, one can deduce that the class of groups which
can be written as homomorphic images of nonprincipal countable ultraproducts of
groups is closed under finite direct products.

Proposition 15 also leads one to wonder whether every group B which can
be written as a homomorphic image of a nonprincipal countable ultraproduct of
groups can in fact be written as a homomorphic image of a nonprincipal countable
ultrapower Bω/U of itself, via a left inverse to the natural embedding B→ Bω/U.
The answer is negative; we shall see in the second paragraph after Lemma 28 that
there exist abelian groups for which this is not true.

Let us note a couple of groups B for which the results of this section do not, as
far as I can see, give us any information.

Question 18. Can either of the following groups be written as a homomorphic
image of a nonprincipal ultraproduct of a countable family of groups?

(i) An infinite finitely generated Burnside group?

(ii) The group of those permutations of an infinite set that move only finitely many
elements? (Contrast Corollary 14.)

Let us also record, since we know no counterexample,

Question 19. Is the converse to Lemma 12 true? That is, if U is an ultrafilter on ω,
and B is a group such that every b ∈ B lies in a homomorphic image within B of
Zω/U, must B be a homomorphic image of an ultraproduct group

∏
i∈ω Gi/U?

A positive answer seems extremely unlikely. It would imply, in particular, that
every torsion group was such a homomorphic image for every U. (So it would
imply positive answers to both parts of Question 18.)

We remark that the results we have obtained so far show that the two sorts of
properties of an object B that we are considering in this note — (a) that surjective
homomorphisms from direct products onto B yield factorizations through finitely
many ultraproducts, and (b) that when one has such a factorization, and the index
set of the product is countable, the ultraproducts involved must be principal — are
independent, for groups. Theorem 13 gave us examples satisfying both (a) and (b),
such as the free group on more than one generator, and the infinite dihedral group.
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Any infinite direct product of free groups on more than one generator will still
satisfy (b) (since a homomorphism from a nonprincipal countable ultraproduct
group into such a product will have trivial composite with the projection onto each
factor, hence must be trivial), but will fail to satisfy (a), by virtue of being an infinite
direct product. Examples satisfying (a) but not (b) are given by groups satisfying
the hypotheses of both Corollary 6 and Proposition 15; for instance, finite simple
groups. Finally, infinite direct products of such examples satisfy neither (a) nor (b).

(Incidentally, if a map
∏

i∈I Gi → B factors as∏
i∈I

Gi →

(∏
i∈I

Gi

)
/U0× · · ·×

(∏
i∈I

Gi

)
/Um−1→ B,

one or more of the factors
(∏

i∈I Gi
)
/Uk may be irrelevant to the factorization, i.e.,

may map trivially to B. In condition (b) in the above discussion, we understand the
phrase “the ultraproducts involved” to exclude such “irrelevant” factors; if we did
not, (b) could never hold.)

5. Abelian groups

We have seen that in the study of homomorphisms on products of nonabelian groups,
the analogous questions for abelian groups are important. We now turn to that case.

Although, as just noted, the two sorts of condition we are interested in are inde-
pendent for nonabelian groups, we shall find that this is not true of the corresponding
conditions on abelian groups.

First, some notation, language, and basic observations.

Definition 20. In Sections 5–7, we shall use additive notation in abelian groups.
In groups Zω, (Z/pZ)ω, etc., we shall write δn (n ∈ ω) for the element having 1

in the n-th position and 0 in all other positions.
An abelian group B is called slender if it is torsion-free, and every homomorphism

f : Zω→ B annihilates all but finitely many of the δn .

The above definition of a slender abelian group is standard, but the condition
that B be torsion-free is redundant: no B with torsion satisfies the condition on
homomorphisms. For in such a B, we can choose an element b of prime order p,
define the homomorphism

⊕
n∈ω Z/pZ→ b taking each δn to b, extend this,

by linear algebra over the field Z/pZ, to a homomorphism (Z/pZ)ω→ b , and
precompose with the natural map Zω→ (Z/pZ)ω, to get a map Zω→ B that does
not annihilate any δn .

The condition of slenderness is stronger than it looks. Indeed, our statement of
that condition in Section 1 implicitly incorporated the following striking comple-
mentary fact.
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(21) [Fuchs 1973, fact (f) on p. 159] If B is a slender abelian group, then the only
homomorphism f : Zω→ B which annihilates all the elements δn (n ∈ ω) is 0.

We can now prove:

Proposition 21. The following conditions on an abelian group B are equivalent.

(22) There exists a surjective homomorphism f :
∏

i∈I Ai → B from the direct
product of a family of abelian groups to B, which does not factor through
the natural map from

∏
i∈I Ai to the direct product of finitely many countably

complete ultraproducts of the Ai .

(23) There exists a surjective homomorphism f :
∏

n∈ω An → B from the direct
product of a countable family of abelian groups to B, which does not fac-
tor through the projection of

∏
n∈ω An to the direct product of finitely many

ultraproducts (principal or nonprincipal) of the An .

(24) B is not slender.

These are also equivalent to the variants of conditions (22) and (23) without the
assumption that f be surjective.

Proof. We start with the final sentence. Conditions (23) and (22) certainly imply
the corresponding statements without the condition of surjectivity. Conversely (as
noted in Section 1), if we have an example of either of those conditions minus the
surjectivity restriction, we can get one satisfying that condition by passing from the
given map

∏
i∈I Ai → B to the obvious surjective map B×

∏
i∈I Ai → B.

Let us now show that (24) =⇒ (23)=⇒ (22) =⇒ (24).
Given (24), take a map f : Zω→ B witnessing the failure of slenderness, i.e.,

carrying infinitely many of the δn to nonzero values. If f factored through a product
of finitely many ultrapowers, Zω/U0× · · ·×Zω/Um−1, then the only elements δn

which could have nonzero image under f would be those such that one of the Uk

was the principal ultrafilter generated by {n}, of which there can be at most finitely
many. So there is no such factorization, so f witnesses (23) (in its version without
the hypothesis of surjectivity).

Clearly, (23) =⇒ (22).
Given f as in (22), we shall prove (24) by considering two cases. First sup-

pose that f can be factored through a product of finitely many ultraproducts∏
i∈I Ai/U0×· · ·×

∏
i∈I Ai/Um−1, but that not all the Uk can be taken countably

complete. Note that f is the sum of homomorphisms fk (k = 0, . . . ,m− 1) that
factor through the respective ultraproducts

∏
i∈I Ai/Uk , and we can drop from this

sum, and hence from our factorization, any factors
∏

i∈I Ai/Uk such that fk is
zero. Hence for some k with Uk not countably complete, we must have a nonzero
homomorphism fk :

∏
i∈I Ai/Uk → B. The statement that Uk is not countably

complete is equivalent to saying that there exists a partition I = J0∪· · ·∪Jn∪· · · such
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that none of the Jn lie in Uk ; in other words, such that for each n, fk |
∏

i∈Jn
Ai = 0.

If we regard fk as a map
∏

n∈ω

(∏
i∈Jn

Ai
)
→ B, the fact that it is nonzero means

that we can choose an element (xn)n∈ω ∈
∏

n∈ω

(∏
i∈Jn

Ai
)

which fk sends to a
nonzero element of B, though we know that it takes each xn to 0. Using this element
(xn)n∈ω, let us construct a map Zω→ B by taking each (dn)n∈ω ∈ Zω to (dnxn)n∈ω,
and applying fk to this ω-tuple. This gives a homomorphism Zω→ B which is zero
on each δn , but not on (1, . . . , 1, . . . ). Thus, by (21), B is not slender. (Alternatively,
we can get a direct contradiction to the definition of slenderness by choosing fk

and (xn)n∈ω as above, and mapping (dn)n∈ω ∈ Zω to fk((
∑

m<n dm)xn)n∈ω ∈ B.)
There remains the case where f cannot be factored through any product of

finitely many ultraproducts of the Ai . Then the filter F of subsets S⊆ I such that f
can be factored through

∏
i∈S Ai is not a finite intersection of ultrafilters, so by (4)

there exists a partition I = J0∪· · ·∪ Jn∪· · · such that I − Jn /∈F for all n; in other
words, such that each

∏
i∈Jn

Ai ⊆
∏

i∈I Ai has nonzero image under f . Choosing
an xn in each

∏
i∈Jn

Ai with nonzero image, we construct as in the preceding case
a homomorphism Zω → B. This time, that homomorphism will be nonzero on
every δn , showing that B does not satisfy the definition of slenderness. �

Slender abelian groups have been precisely characterized [Nunke 1961; Fuchs
1973, Proposition 95.2]: they are the abelian groups which have no torsion elements,
and contain no embedded copies of either Q, or the group of p-adic integers for
any prime p, or Zω.

In the statement of the above proposition, note that condition (22) is formally
weaker than (23) in two ways: it allows an arbitrary index set I , and it excludes
factorization only through countably complete ultraproducts (which in the context
I = ω of (23) would mean principal ultraproducts, i.e., the given groups An).
Since (22) and (23) are equivalent, they are also equivalent to two intermediate
conditions: the one obtained from (23) by replacing “ultraproducts (principal or
nonprincipal)” by “principal ultraproducts”, and the one obtained from (22) by
deleting the words “countably complete”.

We can deduce from these observations that the two sorts of conditions on an
abelian group B that we are interested in — namely, (a) that maps to B from infinite
direct products factor through finitely many ultraproducts, and (b) that in the case
of a countable product, if we have a such a factorization, the ultrafilters involved
are all principal — are not independent; precisely, that (a) implies (b). Indeed, (a) is
equivalent to the negation of the version of (22) without the “countably complete”
condition, which by the above observations is equivalent to the negation of the
version of (23) in which the ultrafilters are assumed principal, i.e., the statement
that every homomorphism from a countable product into B factors through finitely
many An , which clearly entails (b). Bringing in (24), we see that both (a) and
(a)∧(b) are equivalent to slenderness.
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On the other hand, the three cases not excluded by the implication (a) =⇒ (b)
all do occur. Slender groups, such as Z, satisfy both (a) and (b). An infinite direct
product of nontrivial slender groups, e.g., Zω, satisfies (b) but not (a). Finally, any
nonprincipal countable ultraproduct of nontrivial abelian groups will not satisfy (b),
hence, since (a) =⇒ (b), it will satisfy neither.

Having characterized the abelian groups B that satisfy (a), it remains to charac-
terize the larger class satisfying (b). As preparation, we shall first study the abelian
groups that are homomorphic images of a single nonprincipal countable ultraproduct.
We will need a few more definitions from the theory of infinite abelian groups.

Definition 22 [Fuchs 1970; Rotman 2009]. A subgroup B of an abelian group A is
called pure if for every positive integer n, B ∩ n A = nB.

An abelian group B is said to be algebraically compact if for every overgroup
A ⊇ B in which B is pure, B is a direct summand in A; equivalently [Fuchs 1970,
Theorem 38.1], if for every set X of group equations in constants from B and
B-valued variables, such that every finite subset of X has a solution in B, the whole
set X has a solution in B.

An abelian group B is said to be cotorsion if for every overgroup A ⊇ B such
that A/B is torsion-free (a stronger condition than B being pure in A), B is a direct
summand in A.

Of the two definitions of algebraic compactness quoted above, the first is the
one commonly used. I include the second because it motivates the name of the
condition. The theorem cited for their equivalence establishes several other diverse
conditions as also equivalent to algebraic compactness; below, I shall pull these out
of a hat as needed.

The cotorsion abelian groups clearly include the algebraically compact abelian
groups. In fact, they are precisely the homomorphic images of such groups [Fuchs
1970, Proposition 54.1], a fact called on in condition (30) in the next result.

Proposition 23. For B an abelian group, the following conditions are equivalent.

(25) There exists a family of abelian groups (Ai )i∈I and a non-countably-complete
ultrafilter U on I such that B is a homomorphic image of the ultraproduct∏

i∈I Ai/U.

(26) There exists a countable family of abelian groups (An)n∈ω and a nonprincipal
ultrafilter U on ω such that B is a homomorphic image of the ultraproduct∏

n∈ω An/U.

(27) There exists a countable family of abelian groups (An)n∈ω and a filter F

on ω which is not contained in any principal ultrafilter (i.e., which satisfies⋂
S∈F S =∅), such that B is a homomorphic image of

∏
n∈ω An/F.
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(28) There exists a countable family of abelian groups (An)n∈ω such that B is a
homomorphic image of the reduced product

(∏
n∈ω An

)
/
⊕

n∈ω An .

(29) B is a homomorphic image of an abelian group C admitting a compact
Hausdorff group topology.

(30) B is a cotorsion abelian group; i.e., a homomorphic image of an algebraically
compact abelian group.

Proof. We shall show (25) =⇒ (26) =⇒ (27) =⇒ (28) =⇒ (30) =⇒ (29) =⇒ (25).
In the situation of (25), the fact that U is not countably complete implies that

we can find a partition I =
⋃

n∈ω Jn such that no Jn belongs to U. Let us again
write

∏
i∈I Ai =

∏
n∈ω

(∏
i∈Jn

Ai
)
. As in the proof of Lemma 10, if we let U′ =

{S ⊆ ω |
⋃

n∈S Jn ∈U}, we find that U′ is a nonprincipal ultrafilter on ω, yielding
a factorization of the map from our product group to our original ultraproduct as∏

i∈I
Ai →

∏
n∈ω

( ∏
i∈Jn

Ai

)
/U′→

∏
i∈I

Ai/U.

Since B is a homomorphic image of
∏

i∈I Ai/U, it is a homomorphic image of the
factoring object, proving (26).

We get (26) =⇒ (27) by taking F=U.
Given (27), note that since the filter F on ω is not contained in a principal

ultrafilter, it contains the complement of every singleton, hence it contains the
Fréchet filter C of complements of finite sets. So the quotient map∏

n∈ω
An→

∏
n∈ω

An/F factors through
∏

n∈ω
An/C=

( ∏
n∈ω

An

)/⊕
n∈ω

An,

giving (28).
Given (28), we call on [Fuchs 1970, Corollary 42.2] which says that every group

of the form
(∏

n∈ω An
)
/
⊕

n∈ω An is algebraically compact, yielding (30).
For the step (30)=⇒ (29), we call on [Fuchs 1970, Theorem 38.1] (or on [Rotman

2009, Theorem 7.42]) which, among the equivalent conditions for an abelian
group to be algebraically compact, includes that of being a direct summand in an
abelian group that admits a compact Hausdorff group topology. So an algebraically
compact abelian group is, in particular, a homomorphic image of an abelian group
admitting such a topology, hence so is any homomorphic image of an algebraically
compact group.

Finally, by Proposition 15 above, any abelian group A admitting a compact
Hausdorff group topology can be written as a homomorphic image of its ultrapower
AI /U for any ultrafilter U on any set I . So choosing a U which is not countably
complete (e.g., any nonprincipal ultrafilter on I = ω), we get (29) =⇒ (25). �
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We note that for a nonzero abelian group B, the equivalent conditions of
Proposition 23 imply those of Proposition 21. Indeed, thinking in terms of the
conditions (a) and (b) that we have been discussing, if we write (b1) for the case
of (b) where there is only a single ultraproduct involved (i.e., the condition that
if there exists a nonzero homomorphism from an ultraproduct group

∏
n∈ω An/U

onto B, then the ultrafilter U is principal), then we have (a) =⇒ (b) =⇒ (b1), so
¬(b1)=⇒¬(a); moreover, we see that for B 6= {0}, (26) is equivalent to¬(b1), while
we have previously noted that the conditions of Proposition 21 are equivalent to¬(a).
(Alternatively, it not hard to see directly that for B 6= {0}, an example witnessing (26)
also witnesses (22).) Choosing the equivalent conditions of the two propositions
that have standard names, these observations say that for B 6= {0}, (30) =⇒ (24);
in other words, no nonzero cotorsion abelian group is slender. Since the class of
cotorsion abelian groups is closed under homomorphic images, this in fact gives:

Corollary 24. No cotorsion abelian group has a nonzero slender homomorphic
image. �

Corollary 24 allows us to apply Theorem 13 to many variants of the examples
immediately following it. For instance, one of those was the infinite dihedral group,
i.e., the semidirect product arising from the natural action of {±1} on the slender
group Z. I claim that we can replace Z in that example by any abelian group A
without 2-torsion that has Z as a homomorphic image; for instance, Zω, or Z×Z/nZ

for any odd n. Indeed, taking a homomorphism from such an abelian group A
onto Z, and any b ∈ A that maps to a generator of Z under that homomorphism, we
see from the above corollary that no subgroup B of A containing b is cotorsion,
equivalently, by Proposition 23, that no such subgroup B satisfies (26); hence b
satisfies the condition of the second paragraph of Theorem 13. (The assumption
that A has no 2-torsion keeps the center of the semidirect product trivial, to avoid
complicating our considerations.) In Section 6 we will obtain more information on
which abelian groups are cotorsion.

We can now answer the question of which abelian groups B have the property
we called (b) in our earlier discussion, namely, that any map f from a countable
direct product of abelian groups An onto B which factors through finitely many
ultrafilters in fact factors through the projection to the product of finitely many of
the An . We shall see that this is true if and only if B contains no nontrivial cotorsion
subgroup. Although the class of cotorsion abelian groups is difficult to describe
exactly, a simple criterion is known for an abelian group to be cotorsion-free, i.e.,
to contain no nontrivial cotorsion subgroup: It is that the group be torsion-free,
and contain no copy of the additive group of Q, nor of the p-adic integers for
any prime p [Dugas and Göbel 1982, Theorem 2.4 (1) =⇒ (4)]. (So it is like
the condition characterizing slenderness, but without the exclusion of subgroups
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isomorphic to Zω.) This condition is also equivalent to that of containing no nonzero
algebraically compact subgroup: it implies the latter because every algebraically
compact group is cotorsion, while the reverse implication holds because Q, and the
groups of p-adic integers, and all finite abelian groups, are algebraically compact.
As is usual in this note, the statement below will be the contrapositive of the version
suggested by this discussion.

Theorem 25. The following conditions on an abelian group B are equivalent.

(31) There exist a set I , a family of abelian groups (Ai )i∈I , and a surjective
homomorphism f :

∏
i∈I Ai → B such that f factors through the product

of finitely many ultraproducts
∏

i∈I Ai/Uk , but does not factor through the
product of finitely many countably complete ultraproducts.

(32) There exist a countable family (An)n∈ω of abelian groups and a surjective
homomorphism f :

∏
n∈ω An → B such that f factors through the product

of finitely many ultraproducts
∏

n∈ω An/Uk , but does not factor through the
product of finitely many of the An .

(33) B has a nontrivial cotorsion subgroup; equivalently (by the result from [Dugas
and Göbel 1982] quoted above), B either has nonzero elements of finite order,
or contains a copy of the additive group of Q, or contains a copy of the additive
group of the p-adic integers for some prime p; equivalently, B has a nontrivial
algebraically compact subgroup.

These conditions are also equivalent to the variants of (32) and (31) without the
assumption that f be surjective.

Proof. The equivalence of (31) and (32) to the corresponding conditions without
the assumption of surjectivity is seen as in the first paragraph of the proof of
Proposition 21. We shall use those variants to prove (33) =⇒ (32) =⇒ (31) =⇒ (33).

Assuming (33), let C ⊆ B be a nonzero cotorsion subgroup. Then our earlier
result (30)=⇒ (26) gives a surjective homomorphism

∏
n∈ω An/U→C for a family

of abelian groups An and a nonprincipal ultrafilter U, which we regard as a nonzero
homomorphism into B. Since U is not principal, f annihilates each of the An , so
it cannot be factored through the product of finitely many of these, giving (32).

Clearly, (32) =⇒ (31), since the countably complete ultrafilters on ω are the
principal ultrafilters.

Assuming (31), let f :
∏

i∈I Ai → B be a homomorphism that factors through a
product of ultraproducts

∏
i∈I Ai/U0×· · ·×

∏
i∈I Ai/Um−1, but not through such

a product in which all the Uk are countably complete. As noted in the proof of
Proposition 21, the given factorization is equivalent to an expression of f as the sum
of maps that factor

∏
i∈I Ai→

∏
i∈I Ai/Uk→ B, and if any of these maps are zero,

we can drop them, leaving a factorization with all these maps nonzero, and which,
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by choice of f , must still have at least one with Uk not countably complete. So
there exists a nonzero map g :

∏
i∈I Ai/U→ B for some non-countably-complete

ultrafilter U on I . Our earlier result (25) =⇒ (30) now tells us that the nonzero
image of g is a cotorsion submodule of B, proving (33). �

We have not yet said much about algebraically compact groups, except that the
cotorsion groups are their homomorphic images. We record:

Lemma 26. The following conditions on an abelian group B are equivalent.

(34) For every proper filter F on a nonempty set I , the natural embedding B→
B I/F has a left inverse.

(35) There exists a nonprincipal ultrafilter U on ω such that the natural embedding
B→ Bω/U has a left inverse.

(36) B is algebraically compact.

Proof. For any filter F on a set I , the natural embedding B→ B I/F is easily seen
to be pure, so the definition of algebraic compactness gives (36) =⇒ (34). Clearly,
(34) =⇒ (35).

To show that (35) =⇒ (36), we use the result [Eklof 1973, third sentence of §2],
that a nonprincipal countable ultrapower of any abelian group B is algebraically
compact. Hence (35) implies that B is a direct summand in an algebraically compact
abelian group, from which one easily sees that it itself is algebraically compact. �

Since the cotorsion abelian groups are the homomorphic images of the alge-
braically compact ones, the above result shows that the analog of Question 16
has a positive answer for abelian groups. (This can also be seen from the proof
of Proposition 23, where the closing step (29) =⇒ (25) allows us to choose U

essentially arbitrarily.)
Another interesting necessary and sufficient condition for B to be algebraically

compact, obtained (in the more general context of modules) as [Jensen and Lenzing
1989, Theorem 7.1(vi)], is that for every set I , the summation map

⊕
i∈I B→ B

extend to a map B I
→ B.

6. More on algebraically compact and cotorsion abelian groups

The distinction between the class of cotorsion abelian groups and its subclass, the
algebraically compact abelian groups, is a subtle one. It follows from the definitions
that every cotorsion abelian group B that is torsion-free is algebraically compact
[Fuchs 1970, Corollary 54.5]. The only example I have found in the literature of a
cotorsion abelian group that is not algebraically compact, that of [Rotman 2009,
Proposition 7.48(ii)], is described as an Ext of other groups, rather than explicitly.
(It is known that for any abelian groups A and A′, Ext(A, A′) is cotorsion [Fuchs
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1970, Theorem 54.6], [Rotman 2009, Corollary 7.47].) Let us begin this section by
constructing a more explicit example.

We will use the characterization of an algebraically compact abelian group as an
abelian group B such that whenever a system of equations has the property that all
its finite subsystems have solutions in B, then the whole system has such a solution.
An easy example of an infinite system of equations is the following, where p is a
prime, x0 is a given element of B, and x1, . . . , xn, . . . are to be found.

(37) x0 = px1, x1 = px2, . . . , xn−1 = pxn, . . . .

The necessary condition for algebraic compactness that this system yields is:

Lemma 27. If B is an algebraically compact group and p a prime, then the
subgroup B ′ =

⋂
n∈ω pn B ⊆ B is p-divisible, i.e., satisfies pB ′ = B ′.

Proof. Suppose x0 ∈ B ′. Let us fix n ≥ 0, and choose xn ∈ B such that x0 = pnxn .
If we now let xm = pn−m xn for 0<m < n, we see that x0, . . . , xn satisfy the first n
equations of (37). Since we can do this for any n, every finite subfamily of (37) has
a solution, so algebraic compactness implies that we can choose x1, . . . , xn, . . .

satisfying the full set of equations. For such x1, . . . , xn, . . . we see that x1 also
belongs to B ′; so x0 ∈ pB ′, as required. �

(It is also not hard to prove the above lemma from the definition of algebraic
compactness in terms of pure extensions: given algebraically compact B, and x0∈ B ′,
let B+ be the extension of B gotten by adjoining new generators x1, . . . , xn, . . .

and the relations (37). It is straightforward to show that B embeds in B+, and from
the fact that x0 ∈ B ′, one can deduce that B is pure in B+. Hence the definition
of algebraic compactness says that there exists a retraction of B+ onto B, i.e., a
solution to (37) in B; hence, as above, x0 = px1 ∈ pB ′.)

So let us try to construct a cotorsion abelian group B with an element that we
force to lie in B ′, without creating any apparent reason why it should lie in pB ′. To
do this, let Zp denote the additive group of p-adic integers, which is algebraically
compact by Proposition 15 and Lemma 26; within its countable power Zωp , let δn

be, as usual, the element with 1 in the n-th coordinate and 0 in all others; and for a
first try, let B be the factor group of Zωp by the subgroup generated by the elements

(38) δ0− pnδn (n ∈ ω).

Letting x be the image of δ0 in B, we clearly have x ∈ B ′.
But this group is messy, making it hard to see whether some y ∈ B ′ might satisfy

x = py. It becomes nicer if we impose (38) as Zp-module relations rather than just
as additive group relations. If we then change coordinates in Zωp , so that the elements
δn − pδn+1 become the new δn (namely, we map (an)n∈ω to (

∑
m≤n pn−mam)n∈ω),

the resulting construction takes the form shown in the next lemma.
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Lemma 28. Let p be a prime number, and B the group Zωp/
⊕

n∈ω pnZp. Then B
is cotorsion, but fails to satisfy the conclusion of Lemma 27; hence B is not alge-
braically compact.

Proof. As a homomorphic image of an algebraically compact group, B is cotorsion.
To see the failure of the conclusion of Lemma 27, let x ∈ B be the image of

(pn)n∈ω ∈ Zωp . (Note that the above coordinates pn are “ghosts”, in the sense that
any finite set of them may, by the definition of B, be changed to 0 without changing
the element x .) For each n > 0, if we let xn ∈ B be the image of the element of Zωp
whose coordinate in position m is 0 for m < n, and pm−n for m ≥ n, then we see
that x = pnxn . Hence x ∈ B ′.

Now let y be any element satisfying x = py. Writing y as the image of
(an)n∈ω ∈ Zωp , we see from the definition of B that for all but finitely many n
we must have an = pn−1. (And note that coordinates with this property are not
“ghosts”!) But for any n such that this equation holds, we can see by looking at the
n-th coordinate that y /∈ pn B. So y /∈ B ′; and since we have shown this for all y
with x = py, we have x /∈ pB ′. Since x ∈ B ′, this shows that B ′ 6= pB ′. �

(L. Fuchs (personal communication) points out another way to see that the
above group B is not algebraically compact: by noting that its torsion subgroup⊕

n∈ω Zp/pnZp is not torsion-complete, and calling on [Fuchs 1973, Theorem 68.4,
(ii) =⇒ (i)].)

Note that any group B which, like the one constructed above, is cotorsion but not
algebraically compact is, by the former fact, a homomorphic image of a nonprincipal
countable ultraproduct of groups, but by Lemma 26 (35) =⇒ (36), does not admit a
left inverse to a diagonal embedding B→ Bω/U, confirming the assertion made in
the second paragraph after Question 17.

Let us obtain, next, some restrictions on the class of cotorsion abelian groups.
These will allow us to deduce that many sorts of groups are not cotorsion, and so give
more examples to which we can apply Theorem 13. In the next lemma we combine
the fact that the cotorsion groups are the homomorphic images of the algebraically
compact groups with another of the criteria for algebraic compactness given in
[Fuchs 1970, Theorem 38.1], namely, that an abelian group C is algebraically
compact if and only if it is pure-injective, meaning that for any pure subgroup A0 of
an abelian group A1, every homomorphism A0→ C extends to a homomorphism
A1→ C . In an earlier version of this note, I asked whether the direction “(39) =⇒
cotorsion” in the lemma held; I am indebted to K. M. Rangaswamy and Manfred
Dugas for (independently) showing me why it does.

Lemma 29. An abelian group B is cotorsion if and only if it satisfies

(39) For every abelian group A having a pure subgroup F which is free abelian,
every homomorphism F→ B extends to a homomorphism A→ B.
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Proof. Assuming B cotorsion, let us write it as a homomorphic image of an
algebraically compact abelian group C . Since F is free, we can lift the given map
F→ B to a map F→ C , and then, since C is algebraically compact, equivalently,
pure-injective, we can extend that lifted map to a map A→ C . Composing with
our map C→ B, we get the desired extension to A of the given map F→ B.

Conversely, assuming (39), write B as a homomorphic image of a free abelian
group F . Now by [Fuchs 1970, §38, Exercise 8, p. 162], every abelian group embeds
as a pure subgroup in a group admitting a compact Hausdorff group topology; let A
be such an overgroup of F . (For an explicit embedding in this case, let Ẑ denote the
completion of Z with respect to its subgroup topology. Then Z is a pure subgroup
of the compact group Ẑ, so writing F =

⊕
I Z, we see that F is pure in the compact

group ẐI .) By (39), our homomorphism of F onto B extends to a homomorphism
of A onto B, so by Proposition 23, (29) =⇒ (30), B is cotorsion. �

Our first application of this result will show that in a cotorsion abelian group B,
highly divisible elements abound; for instance, that if p1 and p2 are distinct primes,
then every element of B is the sum of an element divisible by all powers of p1 and
an element divisible by all powers of p2. To state the result in greater generality,
let us, for any set P of primes, write Z[P−1

] for the subring of Q consisting of
elements whose denominators lie in the multiplicative monoid generated by P , and
call an element x of an abelian group A P-divisible if it lies in the image of a
homomorphism from the additive group of Z[P−1

] to A. We shall call an abelian
group P-divisible if all its elements are.

Proposition 30. If B is a cotorsion abelian group, and P0, . . . , Pm−1 are sets of
prime numbers such that P0 ∩ · · · ∩ Pm−1 = ∅, then every element b ∈ B can be
written b0+ · · ·+ bm−1, where for each j , b j is Pj -divisible. Equivalently, B is a
sum of subgroups B0+ · · ·+ Bm−1 such that each group B j is Pj -divisible.

Proof. Let A be the additive group of Z[P−1
0 ]× · · · ×Z[P−1

m−1], and F the infinite
cyclic subgroup thereof generated by (1, . . . , 1). That the inclusion F ⊆ A is pure
follows from the fact that P0∩· · ·∩Pm−1=∅. Indeed, if an element d(1, . . . , 1)∈ F
is not divisible in F by some positive integer n, then d is not divisible by n, so n
has a prime power factor pi not dividing d. Choosing k such that p /∈ Pk , we see
that the k-th coordinate of d(1, . . . , 1) is not divisible by pi in Z[P−1

k ], so in A,
d(1, . . . , 1) is not divisible by pi , hence not divisible by n.

Hence by Lemma 29, for any b ∈ B, the map F → B taking (1, . . . , 1) to b
extends to A, giving a representation of b as the sum of the images of the elements
(0, . . . , 1, . . . , 0), each of which is Pj -divisible for some j . The equivalence of
this result to the final statement of the lemma follows from the fact that for any
set P of primes, the P-divisible elements of an abelian group form a subgroup. �
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As a quick illustration, consider the group Zp of p-adic integers, which we have
seen is algebraically compact, and hence cotorsion. That group is P-divisible for P
the set of all primes other than p. Given P0, . . . , Pm−1 as in Proposition 30, at
least one Pj will fail to contain p, so Zp is Pj -divisible for that j , confirming the
conclusion of the proposition.

Of course, the much smaller group of rational numbers with denominators
relatively prime to p (of which the group Zp is a completion) is P-divisible for
the same set P , and so also satisfies the conclusion of Proposition 30. However,
that group is not cotorsion. Indeed, from the characterization of slender abelian
groups recalled immediately after the proof of Proposition 21, every abelian group
which is torsion-free and which contains no copy of Q and has less than continuum
cardinality is slender, hence, if nonzero, is non-cotorsion.

The next result generalizes the above restriction on cotorsion groups.

Proposition 31. If B is a cotorsion abelian group such that dB 6= {0} for every pos-
itive integer d, but

⋂
d∈Z, d>0 dB = {0}, then B has at least continuum cardinality.

Proof. We shall construct a homomorphism
⊕

ω Z→ B, extend it to a map Zω→ B
by Lemma 29, and show that under the extended map, continuum many elements
of Zω have distinct images. We begin by carefully selecting the elements to which
to send the free generators of

⊕
ω Z.

I claim that we can choose positive integers d0, d1, . . . , each a multiple of the one
before, and elements b0, b1, . . .∈ B, such that for each n∈ω, we have dnbn /∈dn+1 B.
We start with d0 = 1, and b0 any nonzero element of B. Assuming that for some
n≥0, dn and bn have been chosen with dnbn 6=0, the hypothesis

⋂
d∈Z, d>0 dB={0}

allows us to choose dn+1 > 0 such that dnbn /∈ dn+1 B. Replacing dn+1 by a proper
multiple if necessary, we may assume dn|dn+1. Using the fact that dn+1 B 6= {0},
we can then choose bn+1 such that dn+1bn+1 6= 0. Continuing recursively, we get
d0, d1, . . . and b0, b1, . . . with the asserted properties.

We now map
⊕

ω Z to B by sending each δn to bn . Since
⊕

ω Z is a pure
subgroup of Zω, Lemma 29 allows us to extend this map to a homomorphism
f : Zω→ B, which still carries each δn to bn .

For each ε= (εn)n∈ω ∈ {0, 1}ω, let εd denote (ε0d0, . . . , εndn, . . . )∈Zω. I claim
that distinct strings ε yield distinct elements f (εd) ∈ B. Indeed, for ε 6= ε′, let
n ∈ ω be the least index such that εn 6= ε

′
n , and let us write

f (εd)= f (ε0d0, . . . , εndn, 0, 0, . . . )+ f (0, . . . , 0, εn+1dn+1, εn+2dn+2, . . . ).

If we compare this with the corresponding expression for f (ε′d), we see that the
left-hand summands in these expressions differ by exactly f (dnδn), i.e., dnbn , which
by assumption does not lie in dn+1 B; while the right-hand summands do lie in
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dn+1 B, since for all m ≥ n we have dn+1|dm . Hence f (εd)− f (ε′d) 6= 0; so we
indeed have continuum many distinct elements of B. �

As an application, it is easy to deduce that no subgroup B of
∏

primes p Z/pZ

which is infinite, but of less than continuum cardinality, can be cotorsion. Hence, if
we take such a subgroup with no 2-torsion, containing an element b of infinite order,
its semidirect product with ±1 will again be a group to which Theorem 13 applies.

On the other hand, we saw in Lemma 11 that for the semidirect product of {±1}
with the group Q, the conclusion of Theorem 13 fails; and Proposition 15 shows the
same for the semidirect product of {±1} with any finite abelian group. In fact, Q and
all finite abelian groups are cotorsion; the next result includes these statements as
special cases. It is curious that its formulation is analogous to that of Proposition 15,
but the reasoning is quite different.

Proposition 32 (cf. [Fuchs 1970, p. 178, last paragraph of Notes]). Let B be an
abelian group which is divisible, or is of finite exponent, or more generally, is the
sum of a divisible group and one of finite exponent; or, still more generally, is
the underlying additive group of an injective module over some ring R. Then for
any set I and any ultrafilter U on I , there is a group homomorphism B I/U→ B
left-inverse to the natural embedding B→ B I

→ B I/U.
Hence by Lemma 26, (35) =⇒ (36), every such B is algebraically compact, and

so in particular is cotorsion.

Proof. First suppose B has the property introduced above by the words “still more
generally”. Then the maps B → B I

→ B I/U are R-module homomorphisms
whose composite is an embedding. The injectivity of B as an R-module thus yields
the desired left inverse map. Taking I = ω and U nonprincipal, we conclude that B
is algebraically compact (by Lemma 26, (35) =⇒ (36)).

It remains to show that the various sorts of abelian groups named are indeed
injective modules over appropriate rings. Any divisible abelian group is an injective
Z-module by [Lam 1999, Proposition 3.19]. An abelian group B of finite exponent n
can be written as a direct product of free Z/dZ-modules as d ranges over the divisors
of n; and each of the rings Z/dZ is self-injective, so that its free modules are injective
by [ibid., Corollary 3.13(1) and Theorem 3.46(4) =⇒ (2)]. Finally, if B is the sum
of a divisible subgroup D and a subgroup E of finite exponent, then the injectivity
of D over Z allows us to split it off as a direct summand, and the complementary
summand will be a homomorphic image E ′ of E , hence again of finite exponent.
We can now make B = D⊕ E ′ a module over the direct product R of Z and finitely
many rings Z/dZ, in such a way that the component over each of these factor rings
is injective over that ring. The group B will then be injective over R. �

I do not know the answer to:1

1See note added in proof, page 493.



482 GEORGE M. BERGMAN

Question 33. For an abelian group B to be cotorsion, is it sufficient that every
homomorphism

⊕
ω Z→ B extend to a homomorphism Zω→ B? (In other words,

in Lemma 29, is condition (39) equivalent to the special case where the inclusion
F ⊆ A is

⊕
ω Z⊆ Zω?)

The following example shows that the converse of Corollary 24 is not true: a
group B with no nonzero slender homomorphic image need not be cotorsion.

Lemma 34. Within the group A=
∏

primes p Z/pZ, let u be the element having 1 in
every coordinate, and let B consist of all elements b ∈ A such that db= nu for some
integer n and nonzero integer d (mnemonic for “numerator” and “denominator”).

Then B is a countable subgroup of A, such that every cotorsion subgroup of B is
torsion (so that B is not itself cotorsion), but the factor-group of B by its torsion
subgroup is isomorphic to Q, and so is cotorsion.

Hence B has no nonzero slender homomorphic images.

Proof. That B is a subgroup of A is immediate. It is countable because each b ∈ B
is determined by any choice of n and d satisfying db = nu, together with the
coordinates of b at the finitely many primes dividing d.

By the observation following the proof of Proposition 31, cotorsion subgroups
of B are finite, hence are torsion.

On the other hand, the factor group of B by its torsion subgroup is isomorphic
to Q via the map sending the image of each b ∈ B to the common value of n/d ∈Q

for all relations db = nu satisfied by b; and Q, being divisible, is cotorsion by
Proposition 32.

Since slender groups are torsion-free, a homomorphism f from B to a slender
group must annihilate the torsion subgroup of B, hence f (B) must be a homomor-
phic image of Q, hence by Corollary 24 must be zero. �

Here is a question of a different flavor.

Question 35. If an abelian group B can be written as a homomorphic image of a
nonprincipal countable ultraproduct of not necessarily abelian groups Gn , must
it be a homomorphic image of a nonprincipal countable ultraproduct of abelian
groups, i.e., must it be cotorsion?

The reason this question is nontrivial is that abelianization does not commute with
ultraproducts. For instance, let G be a group which is perfect (satisfies G = [G,G])
but which for each n has an element xn that cannot be written as the product of fewer
than n commutators. (The latter property is called “infinite commutator width”;
for examples of such G see [Muranov 2007].) Then no nonprincipal ultrapower
Gω/U will be perfect, because for such a family of elements xn , the image of
(xn)n∈ω ∈ Gω in Gω/U will not be a product of finitely many commutators. Hence
the abelianization B of

∏
n∈ω Gn/U is a nontrivial abelian group satisfying the
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hypothesis of Question 35, but there is no obvious candidate for a representation
of B as in the conclusion of that question.

We can, however, prove a weak result in the direction of a positive answer.

Lemma 36. If an abelian group B can be written as a homomorphic image of a
nonprincipal countable ultraproduct

∏
n∈ω Gn/U of not necessarily abelian groups,

then B is a directed union of cotorsion abelian subgroups.

Proof. By Lemma 12, every cyclic subgroup of B is contained in a cotorsion
subgroup. Now the class of cotorsion abelian groups, as characterized by any of (27),
(28) or (29), is easily seen to be closed under finite direct sums, hence since it is
closed under homomorphic images, it is closed under finite sums in abelian over-
groups, so the cotorsion subgroups of such an overgroup form a directed system. �

But not every directed union of cotorsion groups is cotorsion. For instance,
every torsion abelian group is the directed union of its finite subgroups, which are
cotorsion by Proposition 32; but by Proposition 31, the group

⊕
primes p Z/pZ is

not cotorsion.
We remark that Questions 19 and 35 cannot both have positive answers, since as

noted earlier, a positive answer to Question 19 would make every torsion group,
including the abovementioned group

⊕
primes p Z/pZ, a homomorphic image of

a countable ultraproduct of (not necessarily abelian) groups. But as we also said
earlier, a positive answer to Question 19 seems highly unlikely.

A noticeable difference between our results on general groups in Sections 2–4
and our results on abelian groups in the above three sections is that in the former we
composed maps

∏
i∈I Gi → B with the natural map B→ B/Z(B) before looking

at factorization properties, but we have done nothing of the sort for abelian groups.
It might be of interest to see whether one can improve the results of these sections
by composing homomorphisms

∏
i∈I Ai→ B with the map B→ B/X (B) for some

natural choice of X (B), such as the torsion subgroup of B, the subgroup of divisible
elements, their sum, or the sum of all cotorsion subgroups of B. (Lemma 34 shows
that for the last of these choices, B/X (B) may not itself be cotorsion-free; but
this need not be a problem; cf. the fact that for a nonabelian group B, the group
B/Z(B) need not have trivial center.) In the opposite direction, it might be possible
to strengthen the results of Sections 2–4 by dividing B, not by Z(B), but by a
smaller subgroup X (Z(B)) for one of the above constructions X . I leave these
ideas for others to explore.

7. Some related questions that have been studied

The direct sum
⊕

i∈I Ai of a family of abelian groups — or more generally, of a
family of modules over any ring R — is their coproduct in the category of abelian
groups or R-modules; hence for such objects, their coproduct can be regarded as
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the subgroup or submodule of elements of finite support in their direct product∏
i∈I Ai . Now in any category, a homomorphism from a coproduct of objects Ai

to an arbitrary object B is determined simply by choosing a homomorphism from
each Ai to B. So the phenomena we have been investigating in the last two sections
can be looked at as consequences of the fact that not every such map on a coproduct
of abelian groups can be extended consistently to the elements of

∏
i∈I Ai with

infinite supports. The slender modules are those modules B for which this restriction
on maps to B is so strong that it can only be satisfied by maps that factor through
the product of finitely many of the Ai .

Dually, one gets homomorphisms from an abelian group or R-module B to a
direct product

∏
j∈J C j simply by choosing a homomorphism into each C j ; but if

we wish to map B into the coproduct
⊕

j∈J C j ⊆
∏

j∈J C j , we face the problem of
choosing those homomorphisms so that the resulting map takes each element of B
to an element of finite support. The question of which modules B have the property
that the only way to achieve this is by mapping into a finite subsum of

⊕
j∈J C j is

answered by El Bashir, Kepka and Němec in Proposition 4.1 of [El Bashir et al.
2003]; that paper also studies the corresponding questions for colimit constructions
other than coproducts.

Several workers, beginning with Chase [1962a; 1962b], have looked at the
two-headed situation of module homomorphisms f :

∏
i∈I Ai →

⊕
j∈J C j . Here

one may ask when every such map is a sum of one homomorphism which factors
through the projection of

∏
i∈I Ai onto a finite subproduct, and another which factors

through the inclusion of a finite subsum in
⊕

j∈J C j . Just as, in studying nonabelian
groups in Sections 2–4, we found it desirable to divide out by Z(B) to avoid certain
easy ways that maps could involve infinitely many factors, so in the results of this
sort, two adjustments turn out to be useful: dividing out by submodules of “highly
divisible” elements of the C j , and multiplying the given homomorphism by some
nonzero ring element d; which essentially means restricting it to

∏
i∈I d Ai . Thus,

[Chase 1962b, Theorem 1.2], more or less the starting point for the development
of the subject, says, if restricted to the case where the base ring is Z and where
a certain filter of principal right ideals in the statement of that theorem consists
of all the nonzero ideals of Z, that given any homomorphism of abelian groups
f :
∏

n∈ω An→
⊕

i∈I Ci , there exists an integer d > 0 such that when f is applied
to
∏

n∈ω d An , and followed by the factor map
⊕

i∈I Ci →
⊕

i∈I (Ci/
⋂

e>0 eCi ),
it carries the product of some cofinite subfamily of the d An into the sum of a finite
subfamily of the Ci/

⋂
e>0 eCi .

That result (in its general module-theoretic form) is strengthened in [Dugas and
Zimmermann-Huisgen 1981, Theorem 2] to allow products

∏
i∈I Ai over any index

set I of cardinality less than all uncountable measurable cardinals, and to remove
the requirement that the right ideals considered be principal, while in [Bergman
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2006, Theorem 9], the direct product is replaced by a general inverse limit. For
further related work, see references in the first paragraph of p. 46 of that paper.

(It is curious that the proof of the abovementioned theorem from [Chase 1962b],
and that of Proposition 31 of this note, use virtually the same construction, but for
very different purposes: in Chase’s paper, to obtain a contradiction by constructing
an element whose image in the direct sum would have infinitely many nonzero
components; in Proposition 31, to get continuum many distinct elements in the
image of our map.)

Turning back to the results of the three preceding sections, it would, of course,
be desirable to investigate the corresponding questions with abelian groups replaced
by modules over a general ring R. In [Jensen and Lenzing 1989, Chapters 7–8],
algebraically compact modules over general R are studied, but cotorsion modules
are not mentioned. (There are numerous MathSciNet results for “cotorsion module”,
but I have not had time to examine them.) One might also take a hint from [Chase
1962a; 1962b], and see whether one gets nonobvious variants of our results if
one considers those B such that all homomorphisms

∏
i∈I Ai → B acquire the

factorization properties we are looking for after multiplying
∏

i∈I Ai by some
integer (or ideal), and/or dividing B by an appropriate subgroup (or submodule) of
highly divisible elements. (This is related to the suggestion in the last paragraph of
the preceding section.)

8. Rings

As mentioned in Section 1, the results of this note were inspired by investiga-
tions of factorization properties of homomorphisms on direct products of not-
necessarily-associative algebras over an infinite field [Bergman and Nahlus 2011;
2012; Bergman 2014; Maalouf 2014]. In those papers, the assumption of infinite
base field was used to show that, under appropriate bounds on the vector-space
dimension of B, the ultrafilters occurring had to be principal.

If we look at not-necessarily-associative rings, without assuming a structure of
algebra over a field, then as we shall see below, we can still get results analogous
to the main results of Section 2 (on when maps must factor through finitely many
ultraproducts) and those of Section 4 (saying that such ultraproducts must be
principal under appropriate assumptions on the additive structure of B). Between
these we shall insert Proposition 39, which will say that if our rings have unit,
then the absence of factorization through finitely many ultraproducts implies the
existence of an associative commutative subring of B with the cardinality of the
continuum, of an explicitly describable form, over which B becomes an algebra. I
will not repeat here the results on algebras over an infinite field from the papers cited
above; and having spent many words on those papers, I will be brief in this section.
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In a direct product ring
∏

i∈I Ri , we define the support of an element x = (xi )i∈I

to be {i ∈ I | xi 6= 0}. Whereas in Sections 2–4, our basic tool was the commutativity
of elements with disjoint supports in a product group, and the phenomenon that
this tool could not handle was avoided by dividing out by the center, Z(B), the
corresponding tool in the four works cited above was the fact that ring elements
with disjoint supports have product zero; and the ideal one had to divide out by
(which was also denoted Z(B)) was the zero-multiplication ideal. In this section,
for B a ring, we will, as in those papers, write

(40) Z(B) = {b ∈ B | bB = Bb = 0}.

As in Sections 2–4, we let π : B→ B/Z(B) be the quotient homomorphism.
There was one commutativity result in Theorem 2 above that arose for a reason

other than that elements in different factors of a direct product commute, namely, (7),
which followed from the fact that every element commutes with itself. Thus, the
analog of that one statement, (41) below, again concerns commutativity, rather than
zero products.

The obvious analog of Lemma 1 holds for rings, and yields the following analog
of Theorem 2.

Theorem 37. Let B be a ring (understood here to mean an abelian group given
with an arbitrary bilinear multiplication B × B→ B), and suppose there exist a
family (Ri )i∈I of rings, and a surjective ring homomorphism f :

∏
i∈I Ri → B,

such that the induced homomorphism π f :
∏

i∈I Ri → B/Z(B) does not factor
through the natural map from

∏
i∈I Ri to any finite product of ultraproducts of

the Ri . Then B contains families of elements (aS), (bS), indexed by the subsets
S ⊆ ω, such that:

(41) All the elements aS (S⊆ω) commute with one another, and all the elements bS

likewise commute with one another.

(42) For disjoint subsets S and T of ω, we have aS + aT = aS∪T , bS + bT = bS∪T ,
and 0= aSaT = aSbT = bSaT = bSbT .

(43) For subsets S and T of ω with card(S ∩ T )= 1, we have aSbT 6= 0. �

One gets from this the obvious analog of Corollary 3, which I will not write down,
only noting one minor way in which the statement is weaker than that corollary: in
a nonassociative ring, a family of pairwise commuting elements need not generate
a commutative subring, so the assertion of commutativity in the last sentence of
Corollary 3 disappears here.

One likewise has the analog of Theorem 5. Namely, following [Bergman and
Nahlus 2011, Definitions 13 and 15], we define an almost direct decomposition
of a ring B as an expression B = B ′+ B ′′, where B ′ and B ′′ are ideals of B, each
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of which is the 2-sided annihilator of the other; and we shall say that B has chain
condition on almost direct factors if every chain of such ideals is finite. Then we get:

Theorem 38 (cf. [Bergman and Nahlus 2011, Proposition 16]). Let B again be
a ring such that there exist a family of rings (Ri )i∈I , and a surjective ring homo-
morphism f :

∏
i∈I Ri → B such that the induced homomorphism π f :

∏
i∈I Ri →

B/Z(B) does not factor through the natural map of
∏

i∈I Ri to any finite direct
product of ultraproducts of the Ri .

Then B does not have chain condition on almost direct factors. In fact, it has a
family of almost direct factors order-isomorphic to the lattice 2ω, and forming a
sublattice of the lattice of ideals of B.

So far we have not assumed our rings unital, since that hypothesis is unnatural
for many important classes of nonassociative rings. The next result shows how in
the unital case, the above theorems can be simplified and strengthened. For unital
rings B we have Z(B)= 0, so B/Z(B) everywhere becomes B. Moreover, we can
take each of the systems of elements xn, yn ∈

∏
i∈Jn

Ri from which we obtain the
elements aS and bS in Theorem 37 to consist of the multiplicative identity elements
of the rings

∏
i∈Jn

Ri . With a little further work, we shall get:

Proposition 39. Under the common hypotheses of Theorem 37 and 38, if the rings B
and Ri are unital, with homomorphisms preserving multiplicative identity elements,
then B is a faithful unital algebra over a commutative associative unital subring
of the form

∏
n∈ω Z/dnZ, where each dn is a nonnegative integer 6= 1. Moreover,

one can take all but one of the dn to be equal, and that one to be a multiple (not
necessarily proper) of the common value of the others.

Sketch of proof. As in the proof of Theorem 2, the non-factorization of f tells us that
we can partition I into subsets Jn (n ∈ ω) such that for each n, f

(∏
i∈Jn

Ri
)
6= {0}.

(Here we regard the direct product of each subfamily of the Ri as an ideal of
∏

i∈I Ri .
Each of these ideals has a multiplicative identity element, generally different from
that of

∏
i∈I Ri .) For each S ⊆ ω, let xS denote the multiplicative identity element

of
∏

i∈
⋃

n∈S Jn
Ri ⊆

∏
i∈I Ri , and let aS = f (xS). We see that the operations of

multiplication by xS and xω−S are idempotent endomorphisms of the additive group
of
∏

i∈I Ri , which give the projection homomorphisms to the two factors of its
decomposition as ( ∏

i∈
⋃

n∈S Jn

Ri

)
×

( ∏
i∈
⋃

n∈ω−S Jn

Ri

)
.

Hence their images aS and aω−S likewise determine a direct product decomposition
of the ring B.

Now for every S ⊆ω, let cS denote the nonnegative integer such that the additive
subgroup of B generated by aS is isomorphic to Z/cSZ (the characteristic of the
ring f

(∏
i∈
⋃

n∈S Jn
Ri
)
). Note that for ∅ 6= T ⊆ S, we have 1 6= cT |cS .
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The behavior of cS as a function of S can be complicated; but with the help
of the Noetherian property of the integers, we can find a family of subsets of ω
on which that function has an easy description. Namely, let us choose, among all
infinite S ⊆ ω, one which gives a maximal value for the ideal cSZ. Then for every
infinite subset T ⊆ S, we necessarily have cT = cS . Hence, let us partition S into
countably many infinite subsets, T0, . . . , Tm, . . . , and use these to partition ω into
subsets Sm , where for m > 0, we let Sm = Tm , while we let S0= (ω− S)∪T0. Thus,
for m > 0 we have cSm = cS by choice of S, while cS0 = lcm(cω−S, cT0), a multiple
of cT0 = cS .

Let us now map the ring Zω into
∏

i∈I Ri by sending each element (em)m∈ω to the
element whose value on each factor

∏
n∈Sm

(∏
i∈Jn

Ri
)

is em times the multiplicative
identity element, and then apply the map f :

∏
i∈I Ri → B. I claim that the image

of Zω in B will be isomorphic to
∏

m∈ω Z/dmZ, where dm = cSm . Indeed, it is easy
to verify that an element of Zω that goes to zero under the componentwise map
into

∏
m∈ω Z/dmZ goes to zero in B, as a result of our choice of S and the Sm .

Conversely, if an element (em)m∈ω ∈ Zω does not have zero image in
∏

m∈ω Z/dmZ,
we can choose an m0 such that em0 is not divisible by dm0 ; and taking the image,
in B, of the ring relation (em)m∈ωδm0 = em0δm0 in Zω, we see that the image of
(em)m∈ω in B is also nonzero.

Finally, the fact that every ring R is a Z-algebra, and that if R has a multiplicative
identity element 1R , its Z-algebra structure is induced by the operations of multipli-
cation in R by members of Z · 1R , easily leads to the result that

∏
n∈Sm

(∏
i∈Jn

Ri
)

is a Zω-algebra, and that this structure leads to a structure of
∏

m∈ω Z/dmZ-algebra
on its homomorphic image B. �

Going back to not-necessarily-unital rings, and turning to the question of when
finitely many ultraproducts through which a map factors must all be principal, we
can combine Theorem 25 with the idea of Lemma 12 to get the following result.

Theorem 40. Suppose B is a ring which admits a surjective homomorphism from
a direct product ring, f :

∏
i∈I Ri → B, such that the composite

π f :
∏
i∈I

Ri → B→ B/Z(B)

factors through the product of finitely many ultraproducts of the Ri , but not through
the product of finitely many countably complete ultraproducts. (So if card(I ) is less
than all uncountable measure cardinals, if any exist, the latter condition simply says
that π f does not factor through any finite product of the Ai .)

Then the additive group of B/Z(B) has a nonzero cotorsion subgroup; equiva-
lently, it either contains nonzero elements of finite order, or a copy of the additive
group of Q, or a copy of the additive group of the p-adic integers for some prime p.

�
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9. Monoids

In studying homomorphisms from direct product monoids onto a monoid B, it is
useful to assume some cancellation condition on B. One that will suffice for our
present purposes is

(44) xy = x =⇒ y = e for x, y ∈ B.

Note that (44) implies that one-sided inverses are two-sided, since if xy = e, we
get xyx = x , which by (44) gives yx = e.

We shall consider two sorts of obstruction to mapping infinite products onto B
in ways that indiscriminately merge the factors. On the one hand, there is the same
effect of noncommutativity that we took advantage of in the case of groups. On the
other hand, noninvertible elements create restrictions. For instance, though linear
algebra shows that the additive group Q admits homomorphisms from the additive
group Qω that behave arbitrarily on

⊕
ω Q, it is not hard to show that, writing Q≥0

for the additive monoid of nonnegative rational numbers, it is impossible to have a
homomorphism (Q≥0)ω→Q≥0 that acts in a nonzero way on infinitely many of
the summands of

⊕
ω Q≥0.

In our factorization results for groups, we divided out by the center of B; in the
case of monoids, we will divide out by the group of central invertible elements.
There are two versions of this concept: Z(U (B)), the center of the group of
units (invertible elements) of B, and U (Z(B)), the group of units of the center;
the former may be larger than the latter. It is U (Z(B)), the smaller of the two,
that we will divide out by (though the other will make a brief appearance in a
proof). Note that since U (Z(B)) consists of B-centralizing invertible elements,
one can speak (without distinguishing right from left) of the orbits of B under
multiplication by that group, and the set of such orbits forms a factor monoid
B/U (Z(B)). Clearly, the noninvertible elements of this factor monoid are precisely
the cosets of the noninvertible elements of B. We shall write π for the projection
map B→ B/U (Z(B)).

Given a monoid homomorphism f :
∏

i∈I Mi → B, we define the analog of the
filter F of (2), namely

(45) F=
{

S ⊆ I | the composite map
∏

i∈I Mi → B→ B/U (Z(B))
factors through the projection

∏
i∈I Mi →

∏
i∈S Mi

}
=
{

S ⊆ I | f
(∏

i∈I−S Mi
)
⊆U (Z(B))

}
.

The version of Lemma 1 that we will use for monoids is not, as for rings, a
carbon copy of that lemma, so we shall give the statement and proof. (But we will
cut corners where the method of proof is the same; so the reader might want to



490 GEORGE M. BERGMAN

review the proof of Lemma 1 before beginning this one.) We do not yet assume the
cancellativity condition (44).

Lemma 41. Let f :
∏

i∈I Mi → B be a homomorphism from a direct product
of monoids Mi to a monoid B, which is surjective (or more generally, such that
the homomorphism π f :

∏
i∈I Mi → B → B/U (Z(B)) is surjective). Then the

following two conditions are equivalent.

(46) The homomorphism π f :
∏

i∈I Mi → B → B/U (Z(B)) does not factor
through the natural map

(∏
i∈I Mi

)
/U0 × · · · ×

(∏
i∈I Mi

)
/Un−1 for any

finite family of ultrafilters U0, . . . ,Un−1 on I .

(47) There exists a partition of I into countably many subsets J0, J1, . . . , such that
either

(47a) each submonoid
∏

i∈Jn
Mi ⊆

∏
i∈I Mi contains a pair of invertible

elements xn , yn whose images under f do not commute in B,

or

(47b) each submonoid
∏

i∈Jn
Mi ⊆

∏
i∈I Mi contains an element zn whose

image in B is noninvertible.

Proof. To get (47)=⇒ (46), note that in the situation of (47a), since for each n, f (xn)

and f (yn) are invertible and do not commute in B, they do not lie in Z(U (B)).
Hence in particular f (xn) /∈U (Z(B)), so by the final line of (45), I − Jn /∈F. That
this implies (46) is seen as in Lemma 1.

If, rather, we are in the situation of (47b), then the fact that the f (zn) are nonunits
implies that they do not lie in U (Z(B)), giving the same result for the same reason.

The proof of the converse begins, as for Lemma 1, with the observation that (46)
implies that there exists a partition of I into countably many subsets J0, J1, . . . ,
such that each

∏
i∈Jn

Mi contains elements mapped by f to elements of B not
in U (Z(B)). Let Ln =

∏
i∈Jn

Mi , so that
∏

i∈I Mi =
∏

n∈ω Ln . Clearly, it will
either be true that for infinitely many n, the submonoid f (Ln) ⊆ B contains a
noninvertible element, or that for infinitely many n, that submonoid consists entirely
of invertible elements.

In the former case, those Jn such that f (Ln) contains a noninvertible element
of B will constitute a partition of some subset J ⊆ I into countably many subsets.
If we enlarge one of these sets by throwing in the complementary set I − J , we get
a partition of I of the sort described in (47b).

If, on the other hand, there are infinitely many n such that f (Ln) consists entirely
of invertible elements of B, then for each such n, let us choose an xn ∈ Ln such
that f (xn) /∈U (Z(B)), and then a y ∈

∏
m∈ω Lm such that f (y) does not commute

with f (xn). As in the proof of Lemma 1, we can obtain from y an element yn ∈ Ln

such that f (yn) still does not commute with f (xn). By assumption, f (Ln) consists
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of invertible elements, so f (xn) and f (yn) belong to U (B). Thus, we have a
partition of some J ⊆ I into countably many subsets as in (47a). Again tacking
I − J onto one of these, we can take this to be a partition of the whole set I . �

This leads to an analog of Theorem 2 which, similarly, has two alternative
conclusions. We shall describe one of these by referring to that earlier theorem, and
spell out the other.

Theorem 42. Let B be a monoid satisfying the cancellation condition (44), and
suppose there exists a family (Mi )i∈I of monoids, and a monoid homomorphism f :∏

i∈I Mi→ B such that the induced homomorphism π f :
∏

i∈I Mi→ B/U (Z(B))
does not factor through any finite product of ultraproducts of the Mi .

Then either

(a) the group U(B) satisfies the hypothesis, and hence the conclusions, of Theorem 2,

or

(b) B contains a family of elements (aS) indexed by the subsets S⊆ω and satisfying
the following conditions:

(48) a∅ = e, and all the elements aS (S ⊆ ω) commute with one another.

(49) For disjoint sets S, T ⊆ ω, one has aSaT = aS∪T .

(50) For sets S ( T ⊆ ω, aT is a right multiple of aS , but aS is not a right multiple
of aT .

Proof. The two cases of (47) will yield the two alternative conclusions shown. It is
easy to verify that (47a) yields conclusion (a).

In case (47b), let Ln =
∏

i∈Jn
Mi , and take elements zn ∈ Ln with noninvertible

images in B. For each S ⊆ ω, let aS be the image under f of the element of∏
n∈S Ln ⊆

∏
n∈ω Ln whose n-th coordinate is zn for each n ∈ S. Then (48)

and (49) are immediate, and the first assertion of (50) follows from (49) applied
to S and T − S.

To get the final assertion of (50), choose any n ∈ T − S, and note that by (49),
we have

(51) aT = aS aT−(S∪{n}) a{n}.

If we also had aS = aT b for some b ∈ B, then substituting this into the right-
hand-side of (51) and canceling aT by (44), we could conclude that a{n} was left
invertible, hence by the observation following (44), invertible, contradicting our
choice of zn . �

In case (b) of Theorem 42, we cannot say, as we can in case (a), that distinct
sets S yield distinct elements aS ∈ B. For instance, let B be the factor monoid of
the additive monoid (Z≥0)ω by the relation that equates elements x and y if there
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is some n ≥ 0 such that x and y agree at all but the first n coordinates, and such
that the sum of the entries at those first n coordinates is the same for x and y. Then
B is a cancellative abelian monoid with trivial group of units, and the quotient
map f : (Z≥0)ω→ B does not annihilate any of the δn (defined in (Z≥0)ω as in
Zω). Hence (47b) holds for this f , with the Jn taken to be the singletons {n}, and
zn = δn . But defining the aS in terms of these as in the proof of Theorem 42, we
find that for finite subsets S, T ⊆ ω of the same cardinality, we have aS = aT in B;
so the aS are not all distinct.

Nevertheless, in the situation of Theorem 42(b) we always get continuum many
distinct aS . For by (50), distinct comparable sets give distinct elements; and the
partially ordered set of subsets of any countably infinite set has chains of the order
type of the real numbers. (Indeed, the countable set of rational numbers has the
chain of Dedekind cuts, and any countably infinite set can be put in bijective
correspondence with the rationals.) Thus, we get:

Corollary 43. In the situation of conclusion (b) of Theorem 42, B has a set of
mutually commuting noninvertible elements which form, under the relation of
divisibility, a chain with the order type of the real numbers. In particular, B (and in
fact, B/U (Z(B)) has at least the cardinality of the continuum. �

The results proved above are far from optimal. For instance, the conclusions
of Theorem 42 and Corollary 43 are consistent with B being the additive monoid
R≥0 of nonnegative real numbers; but that case is easy to exclude. Indeed, suppose
B = R≥0 admitted a map as in the hypothesis of Theorem 42. By the proof of
Lemma 41, since B has trivial group of units, we must have a homomorphism
f :
∏

n∈ω Ln→ B such that each Ln has an element xn making f (xn) a positive
real number. By the Archimedean property of the reals, we can modify our choices
of xn so that for each n we have f (xn) ≥ 1. Thus, when we construct elements
aS ∈ B as in the proof of the theorem, we get a{n} ≥ 1 for each n, from which it
follows that for any S ⊆ ω of ≥ m elements (m ∈ ω), aS ≥ m. For S infinite, this
gives a contradiction; so B admits no such map. It is not clear to me what the best
assertion that can be gotten by this technique is.

Let us also note that in place of the two-way subdivision of the sets Jn used in
the proof of Lemma 41, we could (at least if we assumed full cancellativity rather
than just (44)) have used a three-way subdivision, noting that for each n, f (Ln)

either contains noncommuting invertible elements of B, or contains noncommuting
noninvertible elements, or contains a central noninvertible element. (Cancellativity
is needed to show that if a nonunit x and a unit u fail to commute, then so do
the two nonunits x and xu.) So there must be infinitely many n for which one of
these statements holds, and we can deduce a three-alternative conclusion: either,
as before, we have invertible elements aS, bS ∈ B indexed by the subsets S ⊆ ω
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which can be distinguished by their commutativity relations, or we have elements
aS, bS ∈ B which, except for a∅, b∅, are noninvertible, and satisfy the same relations
and can be distinguished in the same way, or we have central elements aS which
satisfy (48)–(50).

Though one could define “almost direct factors” for monoids, as for groups,
using submonoids that are each other’s centralizers, there doesn’t seem to be an
analogous way to “split” a monoid based on noninvertible central elements; so I
have not attempted to formulate an analog of Theorem 5. I leave further exploration
of these questions to those better versed than I in the study of monoids.

One can also consider for semigroups the same factorization properties studied
here for monoids. Since the above constructions involved elements of direct products
defined to have the value e on complements of given subsets S of our index set, the
absence of identity elements should lead to changes in what can be proved.

10. Lattices: a case worth looking at

One other class of mathematical structures suggests itself, to which similar methods
might be applicable — lattices. Just as a direct product decomposition of a group or
monoid leads to certain pairs of elements that must commute, and a direct product
decomposition of a ring leads to certain pairs of elements that must have zero
product, so a direct product decomposition of a lattice leads to certain 3-tuples of
elements that must satisfy distributivity relations. Perhaps this observation can be
used to get lattice-theoretic analogs of some of the results of this note.

(In [Bergman 2014, §5] I speculate on very general properties of a variety of
algebras that would allow one to get such results; but I am not confident that that
approach will go anywhere.)

Note added in proof

Jan Šaroch (personal communication) has obtained a positive answer to Question 33,
which applies more generally to a module B over any countable ring R such that
Rω is a flat Mittag-Leffler module.
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THE VIRTUAL FIRST BETTI NUMBER
OF SOLUBLE GROUPS

MARTIN R. BRIDSON AND DESSISLAVA H. KOCHLOUKOVA

We show that if a group G is finitely presented and nilpotent-by-abelian-
by-finite, then there is an upper bound on dimQ H1(M, Q), where M runs
through all subgroups of finite index in G.

1. Introduction

The virtual first betti number of a finitely generated group G is defined as

vb1(G)= sup{dim H1(S,Q) | S ≤ G of finite index}.

A group is said to be large if it has a subgroup of finite index that maps onto a
nonabelian free group. If G is large then vb1(G) =∞. It is easy to find finitely
generated groups G that are not large but have vb1(G)=∞. For example, in the
metabelian group Z oZ= 〈a, t | [a, t−natn

] = 1 for all n〉, the subgroup Sm < Z oZ

generated by tm and the conjugates of a has index m and H1(Sm,Z) = Zm+1. In
contrast, no example is known of a finitely presented group that is not large but
has vb1(G) = ∞ (see [Button 2010; Lackenby 2010]). Since amenable groups
do not contain nonabelian free subgroups, one might hope to resolve this issue by
finding a finitely presented amenable group with vb1(G)=∞, but this seems to be
a nontrivial matter.

We shall prove in this paper that for large classes of finitely presented soluble
groups vb1(G) is always finite. One would like to prove that the same is true for
all finitely presented soluble groups, but here one faces the profound difficulty of
deciding which soluble groups admit finite presentations; this is unknown even for
abelian-by-polycyclic and nilpotent-by-abelian groups.

In the case of metabelian groups, finite presentability is completely understood
in terms of the Bieri–Strebel invariant [Bieri and Strebel 1980]. Some sufficient
conditions for finite presentability of nilpotent-by-abelian groups were considered
by McIsaac [1984] and later Groves [1991]. In the case of S-arithmetic nilpotent-
by-abelian groups G one knows more thanks to the work of Abels [1987]: if G
is an extension of a nilpotent group N by an abelian group Q then G is finitely

MSC2010: 20F16, 20J05.
Keywords: soluble groups, virtual first betti number, nilpotent-by-abelian-by-finite.
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presented if and only if it is of type FP2, which it is if and only if H2(N ,Z) is
finitely generated as a ZQ-module (where the Q action is induced by conjugation)
and1 G/N ′ is finitely presented as a group. The first of these conditions is an easy
consequence of the fact that ZQ is a Noetherian ring, and the second is a corollary
of a result in [Bieri and Strebel 1980] that every metabelian quotient of a group
of type FP2 that does not contain noncyclic free subgroups is finitely presented.
The case where G is an extension of an abelian normal subgroup A by a polycyclic
group Q was approached by Brookes and Groves who studied modules over crossed
products of a division ring by a free abelian group; see [Brookes and Groves 1995;
2000; 2002].

Given this background, the natural place to begin our investigation into the virtual
first betti number of finitely presented soluble groups is in the setting of metabelian
groups. Using methods from commutative algebra, we prove (Theorem 4.3) that if
G is finitely presented and metabelian, then vb1(G) is finite. (The hypothesis that
one actually needs to impose on G is somewhat weaker than finite presentability;
see Remark 6.5.) The metabelian case is used in the proof of our main theorem,
which is the following.

Theorem A. Let G be a finitely presented group. If G is nilpotent-by-abelian-by-
finite, then vb1(G) is finite.

Our proof of this theorem relies on the fact that all metabelian quotients of soluble
groups of type FP2 are finitely presented [Bieri and Strebel 1980, Theorem 5.5],
as well as a technical result concerning the homology of subgroups of finite in-
dex (Proposition 6.2). Groves, Kochloukova and Rodrigues [Groves et al. 2008,
Theorem A] proved that if an abelian-by-polycyclic group G is of type FP3 then
it is nilpotent-by-abelian-by-finite, in which case vb1(G) is finite by Theorem A.
The same is true of all soluble groups of type FP∞, because they are constructible
[Kropholler 1986], hence nilpotent-by-abelian-by-finite, but in this case stronger
finiteness results were already known: constructible soluble groups are obtained
from the trivial group by finite sequences of ascending HNN extensions and finite
extensions, from which it follows that they have finite Prüfer rank (i.e., there is an
upper bound on the number of generators for the finitely generated subgroups).

It is natural to wonder if Theorem A might remain true when the field of rationals
Q in the definition of virtual betti number is replaced with other coefficient fields,
such as the field with p elements Fp. We shall see in Section 5 that it does not.

Conjecture. If G is finitely presented and soluble, then vb1(G) is finite.

It is difficult to construct finitely presented soluble groups that are not nilpotent-
by-abelian-by-finite. The examples provided by the constructions of Robinson and
Strebel [1982] all satisfy the conjecture.

1Throughout this article, H ′ denotes the commutator subgroup of a group H .
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While editing the final version of this work, we learnt that Andrei Jaikin-Zapirain
has, in unpublished work, also proved Theorem A in the metabelian case. Higher
dimensional analogues of Theorem A are considered in the forthcoming PhD thesis
of Fatemeh Mokari.

2. Preliminary results

2A. Preliminaries on finitely presented metabelian groups. We fix a short exact
sequence of groups A� G � Q, where A and Q are abelian and G is finitely
generated. The action of G on A by conjugation induces an action of Q, which
enables us to regard A as a right ZQ-module. Because G is finitely generated and
Q is finitely presented, A is finitely generated as a ZQ-module.

Associated to a nonzero real character χ : Q→ R one has the monoid

Qχ = {g ∈ Q | χ(g)≥ 0}.

The character sphere S(Q) is the set of equivalence classes in Hom(Q,R)r {0}
under the relation that identifies χ1 ∼ χ2 if χ1 = λχ2 for some λ > 0. We write [χ ]
for the class of χ . Following [Bieri and Strebel 1980], let

6A(Q)= {[χ ] | A is finitely generated as a ZQχ -module}.

By definition, the ZQ-module A is 2-tame if 6A(Q)c = S(Q)r6A(Q) contains
no pair of antipodal points. According to [op. cit., Theorem 5.4], G is finitely
presented if and only if A is a 2-tame ZQ-module, and this happens precisely when
G is of homological type FP2. We refer the reader to [Bieri 1981] for general
results concerning groups of type FPm . If A1� A2� A3 is an exact sequence of
finitely generated ZQ-modules, then 6A2(Q)

c
=6A1(Q)

c
∪6A3(Q)

c (see [Bieri
and Strebel 1980, Proposition 2.2]), hence every quotient of a 2-tame ZQ-module
is 2-tame.

2B. Tensor products and finite presentability. Let R be a noetherian commutative
ring with unit 1 and let W be a finitely generated RQ-module. As above, we have a
Sigma invariant 6W (Q)= {[χ ] |W is finitely generated as an RQχ -module}, and
W is defined to be 2-tame as an RQ-module if 6c

W (Q)= S(Q) \6W (Q) has no
pair of antipodal points.

The question of when the tensor square W ⊗R W is finitely generated as an
RQ-module (with Q acting diagonally) is addressed in [Bieri and Groves 1985],
where it is shown that [χ ] lies in6c

W (Q) if and only if the ring S= RQ/ annRQ(W )

admits a real valuation v : S→ R∪ {∞} (in the sense of Bourbaki) that extends
χ and is such that the restriction v0 of v to the image R of R in S is nonnegative
and discrete. By [loc. cit.], W ⊗R W is finitely generated as an RQ-module if
and only if there is no pair of antipodal elements [χ ], [−χ ] ∈6c

W (Q) that can be
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lifted to valuations of S that have the same restriction v0 to R, with v0 discrete and
nonnegative. (These last conditions on v0 are automatic if R is Z.)

Returning to the context of Section 2A, we apply these general considerations
with W = A⊗Q and R=Q, in which case W⊗R W ∼= (A⊗Z A)⊗Z Q. We deduce
that if there exists a group extension A� G� Q, with G finitely presented, then
W = A⊗Q is 2-tame as a QQ-module, and W ⊗R W ∼= (A⊗Z A)⊗Z Q is finitely
generated as a QQ-module via the diagonal Q-action.

We shall also need a refinement of this observation that involves the annihilator
annZQ(A) of A in ZQ, which we denote I . Bieri and Strebel [1981, (1.3)] prove
that

6A(Q)=6ZQ/I (Q).

Thus if A is 2-tame as a ZQ-module, then so is ZQ/I .

Lemma 2.1. If there exists a group extension A� G� Q with A and Q abelian
and G finitely presented, and I = annZQ(A), then (ZQ/I )⊗Z (ZQ/I )⊗Z Q is
finitely generated as a QQ-module via the diagonal Q-action.

2C. Preliminaries on commutative algebra. We will need the following basic
facts from commutative algebra; for details see, for example, [Bourbaki 1961–1965;
Atiyah and Macdonald 1969; Eisenbud 1995]. Let Q be a finitely generated abelian
group and recall that the Krull dimension of a commutative ring is the supremum
of the lengths of all chains of prime ideals in the ring.

(1) The radical
√

J of each ideal J CQQ is the intersection of the finitely many
prime ideals that contain J and are minimal subject to this condition.

(2) Finite dimensional Q-algebras are Artinian and thus have Krull dimension 0.

Throughout, if R is a commutative ring and m a positive integer, then Rm will
denote the subring generated by m-th powers, except that Zn and Qn will denote
Cartesian powers. Where no ring is specified, tensor products are assumed to be
taken over Z.

3. A finiteness result in commutative algebra

Lemma 2.1 assures us that the following theorem applies to the modules that arise
from short exact sequences N�G�Zn associated to finitely presented metabelian
groups.

Theorem 3.1. Let Q ∼= Zn be a group and let S = ZQ/I be a commutative ring
such that (S ⊗Z S)⊗Z Q is finitely generated as a QQ-module via the diagonal
Q-action. Then,

sup
m

dimQ(S⊗ZQm Q) <∞.
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Proof. Let B = S⊗Q=QQ/J and for each positive integer m define Jm CQ to
be (J, Qm

− 1) and

Bm := B⊗QQm Q=QQ/Jm ∼= S⊗ZQm Q.

As QQ/(Qm
− 1) is finite dimensional over Q, so is Bm = QQ/Jm . Hence Bm

has Krull dimension 0; i.e., every prime ideal in Bm is a maximal one. Therefore,
the finite collection of primes ideals Pm,t whose intersection is

√
Bm are the only

prime ideals in QQ above Jm , and each of the quotients QQ/Pm,t is a field.
We shall establish the theorem by proving the following:

Claim 1. There exist only finitely many fields F such that for some m≥1 (depending
on F) the field F is a quotient of Bm .

Claim 1 provides an integer m0 such that if a field F is a quotient of Bm then
the natural map QQ→ F factors through QQ/(Qm0 − 1).

Claim 2. If m0 divides m then Jm = Jmr for every r ∈ N.

To see that the theorem follows from these claims, note that for an arbitrary
positive integer m we have Jm ⊇ Jmm0 = Jm0 , whence

dimQ(QQ/Jm)≤ dimQ(QQ/Jm0)≤ dimQ(QQ/(Qm0 − 1))

= dimQ Q[Q/Qm0] = mn
0.

Proof of Claim 1. Our hypothesis on S implies that B⊗Q B is finitely generated as
QQ-module via the diagonal Q-action, by d elements say. Let F be a field quotient
of Bm and let θ :QQ→ F be the canonical projection; so Qm

− 1⊆ ker(θ). Then,
θ(Q) is a finitely generated multiplicative subgroup of F∗ that has finite exponent
and F , being finite dimensional over Q, embeds in C. Hence θ(Q) is a finite cyclic
group, generated by a root of unity, ε of order s, say. Thus we obtain a subgroup
H < Q such that Q/H is cyclic of order s and H−1⊆ker(θ). Now, F ∼=Q[x]/( f ),
where f is the minimal polynomial of ε over Q. And f is an irreducible factor
of x s

− 1 in Q[x], whose zeroes are distinct roots of unity with order precisely s.
Thus dimQ F = deg( f )= ϕ(s), where ϕ is Euler’s totient function. On the other
hand, F ⊗Q F is an epimorphic image of the QQ-module B⊗Q B and the action
of Q on F ⊗Q F factors through the action of Q/H , so F ⊗Q F is generated as a
Q[Q/H ]-module by d elements. Hence

ϕ(s)2 = (dimQ F)2 = dimQ(F ⊗Q F)≤ d dimQ Q[Q/H ] = ds.

An elementary calculation shows that ϕ(n)/
√

n→∞ as n→∞, so for fixed d
there are only finitely many possible values of s and ε. Let b be a natural number
such that the order of ε is at most b. Then, the order of ε is a divisor of m0 = b! and

F is a quotient of QQ/(Qm0 − 1).
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Since QQ/(Qm0 − 1) is finite dimensional over Q it has Krull dimension 0, so
has only finitely many prime ideals and finitely many field quotients. This completes
the proof of Claim 1. �

Proof of Claim 2. Since m0 divides m we have Jm ⊆ Jm0 , so the prime ideals
containing Jm0 also contain Jm . On the other hand, we saw earlier that for each
of the prime ideals Pm,i containing Jm , the quotient Fi :=QQ/Pm,i is a field. By
definition, m0 is such that QQ→ Fi factors through QQ/(Qm0−1), and therefore
Pm,i (which already contains J ⊂ Jm) contains Jm0 = (J, Qm0 − 1). The radical of
Jm is the intersection of the prime ideals containing it, so√

Jm =
√

Jm0 .

Arguing by induction on r , Claim 2 will follow if we can prove that for every
prime number p we have Jm = Jmp, which is equivalent to the assertion that
qm
− 1 ∈ Jmp for all q ∈ Q.

We now fix q ∈ Q. From the preceding argument,
√

Jm =
√

Jmp. In particular,
Qm
− 1⊆ Jm ⊆

√
Jm =

√
Jmp, so there is a natural number s (over which we have

no control) such that

(3-1) (qm
− 1)s ∈ Jmp.

As Qmp
− 1⊆ Jmp, we also have

(3-2) qmp
− 1 ∈ Jmp.

Let g(x) be the greatest common divisor of x pm
− 1 and (xm

− 1)s in Q[x]. In
characteristic zero, the polynomial x pm

− 1 has no repeated roots, so neither does
g(x). Since g(x) divides (xm

− 1)s , it must actually divide xm
− 1, so in fact

g(x)= xm
− 1. From (3-1), (3-2) and Bézout’s lemma, we have g(q) ∈ Jpm . Since

q ∈ Q is arbitrary, this implies that Jmp = Jm . �

4. The main theorem for metabelian groups

In this section we prove that all finitely presented metabelian groups have finite
virtual first betti number. The proof relies on the finiteness theorem proved in the
previous section and two technical lemmas, the first of which is a simple observation
about commensurable groups.

Lemma 4.1. Let G be a group. If G0 < G is a subgroup of finite index, then
vb1(G)= vb1(G0).

Proof. By definition, vb1(G)= supM dim H1(M,Q), where the supremum is taken
over finite-index subgroups of G. If M has finite index in G0, then it also has finite
index in G, so vb1(G) ≥ vb1(G0). Conversely, if S has finite index in G, then
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S0 = G0 ∩ S has finite index in G0, and since it also has finite index in S, we have
dim H1(S0,Q)≥ dim H1(S,Q), so vb1(G0)≥ vb1(G). �

Lemma 4.2. Let A� G� Q be a short exact sequence of groups with A and Q
abelian and let n be the torsion-free rank of Q. Then:

(a) Writing [G, A] =
〈
{[g, a] = g−1a−1ga

∣∣ g ∈ G, a ∈ A}
〉
, we have

dimQ H1(G,Q)≤ dimQ(A/[G, A]⊗Q)+ n.

In the split case, G = Ao Q, we have H1(G,Q)∼= (G/[G, A])⊗Z Q, and

dimQ H1(G,Q)= dimQ(A/[G, A]⊗Q)+ n.

(b) If Gm is a subgroup of finite index in G and Qm is the image of Gm in Q, then

dimQ H1(Gm,Q)≤ dimQ(A⊗ZQm Q)+ n.

In the split case, Gm = (A∩Gm)o Qm , equality is attained:

dimQ H1(Gm,Q)= dimQ(A⊗ZQm Q)+ n.

(c) If G = Ao Q and B denotes the set of subgroups of finite index in Q, then

vb1(G)= sup
S∈B

dimQ(A⊗ZS Q)+ n.

Proof. (a) As [G, A] ⊆ [G,G], we see that H1(G,Z)= G/[G,G] is a quotient
of G/[G, A]. So from the central extension A/[G, A]� G/[G, A]� Q, we get

dimQ H1(G,Q)≤dimQ(A/[G, A]⊗Q)+dimQ(Q⊗Q)=dimQ(A/[G, A]⊗Q)+n.

If G = A o Q then, using that A, Q are abelian and A is normal in G, we get
[G,G] = [AQ, AQ] = [Q, A] ⊆ [G, A] ⊆ [G,G], hence [G,G] = [G, A] and
A/[G, A]� G/[G,G]� Q is an exact sequence of abelian groups.

(b) We consider the short exact sequence Am � Gm � Qm , where Am = A∩Gm .
From part (a) we have

(4-1) dimQ H1(Gm,Q)≤ dimQ(Am ⊗ZQm Q)+ n,

with equality if the sequence splits. Furthermore, since A/Am is finite we have

0= TorZQm
1 (A/Am,Q) and (A/Am)⊗ZQm Q= 0.

Thus there is an exact sequence (part of the long exact sequence in Tor associated
to A∩Gm � A� A/(A∩Gm))

0= TorZQm
1 (A/Am,Q)→ Am ⊗ZQm Q→ A⊗ZQm Q→ (A/Am)⊗ZQm Q= 0,

whence Am ⊗ZQm Q∼= A⊗ZQm Q. Thus, we may replace Am ⊗ZQm Q in (4-1) by
A⊗ZQm Q, and (b) is proved.
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(c) From the first part of (b) we have

vb1(G)≤ sup
S∈B

dimQ(A⊗ZS Q)+ n,

and to obtain the reverse inequality, we use the second part of (b)

sup
S∈B

dimQ(A⊗ZS Q)+ n = sup
S∈B

dimQ H1(Ao S,Q),

noting that Ao S has finite index in G. �

Theorem 4.3. Let A� G� Q be a short exact sequence of groups with A and Q
abelian. If G is finitely presented then its virtual first betti number vb1(G) is finite.

Proof. By passing to a subgroup of finite index in Q and replacing G by the inverse
image of this subgroup, we may assume that Q is free abelian. Lemma 4.1 assures
us that it is enough to consider this case, and Lemma 4.2(b) tells us that we will be
done if we can establish an upper bound on dimQ(A⊗ZQm Q) as Qm ranges over
the subgroups of finite index in Q.

Recall that A is finitely generated as a ZQ-module, say by d elements. Thus, de-
noting the annihilator annZQ(A)={λ∈ZQ | Aλ=0} by I , we have an epimorphism
of ZQ-modules

(ZQ/I )[d] = ZQ/I ⊕ · · ·⊕ZQ/I → A

that induces an epimorphism of Q-vector spaces(
(ZQ/I )⊗ZQm Q

)[d]
= (ZQ/I )[d]⊗ZQm Q→ A⊗ZQm Q.

Thus,
dimQ(A⊗ZQm Q) ≤ d dimQ((ZQ/I )⊗ZQm Q)

and it suffices to show that

sup
m

dimQ((ZQ/I )⊗ZQm Q) <∞.

For every m there is a natural number αm such that Qαm ⊆ Qm , and ZQ/I ⊗ZQm Q

is a quotient of ZQ/I ⊗ZQαm Q. Thus,

dimQ((ZQ/I )⊗ZQm Q)≤ dimQ((ZQ/I )⊗ZQαm Q),

and we have reduced to showing that

sup
s

dimQ((ZQ/I )⊗ZQs Q) <∞.

The theorem now follows from Lemma 2.1 and Theorem 3.1. �



THE VIRTUAL FIRST BETTI NUMBER OF SOLUBLE GROUPS 505

5. Characteristic p case

In this section we shall construct examples which show that the restriction to fields
of characteristic 0 in Theorem A is essential, even in the metabelian case.2 To
this end, we consider the mod p virtual first betti number of a finitely generated
group G,

vb1
(p)(G)= sup{dim H1(S, Fp) | S < G of finite index}.

Proposition 5.1. For every prime p there exist finitely presented metabelian groups
0 such that vb1

(p)(0) is infinite.

Proof. Let Q be a free abelian group with generators x and y and let A = Fp Q/I ,
where I is the ideal of Fp Q generated by y− x2

+ x − 1. Then,

A ∼= Fp

[
x, x−1,

1
x2−x+1

]
.

Consider
Am = A⊗ZQ pm Fp ∼= Fp Q/(I, Q pm

− 1).

Since (x2
− x + 1)pm

− 1= x2pm
− x pm

+ 1− 1= x pm
(x pm
− 1), we have

Am = Fp

[
x, x−1,

1
x2−x+1

] / (
x pm
− 1, (x2

− x + 1)pm
− 1

)
= Fp

[
x, x−1,

1
x2−x+1

] / (
x pm
− 1

)
is the localisation

Bm S−1

where Bm = Fp[x, x−1
]/(x pm

− 1) and S is the image of {(x2
− x + 1) j

} j≥1 in Bm .
Note that x pm

− 1 and x2
− x + 1 do not have a common root in any finite field

extension of Fp, for if z were a common root we would have 1= z2pm
= (z−1)pm

=

z pm
−1=0, which is a contradiction. Thus the polynomials x pm

−1 and (x2
−x+1) j

are coprime in Fp[x, x−1
]; i.e., they generate the whole ring as an ideal, and so the

elements of S are invertible in Bm . Therefore Bm S−1
= Bm and

dimFp Am = dimFp Bm S−1
= dimFp Bm = pm .

Now define
0 = Ao Q and 0m = Ao Q pm

.

Then, as in the split case of Lemma 4.2(b) (with coefficients in Fp in place of Q),

dimFp H1(0m, Fp)= dimFp Am + 2= pm
+ 2,

2John Wilson [1998] proved that the dimension of H1(S, Fp) can grow at most like the square
root of the index [G : S]. Jack Button [2010] exhibited a finitely presented soluble group that exhibits
this growth for all p.
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which tends to infinity with m.
By the calculation [Bieri and Strebel 1981, Theorem 5.2] of 6A(Q) for A =

Fp Q/I , where the ideal I is 1-generated, or by the link between 6c
A(Q) and

valuation theory (as described in Section 2B), we have

6c
A(Q)= {[χ1], [χ2], [χ3]},

with
χ1(x)= 0, χ2(x)= 1, χ3(x)=−1,

χ1(y)= 1, χ2(y)= 0, χ3(y)=−2.

Thus, A is 2-tame as a ZQ-module, and by the classification of finitely presented
metabelian groups in [Bieri and Strebel 1980], 0 is finitely presented. �

Corollary 5.2. There exists a finitely presented metabelian group G such that for
the class A of all subgroups of finite index in G,

sup
M∈A

d(M)=∞,

where d(M) is the minimal number of generators of M.

Proof. Immediate, since d(M)≥ dimFp H1(M, Fp). �

It is natural to wonder if the lack of finiteness exhibited in the preceding propo-
sition might be avoided by restricting to subgroups whose index is coprime to p.
The following refinement shows that this is not the case.

Proposition 5.3. Let p be a prime. There exist finitely presented metabelian groups
G such that

sup{dimFp H1(S, Fp) | S ∈Ap} =∞,

where
Ap = {S ≤ G | [G : S] is finite and coprime to p}.

Proof. Let A = Fp[x, x−1, (x + 1)−1
] and let Q be a free abelian group of rank 2

whose generators x1, x2 act on A as multiplication by x and x+1, respectively. We
consider the group G = Ao Q. As an Fp[Q]-module, A∼= Fp[Q]/I where I is the
ideal generated by x2− x1−1, and the argument given in the preceding proposition
shows that 6A(Q)c consists of precisely 3 points, no pair of which is antipodal.
Therefore, G is finitely presented.

Let F be a finite field with pr elements, r ≥ 2. Let w be a generator of the
multiplicative group F∗ = F r {0}. Let Qr be the kernel of the homomorphism
Q→ F∗ defined by x1 7→ w and x2 7→ w+ 1. Let Gr = A o Qr and note that
|G/Gr | = |Q/Qr | = pr

− 1 is coprime to p.
The ring epimorphism A→ F sending x to w provides an epimorphism of the

underlying additive groups which extends to a group epimorphism AoQr→ F×Z2.
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Since dimFp F = r , it follows that dimFp H1(Gr , Fp) ≥ r + 2. And, r ≥ 2 was
arbitrary. �

6. Beyond the metabelian case

In this section we shall prove Theorem A, but first we present a consequence
of Theorem 4.3 that describes what one can deduce about towers of finite-index
subgroups above the commutator subgroup in amenable and related groups.

Proposition 6.1. Let G be a group of type FP2 that does not contain a nonabelian
free group and let C be the set of finite-index subgroups in G that contain the
commutator subgroup G ′. Then, supM∈C dimQ H1(M,Q) <∞.

Proof. By [Bieri and Strebel 1980, Theorem 5.5], G/G ′′ is finitely presented. Since
M ⊇ G ′, we have M ′ ⊇ G ′′ and can replace G by G/G ′′ and M by MG ′′/G ′′

without changing H1(M,Q). Then we can apply Theorem 4.3. �

Our proof of Theorem A relies on the following proposition, which is of interest
in its own right.

Proposition 6.2. Let N � G� Q be a short exact sequence of groups, where N
is nilpotent, Q is abelian and G is finitely generated. Let Gn be a subgroup of finite
index in G and let Gn be the image of Gn in the metabelian group G/N ′. Then,

dimQ H1(Gn,Q)= dimQ H1(Gn,Q).

Proof. We argue using the Malcev completion jN : N → N ∗ [Malcev 1949].
According to [Quillen 1969, Appendix A, Corollary 3.8], for any nilpotent group
N , the homomorphism jN : N → N ∗ is characterized up to isomorphism by the
following properties:

(a) N ∗ is nilpotent and uniquely divisible.

(b) ker jN is the torsion subgroup of N .

(c) For every x ∈ N ∗, there is a positive integer n such that xn
∈ N .

In any nilpotent group, the set
√

S of elements that have powers in a fixed
subgroup S is a subgroup. It follows that, for every subgroup M < N , the map
M →

√
jN (M) satisfies properties (a) to (c). Thus we may identify M∗ with

√
jN (M) < N ∗. If M < N has finite index, then M∗ =

√
jN (M) = N ∗. And

(N ∗)′ = (N ′)∗.
With these facts in hand, for all subgroups of finite index Gn < G we have

(G ′n)
∗
⊇ ((Gn ∩ N )′)∗ = ((Gn ∩ N )∗)′ = (N ∗)′ = (N ′)∗. Thus (G ′n N ′)∗ = (G ′n)

∗,
and from (c) we deduce that G ′n(N

′
∩Gn)/G ′n is torsion. As G ′n(N

′
∩Gn)/G ′n is

the kernel of the canonical epimorphism Gn/G ′n→ Gn N ′/G ′n N ′, we have

H1(Gn,Q)∼= (Gn/G ′n)⊗Q∼= (Gn N ′/G ′n N ′)⊗Q∼= H1(Gn,Q). �
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Theorem 6.3. Let N � G � Q be a short exact sequence of groups. If N is
nilpotent, Q is abelian and G is of type FP2, then the virtual first betti number
vb1(G) is finite.

Proof. In the light of Proposition 6.2, this follows directly from Theorem 4.3 and
the fact [Bieri and Strebel 1980, Theorem 5.5] that G/N ′ is a finitely presented
metabelian group. �

Corollary 6.4 (Theorem A). If a group G is nilpotent-by-abelian-by-finite and of
type FP2, then vb1(G) is finite.

Proof. Let G0 be a subgroup of finite index in G such that G0 is nilpotent-by-abelian.
Then, G0 has type FP2, so vb1(G0) is finite, by Theorem 6.3, and hence, so is G,
by Lemma 4.1. �

Remark 6.5. We did not use the full force of finite presentability in establishing
Theorem A: in fact, it is enough to assume that G has a subgroup of finite index G0

in which there is a nilpotent subgroup N C G0 such that Q = G0/N is free abelian
and, writing A = N/N ′, the QQ-module A⊗ A⊗Q, with diagonal action, should
be finitely generated. These requirements follow from the finite presentability of
G0/N ′ but are strictly weaker.

Corollary 6.6. Every soluble group of type FP∞ has finite virtual first betti number.

Proof. Soluble groups S of type FP∞ are constructible and hence nilpotent-by-
abelian-by-finite [Kropholler 1986]. �

Corollary 6.7. Every abelian-by-polycyclic group of type FP3 has finite virtual first
betti number.

Proof. By the main result of [Groves et al. 2008], abelian-by-polycyclic groups of
type FP3 are nilpotent-by-abelian-by-finite. �
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