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RUIFENG QIU, YANQING ZOU AND QILONG GUO

We prove two main results: (1) For any integers n ≥ 1 and g ≥ 2, there is
a closed 3-manifold Mn

g admitting a distance-n, genus-g Heegaard splitting,
unless (g, n) = (2, 1). Furthermore, Mn

g can be chosen to be hyperbolic
unless (g, n) = (3, 1). (2) For any integers g ≥ 2 and n ≥ 4, there are
infinitely many nonhomeomorphic closed 3-manifolds admitting distance-n,
genus-g Heegaard splittings.

1. Introduction

Let S be a compact surface with χ(S)≤−2 but not a 4-punctured sphere. Harvey
[1981] defined the curve complex C(S) as follows: The vertices of C(S) are the
isotopy classes of essential simple closed curves on S, and k+ 1 distinct vertices
x0, x1, . . . , xk determine a k-simplex of C(S) if and only if they are represented
by pairwise disjoint simple closed curves. For two vertices x and y of C(S), the
distance of x and y, denoted by dC(S)(x, y), is defined to be the minimal number
of 1-simplexes in a simplicial path joining x to y. In other words, dC(S)(x, y) is the
smallest integer n ≥ 0 such that there is a sequence of vertices x0 = x, . . . , xn = y,
such that xi−1 and xi are represented by two disjoint essential simple closed curves
on S for each 1≤ i ≤ n. For two sets of vertices in C(S), say X and Y , dC(S)(X, Y )
is defined to be min{dC(S)(x, y) | x ∈ X, y ∈ Y }. Now let S be a torus or a once-
punctured torus. In this case, the curve complex C(S) is defined as follows: The
vertices of C(S) are the isotopy classes of essential simple closed curves on S, and
k+ 1 distinct vertices x0, x1, . . . , xk determine a k-simplex of C(S) if and only if
xi and x j are represented by two simple closed curves ci and c j on S, such that ci

intersects c j in just one point for each 0≤ i 6= j ≤ k.
Let M be a compact orientable 3-manifold. If there is a closed surface S which

cuts M into two compression bodies V and W such that S = ∂+V = ∂+W , then
we say M has a Heegaard splitting, denoted by M = V ∪S W , where ∂+V (resp.
∂+W ) is the positive boundary of V (resp. W ). Let D(V ) (resp. D(W )) be the set
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of vertices in C(S) such that each element of D(V ) (resp. D(W )) represents the
boundary of an essential disk in V (resp. W ). Then the distance of the Heegaard
splitting V ∪S W , denoted by dC(S)(V,W ), is defined to be dC(S)(D(V ),D(W ));
see [Hempel 2001].

It is well known that a 3-manifold admitting a high distance Heegaard splitting
has good topological and geometric properties. For example, Hartshorn [2002]
and Scharlemann [2006] showed that a 3-manifold admitting a high distance
Heegaard splitting contains no essential surface with small Euler characteristic
number; Scharlemann and Tomova [2006] showed that a high distance Heegaard
splitting is the unique minimal Heegaard splitting up to isotopy. By Geometrization
theorem and Hempel’s work [2001] in Heegaard splittings of Seifert manifolds, a
3-manifold M admitting a distance at least three Heegaard splitting is hyperbolic.
From this point of view, Heegaard distance is an active topic in Heegaard splitting.
Here we give a brief survey on the existences of high distance Heegaard splittings.
Hempel [ibid.] showed that for any integers g ≥ 2, and n ≥ 2, there is a 3-manifold
that admits a distance at least n Heegaard splitting of genus g. Similar results were
obtained using different methods in [Evans 2006; Campisi and Rathbun 2012].
Minsky, Moriah and Schleimer [Minsky et al. 2007] proved the same result for knot
complements, and Li [2013] constructed the non-Haken manifolds admitting high
distance Heegaard splittings. In general, generic Heegaard splittings have Heegaard
distances at least n for any n ≥ 2; see [Lustig and Moriah 2009; 2010; 2012].
By studying Dehn filling, Ma, Qiu and Zou announced that they had proved that
distances of genus-two Heegaard splittings cover all nonnegative integers except
one. Recently, Ido, Jang and Kobayashi [Ido et al. 2014] proved that, for any
n > 1 and g > 1, there is a compact 3-manifold with two boundary components
which admits a distance-n Heegaard splitting of genus g; Johnson informed us
that he had proved that there is always a closed 3-manifold admitting a distance-n
(≥ 5), genus-g Heegaard splitting and a genus larger strongly irreducible Heegaard
splitting.

The main result of this paper is the following:

Theorem 1.1. For any integers n ≥ 1 and g ≥ 2, there is a closed 3-manifold Mn
g

which admits a distance-n Heegaard splitting of genus g unless (g, n) = (2, 1).
Furthermore, Mn

g can be chosen to be hyperbolic unless (g, n)= (3, 1).

Remark 1.2. (1) It is well known that there is no distance-one Heegaard splitting
of genus two.

(2) Hempel [2001] showed that any Heegaard splitting of a Seifert 3-manifold has
distance at most two. Now a natural question is: For any integer g ≥ 2, is there a
closed hyperbolic 3-manifold admitting a distance-2 Heegaard splitting of genus g?
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When g = 2, Eudave-Muñoz [1999] proved that there is a hyperbolic (1, 1)-knot
in 3-sphere, say K . In this case, the complement of K , say MK , admits a distance-
2 Heegaard splitting of genus two. By the main results in [Scharlemann 2006;
Kobayashi and Qiu 2008; Agol 2010], there is an essential simple closed curve r
on ∂MK such that the manifold obtained by doing a Dehn filling on MK along r ,
say Mr

K , is still hyperbolic. Hence Mr
K admits a distance-2 Heegaard splitting of

genus two. Maybe the answer to this question has been well known for g ≥ 3, but
we find no published paper or book related to it.

(3) If M admits a distance-1 Heegaard splitting of genus three, then M contains an
essential torus. Hence M is not hyperbolic.

(4) The proof of Theorem 1.1 implies the following fact: Let n be a positive
integer, let {F1, . . . , Fn} be a collection of closed orientable surfaces, and let I and
J = {1, . . . , n}\I be two subsets of {1, . . . , n}. Then, for any integers

g ≥max
{∑

i∈I

g(Fi ),
∑
j∈J

g(F j )

}
and m ≥ 2, there is a compact 3-manifold M admitting a distance-m Heegaard
splitting of genus g, denoted by M = V ∪S W , such that Fi ⊂ ∂−V for i ∈ I ,
F j ⊂ ∂−W for j ∈ J . We omit the proof.

By the arguments in Theorem 1.1, we have:

Theorem 1.3. For any integers g ≥ 2 and n ≥ 4, there are infinitely many nonhome-
omorphic closed 3-manifolds admitting distance-n Heegaard splittings of genus g.

We organize this paper as follows. In Section 2, we introduce some results on
curve complex. Then we will prove Theorem 1.1 for n 6= 2 in Section 3, for n = 2
in Section 5 and Theorem 1.3 in Section 4.

2. Preliminaries of curve complex

Let S be a compact surface of genus at least one and C(S) the curve complex of S.
We say that a simple closed curve c in S is essential if c bounds no disk in S and is
not parallel to ∂S. Hence each vertex of C(S) is represented by the isotopy class
of an essential simple closed curve in S. For simplicity, we do not distinguish the
essential simple closed curve c and its isotopy class c.

Lemma 2.1 [Minsky 1996; Masur and Minsky 1999; 2000]. C(S) is connected,
and the diameter of C(S) is infinite.

We say that a collection G = {a0, a1, . . . , an} is a geodesic in C(S) if ai ⊂ C0(S)
and dC(S)(ai , a j )= |i − j |, for any 0≤ i, j ≤ n. And the length of G, denoted by
L(G), is defined to be n. By the connectedness of C1(S), there is always a shortest
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path in C1(S) connecting any two vertices of C(S). For any two vertices α, β with
dS(α, β)= n, we say that a geodesic G connects α, β if G = {a0 = α, . . . , an = β}.
Now for any two subsimplicial complex X, Y ⊂ C(S), we say that a geodesic G
realizes the distance between X and Y if G connects a vertex α ∈ X and a vertex
β ∈ Y such that L(G)= dC(S)(X, Y ).

Let F be a compact surface of genus at least one with nonempty boundary.
Similar to the definition of the curve complex C(F), we define the arc and curve
complex AC(F) as follows. Each vertex of AC(F) is the isotopy class of an essential
simple closed curve or an essential properly embedded arc in F , and a set of vertices
forms a simplex of AC(F) if these vertices are represented by pairwise disjoint arcs
or curves in F . For any two vertices which are realized by disjoint curves or arcs,
we place an edge between them. All the vertices and edges form the 1-skeleton
of AC(F), denoted by AC1(F). For each edge, we assign it length one. Thus for
any two vertices α and β in AC1(F), the distance dAC(F)(α, β) is defined to be the
minimal length of paths in AC1(F) connecting α and β. Similarly, we can define
the geodesic in AC(F).

When F is a subsurface of S, we say that F is essential in S if the induced map
of the inclusion from π1(F) to π1(S) is injective. Furthermore, we say that F is
a proper essential subsurface of S if F is essential in S and at least one boundary
component of F is essential in S. For more details, see [Masur and Minsky 2000].

If F is an essential subsurface of S, there is some connection between AC(F) and
C(S). For any α ∈ C0(S), there is an essential simple closed curve αgeo representing
α such that the geometric intersection number i(αgeo, ∂F) is minimal. Hence each
component of αgeo ∩ F is essential in F . Now for α ∈ C(S), let κF (α) be the
collection of isotopy classes of the essential components of αgeo ∩ F .

For any γ ∈ C(F), we define the set σF (γ ) as follows: γ ′ ∈ σF (γ ) if and only if
γ ′ is the essential boundary component of a closed regular neighborhood of γ ∪∂F .
Set σF (∅) = ∅. Now let πF = σF ◦ κF . Then the map πF links C(F) and C(S),
which is the subsurface projection map in [ibid.].

We say α ∈ C0(S) cuts F if πF (α) 6=∅. If α, β ∈ C0(S) both cut F , we denote
dC(F)(α, β)= diamC(F)(πF (α), πF (β)). And if dC(S)(α, β)= 1, then

dAC(F)(α, β)≤ 1,

dC(F)(α, β)≤ 2,

observed by H. Masur and Y. N. Minsky. When the two vertices α and β have
distance k in C(S), we have a direct consequence of the above observation:

Lemma 2.2. Let F and S be as above, G= {α0, . . . , αk} be a geodesic in C(S) such
that αi cuts F for each 0≤ i ≤ k. Then dC(F)(α0, αk)≤ 2k.

Moreover, Masur and Minsky [ibid.] proved:



HEEGAARD DISTANCES COVER ALL NONNEGATIVE INTEGERS 235

Lemma 2.3 (bounded geodesic image theorem). Let F be an essential proper
subsurface of S, and let γ be a geodesic segment in C(S), so that πF (v) 6= ∅ for
every vertex v of γ . Then there is a constant M depending only on S so that
diamC(F)(πF (γ ))≤M.

When S is closed with g(S)≥2, there is always a compact 3-manifold M with S as
its compressible boundary. Let D(M, S), called the disk complex for S, be the subset
of vertices of C(S), where each element bounds a disk in M . For an essential simple
closed curve on S, say c, we say that it is disk-busting if S−c is incompressible in M .

Now let’s consider the subsurface projection of disk complex. The following disk
image theorem is proved by Li [2012], Masur and Schleimer [2013] independently.

For any I-bundle J over a bounded compact surface P , ∂ J = ∂v J ∪ ∂h J , where
the vertical boundary ∂v J is the I-bundle related to ∂P , and the horizontal boundary
∂h J is the portion of ∂ J transverse to the I-fibers.

Lemma 2.4. Let M be a compact orientable and irreducible 3-manifold. S is a
boundary component of M. Suppose ∂M − S is incompressible. Let D be the disk
complex of S, and let F ⊂ S be an essential subsurface. Assume each component of
∂F is disk-busting. Then either

(1) M is an I-bundle over some compact surface, F is a horizontal boundary of
the I-bundle and the vertical boundary of this I-bundle is a single annulus. Or,

(2) The image of this complex, κF (D), lies in a ball of radius three in AC(F). In
particular, κF (D) has diameter six in AC(F). Moreover, πF (D) has diameter
at most twelve in C(F).

Hempel introduced a full simplex X on S which is a dimension 3g(S)−4 simplex
in C(S). Then after attaching 2-handles and 3-handles along the vertices of X on
the same side of S, there is a handlebody HX with ∂HX = S.

Lemma 2.5 [Hempel 2001]. Let S be a closed, orientable surface of genus at least
two. For any positive number d and any full simplex X of C(S), there is another full
simplex Y of C(S) such that dC(S)(D(HX ),D(HY ))≥ d.

Through subsurface projection, the bounded geodesic image theorem links the
geodesic in the curve complex of the entire surface to the curve complex of a proper
subsurface. Since the diameter of the curve complex is infinite, we can construct a
geodesic of any given length in the curve complex. Furthermore, we require that
the constructed geodesic satisfies that both the first and last vertices are represented
by separating essential simple closed curves.

We organize our results:

Lemma 2.6. Let g, n, m, s, t be integers such that g,m, n ≥ 2, 1≤ t, s ≤ g−1. Let
Sg be a closed surface of genus g. Then there are two essential separating curves α
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Figure 1. Self-banding.

and β in Sg such that dC(Sg)(α, β)= n; one component of Sg −α has genus t ; one
component of Sg −β has genus s. Furthermore, there is a geodesic

G = {a0 = α, a1, . . . , an−1, an = β}

in C(Sg) such that

(1) ai is nonseparating in Sg for 1≤ i ≤ n− 1, and

(2) mM+ 2≤ dC(Sai )(ai−1, ai+1)≤ mM+ 6, where Sai is the surface S− N (ai )

for 1≤ i ≤ n− 1 and M is the constant in Lemma 2.3.

Proof. Let α be an essential separating curve in S such that one component of
Sg −α, say S1, has genus t .

Suppose first that n = 2. Let b be a nonseparating curve in Sg which is disjoint
from α. Let Sb be the surface Sg − N (b), where N (b) is an open regular neighbor-
hood of b in Sg. Then Sb is a genus-(g−1) surface with two boundary components.
Furthermore, α is an essential separating simple closed curve in Sb.

By Lemma 2.1, C1(Sb) is connected and its diameter is infinite. Hence there is
an essential simple closed curve c in Sb with dC(Sb)(α, c) = mM+ 4. Note that
g− 1 ≥ 1. If c is separating in Sb, then there is a nonseparating essential simple
closed curve c∗ in Sb such that c∩ c∗ =∅. Hence dC(Sb)(c, c∗)= 1, and

mM+ 3≤ dC(Sb)(α, c∗)≤ mM+ 5.

So there is a nonseparating essential simple closed curve c in Sb such that

mM+ 3≤ dC(Sb)(α, c)≤ mM+ 5.

Let l be a nonseparating simple closed curve in Sb such that l intersects c in
one point, and let e be the boundary of the closed regular neighborhood of c∪ l in
Sb. Then e bounds a once-punctured torus T containing l and c. Since s ≤ g− 1,
there is an essential separating simple closed curve β in Sb such that β bounds a
once-punctured surface of genus s containing T as a subsurface, see Figure 1.
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So β is also separating in Sg. Now we prove that

dC(Sg)(α, β)= 2 and dC(Sg)(α, c)= 2.

Since α∩b=∅, β∩b=∅ and c∩b=∅, dC(Sg)(α, β)≤ 2 and dC(Sg)(α, c)≤ 2.
Since c∩β =∅, by the assumption on dC(Sb)(α, c),

mM+ 2≤ dC(Sb)(α, β)≤ mM+ 6.

So dC(Sg)(β, α)= 2. For if dC(Sg)(α, β)≤ 1, then, by Lemma 2.3, dC(Sb)(α, β)≤M,
a contradiction. Similarly, dC(Sg)(α, c)= 2. And

G = {a0 = α, a1 = b, a2 = β} and G∗ = {a0 = α, a1 = b, a2 = c}

are two geodesics of C(Sg). Furthermore, G satisfies the conclusion of Lemma 2.6.
Now we prove this lemma by induction on n.
Assumption. Let k ≥ 2. Suppose that there are two essential separating simple

closed curves α and β, and a nonseparating simple closed curve c in Sg such that

dC(Sg)(α, β)= k,

dC(Sg)(α, c)= k,

and one component of Sg − α has genus t while one component of Sg − β has
genus s. Furthermore, there is a geodesic G∗ = {α, a1, . . . , ak−1, ak = c} where ai

is nonseparating in Sg for each 1≤ i ≤ k, satisfying

mM+ 3≤ dC(Sai )(ai−1, ai+1)≤ mM+ 5 for any 1≤ i ≤ k− 2,

mM+ 3≤ dC(Sak−1 )(ak−2, c)≤ mM+ 5,

and a geodesic G = {α = a0, a1, . . . , ak−1, β} satisfying the conclusions (1) and (2)
of Lemma 2.6.

Let Sc be the surface Sg − N (c), where N (c) is an open regular neighborhood
of c in Sg. Since c is nonseparating in Sg, Sc is a genus-(g − 1) surface with
two boundary components. Since G∗ = {α, a1, . . . , ak−1, c} is also a geodesic
connecting α to c, ak−1 is an essential nonseparating simple closed curve in Sc. By
the above argument, there is an essential nonseparating curve h and an essential
separating curve e in Sc such that

(1) e bounds an once-punctured torus T ∗ containing h;

(2) mM+ 3≤ dC(Sc)(h, ak−1)≤ mM+ 5;

(3) mM+ 2≤ dC(Sc)(e, ak−1)≤ mM+ 6.
And there is also an essential separating simple closed curve γ which bounds a

genus-s subsurface of Sc containing T ∗ as a subsurface, while γ is also separating
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Figure 2. Heegaard splitting I.

in Sg. Since h is disjoint from γ ,

mM+ 2≤ dC(Sc)(γ, ak−1)≤ mM+ 6.

Now we prove that dC(Sg)(α, h)= k+ 1, dC(Sg)(α, γ )= k+ 1.
Suppose, on the contrary, that dC(Sg)(α, h)= x ≤ k. Then there exists a geodesic

G1 =
{
α = b0, . . . , bx = h

}
. Note that each of α and h is not isotopic to c and

the length is less than or equal to k. Since dC(Sg)(α, c)= k, b j is not isotopic to c
for 1 ≤ j ≤ x − 1. This means b j cuts Sc for each 0 ≤ j ≤ x . By Lemma 2.3,
dC(Sc)(α, h)≤M. Since dC(Sg)(α, c)= k, a j is not isotopic to c for 0≤ j ≤ k− 1.
By using Lemma 2.3 again, dSc(α, ak−1)≤M. Then dC(Sc)(ak−1, h)≤ 2M. It
contradicts the choice of h.

Now G ′ = {a0 = α, a1, . . . , ak−1, c, γ } and G ′′ = {a0 = α, a1, . . . , ak−1, c, h} are
two geodesics satisfying the conclusion. �

3. Proof of Theorem 1.1 (n 6= 2)

In this section, we will prove:

Proposition 3.1. For any positive integers n 6= 2 and g ≥ 2, there is a closed
3-manifold which admits a distance-n Heegaard splitting of genus g unless (g, n)=
(2, 1). Furthermore, Mn

g can be chosen to be hyperbolic unless (g, n)= (3, 1).

Proof. We first suppose that n ≥ 3.
Let S be a closed surface of genus g. By Lemma 2.6, there are two separating

essential simple closed curves α and β such that dC(S)(α, β) = n for n ≥ 3. Let
V be the compression body obtained by attaching a 2-handle to S× [0, 1] along
α×{1}, and let W be the compression body obtained by attaching a 2-handle to
S×[−1, 0] along β ×{−1}. Then V ∪S W is a Heegaard splitting where S is the
surface S×{0}; see Figure 2.

Since V contains only one essential disk B with ∂B = α up to isotopy and W
contains only one essential disk D with ∂D = β up to isotopy, dC(S)(V,W )= n.

Let F1 and F2 be the components of ∂−V , and S1 and S2 the two components
of S−α. Similarly, let F3 and F4 be the components of ∂−W , and S3 and S4 the
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Figure 3. A spanning annulus.

two components of S−β. Now B cuts V into two manifolds F1× I and F2× I ,
and D cuts W into two manifolds F3× I and F4× I ; see Figure 2. By Lemma 2.6,
we assume that S3 is a once-punctured torus.

We first consider the compression body V . We assume that Fi = Fi × {0},
Si∪B= Fi×{1} for 1≤ i ≤ 2. Let fFi : Si∪B→ Fi be the natural homeomorphism
such that fFi (x × {1}) = x × {0} for i = 1, 2. And fFi is well defined. Then, for
any two essential simple closed curves ζ, θ ⊂ Si ∪ B,

dC(Fi )( fFi (ζ ), f (θ))= dC(Si∪B)(ζ, θ) for i = 1, 2;

see Figure 3. Hence fFi induces an isomorphism from C(Si∪B) to C(Fi ), for any i=
1, 2. Denote the isomorphism by fFi too. Note that the shaded disk in Figure 3 is B.

Let ι : Si→ Si ∪ B be the inclusion map for i = 1, 2. Note that ∂Si contains only
one component. If c is an essential simple closed curve in Si , ι(c) is also essential
in Si ∪ B. So, for any two essential simple closed curves ζ, θ ⊂ Si ,

dC(Si∪B)(ι(ζ ), ι(θ))≤ dSi (ζ, θ) for i = 1, 2.

Hence ι induces a distance nonincreasing map from C(Si ) to C(Si ∪ B), for any
i = 1, 2. Denote the inclusion map by ι too. Then we define

ψFi = fFi ◦ ι ◦πSi .

Since dC(S)(α, β)= n ≥ 2, α ∩β 6=∅. By the argument in Section 2,

diamC(Si )(πSi (β))≤ 2.

Hence,

diamC(Fi )(ψFi (β))≤ 2.

We start to attach a handlebody to V along F1. Then we have two cases:

(a) F1 is a torus. By Lemma 2.1, there is an essential simple closed curve r in F1

such that

(1) dC(F1)(ψF1(β), r)≥M+ 1.
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Figure 4. Heegaard splitting II.

Let Jr be a solid torus such that ∂ Jr = F1, and r bounds an essential disk in
Jr . In this case, Jr contains only one essential disk up to isotopy. Let VF1 be the
manifold V ∪ Jr .

(b) g(F1)≥ 2. By Lemma 2.5, there is a full simplex X of C(F1) such that

dC(F1)(D(HX ), ψF1(β))≥M+ 1,

where HX is the handlebody obtained by attaching 2-handles to F1 along X then
3-handles to cap off the possible 2-spheres. In this case, we denote the manifold
V ∪ HX by VF1 .

In a word, VF1 is a compression body with only one negative boundary component
F2, where ∂+VF1 = ∂+W ; see Figure 4. Hence VF1 ∪S W is a Heegaard splitting.

Claim 3.2. The Heegaard distance dC(S)(VF1,W ) is n.

Proof. Suppose, otherwise, that dC(S)(VF1,W )= k < n. Since W contains only one
essential disk D up to isotopy where ∂D=β, there is an essential disk B1 in VF1 such
that dC(S)(∂B1, β)= k ≤ n−1, i.e, there is a geodesic G = {a0 = β, . . . , ak = ∂B1},
where k ≤ n− 1. �

Claim 3.3. a j ∩ S1 6=∅, for any 0≤ j ≤ k.

Proof. Suppose that a j∩S1=∅ for some 0≤ j ≤ k. If ak∩S1=∅, then B1⊂ F2× I
and B1 is inessential in VF1 . So j 6= k. Since a0=β, j 6=0. Hence there is a geodesic
G∗ = {β = a0, . . . , a j , α}. It means that dC(S)(α, β)≤ k < n, a contradiction. �

By Lemma 2.3, dC(S1∪B)(∂B1, β) ≤ M and dC(F1)(ψF1(∂B1), ψF1(β)) ≤ M.
Depending on the intersection between B1 and B, there are two cases:

(a) B1 ∩ B =∅. Since B1 is not isotopic to B, ψF1(∂B1) bounds an essential disk
in HX or Jr depending on g(F1), where HX and Jr are constructed as above. Then
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S

F3 F4

Figure 5. Heegaard splitting III.

by Lemma 2.3,

dC(F1)(ψF1(∂B1), ψF1(β))≤M,

dC(F1)(r, ψF1(β))≤M if g(F1)= 1,

dC(F1)(D(HX ), ψF1(β))≤M if g(F1)≥ 2.

It contradicts the choice of X or r .

(b) B1 ∩ B 6= ∅. Let a be an outermost arc of B1 ∩ B on B1. It means that a,
together with a subarc γ ⊂ ∂B1, bounds a disk Bγ such that Bγ ∩ B = a. Since B
cuts VF1 into a handlebody H which contains F1 and an I-bundle F2× I , Bγ ⊂ H .
Hence a curve in ψF1(∂B1) bounds an essential disk in HX or Jr . By the argument
in (a), it is impossible.

Now VF1 is a compression body which has only one minus boundary component
F2. Since dC(S)(α, β)= n≥ 3, β∩ S2 6=∅. By Lemmas 2.1 and 2.5, there is always
a simplex Y on F2 such that dC(F2)(D(HY ), ψF2(β)) ≥M+ 1, where HY is the
handlebody or the solid torus obtained by attaching 2-handles to F2 along Y and
3-handles to cap off the possible 2-spheres. Let VF1,F2 be the manifold obtained
by attaching HY to VF1 along F2; see Figure 5. Then VF1,F2 is a handlebody where
∂+VF1,F2 = ∂+W . Hence VF1,F2 ∪S W is also a Heegaard splitting.

Claim 3.4. The Heegaard distance dC(S)(VF1,F2,W ) is n.

Proof. Suppose, on the contrary, that dC(S)(VF1,F2,W ) = k < n. Since W con-
tains only one essential disk D up to isotopy such that ∂D = β, there is an
essential disk B2 in VF1,F2 such that dC(S)(∂B2, β) = k, i.e., there is a geodesic
G = {a0 = β, . . . , ak = ∂B2}, where k ≤ n − 1. By the definition of Heegaard
distance, a j ∩ ∂S2 6=∅ for 0≤ j ≤ k− 1 when k ≥ 1.

Note that ∂B = α. Depending on the way of intersection between B2 and B,
there are two cases:

(a) B2 ∩ B =∅. Since dC(S)(α, β)= n > k, B2 is not isotopic to B. By the proof
of Claim 3.2, ∂B2 does not lie in S1. Hence ∂B2 ⊂ S2. It implies that ψF2(∂B2)

bounds an essential disk in HY . By Lemma 2.3, dC(S2)(∂B2, β)≤M. Hence

dC(F2)(ψF2(∂B2), ψF2(β))≤M, dC(F2)(D(HY ), ψF2(β))≤M.
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It contradicts the choice of Y .

(b) B2 ∩ B 6=∅. Let a∗ be an outermost arc of B2 ∩ B on B2. This means that a∗,
together with a subarc γ ∗ ⊂ ∂B2, bounds a disk Bγ ∗ such that Bγ ∗ ∩ B = a∗. By
the proof of Claim 3.2, γ ∗ ⊂ S2. Thus ψF2(∂B2) bounds an essential disk in HY .
By the same argument in Claim 3.2 again, it is impossible. �

Until now, we get a distance-n genus-g Heegaard splitting VF1,F2 ∪S W . In this
case, VF1,F2 is a handlebody, and W contains only one essential disk D such that
∂D = β. Furthermore, we cut S along β into two components S3 and S4, and
cut W along D into two manifolds F3 × I and F4 × I such that Fi = Fi × {0},
and Si ∪ D = Fi × {1} for i = 3, 4. Now the shaded disk in Figure 3 is D. Let
fFi : Si ∪ D→ Fi be the natural homeomorphism such that fFi (x ×{1})= x ×{0}
for i = 3, 4. Then, for any two essential simple closed curves ζ, θ ⊂ Si ∪ D,

dC(Fi )( fFi (ζ ), fFi (θ))= dC(Si∪D)(ζ, θ) for i = 3, 4;

see Figure 3. Hence fFi induces an isomorphism from C(Si ∪ D) to C(Fi ), for any
i = 3, 4. Denote the isomorphism by fFi too.

Let ι : Si→ Si ∪D be the inclusion map for i = 3, 4. Note that ∂Si contains only
one component. If c is an essential simple closed curve in Si , ι(c) is also essential
in Si ∪ D. Now, for any two essential simple closed curves ζ, θ ⊂ Si ,

dC(Si∪D)(ι(ζ ), ι(θ))≤ dSi (ζ, θ) for i = 3, 4.

Hence ι induces a distance nonincreasing map from C(Si ) to C(Si ∪ D), for any
i = 3, 4. Denote the inclusion map by ι too. Then we define

ψFi = fFi ◦ ι ◦πSi .

Since VF1,F2 ∪S W is a distance-n (≥ 3) Heegaard splitting of genus g, and W
contains only one essential disk D up to isotopy, S3 and S4 are incompressible in
VF1,F2 . Hence β = ∂S3= ∂S4 is disk-busting in VF1,F2 . Since the Heegaard distance
n ≥ 3 and g(S3)= 1, VF1,F2 is not an I-bundle over some compact surface with Si

a horizontal boundary of the I-bundle while the vertical boundary of this I-bundle
a single annulus for i = 3, 4. By Lemma 2.4, diamSi (D(VF1,F2))≤ 12 for i = 3, 4.
Hence diamFi (ψFi (D(VF1,F2)))≤ 12.

Since F3 is a torus and diamF3(ψF3(D(VF1,F2)))≤ 12, by Lemma 2.1, there is an
essential simple closed curve δ in F3 such that dC(F3)(ψF3(D(VF1,F2)), δ)≥M+ 1.
Let WF3 be the manifold obtained attaching a solid Jδ to W along F3 so that δ
bounds a disk in Jδ. Then WF3 is a compression body.

Since diamF4(ψF4(D(VF1,F2)))≤ 12, by Lemmas 2.1 and 2.5, there is a simplex
Z of C(F4) such that

dC(F4)(D(HZ ), ψF4(D(VF1,F2)))≥M+ 1,
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Figure 6. Heegaard splitting IV.

where HZ is the handlebody or the solid torus obtained by attaching 2-handles to
F4 along Z then 3-handles to cap off the possible 2-spheres. In this case, let WF3,F4

be the handlebody WF3 ∪ HZ where ∂+WF3,F4 = ∂+VF1,F2 . Now VF1,F2 ∪S WF3,F4

is a Heegaard splitting of a closed 3-manifold; see Figure 6.

Claim 3.5. The Heegaard distance dC(S)(VF1,F2,WF3,F4) is n.

Proof. Let D be the essential disk in WF3,F4 bounded by β. Suppose, on the contrary,
that the Heegaard distance is k < n. Then there is a geodesic

G = {a0 = ∂B1, . . . , ak = ∂D1},

where k ≤ n− 1, B1 is an essential disk in VF1,F2 , and D1 is an essential disk in
WF3,F3 . αi ∩ β 6= ∅, for any 0 ≤ i ≤ k − 1. If not, the distance of VF1,F2 ∪S W
would be at most k < n. Similarly, D1 is not isotopic to D.

Then we have two cases:

(a) D1∩D =∅. Then ∂D1 lies in one of S3 and S4. We assume that ∂D1 lies in S3.
The other case is similar. HenceψF3(∂D1)= δ. By Lemma 2.3, diamS3(D(G))≤M.
Since πS3(∂B1) ∈ πS3(D(VF1,F2)), we have

dC(S3)(πS3(D(VF1,F2)), ∂D1)≤M.

Hence,
dC(F3)(ψF3(D(VF1,F2)), ψF3(∂D1)= δ)≤M,

a contradiction.

(b) D1 ∩ D 6=∅. Let c be an outermost arc of D1 ∩ D on D1. This means that c,
together with a subarc δ∗⊂ ∂D1, bounds a disk Dc such that Dc∩D= c. We assume
that ∂Dc ⊂ S4. The other case is similar. By Lemma 2.3, diamS4(G)≤M. Hence

dC(F4)(ψF4(D(VF1,F2)), ψF4(∂D1))≤M.
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Note thatψF4(∂B1)∈D(HZ ). Then by the same argument in (a), it is impossible. �

Now we prove the proposition for n = 1. It is known that if a Heegaard splitting
has distance 1, there are on the Heegaard surface two disjoint nonisotopic essential
simple closed curves that bound essential disks in different compression bodies.
That is to say, a distance-1 Heegaard splitting is always weakly reducible. For a
reducible Heegaard splitting, since there is an essential simple closed curve in the
Heegaard surface bounding essential disks in both of these two compression bodies,
it has distance zero. Hence it is only needed to prove the proposition for weakly
reducible and irreducible Heegaard splittings.

Let M1 and M2 be two 3-manifolds with homeomorphic connected boundary.
For any homeomorphism f from ∂M1 to ∂M2, let M f be the manifold obtained
by gluing M1 and M2 along f . Suppose Mi has a Heegaard splitting Vi ∪Si Wi for
i = 1, 2. In this case, M f has a natural Heegaard splitting called the amalgamation
of V1 ∪S1 W1 and V2 ∪S2 W2. The following facts are well known:

(1) If the gluing map f is complicated enough, then the amalgamation of V1∪S1 W1

and V2 ∪S2 W2 is unstabilized; see [Lackenby 2004; Bachman et al. 2006; Li
2010].

(2) If both V1 ∪S1 W1 and V2 ∪S2 W2 have high distance, then the amalgamation
of V1 ∪S1 W1 and V2 ∪S2 W2 is unstabilized and irreducible; see [Kobayashi
and Qiu 2008; Yang and Lei 2009].

Now let Mi = Vi ∪Si Wi be a Heegaard splitting of genus two such that ∂Mi is
a torus, and d(Si ) > 8 for i = 1, 2, then, by the main result in [Kobayashi and Qiu
2008], the amalgamation of V1 ∪S1 W1 and V2 ∪S2 W2, say V ∪S W , is unstabilized.

Suppose that g ≥ 4. By the above argument, there exist a Heegaard splitting
M1=V1∪S1 W1 of genus g−1 such that g(∂M1)=2 and d(S1)≥2g, and a Heegaard
splitting V2 ∪S2 W2 of genus three such that g(∂M2) = 2 and d(S2) ≥ 2g. Hence
both M1 and M2 are hyperbolic. By the main result in [ibid.], the amalgamation of
V1 ∪S1 W1 and V2 ∪S2 W2, say M = V ∪S W , is unstabilized and weakly reducible.
Furthermore, g(S)= g. By Thurston’s theorem, both M1 and M2 have hyperbolic
structures with totally geodesic boundaries. Hence M is hyperbolic. �

Remark 3.6. The strongly irreducible Heegaard splitting V ∪S W where both V
and W contain only one essential separating disk up to isotopy independently is
always a minimal Heegaard splitting of M = V ∪S W . Li [2010] defined a sub-
complex U(F1), for F1 ⊂ ∂−V and proved that for any handlebody H attached to
M along F1, if dC(F1)(U(F1),D(H)) is larger than a constant K which depends
on M and H , then the new generated Heegaard splitting VF1 ∪S W is still the
minimal Heegaard splitting of M F1 = VF1 ∪S W . Similar to the other boundaries
of M . Now in our construction of distance-n (≥ 2) strongly irreducible Heegaard
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splitting (for n = 2, see Section 5), we can choose a full simplex X in F1 such that
dC(F1)(ψF1(D(W )),D(HX )) is large enough and dC(F1)(U(F1),D(HX )) is larger
than K. Then the new Heegaard splitting VF1 ∪S W is still the minimal Heegaard
splitting of M F1 = VF1 ∪S W and has the same distance.

4. Proof of Theorem 1.3

Proposition 4.1. For any integers g ≥ 2 and n ≥ 4, there are infinitely many
nonhomeomorphic closed 3-manifolds which admit distance-n, genus-g Heegaard
splittings.

Proof. Let Sg be a closed surface of genus g. By Lemma 2.6, for each m ≥ 2, there
is a geodesic Gm

= {α = am
0 , am

1 , . . . , am
n−1, am

n = β
m
} in C(Sg) such that

(1) am
i is nonseparating in Sg for 1≤ i ≤ n−1, α and βm are two essential separating

simple closed curves on Sg,

(2) mM+ 2≤ dC(Sam
i )(am

i−1, am
i+1)≤ mM+ 6, where Sai is the surface S− N (ai )

for 1≤ i ≤ n− 1, and

(3) one component of Sg −β
m has genus one.

Without loss of generality, we assume that M ≥ 6. Let Mm be the manifold
obtained by attaching two 2-handles to Sg ×[−1, 1] along α×{−1} and βm

×{1}.
We also use Sg representing the surface Sg×{0}. Now Mm has a Heegaard splitting
as Vm ∪Sg Wm , where Vm is the compression body obtained by attaching a 2-handle
to S × [−1, 0] along α × {−1}, and Wm is the manifold obtained by attaching a
2-handle to S × [0, 1] along βm

× {1}. Then ∂−Vm contains two components F1

and F2, and ∂−Wm contains two components Fm
3 and Fm

4 ; see Figure 7.
By the proof of Theorem 1.1 (n 6= 2), there is a closed 3-manifold M∗m which

admits a distance-n Heegaard splitting V ∗m∪SgW
∗
m , where V ∗m is obtained by attaching

handlebodies HX1 and HX2 to Vm along F1 and F2, and W ∗m is obtained by attaching
handlebodies HY1 and HY2 to Wm along Fm

3 and Fm
4 such that

dC(Fi )(ψFi (β
m),D(HX i ))≥M+ 15 for i = 1, 2,

dC(Fi )(ψFi (α),D(HYi ))≥M+ 15 for i = 3, 4.
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Replace M∗m , V ∗m and W ∗m by Mm , Vm and Wm . Now

Gm
= {α = am

0 , am
1 , . . . , am

n−1, am
n = β

m
}

is a geodesic of C(Sg) realizing the distance of Mm = Vm ∪Sg Wm .

Claim 4.2. Let
G = {b0, . . . , bn}

be a geodesic of C(Sg) realizing the distance of Vm ∪Sg Wm . Then

bi = am
i

for any 1≤ i ≤ n− 1.

Proof. Let S1 and S2 be the two components of Sg −α. We assume that b0 bounds
a disk B0 in Vm , and bn bounds a disk Dn in Wm . We first prove that α (resp. βm)
is disjoint from b1 (resp. bn−1).

Let B be the essential disk bounded by α in Vm . Suppose, on the contrary, that
α ∩ b1 6=∅. Hence b0 is not isotopic to am

0 = α. Then there are two cases:

(a) B0∩B 6=∅. Let a be an outermost arc of B0∩B on B0. It means that a, together
with a subarc of γ ⊂ ∂B0, bounds a disk Bγ such that Bγ ∩ B = a. We assume that
γ ⊂ S1. The other case is similar. By the argument in Section 3, ψF1(∂B0) bounds
an essential disk in HX1 . But with b1∩∂S1 6=∅, it implies that dC(S1)(b0, bn)≤M.
Hence dC(F1)(ψF1(bn),D(HX1))≤M.

(b) B0 ∩ B =∅. Since b1 ∩α 6=∅, B0 is not isotopic to B. Then ∂B0 is essential
in S1 or S2. We assume that ∂B0 ⊂ S1. The other case is similar. Hence by the
arguments in the previous case, dC(F1)(ψF1(bn),D(HX1))≤M.

However, since the Heegaard distance is at least four and α = ∂S1 = ∂S2 bounds
an essential disk in V m , the curve α is disk-busting for W m and W m can not be the
I-bundle over S1 or S2. Then by Lemma 2.4,

diamC(S1)(D(W
m))≤ 12

and
diamC(S2)(D(W

m))≤ 12.

Hence diamC(F1)(ψF1(D(W m)))≤ 12 and diamC(F2)(ψF2(D(W m)))≤ 12. Together
with (a) and (b), by the triangle inequality, we have

dC(F1)(ψF1(β
m),D(HX1))≤M+ 12.

It contradicts the choice of X1 in F1.
Let G∗ = {α = am

0 , b1, . . . , bn−1, am
n } be a new geodesic realizing the distance

of Vm ∪Sg Wm . Now we prove that b1 is isotopic to am
1 . The other case is similar.
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Suppose, otherwise, that b1 is not isotopic to am
1 . Note that bi is not isotopic

to am
1 . Otherwise, the distance of Vm∪SgWm would be at most n−1. Let Sam

1 be the
surface Sg − N (am

1 ), where N (am
1 ) is an open regular neighborhood of am

1 on Sg.
By Lemma 2.3,

dC(Sa m
1 )(πSa m

1 (am
0 ), πSa m

1 (am
n ))≤M.

Now let’s consider the shorter geodesic

G∗∗ = {am
2 , . . . , am

n−1, am
n = β

m
},

which is a subgeodesic of

Gm
= {α = am

0 , am
1 , . . . , am

n−1, am
n = β

m
}.

By the definition of geodesic in the curve complex, am
i is not isotopic to am

1 for any
i ≥ 2. By Lemma 2.3 again,

dC(Sa m
1 )(πSa m

1 (am
2 ), πSa m

1 (am
n ))≤M.

Hence
dC(Sa m

1 )(πSa m
1 (am

0 ), πSa m
1 (am

2 ))≤ 2M.

This contradicts our assumption on mM≤dC(Sa m
1 )(πSa m

1 (am
0 ), πSa m

1 (am
2 )) and m≥2.

Hence b1 is isotopic to am
1 . �

Replace Mm = Vm ∪Sg Wm by Mm = Vm ∪Sm
g

Wm .
The following claim reveals the connection between geodesics in the curve

complex and closed 3-manifolds:

Claim 4.3. For any t, s such that 2≤ t 6= s ∈ N , either

(1) Mt = Vt ∪St
g

Wt and Ms = Vs ∪Ss
g

Ws are two different 3-manifolds up to
homeomorphism, or,

(2) Mt is homeomorphic to Ms , but Vt ∪St
g
Wt and Vs ∪Ss

g
Ws are two different

Heegaard splittings of Mt up to homeomorphic equivalence.

Proof. Suppose that Mt is homeomorphic to Ms for some t, s ∈ N where 2≤ t, s and
t 6= s. If (2) fails, then Vt∪St

g
Wt and Vs∪Ss

g
Ws are homeomorphic. It means that there

is a homeomorphism f from Mt to Ms such that f ((St
g; Vt ,Wt))= (Ss

g; Vs,Ws).
We assume that f (Vt)= Vs and f (Wt)=Ws . The other case is similar. It is well
known that f induces an isomorphism from C(St

g) to C(Ss
g), still denoted by f .

Then for the geodesic

Gt
= {α = at

0, at
1, . . . , at

n−1, at
n = β

t
}

which realizes the distance of Vt ∪St
g
Wt , f (G) is also a geodesic in C(Ss

g) realizing
the distance of Vs ∪Ss

g
Ws . By Claim 4.2, f (at

j ) is isotopic to as
j for 1≤ j ≤ n− 1.
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Since f (at
2) is isotopic to as

2, we can perform an isotopy on Ss
g such that the

composition of f with the isotopy gives an homeomorphism f ? from St
g to St

g
and f ?(at

2) = as
2, f ?(Vt) = Vs , f ?(Wt) = Ws . It’s also true that f ? induces

an automorphism from C(St
g) to C(Ss

g), denoted by f ? too. Thus f ?(Gt) is also a
geodesic realizing the distance of Vs∪Ss

g
Ws . By Claim 4.2 again, for any 1≤ j≤n−1,

f ?(at
j ) is still isotopic to as

j . Hence f ?(at
1) (resp. f ?(at

3)) is isotopic to as
1 (resp. at

3).
Let Sat

2 be the surface St
g−N (at

2), where N (at
2) is an open regular neighborhood

of at
2 on St

g, and let Sas
2 be the surface of Ss

g − N (as
2). Then f ?(Sat

2) = Sas
2 and

f ?|Sat
2 is a homeomorphism. Hence f ? also induces an isomorphism from C(Sat

2) to
C(Sas

2), still denoted by f ?. Now we also assume at
1∩at

2=∅ and at
3∩at

2=∅. Thus
f ?(at

1)∩( f ?(at
2)=as

2)=∅ and f ?(at
3)∩( f ?(at

2)=as
2)=∅. Then dC(Sat

2 )(at
1, at

3)=

dC(Sas
2 )( f ?(at

1), f ?(at
3)). On the other hand, f ?(at

1) (resp. f ?(as
3)) must be isotopic

to as
1 (resp. as

3) in Sas
2 . For if not, then after removing possible bigon capped by them,

they bound no annuli in Sas
2 , and thus they bound no annuli and bigon in Ss

g. By bigon
criterion [Farb and Margalit 2012, Proposition 1.7], they realize the geometry inter-
section number. Since they are isotopic in Ss

g, they must bound an annulus in Ss
g. So

dC(Sa t
2 )(at

1, at
3)= dC(Sa s

2 )( f ?(at
1), f ?(at

3)),

dC(Sa s
2 )( f ?(at

1), f ?(at
3))= dC(Sa s

2 )(as
1, as

3).

It means that

dC(Sa t
2 )(at

1, at
3)= dC(Sa s

2 )(as
1, as

3).

However, by the assumption,

tM+ 2≤ dC(Sa t
2 )(at

1, at
3)≤ tM+ 6,

sM+ 2≤ dC(Sa s
2 )(at

1, at
3)≤ sM+ 6,

M≥ 6,

we have

dC(Sa t
2 )(at

1, at
3) 6= dC(Sa s

2 )(as
1, as

3),

a contradiction. �

The Waldhausen conjecture proved by Johanson [1990; 1995] and Li [2006;
2007] implies that, for any positive integer g, an atoroidal closed 3-manifold M
admits only finitely many Heegaard splittings of genus g up to homeomorphism.
Since Mt admits a Heegaard splitting with distance at least four, it is atoroidal for
any t ≥ 2; see [Hartshorn 2002; Scharlemann 2006]. Now Theorem 1.3 immediately
follows from Claim 4.3 and the Waldhausen conjecture. �
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5. Proof of Theorem 1.1 (n= 2)

We rewrite the second part of Theorem 1.1:

Proposition 5.1. For any integer g ≥ 2, there is a closed hyperbolic 3-manifold
which admits a distance-2 Heegaard splitting of genus g.

Proof. By Remark 1.2(2), there is a hyperbolic closed 3-manifold which admits a
distance-2 Heegaard splitting of genus two. So we only need to prove it for g ≥ 3.

Assumption 1. Let S be a closed surface of genus g. By Lemma 2.6, there are two
separating essential simple closed curves α and γ such that

(1) dC(S)(α, γ )= 2,

(2) one component of S−α, say S1, has genus one while the component of S−α,
say S2, has genus g− 1,

(3) one component of S− γ , say S3, has genus one, while the component of S− γ ,
say S4, has genus g− 1,

(4) there is a nonseparating slope β on S such that α and γ are disjoint from β, and
dC(Sβ )(α, γ ) > 4, where Sβ is the surface S− η(β), and

(5) β ⊂ S2 ∩ S4.

Let V be the compression body obtained by attaching a 2-handle to S×[0, 1]
along a separating curve α×{1}, and let W be the compression body obtained by
attaching a 2-handle to S × [−1, 0] along a separating curve γ × {−1}. Denote
S×{0} by S too. Then V ∪S W is a Heegaard splitting. Since V contains only one
essential disk B with ∂B = α up to isotopy, and W contains only one essential disk
D with ∂D = γ up to isotopy, dC(S)(V,W )= 2.

Let F1 and F2 be the components of ∂−V , such that Fi is homeomorphic to
Si ∪ B for i = 1, 2. Similarly, let F3 and F4 be the components of ∂−W such that
Fi is homeomorphic to Si ∪D for i = 3, 4. Then both S1 and S3 are once-punctured
tori, and F1 and F3 are two tori; see Figure 2. Furthermore, both F3 and F4 have
genus at least two. Now B cuts V into two manifolds F1× I and F2× I , and D
cuts W into two manifolds F3× I and F4× I .

Since dC(S)(V,W ) = 2, γ ∩ Si 6= ∅ for i = 1, 2, and α ∩ Si 6= ∅ for i = 3, 4.
Hence ψFi (γ ) 6=∅ for i = 1, 2, and ψFi (α) 6=∅ for i = 3, 4, where ψ is defined
in Section 3.

Assumption 2. (1) Let δ be an essential simple closed curve on the torus F1 such
that dC(F2)(ψF2(γ ), δ)≥ 5.

(2) Let X be a full complex of C(F2) such that dC(F2)(ψF2(γ ),D(HX ))≥ 24, where
HX is the handlebody obtained by attaching 2-handles to F2 along the vertices of
X then 3-handles to cap off the spherical boundary components.
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Let VF2 = V ∪HX , and let VF1,F2 be the handlebody obtained by doing a surgery
on VF2 along the slope δ on F1. By Assumption 1, g(S3)= 1, g(S4)≥ 2, VF1,F2 is
not an I-bundle over Si for i = 3, 4. By Lemma 2.4, diamC(Si )(πSi (D(VF1,F2)))≤ 12
for i = 3, 4.

Assumption 3. (1) Let r be an essential simple closed curve on the torus F3 such
that dC(F3)(ψF3(D(VF1,F2)), r)≥ 24.

(2) Let Y be a full complex of C(F4) such that dC(F4)(ψF4(D(VF1,F2)),D(HY ))≥ 24,
where HY is the handlebody obtained by attaching 2-handles to F4 along the vertices
of Y then 3-handles to cap off the spherical boundary components.

Let WF4 =W∪HY , and let WF3,F4 be the handlebody obtained by doing a surgery
on WF4 along the slope r on F3. Now both M∗=VF2∪S WF4 and VF1,F2∪S WF3,F4 are
Heegaard splittings. Furthermore, we can prove that these two Heegaard splittings
have distance two by arguments in the proof of Proposition 3.1.

Now we consider M∗ = VF2 ∪S WF4 . Note that M∗ has only two toroidal
boundary components. Since the distance of VF2 ∪S WF4 is two, M∗ is irreducible
and ∂-irreducible.

Claim 5.2. M∗ is atoroidal.

Proof. Suppose, on the contrary, that M∗ contains an essential torus T . Since the
distance of VF2 ∪S WF4 is two, VF2 ∪S WF4 is strongly irreducible. By Schultens’
lemma [Schultens 1993], we may assume that each component of T ∩ S is essential
on both T and S. Hence each component of T∩VF2 and T∩WF4 is an incompressible
annulus in VF2 or WF4 .

Let A0 be one component of T ∩VF2 . We first prove that there is one component
of ∂A0, say a0, not isotopic to β.

Now VF2 contains a ∂-compressing disk B∗ of A0. Note that A0 has a ∂-
compression disk B∗ in VF2 . By doing a surgery on A0 along B∗, we get a disk B0

in VF2 . Since A0 is essential, B0 is essential. Suppose that the two components of
∂A0 are isotopic to β. Since β is nonseparating on S, ∂B0 bounds a once-punctured
torus containing β; see Figure 8.

By Assumption 1, β ⊂ S2. Since S2 has genus g − 1 ≥ 2, ∂B0 is not iso-
topic to α = ∂S2. By standard outermost disk argument, ψF2(∂B0) bounds an
essential disk in HX . Therefore dC(F2)(D(HX ), ψF2(β)) ≤ 1. Since γ ∩ β = ∅,
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dC(F2)(ψF2(β), ψF2(γ )) ≤ 2. Hence dC(F2)(D(HX ), ψF2(γ )) ≤ 3. It contradicts
Assumption 2.

Let A1 be a component of T ∩WF4 which is incident to A0 at a0. This means
that a0 is one component of ∂A1. We consider two cases:

Case 1. a0 ∩α =∅ and a0 ∩ γ =∅.
Recall the definition of the surface Sβ . Since a0 is not isotopic to β, a0∩ Sβ 6=∅.

Since α, γ ⊂ Sβ ,

dC(Sβ )(πSβ (a0), α)≤ 1,

dC(Sβ )(γ, πSβ (a0))≤ 1.

Hence dC(Sβ )(α, γ )≤ 2. This contradicts Assumption 1.

Case 2. a0 ∩ (α ∪ γ ) 6=∅.
We assume that a0 ∩α 6=∅. By the above argument, B0 is an essential disk in

VF2 such that ∂B0 is disjoint from a0. Furthermore, ∂B0 is not isotopic to α. Since
B cuts VF2 into F1× I and a handlebody H such that S2∪ B = ∂H , ∂B0∩ S2 6=∅.
Furthermore, all outermost disks of B0 ∩ B on B0 lie in H . Hence a curve in
πS2(∂B0) bounds an essential disk in H . This means a curve in ψF2(∂B0) bounds
an essential disk in HX .

If a0 ∩ γ =∅, then

dC(F2)(ψF2(∂B0), ψF2(γ ))

≤ dC(F2)(ψF2(∂B0), ψF2((a0))+ dC(F2)(ψF2(a0), ψF2(γ ))≤ 4.

It contradicts Assumption 2. Hence a0 ∩ γ 6=∅, and ψF4(a0) 6=∅.
Since A1 is an essential annulus in WF4 , there is an essential disk D0 obtained by

doing boundary compression on A1 in WF4 . Furthermore ∂D0∩a0=∅. Since D cuts
WF4 into F3× I and a handlebody H∗ containing HY , all outermost disks of D0∩D
in D0 lie in H∗. Hence ψF4(∂D0) bounds an essential disk in HY . Hence a curve in
πS4(∂D0) 6=∅. Since ∂D0∩a0=∅, by Lemma 2.2, dC(S4)(πS4(∂D0), πS4(a0))≤ 2.
According to the definition of ψF4 , dC(F4)(ψF4(∂D0), ψF4(a0))≤ 2.

Recall that the essential disk B0 is obtained by doing a boundary compres-
sion on A0 in VF2 . Since the distance of VF2 ∪S WF4 is two, ∂B0 ∩ γ 6= ∅.
Since g(S3) = 1 and g(S4) ≥ 2, VF2 is not an I-bundle over S4. By Lemma 2.4,
dC(S4)(πS4(∂B0), πS4(α))≤ 12. Hence

dC(F4)(ψF4(∂B0), ψF4(α))≤ 12.

Since ∂B0 ∩ a0 =∅,

dC(F4)(ψF4(∂B0), ψF4(a0))≤ 2.
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The above inequalities implies that

dC(F4)(ψF4(∂D0), ψF4(α))

≤ dC(F4)(ψF4(∂D0), ψF4(a0))+ dC(F4)(ψF4(∂B0), ψF4(a0))

+ dC(F4)(ψF4(∂B0), ψF4(α))

≤ 16.

It contradicts Assumption 3. �

Claim 5.3. M∗ is anannular.

Proof. Since the distance of M∗ = VF2 ∪S WF4 is two, M∗ = VF2 ∪S WF4 is strongly
irreducible and boundary irreducible. Suppose, on the contrary, that M∗ contains
an essential annulus A. Then there are two cases:

(a) ∂A lies in the same boundary component of M∗. Without assumption, we
assume that ∂A ⊂ F2. Hence the boundary of closed regular neighborhood of
F2 ∪ A consists of three tori, denoted by F2, T1 and T2. By Claim 5.2, both T1

and T2 are inessential in M∗. Since the boundary of M∗ is not connected, one of
T1 and T2, says T1, is compressible and the other one is boundary parallel. This
means that M∗ is a Seifert manifold, whose orbifold is an annulus with at most one
cone point. By [Moriah and Schultens 1998], each irreducible Heegaard splitting
of M∗ is vertical or horizontal. Hence each irreducible Heegaard splitting of M∗

has genus two. So each genus at least three Heegaard splitting of M∗ is stabilized
and reducible. A contradiction.

(b) ∂A lies in different boundary components of M∗. Then the boundary of A∪∂M∗

consists of three tori, denoted by T , F2 and F4. By Claim 5.2, T is inessential in
M∗. It is not hard to see that T is not boundary parallel to F2 or F4. Then T is
compressible in M∗. So M∗ is a Seifert manifold, whose orbifold is an annulus
with at most one cone point. By [ibid.] again, each irreducible Heegaard splitting
of M∗ is vertical or horizontal. Hence each irreducible Heegaard splitting of M∗

has genus two. So each genus at least three Heegaard splitting of M∗ is stabilized
and reducible. A contradiction. �

Now M∗ is a hyperbolic 3-manifold, M∗ = VF2 ∪S WF4 is a distance-2 Heegaard
splitting of genus g. Furthermore, M∗ contains two toral boundary components F1

and F3. By the main results in [Agol 2010; Lackenby and Meyerhoff 2013], there
are at most ten slopes δ on F1 such that the manifold M∗(δ) obtained by doing Dehn
filling on M∗ along δ is nonhyperbolic. By Assumption 2, there are infinitely many
slopes δ so that M∗(δ) has a distance-2 Heegaard splitting of genus g. Hence there is
at least one slope δ on F1 such that M∗(δ) is hyperbolic and M∗(δ) admits a distance-
2 Heegaard splitting of genus g. Similarly, by Assumption 3, there is a hyperbolic
closed manifold which admits a distance-2 Heegaard splitting of genus g. �
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