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COMBINATORICS OF FINITE ABELIAN GROUPS
AND WEIL REPRESENTATIONS

KUNAL DUTTA AND AMRITANSHU PRASAD

The Weil representation of the symplectic group associated to a finite abelian
group of odd order is shown to have a multiplicity-free decomposition. When
the abelian group is p-primary, the irreducible representations occurring in
the Weil representation are parametrized by a partially ordered set which is
independent of p. As p varies, the dimension of the irreducible representa-
tion corresponding to each parameter is shown to be a polynomial in p which
is calculated explicitly. The commuting algebra of the Weil representation
has a basis indexed by another partially ordered set which is independent of
p. The expansions of the projection operators onto the irreducible invariant
subspaces in terms of this basis are calculated. The coefficients are again
polynomials in p. These results remain valid in the more general setting of
finitely generated torsion modules over a Dedekind domain.

1. Introduction

1A. Overview. Heisenberg groups were introduced by Weyl [1949, Chapter 4] in
his mathematical formulation of quantum kinematics. Best known among them
are the Lie groups whose Lie algebras are spanned by position and momentum
operators which satisfy Heisenberg’s commutation relations. Weyl also considered
Heisenberg groups which are finite modulo their centers, such as the Pauli group
(generated by the Pauli matrices), which he used to characterize the kinematics of
electron spin.

A fundamental property of Heisenberg groups, predicted by Weyl and proved
by Stone [1930] and von Neumann [1931] for real Heisenberg groups is known
as the Stone–von Neumann theorem. Mackey [1949] extended this theorem to
locally compact Heisenberg groups (see Section 1C for the case that is pertinent
to this paper, and [Prasad 2011] for a more detailed and general exposition). By
considering Heisenberg groups associated to finite fields, local fields and adèles,
Weil [1964] demonstrated the importance of Heisenberg groups in number theory.
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Weil exploited the Stone–von Neumann–Mackey theorem to construct a pro-
jective representation of a group of automorphisms of the Heisenberg group, now
commonly known as the Weil representation. Along with parabolic induction and
the technique of Deligne and Lusztig [1976] using l-adic cohomology, the Weil
representation is one of the most important techniques for constructing representa-
tions of reductive groups over finite fields (see [Gérardin 1977; Srinivasan 1979]) or
local fields (see [Gérardin 1975] and Mœglin, Vignéras and Waldspurger [Mœglin
et al. 1987]).

Tanaka [1967a; 1967b] showed how the Weil representation can be used to
construct all the irreducible representations of SL2(Z/pkZ) for odd p by look-
ing at Weil representations associated to the abelian groups Z/pkZ⊕Z/plZ for
l ≤ k. However, most of the literature on Weil representations associated to finite
abelian groups has focused on vector spaces over finite fields and on constructing
representations of classical groups over finite fields.

The representation theory of groups over finite principal ideal local rings was
initiated by Kloosterman [1946], who studied SL2(Z/pkZ). In contrast to general
linear groups over finite fields, whose character theory was worked out by Green
[1955], the representation theory for general linear groups over these rings is quite
hard. It has been shown (by Aubert, Onn, Prasad and Stasinski [Aubert et al.
2010] and Singla [2010]) that this problem is intricately related to the problem of
understanding the representations of automorphism groups of finitely generated
torsion modules over discrete valuation rings. However, explicit constructions have
been available either for a very small class of representations [Hill 1995a; 1995b]
or for a very small class of groups [Onn 2008; Stasinski 2009; Singla 2010].

This article concerns the decomposition of the Weil representation of the full
symplectic group associated to a finite abelian group of odd order (and more
generally, a finite module of odd order over a Dedekind domain) into irreducible
representations. When the module in question is elementary (e.g., (Z/pZ)n for
some odd prime p), it is well-known that the Weil representation, which may
be realized on the space of functions on the abelian group, breaks up into two
irreducible subspaces consisting of even and odd functions. Besides this, only the
case where all the invariant factors are equal (e.g., (Z/pkZ)n) has been understood
completely (see [Prasad 1998, Theorem 2] for the case where k is even, and Cliff,
McNeilly and Szechtman [Cliff et al. 2000] for the general case). A small part of
the decomposition has been explained in the general case by Cliff, McNeilly and
Szechtman [Cliff et al. 2003]. Maktouf and Torasso [2014; 2012] have shown that
the restriction of the Weil representation of a symplectic group over a p-adic field
to a maximal compact subgroup or to a maximal elliptic torus is multiplicity-free
and have given an explicit description of the irreducible subrepresentations.

In this paper, we describe all the invariant subspaces for the Weil representation for
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all finite modules of odd order over a Dedekind domain. To be specific, it is shown
that the Weil representation has a multiplicity-free decomposition (Theorem 5.5).
When the underlying finitely generated torsion module is primary of type λ for
some partition λ (see (4.1) and (10.1)), the irreducible components are parametrized
by elements of a partially ordered set which depends only on λ, and not on the
underlying ring. As the local ring varies, for a fixed element of this partially ordered
set, the dimension of the corresponding representation is shown to be a polynomial
in the order of its residue field whose coefficients do not depend on the ring
(Theorem 9.3). These polynomials are computed explicitly (Theorem 9.12). The
centralizer algebra of the Weil representation also has a combinatorial basis indexed
by a partially ordered set which depends only on λ and not on the underlying ring.
The projection operators onto the irreducible invariant subspaces, when expressed
in terms of this basis, are also shown to have coefficients which are polynomials
in the order of the residue field whose coefficients also do not depend on the ring
(Theorem 9.17), and these polynomials are computed explicitly (Theorems 9.18
and 9.19). Thus the decomposition of the Weil representation into irreducible
invariant subspaces is, despite its apparent complexity, combinatorial in nature.

The results in this paper could serve as a starting point from which more subtle
constructions involving the Weil representation (such as Howe duality) which have
worked so well in the case of classical groups over finite fields can be extended
to groups of automorphisms of finitely generated torsion modules over a discrete
valuation ring.

It is worth noting that every Heisenberg group that is finite modulo its center
is isomorphic to one of the groups considered here (for the precise statement,
see Prasad, Shapiro and Vemuri [Prasad et al. 2010], particularly Section 3 and
Corollary 5.7). For example, the seemingly different Heisenberg groups used by
Tanaka [1967a] to construct representations in the principal series and cuspidal
series of finite SL2 are isomorphic. The difference lies in the realization of the
special linear group as a group of automorphisms. The decomposition of any
Weil representation associated to a finite abelian group will therefore always be a
refinement of one of the decompositions described in this paper.

In order to concentrate on the important ideas without being distracted by tech-
nicalities, the main body of this paper uses the setting of finite abelian groups.
Section 10 explains how to carry over the results to finitely generated torsion
modules over discrete valuation rings and even more generally, finite modules over
Dedekind domains.

To obtain our results, we use the combinatorial theory of orbits in finite abelian
groups developed in [Dutta and Prasad 2011] (the relevant part is recalled in
Section 4A), well-known basic facts about Heisenberg groups and Weil represen-
tations which are recalled in Section 1C (of which simple proofs can be found in
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[Prasad 2009]), and the standard combinatorial theory of partially ordered sets, as
set out in Chapter 3 of the book [Stanley 1997].

1B. Structure of the paper. In Section 1C, we recall the definition of the Heisen-
berg group and its Schrödinger representation. Following Weil [1964], we deduce
the existence of the Weil representation from the irreducibility and uniqueness of
the Schrödinger representation. Section 1D contains a precise formulation of our
main problem — the decomposition of the Weil representation associated to a finite
abelian group into irreducible summands.

In Section 2, we use the primary decomposition of finite abelian groups to
reduce the main problem to the case of primary finite abelian groups. In Section 3
we explain the relationship between the multiplicities of the summands in the
decomposition of the Weil representation and the number of orbits for the action of
the symplectic group on the quotient of the Heisenberg group by its center.

In Section 4A, we recall the combinatorial theory of orbits and characteristic
subgroups in a finite abelian group developed in [Dutta and Prasad 2011]. An
important order-reversing involution on the lattice of characteristic subgroups is
introduced in Section 4B. The theory from that paper is extended to symplectic
orbits on the quotient of the Heisenberg group modulo its center in Section 4C.

Section 5 contains the first major theorem of this article, namely that the de-
composition of the Weil representation associated to a finite abelian group into
simple representations is multiplicity-free (Theorem 5.5). This is achieved by
computing the structure constants of its endomorphism algebra to show that this
algebra is commutative (Lemma 5.3). It follows that the set of invariant subspaces
of the Weil representation, partially ordered by inclusion, forms a Boolean lattice
(Corollary 5.6).

The task of describing the irreducible components of the Weil representation is
carried out using combinatorial analysis in Sections 6–9. In Section 6 two elementary
types of invariant subspaces of the Weil representation are identified. The first type
are the subspaces of L2(A) consisting of even and odd functions; the second type
are associated to so-called small order ideals (these subspaces are far from being
mutually disjoint and irreducible). In Section 7, we describe a tensor product de-
composition of the invariant subspaces associated to small order ideals. In Section 8,
we refine the invariant subspaces of Section 6 to construct a family of invariant
subspaces, which as a poset under inclusion is described in terms of a combinatorially
defined poset Qλ. In Section 9 the irreducible subrepresentations of the Weil rep-
resentations are extracted from the invariant subspaces of Section 8 (Theorem 9.3).
The rest of Section 9 is devoted to the explicit computation of the dimensions of these
subrepresentations as well as formulae for the orthogonal projections onto them in
terms of a natural basis for the endomorphism algebra of the Weil representation.
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Finally, in Section 10 we explain how to extend the ideas of this paper to analyze
the Weil representation associated to any finite module over a Dedekind domain.

1C. Basic definitions. Let A be a finite abelian group of odd order. Let Â denote
the Pontryagin dual of A. This is the group of all homomorphisms A→ U (1),
where U (1) denotes the group of unit complex numbers. Let K = A× Â. For each
k = (x, χ) ∈ K , the unitary operator on L2(A) defined by

Wk f (u)= χ(u− x/2) f (u− x) for all f ∈ L2(A), u ∈ A

is called a Weyl operator. These operators satisfy

Wk Wl = c(k, l)Wk+l for all k, l ∈ K ,

where, if k = (x, χ) and l = (y, λ), then

c(k, l)= χ(y/2)λ(x/2)−1.

Observe that c(k, l) is bimultiplicative; for example, c(k, l+ l ′)= c(k, l)c(k, l ′) for
all k, l, l ′ ∈ K .

The subgroup
H = {cWk | c ∈U (1), k ∈ K }

of the group of unitary operators on L2(A) is called the Heisenberg group associated
to A. This group is known to physicists as a generalized Pauli group or a Weyl–
Heisenberg group. As defined here, it comes with a unitary representation on L2(A),
called the Schrödinger representation. Mackey’s generalization [1949, Theorem 1]
of the Stone–von Neumann theorem applies:

Theorem 1.1. The Schrödinger representation of H is irreducible. Let U (H) be
the group of unitary operators on a Hilbert space H, and let ρ : H → U (H) be
an irreducible unitary representation of H such that ρ(cW0) = c IdH for every
c ∈ U (1). Then there exists, up to scaling, a unique isometry W : L2(A)→ H

such that
W Wk = ρ(Wk)W for all k ∈ K .

If g is an automorphism of K such that

(1.2) c(gk, gl)= c(k, l) for all k, l ∈ K ,

then ρg : H →U (L2(A)) defined by

ρg(cWk)= cWg(k) for all c ∈U (1), k ∈ K

is an irreducible unitary representation of H on L2(A) such that ρ(cW0)= c IdL2(A).
By Theorem 1.1, there exists a unitary operator Wg on L2(A) such that

WgWk =Wg(k)Wg for all k ∈ K .
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Writing W ∗g for the adjoint of the unitary operator Wg, we have:

(1.3) WgWk W ∗g =Wg(k) for all k ∈ K .

If g1 and g2 are two such automorphisms, both Wg1g2 and Wg1 Wg2 intertwine the
Schrödinger representation with ρg1g2 , and hence must differ by a unitary scalar:

Wg1 Wg2 = c(g1, g2)Wg1g2 for some c(g1, g2) ∈U (1).

Let Sp(K ) be the group of all automorphisms g of K which satisfy (1.2). We
have shown that g 7→Wg is a projective representation of Sp(K ) on L2(A). This
representation is known as the Weil representation.

Remark 1.4. The operators Wg, for g ∈ Sp(K ) can be normalized in such a way
that c(g1, g2)= 1 for all g1, g2 (see Remark 6.6). Thus the Weil representation can
be taken to be an ordinary representation of Sp(K ).

Remark 1.5. The overlap of notation between the Weyl operators and the Weil
representation is suggested by (1.3), which implies that they can be combined
to construct a representation of H o Sp(K ). The operators in this representation
are precisely the unitary operators which normalize H . The resulting group is
sometimes known as a Clifford group or a Jacobi group. It plays a prominent role
in the stabilizer formalism for quantum error-correcting codes (see Chapter X of
[Nielsen and Chuang 2000]).

1D. Formulation of the problem. We investigate the decomposition

(1.6) L2(A)=
⊕

π∈Sp(K )∧
mπHπ

into irreducible representations. Here Sp(K )∧ denotes the set of equivalence classes
of irreducible unitary representations of Sp(K ) and, for each π : Sp(K )→U (Hπ )

in Sp(K )∧, mπ denotes the multiplicity of π in the Weil representation. Although
the Weil representation is defined only up to multiplication by a scalar representation,
the multiplicities and dimensions of the irreducible representations occurring in the
decomposition are invariant under such twists (see Remark 2.2). As explained in
Section 1A, the outcome of this paper is an understanding of this decomposition.

2. Product decompositions

We shall recall and apply a well-known observation on Weil representations associ-
ated to a product of abelian groups (see [Gérardin 1977, Corollary 2.5]).

2A. Projective equivalence. Since Weil representations are defined only up to
scalar factors, we use a definition of equivalence of representations that is weaker
than unitary equivalence:
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Definition 2.1 (Projective equivalence). Let G be a group and ρi : G→U (Hi ) for
i = 1, 2 be two unitary representations of G. We say that ρ1 and ρ2 are projectively
equivalent if there exists a homomorphism χ : G→U (1) such that ρ2 is unitarily
equivalent to ρ1⊗χ .

Remark 2.2. If, as a representation of G,

Hi =
⊕
π∈Ĝ

m(i)
π Hπ

is the decomposition of Hi into irreducibles for representations as in Definition 2.1,
then m(2)

π⊗χ = m(1)
π , so there is a bijection between the sets of irreducible rep-

resentations of G that appear in H1 and H2 which preserves multiplicities and
dimensions.

2B. Tensor product decomposition. If A admits a product decomposition A =
A′× A′′, then

(2.3) L2(A)= L2(A′)⊗ L2(A′′).

Let K ′ = A′× (A′)∧ and K ′′ = A′′× (A′′)∧. Thus K = K ′× K ′′. Let S′ and S′′

be subgroups of Sp(K ′) and Sp(K ′′) respectively. Then S = S′× S′′ is a subgroup
of Sp(K ).

Theorem 2.4. The Weil representation of S on L2(A) is projectively equivalent
to the tensor product of the Weil representation of S′ on L2(A′) and the Weil
representation of S′′ on L2(A′′).

Proof. By (1.3), the Weil representations of S′ and S′′ satisfy

Wg′Wk′W ∗g′ =Wg′(k′) and Wg′′Wk′′W ∗g′′ =Wg′′(k′′)

for all g′ ∈ S′, g′′ ∈ S′′, k ′ ∈ K ′ and k ′′ ∈ K ′′, whence

(Wg′ ⊗Wg′′)(Wk′ ⊗Wk′′)(Wg′ ⊗Wg′′)
∗
=Wg′(k′)⊗Wg′′(k′′).

Since Wk′ ⊗Wk′′ coincides with W(k′,k′′) under the isomorphism (2.3), Wg′ ⊗Wg′′

satisfies the defining identity (1.3) for the Weil representation of S on L2(A). �

2C. Primary decomposition. A finite abelian group has a primary decomposition

A =
∏

p prime

Ap,

where Ap is the subgroup of elements of A annihilated by some power of p.
Writing K p for Ap× (Ap)

∧,

K =
∏

p

K p and Sp(K )=
∏

p

Sp(K p).
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Theorem 2.4, when applied to the primary decomposition, gives:

Corollary 2.5. The Weil representation of Sp(K ) on L2(A) is projectively equiv-
alent to the tensor product over those primes p for which Ap 6= 0 of the Weil
representations of Sp(K p) on L2(Ap).

In view of Corollary 2.5, it suffices to consider the case where A is a finite
abelian p-group for some odd prime p.

3. Multiplicities and orbits

We now recall the relation between the decomposition of the Weil representation
and orbits in K [Prasad 2009].

3A. An orthonormal basis.

Lemma 3.1. The set {Wk | k ∈ K } of Weyl operators is an orthonormal basis of
EndC L2(A).

Proof. For each k ∈ K and T ∈ EndC L2(A), let

τ(k)T =Wk T W ∗k .

Then k 7→ τ(k) is a unitary representation of K on EndC L2(A). If k = (x, χ) and
l = (y, λ) are two elements of K , then

τ(k)Wl =Wk Wl W ∗k
=Wk Wl(Wl Wk)

∗Wl

= c(k, l)Wk+lc(l, k)−1W ∗l+k Wl

= χ(y)λ(x)−1Wl .

Thus the Wl are eigenvectors for the action of K with distinct eigencharacters. There-
fore they form an orthonormal set of operators. Since |K |= |A|2=dim EndC L2(A),
this orthonormal set is a basis. �

3B. Endomorphisms. By Lemma 3.1, every T ∈ EndC L2(A) has a unique expan-
sion

(3.2) T =
∑
k∈K

Tk Wk, with each Tk ∈ C.

Theorem 3.3. For every subgroup S of Sp(K ),

EndS L2(A)= {T ∈ EndC L2(A) | Tk = Tg(k) for all g ∈ S, k ∈ K }.

Proof. Note that T ∈EndS L2(A) if and only if WgT W ∗g =T for all g∈ S. Expanding
T as in (3.2) and using the defining identity (1.3) for Wg gives the theorem. �
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Now suppose that as a representation of S, L2(A) has the decomposition

L2(A)=
⊕
π∈Ŝ

mπ,SHπ .

Then, together with Schur’s lemma, Theorem 3.3 implies:

Corollary 3.4. If S\K denotes the set of S-orbits in K ,∑
π∈Ŝ

m2
π,S = |S\K |.

4. Orbits and characteristic subgroups

We first recall the theory of orbits (under the full automorphism group) and charac-
teristic subgroups in a finite abelian group from [Dutta and Prasad 2011]. We then
see how it applies to Sp(K )-orbits in K .

4A. Orbits. Every finite abelian p-group is isomorphic to

(4.1) A = Z/pλ1Z× · · ·×Z/pλl Z

for a unique sequence λ= (λ1 ≥ · · · ≥ λl) of positive integers (in other words, a par-
tition). Henceforth, we assume that A is of the above form. For each partition λ, let

Pλ =
{
(v, k) | k ∈ {λ1, . . . , λl}, 0≤ v < k

}
.

Say that (v, k)≥ (v′, k ′) if and only if v′ ≥ v and k ′− v′ ≤ k− v. This relation is a
partial order on Pλ. For x ∈ Z/pkZ, let

v(x)=max{0≤ v ≤ k | x ∈ pvZ/pkZ}.

For a= (a1, . . . , al)∈ A, let I (a) be the order ideal in Pλ generated by (v(ai ), λi )

with ai 6= 0 in Z/pλi Z.

Example 4.2. When λ = (5, 4, 4, 1) and a = (p4, p2, p3, 0), the Hasse diagram
of Pλ is shown on the left hand side of Figure 1. The ideal I (a) is represented by
black dots on the right hand side of Figure 1. Note that the elements of Pλ are
arranged in such a way that k is constant along verticals and decreases from left
to right.

Theorem 4.3 [Dutta and Prasad 2011, Theorem 4.1]. For a, b ∈ A, the element b
is the image of a under an endomorphism of A if and only if I (b)⊂ I (a).

Given x = (v, k) ∈ Pλ, let e(x) denote the element in A all of whose entries are
zero except for the leftmost entry with λi = k, which is pv. For an order ideal I
in Pλ, denote by max I the set of maximal elements in I , and let

a(I )=
∑

x∈max I

e(x).
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(4, 5)

(3, 4)

(3, 5)

(2, 4)

(2, 5)

(1, 4)

(1, 5)

(0, 4)

(0, 5)

(3, 4)

(0, 1)

(0, 4)

•

•

•

•

◦

◦

◦

◦

◦

◦

◦

◦

Figure 1. Left: the poset P(5,4,4,1). Right: the order ideal I (p4, p2, p3, 0).

Let G denote the group of all automorphisms of A.

Theorem 4.4 [Dutta and Prasad 2011, Theorem 5.4]. The map I 7→ a(I ) gives rise
to a bijection from the set of order ideals in Pλ to the set of G-orbits in A.

The elements a(I ), as I varies over the order ideals in Pλ, can be taken as
representatives of the orbits. The inverse of the function of Theorem 4.4 is given
by a 7→ I (a).

4B. Characteristic subgroups. For an order ideal I ⊂ Pλ,

AI = {a ∈ A | I (a)⊂ I }

is a characteristic subgroup of A of order p[I ], where [I ] denotes the number of
elements in I , counted with multiplicity (the multiplicity of (v, k) is the number of
times that k occurs in the partition λ; see [ibid., Theorem 7.3]). Every characteristic
subgroup of A is of the form AI for some order ideal I ⊂ Pλ. In fact, I 7→ AI is
an isomorphism of the lattice of order ideals in Pλ onto the lattice of characteristic
subgroups of A. Thus, the lattice of characteristic subgroups of A is a finite
distributive lattice [Stanley 1997, Section 3.4]. If B is any group isomorphic
to A, and φ : A→ B is an isomorphism, then since AI is characteristic, the image
BI =φ(AI ) does not depend on the choice of φ. Consequently, it makes sense to talk
of the subgroup ÂI of Â, which is the image of AI under any isomorphism A→ Â.

For each order ideal I ⊂ Pλ, its annihilator

A⊥I := {χ ∈ Â | χ(a)= 1 for all a ∈ AI }

is a characteristic subgroup of Â. Therefore, there exists an order ideal I⊥ ⊂ Pλ
such that A⊥I = ÂI⊥ . Clearly, I 7→ I⊥ is an order-reversing involution of the set
of order ideals in Pλ. The Hasse diagram of Pλ has a horizontal axis of symmetry.
I⊥ can be visualized as the complement of the reflection of I about this axis of I
(see Figure 2).
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•

•

•

•

◦

◦

◦

◦

◦

◦

◦

◦

flip
−→

◦

◦

◦

◦

◦

•

•

•

•

◦

◦

◦

Figure 2. The involution on order ideals. Left: I (black dots).
Right: I⊥ (white dots).

4C. Symplectic orbits.

Theorem 4.5. The map I 7→ (a(I ), 0) (here 0 denotes the identity element of Â)
gives rise to a bijection from the set of order ideals in Pλ to the set of Sp(K )-orbits
in K .

Proof. We first show that each Sp(K )-orbit in K intersects A×{0}. Let e1, . . . , el

denote the generators of A, so ei is the element whose i-th coordinate is 1 and all
other coordinates are 0. Each element a ∈ A has an expansion

(4.6) a = a1e1+ · · ·+ alel with 0≤ ai < pλi for each i ∈ {1, . . . , l}.

Let ε j denote the unique element of Â for which

ε j (ek)= e2π iδ jk p−λ j
.

Then each element α ∈ Â has an expansion

(4.7) α = α1ε1+ · · ·+αlεl with 0≤ αi < pλi for each i ∈ {1, . . . , l}.

Let k = (a, α) ∈ K , with a and α as in (4.6) and (4.7), respectively. The automor-
phism of K which takes ei 7→ εi and εi 7→−ei while preserving all other generators
e j and ε j with j 6= i , lies in Sp(K ). In terms of coordinates, it has the effect of
interchanging ai and αi up to sign. Using this automorphism, we may arrange that
v(ai )≤ v(αi ) for each i . Therefore, there exists an integer bi such that

bi ai ≡ αi mod pλi .

Let Bi : A→ Â be the homomorphism which takes ei to biεi and all other gen-
erators e j with j 6= i to 0. Then the automorphism of K which takes (a, α) to
(a, α−Bi (a)) also lies in Sp(K ). This has the effect of changing αi to 0. Repeating
this process for each i allows us to reduce (a, α) to (a, 0) as claimed.
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Now, for every automorphism g of A, the automorphism (a, α) 7→ (g(a), ĝ−1(α))

lies in Sp(K ) (here ĝ is the automorphism of Â defined by ĝ(χ)(a)= χ(g(a)) for
a ∈ A and χ ∈ Â). Such automorphisms can be used to reduce (a, 0) further to an
element of the form (a(I ), 0) for some order ideal I ⊂ Pλ. Since, for distinct I , these
elements are in distinct Aut(K )-orbits, they must also be in distinct Sp(K )-orbits.

�

5. Multiplicity one

5A. Relation to commutativity. Suppose that the decomposition of the Weil rep-
resentation into irreducible representations is given by

(5.1) L2(A)=
⊕

π∈Sp(K )∧
mπHπ .

Then by Schur’s lemma, the endomorphism algebra of L2(A) is a direct sum of
matrix algebras:

EndSp(K ) L2(A)=
⊕

π∈Sp(K )∧
Mmπ×mπ

(C).

It follows that mπ ≤ 1 for every π ∈ Sp(K )∧ if and only if the ring EndSp(K ) L2(A)
of endomorphisms of the Weil representations is commutative. For each order
ideal I ⊂ Pλ, let OI denote the Sp(K )-orbit of (a(I ), 0) in K and let

TI =
∑
k∈OI

Wk .

By Theorems 3.3 and 4.5, the set of all TI as I varies over the order ideals I ⊂ Pλ
is a basis of EndSp(K ) L2(A).

Let K I = AI × ÂI ( ÂI as in Section 4B) and define

(5.2) 1I =
∑
k∈K I

Wk .

Since K I =
⊔
J⊂I

OJ ,

1I =
∑
J⊂I

TJ .

Thus, the elements 1I are obtained from the basis elements TI of EndSp(K ) L2(A)
by a unipotent upper-triangular transformation. Hence,

{1I | I ∈ J (Pλ)}

is also a basis of EndSp(K ) L2(A). Thus if1I commutes with1J for all I, J ∈ J (Pλ),
then EndSp(K ) L2(A) is a commutative algebra.
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Therefore, in order to show that mπ ≤ 1 for each π ∈ Sp(K )∧, it suffices to show
that for any two order ideals I, J ⊂ Pλ, 1I and 1J commute. This will follow
from the calculation in Section 5B.

5B. Calculation of the product.

Lemma 5.3. For any two order ideals I, J ⊂ Pλ,

1I1J = |K I∩J |1(I∩J )⊥∩(I∪J ).

Proof. The coefficient of Wk in 1I1J is

(5.4)
∑

x∈K I ,y∈K J
x+y=k

c(x, y).

From the definition of I (a), it is easy to see that I (a+b)⊂ I (a)∪ I (b). Therefore,
AI + AJ ⊂ AI∪J and hence K I + K J ⊂ K I∪J . It follows that the sum (5.4) is 0
unless k ∈ K I∪J . Suppose x0 ∈ K I and y0 ∈ K J are such that x0+ y0 = k. Then
the sum (5.4) becomes∑

l∈K I∩K J

c(x0+ l, y0− l)= c(x0, y0)
∑

l∈K I∩K J

c(l, y0)c(l, x0)

= c(x0, y0)
∑

l∈K I∩K J

c(l, k)

=

{
c(x0, y0)|K I ∩ K J | if k ∈ (K I ∩ K J )

⊥,

0 otherwise.

Observe that K I∩K J =K I∩J . It remains to show that, for every k∈K I∪J , there exist
x0∈ K I and y0∈ K J such that k= x0+y0 and c(x0, y0)=1. Since1I1J is constant
on Sp(K )-orbits in K , we may use Theorem 4.5 to assume that k = (a(I ′), 0) for
some order ideal I ′ ⊂ I ∪ J . We have max I ′ ⊂ I ∪ J . Let I ′1 be the order ideal
generated by (max I ′) ∩ I , and I ′2 be the order ideal generated by (max I ′)− I .
Then a(I ′) = a(I ′1)+ a(I ′2). Clearly (a(I ′1), 0) and (a(I ′2), 0) have the properties
required of x0 and y0. �

5C. Multiplicity one. We have proved:

Theorem 5.5. In the decomposition (5.1) of the Weil representation of Sp(K ),
mπ ≤ 1 for every isomorphism class π of irreducible representations of Sp(K ).

Every Sp(K )-invariant subspace is completely determined by the subset of
Sp(K )∧ consisting of representations that occur in it. Therefore:

Corollary 5.6. The set of Sp(K )-invariant subspaces of L2(A), partially ordered
by inclusion, forms a finite Boolean lattice.
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6. Elementary invariant subspaces

In this section, we construct some elementary invariant subspaces for the Weil
representation of Sp(K ) on L2(A). In Section 8, we will use these subspaces and
the results of Section 7 to construct enough invariant subspaces to carve out all the
irreducible subspaces.

6A. Small order ideals.

Definition 6.1 (small order ideal). An order ideal I ⊂ Pλ is said to be small if
I ⊂ I⊥, with I⊥ as in Section 4B.

For example, the order ideal I in Figure 2 is small.

6B. Interpreting some 1I .

Lemma 6.2. For each order ideal I ⊂ Pλ, let 1I be as in (5.2).

(6.2.1) 1Pλ f (u)= |A| f (−u) for all f ∈ L2(A) and u ∈ A.

(6.2.2) For every small order ideal I ⊂ Pλ, |AI |
−21I is the orthogonal projection

onto the subspace of L2(A) consisting of functions supported on AI⊥ and
invariant under translations in AI .

Proof. For any order ideal I ⊂ Pλ, we have

1I f (u)=
∑
x∈AI

∑
χ∈ ÂI

χ(u− x/2) f (u− x).

The inner sum is f (u − x) times the sum of values of a character of ÂI , which
vanishes if this character is nontrivial, namely if u−x/2 /∈ AI⊥ , and is |AI | otherwise.
Therefore,

(6.3) 1I f (u)= |AI |
∑

x∈AI∩(2u+AI⊥ )

f (u− x)= |AI |
∑

x∈(u+AI )∩(−u+AI⊥ )

f (x).

Taking I = Pλ in (6.3) gives (6.2.1).
Now suppose that I ⊂ I⊥. If u /∈ AI⊥ then (u+ AI )∩ (−u+ AI⊥)=∅, so that

1I f (u) = 0. If u ∈ AI⊥ , then the sum (6.3) is over u + AI , so |AI |
−21I is the

averaging over AI -cosets, from which (6.2.2) follows. �

6C. Even and odd functions.

Theorem 6.4. The subspaces of L2(A) consisting of even and odd functions are
invariant under Sp(K ).

Proof. By (6.2.1),

(6.5)
[ 1

2(IdL2(A)±|A|
−11Pλ)

]
f (u)= 1

2( f (u)± f (−u)).
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These operators are the orthogonal projections onto the subspaces of even and odd
functions in L2(A). Since these operators commute with Sp(K ) (by Theorem 3.3),
their images are Sp(K )-invariant subspaces of L2(A). �

Remark 6.6 (the Weil representation is an ordinary representation). The subspaces
of even and odd functions on A have dimensions (|A| + 1)/2 and (|A| − 1)/2,
respectively. For each g ∈ Sp(K ), let W+g and W−g denote the restrictions of Wg to
these spaces. Taking the determinants of the identities

W±g1
W±g2
= c(g1, g2)W±g1g2

gives the identities

det W+g1
det W+g2

= c(g1, g2)
(|A|+1)/2 det W+g1g2

,

det W−g1
det W−g2

= c(g1, g2)
(|A|−1)/2 det W−g1g2

.

Dividing the first equation by the second and rearranging gives

c(g1, g2)=
α(g1)α(g2)

α(g1g2)

for all g1, g2 ∈ Sp(K ), where α : G→U (1) is defined by

α(g)=
det(W+g )

det(W−g )
for all g ∈ Sp(K ).

Therefore, if each Wg is replaced by α(g)−1Wg, then g 7→Wg is a representation
of Sp(K ) on L2(A). This argument seems to be well known. It has appeared before
in [Adler and Ramanan 1996, Appendix I] and again in [Cliff et al. 2000].

6D. Invariant spaces corresponding to small order ideals. Since 1I commutes
with Sp(K ), its image is an Sp(K )-invariant subspace of L2(A). An immediate
consequence of (6.2.2) is the following theorem:

Theorem 6.7. For each small order ideal I ⊂ Pλ, the subspace of L2(A) consisting
of functions supported on AI⊥ which are invariant under translations in AI is an
Sp(K )-invariant subspace of L2(A).

Remark 6.8 (alternative description). For f ∈ L2(A), recall that its Fourier trans-
form is the function on Â defined by

f̂ (χ)=
∑
a∈A

f (a)χ(a) for each χ ∈ Â.

For any subgroup B of A, the Fourier transforms of functions invariant under
translations in B are the functions supported on the annihilator subgroup B⊥ of A
(consisting of characters which vanish on B), and Fourier transforms of functions
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supported on B are the functions which are invariant under B⊥. Therefore, the
functions supported on AI⊥ which are invariant under AI are precisely the functions
supported on AI⊥ whose Fourier transforms are supported on ÂI⊥ . They are also the
functions invariant under translations in AI whose Fourier transforms are invariant
under translations in ÂI .

Identify L2(AI⊥/AI ) with the space of functions in L2(A) which are supported
on AI⊥ and invariant under translations in AI . Let K (I )= AI⊥/AI × (AI⊥/AI )

∧.
K (I ) can be identified with (AI

⊥
× ÂI⊥)/(AI × ÂI ). Thus K (I ) is a quotient of

one characteristic subgroup of K by another. Therefore the action Sp(K ) on K
descends to an action on K (I ), giving rise to a homomorphism Sp(K )→Sp(K (I )).
The defining condition (1.3) for the Weil representation ensures:

Theorem 6.9. For every small order ideal I ⊂ Pλ, the Weil representation of Sp(K )
on L2(AI⊥/AI ) is projectively equivalent to the representation obtained by compos-
ing the Weil representation of Sp(K (I )) on L2(AI⊥/AI ) with the homomorphism
Sp(K )→ Sp(K (I )).

7. Component decomposition

7A. Connected components of a partially ordered set. A partially ordered set is
said to be connected if its Hasse diagram is a connected graph. A connected
component of a partially ordered set is a maximal connected induced subposet.
Every partially ordered set can be written as the disjoint union of its connected
components in the sense of [Stanley 1997, Section 3.2]. Denote the set of connected
components of a poset P by π0(P).

7B. Connected components of J − I . Suppose that I ⊂ J are two order ideals
in Pλ. Each connected component C ∈ π0(J − I ) determines a segment (namely, a
contiguous set of integers) SC in {1, . . . , l}:

SC = {1≤ k ≤ l | (v, k) ∈ C for some v}.

The SC are pairwise disjoint, but their union may be strictly smaller than {1, . . . , l}.
Write S0 for the complement of

⊔
C∈π0(I⊥−I ) SC in {1, . . . , l}. It will be convenient

to write
π̃0(I⊥− I )= π0(I⊥− I )t {0}.

Define partitions λ(C)= (λk | k ∈ SC) for each C ∈ π̃0(I⊥− I ). Then Pλ(C) is the
induced subposet of Pλ consisting of those pairs (v, k) ∈ Pλ for which k ∈ SC . Let
I (C) and J (C) be the ideals in Pλ(C) obtained by intersecting I and J , respectively,
with Pλ(C).

For example, if λ = (5, 4, 4, 1) and I is the order ideal in the diagram on the
left in Figure 2 and J = I⊥, then I⊥− I is depicted in the diagram on the left in
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◦

◦

◦

◦

•

◦

◦

◦

◦

◦

•

◦

• •

Figure 3. Left: I⊥− I inside P5,4,4,1. Right: I⊥− I by itself.

Figure 3. As the diagram on the right shows, the induced subposet I⊥− I has two
connected components, C1 and C2, with λ(C1)= (5) and λ(C2)= (1). Moreover,
λ(0)= (4, 4).

Lemma 7.1. Let I ⊂ J be two order ideals in Pλ. For each C ∈ π0(J− I ) let L(C)
be an order ideal in C. Let

L = I t
⊔

C∈π0(J−I )

L(C).

Then L is an order ideal in Pλ.

Proof. Since
⊔

C∈π0(J−I ) L(C) is an order ideal in J − I , its union with I is an
order ideal in Pλ. �

Corollary 7.2. If I ⊂ J are two order ideals in Pλ and C and D are distinct
components of J − I , then the intersection with Pλ(C) of the order ideal in Pλ
generated by J (D) is contained in I (C).

Proof. By Lemma 7.1, J (D)∪ I is an order ideal in Pλ. Therefore, it contains the
order ideal in Pλ generated by J (D). If C and D are distinct connected components
of J − I , then (J (D)∪ I )∩ Pλ(C)= I (C). Therefore the intersection with Pλ(C)
of the order ideal in Pλ generated by J (D) is contained in I (C). �

7C. Decomposition of endomorphisms. Suppose that A has the form (4.1). Then
define AC to be the subgroup

AC = {(a1, . . . , al) | ak = 0 if k /∈ SC}.

Thus AC is a finite abelian p-group of type λ(C). We have a decomposition

(7.3) A =
∏

C∈π̃0(J−I )

AC .

Denote the characteristic subgroups of AC corresponding to I (C) and J (C)
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(which are order ideals in Pλ(C)) by AI,C and AJ,C respectively. The decomposition
(7.3) induces a decomposition

(7.4) AJ/AI =
∏

C∈π0(J−I )

AJ,C/AI,C .

There is no contribution from A0 since AI,0 = AJ,0.
With respect to the decomposition (7.3), every endomorphism of A can be written

as a square matrix {φC D}, where φC D : AD→ AC is a homomorphism.

Lemma 7.5. Let I ⊂ J be order ideals in Pλ. Then every endomorphism φ of A
induces an endomorphism

φ : AJ/AI → AJ/AI

such that φ(AJ,C/AI,C)⊂ AJ,C/AI,C for each C ∈ π0(J − I ), and

φ =
⊕

C∈π0(J−I )

φCC ,

where φCC is the endomorphism of AJ,C/AI,C induced by φCC .

Proof. By Theorem 4.3 and Corollary 7.2, if C 6= D then φC D(AJ,D) ⊂ AI,C .
Therefore, φ remains unchanged if φC D is replaced by 0 for all C 6= D. This
amounts to replacing φ by ⊕CφCC , and the lemma follows. �

7D. Tensor product decomposition of invariant subspaces. Let I be a small order
ideal. We shall use the notation of Section 7C with J = I⊥. For each C ∈π0(I⊥− I )
let KC = AC × ÂC , and let Sp(KC) be the corresponding symplectic group. Just
as (by Theorem 6.7) L2(AI⊥/AI ) is an invariant subspace for the Weil represen-
tation of Sp(K ) on L2(A), L2(AI⊥,C/AI,C) is an invariant subspace for the Weil
representation of Sp(KC) on L2(AC).

Now, if g ∈ Sp(K ), we may write

g =
(

g11 g12

g21 g22

)
with respect to the decomposition K = A× Â. For convenience, we identify Â
with A using ei 7→ εi for i = 1, . . . , l, where ei and εi are as in Section 4C. Hence,
we may think of each gi j as an endomorphism of A. By Lemma 7.5, the resulting
endomorphism gi j of AI⊥/AI preserves AI⊥,C/AI,C for each C . It follows that the
image of Sp(K ) in Sp(K (I )) (see Section 6D) is the product of the images of the
Sp(KC) in the Sp(KC(I ∩C)) as C ranges over π0(I⊥− I ).

Thus, by Theorems 2.4 and 6.9, we have:
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Corollary 7.6. The Weil representation of Sp(K ) on L2(AI⊥/AI ) is projectively
equivalent to the tensor product of the Weil representations of the Sp(KC) on the
L2(AI⊥,C/AI,C) as C ranges over π0(I⊥− I ).

8. Poset of invariant subspaces

8A. The invariant subspaces. Let

Qλ = {(I, φ) | I ⊂ Pλ a small order ideal, φ : π0(I⊥− I )→ Z/2Z any function}.

For each (I, φ) ∈ Qλ, use the decomposition of Corollary 7.6 to define L2(A)I,φ

as the subspace of L2(AI⊥/AI ) given by

L2(A)I,φ =
⊗

C∈π0(I⊥−I )

L2(AI⊥,C/AI,C)φ(C),

where L2(AI⊥,C/AI,C)φ(C) denotes the space of even or odd functions on the
quotient AI⊥,C/AI,C when φ(C) is 0 or 1, respectively. In other words, L2(A)I,φ

consists of functions on AI⊥/AI which, under the decomposition

(8.1) AI⊥/AI =
∏

C∈π0(I⊥−I )

AI⊥,C/AI,C ,

are even in the components where φ(C) = 0 and odd in the components where
φ(C)= 1. By Theorems 6.4 and 6.7, and by Corollary 7.6, L2(A)I,φ is an Sp(K )-
invariant subspace of L2(A) for each (I, φ) ∈ Qλ.

8B. The partial order. Clearly:

Lemma 8.2. For (I, φ) and (I ′, φ′) in Qλ, L2(A)I ′,φ′ ⊂ L2(A)I,φ if and only if the
following conditions are satisfied:

(8.2.1) I ⊂ I ′.

(8.2.2) For each P ∈ π0(I⊥− I ),

φ(P)=
∑

P ′∈π0(I ′⊥−I ′)
P ′⊂P

φ′(P ′).

Thus, the conditions (8.2.1) and (8.2.2) define a partial order on Qλ (which is
obviously independent of p). Recall that the multiplicity m(x) of an element
x = (v, k) ∈ Pλ is the number of times k occurs in the partition λ. For any subset
S ⊂ Pλ, let [S] denote the number of elements of S, counted with multiplicity:

[S] =
∑
x∈S

m(x).
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Lemma 8.3. For each (I, φ) ∈ Qλ,

dim L2(A)I,φ =
∏

C∈π0(I⊥−I )

p[C]+ (−1)φ(C)

2
.

9. Irreducible subspaces

9A. A bijection between J(Pλ) and Qλ. Let J (Pλ) denote the lattice of order
ideals in Pλ.

Lemma 9.1. For each partition λ, |J (Pλ)| = |Qλ|.

Proof. We construct an explicit bijection Qλ→ J (Pλ). To (I, φ) ∈ Qλ, associate
the ideal (see Lemma 7.1)

2(I, φ)= I ∪
⊔

C∈π0(I⊥−I )

Iφ(C),

where

Iφ(C) =
{

I ∩C if φ(C)= 0,
I⊥ ∩C if φ(C)= 1.

In the other direction, given an ideal J ⊂ Pλ, I = J ∩ J⊥ is a small order ideal. We
have I⊥ = J ∪ J⊥. For each C ∈ π0(I⊥− I ), define

φJ (C)=
{

0 if I ∩C = J ∩C,
1 if I ∩C = J⊥ ∩C.

Define 9 : Qλ→ J (Pλ) by 9(J )= (J ∩ J⊥, φJ ). It is easy to verify that 8 and
9 are mutual inverses. �

9B. Existence lemma.

Lemma 9.2. For every (I, φ) ∈ Qλ, there exists f ∈ L2(A)I,φ such that f /∈

L2(A)I ′,φ′ for any (I ′, φ′) < (I, φ).

Proof. Take as f the unique element in L2(A)I,φ whose value at a(I⊥)+ AI (using
the notation of Section 4A) is 1, and which vanishes on all elements of AI⊥/AI

not obtained from a(I⊥)+ AI by changing the signs of some of its components
under the decomposition (8.1). �

9C. The irreducible invariant subspaces. The two lemmas above are enough to
give us the main theorem:

Theorem 9.3. For each (I, φ) ∈ Qλ, there is a unique irreducible subspace for
the Weil representation of Sp(K ) on L2(A) which is contained in L2(A)I,φ but not
L2(A)I ′,φ′ for any (I ′, φ′)<(I, φ). As p varies, the dimension of this representation
is a polynomial in p of degree [I⊥− I ] with leading coefficient 2−|π0(I⊥−I )| and all
coefficients in Z(2).
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Proof. By Corollary 5.6, the Sp(K )-invariant subspaces of L2(A) form a Boolean
lattice 3. Let R denote the set of minimal nontrivial Sp(K )-invariant subspaces
of L2(A). These are the atoms of 3. By Corollary 3.4 and Theorem 4.5, the
cardinality of R is the same as that of J (Pλ). Each invariant subspace is determined
by the atoms which are contained in it. The map (I, φ) 7→ L2(A)I,φ is an order-
preserving map Qλ→ 3. Let RI,φ be the set of atoms which occur in L2(A)I,φ

but not in L2(A)I ′,φ′ for any (I ′, φ′) < (I, φ). The subsets RI,φ are |Qλ| pairwise
disjoint subsets of R, and by Lemma 9.2, each of them is nonempty. Therefore,
by Lemma 9.1, each of them must be a singleton, and these subspaces exhaust R.
It follows that there is a unique irreducible representation of Sp(K ) that occurs
in L2(A)I,φ but not in L2(A)I ′,φ′ for any (I ′, φ′) < (I, φ). Let VI,φ denote this
irreducible subspace.

By Lemma 8.3, ∑
(I ′,φ′)≤(I,φ)

dim VI ′,φ′ =
∏

P∈π0(I⊥−I )

p[C]+ (−1)φ(C)

2
.

By the Möbius inversion formula [Stanley 1997, Section 3.7],

(9.4) dim VI,φ =
∑

(I ′,φ′)≤(I,φ)

µ((I, φ), (I ′, φ′))
∏

C∈π0(I ′⊥−I ′)

p[C]+ (−1)φ(C)

2
,

where µ is the Möbius function of Qλ. Since µ((I, φ), (I, φ))= 1 and the Möbius
function is integer-valued, the right-hand side of (9.4) is indeed a polynomial in p
with leading coefficient 2−|π0(I⊥−I )|. Clearly, the other coefficients do not have
denominators other than powers of 2. �

9D. A combinatorial lemma.
Lemma 9.5. Let P be a poset and J (P) be its lattice of order ideals. Let m : P→N

be any function (called the multiplicity function). For each subset S ⊂ P , let
[S] =

∑
x∈S m(x), the elements of S counted with multiplicity, and let max S denote

the set of maximal elements of S. If α : J (P)→ C[t] is a function such that∑
J⊂I

α(J )= t [I ] for every order ideal I ⊂ P,

then

(9.6) α(I )= t [I ]
∏

x∈max I

(1− t−m(x)).

Proof. By the Möbius inversion formula for a finite distributive lattice [Stanley
1997, Example 3.9.6],

(9.7) α(I )=
∑

I−max I⊂J⊂I

(−1)|I−J |t [J ] = t [I ]
∑

S⊂max I

(−1)|max I−S|t−[max I−S].
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Each term in the expansion of the product∏
x∈max I

(1− t−m(x))

is obtained by choosing a subset S ⊂max I and taking∏
x /∈S

(−t−m(x))= (−1)|max I−S|t−[max I−S].

Therefore, the expression (9.7) for α(I ) reduces to (9.6) as claimed. �

9E. Explicit formula for the dimension. Recall (from Section 9C) that for each
(I, φ)∈Qλ, VI,φ denotes the unique irreducible Sp(K )-invariant subspace of L2(A)
which lies in L2(A)I,φ but not in any proper subspace of the form L2(A)I ′,φ′ . We
shall obtain a nice expression for dim VI,φ by applying Lemma 9.5 to the induced
subposet of Pλ given by

P+λ = {(v, k) ∈ Pλ | v < (k− 1)/2}.

For each small order ideal I ⊂ Pλ, let I+ = I⊥ ∩ P+λ . Then I 7→ I+ is an order-
reversing isomorphism from the partially ordered set of small order ideals in Pλ to
the partially ordered set J (P+λ ) of all order ideals in P+λ .

Let

(9.8) VI =
⊕

φ:π0(I⊥−I )→Z/2Z

VI,φ.

Denote by V 0
I and V 1

I the subspaces of even or odd functions in VI respectively.

Lemma 9.9. If I ⊂ Pλ is a small order ideal, then for ε ∈ {0, 1},

dim V ε
I =

{
(p[I

⊥
−I ]
+ (−1)ε)/2 if I+ =∅,

p[I
⊥
−I ]∏

x∈max I+(1− p−2m(x))/2 otherwise.

Proof. Suppose I ⊂ Pλ is a small order ideal. Then

(9.10) L2(AI⊥/AI )=
⊕
J⊃I

J small

VJ =
⊕

J+⊂I+
VJ .

Define α : J (P+λ )→ C by α(J+)= dim VJ . Comparing dimensions,

(9.11)
∑

J+⊂I+
α(J+)= p[I

⊥
−I ].

Let E = {(v, k) ∈ I⊥− I | v = (k− 1)/2}, the set of points in I⊥− I which lie on
its axis of symmetry. Then [I⊥− I ] = [E] + 2[I+]. Therefore (9.11) becomes∑

J+⊂I+
α(J+)= p[E] p2[I+].
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Taking P = P+λ and setting t = p2 in Lemma 9.5 gives

dim VI = p[E]+2[I+]
∏

x∈max I+
(1− p−2m(x))= p[I

⊥
−I ]

∏
x∈max I⊥

(1− p−2m(x)).

In order to obtain Lemma 9.9, it remains to find the dimensions of the spaces of
even and odd functions in VI . If I+ =∅ then E = I⊥− I . In this case, VI,φ is just
the set of even or odd functions in L2(AI⊥/AI ) and has dimension as claimed.

Otherwise, we proceed by induction on I+. Thus, assume that Lemma 9.9
holds for small order ideals I ′ ) I . The space of even functions in L2(AI⊥/AI )

has dimension one more than the space of odd functions. Breaking up the spaces
in (9.10) into even and odd functions, we see this difference is accounted for by
the summand corresponding to J+ = ∅, as discussed above. By the induction
hypothesis, the dimensions of even and odd parts of the summands corresponding
to ∅( J+ ( I+ are equal. Therefore, the even and odd parts of VI must have the
same dimension. �

Theorem 9.12. If I ⊂ Pλ is a small order ideal, then

dim VI,φ =
∏

C∈π0(I⊥−I )

dim VI (C),φ(C),

where, since I (C)⊥− I (C) is connected, dim VI (C),φ(C) is given by Lemma 9.9.

9F. Examples. We begin with the case A = (Z/pkZ)l , corresponding to the parti-
tion λ= (k, . . . , k) (repeated l times). Pλ is then a linear order, with k points. Qλ

has two linear components, consisting of the even and odd parts. An informative
way to display the decomposition of L2(A) is as the Hasse diagram of Qλ, but with
the dimension of the corresponding irreducible invariant subspace in place of each
vertex. In this case we get

plk(1−p−2)

2
plk(1−p−2)

2

pl(k−2)(1−p−2)

2
pl(k−2)(1−p−2)

2
...

...

p(k−2(bk/2c−1))(1−p−2)

2
p(k−2(bk/2c−1))(1−p−2)

2

p(k−2bk/2c)
+1

2
p(k−2bk/2c)

−1
2
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The entry at the bottom right is zero when k is even and should be omitted. This
is consistent with the previously known results in [Prasad 1998; Cliff et al. 2000].
The picture for λ = (2, 1) is the same as that for λ = (3). Perhaps the simplest
nontrivial example is λ = (3, 1) (it is the smallest example where J (Pλ) is not a
chain). We get

p4
−p2

2
p4
−p2

2

(p+1)2

4
(p−1)2

4
p2
−1
4

p2
−1
4

For λ= (3, 2, 1), we get

p6
−p4

2
p6
−p4

2

p4
−p2

2
p4
−p2

2

(p+1)2

4
(p−1)2

4
p2
−1
4

p2
−1
4

For λ= (4, 2), we have

p6
−p4

2
p6
−p4

2

p4
−2p2

+1
2

p4
−2p2

+1
2

p2
−1
2

p2
−1
2

p2
−1
2

p2
−1
2

1

For λ= (4, 3, 2, 1), we have
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p10
−p8

2
p10
−p8

2

p8
−p6

2
p8
−p6

2

p6
−2p4

+p2

2
p6
−2p4

+p2

2

p4
−p2

2
(p3
−p)(p+1)

4
(p3
−p)(p−1)

4
(p3
−p)(p+1)

4
(p3
−p)(p−1)

4
p4
−p2

2

(p+1)2

4
(p−1)2

4
p2
−1
4

p2
−1
4

9G. Projections onto the irreducible subspaces. For each (I, φ) ∈ Qλ, let E I,φ

denote the projection operator onto VI,φ . Recall from Lemma 3.1 that the set of
Weyl operators {Wk | k ∈ K } is an orthonormal basis of EndC L2(A). Therefore,
we may write

E I,φ =
∑
k∈K

ek(I, φ)Wk

for some scalars ek(I, φ). The goal of this section is to show that this expansion
is completely combinatorial. More precisely, by Theorem 4.5, each Sp(K )-orbit
in K corresponds to an order ideal in Pλ. We shall show that if k lies in the Sp(K )-
orbit corresponding to the order ideal J , then ek(I, φ) is a polynomial in p whose
coefficients depend only on the combinatorial data I , φ, and J .

In Section 5A we saw that {1L | L ∈ J (Pλ)} is a basis of EndSp(K ) L2(A).
Therefore, we may write

E I,φ =
∑

L⊂Pλ

αL(I, φ)1L

for some constants αL(I, φ). If k lies in the orbit corresponding to J then

ek(I, φ)=
∑
L⊃J

αL(I, φ).

Therefore, it suffices to show that the αL(I, φ) are polynomials in p whose coeffi-
cients are determined by the combinatorial data L , I , and φ (Theorem 9.17). In
fact, Theorems 9.18 and 9.19 compute αL(I, φ) explicitly.
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To begin with, consider the case where I⊥− I is connected. If E I is the projection
operator onto VI (defined by (9.8)), then by (6.2.2),

|A|−1 p[I
⊥
−I ]1I =

∑
J+⊂I+

E J .

Using Möbius inversion for a finite distributive lattice as in Section 9D,

|A|E I =
∑

I+−max I+⊂J+⊂I+
(−1)|I

+
−J+| p[J

⊥
−J ]1J .

Since VI,φ consists of even or odd functions in VI (depending on whether φ(I⊥− I )
is 0 or 1), by (6.5), E I,φ is given by

E I,φ =
1
2 E I

(
IdL2(A)+(−1)φ(I

⊥
−I )
|A|−11Pλ

)
.

By Lemma 5.3,

(|A|−1 p[J
⊥
−J ]1J )(|A|−11Pλ)= |A|

−11J⊥ .

Therefore, when I⊥− I is connected,

(9.13) 2|A|E I,φ =
∑

I+−max I+⊂J+⊂I+
(−1)|I

+
−J+|(p[J

⊥
−J ]1J + (−1)φ(I

⊥
−I )1J⊥

)
.

Now take I ⊂ Pλ to be any small order ideal. The decomposition (7.3) gives

L2(A)=
⊗

C∈π̃0(I⊥−I )

L2(AC)

and
VI,φ =

(⊗
C∈π0(I⊥−I )

VI (C),φ(C)

)
⊗ L2(AI⊥(0)/AI (0)),

the last factor being one dimensional (since I (0)= I⊥(0)). So we have

(9.14) E I,φ =

(⊗
C∈π0(I⊥−I )

E I (C),φ(C)

)
⊗1I (0),

where, since I (C)⊥ − I (C) is connected, E I (C),φ(C) is determined by (9.13). A
typical term in the expansion (9.14) will be of the form

(9.15)
(⊗

C∈π0(I⊥−I )
1L(C)

)
⊗1I (0),

where for each C ∈ π0(I⊥ − I ) we have I (C) ⊂ L(C) ⊂ I⊥(C), either L(C) or
L(C)⊥ being a small order ideal in Pλ(C). But this is just 1L , where

(9.16) L = I ∪
⊔

C∈π0(I⊥−I )
L(C),

is an order ideal in Pλ by Lemma 7.1. We have this qualitative result:
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Theorem 9.17. For each (I, φ) ∈ Qλ, 2|π0(I⊥−I )|
|A|αL(I, φ) is a polynomial in p

whose coefficients are integers depending only on the combinatorial data I , φ, L.

Let IL = L ∩ L⊥. Examining (9.13) more carefully gives:

Theorem 9.18. The coefficient αL(I, φ) is nonzero if and only if the following
conditions hold:

(9.18.1) For each C ∈ π0(I⊥ − I ), either L(C) or L(C)⊥ is a small order ideal
in Pλ(C).

(9.18.2) I+−max I+ ⊂ I+L ⊂ I+.

Proof. For αL(I, φ) to be nonzero, it is necessary that L be of the form (9.16)
for some order ideals L(C) of Pλ(C) which occur in the right hand side of (9.13).
Furthermore, since each order ideal in Pλ(C) appears at most once in the right hand
side of (9.13), so each order ideal in Pλ appears only once in the expansion (9.14).
In particular, no cancellation is possible, and for all such ideals αL(I, φ) 6= 0.

Now L(C) appears on the right hand side of (9.13) if and only if (9.18.1) holds,
and I (C)+ −max I (C)+ ⊂ IL(C)+ ⊂ I (C)+. Since max I+ =

⊔
C max I (C)+,

this amounts to the condition (9.18.2). �

If these conditions do hold, then for each C ′ ∈ π0(I⊥L − IL), there exists
C ∈ π0(I⊥ − I ) such that C ′ ⊂ C . Furthermore, φL(C ′) depends only on C ,
so we may denote its value by φL(C). For I = I (C), the right hand side of (9.13)
can be written as ∑

L(C)

(−1)|I (C)
+
−L(C)+|+φ(C)φL (C) p[IL (C)⊥−L(C)],

the sum being over an appropriate set of order ideals L(C)⊂ Pλ(C). Let

〈φ1, φ2〉 =
∑

C∈π0(I⊥−I )

φ1(C)φ2(C)

for any functions φi : π0(I⊥− I )→ Z/2Z. The additive nature of the exponents in
the above expression allows us to get an exact expression for αL(I, φ):

Theorem 9.19. If an order ideal L ⊂ Pλ satisfies the conditions of Theorem 9.18,
then

2|π0(I⊥−I )|
|A|αL(I, φ)= (−1)|I

+
−I+L |+〈φ,φL 〉 p[I

⊥

L −L].

10. Finite modules over a Dedekind domain

Let F be a non-Archimedean local field with ring of integers R. Let P denote
the maximal ideal of R. Assume that the residue field R/P is of odd order q.
Fix a continuous character ψ : F → U (1) whose restriction to R is trivial, but
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whose restriction to P−1 R is not (see, for example, Tate’s thesis [1967]). Then
if ψx(y) = ψ(xy), the map x 7→ ψx is an isomorphism of F into F̂ . Under
this isomorphism, R has image R⊥ = (F/R)∧. More generally, P−n has image
(Pn)⊥ = (F/Pn)∧ for every integer n (recall that for positive n, P−n is the set
of elements x ∈ F such that x Pn

⊂ R). Thus, it gives rise to an isomorphism
P−n/R→ (R/Pn)∧ for each positive integer n. Since P−n/R inherits the structure
of an R-module, this isomorphism also allows us to think of (R/Pn)∧ as an R-
module. Now suppose A is a finitely generated torsion module over R. Then

(10.1) A = R/Pλ1 × · · ·× R/Pλl

for a unique partition λ. By the discussion above, Â is also an R-module (noncanon-
ically isomorphic to A). Let K = A× Â, and Sp(K ) be as in Theorem 1.1. Define
SpR(K ) to be the subgroup of Sp(K ) consisting of R-module automorphisms.

The Weil representation of SpR(K ) is simply the restriction of the Weil represen-
tation of Sp(K ) on L2(A) to SpR(K ). All the theorems and proofs in this article
concerning finite abelian p-groups generalize to the Weil representation of SpR(K )
on L2(A), so long as p is replaced by q in the formulas. Since every finitely gener-
ated torsion module over a Dedekind domain is a product of its primary components,
and module automorphisms respect the primary decomposition, the reduction in
Section 2C works for finite modules of odd order over Dedekind domains.

Singla [2010; 2011] has proved that the representation theory of G(R/P2),
where G is a classical group, depends on R only through q, the order of the
residue field. More precisely, if R and R′ are two discrete valuation rings and
an isomorphism between their residue fields is fixed (for example, take R = Zp,
the ring of p-adic integers, and R′ = (Z/pZ)[[t]], the ring of Laurent series with
coefficients in Z/pZ), then there is a canonical bijection between the irreducible
representations of G(R/P2) and G(R′/P2) which preserves dimensions. There
is also a canonical bijection between their conjugacy classes which preserves
sizes. All existing evidence points towards the existence of a similar correspon-
dence for automorphism groups of modules of type λ (see, for example [Onn
2008, Conjecture 1.2]). The results in this paper also point in the same direction:
for each partition λ, there is a canonical correspondence between the invariant
subspaces of the Weil representations associated to the finitely generated torsion
R-module of type λ and the finitely generated torsion R′-module of type λ which
preserves dimensions.
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