Pacific Journal of Mathematics

THE HEEGAARD DISTANCES
COVER ALL NONNEGATIVE INTEGERS
Ruifeng Qiu, YanQing Zou and Qilong Guo

THE HEEGAARD DISTANCES COVER ALL NONNEGATIVE INTEGERS

Ruifeng Qiu, YanQing Zou and Qilong Guo

Abstract

We prove two main results: (1) For any integers $n \geq 1$ and $g \geq 2$, there is a closed 3-manifold M_{g}^{n} admitting a distance- n, genus $-g$ Heegaard splitting, unless $(g, n)=(2,1)$. Furthermore, M_{g}^{n} can be chosen to be hyperbolic unless $(g, n)=(3,1)$. (2) For any integers $g \geq 2$ and $n \geq 4$, there are infinitely many nonhomeomorphic closed 3-manifolds admitting distance- n, genus-g Heegaard splittings.

1. Introduction

Let S be a compact surface with $\chi(S) \leq-2$ but not a 4-punctured sphere. Harvey [1981] defined the curve complex $\mathcal{C}(S)$ as follows: The vertices of $\mathcal{C}(S)$ are the isotopy classes of essential simple closed curves on S, and $k+1$ distinct vertices $x_{0}, x_{1}, \ldots, x_{k}$ determine a k-simplex of $\mathcal{C}(S)$ if and only if they are represented by pairwise disjoint simple closed curves. For two vertices x and y of $\mathcal{C}(S)$, the distance of x and y, denoted by $d_{\mathcal{C}(S)}(x, y)$, is defined to be the minimal number of 1 -simplexes in a simplicial path joining x to y. In other words, $d_{\mathcal{C}(S)}(x, y)$ is the smallest integer $n \geq 0$ such that there is a sequence of vertices $x_{0}=x, \ldots, x_{n}=y$, such that x_{i-1} and x_{i} are represented by two disjoint essential simple closed curves on S for each $1 \leq i \leq n$. For two sets of vertices in $\mathcal{C}(S)$, say X and $Y, d_{\mathcal{C}(S)}(X, Y)$ is defined to be $\min \left\{d_{\mathcal{C}(S)}(x, y) \mid x \in X, y \in Y\right\}$. Now let S be a torus or a oncepunctured torus. In this case, the curve complex $\mathcal{C}(S)$ is defined as follows: The vertices of $\mathcal{C}(S)$ are the isotopy classes of essential simple closed curves on S, and $k+1$ distinct vertices $x_{0}, x_{1}, \ldots, x_{k}$ determine a k-simplex of $\mathcal{C}(S)$ if and only if x_{i} and x_{j} are represented by two simple closed curves c_{i} and c_{j} on S, such that c_{i} intersects c_{j} in just one point for each $0 \leq i \neq j \leq k$.

Let M be a compact orientable 3-manifold. If there is a closed surface S which cuts M into two compression bodies V and W such that $S=\partial_{+} V=\partial_{+} W$, then we say M has a Heegaard splitting, denoted by $M=V \cup_{S} W$, where $\partial_{+} V$ (resp. $\partial_{+} W$) is the positive boundary of V (resp. W). Let $\mathcal{D}(V)$ (resp. $\mathcal{D}(W)$) be the set

[^0]of vertices in $\mathcal{C}(S)$ such that each element of $\mathcal{D}(V)$ (resp. $\mathcal{D}(W)$) represents the boundary of an essential disk in V (resp. W). Then the distance of the Heegaard splitting $V \cup_{S} W$, denoted by $d_{\mathcal{C}(S)}(V, W)$, is defined to be $d_{\mathcal{C}(S)}(\mathcal{D}(V), \mathcal{D}(W))$; see [Hempel 2001].

It is well known that a 3-manifold admitting a high distance Heegaard splitting has good topological and geometric properties. For example, Hartshorn [2002] and Scharlemann [2006] showed that a 3-manifold admitting a high distance Heegaard splitting contains no essential surface with small Euler characteristic number; Scharlemann and Tomova [2006] showed that a high distance Heegaard splitting is the unique minimal Heegaard splitting up to isotopy. By Geometrization theorem and Hempel's work [2001] in Heegaard splittings of Seifert manifolds, a 3-manifold M admitting a distance at least three Heegaard splitting is hyperbolic. From this point of view, Heegaard distance is an active topic in Heegaard splitting. Here we give a brief survey on the existences of high distance Heegaard splittings. Hempel [ibid.] showed that for any integers $g \geq 2$, and $n \geq 2$, there is a 3-manifold that admits a distance at least n Heegaard splitting of genus g. Similar results were obtained using different methods in [Evans 2006; Campisi and Rathbun 2012]. Minsky, Moriah and Schleimer [Minsky et al. 2007] proved the same result for knot complements, and Li [2013] constructed the non-Haken manifolds admitting high distance Heegaard splittings. In general, generic Heegaard splittings have Heegaard distances at least n for any $n \geq 2$; see [Lustig and Moriah 2009; 2010; 2012]. By studying Dehn filling, Ma, Qiu and Zou announced that they had proved that distances of genus-two Heegaard splittings cover all nonnegative integers except one. Recently, Ido, Jang and Kobayashi [Ido et al. 2014] proved that, for any $n>1$ and $g>1$, there is a compact 3-manifold with two boundary components which admits a distance- n Heegaard splitting of genus g; Johnson informed us that he had proved that there is always a closed 3-manifold admitting a distance- n (≥ 5), genus- g Heegaard splitting and a genus larger strongly irreducible Heegaard splitting.

The main result of this paper is the following:
Theorem 1.1. For any integers $n \geq 1$ and $g \geq 2$, there is a closed 3-manifold M_{g}^{n} which admits a distance-n Heegaard splitting of genus g unless $(g, n)=(2,1)$. Furthermore, M_{g}^{n} can be chosen to be hyperbolic unless $(g, n)=(3,1)$.

Remark 1.2. (1) It is well known that there is no distance-one Heegaard splitting of genus two.
(2) Hempel [2001] showed that any Heegaard splitting of a Seifert 3-manifold has distance at most two. Now a natural question is: For any integer $g \geq 2$, is there a closed hyperbolic 3-manifold admitting a distance-2 Heegaard splitting of genus g ?

When $g=2$, Eudave-Muñoz [1999] proved that there is a hyperbolic (1,1)-knot in 3-sphere, say K. In this case, the complement of K, say M_{K}, admits a distance2 Heegaard splitting of genus two. By the main results in [Scharlemann 2006; Kobayashi and Qiu 2008; Agol 2010], there is an essential simple closed curve r on ∂M_{K} such that the manifold obtained by doing a Dehn filling on M_{K} along r, say M_{K}^{r}, is still hyperbolic. Hence M_{K}^{r} admits a distance-2 Heegaard splitting of genus two. Maybe the answer to this question has been well known for $g \geq 3$, but we find no published paper or book related to it.
(3) If M admits a distance-1 Heegaard splitting of genus three, then M contains an essential torus. Hence M is not hyperbolic.
(4) The proof of Theorem 1.1 implies the following fact: Let n be a positive integer, let $\left\{F_{1}, \ldots, F_{n}\right\}$ be a collection of closed orientable surfaces, and let I and $J=\{1, \ldots, n\} \backslash I$ be two subsets of $\{1, \ldots, n\}$. Then, for any integers

$$
g \geq \max \left\{\sum_{i \in I} g\left(F_{i}\right), \sum_{j \in J} g\left(F_{j}\right)\right\}
$$

and $m \geq 2$, there is a compact 3-manifold M admitting a distance- m Heegaard splitting of genus g, denoted by $M=V \cup_{S} W$, such that $F_{i} \subset \partial_{-} V$ for $i \in I$, $F_{j} \subset \partial_{-} W$ for $j \in J$. We omit the proof.

By the arguments in Theorem 1.1, we have:
Theorem 1.3. For any integers $g \geq 2$ and $n \geq 4$, there are infinitely many nonhomeomorphic closed 3-manifolds admitting distance-n Heegaard splittings of genus g.

We organize this paper as follows. In Section 2, we introduce some results on curve complex. Then we will prove Theorem 1.1 for $n \neq 2$ in Section 3, for $n=2$ in Section 5 and Theorem 1.3 in Section 4.

2. Preliminaries of curve complex

Let S be a compact surface of genus at least one and $\mathcal{C}(S)$ the curve complex of S. We say that a simple closed curve c in S is essential if c bounds no disk in S and is not parallel to ∂S. Hence each vertex of $\mathcal{C}(S)$ is represented by the isotopy class of an essential simple closed curve in S. For simplicity, we do not distinguish the essential simple closed curve c and its isotopy class c.

Lemma 2.1 [Minsky 1996; Masur and Minsky 1999; 2000]. $\mathcal{C}(S)$ is connected, and the diameter of $\mathcal{C}(S)$ is infinite.

We say that a collection $\mathcal{G}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ is a geodesic in $\mathcal{C}(S)$ if $a_{i} \subset \mathcal{C}^{0}(S)$ and $d_{\mathcal{C}(S)}\left(a_{i}, a_{j}\right)=|i-j|$, for any $0 \leq i, j \leq n$. And the length of \mathcal{G}, denoted by $\mathcal{L}(\mathcal{G})$, is defined to be n. By the connectedness of $\mathcal{C}^{1}(S)$, there is always a shortest
path in $\mathcal{C}^{1}(S)$ connecting any two vertices of $\mathcal{C}(S)$. For any two vertices α, β with $d_{\mathcal{S}}(\alpha, \beta)=n$, we say that a geodesic \mathcal{G} connects α, β if $\mathcal{G}=\left\{a_{0}=\alpha, \ldots, a_{n}=\beta\right\}$. Now for any two subsimplicial complex $X, Y \subset \mathcal{C}(S)$, we say that a geodesic \mathcal{G} realizes the distance between X and Y if \mathcal{G} connects a vertex $\alpha \in X$ and a vertex $\beta \in Y$ such that $\mathcal{L}(\mathcal{G})=d_{\mathcal{C}(S)}(X, Y)$.

Let F be a compact surface of genus at least one with nonempty boundary. Similar to the definition of the curve complex $\mathcal{C}(F)$, we define the arc and curve complex $\mathcal{A C}(F)$ as follows. Each vertex of $\mathcal{A C}(F)$ is the isotopy class of an essential simple closed curve or an essential properly embedded arc in F, and a set of vertices forms a simplex of $\mathcal{A C}(F)$ if these vertices are represented by pairwise disjoint arcs or curves in F. For any two vertices which are realized by disjoint curves or arcs, we place an edge between them. All the vertices and edges form the 1 -skeleton of $\mathcal{A C}(F)$, denoted by $\mathcal{A C}(F)$. For each edge, we assign it length one. Thus for any two vertices α and β in $\mathcal{A C}^{1}(F)$, the distance $d_{\mathcal{A C}(F)}(\alpha, \beta)$ is defined to be the minimal length of paths in $\mathcal{A C}^{1}(F)$ connecting α and β. Similarly, we can define the geodesic in $\mathcal{A C}(F)$.

When F is a subsurface of S, we say that F is essential in S if the induced map of the inclusion from $\pi_{1}(F)$ to $\pi_{1}(S)$ is injective. Furthermore, we say that F is a proper essential subsurface of S if F is essential in S and at least one boundary component of F is essential in S. For more details, see [Masur and Minsky 2000].

If F is an essential subsurface of S, there is some connection between $\mathcal{A C}(F)$ and $\mathcal{C}(S)$. For any $\alpha \in \mathcal{C}^{0}(S)$, there is an essential simple closed curve $\alpha_{\text {geo }}$ representing α such that the geometric intersection number $i\left(\alpha_{\text {geo }}, \partial F\right)$ is minimal. Hence each component of $\alpha_{\text {geo }} \cap F$ is essential in F. Now for $\alpha \in \mathcal{C}(S)$, let $\kappa_{F}(\alpha)$ be the collection of isotopy classes of the essential components of $\alpha_{\text {geo }} \cap F$.

For any $\gamma \in \mathcal{C}(F)$, we define the set $\sigma_{F}(\gamma)$ as follows: $\gamma^{\prime} \in \sigma_{F}(\gamma)$ if and only if γ^{\prime} is the essential boundary component of a closed regular neighborhood of $\gamma \cup \partial F$. Set $\sigma_{F}(\varnothing)=\varnothing$. Now let $\pi_{F}=\sigma_{F} \circ \kappa_{F}$. Then the map $\pi_{F} \operatorname{links} \mathcal{C}(F)$ and $\mathcal{C}(S)$, which is the subsurface projection map in [ibid.].

We say $\alpha \in \mathcal{C}^{0}(S)$ cuts F if $\pi_{F}(\alpha) \neq \varnothing$. If $\alpha, \beta \in \mathcal{C}^{0}(S)$ both cut F, we denote $d_{\mathcal{C}(F)}(\alpha, \beta)=\operatorname{diam}_{\mathcal{C}(F)}\left(\pi_{F}(\alpha), \pi_{F}(\beta)\right)$. And if $d_{\mathcal{C}(S)}(\alpha, \beta)=1$, then

$$
\begin{aligned}
d_{\mathcal{A C}(F)}(\alpha, \beta) & \leq 1, \\
d_{\mathcal{C}(F)}(\alpha, \beta) & \leq 2,
\end{aligned}
$$

observed by H. Masur and Y. N. Minsky. When the two vertices α and β have distance k in $\mathcal{C}(S)$, we have a direct consequence of the above observation:

Lemma 2.2. Let F and S be as above, $\mathcal{G}=\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$ be a geodesic in $\mathcal{C}(S)$ such that α_{i} cuts F for each $0 \leq i \leq k$. Then $d_{\mathcal{C}(F)}\left(\alpha_{0}, \alpha_{k}\right) \leq 2 k$.

Moreover, Masur and Minsky [ibid.] proved:

Lemma 2.3 (bounded geodesic image theorem). Let F be an essential proper subsurface of S, and let γ be a geodesic segment in $\mathcal{C}(S)$, so that $\pi_{F}(v) \neq \varnothing$ for every vertex v of γ. Then there is a constant \mathcal{M} depending only on S so that $\operatorname{diam}_{\mathcal{C}(F)}\left(\pi_{F}(\gamma)\right) \leq \mathcal{M}$.

When S is closed with $g(S) \geq 2$, there is always a compact 3-manifold M with S as its compressible boundary. Let $\mathcal{D}(M, S)$, called the disk complex for S, be the subset of vertices of $\mathcal{C}(S)$, where each element bounds a disk in M. For an essential simple closed curve on S, say c, we say that it is disk-busting if $S-c$ is incompressible in M.

Now let's consider the subsurface projection of disk complex. The following disk image theorem is proved by Li [2012], Masur and Schleimer [2013] independently.

For any I-bundle J over a bounded compact surface $P, \partial J=\partial_{v} J \cup \partial_{h} J$, where the vertical boundary $\partial_{v} J$ is the I-bundle related to ∂P, and the horizontal boundary $\partial_{h} J$ is the portion of ∂J transverse to the I-fibers.

Lemma 2.4. Let M be a compact orientable and irreducible 3-manifold. S is a boundary component of M. Suppose $\partial M-S$ is incompressible. Let \mathcal{D} be the disk complex of S, and let $F \subset S$ be an essential subsurface. Assume each component of ∂F is disk-busting. Then either
(1) M is an I-bundle over some compact surface, F is a horizontal boundary of the I-bundle and the vertical boundary of this I-bundle is a single annulus. Or,
(2) The image of this complex, $\kappa_{F}(\mathcal{D})$, lies in a ball of radius three in $\mathcal{A C}(F)$. In particular, $\kappa_{F}(\mathcal{D})$ has diameter six in $\mathcal{A C}(F)$. Moreover, $\pi_{F}(\mathcal{D})$ has diameter at most twelve in $\mathcal{C}(F)$.

Hempel introduced a full simplex X on S which is a dimension $3 g(S)-4$ simplex in $\mathcal{C}(S)$. Then after attaching 2-handles and 3-handles along the vertices of X on the same side of S, there is a handlebody H_{X} with $\partial H_{X}=S$.

Lemma 2.5 [Hempel 2001]. Let S be a closed, orientable surface of genus at least two. For any positive number d and any full simplex X of $\mathcal{C}(S)$, there is another full simplex Y of $\mathcal{C}(S)$ such that $d_{\mathcal{C}(S)}\left(\mathcal{D}\left(H_{X}\right), \mathcal{D}\left(H_{Y}\right)\right) \geq d$.

Through subsurface projection, the bounded geodesic image theorem links the geodesic in the curve complex of the entire surface to the curve complex of a proper subsurface. Since the diameter of the curve complex is infinite, we can construct a geodesic of any given length in the curve complex. Furthermore, we require that the constructed geodesic satisfies that both the first and last vertices are represented by separating essential simple closed curves.

We organize our results:
Lemma 2.6. Let g, n, m, s, t be integers such that $g, m, n \geq 2,1 \leq t, s \leq g-1$. Let S_{g} be a closed surface of genus g. Then there are two essential separating curves α

Figure 1. Self-banding.
and β in S_{g} such that $d_{\mathcal{C}\left(S_{g}\right)}(\alpha, \beta)=n$; one component of $S_{g}-\alpha$ has genus t; one component of $S_{g}-\beta$ has genus s. Furthermore, there is a geodesic

$$
\mathcal{G}=\left\{a_{0}=\alpha, a_{1}, \ldots, a_{n-1}, a_{n}=\beta\right\}
$$

in $\mathcal{C}\left(S_{g}\right)$ such that
(1) a_{i} is nonseparating in S_{g} for $1 \leq i \leq n-1$, and
(2) $m \mathcal{M}+2 \leq d_{\mathcal{C}\left(S^{a_{i}}\right)}\left(a_{i-1}, a_{i+1}\right) \leq m \mathcal{M}+6$, where $S^{a_{i}}$ is the surface $S-N\left(a_{i}\right)$ for $1 \leq i \leq n-1$ and \mathcal{M} is the constant in Lemma 2.3.

Proof. Let α be an essential separating curve in S such that one component of $S_{g}-\alpha$, say S_{1}, has genus t.

Suppose first that $n=2$. Let b be a nonseparating curve in S_{g} which is disjoint from α. Let S^{b} be the surface $S_{g}-N(b)$, where $N(b)$ is an open regular neighborhood of b in S_{g}. Then S^{b} is a genus- $(g-1)$ surface with two boundary components. Furthermore, α is an essential separating simple closed curve in S^{b}.

By Lemma 2.1, $\mathcal{C}^{1}\left(S^{b}\right)$ is connected and its diameter is infinite. Hence there is an essential simple closed curve c in S^{b} with $d_{\mathcal{C}\left(S^{b}\right)}(\alpha, c)=m \mathcal{M}+4$. Note that $g-1 \geq 1$. If c is separating in S^{b}, then there is a nonseparating essential simple closed curve c^{*} in S^{b} such that $c \cap c^{*}=\varnothing$. Hence $d_{\mathcal{C}\left(S^{b}\right)}\left(c, c^{*}\right)=1$, and

$$
m \mathcal{M}+3 \leq d_{\mathcal{C}\left(S^{b}\right)}\left(\alpha, c^{*}\right) \leq m \mathcal{M}+5
$$

So there is a nonseparating essential simple closed curve c in S^{b} such that

$$
m \mathcal{M}+3 \leq d_{\mathcal{C}\left(S^{b}\right)}(\alpha, c) \leq m \mathcal{M}+5
$$

Let l be a nonseparating simple closed curve in S^{b} such that l intersects c in one point, and let e be the boundary of the closed regular neighborhood of $c \cup l$ in S^{b}. Then e bounds a once-punctured torus T containing l and c. Since $s \leq g-1$, there is an essential separating simple closed curve β in S^{b} such that β bounds a once-punctured surface of genus s containing T as a subsurface, see Figure 1.

So β is also separating in S_{g}. Now we prove that

$$
d_{\mathcal{C}\left(S_{g}\right)}(\alpha, \beta)=2 \quad \text { and } \quad d_{\mathcal{C}\left(S_{g}\right)}(\alpha, c)=2
$$

Since $\alpha \cap b=\varnothing, \beta \cap b=\varnothing$ and $c \cap b=\varnothing, d_{\mathcal{C}\left(S_{g}\right)}(\alpha, \beta) \leq 2$ and $d_{\mathcal{C}\left(S_{g}\right)}(\alpha, c) \leq 2$. Since $c \cap \beta=\varnothing$, by the assumption on $d_{\mathcal{C}\left(S^{b}\right)}(\alpha, c)$,

$$
m \mathcal{M}+2 \leq d_{\mathcal{C}\left(S^{b}\right)}(\alpha, \beta) \leq m \mathcal{M}+6
$$

So $d_{\mathcal{C}\left(S_{g}\right)}(\beta, \alpha)=2$. For if $d_{\mathcal{C}\left(S_{g}\right)}(\alpha, \beta) \leq 1$, then, by Lemma 2.3, $d_{\mathcal{C}\left(S^{b}\right)}(\alpha, \beta) \leq \mathcal{M}$, a contradiction. Similarly, $d_{\mathcal{C}\left(S_{g}\right)}(\alpha, c)=2$. And

$$
\mathcal{G}=\left\{a_{0}=\alpha, a_{1}=b, a_{2}=\beta\right\} \quad \text { and } \quad \mathcal{G}^{*}=\left\{a_{0}=\alpha, a_{1}=b, a_{2}=c\right\}
$$

are two geodesics of $\mathcal{C}\left(S_{g}\right)$. Furthermore, \mathcal{G} satisfies the conclusion of Lemma 2.6.
Now we prove this lemma by induction on n.
Assumption. Let $k \geq 2$. Suppose that there are two essential separating simple closed curves α and β, and a nonseparating simple closed curve c in S_{g} such that

$$
\begin{aligned}
d_{\mathcal{C}\left(S_{g}\right)}(\alpha, \beta) & =k \\
d_{\mathcal{C}\left(S_{g}\right)}(\alpha, c) & =k
\end{aligned}
$$

and one component of $S_{g}-\alpha$ has genus t while one component of $S_{g}-\beta$ has genus s. Furthermore, there is a geodesic $\mathcal{G}^{*}=\left\{\alpha, a_{1}, \ldots, a_{k-1}, a_{k}=c\right\}$ where a_{i} is nonseparating in S_{g} for each $1 \leq i \leq k$, satisfying

$$
\begin{aligned}
& m \mathcal{M}+3 \leq d_{\mathcal{C}\left(S^{a_{i}}\right)}\left(a_{i-1}, a_{i+1}\right) \leq m \mathcal{M}+5 \quad \text { for any } \quad 1 \leq i \leq k-2 \\
& m \mathcal{M}+3 \leq d_{\mathcal{C}\left(S^{a-1}\right)}\left(a_{k-2}, c\right) \leq m \mathcal{M}+5
\end{aligned}
$$

and a geodesic $\mathcal{G}=\left\{\alpha=a_{0}, a_{1}, \ldots, a_{k-1}, \beta\right\}$ satisfying the conclusions (1) and (2) of Lemma 2.6.

Let S^{c} be the surface $S_{g}-N(c)$, where $N(c)$ is an open regular neighborhood of c in S_{g}. Since c is nonseparating in S_{g}, S^{c} is a genus- $(g-1)$ surface with two boundary components. Since $\mathcal{G}^{*}=\left\{\alpha, a_{1}, \ldots, a_{k-1}, c\right\}$ is also a geodesic connecting α to c, a_{k-1} is an essential nonseparating simple closed curve in S^{c}. By the above argument, there is an essential nonseparating curve h and an essential separating curve e in S^{c} such that
(1) e bounds an once-punctured torus T^{*} containing h;
(2) $m \mathcal{M}+3 \leq d_{\mathcal{C}\left(S^{c}\right)}\left(h, a_{k-1}\right) \leq m \mathcal{M}+5$;
(3) $m \mathcal{M}+2 \leq d_{\mathcal{C}\left(S^{c}\right)}\left(e, a_{k-1}\right) \leq m \mathcal{M}+6$.

And there is also an essential separating simple closed curve γ which bounds a genus-s subsurface of S^{c} containing T^{*} as a subsurface, while γ is also separating

Figure 2. Heegaard splitting I.
in S_{g}. Since h is disjoint from γ,

$$
m \mathcal{M}+2 \leq d_{\mathcal{C}\left(S^{c}\right)}\left(\gamma, a_{k-1}\right) \leq m \mathcal{M}+6
$$

Now we prove that $d_{\mathcal{C}\left(S_{g}\right)}(\alpha, h)=k+1, d_{\mathcal{C}\left(S_{g}\right)}(\alpha, \gamma)=k+1$.
Suppose, on the contrary, that $d_{\mathcal{C}\left(S_{g}\right)}(\alpha, h)=x \leq k$. Then there exists a geodesic $\mathcal{G}_{1}=\left\{\alpha=b_{0}, \ldots, b_{x}=h\right\}$. Note that each of α and h is not isotopic to c and the length is less than or equal to k. Since $d_{\mathcal{C}\left(S_{g}\right)}(\alpha, c)=k, b_{j}$ is not isotopic to c for $1 \leq j \leq x-1$. This means b_{j} cuts S^{c} for each $0 \leq j \leq x$. By Lemma 2.3, $d_{\mathcal{C}\left(S^{c}\right)}(\alpha, h) \leq \mathcal{M}$. Since $d_{\mathcal{C}\left(S_{g}\right)}(\alpha, c)=k, a_{j}$ is not isotopic to c for $0 \leq j \leq k-1$. By using Lemma 2.3 again, $d_{\mathcal{S}^{c}}\left(\alpha, a_{k-1}\right) \leq \mathcal{M}$. Then $d_{\mathcal{C}\left(S^{c}\right)}\left(a_{k-1}, h\right) \leq 2 \mathcal{M}$. It contradicts the choice of h.

Now $\mathcal{G}^{\prime}=\left\{a_{0}=\alpha, a_{1}, \ldots, a_{k-1}, c, \gamma\right\}$ and $\mathcal{G}^{\prime \prime}=\left\{a_{0}=\alpha, a_{1}, \ldots, a_{k-1}, c, h\right\}$ are two geodesics satisfying the conclusion.

3. Proof of Theorem $1.1(n \neq 2)$

In this section, we will prove:
Proposition 3.1. For any positive integers $n \neq 2$ and $g \geq 2$, there is a closed 3-manifold which admits a distance-n Heegaard splitting of genus g unless $(g, n)=$ (2, 1). Furthermore, M_{g}^{n} can be chosen to be hyperbolic unless $(g, n)=(3,1)$.

Proof. We first suppose that $n \geq 3$.
Let S be a closed surface of genus g. By Lemma 2.6, there are two separating essential simple closed curves α and β such that $d_{\mathcal{C}(S)}(\alpha, \beta)=n$ for $n \geq 3$. Let V be the compression body obtained by attaching a 2-handle to $S \times[0,1]$ along $\alpha \times\{1\}$, and let W be the compression body obtained by attaching a 2 -handle to $S \times[-1,0]$ along $\beta \times\{-1\}$. Then $V \cup_{S} W$ is a Heegaard splitting where S is the surface $S \times\{0\}$; see Figure 2 .

Since V contains only one essential disk B with $\partial B=\alpha$ up to isotopy and W contains only one essential disk D with $\partial D=\beta$ up to isotopy, $d_{\mathcal{C}(S)}(V, W)=n$.

Let F_{1} and F_{2} be the components of $\partial_{-} V$, and S_{1} and S_{2} the two components of $S-\alpha$. Similarly, let F_{3} and F_{4} be the components of $\partial_{-} W$, and S_{3} and S_{4} the

Figure 3. A spanning annulus.
two components of $S-\beta$. Now B cuts V into two manifolds $F_{1} \times I$ and $F_{2} \times I$, and D cuts W into two manifolds $F_{3} \times I$ and $F_{4} \times I$; see Figure 2. By Lemma 2.6, we assume that S_{3} is a once-punctured torus.

We first consider the compression body V. We assume that $F_{i}=F_{i} \times\{0\}$, $S_{i} \cup B=F_{i} \times\{1\}$ for $1 \leq i \leq 2$. Let $f_{F_{i}}: S_{i} \cup B \rightarrow F_{i}$ be the natural homeomorphism such that $f_{F_{i}}(x \times\{1\})=x \times\{0\}$ for $i=1,2$. And $f_{F_{i}}$ is well defined. Then, for any two essential simple closed curves $\zeta, \theta \subset S_{i} \cup B$,

$$
d_{\mathcal{C}\left(F_{i}\right)}\left(f_{F_{i}}(\zeta), f(\theta)\right)=d_{\mathcal{C}\left(S_{i} \cup B\right)}(\zeta, \theta) \quad \text { for } i=1,2
$$

see Figure 3. Hence $f_{F_{i}}$ induces an isomorphism from $\mathcal{C}\left(S_{i} \cup B\right)$ to $\mathcal{C}\left(F_{i}\right)$, for any $i=$ 1, 2. Denote the isomorphism by $f_{F_{i}}$ too. Note that the shaded disk in Figure 3 is B.

Let $\iota: S_{i} \rightarrow S_{i} \cup B$ be the inclusion map for $i=1,2$. Note that ∂S_{i} contains only one component. If c is an essential simple closed curve in $S_{i}, l(c)$ is also essential in $S_{i} \cup B$. So, for any two essential simple closed curves $\zeta, \theta \subset S_{i}$,

$$
d_{\mathcal{C}\left(S_{i} \cup B\right)}(\iota(\zeta), \iota(\theta)) \leq d_{S_{i}}(\zeta, \theta) \quad \text { for } i=1,2
$$

Hence ι induces a distance nonincreasing map from $\mathcal{C}\left(S_{i}\right)$ to $\mathcal{C}\left(S_{i} \cup B\right)$, for any $i=1$, 2 . Denote the inclusion map by ι too. Then we define

$$
\psi_{F_{i}}=f_{F_{i}} \circ \iota \circ \pi_{S_{i}}
$$

Since $d_{\mathcal{C}(S)}(\alpha, \beta)=n \geq 2, \alpha \cap \beta \neq \varnothing$. By the argument in Section 2,

$$
\operatorname{diam}_{\mathcal{C}\left(S_{i}\right)}\left(\pi_{S_{i}}(\beta)\right) \leq 2
$$

Hence,

$$
\operatorname{diam}_{\mathcal{C}\left(F_{i}\right)}\left(\psi_{F_{i}}(\beta)\right) \leq 2
$$

We start to attach a handlebody to V along F_{1}. Then we have two cases:
(a) F_{1} is a torus. By Lemma 2.1, there is an essential simple closed curve r in F_{1} such that

$$
\begin{equation*}
d_{\mathcal{C}\left(F_{1}\right)}\left(\psi_{F_{1}}(\beta), r\right) \geq \mathcal{M}+1 \tag{1}
\end{equation*}
$$

Figure 4. Heegaard splitting II.

Let J_{r} be a solid torus such that $\partial J_{r}=F_{1}$, and r bounds an essential disk in J_{r}. In this case, J_{r} contains only one essential disk up to isotopy. Let $V_{F_{1}}$ be the manifold $V \cup J_{r}$.
(b) $g\left(F_{1}\right) \geq 2$. By Lemma 2.5, there is a full simplex X of $\mathcal{C}\left(F_{1}\right)$ such that

$$
d_{\mathcal{C}\left(F_{1}\right)}\left(\mathcal{D}\left(H_{X}\right), \psi_{F_{1}}(\beta)\right) \geq \mathcal{M}+1,
$$

where H_{X} is the handlebody obtained by attaching 2-handles to F_{1} along X then 3-handles to cap off the possible 2 -spheres. In this case, we denote the manifold $V \cup H_{X}$ by $V_{F_{1}}$.

In a word, $V_{F_{1}}$ is a compression body with only one negative boundary component F_{2}, where $\partial_{+} V_{F_{1}}=\partial_{+} W$; see Figure 4. Hence $V_{F_{1}} \cup_{S} W$ is a Heegaard splitting.

Claim 3.2. The Heegaard distance $d_{\mathcal{C}(S)}\left(V_{F_{1}}, W\right)$ is n.
Proof. Suppose, otherwise, that $d_{\mathcal{C}(S)}\left(V_{F_{1}}, W\right)=k<n$. Since W contains only one essential disk D up to isotopy where $\partial D=\beta$, there is an essential disk B_{1} in $V_{F_{1}}$ such that $d_{\mathcal{C}(S)}\left(\partial B_{1}, \beta\right)=k \leq n-1$, i.e, there is a geodesic $\mathcal{G}=\left\{a_{0}=\beta, \ldots, a_{k}=\partial B_{1}\right\}$, where $k \leq n-1$.

Claim 3.3. $a_{j} \cap S_{1} \neq \varnothing$, for any $0 \leq j \leq k$.
Proof. Suppose that $a_{j} \cap S_{1}=\varnothing$ for some $0 \leq j \leq k$. If $a_{k} \cap S_{1}=\varnothing$, then $B_{1} \subset F_{2} \times I$ and B_{1} is inessential in $V_{F_{1}}$. So $j \neq k$. Since $a_{0}=\beta, j \neq 0$. Hence there is a geodesic $\mathcal{G}^{*}=\left\{\beta=a_{0}, \ldots, a_{j}, \alpha\right\}$. It means that $d_{\mathcal{C}(S)}(\alpha, \beta) \leq k<n$, a contradiction.

By Lemma 2.3, $d_{\mathcal{C}\left(S_{1} \cup B\right)}\left(\partial B_{1}, \beta\right) \leq \mathcal{M}$ and $d_{\mathcal{C}\left(F_{1}\right)}\left(\psi_{F_{1}}\left(\partial B_{1}\right), \psi_{F_{1}}(\beta)\right) \leq \mathcal{M}$. Depending on the intersection between B_{1} and B, there are two cases:
(a) $B_{1} \cap B=\varnothing$. Since B_{1} is not isotopic to $B, \psi_{F_{1}}\left(\partial B_{1}\right)$ bounds an essential disk in H_{X} or J_{r} depending on $g\left(F_{1}\right)$, where H_{X} and J_{r} are constructed as above. Then

Figure 5. Heegaard splitting III.
by Lemma 2.3,

$$
\begin{aligned}
& d_{\mathcal{C}\left(F_{1}\right)}\left(\psi_{F_{1}}\left(\partial B_{1}\right), \psi_{F_{1}}(\beta)\right) \leq \mathcal{M}, \\
& d_{\mathcal{C}\left(F_{1}\right)}\left(r, \psi_{F_{1}}(\beta)\right) \leq \mathcal{M} \text { if } g\left(F_{1}\right)=1 \\
& d_{\mathcal{C}\left(F_{1}\right)}\left(\mathcal{D}\left(H_{X}\right), \psi_{F_{1}}(\beta)\right) \leq \mathcal{M} \text { if } g\left(F_{1}\right) \geq 2
\end{aligned}
$$

It contradicts the choice of X or r.
(b) $B_{1} \cap B \neq \varnothing$. Let a be an outermost arc of $B_{1} \cap B$ on B_{1}. It means that a, together with a subarc $\gamma \subset \partial B_{1}$, bounds a disk B_{γ} such that $B_{\gamma} \cap B=a$. Since B cuts $V_{F_{1}}$ into a handlebody H which contains F_{1} and an I-bundle $F_{2} \times I, B_{\gamma} \subset H$. Hence a curve in $\psi_{F_{1}}\left(\partial B_{1}\right)$ bounds an essential disk in H_{X} or J_{r}. By the argument in (a), it is impossible.

Now $V_{F_{1}}$ is a compression body which has only one minus boundary component F_{2}. Since $d_{\mathcal{C}(S)}(\alpha, \beta)=n \geq 3, \beta \cap S_{2} \neq \varnothing$. By Lemmas 2.1 and 2.5, there is always a simplex Y on F_{2} such that $d_{\mathcal{C}\left(F_{2}\right)}\left(\mathcal{D}\left(H_{Y}\right), \psi_{F_{2}}(\beta)\right) \geq \mathcal{M}+1$, where H_{Y} is the handlebody or the solid torus obtained by attaching 2-handles to F_{2} along Y and 3-handles to cap off the possible 2-spheres. Let $V_{F_{1}, F_{2}}$ be the manifold obtained by attaching H_{Y} to $V_{F_{1}}$ along F_{2}; see Figure 5. Then $V_{F_{1}, F_{2}}$ is a handlebody where $\partial_{+} V_{F_{1}, F_{2}}=\partial_{+} W$. Hence $V_{F_{1}, F_{2}} \cup_{S} W$ is also a Heegaard splitting.
Claim 3.4. The Heegaard distance $d_{\mathcal{C}(S)}\left(V_{F_{1}, F_{2}}, W\right)$ is n.
Proof. Suppose, on the contrary, that $d_{\mathcal{C}(S)}\left(V_{F_{1}, F_{2}}, W\right)=k<n$. Since W contains only one essential disk D up to isotopy such that $\partial D=\beta$, there is an essential disk B_{2} in $V_{F_{1}, F_{2}}$ such that $d_{\mathcal{C}(S)}\left(\partial B_{2}, \beta\right)=k$, i.e., there is a geodesic $\mathcal{G}=\left\{a_{0}=\beta, \ldots, a_{k}=\partial B_{2}\right\}$, where $k \leq n-1$. By the definition of Heegaard distance, $a_{j} \cap \partial S_{2} \neq \varnothing$ for $0 \leq j \leq k-1$ when $k \geq 1$.

Note that $\partial B=\alpha$. Depending on the way of intersection between B_{2} and B, there are two cases:
(a) $B_{2} \cap B=\varnothing$. Since $d_{\mathcal{C}(S)}(\alpha, \beta)=n>k, B_{2}$ is not isotopic to B. By the proof of Claim 3.2, ∂B_{2} does not lie in S_{1}. Hence $\partial B_{2} \subset S_{2}$. It implies that $\psi_{F_{2}}\left(\partial B_{2}\right)$ bounds an essential disk in H_{Y}. By Lemma 2.3, $d_{\mathcal{C}\left(S_{2}\right)}\left(\partial B_{2}, \beta\right) \leq \mathcal{M}$. Hence

$$
d_{\mathcal{C}\left(F_{2}\right)}\left(\psi_{F_{2}}\left(\partial B_{2}\right), \psi_{F_{2}}(\beta)\right) \leq \mathcal{M}, \quad d_{\mathcal{C}\left(F_{2}\right)}\left(\mathcal{D}\left(H_{Y}\right), \psi_{F_{2}}(\beta)\right) \leq \mathcal{M} .
$$

It contradicts the choice of Y.
(b) $B_{2} \cap B \neq \varnothing$. Let a^{*} be an outermost arc of $B_{2} \cap B$ on B_{2}. This means that a^{*}, together with a subarc $\gamma^{*} \subset \partial B_{2}$, bounds a disk $B_{\gamma^{*}}$ such that $B_{\gamma^{*}} \cap B=a^{*}$. By the proof of Claim 3.2, $\gamma^{*} \subset S_{2}$. Thus $\psi_{F_{2}}\left(\partial B_{2}\right)$ bounds an essential disk in H_{Y}. By the same argument in Claim 3.2 again, it is impossible.

Until now, we get a distance- n genus- g Heegaard splitting $V_{F_{1}, F_{2}} \cup_{S} W$. In this case, $V_{F_{1}, F_{2}}$ is a handlebody, and W contains only one essential disk D such that $\partial D=\beta$. Furthermore, we cut S along β into two components S_{3} and S_{4}, and cut W along D into two manifolds $F_{3} \times I$ and $F_{4} \times I$ such that $F_{i}=F_{i} \times\{0\}$, and $S_{i} \cup D=F_{i} \times\{1\}$ for $i=3,4$. Now the shaded disk in Figure 3 is D. Let $f_{F_{i}}: S_{i} \cup D \rightarrow F_{i}$ be the natural homeomorphism such that $f_{F_{i}}(x \times\{1\})=x \times\{0\}$ for $i=3,4$. Then, for any two essential simple closed curves $\zeta, \theta \subset S_{i} \cup D$,

$$
d_{\mathcal{C}\left(F_{i}\right)}\left(f_{F_{i}}(\zeta), f_{F_{i}}(\theta)\right)=d_{\mathcal{C}\left(S_{i} \cup D\right)}(\zeta, \theta) \quad \text { for } i=3,4
$$

see Figure 3. Hence $f_{F_{i}}$ induces an isomorphism from $\mathcal{C}\left(S_{i} \cup D\right)$ to $\mathcal{C}\left(F_{i}\right)$, for any $i=3$, 4. Denote the isomorphism by $f_{F_{i}}$ too.

Let $\iota: S_{i} \rightarrow S_{i} \cup D$ be the inclusion map for $i=3,4$. Note that ∂S_{i} contains only one component. If c is an essential simple closed curve in $S_{i}, l(c)$ is also essential in $S_{i} \cup D$. Now, for any two essential simple closed curves $\zeta, \theta \subset S_{i}$,

$$
d_{\mathcal{C}\left(S_{i} \cup D\right)}(\iota(\zeta), \iota(\theta)) \leq d_{S_{i}}(\zeta, \theta) \quad \text { for } i=3,4
$$

Hence ι induces a distance nonincreasing map from $\mathcal{C}\left(S_{i}\right)$ to $\mathcal{C}\left(S_{i} \cup D\right)$, for any $i=3,4$. Denote the inclusion map by ι too. Then we define

$$
\psi_{F_{i}}=f_{F_{i}} \circ \iota \circ \pi_{S_{i}}
$$

Since $V_{F_{1}, F_{2}} \cup_{S} W$ is a distance- $n(\geq 3)$ Heegaard splitting of genus g, and W contains only one essential disk D up to isotopy, S_{3} and S_{4} are incompressible in $V_{F_{1}, F_{2}}$. Hence $\beta=\partial S_{3}=\partial S_{4}$ is disk-busting in $V_{F_{1}, F_{2}}$. Since the Heegaard distance $n \geq 3$ and $g\left(S_{3}\right)=1, V_{F_{1}, F_{2}}$ is not an I-bundle over some compact surface with S_{i} a horizontal boundary of the I-bundle while the vertical boundary of this I-bundle a single annulus for $i=3,4$. By Lemma 2.4, $\operatorname{diam}_{S_{i}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right) \leq 12$ for $i=3,4$. Hence $\operatorname{diam}_{F_{i}}\left(\psi_{F_{i}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right)\right) \leq 12$.

Since F_{3} is a torus and $\operatorname{diam}_{F_{3}}\left(\psi_{F_{3}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right)\right) \leq 12$, by Lemma 2.1, there is an essential simple closed curve δ in F_{3} such that $d_{\mathcal{C}\left(F_{3}\right)}\left(\psi_{F_{3}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right), \delta\right) \geq \mathcal{M}+1$. Let $W_{F_{3}}$ be the manifold obtained attaching a solid J_{δ} to W along F_{3} so that δ bounds a disk in J_{δ}. Then $W_{F_{3}}$ is a compression body.

Since $\operatorname{diam}_{F_{4}}\left(\psi_{F_{4}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right)\right) \leq 12$, by Lemmas 2.1 and 2.5 , there is a simplex Z of $\mathcal{C}\left(F_{4}\right)$ such that

$$
d_{\mathcal{C}\left(F_{4}\right)}\left(\mathcal{D}\left(H_{Z}\right), \psi_{F_{4}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right)\right) \geq \mathcal{M}+1
$$

Figure 6. Heegaard splitting IV.
where H_{Z} is the handlebody or the solid torus obtained by attaching 2-handles to F_{4} along Z then 3-handles to cap off the possible 2-spheres. In this case, let $W_{F_{3}, F_{4}}$ be the handlebody $W_{F_{3}} \cup H_{Z}$ where $\partial_{+} W_{F_{3}, F_{4}}=\partial_{+} V_{F_{1}, F_{2}}$. Now $V_{F_{1}, F_{2}} \cup_{S} W_{F_{3}, F_{4}}$ is a Heegaard splitting of a closed 3-manifold; see Figure 6.

Claim 3.5. The Heegaard distance $d_{\mathcal{C}(S)}\left(V_{F_{1}, F_{2}}, W_{F_{3}, F_{4}}\right)$ is n.
Proof. Let D be the essential disk in $W_{F_{3}, F_{4}}$ bounded by β. Suppose, on the contrary, that the Heegaard distance is $k<n$. Then there is a geodesic

$$
\mathcal{G}=\left\{a_{0}=\partial B_{1}, \ldots, a_{k}=\partial D_{1}\right\}
$$

where $k \leq n-1, B_{1}$ is an essential disk in $V_{F_{1}, F_{2}}$, and D_{1} is an essential disk in $W_{F_{3}, F_{3}} . \alpha_{i} \cap \beta \neq \varnothing$, for any $0 \leq i \leq k-1$. If not, the distance of $V_{F_{1}, F_{2}} \cup_{S} W$ would be at most $k<n$. Similarly, D_{1} is not isotopic to D.

Then we have two cases:
(a) $D_{1} \cap D=\varnothing$. Then ∂D_{1} lies in one of S_{3} and S_{4}. We assume that ∂D_{1} lies in S_{3}. The other case is similar. Hence $\psi_{F_{3}}\left(\partial D_{1}\right)=\delta$. By Lemma 2.3, $\operatorname{diam}_{S_{3}}(\mathcal{D}(\mathcal{G})) \leq \mathcal{M}$. Since $\pi_{S_{3}}\left(\partial B_{1}\right) \in \pi_{S_{3}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right)$, we have

$$
d_{\mathcal{C}\left(S_{3}\right)}\left(\pi_{S_{3}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right), \partial D_{1}\right) \leq \mathcal{M} .
$$

Hence,

$$
d_{\mathcal{C}\left(F_{3}\right)}\left(\psi_{F_{3}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right), \psi_{F_{3}}\left(\partial D_{1}\right)=\delta\right) \leq \mathcal{M}
$$

a contradiction.
(b) $D_{1} \cap D \neq \varnothing$. Let c be an outermost arc of $D_{1} \cap D$ on D_{1}. This means that c, together with a subarc $\delta^{*} \subset \partial D_{1}$, bounds a disk D_{c} such that $D_{c} \cap D=c$. We assume that $\partial D_{c} \subset S_{4}$. The other case is similar. By Lemma 2.3, $\operatorname{diam}_{S_{4}}(\mathcal{G}) \leq \mathcal{M}$. Hence

$$
d_{\mathcal{C}\left(F_{4}\right)}\left(\psi_{F_{4}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right), \psi_{F_{4}}\left(\partial D_{1}\right)\right) \leq \mathcal{M} .
$$

Note that $\psi_{F_{4}}\left(\partial B_{1}\right) \in \mathcal{D}\left(H_{Z}\right)$. Then by the same argument in (a), it is impossible.
Now we prove the proposition for $n=1$. It is known that if a Heegaard splitting has distance 1, there are on the Heegaard surface two disjoint nonisotopic essential simple closed curves that bound essential disks in different compression bodies. That is to say, a distance-1 Heegaard splitting is always weakly reducible. For a reducible Heegaard splitting, since there is an essential simple closed curve in the Heegaard surface bounding essential disks in both of these two compression bodies, it has distance zero. Hence it is only needed to prove the proposition for weakly reducible and irreducible Heegaard splittings.

Let M_{1} and M_{2} be two 3-manifolds with homeomorphic connected boundary. For any homeomorphism f from ∂M_{1} to ∂M_{2}, let M_{f} be the manifold obtained by gluing M_{1} and M_{2} along f. Suppose M_{i} has a Heegaard splitting $V_{i} \cup_{S_{i}} W_{i}$ for $i=1$, 2 . In this case, M_{f} has a natural Heegaard splitting called the amalgamation of $V_{1} \cup_{S_{1}} W_{1}$ and $V_{2} \cup_{S_{2}} W_{2}$. The following facts are well known:
(1) If the gluing map f is complicated enough, then the amalgamation of $V_{1} \cup_{S_{1}} W_{1}$ and $V_{2} \cup_{S_{2}} W_{2}$ is unstabilized; see [Lackenby 2004; Bachman et al. 2006; Li 2010].
(2) If both $V_{1} \cup_{S_{1}} W_{1}$ and $V_{2} \cup_{S_{2}} W_{2}$ have high distance, then the amalgamation of $V_{1} \cup_{S_{1}} W_{1}$ and $V_{2} \cup_{S_{2}} W_{2}$ is unstabilized and irreducible; see [Kobayashi and Qiu 2008; Yang and Lei 2009].

Now let $M_{i}=V_{i} \cup_{S_{i}} W_{i}$ be a Heegaard splitting of genus two such that ∂M_{i} is a torus, and $d\left(S_{i}\right)>8$ for $i=1,2$, then, by the main result in [Kobayashi and Qiu 2008], the amalgamation of $V_{1} \cup_{S_{1}} W_{1}$ and $V_{2} \cup_{S_{2}} W_{2}$, say $V \cup_{S} W$, is unstabilized.

Suppose that $g \geq 4$. By the above argument, there exist a Heegaard splitting $M_{1}=V_{1} \cup_{S_{1}} W_{1}$ of genus $g-1$ such that $g\left(\partial M_{1}\right)=2$ and $d\left(S_{1}\right) \geq 2 g$, and a Heegaard splitting $V_{2} \cup_{S_{2}} W_{2}$ of genus three such that $g\left(\partial M_{2}\right)=2$ and $d\left(S_{2}\right) \geq 2 g$. Hence both M_{1} and M_{2} are hyperbolic. By the main result in [ibid.], the amalgamation of $V_{1} \cup_{S_{1}} W_{1}$ and $V_{2} \cup_{S_{2}} W_{2}$, say $M=V \cup_{S} W$, is unstabilized and weakly reducible. Furthermore, $g(S)=g$. By Thurston's theorem, both M_{1} and M_{2} have hyperbolic structures with totally geodesic boundaries. Hence M is hyperbolic.

Remark 3.6. The strongly irreducible Heegaard splitting $V \cup_{S} W$ where both V and W contain only one essential separating disk up to isotopy independently is always a minimal Heegaard splitting of $M=V \cup_{S} W$. Li [2010] defined a subcomplex $\mathcal{U}\left(F_{1}\right)$, for $F_{1} \subset \partial_{-} V$ and proved that for any handlebody H attached to M along F_{1}, if $d_{\mathcal{C}\left(F_{1}\right)}\left(\mathcal{U}\left(F_{1}\right), \mathcal{D}(H)\right)$ is larger than a constant \mathcal{K} which depends on M and H, then the new generated Heegaard splitting $V_{F_{1}} \cup_{S} W$ is still the minimal Heegaard splitting of $M^{F_{1}}=V_{F_{1}} \cup_{S} W$. Similar to the other boundaries of M. Now in our construction of distance- $n(\geq 2)$ strongly irreducible Heegaard

Figure 7. Heegaard splitting V.
splitting (for $n=2$, see Section 5), we can choose a full simplex X in F_{1} such that $d_{\mathcal{C}\left(F_{1}\right)}\left(\psi_{F_{1}}(\mathcal{D}(W)), \mathcal{D}\left(H_{X}\right)\right)$ is large enough and $d_{\mathcal{C}\left(F_{1}\right)}\left(\mathcal{U}\left(F_{1}\right), \mathcal{D}\left(H_{X}\right)\right)$ is larger than \mathcal{K}. Then the new Heegaard splitting $V_{F_{1}} \cup_{S} W$ is still the minimal Heegaard splitting of $M^{F_{1}}=V_{F_{1}} \cup_{S} W$ and has the same distance.

4. Proof of Theorem 1.3

Proposition 4.1. For any integers $g \geq 2$ and $n \geq 4$, there are infinitely many nonhomeomorphic closed 3-manifolds which admit distance-n, genus-g Heegaard splittings.

Proof. Let S_{g} be a closed surface of genus g. By Lemma 2.6, for each $m \geq 2$, there is a geodesic $\mathcal{G}^{m}=\left\{\alpha=a_{0}^{m}, a_{1}^{m}, \ldots, a_{n-1}^{m}, a_{n}^{m}=\beta^{m}\right\}$ in $\mathcal{C}\left(S_{g}\right)$ such that
(1) a_{i}^{m} is nonseparating in S_{g} for $1 \leq i \leq n-1, \alpha$ and β^{m} are two essential separating simple closed curves on S_{g},
(2) $m \mathcal{M}+2 \leq d_{\mathcal{C}\left(S_{i}^{a_{i}^{m}}\right)}\left(a_{i-1}^{m}, a_{i+1}^{m}\right) \leq m \mathcal{M}+6$, where $S^{a_{i}}$ is the surface $S-N\left(a_{i}\right)$ for $1 \leq i \leq n-1$, and
(3) one component of $S_{g}-\beta^{m}$ has genus one.

Without loss of generality, we assume that $\mathcal{M} \geq 6$. Let M_{m} be the manifold obtained by attaching two 2 -handles to $S_{g} \times[-1,1]$ along $\alpha \times\{-1\}$ and $\beta^{m} \times\{1\}$. We also use S_{g} representing the surface $S_{g} \times\{0\}$. Now M_{m} has a Heegaard splitting as $V_{m} \cup_{S_{g}} W_{m}$, where V_{m} is the compression body obtained by attaching a 2-handle to $S \times[-1,0]$ along $\alpha \times\{-1\}$, and W_{m} is the manifold obtained by attaching a 2-handle to $S \times[0,1]$ along $\beta^{m} \times\{1\}$. Then $\partial_{-} V_{m}$ contains two components F_{1} and F_{2}, and $\partial_{-} W_{m}$ contains two components F_{3}^{m} and F_{4}^{m}; see Figure 7.

By the proof of Theorem $1.1(n \neq 2)$, there is a closed 3-manifold M_{m}^{*} which admits a distance- n Heegaard splitting $V_{m}^{*} \cup_{S_{g}} W_{m}^{*}$, where V_{m}^{*} is obtained by attaching handlebodies $H_{X_{1}}$ and $H_{X_{2}}$ to V_{m} along F_{1} and F_{2}, and W_{m}^{*} is obtained by attaching handlebodies $H_{Y_{1}}$ and $H_{Y_{2}}$ to W_{m} along F_{3}^{m} and F_{4}^{m} such that

$$
\begin{aligned}
& d_{\mathcal{C}\left(F_{i}\right)}\left(\psi_{F_{i}}\left(\beta^{m}\right), \mathcal{D}\left(H_{X_{i}}\right)\right) \geq \mathcal{M}+15 \text { for } i=1,2, \\
& d_{\mathcal{C}\left(F_{i}\right)}\left(\psi_{F_{i}}(\alpha), \mathcal{D}\left(H_{Y_{i}}\right)\right) \geq \mathcal{M}+15 \quad \text { for } i=3,4 .
\end{aligned}
$$

Replace M_{m}^{*}, V_{m}^{*} and W_{m}^{*} by M_{m}, V_{m} and W_{m}. Now

$$
\mathcal{G}^{m}=\left\{\alpha=a_{0}^{m}, a_{1}^{m}, \ldots, a_{n-1}^{m}, a_{n}^{m}=\beta^{m}\right\}
$$

is a geodesic of $\mathcal{C}\left(S_{g}\right)$ realizing the distance of $M_{m}=V_{m} \cup_{S_{g}} W_{m}$.
Claim 4.2. Let

$$
\mathcal{G}=\left\{b_{0}, \ldots, b_{n}\right\}
$$

be a geodesic of $\mathcal{C}\left(S_{g}\right)$ realizing the distance of $V_{m} \cup_{S_{g}} W_{m}$. Then

$$
b_{i}=a_{i}^{m}
$$

for any $1 \leq i \leq n-1$.
Proof. Let S_{1} and S_{2} be the two components of $S_{g}-\alpha$. We assume that b_{0} bounds a disk B_{0} in V_{m}, and b_{n} bounds a disk D_{n} in W_{m}. We first prove that α (resp. β^{m}) is disjoint from b_{1} (resp. b_{n-1}).

Let B be the essential disk bounded by α in V_{m}. Suppose, on the contrary, that $\alpha \cap b_{1} \neq \varnothing$. Hence b_{0} is not isotopic to $a_{0}^{m}=\alpha$. Then there are two cases:
(a) $B_{0} \cap B \neq \varnothing$. Let a be an outermost arc of $B_{0} \cap B$ on B_{0}. It means that a, together with a subarc of $\gamma \subset \partial B_{0}$, bounds a disk B_{γ} such that $B_{\gamma} \cap B=a$. We assume that $\gamma \subset S_{1}$. The other case is similar. By the argument in Section 3, $\psi_{F_{1}}\left(\partial B_{0}\right)$ bounds an essential disk in $H_{X_{1}}$. But with $b_{1} \cap \partial S_{1} \neq \varnothing$, it implies that $d_{\mathcal{C}\left(S_{1}\right)}\left(b_{0}, b_{n}\right) \leq \mathcal{M}$. Hence $d_{\mathcal{C}\left(F_{1}\right)}\left(\psi_{F_{1}}\left(b_{n}\right), \mathcal{D}\left(H_{X_{1}}\right)\right) \leq \mathcal{M}$.
(b) $B_{0} \cap B=\varnothing$. Since $b_{1} \cap \alpha \neq \varnothing, B_{0}$ is not isotopic to B. Then ∂B_{0} is essential in S_{1} or S_{2}. We assume that $\partial B_{0} \subset S_{1}$. The other case is similar. Hence by the arguments in the previous case, $d_{\mathcal{C}\left(F_{1}\right)}\left(\psi_{F_{1}}\left(b_{n}\right), \mathcal{D}\left(H_{X_{1}}\right)\right) \leq \mathcal{M}$.

However, since the Heegaard distance is at least four and $\alpha=\partial S_{1}=\partial S_{2}$ bounds an essential disk in V^{m}, the curve α is disk-busting for W^{m} and W^{m} can not be the I-bundle over S_{1} or S_{2}. Then by Lemma 2.4,

$$
\operatorname{diam}_{\mathcal{C}\left(S_{1}\right)}\left(\mathcal{D}\left(W^{m}\right)\right) \leq 12
$$

and

$$
\operatorname{diam}_{\mathcal{C}\left(S_{2}\right)}\left(\mathcal{D}\left(W^{m}\right)\right) \leq 12
$$

Hence $\operatorname{diam}_{\mathcal{C}\left(F_{1}\right)}\left(\psi_{F_{1}}\left(\mathcal{D}\left(W^{m}\right)\right)\right) \leq 12$ and $\operatorname{diam}_{\mathcal{C}\left(F_{2}\right)}\left(\psi_{F_{2}}\left(\mathcal{D}\left(W^{m}\right)\right)\right) \leq 12$. Together with (a) and (b), by the triangle inequality, we have

$$
d_{\mathcal{C}\left(F_{1}\right)}\left(\psi_{F_{1}}\left(\beta^{m}\right), \mathcal{D}\left(H_{X_{1}}\right)\right) \leq \mathcal{M}+12
$$

It contradicts the choice of X_{1} in F_{1}.
Let $\mathcal{G}^{*}=\left\{\alpha=a_{0}^{m}, b_{1}, \ldots, b_{n-1}, a_{n}^{m}\right\}$ be a new geodesic realizing the distance of $V_{m} \cup_{S_{g}} W_{m}$. Now we prove that b_{1} is isotopic to a_{1}^{m}. The other case is similar.

Suppose, otherwise, that b_{1} is not isotopic to a_{1}^{m}. Note that b_{i} is not isotopic to a_{1}^{m}. Otherwise, the distance of $V_{m} \cup_{S_{g}} W_{m}$ would be at most $n-1$. Let $S^{a_{1}^{m}}$ be the surface $S_{g}-N\left(a_{1}^{m}\right)$, where $N\left(a_{1}^{m}\right)$ is an open regular neighborhood of a_{1}^{m} on S_{g}. By Lemma 2.3,

$$
d_{\mathcal{C}\left(S^{a_{1}^{m}}\right)}\left(\pi_{S^{a_{1}^{m}}}\left(a_{0}^{m}\right), \pi_{S_{1}^{a_{1}^{m}}}\left(a_{n}^{m}\right)\right) \leq \mathcal{M} .
$$

Now let's consider the shorter geodesic

$$
\mathcal{G}^{* *}=\left\{a_{2}^{m}, \ldots, a_{n-1}^{m}, a_{n}^{m}=\beta^{m}\right\}
$$

which is a subgeodesic of

$$
\mathcal{G}^{m}=\left\{\alpha=a_{0}^{m}, a_{1}^{m}, \ldots, a_{n-1}^{m}, a_{n}^{m}=\beta^{m}\right\}
$$

By the definition of geodesic in the curve complex, a_{i}^{m} is not isotopic to a_{1}^{m} for any $i \geq 2$. By Lemma 2.3 again,

$$
d_{\mathcal{C}\left(S^{a_{1}^{m}}\right)}\left(\pi_{S^{a_{1}^{m}}}\left(a_{2}^{m}\right), \pi_{S_{1}^{a_{1}^{m}}}\left(a_{n}^{m}\right)\right) \leq \mathcal{M} .
$$

Hence

$$
d_{\mathcal{C}\left(S_{1}^{a_{1}^{m}}\right)}\left(\pi_{S_{1}^{a_{1}^{m}}}\left(a_{0}^{m}\right), \pi_{S_{1}^{a_{1}^{m}}}\left(a_{2}^{m}\right)\right) \leq 2 \mathcal{M}
$$

This contradicts our assumption on $m \mathcal{M} \leq d_{\mathcal{C}\left(S^{a_{1}^{m}}\right)}\left(\pi_{S^{a_{1}^{m}}}\left(a_{0}^{m}\right), \pi_{S_{1}^{a_{1}^{m}}}\left(a_{2}^{m}\right)\right)$ and $m \geq 2$. Hence b_{1} is isotopic to a_{1}^{m}.

Replace $M_{m}=V_{m} \cup_{S_{g}} W_{m}$ by $M_{m}=V_{m} \cup_{S_{g}^{m}} W_{m}$.
The following claim reveals the connection between geodesics in the curve complex and closed 3-manifolds:

Claim 4.3. For any t, s such that $2 \leq t \neq s \in N$, either
(1) $M_{t}=V_{t} \cup_{S_{g}^{t}} W_{t}$ and $M_{s}=V_{s} \cup_{S_{g}^{s}} W_{s}$ are two different 3-manifolds up to homeomorphism, or,
(2) M_{t} is homeomorphic to M_{s}, but $V_{t} \cup_{S_{g}^{t}} W_{t}$ and $V_{s} \cup_{S_{g}^{s}} W_{s}$ are two different Heegaard splittings of M_{t} up to homeomorphic equivalence.

Proof. Suppose that M_{t} is homeomorphic to M_{s} for some $t, s \in N$ where $2 \leq t, s$ and $t \neq s$. If (2) fails, then $V_{t} \cup_{S_{g}^{t}} W_{t}$ and $V_{s} \cup_{S_{g}^{s}} W_{s}$ are homeomorphic. It means that there is a homeomorphism f from M_{t} to M_{s} such that $f\left(\left(S_{g}^{t} ; V_{t}, W_{t}\right)\right)=\left(S_{g}^{s} ; V_{s}, W_{s}\right)$. We assume that $f\left(V_{t}\right)=V_{s}$ and $f\left(W_{t}\right)=W_{s}$. The other case is similar. It is well known that f induces an isomorphism from $\mathcal{C}\left(S_{g}^{t}\right)$ to $\mathcal{C}\left(S_{g}^{s}\right)$, still denoted by f. Then for the geodesic

$$
\mathcal{G}^{t}=\left\{\alpha=a_{0}^{t}, a_{1}^{t}, \ldots, a_{n-1}^{t}, a_{n}^{t}=\beta^{t}\right\}
$$

which realizes the distance of $V_{t} \cup_{S_{g}^{t}} W_{t}, f(\mathcal{G})$ is also a geodesic in $\mathcal{C}\left(S_{g}^{s}\right)$ realizing the distance of $V_{s} \cup_{S_{g}^{s}} W_{s}$. By Claim 4.2, $f\left(a_{j}^{t}\right)$ is isotopic to a_{j}^{s} for $1 \leq j \leq n-1$.

Since $f\left(a_{2}^{t}\right)$ is isotopic to a_{2}^{s}, we can perform an isotopy on S_{g}^{s} such that the composition of f with the isotopy gives an homeomorphism f^{\star} from S_{g}^{t} to S_{g}^{t} and $f^{\star}\left(a_{2}^{t}\right)=a_{2}^{s}, f^{\star}\left(V_{t}\right)=V_{s}, f^{\star}\left(W_{t}\right)=W_{s}$. It's also true that f^{\star} induces an automorphism from $\mathcal{C}\left(S_{g}^{t}\right)$ to $\mathcal{C}\left(S_{g}^{S}\right)$, denoted by f^{\star} too. Thus $f^{\star}\left(\mathcal{G}^{t}\right)$ is also a geodesic realizing the distance of $V_{s} \cup_{S_{s}^{s}} W_{s}$. By Claim 4.2 again, for any $1 \leq j \leq n-1$, $f^{\star}\left(a_{j}^{t}\right)$ is still isotopic to a_{j}^{s}. Hence $f^{\star}\left(a_{1}^{t}\right)$ (resp. $\left.f^{\star}\left(a_{3}^{t}\right)\right)$ is isotopic to a_{1}^{s} (resp. a_{3}^{t}).

Let $S^{a_{2}^{t}}$ be the surface $S_{g}^{t}-N\left(a_{2}^{t}\right)$, where $N\left(a_{2}^{t}\right)$ is an open regular neighborhood of a_{2}^{t} on S_{g}^{t}, and let $S^{a_{2}^{s}}$ be the surface of $S_{g}^{s}-N\left(a_{2}^{s}\right)$. Then $f^{\star}\left(S^{a_{2}^{t}}\right)=S^{a_{2}^{s}}$ and $\left.f^{\star}\right|_{s_{2}^{a}}$ is a homeomorphism. Hence f^{\star} also induces an isomorphism from $\mathcal{C}\left(S^{a_{2}^{t}}\right)$ to $\mathcal{C}\left(S^{a_{2}^{s}}\right)$, still denoted by f^{\star}. Now we also assume $a_{1}^{t} \cap a_{2}^{t}=\varnothing$ and $a_{3}^{t} \cap a_{2}^{t}=\varnothing$. Thus $f^{\star}\left(a_{1}^{t}\right) \cap\left(f^{\star}\left(a_{2}^{t}\right)=a_{2}^{s}\right)=\varnothing$ and $f^{\star}\left(a_{3}^{t}\right) \cap\left(f^{\star}\left(a_{2}^{t}\right)=a_{2}^{s}\right)=\varnothing$. Then $d_{\mathcal{C}\left(S_{2}^{a t}\right)}\left(a_{1}^{t}, a_{3}^{t}\right)=$ $d_{\mathcal{C}\left(s^{s}{ }_{2}^{s}\right)}\left(f^{\star}\left(a_{1}^{t}\right), f^{\star}\left(a_{3}^{t}\right)\right)$. On the other hand, $f^{\star}\left(a_{1}^{t}\right)$ (resp. $\left.f^{\star}\left(a_{3}^{s}\right)\right)$ must be isotopic to a_{1}^{s} (resp. a_{3}^{s}) in $S^{a_{2}^{s}}$. For if not, then after removing possible bigon capped by them, they bound no annuli in $S^{a_{2}^{s}}$, and thus they bound no annuli and bigon in S_{g}^{s}. By bigon criterion [Farb and Margalit 2012, Proposition 1.7], they realize the geometry intersection number. Since they are isotopic in S_{g}^{s}, they must bound an annulus in S_{g}^{s}. So

$$
\begin{aligned}
d_{\mathcal{C}\left(S^{a_{2}^{t}}\right)}\left(a_{1}^{t}, a_{3}^{t}\right) & =d_{\mathcal{C}\left(S^{a_{2}^{s}}\right)}\left(f^{\star}\left(a_{1}^{t}\right), f^{\star}\left(a_{3}^{t}\right)\right), \\
d_{\mathcal{C}\left(S^{a}\right)}\left(f^{\star}\left(a_{1}^{t}\right), f^{\star}\left(a_{3}^{t}\right)\right) & =d_{\mathcal{C}\left(S_{2}^{a_{2}^{s}}\right)}\left(a_{1}^{s}, a_{3}^{s}\right) .
\end{aligned}
$$

It means that

$$
d_{\mathcal{C}\left(S^{a_{2}^{t}}\right)}\left(a_{1}^{t}, a_{3}^{t}\right)=d_{\mathcal{C}\left(S_{2}^{a_{2}^{s}}\right)}\left(a_{1}^{s}, a_{3}^{s}\right)
$$

However, by the assumption,

$$
\begin{gathered}
t \mathcal{M}+2 \leq d_{\mathcal{C}\left(S^{a_{2}^{t}}\right)}\left(a_{1}^{t}, a_{3}^{t}\right) \leq t \mathcal{M}+6 \\
s \mathcal{M}+2 \leq d_{\mathcal{C}\left(S^{a_{2}^{s}}\right)}\left(a_{1}^{t}, a_{3}^{t}\right) \leq s \mathcal{M}+6 \\
\mathcal{M} \geq 6
\end{gathered}
$$

we have

$$
d_{\mathcal{C}\left(S^{\left.a_{2}^{t}\right)}\right.}\left(a_{1}^{t}, a_{3}^{t}\right) \neq d_{\mathcal{C}\left(S_{2}^{a_{2}^{s}}\right)}\left(a_{1}^{s}, a_{3}^{s}\right)
$$

a contradiction.
The Waldhausen conjecture proved by Johanson [1990; 1995] and Li [2006; 2007] implies that, for any positive integer g, an atoroidal closed 3-manifold M admits only finitely many Heegaard splittings of genus g up to homeomorphism. Since M_{t} admits a Heegaard splitting with distance at least four, it is atoroidal for any $t \geq 2$; see [Hartshorn 2002; Scharlemann 2006]. Now Theorem 1.3 immediately follows from Claim 4.3 and the Waldhausen conjecture.

5. Proof of Theorem $1.1(n=2)$

We rewrite the second part of Theorem 1.1:
Proposition 5.1. For any integer $g \geq 2$, there is a closed hyperbolic 3-manifold which admits a distance-2 Heegaard splitting of genus g.

Proof. By Remark 1.2(2), there is a hyperbolic closed 3-manifold which admits a distance-2 Heegaard splitting of genus two. So we only need to prove it for $g \geq 3$.

Assumption 1. Let S be a closed surface of genus g. By Lemma 2.6, there are two separating essential simple closed curves α and γ such that
(1) $d_{\mathcal{C}(S)}(\alpha, \gamma)=2$,
(2) one component of $S-\alpha$, say S_{1}, has genus one while the component of $S-\alpha$, say S_{2}, has genus $g-1$,
(3) one component of $S-\gamma$, say S_{3}, has genus one, while the component of $S-\gamma$, say S_{4}, has genus $g-1$,
(4) there is a nonseparating slope β on S such that α and γ are disjoint from β, and $d_{\mathcal{C}\left(S^{\beta}\right)}(\alpha, \gamma)>4$, where S^{β} is the surface $S-\eta(\beta)$, and
(5) $\beta \subset S_{2} \cap S_{4}$.

Let V be the compression body obtained by attaching a 2-handle to $S \times[0,1]$ along a separating curve $\alpha \times\{1\}$, and let W be the compression body obtained by attaching a 2 -handle to $S \times[-1,0]$ along a separating curve $\gamma \times\{-1\}$. Denote $S \times\{0\}$ by S too. Then $V \cup_{S} W$ is a Heegaard splitting. Since V contains only one essential disk B with $\partial B=\alpha$ up to isotopy, and W contains only one essential disk D with $\partial D=\gamma$ up to isotopy, $d_{\mathcal{C}(S)}(V, W)=2$.

Let F_{1} and F_{2} be the components of $\partial_{-} V$, such that F_{i} is homeomorphic to $S_{i} \cup B$ for $i=1,2$. Similarly, let F_{3} and F_{4} be the components of $\partial_{-} W$ such that F_{i} is homeomorphic to $S_{i} \cup D$ for $i=3$, 4. Then both S_{1} and S_{3} are once-punctured tori, and F_{1} and F_{3} are two tori; see Figure 2. Furthermore, both F_{3} and F_{4} have genus at least two. Now B cuts V into two manifolds $F_{1} \times I$ and $F_{2} \times I$, and D cuts W into two manifolds $F_{3} \times I$ and $F_{4} \times I$.

Since $d_{\mathcal{C}(S)}(V, W)=2, \gamma \cap S_{i} \neq \varnothing$ for $i=1,2$, and $\alpha \cap S_{i} \neq \varnothing$ for $i=3,4$. Hence $\psi_{F_{i}}(\gamma) \neq \varnothing$ for $i=1,2$, and $\psi_{F_{i}}(\alpha) \neq \varnothing$ for $i=3$, 4 , where ψ is defined in Section 3.

Assumption 2. (1) Let δ be an essential simple closed curve on the torus F_{1} such that $d_{\mathcal{C}\left(F_{2}\right)}\left(\psi_{F_{2}}(\gamma), \delta\right) \geq 5$.
(2) Let X be a full complex of $\mathcal{C}\left(F_{2}\right)$ such that $d_{\mathcal{C}\left(F_{2}\right)}\left(\psi_{F_{2}}(\gamma), \mathcal{D}\left(H_{X}\right)\right) \geq 24$, where H_{X} is the handlebody obtained by attaching 2-handles to F_{2} along the vertices of X then 3-handles to cap off the spherical boundary components.

Figure 8. Essential annulus.
Let $V_{F_{2}}=V \cup H_{X}$, and let $V_{F_{1}, F_{2}}$ be the handlebody obtained by doing a surgery on $V_{F_{2}}$ along the slope δ on F_{1}. By Assumption $1, g\left(S_{3}\right)=1, g\left(S_{4}\right) \geq 2, V_{F_{1}, F_{2}}$ is not an I-bundle over S_{i} for $i=3$, 4. By Lemma 2.4, $\operatorname{diam}_{\mathcal{C}\left(S_{i}\right)}\left(\pi_{S_{i}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right)\right) \leq 12$ for $i=3,4$.

Assumption 3. (1) Let r be an essential simple closed curve on the torus F_{3} such that $d_{\mathcal{C}\left(F_{3}\right)}\left(\psi_{F_{3}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right), r\right) \geq 24$.
(2) Let Y be a full complex of $\mathcal{C}\left(F_{4}\right)$ such that $d_{\mathcal{C}\left(F_{4}\right)}\left(\psi_{F_{4}}\left(\mathcal{D}\left(V_{F_{1}, F_{2}}\right)\right), \mathcal{D}\left(H_{Y}\right)\right) \geq 24$, where H_{Y} is the handlebody obtained by attaching 2-handles to F_{4} along the vertices of Y then 3-handles to cap off the spherical boundary components.

Let $W_{F_{4}}=W \cup H_{Y}$, and let $W_{F_{3}, F_{4}}$ be the handlebody obtained by doing a surgery on $W_{F_{4}}$ along the slope r on F_{3}. Now both $M^{*}=V_{F_{2}} \cup_{S} W_{F_{4}}$ and $V_{F_{1}, F_{2}} \cup_{S} W_{F_{3}, F_{4}}$ are Heegaard splittings. Furthermore, we can prove that these two Heegaard splittings have distance two by arguments in the proof of Proposition 3.1.

Now we consider $M^{*}=V_{F_{2}} \cup_{S} W_{F_{4}}$. Note that M^{*} has only two toroidal boundary components. Since the distance of $V_{F_{2}} \cup_{S} W_{F_{4}}$ is two, M^{*} is irreducible and ∂-irreducible.

Claim 5.2. M^{*} is atoroidal.

Proof. Suppose, on the contrary, that M^{*} contains an essential torus T. Since the distance of $V_{F_{2}} \cup_{S} W_{F_{4}}$ is two, $V_{F_{2}} \cup_{S} W_{F_{4}}$ is strongly irreducible. By Schultens' lemma [Schultens 1993], we may assume that each component of $T \cap S$ is essential on both T and S. Hence each component of $T \cap V_{F_{2}}$ and $T \cap W_{F_{4}}$ is an incompressible annulus in $V_{F_{2}}$ or $W_{F_{4}}$.

Let A_{0} be one component of $T \cap V_{F_{2}}$. We first prove that there is one component of ∂A_{0}, say a_{0}, not isotopic to β.

Now $V_{F_{2}}$ contains a ∂-compressing disk B^{*} of A_{0}. Note that A_{0} has a ∂ compression disk B^{*} in $V_{F_{2}}$. By doing a surgery on A_{0} along B^{*}, we get a disk B_{0} in $V_{F_{2}}$. Since A_{0} is essential, B_{0} is essential. Suppose that the two components of ∂A_{0} are isotopic to β. Since β is nonseparating on $S, \partial B_{0}$ bounds a once-punctured torus containing β; see Figure 8.

By Assumption 1, $\beta \subset S_{2}$. Since S_{2} has genus $g-1 \geq 2, \partial B_{0}$ is not isotopic to $\alpha=\partial S_{2}$. By standard outermost disk argument, $\psi_{F_{2}}\left(\partial B_{0}\right)$ bounds an essential disk in H_{X}. Therefore $d_{\mathcal{C}\left(F_{2}\right)}\left(\mathcal{D}\left(H_{X}\right), \psi_{F_{2}}(\beta)\right) \leq 1$. Since $\gamma \cap \beta=\varnothing$,
$d_{\mathcal{C}\left(F_{2}\right)}\left(\psi_{F_{2}}(\beta), \psi_{F_{2}}(\gamma)\right) \leq 2$. Hence $d_{\mathcal{C}\left(F_{2}\right)}\left(\mathcal{D}\left(H_{X}\right), \psi_{F_{2}}(\gamma)\right) \leq 3$. It contradicts Assumption 2.

Let A_{1} be a component of $T \cap W_{F_{4}}$ which is incident to A_{0} at a_{0}. This means that a_{0} is one component of ∂A_{1}. We consider two cases:

Case 1. $a_{0} \cap \alpha=\varnothing$ and $a_{0} \cap \gamma=\varnothing$.
Recall the definition of the surface S^{β}. Since a_{0} is not isotopic to $\beta, a_{0} \cap S^{\beta} \neq \varnothing$. Since $\alpha, \gamma \subset S^{\beta}$,

$$
\begin{aligned}
& d_{\mathcal{C}\left(S_{\beta}\right)}\left(\pi_{S^{\beta}}\left(a_{0}\right), \alpha\right) \leq 1, \\
& d_{\mathcal{C}\left(S^{\beta}\right)}\left(\gamma, \pi_{S^{\beta}}\left(a_{0}\right)\right) \leq 1 .
\end{aligned}
$$

Hence $d_{\mathcal{C}\left(S^{\beta}\right)}(\alpha, \gamma) \leq 2$. This contradicts Assumption 1.
Case 2. $a_{0} \cap(\alpha \cup \gamma) \neq \varnothing$.
We assume that $a_{0} \cap \alpha \neq \varnothing$. By the above argument, B_{0} is an essential disk in $V_{F_{2}}$ such that ∂B_{0} is disjoint from a_{0}. Furthermore, ∂B_{0} is not isotopic to α. Since B cuts $V_{F_{2}}$ into $F_{1} \times I$ and a handlebody H such that $S_{2} \cup B=\partial H, \partial B_{0} \cap S_{2} \neq \varnothing$. Furthermore, all outermost disks of $B_{0} \cap B$ on B_{0} lie in H. Hence a curve in $\pi_{S_{2}}\left(\partial B_{0}\right)$ bounds an essential disk in H. This means a curve in $\psi_{F_{2}}\left(\partial B_{0}\right)$ bounds an essential disk in H_{X}.

If $a_{0} \cap \gamma=\varnothing$, then

$$
\begin{aligned}
& d_{\mathcal{C}\left(F_{2}\right)}\left(\psi_{F_{2}}\left(\partial B_{0}\right), \psi_{F_{2}}(\gamma)\right) \\
& \leq d_{\mathcal{C}\left(F_{2}\right)}\left(\psi_{F_{2}}\left(\partial B_{0}\right), \psi_{F_{2}}\left(\left(a_{0}\right)\right)+d_{\mathcal{C}\left(F_{2}\right)}\left(\psi_{F_{2}}\left(a_{0}\right), \psi_{F_{2}}(\gamma)\right) \leq 4\right.
\end{aligned}
$$

It contradicts Assumption 2. Hence $a_{0} \cap \gamma \neq \varnothing$, and $\psi_{F_{4}}\left(a_{0}\right) \neq \varnothing$.
Since A_{1} is an essential annulus in $W_{F_{4}}$, there is an essential disk D_{0} obtained by doing boundary compression on A_{1} in $W_{F_{4}}$. Furthermore $\partial D_{0} \cap a_{0}=\varnothing$. Since D cuts $W_{F_{4}}$ into $F_{3} \times I$ and a handlebody H^{*} containing H_{Y}, all outermost disks of $D_{0} \cap D$ in D_{0} lie in H^{*}. Hence $\psi_{F_{4}}\left(\partial D_{0}\right)$ bounds an essential disk in H_{Y}. Hence a curve in $\pi_{S_{4}}\left(\partial D_{0}\right) \neq \varnothing$. Since $\partial D_{0} \cap a_{0}=\varnothing$, by Lemma 2.2, $d_{\mathcal{C}\left(S_{4}\right)}\left(\pi_{S_{4}}\left(\partial D_{0}\right), \pi_{S_{4}}\left(a_{0}\right)\right) \leq 2$. According to the definition of $\psi_{F_{4}}, d_{\mathcal{C}\left(F_{4}\right)}\left(\psi_{F_{4}}\left(\partial D_{0}\right), \psi_{F_{4}}\left(a_{0}\right)\right) \leq 2$.

Recall that the essential disk B_{0} is obtained by doing a boundary compression on A_{0} in $V_{F_{2}}$. Since the distance of $V_{F_{2}} \cup_{S} W_{F_{4}}$ is two, $\partial B_{0} \cap \gamma \neq \varnothing$. Since $g\left(S_{3}\right)=1$ and $g\left(S_{4}\right) \geq 2, V_{F_{2}}$ is not an I-bundle over S_{4}. By Lemma 2.4, $d_{\mathcal{C}\left(S_{4}\right)}\left(\pi_{S_{4}}\left(\partial B_{0}\right), \pi_{S_{4}}(\alpha)\right) \leq 12$. Hence

$$
d_{\mathcal{C}\left(F_{4}\right)}\left(\psi_{F_{4}}\left(\partial B_{0}\right), \psi_{F_{4}}(\alpha)\right) \leq 12
$$

Since $\partial B_{0} \cap a_{0}=\varnothing$,

$$
d_{\mathcal{C}\left(F_{4}\right)}\left(\psi_{F_{4}}\left(\partial B_{0}\right), \psi_{F_{4}}\left(a_{0}\right)\right) \leq 2 .
$$

The above inequalities implies that

$$
\begin{aligned}
d_{\mathcal{C}\left(F_{4}\right)}\left(\psi_{F_{4}}\left(\partial D_{0}\right), \psi_{F_{4}}(\alpha)\right) & \\
\leq & d_{\mathcal{C}\left(F_{4}\right)}\left(\psi_{F_{4}}\left(\partial D_{0}\right), \psi_{F_{4}}\left(a_{0}\right)\right) \\
& +d_{\mathcal{C}\left(F_{4}\right)}\left(\psi_{F_{4}}\left(\partial B_{0}\right), \psi_{F_{4}}\left(a_{0}\right)\right) \\
\leq 16 . & +d_{\mathcal{C}\left(F_{4}\right)}\left(\psi_{F_{4}}\left(\partial B_{0}\right), \psi_{F_{4}}(\alpha)\right)
\end{aligned}
$$

It contradicts Assumption 3.
Claim 5.3. M^{*} is anannular.
Proof. Since the distance of $M^{*}=V_{F_{2}} \cup_{S} W_{F_{4}}$ is two, $M^{*}=V_{F_{2}} \cup_{S} W_{F_{4}}$ is strongly irreducible and boundary irreducible. Suppose, on the contrary, that M^{*} contains an essential annulus A. Then there are two cases:
(a) ∂A lies in the same boundary component of M^{*}. Without assumption, we assume that $\partial A \subset F_{2}$. Hence the boundary of closed regular neighborhood of $F_{2} \cup A$ consists of three tori, denoted by F_{2}, T_{1} and T_{2}. By Claim 5.2, both T_{1} and T_{2} are inessential in M^{*}. Since the boundary of M^{*} is not connected, one of T_{1} and T_{2}, says T_{1}, is compressible and the other one is boundary parallel. This means that M^{*} is a Seifert manifold, whose orbifold is an annulus with at most one cone point. By [Moriah and Schultens 1998], each irreducible Heegaard splitting of M^{*} is vertical or horizontal. Hence each irreducible Heegaard splitting of M^{*} has genus two. So each genus at least three Heegaard splitting of M^{*} is stabilized and reducible. A contradiction.
(b) ∂A lies in different boundary components of M^{*}. Then the boundary of $A \cup \partial M^{*}$ consists of three tori, denoted by T, F_{2} and F_{4}. By Claim 5.2, T is inessential in M^{*}. It is not hard to see that T is not boundary parallel to F_{2} or F_{4}. Then T is compressible in M^{*}. So M^{*} is a Seifert manifold, whose orbifold is an annulus with at most one cone point. By [ibid.] again, each irreducible Heegaard splitting of M^{*} is vertical or horizontal. Hence each irreducible Heegaard splitting of M^{*} has genus two. So each genus at least three Heegaard splitting of M^{*} is stabilized and reducible. A contradiction.

Now M^{*} is a hyperbolic 3-manifold, $M^{*}=V_{F_{2}} \cup_{S} W_{F_{4}}$ is a distance-2 Heegaard splitting of genus g. Furthermore, M^{*} contains two toral boundary components F_{1} and F_{3}. By the main results in [Agol 2010; Lackenby and Meyerhoff 2013], there are at most ten slopes δ on F_{1} such that the manifold $M^{*}(\delta)$ obtained by doing Dehn filling on M^{*} along δ is nonhyperbolic. By Assumption 2, there are infinitely many slopes δ so that $M^{*}(\delta)$ has a distance-2 Heegaard splitting of genus g. Hence there is at least one slope δ on F_{1} such that $M^{*}(\delta)$ is hyperbolic and $M^{*}(\delta)$ admits a distance2 Heegaard splitting of genus g. Similarly, by Assumption 3, there is a hyperbolic closed manifold which admits a distance-2 Heegaard splitting of genus g.

Acknowledgements

The authors thank Mario Eudave-Muñoz and Jiming Ma for some helpful discussions. The authors also thank the referee for the careful reading and pointing out a shorter proof of Claim 5.3.

References

[Agol 2010] I. Agol, "Bounds on exceptional Dehn filling II", Geom. Topol. 14 (2010), 1921-1940.
[Bachman et al. 2006] D. Bachman, S. Schleimer, and E. Sedgwick, "Sweepouts of amalgamated 3-manifolds", Algebr. Geom. Topol. 6 (2006), 171-194. MR 2006k:57057 Zbl 1099.57016
[Campisi and Rathbun 2012] M. M. Campisi and M. Rathbun, "High distance knots in closed 3-manifolds", J. Knot Theory Ramifications 21:2 (2012), Article ID \#1250017. MR 2885479 Zbl 1250.57031
[Eudave-Muñoz 1999] M. Eudave-Muñoz, "Incompressible surfaces in tunnel number one knot complements", Topology Appl. 98:1-3 (1999), 167-189. MR 2000h:57010 Zbl 0934.57012
[Evans 2006] T. Evans, "High distance Heegaard splittings of 3-manifolds", Topology Appl. 153:14 (2006), 2631-2647. MR 2007j:57020 Zbl 1107.57011
[Farb and Margalit 2012] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton University Press, 2012. MR 2012h:57032 Zbl 1245.57002
[Hartshorn 2002] K. Hartshorn, "Heegaard splittings of Haken manifolds have bounded distance", Pacific J. Math. 204:1 (2002), 61-75. MR 2003a:57037 Zbl 1065.57021
[Harvey 1981] W. J. Harvey, "Boundary structure of the modular group", pp. 245-251 in Riemann surfaces and related topics (Stony Brook, NY, 1978), edited by I. Kra and B. Maskit, Ann. of Math. Stud. 97, Princeton University Press, 1981. MR 83d:32022 Zbl 0461.30036
[Hempel 2001] J. Hempel, "3-manifolds as viewed from the curve complex", Topology 40:3 (2001), 631-657. MR 2002f:57044 Zbl 0985.57014
[Ido et al. 2014] A. Ido, Y. Jang, and T. Kobayashi, "Heegaard splittings of distance exactly n ", Algebr. Geom. Topol. 14:3 (2014), 1395-1411. MR 3190598 Zbl 1297.57029
[Johannson 1990] K. Johannson, "Heegaard surfaces in Haken 3-manifolds", Bull. Amer. Math. Soc. (N.S.) 23:1 (1990), 91-98. MR 91d:57010 Zbl 0715.57006
[Johannson 1995] K. Johannson, Topology and combinatorics of 3-manifolds, Lecture Notes in Math. 1599, Springer, Berlin, 1995. MR 98c:57014 Zbl 0820.57001
[Kobayashi and Qiu 2008] T. Kobayashi and R. Qiu, "The amalgamation of high distance Heegaard splittings is always efficient", Math. Ann. 341:3 (2008), 707-715. MR 2009c:57013 Zbl 1140.57012
[Lackenby 2004] M. Lackenby, "The Heegaard genus of amalgamated 3-manifolds", Geom. Dedicata 109 (2004), 139-145. MR 2005i:57021 Zbl 1081.57018
[Lackenby and Meyerhoff 2013] M. Lackenby and R. Meyerhoff, "The maximal number of exceptional Dehn surgeries", Invent. Math. 191 (2013), 241-382.
[Li 2006] T. Li, "Heegaard surfaces and measured laminations, II: Non-Haken 3-manifolds", J. Amer. Math. Soc. 19:3 (2006), 625-657. MR 2007g:57036 Zbl 1108.57015
[Li 2007] T. Li, "Heegaard surfaces and measured laminations, I: The Waldhausen conjecture", Invent. Math. 167:1 (2007), 135-177. MR 2008h:57033 Zbl 1109.57012
[Li 2010] T. Li, "Heegaard surfaces and the distance of amalgamation", Geom. Topol. $14: 4$ (2010), 1871-1919. MR 2011j:57027 Zbl 1207.57031
[Li 2012] T. Li, "Images of the disk complex", Geom. Dedicata 158 (2012), 121-136. MR 2922707 Zbl 1244.57039
[Li 2013] T. Li, "Small 3-manifolds with large Heegaard distance", Math. Proc. Cambridge Philos. Soc. 155:3 (2013), 431-441. MR 3118411 Zbl 06266602
[Lustig and Moriah 2009] M. Lustig and Y. Moriah, "High distance Heegaard splittings via fat train tracks", Topology Appl. 156:6 (2009), 1118-1129. MR 2011b:57025 Zbl 1214.57021
[Lustig and Moriah 2010] M. Lustig and Y. Moriah, "Horizontal Dehn surgery and genericity in the curve complex", J. Topol. 3:3 (2010), 691-712. MR 2011k:57028 Zbl 1245.57022
[Lustig and Moriah 2012] M. Lustig and Y. Moriah, "Are large distance Heegaard splittings generic?", J. Reine Angew. Math. 670 (2012), 93-119. MR 2982693 Zbl 1248.57012
[Masur and Minsky 1999] H. A. Masur and Y. N. Minsky, "Geometry of the complex of curves, I: Hyperbolicity", Invent. Math. 138:1 (1999), 103-149. MR 2000i:57027 Zbl 0941.32012
[Masur and Minsky 2000] H. A. Masur and Y. N. Minsky, "Geometry of the complex of curves, II: Hierarchical structure", Geom. Funct. Anal. 10:4 (2000), 902-974. MR 2001k:57020 Zbl 0972.32011
[Masur and Schleimer 2013] H. A. Masur and S. Schleimer, "The geometry of the disk complex", J. Amer. Math. Soc. 26:1 (2013), 1-62. MR 2983005 Zbl 1272.57015
[Minsky 1996] Y. N. Minsky, "A geometric approach to the complex of curves on a surface", pp. 149-158 in Topology and Teichmüller spaces (Katinkulta, 1995), edited by S. Kojima et al., World Scientific, River Edge, NJ, 1996. MR 2000g:32016 Zbl 0937.30027
[Minsky et al. 2007] Y. N. Minsky, Y. Moriah, and S. Schleimer, "High distance knots", Algebr. Geom. Topol. 7 (2007), 1471-1483. MR 2008k:57016 Zbl 1167.57002
[Moriah and Schultens 1998] Y. Moriah and J. Schultens, "Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal", Topology 37:5 (1998), 1089-1112. MR 99g:57021 Zbl 0926.57016
[Scharlemann 2006] M. Scharlemann, "Proximity in the curve complex: boundary reduction and bicompressible surfaces", Pacific J. Math. 228:2 (2006), 325-348. MR 2008c:57035 Zbl 1127.57010
[Scharlemann and Tomova 2006] M. Scharlemann and M. Tomova, "Alternate Heegaard genus bounds distance", Geom. Topol. 10 (2006), 593-617. MR 2007b:57040 Zbl 1128.57022
[Schultens 1993] J. Schultens, "The classification of Heegaard splittings for (compact orientable surface) $\times S^{1 ",}$, Proc. London Math. Soc. (3) 67:2 (1993), 425-448. MR 94d:57043 Zbl 0789.57012
[Yang and Lei 2009] G. Yang and F. Lei, "On amalgamations of Heegaard splittings with high distance", Proc. Amer. Math. Soc. 137:2 (2009), 723-731. MR 2009h:57038 Zbl 1162.57013

Received June 18, 2014. Revised September 10, 2014.

Ruifeng Qiu
Department of Mathematics
East China Normal University
Dongchuan Road 500
Shanghai, 200241
China
rfqiu@math.ecnu.edu.cn

Yanging Zou
Department of Mathematics
Dalian Nationalities University
Dalian, 116600
China
yanqing@dlnu.edu.cn
Qilong Guo
School of Mathematical Sciences
Peking University
Beijing, 100871
China
guolong1999@yahoo.com.cn

PACIFIC JOURNAL OF MATHEMATICS

msp.org/pjm
Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu
Robert Finn
Department of Mathematics Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555 liu@math.ucla.edu

Jie Qing

Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu
Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk

Paul Yang

Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, LOS ANGELES UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA CRUZ UNIV. OF MONTANA
UNIV. OF OREGON UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH UNIV. OF WASHINGTON WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.
The subscription price for 2015 is US \$420/year for the electronic version, and \$570/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2015 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 275 No. $1 \quad$ May 2015
Constant-speed ramps 1
Oscar M. Perdomo
Surfaces in \mathbb{R}_{+}^{3} with the same Gaussian curvature induced by the 19 Euclidean and hyperbolic metrics Nilton Barroso and Pedro Roitman
Cohomology of local systems on the moduli of principally polarized 39 abelian surfaces
Dan Petersen
On certain dual q-integral equations 63
Ola A. Ashour, Mourad E. H. Ismail and Zeinab S. MANSOUR
On a conjecture of Erdős and certain Dirichlet series 103
Tapas Chatterjee and M. Ram Murty
Normal forms for CR singular codimension-two Levi-flat 115 submanifolds
Xianghong Gong and Jiríl Lebl
Measurements of Riemannian two-disks and two-spheres 167
FLORENT BALACHEFF
Harmonic maps from \mathbb{C}^{n} to Kähler manifolds 183
Jianming Wan
Eigenvarieties and invariant norms 191
Claus M. Sorensen
The Heegaard distances cover all nonnegative integers 231
Ruifeng Qiu, Yanging Zou and Qilong Guo

0030-8730(201505)275:1;1-0

[^0]: Qiu is supported by NSFC 11171108, Zou and Guo are supported by NSFC 11271058.
 MSC2010: primary 57M27; secondary 57M50.
 Keywords: attaching handlebody, Heegaard distance, subsurface projection.

