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HARMONIC MAPS FROM Cn TO KÄHLER MANIFOLDS

JIANMING WAN

We prove that a harmonic map from Cn (n≥2) to any Kähler manifold must
be holomorphic under an assumption on energy density. This can be con-
sidered as a complex analogue of the Liouville-type theorem for harmonic
maps obtained by Sealey.

1. Introduction

The classical Liouville theorem says that a bounded harmonic function on Rn (or
holomorphic function on Cn) has to be constant. Sealey [1982] (see also [Xin
1996]) gave an analogue for harmonic maps. He proved that a harmonic map of
finite energy from Rn (n ≥ 2) to any Riemannian manifold must be a constant map.
In this paper we consider the complex analogue of Sealey’s result by asking: Must
a harmonic map with finite ∂̄-energy from Cn (n ≥ 2) to any Kähler manifold be
holomorphic?

On the other hand, from Siu and Yau’s proof of the Frankel conjecture [1980]
(the key is to prove that a stable harmonic map from S2 to CPn is holomorphic or
conjugate holomorphic), we know that it is very important to study the holomor-
phicity of harmonic maps. So the above question is obviously interesting. We hope
that it is true. But we do not know how to prove it. Our partial result can be stated
as follows:

Theorem 1.1. Let f be a harmonic map from Cn (n ≥ 2) to any Kähler manifold.
Let e( f ) be the energy density and e′′( f ) the ∂̄-energy density. If

(1-1) e( f )e′′( f )(p)= O
(

1
R4n+α

)
1

for some α > 0, where R denotes the distance from the origin to p, then f is a
holomorphic map.

The research is supported by the National Natural Science Foundation of China 11301416.
MSC2010: 53C55.
Keywords: harmonic maps, holomorphic maps.

1The notation O means e( f )e′′( f )(p)≤ C/R4n+α for some C > 0 and sufficiently large R.
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The condition (1-1) implies that the ∂̄-energy is finite. Since

(e′′( f ))2 ≤ e( f )e′′( f )= O
(

1
R4n+α

)
,

one has

e′′( f )= O
(

1
R2n+α/2

)
.

This leads to ∫
Cn

e′′( f ) dv <∞.

Note that we do not have any curvature assumption for the target manifold.
We should mention some other related results on holomorphicity of harmonic

maps. For instance, Dong [2013] established many holomorphicity results under
the assumption of the target manifolds having strongly seminegative curvature. Xin
[1985] obtained some holomorphicity results on harmonic maps from a complete
Riemann surface into CPn .

If the target manifold is Cm (in this case every component of the map is a
harmonic function), then the answer of above question is positive (see [Wan 2010]).

The main idea of the proof of Theorem 1.1 is to consider a one-parameter family
of maps and study the ∂̄-energy variation.

The rest of the paper is organized as follows. Section 2 contains some basic
materials on harmonic maps. In Section 3, we study the first variation of the
∂̄-energy. Theorem 1.1 is proved in Section 4.

2. Preliminaries

The materials in this section may be found in [Xin 1996].

2A. Basic concepts of harmonic maps. Let f be a smooth map between two
Riemannian manifolds (M, g) and (N , h). We can define the energy density of f by

e( f )= 1
2

trace |d f |2 = 1
2

m∑
i=1

〈 f∗ei , f∗ei 〉,

where {ei } (i = 1, . . . ,m = dim M) is a local orthonormal frame field of M . The
energy integral is defined by

E( f )=
∫

M
e( f ) dv.

If we choose local coordinates {x i
} and {yα} in M and N , respectively, the energy

density can be written as

(2-1) e( f )(x)=
1
2

gi j (x)
∂ f α(x)
∂x i

∂ f β(x)
∂x j hαβ( f (x)).
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The tension field of f is
τ( f )= (∇ei d f )(ei ),

where ∇ is the induced connection on the pullback bundle f −1T N over M from
those of M and N .

Definition 2.1. We say that f is a harmonic map if τ( f )= 0.

From the variation point of view, a harmonic map can be seen as the critical point
of the energy integral functional. Let ft be a one-parameter family of maps. We
can regard it as a smooth map M× (−ε, ε)→ N . Let f0 = f and (d ft/dt)|t=0 = v.
Then we have the first-variation formula (see [Xin 1996])

(2-2)
d
dt

E( ft)
∣∣
t=0 =

∫
M

div W dv−
∫

M
〈v, τ ( f )〉 dv,

where W = 〈v, f∗e j 〉e j . If M is compact, then
∫

M div W dv = 0. We know that a
harmonic map is the critical point of the energy functional.

2B. ∂̄-energy. Let us consider the complex case. Let f be a smooth map from
Cn to a Kähler manifold N . Let J be the standard complex structure of Cn and J ′

the complex structure of N . Let ω and ωN be the corresponding Kähler forms of
Cn and N (i.e., ω( · , · )= 〈J ·, · 〉 and ωN ( · , · )= 〈J ′·, · 〉). The ∂̄-energy density is
defined by

e′′( f )= |∂̄ f |2 = | f∗ J − J ′ f∗|2

=
1
4(| f∗ei |

2
+ | f∗ Jei |

2
− 2〈J ′ f∗ei , f∗ Jei 〉)

=
1
2(e( f )−〈 f ∗ωN , ωM

〉),

where {ei , Jei } (i = 1, . . . , n) is the Hermitian frame of Cn and 〈 f ∗ωN , ω〉 denotes
the induced norm. We say that f is holomorphic if f∗ J = J ′ f∗. Obviously, f is
holomorphic if and only if |∂̄ f |2 ≡ 0.

It is well known that a holomorphic map between two Kähler manifolds must be
harmonic (see [Xin 1996]).

We denote the ∂̄-energy by

E∂̄( f )=
∫

Cn
|∂̄ f |2 dv.

3. ∂̄-energy variation

Let us consider the one-parameter family of maps ft(x) = f (t x) : Cn
→ N ,

t ∈ (1− ε, 1+ ε) and f1 = f . Let BR denote the Euclidean ball in Cn of radius R
around 0. We write

E(R, t)=
∫

BR

|∂̄ ft |
2 dv.
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Lemma 3.1. E(R, t)= t2−2n E(Rt, 1).

Proof. Under the standard Hermitian metric of Cn , gi j
= δi j , from (2-1) we have

e( ft)(x)= t2e( f )(t x).

By using the natural coordinates, it is easy to show that

〈 f ∗t ω
N , ω〉(x)= t2

〈 f ∗ωN , ω〉(t x).

So we get

|∂̄ ft |
2(x)= t2

|∂̄ f |2(t x).

It is easy to check that ∫
BR

|∂̄ ft |
2 dv = t2−2n

∫
BRt

|∂̄ f |2 dv.

Thus we obtain the lemma. �

We now prove the following variation formula for ∂̄-energy:

Lemma 3.2.
∂E(R, t)
∂t

∣∣∣∣
t=1
=

R
2

∫
∂BR

(∣∣∣ f∗
∂

∂r

∣∣∣2− 〈J ′ f∗ ∂
∂r
, f∗ J

∂

∂r

〉)
dv.

Proof. Let {e1, . . . , e2n = ∂/∂r} be a local orthonormal frame field, where ∂/∂r
denotes the unit radial vector field. By the definition of ft(x), it is easy to see that
the variation vector field of ft at t = 1 is

v =
d ft

dt

∣∣∣∣
t=1
= r f∗

∂

∂r
.

The proof is separated into two steps.

Step 1. From (2-2), we have

d
dt

∫
BR

e( ft) dv
∣∣∣∣
t=1
=

∫
BR

div〈v, f∗e j 〉e j dv−
∫

BR

〈v, τ ( f )〉 dv

=

∫
∂BR

〈
v, f∗

∂

∂r

〉
dv = R

∫
∂BR

∣∣∣ f∗
∂

∂r

∣∣∣2 dv.

Since f is harmonic, we know that the tension field τ( f ) is 0, and the second
equality follows from the divergence theorem.
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Step 2. On the other hand, from [Xin 1996] we know that (d/dt) f ∗t ω
N
= dθt ,

where θt = f ∗t i( ft∗∂/∂t)ωN . Since (d ft/dt)|t=1 = r f∗∂/∂r , we get θ1 = θ =

r f ∗i( f∗∂/∂r)ωN . Then

d
dt

∫
BR

〈 f ∗t ω
N , ω〉 dv

∣∣∣
t=1
=

∫
BR

〈dθ, ω〉 dv

=

∫
BR

d(θ ∧∗ω)+
∫

BR

〈θ, δω〉 dv

=

∫
∂BR

θ ∧∗ω−

∫
BR

〈θ, ∗dωn−1
〉 dv

=

∫
∂BR

θ ∧∗ω

=−

∫
∂BR

θ(ei )ω
(

ei ,
∂

∂r

)
dv

=−R
∫
∂BR

ωN
(

f∗
∂

∂r
, f∗ei

)
ω
(

ei ,
∂

∂r

)
dv

=−R
∫
∂BR

〈
J ′ f∗

∂

∂r
, f∗ei

〉〈
Jei ,

∂

∂r

〉
dv

= R
∫
∂BR

〈
J ′ f∗

∂

∂r
, f∗ J ∂

∂r

〉
dv.

Noting that 〈dθ, ω〉 dv = dθ ∧∗ω, the second equality follows from the differential
rules, where δ and ∗ are the codifferential and star operators. By Stokes’ theorem
and the definition of δ, the third equality holds. The fifth equality follows from
direct computation. Since we may choose e1 = J ∂/∂r , the last equality holds.

Combining Steps 1 and 2, we obtain

d
dt

∫
BR

|∂̄ ft |
2 dv

∣∣∣∣
t=1
=

R
2

∫
∂BR

(∣∣∣ f∗
∂

∂r

∣∣∣2− 〈J ′ f∗ ∂
∂r
, f∗ J ∂

∂r

〉)
dv. �

Remark 3.3. If M is a compact manifold,
∫

M〈 f
∗ωN , ωM

〉 dv is a homotopy in-
variant. This was observed first by Lichnerowicz [1970].

4. Proof of Theorem 1.1

We use a similar trick to [Sealey 1982].
By Lemma 3.1, we obtain

∂E(R, t)
∂t

∣∣∣∣
t=1
= (2− 2n)E(R, 1)+ R

∂E(R, 1)
∂R

.
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On the other hand, from Lemma 3.2 and the condition (1-1), one has

∂E(R, t)
∂t

∣∣
t=1 =

R
2

∫
∂BR

(∣∣∣ f∗
∂

∂r

∣∣∣2− 〈J ′ f∗ ∂
∂r
, f∗ J ∂

∂r

〉)
dv

≥
R
2

∫
∂BR

(∣∣∣ f∗
∂

∂r

∣∣∣2− ∣∣∣ f∗
∂

∂r

∣∣∣∣∣∣ f∗ J ∂
∂r

∣∣∣) dv

≥−
R
2

∫
∂BR

∣∣∣ f∗
∂

∂r

∣∣∣∣∣∣∣∣∣ f∗
∂

∂r

∣∣∣− ∣∣∣ f∗ J ∂
∂r

∣∣∣∣∣∣ dv

≥−
R
2

R2n−1 1
R2n+α/2 C

=−
C
2

R−α/2,

where C is a positive constant. Hence for any ε > 0, there exists an R0 such that

∂E(R, t)
∂t

∣∣∣∣
t=1
≥−ε

for all R ≥ R0. Therefore

R
∂E(R, 1)
∂R

≥−ε+ (2n− 2)E(R, 1)

for R ≥ R0.
If E(∞, 1) =

∫
Cn |∂̄ f |2 dv = E > 0, then there exists an R1 such that for all

R ≥ R1 we have E(R, 1)≥ E0 > 0. Since n ≥ 2, we can choose a sufficiently small
ε such that

R
∂E(R, 1)
∂R

≥ A =−ε+ (2n− 2)E0 > 0

when R ≥ R2 =max(R0, R1). Then

E(∞, 1)=
∫

Cn
|∂̄ f |2 dv ≥

∫
∞

R2

A
R

d R =∞.

This is a contradiction. Therefore
∫

Cn |∂̄ f |2 dv = 0. Hence f is a holomorphic map.

Remark 4.1. Compared with the real case [Sealey 1982], Lemma 3.2 has the term
〈J ′ f∗(∂/∂r), f∗ J (∂/∂r)〉. We need to use condition (1-1) to control it.

Remark 4.2. If we consider the ∂-energy density e′( f ) = |∂ f |2 = | f∗ J + J ′ f∗|2,
the corresponding result of Theorem 1.1 also holds; i.e., if the condition (1-1)
is replaced by e( f )e′( f )(p) = O(1/R4n+α), then the conclusion is that f is a
conjugate holomorphic map (|∂ f |2 ≡ 0).
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