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EIGENVARIETIES AND INVARIANT NORMS

CLAUS M. SORENSEN

We give a proof of the Breuil–Schneider conjecture in a large number of
cases, which complement the indecomposable case, which we dealt with
earlier. In this paper, we view the conjecture from a broader global per-
spective. If U=F is any definite unitary group, which is an inner form of
GL.n/ over K, we point out how the eigenvariety X.Kp/ parametrizes a
global p-adic Langlands correspondence between certain n-dimensional p-
adic semisimple representations � of Gal.QjK/ (or what amounts to the
same, pseudorepresentations) and certain Banach–Hecke modules B with
an admissible unitary action of U.F ˝ Qp/, when p splits. We express
the locally regular-algebraic vectors of B in terms of the Breuil–Schneider
representation of �. As an application, we give a weak form of local–global
compatibility in the crystalline case, showing that the Banach space repre-
sentations B�;� of Schneider and Teitelbaum fit the picture as predicted.
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1. Introduction

Let K be a number field. The Fontaine–Mazur conjecture [1995] predicts a charac-
terization of all (irreducible) Galois representations r W�KDGal.QjK/!GLn.Qp/
occurring naturally — by which we mean some Tate twist of r is a subquotient of
the étale cohomology H �.X;Qp/ of some smooth projective variety X=K. It is a
major result (due to Tsuji and others) that every such r is geometric, which means it
is unramified at all but finitely many places, and potentially semistable at all places
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above p. Fontaine and Mazur assert the converse: that every geometric r occurs in
cohomology (up to a Tate twist). The potentially semistable representations are now
more or less completely understood, by work of Colmez and Fontaine [2000]. They
are given by admissibly filtered .�;N /-modules (with Galois action), which are
objects of a more concrete combinatorial nature. The p-adic Langlands program,
still in its initial stages, attempts to link p-adic Hodge theory with nonarchimedean
functional analysis. Locally, if K is a fixed finite extension of Qp, and LjQp is
another sufficiently large finite extension (the coefficient field), one hopes to pair
certain Galois representations r W�K!GLn.L/ with certain Banach L-spaces with
a unitary admissible GLn.K/-action. This is now well understood for GL2.Qp/
thanks to recent work of Berger, Breuil, Colmez, Paskunas, and others. See [Berger
2011] for a nice survey.

The goal of this paper is to shed some light on a global analogue, for any n,
and any CM field K. To give the flavor, if KjQ is a quadratic imaginary field in
which p splits, we will set up a bijection between certain Galois representations
r W �K ! GLn.L/ (actually, pseudorepresentations) and certain Banach–Hecke
modules with a unitary admissible GLn.Qp/-action. This is most likely folklore.
We emphasize that this bijection is based on matching Satake parameters and
Frobenius eigenvalues at places away from p. More importantly, we relate the
algebraic vectors to the p-adic Hodge theory on the Galois side. The word certain
here has a precise meaning. It means those representations which come from an
eigenvariety, of some fixed tame level Kp. We will be precise below.

We model the discussion on the GL2.Qp/-case: To any continuous Galois1

representation � W �Qp!GL2.L/, the p-adic Langlands correspondence associates
a unitary BanachL-space representationB.�/ of GL2.Qp/. Moreover, � is de Rham
with distinct Hodge–Tate weights precisely when there are nonzero locally algebraic
vectors: B.�/alg ¤ 0. Here we use the notation from [Breuil 2010, p. 7]. Some
authors prefer to write B.�/l-alg. (Recall that a vector is locally algebraic if some
open subgroup acts polynomially. They were studied in detail in [Schneider and
Teitelbaum 2001]. See Section 3.2 below for more details.) Conversely, if � is de
Rham with (distinct) Hodge–Tate weights, f0; 1� kg (with the convention that the
cyclotomic character has weight �1), then the locally algebraic vectors are given
by

B.�/alg
D Symk�2.L2/˝�.�/

for a smooth generic representation �.�/, possibly reducible, obtained by a slight
modification of the classical local Langlands correspondence.

The Breuil–Schneider conjecture. The local p-adic Langlands program is somewhat
vague, and a precise conjectural framework is still developing beyond the case

1In the introduction, we will denote global Galois representations by r , local ones by �.
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of GL2.Qp/, where pretty much everything is known. However, there is a weak (but
precise) version formulated in [Breuil and Schneider 2007], which we now recall.
We keep our finite extension KjQp, and a finite Galois extension thereof, K 0jK.
Pick a third field of coefficients L�Qp , finite over Qp , but large enough so that it
contains the Galois closures of K and K 00 (the maximal unramified subfield of K 0).
The roles of these fields are the following. We consider potentially semistable
representations � W �K ! GLn.L/, which become semistable when restricted
to �K0 . As mentioned above, such � correspond to .�;N /�Gal.K 0jK/-modulesD
with an admissible filtration. This makes use of Fontaine’s period ring Bst,

D D .Bst˝Qp �/
�K0 :

This is a finite, free K 00˝Qp L-module of rank n with a semilinear Frobenius �, a
(nilpotent) monodromy operator N such that N� D p�N , a commuting action of
Gal.K 0jK/, and an admissible Galois-stable filtration on DK0 . Note

K 0˝Qp L'
Y

�2Hom.K;L/

K 0˝K;� L:

Accordingly, DK0 '
Q
� DK0;� , and each K 0˝K;� L-module DK0;� is filtered.

� Hodge–Tate numbers. For each � WK ,!L, we let i1;� � � � � � in;� denote the
jumps in the Hodge filtration (listed with multiplicity). That is,

gri .DK0;� /¤ 0 () i 2 fi1;� ; : : : ; in;�g:

We will denote this multiset of integers by HT� .�/D fij;� W j D 1; : : : ; ng.

� Weil–Deligne representation. If we forget about the filtration, the resulting
.�;N /�Gal.K 0jK/-module corresponds to a Weil–Deligne representation,
once we fix an embedding K 00 ,! L; see Proposition 4.1 in [Breuil and
Schneider 2007] for details on this correspondence. Basically, one looks at the
n-dimensional L-vector space

DL DD˝K00˝QpL
L;

with the induced N coming from Bst, and with r W WK ! GL.DL/ defined
by r.w/D ��d.w/ ıw. Here w denotes the image of w in Gal.K 0jK/, and
d.w/ gives the power of arithmetic Frobenius which w induces. The ensuing
Weil–Deligne representation becomes unramified upon restriction to WK0 . We
will denote it by WD.�/D .r; N;DL/ throughout the text.

The Breuil–Schneider conjecture asks for a characterization of the data arising
in this fashion, assuming all Hodge–Tate numbers are distinct. To state it, start
with abstract data. Firstly, for each embedding � W K ,! L, say we are given
n distinct integers HT� D fi1;� < � � � < in;�g. Secondly, say we are given some
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n-dimensional Weil–Deligne representation WD, with coefficients in L, which
becomes unramified after restriction to WK0 . With this data, we will associate
a locally algebraic representation BS of GLn.K/, with coefficients in L. The
algebraic part is defined in terms of the HT� , the smooth part in terms of WD. Our
data should come from a Galois representation �, as above, precisely when BS has
a GLn.K/-stable OL-lattice, the unit ball of an invariant norm.

The following was also announced as Conjecture 4.1 in Breuil’s [2010] ICM
address:

The Breuil–Schneider conjecture [2007, Conjecture 4.3]. The following are equiv-
alent:

(1) The data HT� and WDF-ss arise from a potentially semistable �.

(2) BS admits a norm k � k, invariant under the action of GLn.K/.

Before we recall the status of the conjecture, we return to the definition of BS.

� Algebraic part. Introduce bj;� D�inC1�j;� � .j � 1/. That is, write the ij;�
in the opposite order, change signs, and subtract .0; 1; : : : ; n� 1/. We let ��
be the irreducible algebraic L-representation of GLn, of highest weight

b1;� � b2;� � � � � � bn;�

relative to the lower triangular Borel. Their tensor product � D
N
� �� , with

� running over Hom.K;L/, is then an irreducible algebraic representation of
GLn.K˝Qp L/ over L. We will view � as a representation of GLn.K/.

� Smooth part. By the classical local Langlands correspondence [Harris and Tay-
lor 2001], the Frobenius semisimplification WDF-ss is isomorphic to recn.�ı/
for some irreducible admissible smooth representation �ı of GLn.K/, defined
over Qp. Here recn is normalized as in [loc. cit.]. To define it over Qp, we
need to fix a square root q1=2, where qD #FK . By the Langlands classification,
one has

IndP .Q.�1/˝ � � �˝Q.�r//
Š
�!�!�ı;

a unique irreducible quotient, where the Q.�i / are generalized Steinberg
representation built from the�i , which are segments of supercuspidals, suitably
ordered. The smooth part of BS is now defined to be

� D IndP .Q.�1/˝ � � �˝Q.�r//˝jdetj.1�n/=2;

or rather its model over L, which is independent of the choice of q1=2. Note
that � ' �ı˝jdetj.1�n/=2 if and only if �ı is generic (that is, has a Whittaker
model). For that reason, the association WD 7! � is often called the generic
local Langlands correspondence.
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We let BSD �˝L � , following [Breuil and Schneider 2007] (although they do
not use the notation BS). In fact, we will find it more convenient to work with
a different normalization. In the above construction there is a choice of a sign,
essentially reflected in whether one twists by jdetj.1�n/=2 or its inverse. The latter
is more commonly used in the references we rely on. The resulting representation
is just a twist of BS by a harmless explicit p-adically unitary continuous character.
Namely, fBSD BS˝L�n�1; �.g/DNKjQp .detg/�;

where a� D ajajp D BS.�cyc/.a/ 2 Z�p denotes the unit factor of an a 2 Q�p . Of
course, fBS has an invariant norm if and only if BS does, so it makes no real
difference. It reflects a Tate twist: fBS.�/ is nothing but BS.�˝�n�1cyc /.

The implication (2)) (1) in the conjecture is in fact completely known. After
many cases were worked out in [Schneider and Teitelbaum 2006; Breuil and
Schneider 2007], the general case was settled by Y. Hu in his thesis [2009]. In
fact, Hu proves that (1) is equivalent to the Emerton condition, which is a purely
group-theoretical condition:

(3) JP .BS/Z
C

MD� ¤ 0 H) 8z 2ZCM W jı
�1
P .z/�.z/jp � 1:

Here JP is Emerton’s generalization of the Jacquet functor [2006a; 2007]. The
heart of Hu’s proof is to translate (3) into finitely many inequalities relating the
Hodge polygon to the Newton polygon. In the vein of [Fontaine and Rapoport
2005], he is then able to show the existence of an admissible filtration compatible
with the given data. The implication (2)) (3) is relatively easy.

What remains is to produce an invariant norm on BS.�/, for any potentially
semistable � (with distinct Hodge–Tate weights). One of the main motivations
for writing this paper was to make progress in this direction, (1) ) (2). The
supercuspidal case was dealt with in [Breuil and Schneider 2007] by purely local
methods (see Theorem 5.2 in [loc. cit.]). The desired norm can be found either by
compact induction, or by looking at matrix coefficients.

When WD.�/ is indecomposable (in other words, �ı D Q.�/ is generalized
Steinberg), we proved (1)) (2) in [Sorensen 2013]. Here (as in the supercuspidal
case) the Emerton condition boils down to just integrality of the central character, and
in fact the resulting conjecture was stated explicitly as Conjecture 5.5 in [Breuil and
Schneider 2007]. The key point of [Sorensen 2013] was to make use of the fact that
Q.�/ is a discrete series representation, and therefore admits a pseudocoefficient.
Inserting this as a test function in the trace formula for a certain definite unitary group,
one can pass to a global setup (à la Grunwald–Wang). Finally, the desired norm was
found by relating classical algebraic modular forms to the completed cohomology
for the definite unitary group, zH 0. (This is within the framework of [Emerton
2006b], in which completed cohomology was defined and studied extensively for the
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tower of locally symmetric spaces — for any reductive group. In our case, however,
these constructions boil down to just continuous functions on profinite sets, and
Emerton’s general machinery is not needed.) The argument in [Sorensen 2013] is
purely group-theoretical, and in fact carries over to any connected reductive group
over Qp, exploiting a compact form (using a Galois cohomological computation
of Borel and Harder, which shows the existence of locally prescribed forms).

The purpose of this paper is to prove results which complement those of [Sorensen
2013]. The idea of relating algebraic modular forms to zH 0, already present in
[Emerton 2006b], can be pushed further, now that local–global compatibility at
p D ` is available in the “book project” context. This was proved recently by
Barnet-Lamb, Gee, Geraghty, and Taylor in the so-called Shin-regular case [Barnet-
Lamb et al. 2014], and this regularity hypothesis was then shown to be unnecessary
by Caraiani, as part of her Harvard Ph.D. thesis — see [Caraiani 2012]. This results
in the following somewhat vague Theorem A, which we will make more precise in
Theorem B below.

Theorem A. The Breuil–Schneider conjecture holds for representations � that
come from stable automorphic representations � on definite unitary groups, of
regular weight (that is, restrictions � ' r�;�j�Kw , at places wjp, of irreducible
automorphic Galois representations r�;� of regular weight).

Eigenvarieties. We will combine the approaches of [Chenevier 2009; Emerton
2006b]. Thus let K be a CM field, with maximal totally real subfield F . Let D be
a central simple K-algebra of dimK.D/D n

2, equipped with an anti-involution ?
of the second kind (that is, ?jK is conjugation). We introduce the unitary F -group
U D U.D; ?/, an outer form of GL.n/, which becomes the inner form D� over K.
It will be convenient to also introduce G D ResF jQ.U /. We will always assume
that U is a totally definite group. In other words, we assume that G.R/ is a compact
Lie group, which is therefore a product of copies of U.n/.

We will fix a prime number p such that every place vjp of F splits in K,
and such that D�w ' GLn.Kw/ for every wjv. To be safe, we fix an isomorphism
Dw

��!Mn.Kw/ once and for all (uniquely determined up to inner automorphisms).
To keep track of various identifications, it is customary to choose a place Qv of K
above every vjp. Once and for all, we also choose an isomorphism � W C ��!Qp.
This gives rise to an identification

Hom.F;R/D Hom.F;C/' Hom.F;Qp/D
G
vjp

Hom.Fv;Qp/;

and similarly for Hom.K;C/. By assumption Fv 'Kw for wjv, so the choices f Qvg
just amount to fixing a CM-type ˆ, which is ordinary for �, in the sense of [Katz
1978]. This will ensure that the various identifications we make are compatible.
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The eigenvariety for G depends on the choice of a tame level Kp �G.Ap
f
/. It

is a reduced rigid analytic space X=E , where we take E to be the Galois closure of
F in Qp, with additional structure:

� W X! yT ; � WH.Kp/sph
!O.X/:

Here yT=E is weight space, parametrizing locally analytic characters of T .Qp/,
and H.Kp/sph is the spherical central subalgebra of the Hecke E-algebra H.Kp/.
Finally, O.X/ is the Banach algebra of rigid functions on X. Moreover, there is a
Zariski-dense subset Xcl � X.Qp/ such that the evaluation

X.Qp/ �! . yT �SpecH.Kp/sph/.Qp/; x 7! .�x; �x/;

identifies Xcl with the set of classical points: roughly this means that, first of
all, �x D  x � �x is locally algebraic ( x is the algebraic part, �x is the smooth
part), and there exists an automorphic representation � of weight  x such that
�p ,! IndGB .�x/, and H.Kp/sph acts on �K

p

f
¤ 0 by the character �x . (The

condition that �p embeds in a principal series is the analogue of the “finite slope”
requirement showing up in the classical works of Coleman, Mazur and others. The
choice of a �x is called a refinement of � .) Thus a classical point x carries a little
more information than just an automorphic representation �x; it keeps track of
the refinement �x . We refer to Section 4 below for more details on eigenvarieties,
which contains references to their various constructions.

It is of utmost importance to us that the eigenvariety carries a family of Galois
representations. To be more precise, if we let †D†.Kp/ be the set of ramified
places, there is a unique continuous n-dimensional pseudorepresentation into the
unit ball O.X/�1 of O.X/, say

T W �K;†!O.X/�1;

associated with � WH.Kp/sph!O.X/, in the sense that for all places w …†,

T .Frobw/D �.bwjv.hw//:

Here hw is the element of the spherical Hecke algebra for GLn.Kw/, which acts
via the sum of the (integral) Satake parameters on spherical vectors, and

bwjv WH.GLn.Kw/;GLn.OKw // �!H.U.Fv/;Kv/

is the standard base change homomorphism between the pertaining spherical Hecke
algebras, see (4.2) on p. 17 in [Mínguez 2011], and his Theorem 4.1. Here Kv is
the factor of Kp at v. It is a hyperspecial maximal compact subgroup of U.Fv/
(note that this does not determine Kv up to conjugation when n is even, but our
Kp is fixed from the outset). In particular, for each x 2 X.Qp/ there is a unique
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semisimple Galois representation

rx W �K;†! GLn.Qp/; Tx D tr.rx/:

In fact, the way T is constructed is by first defining rx for regular classical
points x 2Xcl, by which we mean the dominant character  x is given by a strictly
decreasing sequence of integers (at some place). We will denote this subset of
points by Xreg�Xcl. Thanks to [White 2012, Theorem 6.1, p. 28] (now superseded
by [Kaletha et al. 2014]) this guarantees that � has a base change to GLn.AK/ of
the form …D�…i , where the …i are cohomological cuspidal (as opposed to just
discrete) automorphic representations to which one can attach Galois representations.
Now, Xreg can be shown to be Zariski dense, and a formal argument in [Chenevier
2004] interpolates the pseudocharacters tr.�x/ for x 2Xreg by a unique T , which
one can then specialize at any point x 2 X.Qp/.

We can now rephrase the statement in Theorem A in terms of eigenvarieties:
if x 2Xreg is a (classical) point such that rx is irreducible (as a representation of
�K), and wjp is a place of K, then rxj�Kw is potentially semistable, and its locally
algebraic representation BS.rxj�Kw / admits a GLn.Kw/-invariant norm.

Our main result. The actual construction of an invariant norm k�k is more interesting
than its mere existence. It comes out of a much more precise result, which we
now describe. Fix a finite extension LjE. At each point x 2 X.L/, we have a
pseudorepresentation Tx W�K;†!L (the trace of an actual representation �x , which
may or may not be defined over L). On the other hand, to x 2 X.L/ we associate
the Banach L-space

Bx D .L˝E zH 0.Kp//hD�x ;

where hDH.Kp/sph is shorthand notation. This space is really very concrete. The
completed cohomology zH 0.Kp/ is here nothing but the space of all continuous
functions

f W Y.Kp/!E; Y.Kp/D lim
 ��
Kp

Y.KpK
P /; Y.K/DG.Q/nG.Af /=K

with supremum norm. The superscript h D �x means we take the eigenspace
for the character �x W h! L (not the generalized eigenspace). Note that Bx is
much more than just a Banach L-space: For one thing, it is a Banach module for
the Banach–Hecke algebra yH.Kp/ (see [Schneider and Teitelbaum 2006] for a
detailed discussion of these). For another thing, there is a natural yH.Kp/-linear
action of G.Qp/ by isometries of Bx , which is admissible (meaning that its mod p
reduction Bx is a smooth admissible representation of G.Qp/ over FL, in the usual
sense). Now, for two points x, x0 2 X.L/,

Tx D Tx0” �x D �x0” Bx D Bx0 ;
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since each bwjv is onto; see Corollary 4.2 in [Mínguez 2011] (a fact also used on
p. 10 of [Clozel et al. 2011]). In other words, the set of all pairs .Tx;Bx/ is the
graph of a bijection between the set of pseudorepresentations fTx W x 2 X.L/g, and
the set of Banach representations fBx W x 2 X.L/g. That is, there is a one-to-one
correspondence:8<:

n-dimensional pseudo-
representations T W �K;†! L

coming from X.L/

9=; !
8<:

Banach yHL.Kp/-modules B
with admissible unitary

G.Qp/-action, coming from X.L/

9=; :
Here T $ B means there is a point x 2 X.L/ such that T D Tx and B D Bx . (We
say that a pseudocharacter T W �K;†! L comes from X.L/ if it is of the form Tx
for a point x 2 X.L/, and similarly for Banach modules.)

To ease the exposition, let us assume we have split ramification. That is,
S.Kp/ � SplKjF . Then local base change is defined everywhere, and there is
a unique automorphic representation �x associated with a point x 2Xcl such that
rx is irreducible (indeed its global base change is cuspidal and determined almost
everywhere). Experts have informed us that m.�x/D 1, but we have not been able
to locate it in the literature. Our main result in this paper is the following, which
will be proved in Section 6.

Theorem B. Assume S.Kp/� SplKjF . For each classical point x 2Xreg\Xirr, de-
fined over L, such thatm.�x/D 1, there is a unique (up to topological equivalence)
Banach space B.rx/ over L with an admissible unitary G.Qp/-action such that:

(1) B.rx/ralg 'fBS.rx/ WD
N
vjp

fBS.rxj�K Qv
/ is dense in B.rx/.

(2) There is a G.Qp/� yH.Kp/-equivariant topological isomorphism,

B.rx/˝

�O
v−p

�Kvx;v

�
��!Bralg

x :

(Here Bralg
x denotes the closure of the locally regular-algebraic2 vectors in Bx .)

(3) If rx is crystalline above p, there is a continuous G.Qp/-equivariant map with
dense image,

B�x ;�x �! B.rx/;

which restricts to an isomorphism H�x ;�x
��!B.rx/

ralg. (Here H�;� and B�;�
are the spaces introduced by Schneider and Teitelbaum [2006], and we take �x
of highest weight  x , and �x to be the eigensystem of �x .)

2Apparently “regularity” is no longer an issue here (see Section 2.3 below). We warn the reader
that the terminology “regular-algebraic” can be misleading here. It is stronger than “cohomological”.
It means the Hodge–Tate gaps (for some embedding �) are at least two. The condition arises in
endoscopy when base-changing to GLn.
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Since Theorem B is exclusively about classical points, it can be formulated
purely in terms of automorphic Galois representations (thus refining and extending
Theorem A): for instance, it says that

N
vjp

fBS.r�;�j�K Qv
/ admits a unitary Banach

completion B.r�;�/ such that

B.r�;�/˝ .�
p

f
/K

p
��! zH 0.Kp/Œ��ralg:

The eigenvariety formulation of Theorem B is more amenable to generalization, and
is meant to signal what we expect to be true. Namely, say x2X.L/ is a point which is
not a priori known to be classical, but which behaves like a classical point — in that
rxj�Kw is potentially semistable of regular weight, for all wjp. Then Theorem B
should hold verbatim for x, which essentially means x is necessarily classical
(cf. the Fontaine–Mazur conjecture). Furthermore, if a p-adic local Langlands
correspondence exists in this generality, we believe that B.rx/D y

N
vjpB.rxj�K Qv

/

should satisfy something along the lines of (2), for any point x: the representations
�x;v are still defined for v − p, via classical local Langlands, and we would hope
that B.rx/˝

�N
v−p �

Kv
x;v

�
at least embeds into Bx (perhaps assuming the local

restrictions rxj�K Qv
are irreducible for vjp).

Caraiani, Emerton, Gee, Geraghty, Paskunas, and Shin [Caraiani et al. 2014]
have recently announced spectacular work in the principal series case. They employ
a delicate variant of the Taylor–Wiles–Kisin patching method (allowing the weight
and p-level to vary freely), and construct a candidate for the p-adic local Langlands
correspondence for GLn.F / via deformations of Galois representations. This makes
use of auxiliary global data, and they are unable to show the proposed candidate only
depends on the local data at p. However, they are able to say enough about their
construction to reduce the Breuil–Schneider conjecture to folklore conjectures in the
automorphy lifting world. For instance, they prove that BS.�/ admits an admissible
unitary Banach completion for potentially crystalline � W �F ! GLn.E/ which
lie on an automorphic component of a certain potentially crystalline deformation
ring — which is expected to always hold. Morally, we show Breuil–Schneider for
�D r�;�j�Fw , and [Caraiani et al. 2014] shows it for potentially crystalline lifts �
of Nr�;�j�Fw — which of course is more general, but their techniques rely on heavy
machinery.

Organization of the paper. Section 2 sets up notation used throughout the paper, and
recalls how to attach Galois representations to automorphic forms on definite unitary
groups. We work out the relation between Breuil–Schneider’s normalization BS
and our preferred normalization fBS, which is what occurs naturally in cohomology.
In Section 3 we briefly discuss completed cohomology in this context, which
boils down to just zH 0 — continuous functions on a profinite set, and relate its
locally algebraic vectors to algebraic modular forms. This is crucial for the general
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strategy of our paper (and its prequel [Sorensen 2013]). At the end we prove
Theorem A. Section 4 introduces eigenvarieties X and the (semisimple) Galois
representations �x they carry — fundamental notions in Section 5, which discusses
the Banach representations Bx associated with arbitrary points x on X, and sets up
the bijection �x$ Bx in Theorem B. Section 6 goes into detail about how one can
naturally complete fBS and get a “rough” candidate for a p-adic local Langlands
correspondence B.rx/ ,! Bx when x is classical, and explains to what it extent it
satisfies local–global compatibility. We specialize to the crystalline case, and show
that our candidate B.rx/ is (almost) a quotient of the purely locally defined Banach
representation B�x ;�x of Schneider and Teitelbaum — as predicted. Section 7 is
logically independent of the rest of the paper, and we include it here only for future
reference. It gives an in-depth treatment of “Zariski density of crystalline points” in
this context, by expanding on an argument of Emerton (building on work of Katz)
in the case of GL.2/=Q. Density should be important in future work on extending
parts of Theorem B to (a priori) nonclassical points.

2. Automorphic Galois representations

We start out by summarizing what is currently known about attaching Galois
representations to automorphic representations of definite unitary groups. Due to
the work of many people, we now have an almost complete understanding of this,
and below we merely navigate the existing literature. We claim no originality in
this section. Our goal is simply to state the precise result. Particularly, we want to
emphasize the local–global compatibility at pD `, recently proved in [Barnet-Lamb
et al. 2014; Caraiani 2012], which is fundamental for this paper.

2.1. Definite unitary groups. Throughout this article, we fix a totally real field F ,
and a CM extension K. We let c denote the nontrivial element of Gal.KjF /. The
places of F will usually be denoted by v, and those of K by w. We are interested
in outer forms U of GL.n/F , which become an inner form D� over K. Here D
is a central simple K-algebra, of dimK.D/D n

2. These forms are unitary groups
U D U.D; ?/, where ? is an anti-involution on D of the second kind (?jK D c).
Thus, for any F -algebra R,

U.R/D fx 2 .D˝F R/
�
W xx? D 1g:

We will always assume from now on that U.F ˝Q R/ is compact. Thus, by making
a choice of a CM-type ˆ, the group may be identified with U.n/Hom.F;R/ (up
to conjugation). It will be convenient to work over the rationals, and introduce
G D ResF jQ.U /. With the same ˆ one identifies G.C/ with GLn.C/Hom.F;R/.

2.2. Weights of automorphic representations. Following standard notation in the
subject, .Zn/Hom.K;C/

C
will denote the set of tuples aD .a� /�2Hom.K;C/, where each
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a� D .a�;j / itself is a decreasing tuple,

a� D .a�;1 � a�;2 � � � � � a�;n/;

of integers. In the obvious way, we can identify a� with a dominant weight for
GL.n/, relative to the upper triangular Borel. We say a� is regular if all the
inequalities above are strict. We say a is regular if a� is regular for some � .

Now, let � D �1˝�f be an automorphic representation of U.AF /. We will
define what it means for � to have weight a: Every embedding � WK ,! C restricts
to a � W F ,! R, which corresponds to an infinite place v D v.�/ of F . With this
notation, � identifies U.Fv/' U.n/, under which �v should be equivalent to the
contragredient MVa� , or rather its restriction. Here Va� is the irreducible algebraic
representation of GLn.C/ of highest weight a� .

Remark. We must have Va�c D MVa� . In other words, a�c;j D�a�;nC1�j .

2.3. Associating Galois representations. We have introduced enough notation in
order to formulate the following main result, the foundation for our work. As
mentioned already, this is the culmination of collaborative efforts of a huge group
of outstanding mathematicians, as will become clear below.

Theorem 1. Choose a prime p, and an isomorphism � W C ��!Qp. Let � be an
automorphic representation of U.AF / such that �1 has regular weight a. Then
there exists a unique continuous semisimple Galois representation

��;� W �K D Gal.QjK/! GLn.Qp/

such that the following properties are satisfied:

(a) M��;� ' �c�;�˝ �
n�1
cyc ,

(b) For every finite place v, and every wjv (even those above p),

WD.��;�j�Kw /
F-ss
' � rec.BCwjv.�v/˝jdetj.1�n/=2w /

whenever BCwjv.�v/ is defined, namely if �v is unramified or vDwwc splits.

(c) ��;�j�Kw is potentially semistable for all wjp, with Hodge–Tate numbers

HT �� .��;�j�Kw /D fa�;j C .n� j / W j D 1; : : : ; ng

for every � WK ,!C such that �� lies above w. A word about our normalization
here: ��;�˝��;Kw CKw .i/ has no �Kw -invariants unless i is of the above form,
in which case they form a line. Thus HT �� .�cyc/D f�1g.

Proof. Ngo’s proof of the fundamental lemma makes endoscopic transfer widely
available. In particular, weak base change from any unitary group associated
with KjF to GLn.AK/ has matured. Building on work of Clozel and Labesse,
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White [2012] worked out the cohomological case completely. In our given setup,
�v is automatically discrete series for all vj1, in which case Theorem 6.1 in [White
2012] — or rather the pertaining remarks 6.2 and 6.3 — yields an automorphic
representation

…D…1� � � ��…t

of GLn.AK/ which is an isobaric sum of mutually nonisomorphic conjugate self-
dual cuspidal automorphic representations …i of some GLni .AK/ such that

…w D BCwjv.�v/

for all wjv, where v is split or archimedean, or �v is unramified. The regularity of
�1 ensures that the …i are cuspidal (as opposed to just discrete), which in turn
implies the previous equality at the archimedean places wjv. Let us spell it out in
that case: Fix an embedding � W K ,! C inducing Kw ' C. Then,

�…w W C
�
DWC 'WKw ! GLn.C/

maps

z 7!

0B@.z= Nz/
�h1C.n�1/=2

: : :

.z= Nz/�hnC.n�1/=2

1CA ;
for certain hj 2 Z, which are given in terms of the weight by hj D a�;j C .n� j /.
This last formula is worked out in [Bergeron and Clozel 2005], for example (see their
Proposition 5.3.1, p. 63, which gives the Langlands parameters of cohomological
representations of U.a; b/). These hj are distinct, so each …i ˝ jdetj.ni�n/=2K is
regular-algebraic, essentially conjugate self-dual, and cuspidal. By Theorem A of
[Barnet-Lamb et al. 2014], and the references therein, we can associate a Galois
representation r…i ;� to it satisfying the properties analogous to (a)–(c). As a remark,
in [loc. cit.] local–global compatibility at p is proved assuming Shin regularity,
which is much weaker than regularity. In any case, the Shin regularity assumption
was removed by Caraiani [2012]. It is then straightforward to check that the
representation

��;� D r…1;�˚ � � �˚ r…t ;�

has the desired properties. It is uniquely determined by (b), by Tchebotarev. �

Remark. It appears within reach to extend the previous argument to the irregular
case. By [White 2012], one still has a weak base change�t

iD1…i , but the …i are
only discrete, not cuspidal. By Shapiro’s lemma in .g; K/-cohomology, these …i
should still be cohomological (of Speh type). By the Moeglin–Waldspurger de-
scription of the discrete spectrum of GL.ni /, one can in turn express each …i as an
isobaric sum of cusp forms, with which one can associate Galois representations.
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After having consulted several experts in the field, we are quite optimistic about
this line of argument, and that the ubiquitous regularity3 assumption (appearing
throughout this paper) can safely be dropped. However, we have not made any
serious attempt to work out the details. We are hopeful that the recent joint work
of Kaletha, Mínguez, Shin, and White [Kaletha et al. 2014], which complements
[Mok 2014], should provide the strengthenings of [White 2012] needed.

2.4. The Breuil–Schneider recipe. We attach to a potentially semistable represen-
tation � W �Kw ! GLn.Qp/, with distinct Hodge–Tate numbers, a locally algebraic
representation BS.�/ of GLn.Kw/ on a Qp-vector space, as in the introduction.
The Breuil–Schneider conjecture is the mere existence of an invariant norm on
BS.�/. Our first goal is to prove the conjecture for �D ��;�j�Kw for any place w of
K above p. We will achieve this below. For now, we will compute BS.��;�j�Kw /

explicitly, by relating it to the classical local Langlands correspondence.
In fact, we prefer to use a slightly different normalization: There is a choice

of a sign involved in the recipe on p. 16 in [Breuil and Schneider 2007]. Instead
of twisting by jdetj.1�n/=2w , we prefer to twist by jdetj.n�1/=2w to make it more
compatible with the previous notation. Consequently, BS.�/ becomes twisted by
an integral character.

Definition 2. For a 2Q�p we let a� D ajajp denote its unit part. We introduce

� W GLn.Kw/
det
�! K�w

NKw jQp
�! Q�p �!Q�p=p

Z
' Z�p :

That is, �.g/DNKw jQp .detg/�. We will normalize BS.�/ as follows:

fBS.�/ WD BS.�/˝Qp
�n�1:

(Of course, this has an invariant norm precisely when BS.�/ does.)

Lemma 3. fBS.�/D BS.�.n� 1//:

Proof. Note that the character a 7! a� (which maps p 7! 1, and is the identity on
Z�p ) corresponds to the p-adic cyclotomic character �cyc W�Qp!Z�p via local class
field theory Q�p! �ab

Qp
. For any p-adic field K, it follows that BS.�cyc/ is simply

the character a 7!NKjQp .a/
�. Consequently, fBS.�/D BS.�˝�n�1cyc /. �

We compute it in the automorphic case. Given the local–global compatibility
results of [Barnet-Lamb et al. 2014] (generalized in [Caraiani 2012]), this is basically
just “bookkeeping”.

3We emphasize that the use of “regularity” here is admittedly poor terminology, and should not
be confused with “cohomological”. It is stronger, in that the gaps between the Hodge–Tate weights
should be at least two. Thus dropping the regularity assumption does not signal that we can say
anything for GL2.Qp/ about weight-one forms, for instance.
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Corollary 4. Let � be an automorphic representation ofU.AF / of regular weight a.
Assume ��;� is absolutely irreducible (as a representation of the full Galois group
�K). Let vjp be a place of F , either split in K, or such that �v is unramified. Then,
for any place wjv of K, we have

fBS.��;�j�Kw /D

� O
� WKw,!Qp

MVa
��1�

�
˝Qp

.BCwjv.�v/˝C;� Qp/:

(We abuse notation, and let Va� denote the irreducible algebraic representation
of GLn.Qp/ of highest weight a� , as opposed to the complex representation from
earlier chapters.)

Proof. What is denoted �unit in [Breuil and Schneider 2007] equals, in our case,
BCwjv.�v/ ˝ jdetj.1�n/=2w (more precisely,

N
C;� Qp). When it is generic, the

smooth part of BS.�/ is

�unit
˝Qp

jdetj.1�n/=2w D .BCwjv.�v/˝jdetj1�nw /˝C;� Qp:

In the nongeneric case, �unit has to be replaced by a certain parabolically induced
representation. However, if we assume ��;� is (globally) irreducible, we see that
…D BCKjF .�/ must be cuspidal, and in particular …w is generic. The algebraic
part of BS.�/ is constructed out of the Hodge–Tate numbers: What is denoted
ij;� in [Breuil and Schneider 2007], for an embedding � W Kw ,! Qp, equals
a�;nC1�j C .j � 1/ in our notation, where � D �� . In (8) on p. 17 of [Breuil and
Schneider 2007], the numbers become

b�;j WD �inC1�j;� � .j � 1/D�a�;j � .n� 1/:

Breuil and Schneider’s �� is the irreducible algebraic representation of GLn.Qp/
of highest weight b�;1 � � � � � b�;n relative to the lower triangular Borel. Relative
to the upper triangular Borel, �� has highest weight b�;n � � � � � b�;1, so that
�� ' MVa� ˝ det1�n (more precisely,

N
C;� Qp). Altogether, the algebraic part is

� D
O
�

�� '
O
� jw

. MVa� ˝ det1�n/

(the tensor product ranging over � W K ,! C such that �� induces w). Here we
abuse notation a bit, and use Va� to denote the irreducible algebraic representation
of GLn.Qp/ of highest weight a� . As a representation of GLn.Kw/, embedded
diagonally in

Q
� WKw,!Qp

GLn.Qp/, the algebraic part becomes

� D

� O
� WKw,!Qp

MVa
��1�

�
˝ .NKw jQp ı det/1�n;

which yields the result. �
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3. Completed cohomology

In this section we will prove the Breuil–Schneider conjecture [2007, Conjecture 4.3],
for the potentially semistable representations �D ��;�j�Kw above. This will make
heavy use of ideas of Emerton [2006b]. The basic idea is to view fBS.�/ as a
component of the p-adic automorphic representation z� D z�p˝�

p

f
attached to � ,

which in turn embeds into the completed cohomology zH 0 for G.

3.1. The p-adic automorphic representation. We keep our automorphic repre-
sentation � of U.AF / of regular weight a. Recall that we introduced the group
G D ResF jQ.U /. Interchangeably, below we will view � as an automorphic
representation of G.A/. We will follow p. 52 in [Emerton 2006b] in attaching
a p-adic automorphic representation to � . (The G there will be our G, and F
there will be Q.) This can be done for W-allowable � , where W is an irreducible
algebraic representation ofG.C/, which in this case (whereG is compact at infinity)
simply means �1 'W jG.R/. See Definition 3.1.3 in [Emerton 2006b].

To make this more explicit, in terms of the weight a, we need to make some
identifications. Let us choose a CM-type ˆ. For each � W F ,! R we let z� denote
its lift in ˆ. Thus the two extensions to K are fz�; z�cg. Via the choice of ˆ,

G.C/ ��!ˆ GLn.C/Hom.F;R/; G.R/ ��!ˆ U.n/
Hom.F;R/:

We immediately infer that W '
N
�2Hom.F;R/

MVaz� under these identifications. Via
� W C ��!Qp we identify W with an algebraic representation of G.Qp/. Now

G.Qp/
��!ˆ

Y
vjp

GLn.Qp/Hom.Fv;Qp/

allows us to factor our p-adic W accordingly, as W '
N
vjpWv, where we let

Wv D
O

�2Hom.F;R/
� jv

MVaz� :

In the same vein, G.Qp/D
Q
vjp U.Fv/. To go any further, from this point on we

assume every vjp splits in K, and that Dw 'Mn.Kw/ for each divisor wjv. Then
U.Fv/

��!GLn.Kw/, defined up to conjugation. If we assume (as we may) that
our CM-type ˆ is ordinary at �, in the sense of [Katz 1978], then ˆ singles out a
place Qv of K above each vjp of F . With this selection of places at hand,

G.Qp/
��!

Y
vjp

GLn.KQv/:

Moreover, the inclusion into G.Qp/ corresponds to the diagonal embeddings

GLn.KQv/D GLn.Fv/ ,! GLn.Qp/Hom.Fv;Qp/:
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The following is Definition 3.1.5 in [Emerton 2006b], except that we are working
with representations over Qp instead of descending to a finite extension of Qp.

Definition 5. The classical p-adic automorphic representation of G.Af / over Qp

attached to the W-allowable automorphic representation � of G.A/ is

z� WD z�p˝Qp
�
p

f
; z�p WDW ˝Qp

�p:

Here G.Qp/ acts diagonally on W ˝Qp
�p, and G.Ap

f
/ acts through the second

factor �p
f

. (Abusing notation, we write �p instead of �p˝C;� Qp and so on.)

At each vjp we introduce z�v DWv˝Qp
BCQvjv.�v/, a locally algebraic repre-

sentation of GLn.KQv/, which depends on the choice of an ordinary CM-type ˆ.
Moreover, z�p '

N
vjp z�v under the isomorphism G.Qp/'

Q
vjp GLn.KQv/.

This leads to the main result of this section.

Proposition 6. Suppose every vjp of F splits in K, andDw 'Mn.Kw/ for allwjv.
For each vjp of F pick a place Qvjv of K (this amounts to choosing an �-ordinary
CM-type). Let � be an automorphic representation of U.AF / of regular weight,
and assume ��;� is (globally) irreducible. Then, for all vjp of F ,fBS.��;�j�K Qv

/' z�v;

which embeds into z�jGLn.K Qv/ (where we restrict via U.Fv/ ��!GLn.KQv/).
Proof. This follows from the preceding discussion, combined with the computation
of the Breuil–Schneider representation in Corollary 4 above. �

3.2. Algebraic modular forms. We will study the space of modular forms for G of
a given weight. To put things in a broader perspective, we will use the cohomological
framework of [Emerton 2006b], although we will only work with H 0, which is
explicit and of a combinatorial nature. In our situation, G.R/ is compact and
connected, so things simplify tremendously, and we only have cohomology in degree
zero. Indeed, for every compact open subgroup K � G.Af /, the corresponding
arithmetic quotient is a finite set:

Y.K/DG.Q/nG.Af /=K:

An irreducible algebraic representation W of G.C/ defines a local system VW on
each Y.K/, and H 0.Y.K/;VMW / is identified with the space of modular forms of
levelK and weightW . That is, all functions f WG.Af /! MW which areK-invariant
on the right and such that f .
g/D 
f .g/ for all elements 
 2G.Q/. Then

H 0.VMW / WD lim
��!
K

H 0.Y.K/;VMW /'
M

�W�1'W

mG.�/�f

is a smooth, admissible, semisimple representation of G.Af /, which we wish to
suitably p-adically complete. Via our choice of � W C ��!Qp, we will view W as
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a representation of G.Qp/ and so on. Occasionally it will be convenient to work
over a field E � Qp, finite over Qp. It suffices to take E large enough so that it
contains the image of every embedding F ,!Qp . In that case G splits over E, and
by highest weight theory W may be defined over E. Thus, from now on, H 0.VMW /
is an E-vector space with a smooth admissible G.Af /-action.

Definition 7. For each tame level Kp �G.Ap
f
/, following [Emerton 2006b], we

introduce

H 0.Kp;OE=$s
E / WD lim

��!
Kp

H 0.Y.KpK
p/;OE=$s

E /;

and
zH 0.Kp/ WDE˝OE lim

 ��
s

H 0.Kp;OE=$s
E /:

The latter is an E-Banach space with a unitary G.Qp/-action, commuting with
the action of the Hecke algebra H.Kp/ of compactly supported Kp-biinvariant
E-valued functions on G.Ap

f
/. In fact, it becomes a Banach module over the

completion yH.Kp/. Also,

zH 0
WD lim
��!
Kp

zH 0.Kp/;

a locally convex E-vector space with an action of G.Af /.

In our simple setup, they can all be realized very explicitly. For example,

zH 0.Kp/D fcontinuous Y.Kp/
f
�!Eg; Y.Kp/D lim

 ��
Kp

Y.KpK
p/

with the supremum norm k � k. The connection to modular forms is via their locally
algebraic vectors. We recall their definition:

Definition 8. Let V be a continuous representation of G.Qp/ over E, and let W
be an absolutely irreducible algebraic representation of G.Qp/ over E. We assume
E is large enough for EndG.Qp/.W /DE to hold. The space of locally W-algebraic
vectors VW-alg � V is the image of the natural “evaluation” map

W ˝E HomG.Qp/.W; V /
��!VW-alg � V:

The space of locally algebraic vectors is Valg D
L
W VW-alg. The subspace of

locally regular-algebraic vectors is Vralg D
L0
W VW-alg, with W ranging over

representations of regular weight (in the sense of Section 2.2).

The key ingredient, which relates completed cohomology to modular forms, is
the isomorphism:
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Lemma 9. For any absolutely irreducible algebraic representation W ,

W ˝E H
0.VMW /

��! . zH 0/W-alg:

(When W is only irreducible over E, tensor over Endg.W /, where gD LieG.Qp/.)

Proof. This is Corollary 2.2.25 in [Emerton 2006b] (also spelled out in [Sorensen
2013] for H 0). Let us briefly sketch the main idea. For any tame level Kp, one
shows that

W ˝E H
0.Kp;VMW /D lim

��!
Kp

W ˝E H
0.Y.KpK

p/;VMW /
��! zH 0.Kp/W-alg:

This goes as follows: H 0.Y.KpK
p/;VMW / is a space of classical p-adic modular

forms, and it is an easy exercise to identify it with HomKp .W; zH
0.Kp//. Now,

W ˝E HomKp .W; zH
0.Kp//

eval:
�! zH 0.Kp/

is injective since W is absolutely irreducible, even when restricted to Kp (which
is Zariski dense). The image of this evaluation map is the W-isotypic subspace of
zH 0.Kp/. As Kp varies, the maps are compatible, and produces a map out of the

direct limit onto zH 0.Kp/W-alg, as desired. �

Remark. For higher-degree cohomologyH i there is an analogous canonicalG.Af /-
equivariant map, W ˝E H i .VMW /! . zH i /W-alg, which occurs as the edge map of
a certain spectral sequence, but the map is not known to be injective for groups
other than GL.2/Q (and groups G which are compact at infinity modulo center).
Injectivity is what makes the whole machinery of [Emerton 2006b] work; see his
Theorem 0.7 and Proposition 2.3.8 on p. 47, for example. In particular, it is available
in our case, where G.R/ is compact. In general, one would have to localize the
spectral sequence at a “cohomologically” non-Eisenstein maximal ideal m (which
means it does not contribute to mod p cohomology outside the middle degree).
This is expected to hold when the Galois representation �m is absolutely irreducible
(which is what it means for m to be non-Eisenstein), but this is difficult to show.
Partial results are now available for U.2; 1/; see Theorem A in [Emerton and Gee
2013].

From the previous discussion, we get decompositions of completed cohomology:

Proposition 10. (1) Qp˝E . zH
0/W-alg '

L
�W�1'W

mG.�/z� .

(2) Qp˝E zH
0.Kp/W-alg '

L
�W�1'W

mG.�/
�
z�p˝Qp

.�
p

f
/K

p�
.

Now, suppose h�H.Kp/ is a central subalgebra. It then acts on .�p
f
/K

p

by a
character �� W h!Qp. Conversely, say we start out with � W h!Qp. Then,

Qp˝E zH
0.Kp/

hD�
W-alg '

M
�W�1'W;��D�

mG.�/
�
z�p˝Qp

.�
p

f
/K

p�
:
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As always, we assume W has regular weight, so we know how to attach Galois
representations. If h contains the spherical part H.Kp/sph, all the � contributing to
the right-hand side have the same Galois representation ��, by Chebotarev, which
we assume is irreducible. By Proposition 6, we may factor the above,

Qp˝E zH
0.Kp/

hD�
W-alg'

�O
vjp

fBS.��j�K Qv
/

�
˝Qp

� M
�W�1'W;��D�

mG.�/�
p

f

�Kp
:

This has the form of a G.Qp/'
Q
vjp GLn.KQv/-representation tensor an H.Kp/-

module. In particular, since zH 0.Kp/ carries a G.Qp/-invariant norm, we finally
deduce the Breuil–Schneider conjecture for automorphic Galois representations:

Theorem 11. If � is an automorphic representation of U.AF / of regular weight
such that ��;� is irreducible, then BS.��;�j�Kw / admits a GLn.Kw/-invariant norm
for all places wjp of K.

The discussion leading up to this theorem strongly suggests a better formulation
in terms of eigenvarieties. We will employ this machinery in the next section.

4. Eigenvarieties

Eigenvarieties are rigid analytic spaces interpolating Hecke eigensystems occurring
in spaces of automorphic forms of varying weight. Historically, the first example is
the Coleman–Mazur eigencurve for GL.2/Q, revisited by Buzzard, Emerton, Urban,
and others. There are different constructions for any reductive group G, which each
have their drawbacks and limitations. When G.R/ is compact, however, the theory
is in good shape, and all constructions are compatible. Below we will combine the
approach of [Emerton 2006b] with that of [Chenevier 2009] (for arbitrary totally
real F ), extending parts of [Bellaïche and Chenevier 2009] (when F DQ).

4.1. The classical points. By our hypotheses, GQp '
Q
vjp ResK Qv jQp GL.n/ is

quasisplit, and we pick the Borel pair .B; T /, defined over Qp, corresponding to
the product of the upper triangular pairs in each GLn.KQv/.

As in [Emerton 2006b], let yT denote the weight space. That is, the rigid an-
alytic variety (over the coefficient field E introduced in the introduction) which
parametrizes the locally analytic characters on T .Qp/. In other words,

yT .A/D Homla.T .Qp/; A
�/

for any affinoid E-algebra A. It comes with a universal map T .Qp/!O. yT /�.
The eigenvariety depends on the choice of tame level Kp � G.Ap

f
/, which

we will always assume is decomposable as
Q
v−p Kv, where Kv is a compact

open subgroup of U.Fv/ that is hyperspecial for all but finitely many v— say, for
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all v … S.Kp/. Correspondingly, the Hecke algebra factors as a tensor product,

H.Kp/D
O
v−p

H.Kv/DH.Kp/ram
˝E H.Kp/sph:

Here, H.Kp/sphD
N
v…S.Kp/H.Kv/ sits as a central subalgebra of H.Kp/; hence

it acts by a character on �K
p

f
for any automorphic � with Kp-invariants.

We now make precise which points we wish to interpolate by an eigenvariety.

Definition 12. Let E.0;Kp/cl � . yT �SpecH.Kp/sph/.Qp/ be the subset of pairs
x D .�; �/ for which there exists an irreducible G.Af /-subquotient �f of Qp˝E

H 0.VMW /, where W is an irreducible algebraic representation of GE , such that:

(a) �D � , where  is the highest weight ofW (relative to B), and � is a smooth
character of T .Qp/ such that �p ,! IndG.Qp/

B.Qp/
.�/,

(b) �K
p

f
¤ 0, and H.Kp/sph acts on it via �.

This is the definition, and notation, used on p. 5 in [Emerton 2006b].

4.2. Eigenvariety conventions. Emerton defines the degree-zero cohomological
eigenvariety of G, of tame level Kp , to be the rigid analytic closure of E.0;Kp/cl

in yT �SpecH.Kp/sph. By the uniqueness part of Theorem 1.6 in [Chenevier 2009],
it coincides with the eigenvariety defined there. We will intertwine the two points
of view. Thus, with E.0;Kp/cl is associated a quadruple .X; �; �;Xcl/, consisting
of the following data:

� X=E is an equidimensional reduced, rigid, analytic variety,

� � W X! yT is a finite morphism (Theorem 0.7 (i) on p. 6 in [Emerton 2006b]),

� � WH.Kp/sph!O.X/ is an E-algebra homomorphism,

� Xcl � X.Qp/ is a Zariski-dense subset,

satisfying various properties (listed in Theorem 1.6 in [Chenevier 2009], for ex-
ample), the most important of which is the following: the canonical evaluation
map

X.Qp/ �! . yT �SpecH.Kp/sph/.Qp/; x 7! .�x; �x/;

induces a bijection
Xcl

��!E.0;Kp/cl:

Moreover, there is a classicality criterion, analogous to Coleman’s “noncritical
slope implies classical”, which we will not use directly (we will use that Xcl is
Zariski dense, though). More properties will be recalled below when needed, such
as the connection with Emerton’s Jacquet functor.

Notation. Following standard usage, by X.Qp/ we mean the union (or direct limit)
of all X.L/DHomE .Sp.L/;X/, where L ranges over all the finite extensions of E.
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Remark. Loeffler [2011] spells out how Chenevier’s construction is related to
Emerton’s (in the case where G.R/ is compact). In addition, he introduces so-
called intermediate eigenvarieties, where one replaces B with an arbitrary parabolic
subgroup (and drops the assumption that G should be quasisplit at p). It would
be interesting to adapt our arguments to that setting, and thereby make progress
towards the Breuil–Schneider conjecture when �p does not embed in a principal
series (induced from the Borel). This ought to put the results of this paper, and
that of [Sorensen 2013], under the same roof. However, at this point we are only
producing norms at classical points — where the eigenvariety formalism, strictly
speaking, is unnecessary — but the goal is to reach the nonclassical points by
somehow p-adically varying the norms k � kx at classical x. We hope to return to
these questions elsewhere.

4.3. The Galois pseudocharacter. At each point x 2 X.Qp/ we will assign a con-
tinuous semisimple Galois representation �x W�K!GLn.Qp/, which is unramified
outside †D †.Kp/, the places of K above S.Kp/. This is first done at a dense
set of classical points, then by a formal argument one interpolates tr.�x/ by a
pseudocharacter. We refer to Chapter 1 of [Bellaïche and Chenevier 2009] for an
extensive elegant introduction to pseudorepresentations, a notion going back to
Wiles for GL.2/, and to Taylor for GL.n/.

Definition 13. LetXreg�Xcl be the subset of points x such that �xD x�x , where
 x D

N
�2Hom.F;Qp/  x;z� is a regular character of T . That is, some  x;z� is a

regular dominant character of TGL.n/ in the usual sense.

This is a Zariski-dense subset of X.Qp/; see p. 18 in [Chenevier 2009] and
the references given there. Now let x 2 Xreg, and look at the corresponding
pair .�x; �x/, where �x D  x�x . There exists an irreducible G.Af /-summand �f
in Qp˝EH

0.VMWx /, where Wx has regular highest weight  x , such that H.Kp/sph

acts on �K
p

f
¤ 0 via �x , and �p ,! IndG.Qp/B.Qp/

.�x/. Thus ��1�f is the finite part
of an automorphic representation of U.AF / of regular weight Wx , unramified
outside S.Kp/, to which we can associate a continuous semisimple Galois repre-
sentation

�x W �K! GLn.Qp/

with the following properties:

(a) �_x ' �
c
x˝ �

n�1
cyc .

(b) For every finite place v −p of F outside S.Kp/, and every wjv of K, the local
representation �xj�Kw is unramified, and satisfies the identity

tr �x.Frobw/D �x.bwjv.hw//:
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(Here, Frobw is a geometric Frobenius and hw is the element of the spherical
Hecke algebra for GLn.Kw/ acting on an unramified …w by

P
˛i , where the

˛i are the integral Satake parameters. Finally, the map

bwjv WH.GLn.Kw/;Kw/!H.U.Fv/;Kv/

is the base change homomorphism between the spherical Hecke algebras. See
[Mínguez 2011] for a careful useful discussion of this latter map.)

(c) For every finite place vjp of F , the local representation �xj�K Qv
is potentially

semistable. Furthermore:

(i) The semisimplification of the attached Weil–Deligne representation is

WD.�xj�K Qv
/ss '

nM
iD1

.�
.i/

x;Qv
ıArt�1K Qv /:

(Here �x D
N
vjp �x;Qv, where �x;Qv is a smooth character of the diagonal

torus TGL.n/.KQv/' .K�Qv/
n, factored as a product � .1/

x;Qv
˝ � � �˝ �

.n/

x;Qv
.)

(ii) The Hodge–Tate numbers are, for any embedding � W KQv ,!Qp,

HT� .�xj�K Qv
/D fa�;j C .n� j / W j D 1; : : : ; ng;

where the tuple .a�;j / corresponds to the dominant character  x;v;� of
TGL.n/. (Here we factor  x D

N
vjp˝� WK Qv,!Qp

 x;v;� .)

Observe that there may be many automorphic representations associated to a given
point x 2Xcl, but they are all isomorphic outside S.Kp/ (and of the same weight).
In particular, by (b) and Chebotarev, the Galois representation is independent of the
choice of �f , justifying the notation �x .

Proposition 14. There exists a unique continuous n-dimensional pseudocharacter
T W �K;†!O.X/�1 such that T .Frobw/D �.bwjv.hw// for all places w …†.

Proof. We are in the situation of Proposition 7.1.1 in [Chenevier 2004]: X is reduced,
O.X/�1 is a compact subring, and for all x 2Xreg, a Zariski-dense subset, we have
a representation �x of �K;† such that tr �x.Frobw/D �.bwjv.hw//.x/. �

Corollary 15. For every x2X.Qp/, there is a unique continuous semisimple Galois
representation �x W �K;†! GLn.Qp/ such that tr �x.Frobw/D �x.bwjv.hw// for
all w …†.

Proof. This follows from Theorem 1 of [Taylor 1991]. �

In particular, this applies to the classical point x 2Xcl, not in Xreg. One of the
goals of [Chenevier 2009] was to extend properties (a)–(c) above to this setting.
This was partially accomplished; see his Theorems 3.3 and 3.5.
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5. Banach space representations

With each point x 2X.L/, we have associated an n-dimensional continuous pseudo-
character Tx W �K ! L, unramified outside †.Kp/. Here we will associate a
Banach yHL.Kp/-module Bx , with an admissible unitary G.Qp/-action, such that
the pairs .Tx;Bx/ form the graph of a one-to-one correspondence. We explicitly
compute the locally (regular) algebraic vectors in Bx for x 2Xreg such that Tx is
absolutely irreducible, in terms of the Breuil–Schneider representation attached
to Tx , or rather, its corresponding Galois representation �x . As a result, we prove
the Breuil–Schneider conjecture for such �x .

A global p-adic Langlands correspondence. With the eigenvariety language set up,
we can reformulate our findings at the end of Section 2. We let Xirr � X.Qp/ be
the points x for which �x is irreducible.

Theorem 16. Let x 2 Xreg \Xirr, corresponding to . x�x; �x/. Let Wx be the
irreducible algebraic representation of GE of highest weight  x . Then,

Qp˝E zH
0.Kp/

hD�x
Wx -alg'

�M
vjp

fBS.�xj�K Qv
/

�
˝Qp

� M
� W�1'Wx ;
��D�x

mG.�/.�
p

f
/K

p

�
;

where we write hDH.Kp/sph for simplicity.

This formula suggests the following definition.

Definition 17. At each point x 2 X.Qp/, we introduce the eigenspace

Bx WD .Qp˝E zH 0.Kp//hD�x :

This is a Banach yH.Kp/-module with a (commuting) unitary G.Qp/-action.

We remind ourselves that Bx is nothing but the space of continuous�x-eigenforms
f W Y.Kp/!Qp. This sets up a one-to-one correspondence �x$ Bx . That is,

�x D �x0 () �x D �x0 () Bx D Bx0

for any two x, x0 2 X.Qp/. Let us say that a Galois representation � comes from X

if �' �x for some x 2 X.Qp/, and similarly for Banach modules B ' Bx .
This leads to the main result of this section, which in some sense is the genesis

of what follows.

Theorem 18. The eigenvariety X mediates a one-to-one correspondence between:

� The set of continuous semisimple Galois representations � W �K! GLn.Qp/
coming from X. (In particular, � is unramified outside †.Kp/.)

� The set of Banach yH.Kp/-modules B, with unitary G.Qp/-action, from X.

We write �$ B when there is a point x 2 X.Qp/ such that �' �x and B ' Bx .
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(1) Let x 2 X.Qp/. If there is a regular W for which BW-alg
x ¤ 0, then �x is

potentially semistable at all places wjp of K.

(2) Let x 2Xcl. Then BWx -alg
x ¤ 0, and BW-alg

x D 0 for all regular W ¤Wx .

(3) For x 2Xreg\Xirr, the locally regular-algebraic vectors of Bx are

Bralg
x D BWx -alg

x '

�O
vjp

fBS.�xj�K Qv
/

�
˝Qp

� M
� W�1'Wx ;
��D�x

mG.�/.�
p

f
/K

p

�
:

Remark. This is a strengthening of Theorem 11, which in the notation of the above
Theorem 18 merely says that fBS.�xj�K Qv

/ admits an invariant norm. We stress
that x is a classical point here (so that �x is irreducible, of regular weight). Thus
�x'��;� for an automorphic � as in Theorem 11. Part (3) of Theorem 18 is stronger,
in that it makes precise how fBS.�xj�K Qv

/ factors into the Banach representation Bx
of p-adic modular forms. Another key point is that Theorem 18 emphasizes the
correspondence �x$ Bx , which is defined for all points x on the eigenvariety X

(classical or not).

Proof. First, (1) follows from Proposition 10, which shows there is an automorphic � ,
with �1 'W , such that h acts on �K

p

f
by �x . Since W is regular, we know how

to associate a Galois representation ��;� with the usual local properties, which must
be �x by Tchebotarev.

For (2), we follow the same line of argument. Since x 2Xcl, there is an automor-
phic � contributing to BWx -alg

x . Moreover, if BW-alg
x ¤ 0, there is an automorphic � ,

of regular weight W , for which ��;�' �x . From ��;� we can recover W through its
Hodge–Tate numbers, and similarly for �x , even if x is not in Xreg (this is shown
in Section 3.15 of [Chenevier 2009], based on results of Sen, Berger and Colmez).
Therefore, W DWx . �

Remark. As remarked earlier, we are optimistic that one can remove the regularity
hypotheses in the theorem. Indeed it seems possible to attach Galois representations
to automorphic � of U.AF / of irregular weight. When �p is of finite slope (that
is, embeds in a principal series), this can be done by means of eigenvarieties, as in
[Chenevier 2009]. In general, it seems likely that one can push the ideas from the
proof of Theorem 1. By [White 2012], there is always a base change�t

iD1…i ,
where the …i are discrete automorphic representations of GLni .AK/, which in turn
(by the Moeglin–Waldspurger classification) are isobaric sums of cohomological,
essentially conjugate, self-dual cusp forms, with which one can associate Galois
representations. Local–global compatibility at p follows from [Caraiani 2012].
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6. Compatibility with classical local Langlands

In this section we deduce from our previous results that fBS.�x/ admits an invariant
norm such that the completion fBS.�x/^ satisfies local–global compatibility (see
Corollary 19 below for the precise statement). However, we cannot show that this
completion fBS.�x/^ only depends on the restrictions of �x to places above p—
which seems to be an extremely difficult problem at the heart of the p-adic Langlands
program. In Section 6.2 we will restrict ourselves to the unramified case, and prove
a “weak” version of local–global compatibility (somewhat similar to part (1) of
Theorem 1.2.1 in [Emerton 2011]) — it is “weak” since we only get a nonzero
map (with a huge kernel) instead of an embedding. We refer the reader to part (b)
of Theorem 21: the p-adic local Langlands correspondence, still mysterious in
higher rank, is replaced by the coarse version in [Schneider and Teitelbaum 2006],
which associates a huge Banach representation B�;� with a pair .�; �/ satisfying
the Emerton condition (here � is an irreducible algebraic representation, and � is a
suitable Weyl-orbit in the dual torus). The philosophy propounded in [Schneider
and Teitelbaum 2006; Breuil and Schneider 2007] is that the (almost) quotients
of B�;� should somehow correspond to the crystalline representations of type .�; �/.
This is well understood for GL2.Qp/, where the admissible filtration is usually
unique (see Theorem 2.3.2, p. 8, of Berger’s [2011] survey), and B�;� essentially is
the local p-adic Langlands correspondence in the (irreducible) crystalline case. We
provide evidence supporting this philosophy of Breuil, Schneider, and Teitelbaum
for n > 2.

6.1. Completions of the space of algebraic vectors.

Split ramification and the automorphic representation �x . Throughout, we will
make the assumption that we have split ramification. That is, S.Kp/ � SplKjF .
This has the effect that the local base change BCwjv is defined at all places v. We
fix a point x 2 Xreg \ Xirr, as above. Under our ramification hypothesis, there
is a unique automorphic representation � of U.AF / contributing to the (regular)
algebraic vectors Bralg

x in Theorem 18(3). Indeed, any such � has an irreducible
Galois representation ��;� ' �x , and therefore BCKjF .�/ must be cuspidal, and
it is uniquely determined at the infinite places, and away from †.Kp/. By strong
multiplicity one for GLn, the base change is unique. Locally, BCwjv is injective
(see Corollary 4.2 in [Mínguez 2011]), and therefore � is uniquely determined. We
denote it �x D

N
�x;v. Its local components �x;v are given by

WD.�xj�Kw /
F-ss
' rec.BCwjv.�x;v/˝jdetj.1�n/=2w /:

We think of f�xg as a family of automorphic representations interpolated by X. In
general (without split ramification) the �x will be L-packets, not singletons.
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With this notation, part (3) of Theorem 18 becomes: for all x 2Xreg\Xirr,

Bralg
x '

fBS.�x/˝
�O
v−p

�Kvx;v

�m.�x/
:

Most likely, m.�x/ D 1, and this may already be in the literature. However, we
have not been able to find a suitable reference. Now, since

N
v−p �

Kv
x;v is a simple

H.Kp/-module, we may think of fBS.�x/m.�x/ as its multiplicity space in Bralg
x ,

fBS.�x/m.�x/ ��!HomH.Kp/

�O
v−p

�Kvx;v;B
ralg
x

�
;

as representations of G.Qp/. We will view the right-hand side as sitting inside a
Banach space of continuous transformations. For that purpose, we first look at each
local component �x;v, where v − p. When v splits, it can be identified with a p-
integral irreducible representation of GLn.Fv/. By Theorem 1 in [Vignéras 2004],
it has a unique commensurability class of stable lattices. Correspondingly, �x;v has
a unique equivalence class of GLn.Fv/-invariant norms k � kv. (By Theorem 1 in
[Vignéras 2010], the completion y�x;v is a topologically irreducible unitary Banach
space representation of GLn.Fv/.) When �x;v is unramified, its Satake parameters
are p-units, and one easily finds a stable lattice in a suitable unramified principal
series, again resulting in a U.Fv/-invariant (supremum) norm k � kv, which we
may normalize so that a given spherical vector has norm one. The tensor product
norm (see Proposition 17.4 in [Schneider 2002]) on

N
v−p �x;v is then invariant

under G.Ap
f
/. By restriction, the finite-dimensional space

N
v−p �

Kv
x;v inherits a

norm, and becomes a Banach-module for yH.Kp/. With this extra structure at hand,

HomH.Kp/

�O
v−p

�Kvx;v;B
ralg
x

�
,! LyH.Kp/

�O
v−p

�Kvx;v;Bx
�
:

(Here L denotes the space of continuous linear transformations equipped with
the usual transformation norm; see Corollary 3.2 in [Schneider 2002].) We have
to check that any H.Kp/-equivariant map

N
v−p �

Kv
x;v

�
�! Bx is automatically

continuous. If � ¤ 0, it must be injective (by simplicity), and thus k�. � /kBx
defines a norm on

N
v−p �

Kv
x;v . However, all norms on a finite-dimensional space

are equivalent (Proposition 4.13 in [Schneider 2002]), so that k�.u/kBx � Ckuk
for some constant C > 0 and all u. Altogether, this embeds fBS.�x/ into a Banach
space (Proposition 3.3 in [Schneider 2002]):

(1) fBS.�x/m.�x/ ,! LyH.Kp/

�O
v−p

�Kvx;v;Bx
�
:

If we restrict the transformation norm to fBS.�x/m.�x/, we arrive at:
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Corollary 19. Let x 2 Xreg \Xirr be a point such that m.�x/D 1. Then there is
a G.Qp/-invariant norm k � k on fBS.�x/ such that the corresponding completionfBS.�x/^ satisfies the following: There is a topological isomorphism

fBS.�x/^˝
�O
v−p

�Kvx;v

�
��!Bralg

x ;

where Bralg
x is the closure of the regular-algebraic vectors Bralg

x in Bx . Moreover:

� fBS.�x/^ is an admissible unitary Banach space representation of G.Qp/.

� Its regular-algebraic vectors fBS.�x/ form a dense subspace.

Proof. We obtain k � k by restricting the transformation norm to fBS.�x/. Thus (1)
becomes an isometry, and extends uniquely to an isometry

fBS.�x/^ ,! LyH.Kp/

�O
v−p

�Kvx;v;Bx
�
:

To ease the notation, let us write M D
N
v−p �

Kv
x;v throughout this proof; M is a

finite-dimensional simple H.Kp/-module. We tensor the isometry by this M :

j WfBS.�x/^˝M ,! LyH.Kp/.M;Bx/˝M
��!BxŒM �:

Here BxŒM � denotes the closure of the sum of all closed H.Kp/-submodules of
Bx isomorphic to M (a topological direct sum of a subcollection, by Zorn). Note
that EndH.Kp/.M/DQp. Note also that the tensor products (equipped with their
tensor product norms, as on p. 110 in [Schneider 2002]), are already complete,
as M is finite-dimensional. The above isomorphism with BxŒM � is a topological
isomorphism by the open mapping theorem (Proposition 8.6 in [Schneider 2002]),
but not necessarily isometric. Consequently, im.j / � Bx is a closed subspace,
containing Bralg

x by Theorem 18. In fact, im.j / is the closure of Bralg
x in Bx , sincefBS.�x/ is dense in the completion fBS.�x/^. Again invoke the open mapping

theorem to see that j is a topological isomorphism onto Bralg
x . Admissibility offBS.�x/^ follows from admissibility of Bx . �

Remark. Equivalently, there is a G.Qp/-equivariant topological isomorphism

fBS.�x/^ ��!LyH.Kp/

�O
v−p

�Kvx;v;B
ralg
x

�
:

We like to think of this Banach space representation fBS.�x/^ as a rough candidate
for a p-adic local Langlands correspondence, at least when the various restrictions
�xj�K Qv

are irreducible. Of course, to really justify this point of view, one would
need to show that the completion fBS.�x/^ only depends on the restrictions �xj�K Qv
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at p, and that it factors as a tensor product y
N
vjp of appropriate completionsfBS.�xj�K Qv

/^. Both appear to be very difficult questions.

6.2. Universal modules and the crystalline case. We now specialize to the crys-
talline case, where we can relate fBS.�x/^ to the Schneider–Teitelbaum universal
modules B�;� , which are given by a purely local construction at p. They are
expected to be quite large. However, for n > 2 it is not even known that B�;� ¤ 0
(Conjecture 6.1, p. 24 in [Breuil and Schneider 2007]). For nD 2 this is a deep
result of Berger and Breuil. We will prove nonvanishing when .�; �/ “comes from
an eigenvariety”. This will be a by-product of a stronger result.

Definition 20. A classical point x 2Xcl is called old if �x is crystalline at all places
above p. That is, HomG.Zp/.Wx;Bx/ ¤ 0. Equivalently, �x;v is unramified for
all vjp. We denote the set of old points by Xold.

Thus, from now on, we fix a point x 2Xreg\Xirr\Xold. By Proposition 6,

fBS.�x/DWx˝�x;p ��!Wx˝ IndGB .�x/;

where �x is unramified smooth. (Indeed, for any point x, �x;p embeds into the
(unnormalized) principal series IndGB .�x/. Since x is old, �x;p is unramified, and
hence so is �x . Furthermore, as x 2Xirr, the base change BCKjF .�x/ is cuspidal,
and therefore generic. In particular, �x;p must be generic. As is well known, this
implies that �x;p must be the full unramified principal series.)

As in [Schneider and Teitelbaum 2006], we express �x;p ' IndGB .�x/ in terms
of the universal module. This goes back to Borel and Matsumoto, and is defined
as follows. For any algebra character � W H.G;K/! Qp (where K D G.Zp/ is
hyperspecial when p is assumed to be unramified in F ) we introduce the smooth
representation

M� D c-IndGK.1/˝H.G;K/;� Qp D Cc.KnG;Qp/˝H.G;K/;� Qp:

The pair .M� ; 1K/ is a universal initial object in the category of pairs .V; v/, where
V is an unramified smooth representation ofG.Qp/, and v 2V K is a nonzero vector
on which H.G;K/ acts via �. That is, there is a unique G.Qp/-map M� ! V

which maps 1K 7! v. The image of this map is the span of the orbit Gv (since M�

is generated by 1K). In what follows we will take �x D y�x , the eigensystem of
IndGB .�x/

K . The choice of a spherical vector yields

M�x ! IndGB .�x/; �x D y�x :

It is a general fact that the two representations have the same semisimplification
(see the Ph.D. thesis of X. Lazarus [2000] for a thorough discussion in greater
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generality). Under our assumptions, IndGB .�x/ is irreducible, and therefore the
above must be an isomorphism. Consequently, we may identify

fBS.�x/'Wx˝M�x ' c-IndGK.�x/˝H�x .G;K/;�x Qp DWH�x ;�x :

Here we have changed notation �x WD Wx to aid comparison with [Schneider
and Teitelbaum 2006]. The algebra H�x .G;K/ consists, by definition, of the
G-endomorphisms of c-IndGK.�x/; or, more concretely, of compactly supported
K-biequivariant functions G! End.�x/ with convolution. However, since � is an
irreducible representation of G (viewed as a representation of K), as on p. 639 in
[Schneider and Teitelbaum 2006] one can identify the algebras

H.G;K/ ��!H�x .G;K/; h 7! .g 7! h.g/�x.g//:

In the definition of H�x ;�x we view �x as a character of H�x .G;K/ via this isomor-
phism, as at the bottom of p. 670 in [Schneider and Teitelbaum 2006], where H�;�
is defined.

The representationH�x ;�x has a natural locally convex topology, being a quotient
of c-IndGK.�x/, which has a supremum norm: Pick any norm k � k�x on �x which
is invariant under (the compact group) K. They are all equivalent since �x is
finite-dimensional (Proposition 4.13 in [Schneider 2002]). For f 2 c-IndGK.�x/, we
let

kf k�x ;1 D supg2G.Qp/kf .g/k�x <1

This defines an norm k�k�x ;1 on the compact induction, which is obviously invariant
under G.Qp/, and it induces a quotient seminorm on the representation

H�x ;�x D .c-IndGK.�x//=.ker �x/.c-IndGK.�x//:

We will show below that in fact this is a norm, but this is far from clear a priori!
Following [Schneider and Teitelbaum 2006], on p. 671 where they define B�;� ,

we introduce the space

B�x ;�x WD
yH�x ;�x D .H�x ;�x=f0g/

^;

the Hausdorff completion of H�x ;�x . (We refer to Proposition 7.5 in [Schneider
2002] for a general discussion of Hausdorff completions.) We have defined a
Banach space B�x ;�x with a unitary G.Qp/-action. However, it is not clear at all
that it is nonzero. This is in fact a fundamental problem! Conjecture 6.1 on p. 24
in [Breuil and Schneider 2007] says that B�;� ¤ 0 whenever the Emerton condition
is satisfied (the converse is known). This follows from our methods when the pair
.�; �/ comes from an eigenvariety, that is, when it is of the form .�x; �x/ for an old
irreducible point x. What we prove is a strengthening:
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Theorem 21. Let x 2Xreg\Xirr\Xold be a classical point such that m.�x/D 1.
Then H�x ;�x is Hausdorff and B�x ;�x ¤ 0 is its universal completion. Furthermore:

(a) There is a continuous map, with dense image, B�x ;�x!fBS.�x/^ (into the com-
pletion from Corollary 19) which restricts to an isomorphismH�x ;�x

��!fBS.�x/
onto the regular-algebraic vectors.

(b) There is a nonzero G.Qp/� yH.Kp/-equivariant continuous map

B�x ;�x ˝

�O
v−p

�Kvx;v

�
! Bralg

x

with dense image.

Proof. From (2) of the previous section, we have a G.Qp/-embedding

H�x ;�x '
fBS.�x/ ,! LyH.Kp/.M;Bx/;

where we keep writing M D
N
v−p �

Kv
x;v . We claim this map is automatically

continuous when we equip the L-space with the transformation norm and H�x ;�x
with the quotient seminorm induced by k � k�x ;1. Since H�x ;�x gets the quotient
topology, we just have to check continuity of the inflated map

c-IndGK.�x/�H�x ;�x ,! LyH.Kp/.M;Bx/:

This is simply Frobenius reciprocity made explicit. In particular, the seminorm on
H�x ;�x is actually a norm (as the kernel of the above map is closed). Therefore,
H�x ;�x is Hausdorff, and B�x ;�x is its universal completion. That is, there is an
isometry with dense image,

H�x ;�x ,! B�x ;�x

(so B�x ;�x is nonzero). By continuity of the initial map, it has a unique extension

B�x ;�x ! LyH.Kp/.M;Bx/;

which is continuous (but not necessarily injective) and maps into the completionfBS.�x/^ from Corollary 19, with dense image (but not necessarily onto). �

Remark. This fits perfectly with the picture suggested in the papers [Schneider and
Teitelbaum 2006; Breuil and Schneider 2007]. If there is a local p-adic Langlands
correspondence � 7!B.�/, these references speculate that B�;� maps to each B.�/,
with dense image, for all crystalline representations � of type .�; �/.

7. Zariski density of crystalline points

In general, it is not expected that Balg
x is dense in Bx . In this section, we will adapt

(and elaborate on) an argument from Sections 5.3 and 5.4 in [Emerton 2011], which
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builds on ideas of Katz — and which shows the density of crystalline points. This
is not needed for this paper, but we include it here for future reference.

7.1. Injectivity of certain modules. We fix a finite extension LjQp, and we will
write ODOL and $ D$L, and so on. We will look at locally constant functions
f W Y.Kp/! A taking values in various finite O-modules AD O=$sO, where
s is a positive integer. These functions form a (discrete) torsion O-module, denoted
H 0.Kp; A/, carrying a natural action of the Hecke algebra HO.K

p/, and a com-
muting smooth G.Qp/-action, which is admissible in the following sense: for every
compact open subgroup of G.Qp/, its invariants form a finite O-module (torsion
and finitely generated means finite cardinality, since A is a finite ring).

Lemma 22. Suppose Kp is sufficiently small (for example, it suffices that Kv has
no p-torsion for some v − p). Then, for any compact open subgroup Kp �G.Qp/,

H 0.Kp;O=$sO/ is an injective smooth .O=$sO/ŒKp�-module for all s � 1.

Consequently, every direct summand of H 0.Kp;O=$sO/ is an injective4 module.

Proof. We have to show the exactness of the functor sending a module M to

HomOŒKp�.M;H
0.Kp;O=$sO//:

Here M is an OŒKp�-module with $sM D 0. Therefore, it has Pontryagin dual

M_ D HomO.M;L=O/D HomO.M;$
�sO=O/' HomO=$sO.M;O=$sO/:

(Here M is smooth, so we equip it with the discrete topology.) The initial module
above can then be identified with that consisting of all functions

f W Y.Kp/!M_; f .gk/D k�1f .g/

for k 2Kp . Choosing representatives gi 2G.Af / for the finite set Y.KpKp/, and
mapping f to the tuple of all f .gi /, then identifies the latter with the direct sumL
i .M

_/�i , where the �i are certain finite subgroups of Kp having prime-to-p
order by assumption. This ensures that . � /�i is exact, by averaging. Also, taking
the Pontryagin dual is exact (L=O is divisible). Finally, as is well known (and easy
to check) every summand of an injective module is itself injective. �

Examples. Let us first introduce certain finite-type Hecke algebras. For each Kp,
we let T.KpK

p/ denote the image of hı D HO.K
p/sph in the endomorphism

algebra EndOH
0.Y.KpK

p/;O/. Thus T.KpK
p/ is finite free over (the PID) O,

and we endow it with the $ -adic topology. If we have a subgroup K 0p �Kp , there

4The injectivity (of modules) addressed here should not be confused with the injectivity of the
maps discussed in the remark on p. 209.
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is a natural restriction map T.K 0pK
p/! T.KpK

p/, and we take the limit

T.Kp/ WD lim
 ��
Kp

T.KpK
p/� EndO zH

0.Kp/ı;

the closure of the image of HO.K
p/sph. This defines a reduced, commutative, com-

plete, topological O-algebra. Moreover, T.Kp/ has only finitely many5 maximal
ideals: they correspond to the maximal ideals of T.Kp/˝F, which is the image of
hı in EndFH

0.Kp; F/. Hence, the maximal ideals are in bijection with the (Galois
conjugacy classes of) eigensystems hı!F which occur inH 0.Kp; F/. IfKp is any
pro-p group, they all must occur in H 0.Y.KpK

p/; F/, which is finite-dimensional.
Therefore, since O is complete, we have

T.Kp/ ��!
Y
m

T.Kp/m;

where the product extends over the finitely many maximal ideals m� T.Kp/, and
T.Kp/m denotes the corresponding localization, a complete local O-algebra. (We
refer to Chapter 4 of [Darmon et al. 1997] for a discussion of the commutative
algebra needed.) We will use this product decomposition as follows: Obviously,

zH 0.Kp/ı=$s zH 0.Kp/ı 'H 0.Kp;O=$sO/

carries an action of T.Kp/. This gives rise to a direct sum decomposition,

H 0.Kp;O=$sO/ ��!
M
m

H 0.Kp;O=$sO/m;

into localized smooth admissible G.Qp/-submodules over O=$sO

H 0.Kp;O=$sO/m WDH 0.Kp;O=$sO/˝T.Kp/ T.Kp/m;

which are then injective .O=$sO/ŒKp�-modules for every compact open Kp.
To connect this to the previous discussion, one could take the maximal ideal

mx D ker.�x/ for a point x 2 X.L/. A priori, this is a maximal ideal in hı, but it
is the pull-back of an ideal m� T.Kp/, since �x occurs in tame level Kp.

7.2. Projective modules over certain Iwasawa algebras. To simplify notation, we
write ADO=$sO in this section, where s > 0 is fixed for the moment. We will
briefly recall known facts about the Pontryagin duality functor M 7!M_, which
sends a discrete AŒKp�-module M to the compact

M_ D HomO.M;L=O/' HomA.M;A/:

5The finiteness of the number of cohomological mod p Hecke eigensystems has been proved in
much greater generality by Ash and Stevens [1986].
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If M is smooth, M D lim
��!H

MH , with H running over normal open subgroups
of Kp, and therefore its dual M_ D lim

 ��H
.MH /_ becomes a module for the

Iwasawa algebra
AŒŒKp�� WD lim

 ��
H

AŒKp=H�:

Conversely, if X is an AŒŒKp��-module, X=IHX becomes a module for AŒKp=H�,
where IH is the kernel of the natural projection AŒŒKp��� AŒKp=H�. It follows
that X_ is again a smooth AŒKp�-module, since

.X_/H ' .X=IHX/
_:

Thus, duality sets up a one-to-one correspondenceM$X between smooth discrete
AŒKp�-modules and compact AŒŒKp��-modules which reverses arrows.

Lemma 23. Suppose M is a smooth AŒKp�-module, with Pontryagin dual M_.

(i) M is admissible”M_ is finitely generated over AŒŒKp��.

(ii) M is injective”M_ is a projective AŒŒKp��-module.

Proof. For part (i), if X is finitely generated over AŒŒKp��, we deduce that X=IHX
is finitely generated over AŒKp=H�, which is a ring of finite cardinality. Therefore
its dual MH is (physically) finite. For the converse, suppose M is admissible.
Then, first of all, M_ is profinite, so we may apply the “converse” (topological)
Nakayama lemma discussed in depth in [Balister and Howson 1997] (specifically,
their main theorem in Chapter 3, Section (1), and its corollary): to verify that M_

is finitely generated over the compact ring AŒŒKp��, it suffices to check that X=IHX
is finitely generated over AŒKp=H� for some H such that InH ! 0 as n!1. This
limit holds for any pro-p-group H ; see Lemma 3.2 in [Schneider and Teitelbaum
2002], for example. Finiteness of X=IHX , or rather its dual MH , is admissibility.

For part (ii), use that Pontryagin duality is exact (divisibility of L=O). It follows
that HomAŒKp�.�;M/ is exact if and only if HomAŒŒKp��.M

_;�/ is exact. �

From the last two lemmas, we immediately conclude the following:

Proposition 24. Suppose Kp is sufficiently small. Then, for any compact open
subgroup Kp � G.Qp/, the dual H 0.Kp; A/_ is a projective finitely generated
module over AŒŒKp�� for all s � 1. The same is true for any direct summand, such
as the localized module H 0.Kp; A/_m for any maximal ideal m.

For later use, we will record the following fact here. Often, the Iwasawa algebra
AŒŒKp�� is viewed as a distribution algebra. Indeed, there is a natural pairing with
the continuous (that is, locally constant) functions C.Kp; A/.

Lemma 25. AŒŒKp�� ��! C.Kp; A/_, as modules over AŒŒKp��.
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Proof. For any normal open subgroup H , there is a canonical integration pairing,

C.Kp=H;A/�AŒKp=H�! A; .f; �/ 7!
X

k2Kp=H
f .k/�.k/;

which is nondegenerate, and therefore defines an isomorphism

AŒKp=H�
��! C.Kp=H;A/_; � 7! .�; �/:

This is easily checked to preserve the AŒKp=H�-module structures on both sides.
Moreover, as H varies, these isomorphisms are compatible with the transition maps.
Passing to the projective limit lim

 ��H
gives the lemma. �

In other words, C.Kp; A/$ AŒŒKp�� under the correspondence discussed above.

7.3. Local Iwasawa algebras of pro-p-groups. A local ring is a (possibly non-
commutative) ring R whose Jacobson radical J.R/ is a two-sided maximal ideal
mR. In other words, there is a unique maximal left ideal, and a unique maximal right
ideal, and they coincide. Nakayama’s lemma even holds for noncommutative local
rings, as is easily checked. In particular, a finitely generated projective R-module is
free, a key fact we will make use of below, by taking R to be the Iwasawa algebra
of a pro-p-group, which turns out to be local. We first assemble the following
well-known facts.

Lemma 26. Let Kp be a pro-p-group, and let A be any p-ring (that is, its cardi-
nality is a finite power of p, such as for ADO=$sO). Then:

(1) Let M be a left AŒŒKp��-module, and H �Kp an open normal subgroup. Then
M=IHM has a nonzero Kp-invariant element if M ¤ IHM .

(2) Kp acts trivially on any simple left AŒŒKp��-module.

(3) IKp � J.AŒŒKp��/.

(4) A local H) AŒŒKp�� local. (Furthermore, J.AŒŒKp��/DmAC IKp .)

(The same is true when left modules are replaced by right modules.)

Proof. This is all standard. We cannot resist briefly outlining the argument. For
(1) it is clearly enough to show that a p-group Kp fixes a nonzero element of
any AŒKp�-module M ¤ 0. This is basic group action theory; the fact that A is
a p-ring allows us to count fixed points modulo p. For (2), if M is a simple left
AŒŒKp��-module, we must have IHM DM or IHM D 0 for all H . There must be
some H for which IHM ¤M , since M ¤ 0 is the inverse limit of all quotients
M=IHM . Now (1) shows that MKp ¤ 0. By simplicity, Kp acts trivially on M .
For (3) just use that IKp is generated by elements k� 1 with k 2Kp . We see from
(2) that IKp acts trivially on any simple left AŒŒKp��-module, and therefore, by the
very definition of the Jacobson radical, we have the inclusion as claimed. Now
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(4) is immediate from (3). Indeed any maximal left ideal of AŒŒKp�� must be the
pull-back of mA under the augmentation map. �

Together with Proposition 24, we will apply this to AŒŒKp�� with ADO=$sO.

Proposition 27. Suppose Kp is sufficiently small, and let Kp �G.Qp/ be an open
pro-p-group. Then there exists an integer r > 0 such that

zH 0.Kp/ı ' C.Kp;O/r

as OŒKp�-modules. Moreover, for any maximal ideal m� T.Kp/, the localization
zH 0.Kp/ım sits as a topologically direct summand.

Proof. Since AŒŒKp�� is local, Nakayama’s lemma (and Proposition 24) tells us that
H 0.Kp; A/_ is a free AŒŒKp��-module, of finite rank rs , say. Taking the Pontryagin
dual then yields an isomorphism of smooth AŒKp�-modules

H 0.Kp;O=$sO/' C.Kp;O=$sO/rs :

Now, we claim that rs is in fact independent of s > 0 (and we will just write r
instead of rs). To see this, scale both sides of the isomorphism by $ , compare the
corresponding quotients, take H -invariants for some H , and compare dimensions
over F. This shows that rs D r1. This allows us to take the inverse limit over s to
obtain an isomorphism of modules over OŒKp�

zH 0.Kp/ı D lim
 ��
s

H 0.Kp;O=$sO/' C.Kp;O/r ;

or, in other words, an isometry zH 0.Kp/' C.Kp; L/r of Banach representations
of Kp. Finally, we may localize at any maximal ideal m � T.Kp/ and realize
zH 0.Kp/ım as a (topologically) direct summand of C.Kp;O/r . �

7.4. Mahler expansions and full level at p. Proposition 27 already shows that
the algebraic vectors are dense in zH 0.Kp/ (by employing Mahler expansions, as
below). In fact, this is even true for the unit ball zH 0.Kp/ı. However, we can
be more precise, and prove density of the smaller set of G.Zp/-locally algebraic
vectors, those f 2 zH 0.Kp/ such that hG.Zp/f i is an algebraic representation
of G.Zp/:

Proposition 28. zH 0.Kp/G.Zp/-alg is dense in zH 0.Kp/ (similarly for zH 0.Kp/m).

Proof. Pick an open, normal pro-p-subgroup Kp �G.Zp/. From Proposition 27,
we have an isometry zH 0.Kp/ ' C.Kp; L/r of Banach space representations of
Kp. We take the topological dual space L.�; L/ on both sides, and get

zH 0.Kp/_ ' LŒŒKp��
r ; LŒŒKp�� WD L˝O OŒŒKp��:
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Here LŒŒKp�� is identified with the distribution algebra C.Kp; L/_ (equipped with
the bounded-weak topology) as in [Schneider and Teitelbaum 2002], so zH 0.Kp/_

is a free LŒŒKp��-module of rank r . It follows that zH 0.Kp/_ is projective over
LŒŒG.Zp/��, as

HomLŒŒG.Zp/��. zH
0.Kp/_;�/D HomLŒŒKp��. zH

0.Kp/_;�/G.Zp/=Kp

is exact: zH 0.Kp/_ is projective over LŒŒKp��, and taking invariants under the finite
group G.Zp/=Kp is exact, by averaging (we are in characteristic zero). Being
projective, zH 0.Kp/_ is a direct summand of a free module (of finite rank by finite
generation). That is, there is an s > 0, and a submodule Z, such that

zH 0.Kp/_˚Z ' LŒŒG.Zp/��
s:

Again, undoing the dual, and invoking Corollary 2.2 and Theorem 3.5 in [Schneider
and Teitelbaum 2002],

zH 0.Kp/˚Z_ ' C.G.Zp/; L/s:

Comparing the G.Zp/-algebraic vectors on both sides, we see that it suffices
to show that they are dense in C.G.Zp/; L/. Now, topologically, we identify
G.Zp/ '

Q
vjp GLn.OQv/ with a closed–open subset of

Q
vjp On2

Qv
' Ztp, where

we have introduced t D ŒF WQ�n2. Any continuous function on G.Zp/ therefore
extends (nonuniquely) to a continuous function on Ztp , which has a (multivariable)
Mahler power series expansion [1958], which shows that the polynomials are dense
in C.Ztp; L/. Finally, observe that polynomials obviously restrict toG.Zp/-algebraic
functions in C.G.Zp/; L/. At last, localize at m. �

7.5. Density and locally algebraic vectors. Following [Emerton 2011, Section 5.4],
we deduce from the previous proposition that “crystalline points are dense”.

Corollary 29. The submodule
L
�2C

zH 0.Kp/algŒ�� is dense in zH 0.Kp/, where
C denotes the collection of Hecke eigensystems � W H.Kp/sph ! Qp associated
with an automorphic � , which is unramified at p (and of tame level Kp). Thus, the
set of points ker.�/, with � 2 C , are Zariski dense in Spec T.Kp/Œ1=p�.

Proof. First off, recall from Section 3.2 that we have a decomposition

zH 0.Kp/alg
D

M
W

W ˝H 0.Kp;VMW /D
M
W

M
� W�1'W

mG.�/.W ˝�
Kp

f /:

In particular,

zH 0.Kp/G.Zp/-alg
D

M
W

M
�W�1'W

mG.�/.W ˝�
G.Zp/
p ˝ .�

p

f
/K

p

/;
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which is dense in zH 0.Kp/. A fortiori, so is the G.Qp/-submodule it generates,

h zH 0.Kp/G.Zp/-alg
iG.Qp/ D

M
W

M
� W�1'W;

�
G.Zp/
p ¤0

mG.�/.W ˝�
Kp

f /:

We decompose the latter into eigenspaces for the action H.Kp/sph. That is, as

h zH 0.Kp/G.Zp/-alg
iG.Qp/ D

M
�

zH 0.Kp/algŒ��

where � W H.Kp/sph ! Qp runs over all eigensystems of the form � D �� for
some automorphic � , of tame level Kp, which is unramified at p (and of some
weight W ). Thus, elements of

T
�2C ker.�/ act trivially on zH 0.Kp/. �
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