Vol. 275, No. 2, 2015

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Compact anti-de Sitter 3-manifolds and folded hyperbolic structures on surfaces

François Guéritaud, Fanny Kassel and Maxime Wolff

Vol. 275 (2015), No. 2, 325–359
Abstract

We prove that any non-Fuchsian representation ρ of a surface group into PSL(2, ) is the holonomy of a folded hyperbolic structure on the surface, unless the image of ρ is virtually abelian. Using this idea, we establish that any non-Fuchsian representation ρ is strictly dominated by some Fuchsian representation j, in the sense that the hyperbolic translation lengths for j are uniformly larger than for ρ. Conversely, any Fuchsian representation j strictly dominates some non-Fuchsian representation ρ, whose Euler class can be prescribed. This has applications to the theory of compact anti-de Sitter 3-manifolds.

Keywords
representations of surface groups, folded hyperbolic structures, anti-de Sitter 3-manifolds
Mathematical Subject Classification 2010
Primary: 20H10, 32G15, 53C50
Milestones
Received: 16 November 2013
Revised: 7 July 2014
Accepted: 3 September 2014
Published: 15 May 2015
Authors
François Guéritaud
CNRS and Université Lille 1
Laboratoire Paul Painlevé, Université Lille 1
59655 Villeneuve d’Ascq Cedex
France
Fanny Kassel
CNRS and Université Lille 1
Laboratoire Paul Painlevé, Université Lille 1
59655 Villeneuve d’Ascq Cedex
France
Maxime Wolff
Institut de Mathématiques de Jussieu-Paris Rive Gauche, CNRS
Université Pierre et Marie Curie - Paris 6
4 place Jussieu - case 247
75005 Paris 05
France