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COMPACT ANTI-DE SITTER 3-MANIFOLDS AND
FOLDED HYPERBOLIC STRUCTURES ON SURFACES

FRANÇOIS GUÉRITAUD, FANNY KASSEL AND MAXIME WOLFF

We prove that any non-Fuchsian representation � of a surface group into
PSL.2 ;R/ is the holonomy of a folded hyperbolic structure on the surface,
unless the image of � is virtually abelian. Using this idea, we establish that
any non-Fuchsian representation � is strictly dominated by some Fuchsian
representation j , in the sense that the hyperbolic translation lengths for j

are uniformly larger than for �. Conversely, any Fuchsian representation j

strictly dominates some non-Fuchsian representation �, whose Euler class
can be prescribed. This has applications to the theory of compact anti-de
Sitter 3-manifolds.

1. Introduction

Let †g be a closed, connected, oriented surface of genus g, with fundamental
group �g D �1.†g/, and let Repfd

g and Repnfd
g be the sets of conjugacy classes of

Fuchsian and non-Fuchsian representations of �g into PSL.2;R/, respectively. The
letters “fd” stand for “faithful, discrete”. By work of Goldman [1988], the space
Hom.�g;PSL.2;R// of representations of �g into PSL.2;R/ has 4g�3 connected
components, indexed by the values of the Euler class

eu W Hom.�g;PSL.2;R// �! f2� 2g; : : : ;�1; 0; 1; : : : ; 2g� 2g:

In the quotient, Repfd
g consists of the two connected components of extremal Euler

class, and Repnfd
g of all the other components of Hom.�g;PSL.2;R//=PSL.2;R/.

1A. Strictly dominating representations. For any g 2 PSL.2;R/, let

(1-1) �.g/ WD inf
p2H2

d.p;g �p/� 0

be the translation length of g in the hyperbolic plane H2. This defines a function
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� W PSL.2;R/! RC which is invariant under conjugation. We say that an element
Œj � 2 Repfd

g strictly dominates an element Œ�� 2 Repnfd
g if

(1-2) sup
2�gXf1g

�.�. //

�.j . //
< 1:

Note that (1-2) can never hold when j and � are both Fuchsian [Thurston 1986].
In this paper we prove the following:

Theorem 1.1. Any Œ�� 2 Repnfd
g is strictly dominated by some Œj � 2 Repfd

g . Any
Œj �2Repfd

g strictly dominates some Œ��2Repnfd
g , whose Euler class can be prescribed.

The first statement of Theorem 1.1 has been simultaneously and independently
obtained by Deroin and Tholozan [2013] using more analytical methods. Their
paper deals, more generally, with representations of �g into the isometry group of
any complete, simply connected Riemannian manifold with sectional curvature at
most �1. They also announce a version for general CAT.�1/ spaces. The present
methods, relying as they do on the Toponogov theorem (see Lemma 2.2 below),
could likely extend to this general setting as well.

Our approach is constructive, using folded (or pleated) hyperbolic surfaces, as
we now explain.

1B. Folded hyperbolic surfaces. Pleated hyperbolic surfaces were introduced by
Thurston [1980] and play an important role in the theory of hyperbolic 3-manifolds.
A folded hyperbolic surface is a pleated surface with all angles equal to 0 or � ,
whose holonomy takes values in PSL.2;R/ (see Section 2B). It is easy to check
(see [Thurston 1986, Proposition 2.1]) that the holonomy of a (nontrivially) folded
hyperbolic structure on †g belongs to Repnfd

g . In order to establish Theorem 1.1,
we prove that the converse holds for representations whose image is not virtually
abelian.

Theorem 1.2. An element of Repnfd
g is the holonomy of a folded hyperbolic structure

on †g if and only if its image is not virtually abelian.

As usual, being virtually abelian means having an abelian subgroup of finite index.
Besides abelian representations, Theorem 1.2 rules out dihedral representations,
which preserve a geodesic line of H2 and contain order-two symmetries of that line.

This result seems to have been known to experts since the work of Thurston
[1980], but to our knowledge it is neither stated nor proved in the literature. Note
that another type of folded hyperbolic structure was previously investigated by
Goldman [1987].

We construct the folded hyperbolic structures of Theorem 1.2 explicitly, folding
along geodesic laminations that are the union of simple closed curves and of maximal
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laminations of some pairs of pants (Proposition 3.1). More precisely, given a non-
Fuchsian representation � whose image is not virtually abelian, we use a result of
Gallo, Kapovich, and Marden [Gallo et al. 2000] to find a pants decomposition
of †g such that the restriction of � to any pair of pants P is nonabelian and maps
any cuff to a hyperbolic element. (The term cuff, always specific to a pair of pants,
will in the sequel denote without distinction the homotopy class of a boundary
component, or the geodesic in that class, or its length.) Folding along a certain
maximal lamination in P then gives a simple dictionary between the representations
of the fundamental group of P that have Euler class 0 and those that have Euler
class ˙1 (Lemma 3.6). The converse direction in Theorem 1.2 is elementary
(Observation 2.7).

1C. Idea of the proof of Theorem 1.1. If Œ�� 2 Repnfd
g is the holonomy of a

folded hyperbolic structure on †g, then the holonomy Œj0� 2 Repfd
g of the cor-

responding unfolded hyperbolic structure clearly dominates Œ�� in the sense that
�.�. //� �.j0. // for all  2 �g. In fact,

sup
2�gXf1g

�.�. //

�.j0. //
D 1;

since any minimal component of the folding lamination can be approximated by
simple closed curves. In order to prove Theorem 1.1 we need to make the domination
strict.

To establish the first statement, the idea is, for Œ�� 2 Repnfd
g , to consider the

holonomy Œj0� 2 Rep
fd
g of the unfolded hyperbolic structure given by Theorem 1.2,

and to lengthen the closed curves (close to being) contained in the folding lamination
while simultaneously not shortening the other curves too much. To do this, we
work independently in each “folded subsurface” of †g, which is a compact surface
with boundary endowed with a hyperbolic structure induced by j0. In each such
subsurface we use a strip deformation construction due to Thurston [1986], which
consists in adding hyperbolic strips to obtain a new hyperbolic metric with longer
boundary components. We then glue back along the boundary components, after
making sure that the lengths agree.

The second statement is easier in that it does not rely on Theorem 1.2. Starting
with an element Œj � 2 Repfd

g , we choose a pants decomposition of †g along which
to fold. To make sure that the cuffs of the pairs of pants will get contracted, we first
deform j slightly by negative strip deformations into another element Œj0� 2 Rep

fd
g

with shorter cuffs, in such a way that the other curves do not get much longer.
Folding j0 then gives an element Œ�� 2 Repnfd

g which is strictly dominated by Œj �.

1D. An application to compact anti-de Sitter 3-manifolds. Theorem 1.1 has con-
sequences for the theory of compact anti-de Sitter 3-manifolds. These are the
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compact Lorentzian 3-manifolds of constant negative curvature, i.e., the Lorentzian
analogues of the compact hyperbolic 3-manifolds. They are locally modeled on the
3-dimensional anti-de Sitter space

AdS3
D PO.2; 2/=PO.2; 1/;

which is identified with PSL.2;R/ endowed with the natural Lorentzian structure
induced by the Killing form of its Lie algebra. The identity component of the
isometry group of AdS3 is PSL.2;R/� PSL.2;R/, acting on PSL.2;R/' AdS3

by right and left multiplication: .g1;g2/ �g D g2gg�1
1

. All compact anti-de Sitter
3-manifolds are geodesically complete [Klingler 1996]. By [Kulkarni and Raymond
1985] and the Selberg lemma [1960, Lemma 8], they are quotients of PSL.2;R/
by torsion-free discrete subgroups � of PSL.2;R/ � PSL.2;R/ acting properly
discontinuously, up to a finite covering; moreover, the groups � are graphs of the
form

� D .�g/
j ;�
WD f.j . /; �. // j  2 �gg

for some g � 2, where j , � 2 Hom.�g;PSL.2;R// are representations and j is
Fuchsian, up to switching the two factors of PSL.2;R/� PSL.2;R/. In particular,
�nAdS3 is Seifert fibered over a hyperbolic base (see [Salein 1999, §3.4.2]).

Following [Salein 2000], we shall say that a pair .j ; �/ 2Hom.�g;PSL.2;R//2

with j Fuchsian is admissible if the action of .�g/
j ;� on AdS3 is properly dis-

continuous. Note that .j ; �/ is admissible if and only if its conjugates under
PSL.2;R/� PSL.2;R/ are. Therefore, in order to understand the moduli space of
compact anti-de Sitter 3-manifolds, we need to understand, for any g � 2, the space

Admg � Repfd
g �Hom.�g;PSL.2;R//=PSL.2;R/

of conjugacy classes of admissible pairs .j ; �/ with j Fuchsian.
Examples of admissible pairs are readily obtained by taking � to be trivial, or more

generally with bounded image. The corresponding quotients of AdS3 are called
standard. The first nonstandard examples were constructed by Goldman [1985]
by deformation of standard ones — a technique later generalized by Kobayashi
[1998]. Salein [2000] constructed the first examples of admissible pairs .j ; �/ with
eu.�/¤ 0. He actually constructed examples where eu.�/ can take any nonextremal
value. A necessary and sufficient condition for admissibility was given in [Kassel
2009]: a pair .j ; �/ with j Fuchsian is admissible if and only if � is strictly
dominated by j in the sense of (1-2). In particular, by [Thurston 1986],

Admg � Repfd
g �Repnfd

g :

This properness criterion was extended in [Guéritaud and Kassel 2013] to quotients
of PO.n; 1/D Isom.Hn/ by discrete subgroups of PO.n; 1/�PO.n; 1/ acting by left
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and right multiplication, for arbitrary n � 2 (recall that PSL.2;R/ ' PO.2; 1/0),
and in [Guéritaud et al. 2015] to quotients of any simple Lie group G of real rank 1.

By completeness of compact anti-de Sitter manifolds [Klingler 1996], the
Ehresmann–Thurston principle (see [Thurston 1980]) implies that Admg is open
in Repfd

g �Repnfd
g . Moreover, Admg has at least 4g� 5 connected components, as

Salein’s examples show. Using the fact that the two connected components of Repfd
g

are conjugate under PGL.2;R/, we can reformulate Theorem 1.1 as follows:

Corollary 1.3. The projections of Admg to Repfd
g and to Repnfd

g are both surjec-
tive. Moreover, for any connected components C1 of Repfd

g and C2 of Repnfd
g , the

projections of Admg \.C1 �C2/ to C1 and to C2 are both surjective.

The topology of Admg is still unknown, but we believe that Corollary 1.3 (and
the ideas behind its proof) could be used to prove that Admg is homeomorphic to
Repfd

g �Rep
nfd
g . Using the work of Hitchin [1987, Theorem 10.8 and Equation 10.6],

this would give the homeomorphism type of the connected components of Admg

corresponding to eu.�/¤ 0.
Furthermore, it would be interesting to obtain a geometric and combinatorial

description of the fibers of the second projection Admg!Repnfd
g . Such a description

is given in [Danciger et al. 2014], in terms of the arc complex, in the different case
that j and � are the holonomies of two convex cocompact hyperbolic structures on
a given noncompact surface.

1E. Organization of the paper. In Section 2 we recall some facts about Lipschitz
maps, folded hyperbolic structures, and the Euler class. Section 3 is devoted to the
proof of Theorem 1.2, and Section 4 to that of Theorem 1.1.

2. Reminders and useful facts

2A. Lipschitz maps and their stretch locus. In the whole paper, we denote by d

the metric on the real hyperbolic plane H2. For a Lipschitz map f W H2! H2 and
a point p 2 H2, we set:

� Lip.f / WD supq¤q0 d.f .q/; f .q0//=d.q; q0/� 0 (the Lipschitz constant);

� Lipp.f / WD infU Lip.f jU/� 0, where U ranges over all neighborhoods of p

in H2 (the local Lipschitz constant).

The function p 7! Lipp.f / is upper semicontinuous:

Lipp.f /� lim sup
n!C1

Lippn
.f /

for any sequence .pn/n2N converging to p. The following is straightforward:
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Remark 2.1. For any rectifiable path L� H2,

length.f .L//� sup
p2L

Lipp.f / � length.L/:

In particular, if Lipp.f /� C for all p in a convex set K, then Lip.f jK /� C .

2A1. The stretch locus. The following result is a particular case of [Guéritaud and
Kassel 2013, Theorem 5.1]. It relies on the Toponogov theorem, a comparison
theorem relating the curvature to the divergence rate of geodesics (see [Bridson and
Haefliger 1999, Lemma II.1.13]).

Lemma 2.2 [Guéritaud and Kassel 2013]. Let � be a torsion-free, finitely generated,
discrete group and let .j ; �/ 2 Hom.�;PSL.2;R//2 be a pair of representations
with j convex cocompact. Suppose the infimum of Lipschitz constants for all
.j ; �/-equivariant maps f W H2 ! H2 is 1, and the space F of maps achieving
this infimum is nonempty. Then there exists a nonempty, j .�/-invariant geodesic
lamination zƒ of H2 such that:

� any leaf of zƒ is isometrically preserved by all maps f 2 F;

� any connected component of H2 X zƒ is either isometrically preserved by all
f 2 F, or consists entirely of points p at which Lipp.f / < 1 for some f 2 F

(independent of p).

Definition 2.3. The union of zƒ and of the connected components of H2 X zƒ that
are isometrically preserved by all f 2 F is called the stretch locus of .j ; �/.

By convex cocompact we mean that j is injective and discrete and that the group
j .�/ does not contain any parabolic element. By .j ; �/-equivariant we mean that
f .j . / � p/ D �. / � f .p/ for all  2 � and p 2 H2. The space F is always
nonempty, except possibly if �.�/ admits a unique fixed point in the boundary at
infinity @1H2 of H2 [Guéritaud and Kassel 2013, Lemma 4.11]. If j and � are
conjugate under PGL.2;R/, then the stretch locus of .j ; �/ is the preimage of the
convex core of j .�/nH2. (This preimage is by definition the smallest nonempty
j .�/-invariant closed convex subset of H2.)

2A2. Averaging Lipschitz maps. We now describe a technical tool for understand-
ing the stretch locus. It is a procedure for averaging Lipschitz maps (see [Guéritaud
and Kassel 2013, §2.5]), under which Lipp behaves as it would for the barycenter of
maps between affine Euclidean spaces. In Section 3D, we shall use this procedure
with a partition of unity, as follows.

Let  0; : : : ;  n WH
2! Œ0; 1� be Lipschitz functions inducing a partition of unity

on a subset X of H2, subordinated to an open covering B0 [ � � � [Bn � X . For
0� i �n, let 'i WBi!H2 be a Lipschitz map. For p 2X , let I.p/ be the collection
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of indices i such that p 2 Bi . Let
Pn

iD0  i'i W X ! H2 be the map sending any
p 2X to the minimizer in H2 ofX

i2I.p/

 i.p/d. � ; 'i.p//
2:

Then the following holds:

Lemma 2.4 [Guéritaud and Kassel 2013, Lemma 2.13]. The averaged map ' WDPn
iD0  i'i satisfies the “Leibniz rule”

Lipp.'/�
X

i2I.p/

.Lipp. i/R.p/C i.p/Lipp.'i//

for all p 2X , where R.p/ is the diameter of the set f'i.p/ j i 2 I.p/g.

2A3. Admissibility. For any discrete group � (not necessarily of the form �g), we
say that a pair of representations .j ; �/ 2 Hom.�;PSL.2;R//2 is admissible if the
group �j ;� D f.j . /; �. // j  2 �g acts properly discontinuously on AdS3. In
this case, at least one of j or � is injective and discrete [Kassel 2008].

Understanding the stretch locus has led to the following necessary and sufficient
conditions for admissibility. We denote by �s the set of nontrivial elements of �
corresponding to simple closed curves on the surface j .�/nH2.

Theorem 2.5 [Kassel 2009; Guéritaud and Kassel 2013]. Let � be a torsion-
free, finitely generated, discrete group and let j , � 2 Hom.�;PSL.2;R// be two
representations with j injective and discrete. The pair .j ; �/ is admissible if and
only if the following condition holds up to switching j and �:

(i) There exists a .j ; �/-equivariant map f W H2! H2 with Lip.f / < 1.

If j is convex cocompact or if the group �.�/ does not have a unique fixed point in
@1H2, then (i) is equivalent to either of the following two conditions:

(ii) The representation � is strictly dominated by j :

sup
2�;

�.j. //>0

�.�. //

�.j . //
< 1I

(iii) The representation � is strictly dominated by j in restriction to simple closed
curves:

sup
2�s

�.�. //

�.j . //
< 1:

The implication (iii)) (i) is nontrivial and relies on Lemma 2.2. The implications
(i)) (ii)) (iii) are immediate modulo the following easy remark (see [Guéritaud
and Kassel 2013, Lemma 4.5]):
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Remark 2.6. Let � be a discrete group and .j ; �/ 2 Hom.�;PSL.2;R//2 a pair
of representations. For any  2 � and any .j ; �/-equivariant Lipschitz map
f W H2! H2,

�.�. //� Lip.f /�.j . //:

2B. Pleated and folded hyperbolic structures. Let † be a connected, oriented
surface of negative Euler characteristic, possibly with boundary, and let � D �1.†/

be its fundamental group. Recall from [Bonahon 1996, §7] that a pleated hyperbolic
structure on † is a quadruple .j ; �; ‡; f / where:

� j 2 Hom.�;PSL.2;R// is the holonomy of a hyperbolic structure on †;

� � 2 Hom.�;PSL.2;C// is a representation;

� ‡ is a geodesic lamination on †;

� f W H2! H3 is a .j ; �/-equivariant, continuous map whose restriction to any
connected component of H2 X z‡ is an isometric embedding. (Here we denote
by z‡ the preimage in H2 of ‡ �†' j .�/nH2.)

The representation � is called the holonomy of the pleated hyperbolic structure. The
closures of the connected components of H2X z‡ are called the plates. Note that f
is 1-Lipschitz. For any g, h 2 PGL.2;R/,

.gj . � /g�1; h�. � /h�1; ‡; h ıf ıg�1/

is still a pleated hyperbolic structure on †.

Observation 2.7. Suppose that† is compact. If .j ; �; ‡; f / is a pleated hyperbolic
structure on †, then the group �.�/ is not virtually abelian.

Proof. We see † as the convex core of the hyperbolic surface j .�/nH2. Consider a
nondegenerate ideal triangle T of H2 which is entirely contained in the intersection
of one plate with the preimage of † in H2. Let .pn/n2N be a sequence of points
of T going to infinity. Since † is compact, there exist R > 0 and a sequence
.n/n2N of elements of � such that d.j .n/ �p0;pn/�R for all n 2 N. Since f
is .j ; �/-equivariant and 1-Lipschitz,

d.�.n/ �f .p0/; f .pn//� d.j .n/ �p0;pn/�R

for all n 2N. Applying this to sequences .pn/ converging to the three ideal vertices
of T , and using the fact that the restriction of f to T is an isometry, we see that the
limit set of �.�/ contains at least three points. In particular, �.�/ is not virtually
abelian. �

We shall also use the following elementary remark:
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Remark 2.8. Let .j ; �; ‡; f / be a pleated hyperbolic structure on †. If some leaf
of ‡ spirals to a boundary component of† corresponding to an element  2� , then
�.j . //D �.�. //, where � W PSL.2;C/! RC is the translation length function
in H3 extending (1-1).

Any pleated hyperbolic structure .j ; �; ‡; f / on † defines a bending cocycle,
i.e., a map ˇ from the set of pairs of plates to R=2�Z which is symmetric and
additive:

ˇ.P;Q/D ˇ.Q;P / and ˇ.P;Q/Cˇ.Q;R/D ˇ.P;R/

for all plates P , Q, R. Intuitively, ˇ.P;Q/ is the total angle of pleating encountered
when traveling from f .P / to f .Q/ along f .H2/ in H3. Conversely, to any bending
cocycle, Bonahon [1996, §8] associates a pleated surface.

In this paper we consider a special case of pleated surfaces .j ; �; ‡; f /, namely
those for which f takes values in a copy of H2 inside H3 (i.e., in a totally geodesic
plane) and � takes values in IsomC.H2/ D PSL.2;R/. In this case, we speak of
a folded hyperbolic structure on †, and say that � is a folding of j . The map f
defines a coloring of †X‡ , i.e., a j .�/-invariant function Qc from the set of plates
to f�1; 1g. Namely, we set Qc.P /D�1 if the restriction of f to P is orientation-
preserving, and Qc.P / D 1 otherwise. Note that the bending cocycle of a folded
hyperbolic structure is valued in f0; �g: for all plates P and Q,

(2-1) ˇ.P;Q/D 1
2
.1� Qc.P / Qc.Q//� 2 f0; �g:

The coloring Qc descends to a continuous, locally constant function c from †X‡ to
f�1; 1g. Conversely, any such function, after lifting to a coloring Qc from the set of
connected components of H2X z‡ to f�1; 1g, defines a bending cocycle on H2X z‡

by the formula (2-1). This bending cocycle, in turn, defines a folded hyperbolic
structure on †, by the work of Bonahon [1996].

2C. The Euler class. We now give a brief introduction to the Euler class, along
the lines of [Wolff 2011, §2.3.3]. For details and complements we refer to [Ghys
2001] or [Calegari 2004, §2].

As in the introduction, let †g be a closed, connected, oriented surface of
genus g � 2 with fundamental group �g. The Euler class of a representation
� 2 Hom.�g;PSL.2;R// measures the obstruction to lifting � to the universal
cover ePSL.2;R/ of PSL.2;R/, and its parity measures the obstruction to lifting � to
SL.2;R/. To define the Euler class, choose a set-theoretic section s of the covering
map ePSL.2;R/! PSL.2;R/. Consider a triangulation of †g with a vertex at the
basepoint x0 defining �gD�1.†g;x0/, and choose an orientation on every edge of
the triangulation. Choose a maximal tree in the 1-skeleton of the triangulation and,
for every oriented edge � in this tree, set �.�/ WD 12PSL.2;R/. Any other oriented
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edge � 0 corresponds (by closing up in the unique possible way along the rooted
tree) to an element  2 �g, and we set �.� 0/ WD �. / 2 PSL.2;R/. The boundary
of any oriented triangle � of the triangulation can be written as �"1

1
�
"2

2
�
"3

3
, where

�1, �2, �3 are edges with the chosen orientation and "i 2 f˙1g. We set

eu.�/.�/ WD s.�.�1//
"1s.�.�2//

"2s.�.�3//
"3 :

Summing over triangles � , this defines an element of H 2
�
†g; �1.PSL.2;R//

�
,

hence an element of H 2.†g;Z/ under the identification �1.PSL.2;R//' Z. This
element eu.�/ 2 H 2.†g;Z/ is called the Euler class of �. Its evaluation on the
fundamental class in H2.†g;Z/ is an integer, which we still call the Euler class of �.
It is invariant under conjugation by PSL.2;R/, and changes sign under conjugation
by PGL.2;R/XPSL.2;R/.

We can also define the Euler class for representations of the fundamental group of
a compact, connected, oriented surface † with boundary, of negative Euler charac-
teristic, provided that the boundary curves are sent to hyperbolic elements. Indeed,
any hyperbolic element g 2 PSL.2;R/ has a canonical lift to ePSL.2;R/ because it
belongs to a unique one-parameter subgroup of PSL.2;R/, which defines a path
from the identity to g. Choose a section s of the projection ePSL.2;R/! PSL.2;R/
that maps any hyperbolic element to its canonical lift. Then the construction
above, using triangulations of † containing exactly one vertex on each boundary
component, defines an Euler class, independent of all choices.

For instance, let † be an oriented pair of pants with fundamental group � D
h˛; ˇ;  j ˛ˇ D 1i, where ˛, ˇ,  correspond to the three boundary curves,
endowed with the orientation induced by the surface. For any representation
� 2 Hom.�;PSL.2;R// with �.˛/, �.ˇ/, �. / hyperbolic,

(2-2) eu.�/D s.�.˛//s.�.ˇ//s.�. // 2Z.ePSL.2;R//' Z:

In particular, eu.�/ 2 f�1; 0; 1g, and jeu.�/j D 1 if and only if � is the holonomy
of a hyperbolic structure on †, possibly after reversing the orientation. If s0 is a
section of the projection SL.2;R/! PSL.2;R/ that maps any hyperbolic element
to its lift of positive trace, then (2-2) implies

(2-3) s0.�.˛//s0.�.ˇ//s0.�. //D .� Id/eu.�/:

By construction, the Euler class is additive: if† is the union of two subsurfaces†0

and†00 glued along curves i , and if �2Hom.�1.†/;PSL.2;R// is a representation
sending all the curves i (and the boundary curves of †, if any) to hyperbolic
elements of PSL.2;R/, then eu.�/ is the sum of the Euler classes of the restrictions
of � to the fundamental groups of †0 and †00. This implies that a folded hyperbolic
structure defined by a coloring c from the set P of connected components of
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Figure 1. A pair of pants carries 24 maximal geodesic laminations
containing a geodesic spiraling from a boundary component to
itself (left), and 8 triskelion laminations (right).

†X‡ to f�1; 1g has Euler class 1
2�

P
P2P c.P /A.P /, where A.P / is the area

of P .
We shall use the following terminology:

Definition 2.9. A representation � 2 Hom.�1.†/;PSL.2;R// is geometric if it
maps the boundary curves of † to hyperbolic elements of PSL.2;R/ and has
extremal Euler class or, equivalently, if it is the holonomy of a hyperbolic structure
on †, possibly after reversing the orientation.

2D. Laminations in a pair of pants. A hyperbolic pair of pants † carries only
finitely many geodesic laminations, because only 21 geodesics are simple — namely
3 closed geodesics (the boundary components), 6 geodesics spiraling from a bound-
ary component to itself, and 12 geodesics spiraling from a boundary component to
another. It admits 32 ideal triangulations, of which 24 contain a geodesic spiraling
from a boundary component to itself and the other 8 do not (see Figure 1). We shall
call the laminations corresponding to these 8 triangulations the triskelion laminations
of †. They differ by the spiraling directions of the spikes of the triangles at each
boundary component.

3. Holonomies of folded hyperbolic structures

Let � W PSL.2;R/! RC be the translation length function (1-1). For any represen-
tation � 2 Hom.�g;PSL.2;R//, we set

�� WD � ı � W �g �! RC:

The function �� is identically zero if and only if the group �.�g/ is unipotent or
bounded. The goal of this section is to prove the following:

Proposition 3.1. For any Œ�� 2 Repnfd
g with �� 6� 0, there exist elements Œj0�, Œj 00�

of Repfd
g and a decomposition … of †g into pairs of pants, each labeled �1, 0, or 1,

with the following properties:
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(1) For any representations j0; � in the respective classes Œj0�, Œ��, there is a
1-Lipschitz, .j0; �/-equivariant map f W H2 ! H2 that is an orientation-
preserving (resp. orientation-reversing) isometry in restriction to any connected
subset of H2 projecting to a union of pants labeled�1 (resp. 1) in j0.�g/nH

2'

†g, and that satisfies Lipp.f / < 1 for any p 2H2 projecting to the interior of
a pair of pants labeled 0;

(2) For any representations j 0
0
, � in the respective classes Œj 0

0
�, Œ��, if the group

�.�g/ is not virtually abelian, then � is a folding of j 0
0

along a lamination ‡
of †g consisting of all the cuffs together with a triskelion lamination inside
each pair of pants labeled 0, with the coloring c W †g X‡ ! f�1; 1g taking
the value �1 (resp. 1) on each pair of pants labeled �1 (resp. 1), and both
values on each pair of pants labeled 0;

(3) Œj0� and Œj 0
0
� only differ by earthquakes along the cuffs of the pairs of pants of

the decomposition.

Property (1) is used to prove Theorem 1.1 in Section 4, while (2) is a more
precise statement of Theorem 1.2. We refer to Section 2A for the notation Lipp.f /

and to Section 2D for triskelion laminations. By additivity (see Section 2C), the
Euler class of � is the sum of the labels of the pairs of pants.

Proposition 3.1 is proved by choosing an appropriate pants decomposition
(Section 3A) and understanding the representations of the fundamental group of a
pair of pants (Section 3B). These ingredients are brought together in Section 3C.
In Section 3D we present a variation on Proposition 3.1(1), which is later used to
prove the second statement of Theorem 1.1.

3A. Pants decompositions. Our first ingredient is the following:

Lemma 3.2. For any Œ��2Repnfd
g with �� 6� 0, there is a pants decomposition of†g

such that � maps any cuff to a hyperbolic element. If �.�g/ is not virtually abelian,
then we may assume that the restriction of � to the fundamental group of any pair
of pants of the decomposition is nonabelian.

Recall that Œ�� 2 Repnfd
g is said to be elementary if the group �.�g/ admits a

finite orbit in H2 or in @1H2. In the case that Œ�� is not elementary, Lemma 3.2 is
contained in the following result of Gallo, Kapovich, and Marden:

Lemma 3.3 [Gallo et al. 2000, part A]. For any nonelementary Œ�� 2 Repnfd
g , there

is a pants decomposition of†g such that the fundamental group of any pair of pants
maps injectively to a 2-generator Schottky group under �.

We now treat the case that � is elementary.

Proof of Lemma 3.2 when � is elementary. By induction, Lemma 3.2 is a conse-
quence of the following two claims:
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Claim 3.4. Let† be a connected compact surface of genus g� 1 with k � 0 bound-
ary components such that �.†/D2�2g�k<0, and let �2Hom.�1.†/;PSL.2;R//
be an elementary representation with �� 6� 0 sending each boundary curve of † (if
any) to a hyperbolic element. Then we can cut † open along some nonseparating
simple closed curve whose image under � is a hyperbolic element, yielding a new sur-
face†0 of genus g�1 and an induced representation �0 2Hom.�1.†

0/;PSL.2;R//
sending all kC2 boundary curves of †0 to hyperbolic elements. If the image of � is
not virtually abelian, then the image of �0 is not virtually abelian.

Claim 3.5. Let † be a connected compact surface of genus g D 0 with k � 4

boundary components, and let � 2 Hom.�1.†/;PSL.2;R// be an elementary
representation sending each boundary curve of † to a hyperbolic element. Then
we can cut † along some simple closed curve of †, not freely homotopic to a
boundary component, whose image under � is a hyperbolic element, yielding two
new surfaces †1 and †2 with lower complexity and two induced representations
�i 2 Hom.�1.†i/;PSL.2;R// sending each boundary curve to a hyperbolic ele-
ment. If the image of � is nonabelian, then we can do this in such a way that the
images of the �i are nonabelian.

Proof of Claim 3.4. We first observe that �1.†/ is generated by elements rep-
resenting nonseparating simple closed curves on †. Indeed, consider a standard
presentation

(3-1) �1.†/D ha1; b1; : : : ; ag; bg; c1; : : : ; ck j Œa1; b1� � � � Œag; bg�c1 � � � ck D 1i

of �1.†/ by generators and relations, where ai , bi represent nonseparating simple
closed curves and ci a curve freely homotopic to a boundary component. Either
a1ci represents a nonseparating simple closed curve for all i , or a�1

1
ci represents a

nonseparating simple closed curve for all i . Thus we may take the generating set
fa1; b1; : : : ; ag; bg; a

"
1
c1; : : : ; a

"
1
ckg for some " 2 f�1; 1g.

Let us show that � sends some nonseparating simple closed curve of † to a
hyperbolic element. Since �� 6� 0, two mutually exclusive situations are possible:

(T) The group �.�1.†// has a fixed point � in @1H2; it is then conjugate to a
group of triangular (possibly diagonal) matrices in PSL.2;R/.

(VA) The group �.�1.†// preserves a geodesic line ` of H2 and contains both
translations along ` and order-two symmetries of ` reversing its orientation;
it is then virtually abelian but not abelian.

Consider a system F of generators of �1.†/ representing nonseparating simple
closed curves. In case (T), some element of F is necessarily sent by � to a hyperbolic
element: otherwise the group �.�1.†// would contain only parabolic elements
and the identity, which would contradict the fact that �� 6� 0. Suppose we are in
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case (VA) and � does not send any element of F to a hyperbolic element; it then
sends some element  2 F to an order-two symmetry of ` (because it is not the
constant homomorphism). We may complete  into a new standard presentation of
the form (3-1) with  D a1. Consider the generating set

F 0 D fb1; a1b1; a
�1
2 b1; b2b1; : : : ; a

�1
g b1; bgb1; c

"
1b1; : : : ; c

"
kb1g;

where " 2 f�1; 1g. If " is suitably chosen, then every  0 2 F 0 represents a non-
separating simple closed curve, and  0 and  D a1 are standard generators of a
one-holed torus embedded in †; it follows that  0 represents a nonseparating
simple closed curve as well. Necessarily, there exists  0 2 F 0 such that �. 0/ does
not commute with �. /: otherwise the group �.�1.†// would be contained in the
centralizer of �. /, which is compact, and this would contradict the fact that �� 6� 0.
Either this �. 0/ is hyperbolic, or it is an order-two symmetry whose center is
different from that of �. /, in which case �. 0/ is hyperbolic. In either case we
have found a nonseparating simple closed curve whose image in �1.†/ is mapped
by � to a hyperbolic element.

Let †0 be obtained by cutting † open along such a simple closed curve. If
the image of the induced representation �0 2 Hom.�1.†

0/;PSL.2;R// is virtually
abelian, then so is the image of �. Indeed, �1.†/ is generated by �1.†

0/ together
with an element  0 that conjugates two elements of �1.†

0/ with hyperbolic images
under �0. If the image of �0 is virtually abelian, preserving some geodesic line `
of H2, then �. 0/ has to preserve `, and so does the whole image of �. Thus the
image of � is virtually abelian. �
Proof of Claim 3.5. Since the boundary curves of † generate �1.†/ and since
they all have hyperbolic image under the elementary representation �, the group
�.�1.†// has a fixed point � in @1H2 (case (T) above). Choose a geodesic line `
of H2 with endpoint � . For any  2 � we may write in a unique way �. /D au ,
where a belongs to the stabilizer A of � and ` in PSL.2;R/, and u 2 PSL.2;R/
is unipotent or trivial. The map  7! a can be seen as a nonzero element ! of
H 1.†g;R/ after identifying A with .R;C/. Consider a standard presentation

�1.†/D hc1; : : : ; ck j c1 � � � ck D 1i

of �1.†/ by generators and relations, where c1; : : : ; ck represent curves freely
homotopic to the boundary components of †, and cicj represents a simple curve
for any i < j . We claim that � sends one of the cicj to a hyperbolic element.
Indeed, otherwise we would have !.ci/C !.cj / D 0 for all i ¤ j ; solving this
linear system gives !.ci/D 0 for all i , which would contradict the assumption that
�.ci/ is hyperbolic.

For 1� i � k, let �i 2 @1H2 be the fixed point of �.ci/ that is different from � .
If the image of � is not abelian, then there exists i such that �i ¤ �iC1 (with the
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convention that �kC1 D �1). Precomposing � by a Dehn twist along a curve freely
homotopic to ciciC1 corresponds to conjugating �.ci/ and �.ciC1/ by �.ciciC1/

while leaving all the other �.cj / unchanged. Applying a large enough power of
this Dehn twist, with the appropriate sign if �.ciciC1/ is hyperbolic, pushes �i
and �iC1 to two distinct points arbitrarily close to �; in particular, we can make
�i and �iC1 distinct from the other points �j . We then proceed similarly with the
new point �iC1 and �iC2, and so on, until all the points �i are pairwise distinct.
We then conclude as above: one of the cicj (with i ¤ j ) has hyperbolic image
under �. It represents a curve cutting † into two smaller surfaces on which �
induces nonabelian representations. �

To prove Lemma 3.2, just make repeated use of Claim 3.4 to reduce to a surface
of genus 0, then of Claim 3.5 to decompose it into pairs of pants. �

3B. Representations of the fundamental group of a pair of pants. The following
lemma gives a dictionary between the geometric and nongeometric representations
(Definition 2.9) of the fundamental group of a pair of pants.

Lemma 3.6. Let � D h˛; ˇ;  j ˛ˇ D 1i be the fundamental group of a pair of
pants †, with ˛, ˇ,  corresponding to the three boundary curves.

For any a, b, c > 0 such that none is the sum of the other two, there are exactly
two representations � 2 Hom.�;PSL.2;R// satisfying

(3-2) .�� .˛/; �� .ˇ/; �� . //D .a; b; c/

up to conjugation under PGL.2;R/. One of them is geometric (with jeu.�/j D 1).
The other is nongeometric (with eu.�/D 0), and is obtained from the geometric one
by folding along any of the eight triskelion laminations of †.

For any a, b, c > 0 such that one is the sum of the other two, there are exactly
four representations � 2 Hom.�;PSL.2;R// satisfying (3-2), up to conjugation
under PGL.2;R/. One of them is geometric (with jeu.�/j D 1). The other three
are elementary (with eu.�/D 0): two have an image that is not virtually abelian
and the third one is their abelianization. Each of the two nonabelian elementary
representations is obtained from the geometric one by folding along any of four
different triskelion laminations of †.

When one of a, b, c is the sum of the other two, the images of the two nonabelian
elementary representations � 2 Hom.�;PSL.2;R// are conjugate to triangular
matrices; their abelianization is by definition their projection to the group of diagonal
matrices.

Proof. Fix a, b, c > 0. We first determine the number of conjugacy classes of
representations � satisfying (3-2). Set .A;B;C / WD .ea=2; eb=2; ec=2/, and let
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� 2 Hom.�;PSL.2;R// satisfy (3-2). Up to conjugating � by PGL.2;R/, we can
find lifts �.˛/ 2 SL.2;R/ of �.˛/ and �.ˇ/ 2 SL.2;R/ of �.ˇ/ of the form

�.˛/D

�
A 0

0 A�1

�
and �.ˇ/D

�
BCx y

z B�1�x

�
with x, y, z 2 R. Since ˛ and ˇ freely generate � , this determines a lift � of �
in Hom.�;SL.2;R//. The sign " 2 f˙1g of Tr.�.˛//Tr.�.ˇ//Tr.�. // does not
depend on the choice of �.˛/ and �.ˇ/. By (2-2), we have eu.�/ 2 f�1; 0; 1g, with
jeu.�/j D 1 if and only if � is geometric, and by (2-3)

"D .�1/eu.�/:

The trace of �. /D �.˛ˇ/�1 is

A.BCx/CA�1.B�1
�x/D ".C CC�1/;

hence

x D
".C CC�1/�AB � .AB/�1

A�A�1

is uniquely determined by A, B, C , and ". Let � WD .B C x/.B�1 � x/. Since
�.ˇ/ 2 SL.2;R/, we have yz D � � 1. If � ¤ 1, then any pair .y; z/ of reals with
product � � 1 can be obtained by conjugating �.˛/ and �.ˇ/ by a diagonal matrix
in PGL.2;R/ (which does not change x). Thus � is unique up to conjugation once
we fix " 2 f�1; 1g. If � D 1, then �.ˇ/ is either upper or lower triangular, or both,
hence there are three conjugacy classes for � , with �.�/ consisting respectively
of upper triangular, lower triangular, and diagonal matrices. The condition � D 1

amounts to .B�1�B �x/x D 0, or equivalently to�
BC

A
� "

��
AC

B
� "

�
�

�
AB

C
� "

�
.ABC � "/D 0I

in other words, "D 1 and one of a, b, c is the sum of the other two.
Let j 2Hom.�;PSL.2;R// be geometric (Definition 2.9). For any folding � of j

along a triskelion lamination ‡ of †, the functions �j and �� agree on f˛; ˇ;  g
(Remark 2.8), and � is not conjugate to j under PGL.2;R/ because the folding
map f is not an isometry (see Section 2A). Therefore, eu.�/ D 0 by the above
discussion.

If none of a, b, c is the sum of the other two, then � belongs to the unique
conjugacy class of representations � satisfying (3-2) and eu.�/D 0.

If one of a, b, c is the sum of the other two, then � belongs to one of the two
conjugacy classes of representations � whose image is not virtually abelian and that
satisfy (3-2) and "D 1 (Observation 2.7). The representation �0 obtained from j

by folding along the image of ‡ under the natural involution of the pair of pants
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belongs to the other conjugacy class of such representations. The abelianization of
� or �0 is not conjugate to j , hence satisfies (3-2) and "D 1 as well. �

Corollary 3.7. Let � D h˛; ˇ;  j ˛ˇ D 1i be the fundamental group of a pair of
pants †, with ˛, ˇ,  corresponding to the three boundary curves. Consider two
representations j , � 2 Hom.�;PSL.2;R// with j geometric (Definition 2.9), with
� nongeometric, and with

.�j .˛/; �j .ˇ/; �j . //D .��.˛/; ��.ˇ/; ��. //:

Then there exists a 1-Lipschitz, .j ; �/-equivariant map f W H2 ! H2 such that
Lipp.f / < 1 for any p 2 H2 projecting to a point of j .�/nH2 off the boundary of
the convex core.

Note that in this setting any .j ; �/-equivariant map f W H2 ! H2 satisfies
Lip.f /� 1 by Remark 2.6, and if Lip.f /D 1 then f is an isometry in restriction
to the translation axes of j .˛/, j .ˇ/, j . / in H2. The convex core of j .�/nH2

naturally identifies with †.

Proof. We first assume that the group �.�/ is nonabelian. By Lemma 3.6, the
representation � is obtained from j by folding along any of at least four of the eight
triskelion laminations of †. Let ` be an injectively immersed geodesic that spirals
between two boundary components.

If the two boundary components are different, then ` is contained in only two
triskelion laminations, and intersects the others transversely. If the two boundary
components are the same, then ` intersects transversely all triskelion laminations
of †. In both cases we see that a lift of ` to H2 cannot be isometrically preserved
by all 1-Lipschitz, .j ; �/-equivariant maps f W H2! H2 (such maps exist since �
is a folding of j ). This holds for any `, which shows that the lamination zƒ�H2 of
Lemma 2.2 is contained in (in fact, is equal to) the preimage of the boundary of the
convex core of j .�/nH2, which identifies with the boundary of †. By Lemma 2.2,
this means that there exists a 1-Lipschitz, .j ; �/-equivariant map f W H2 ! H2

such that Lipp.f / < 1 for any p 2 H2 projecting to a point of j .�/nH2 off the
boundary of the convex core.

We now assume that �.�/ is abelian. By Lemma 3.6, the representation � is the
abelianization of some representation �0 that is a folding of j . The group �0.�/ fixes
a point � 2 @1H2, and �.�/ preserves a geodesic line ` of H2 with endpoint � . By
postcomposing any 1-Lipschitz, .j ; �0/-equivariant map with the projection onto `
along the horospheres centered at �, we obtain a 1-Lipschitz, .j ; �/-equivariant
map. Moreover, since 1 is the optimal Lipschitz constant (Remark 2.6), this shows
that the stretch locus (Definition 2.3) of .j ; �/ is contained in that of .j ; �0/, and
we conclude as above. �
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Remark 3.8. The nonabelian, nongeometric representations in Lemma 3.6 can
also be obtained by folding along a nonmaximal geodesic lamination consisting
of a unique leaf spiraling from a boundary component to itself. Folding along a
maximal lamination which is not a triskelion gives a representation with values in
PGL.2;R/ and not PSL.2;R/.

3C. Proof of Proposition 3.1. By Lemma 3.2, there is a pants decomposition …
of †g such that � maps any cuff to a hyperbolic element, and such that if �.�g/ is
not virtually abelian then the restriction of � to the fundamental group of any pair
of pants is nonabelian. Let j 2 Hom.�g;PSL.2;R// be a Fuchsian representation
such that �j . /D ��. / for all  2 �g corresponding to cuffs of pants of …. The
twist parameters along the cuffs will be adjusted later; for the moment we choose
them arbitrarily.

Let C be the j .�g/-invariant (disjoint) union of all geodesics of H2 projecting
to the cuffs in j .�g/nH

2 '†g. For each pair of pants P in …, choose a subgroup
�P of �g which is conjugate to �1.P /. Then j j�P is the holonomy of a hyperbolic
metric on P with cuff lengths given by ��. Choose a lift zP � H2 of the convex
core of j .�P /nH2. This lift is the closure of a connected component of H2XC. If
the restrictions of j and � to �P are conjugate by some isometry f P of H2, then
we give P the label �1 or 1, depending on whether f P preserves the orientation
or not. If the restrictions of j and � to �P are not conjugate, then we give P the
label 0. In this case:
� There is a 1-Lipschitz, .j j�P ; �j�P /-equivariant map f P W zP ! H2 with

Lipp.f
P / < 1 for all p … @ zP , by Corollary 3.7.

� If �.�g/ is not virtually abelian then �j�P is a folding of j j�P along some
triskelion lamination of P , by Lemma 3.6; we denote by FP W zP ! H2 the
folding map.

Note that in restriction to any connected component of @ zP (a line), the maps f P

and FP are both isometries, but they may disagree by a constant shift.
The collection of all maps f P , extended .j ; �/-equivariantly, piece together to

yield a map f � W H2 XC! H2. The obstruction to extending f � by continuity
on each geodesic ` � C is that the maps on either side of ` may disagree by a
constant shift along `. This discrepancy ı.`/ 2 R is the same on the whole j .�g/-
orbit of `. To correct it, we postcompose j with an earthquake supported on the
cuff associated with `, of length �ı.`/. We repeat for each j .�g/-orbit in C, and
eventually obtain a new Fuchsian representation j0. By construction, there is a 1-
Lipschitz, .j0; �/-equivariant map f WH2!H2, obtained simply by gluing together
isometric translates of the f P . This extension f satisfies Proposition 3.1(1).

If �.�g/ is not virtually abelian, then similarly the maps f P for P labeled ˙1

and FP for P labeled 0 piece together to yield a map F� WH2XC!H2. As above,
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we can modify j by earthquakes into a new Fuchsian representation j 0
0
, and F�

by piecewise isometries into a .j 0
0
; �/-equivariant, continuous map F WH2!H2

which is a folding map. This proves Proposition 3.1(2).
Proposition 3.1(3) is satisfied by construction. �

3D. Uniform Lipschitz bounds. In order to prove the second claim of Theorem 1.1
in Section 4D, we shall use the following result, which gives Lipschitz bounds
which are analogous to Proposition 3.1(1) but uniform.

Proposition 3.9. For any decomposition … of †g into pairs of pants labeled
�1; 0; 1 and any continuous family .jt /t�0�Hom.�g;PSL.2;R// of Fuchsian rep-
resentations, there exist a family .�t /t�0 � Hom.�g;PSL.2;R// of non-Fuchsian
representations and, for any t in a small interval Œ0; t0�, a 1-Lipschitz, .jt ; �t /-
equivariant map 't W H

2! H2, with the following properties:

� 't is an orientation-preserving (resp. orientation-reversing) isometry in re-
striction to any connected subset of H2 projecting to a union of pants labeled
�1 (resp. 1) in jt .�g/nH

2 '†g;

� For any � > 0, there exists C < 1 such that Lipp.'t / � C for all t 2 Œ0; t0�

and all p 2 H2 whose image in jt .�g/nH
2 '†g lies inside a pair of pants P

labeled 0, at distance at least � from the boundary of P .

Proposition 3.9 is based on the following uniform version of Corollary 3.7:

Lemma 3.10. Let � D h˛; ˇ;  j ˛ˇ D 1i be the fundamental group of a pair of
pants †, with ˛, ˇ,  corresponding to the three boundary curves. Consider two
continuous families .jt /t�0, .�t /t�0 �Hom.�;PSL.2;R// of representations with
jt geometric (Definition 2.9), with �t nongeometric, and with

.�jt
.˛/; �jt

.ˇ/; �jt
. //D .��t

.˛/; ��t
.ˇ/; ��t

. //

for all t � 0. Then there exists a family of 1-Lipschitz, .jt ; �t /-equivariant maps
't WH

2!H2, defined for all t in a small interval Œ0; t0�, with the following property:
for any � > 0 there exists C < 1 such that Lipp.'t / � C for all t 2 Œ0; t0� and all
p 2 H2 whose image in jt .�/nH

2 lies at distance at least � from the boundary of
the convex core.

Proof of Lemma 3.10. By Corollary 3.7, there exists a 1-Lipschitz, .j0; �0/-equiva-
riant map f0 W H

2! H2 such that Lipp.f0/ < 1 for any p 2 H2 whose image in
j0.�/nH

2 does not belong to the boundary of the convex core. If .jt ; �t /D .j0; �0/

for all t , then we may take 't D f0. In the general case, we shall build 't as a small
deformation of f0 in restriction to the preimage of the convex core of jt .�/nH

2.
Choose �> 0 so that for all small t � 0, the 2�-neighborhoods of the boundary

components of the convex core of the hyperbolic surface jt .�/nH
2 are disjoint.
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0 2ı � 2�

�

�ı.�/

Figure 2. The function �ı in the proof of Lemma 3.10.

Choose a small ı 2 .0; �=2/ and let �ı W RC! RC be the function that satisfies

�ı.�/D

8<:
0 for 0� �� 2ı;

�� 2ı for �D�;
� for �� 2�

and is affine on Œ2ı;�� and Œ�; 2�� (Figure 2). Note that �ı is .1Co.1//-Lipschitz
as ı! 0, and 1-Lipschitz away from Œ�; 2��. For any t � 0, let Nt � H2 be the
preimage of the convex core of jt .�/nH

2, and let �t WH
2!Nt be the closest-point

projection, which is 1-Lipschitz. We set

'0 WD f0 ıJı ı�0;

where Jı is the homotopy of H2 taking any point at distance ��2� from a boundary
component `0 of N0 to the point at distance �ı.�/ from `0 on the same perpendicular
ray to `0, leaving other points unchanged. By construction, in restriction to the
2ı-neighborhood of @N0, the map '0 factors through the closest-point projection
onto @N0. The function p 7! Lipp.f0/ is j0.�/-invariant, upper semicontinuous,
and less than 1 on H2 X @N0, hence bounded away from 1 when p 2N0 stays at
distance at least �� 2ı from @N0. This implies that, if we have chosen ı small
enough (which we shall assume from now on), then Lip.'0/D 1 and Lipp.'0/ < 1

for all p in the interior of N0. For t > 0, we construct 't as a deformation of '0

via a partition of unity, as follows.
Let Uı

t �Nt be the ı-neighborhood of @Nt and N ı
t WDNt XUı

t its complement
in Nt ; we define U2ı

t similarly. Choose a 1-Lipschitz, .jt ; �t /-equivariant map
'0

t W U
2ı
t ! H2 factoring through the closest-point projection onto @Nt and tak-

ing any boundary component `t of Nt , stabilized by a cyclic subgroup jt .S/ of
jt .�/, isometrically to the translation axis of �t .S/ in H2. Up to postcomposing
each '0

t with an appropriate shift along the axis of �t .S/, we may assume that
'0

t .p/! '0.p/ for any p 2U2ı
0

as t ! 0 (recall that the restriction of '0 to any
boundary component of N0 is an isometry).
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Let B1; : : : ;Bn �N0 be balls of H2, each projecting injectively to j0.�/nH
2,

disjoint from a neighborhood of @N0, and such that

N ı
0 � j0.�/ �

n[
iD1

Bi :

For 1� i � n, let 'i
t W jt .�/ �B

i! H2 be the .jt ; �t /-equivariant map that agrees
with '0 on Bi . By construction, for all 1 � i � n (resp. for i D 0) and for all
p 2 j0.�/ �B

i (resp. p 2U2ı
0

) we have 'i
t .p/! '0.p/ as t ! 0, uniformly for p

in any compact set. However, the maps 'i
t , for 0� i � n, may not agree at points

where their domains overlap. The goal is to paste them together by the procedure
described in Section 2A, using a jt .�/-invariant partition of unity . i

t /0�i�n that
we now construct.

Let  0
t W H

2! Œ0; 1� be the function supported on U2ı
t that takes any point at

distance � from @Nt to �.�/ 2 Œ0; 1�, where �.Œ0; ı�/ D 1, �.Œ2ı;C1// D 0, and
� is affine on Œı; 2ı�. Let  1; : : : ;  n W H2 ! Œ0; 1� be j0.�/-invariant Lipschitz
functions inducing a partition of unity on a neighborhood of N ı

0
, with  i supported

in j0.�/ �B
i . Since Nt has a compact fundamental domain for jt .�/ that varies

continuously with t (for instance a right-angled octagon), for small enough t we
have

N ı
t � jt .�/ �

n[
iD1

Bi :

For 1 � i � n and t � 0, let y i
t W H2 ! Œ0; 1� be the jt .�/-invariant function

supported on jt .�/ �B
i that agrees with  i on Bi . Then

Pn
iD1
y i

t D 1C o.1/ as
t ! 0, with an error term uniform on N ı

t . Therefore the functions

 0
t and  i

t WD .1� 
0
t /

y i
tPn

kD1
y k

t

W H2
�! Œ0; 1�

for 1� i � n form a jt .�/-invariant partition of unity of Nt , subordinated to the
covering U2ı

t [jt .�/ �B
1[� � �[jt .�/ �B

n�Nt , and are all L-Lipschitz for some
L> 0 independent of i and t .

For t � 0, let 't WD
Pn

iD0  
i
t'

i
t W Nt ! H2 be the averaged map defined in

Section 2A. This map is .jt ; �t /-equivariant by construction. We extend it to a map
't W H

2! H2 by precomposing with the closest-point projection �t W H
2! Nt .

We claim that the maps 't satisfy the conclusion of Lemma 3.10. Indeed, by
Lemma 2.4, for any t � 0 and p in the interior of Nt ,

(3-3) Lipp.'t /�
X

i2It .p/

.Lipp. 
i
t /Rt .p/C 

i
t .p/Lipp.'

i
t //;
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where It .p/ is the set of indices 0� i � n such that p belongs to the support of  i
t ,

and Rt .p/ � 0 is the diameter of the set f'i
t .p/ j i 2 It .p/g. Let � > 0 be the

distance from p to @Nt .
If � < ı, then 't coincides on a neighborhood of p with '0

t , hence with the
closest-point projection onto @Nt postcomposed with an isometry of H2, and the
right-hand side of (3-3) reduces to

Lipp.'
0
t /D

1

cosh �
< 1

(see [Guéritaud and Kassel 2013, (A.9)], for instance).
If � � ı, then the bound on Lipp.'

0
t / still holds, and Lipp.'

i
t / for 1 � i � n

can also be uniformly bounded away from 1. Indeed, supq2Bi Lipq.'
i
t / < 1 since

Bi is disjoint from a neighborhood of @N0 and the local Lipschitz constant is
upper semicontinuous, and we argue by equivariance. Moreover, all the other
contributions to (3-3) are small: Rt .p/! 0 as t! 0, uniformly in p, and Lipp. 

i
t /

is bounded independently of p, i , t (by L). Therefore, for small t there exists
C < 1, independent of p and t , such that Lipp.'t /� C .

This treats the case when p 2Nt . To conclude, we note that on a neighborhood
of any p 2 H2 XNt the map 't coincides with the closest-point projection onto
@Nt postcomposed with an isometry of H2, hence Lipp.'t /D 1= cosh �< 1, where
�D d.p; @Nt /. �

Proof of Proposition 3.9. Let ‡ be a lamination of †g consisting of all the cuffs
of … together with a triskelion lamination inside each pair of pants labeled 0. Let
c W†g X‡ ! f�1; 1g be a coloring taking the value �1 (resp. 1) on each pair of
pants labeled �1 (resp. 1), and both values on each pair of pants labeled 0. For any
t � 0, let �0t be the folding of jt along ‡ with coloring c.

We now argue similarly to the proof of Proposition 3.1 in Section 3C. For each
pair of pants P in …, choose a subgroup �P of �g which is conjugate to �1.P /,
and for any t � 0 a lift zPt � H2 of the convex core of jt .�

P /nH2.
If P is labeled �1 (resp. 1), then for any t � 0 the restrictions of jt and �0t to �P

are conjugate by some orientation-preserving (resp. orientation-reversing) isometry
'P

t of H2.
If P is labeled 0, then, by Lemma 3.10, there is a family of 1-Lipschitz,

.jt j�P ; �0t j�P /-equivariant maps 'P
t W H2 ! H2, defined for all t in a small

interval Œ0; t0�, with the following property: for any � > 0, there exists C < 1

such that Lipp.'
P
t / � C for all t 2 Œ0; t0� and all p 2 zPt at distance at least �

from @ zPt .
The collection of all maps 'P

t , extended .jt ; �
0
t /-equivariantly, piece together

to yield a map '�t W H
2 XCt ! H2, where Ct is the union of all geodesics of H2

projecting to cuffs of … in jt .�g/nH
2 '†g.
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The obstruction to extending '�t by continuity on each geodesic `t � Ct is that
the maps on either side of `t may disagree by a constant shift along `t if `t separates
two pairs of pants labeled .˙1; 0/ or .0; 0/. This discrepancy ı.`t / 2R is the same
on the whole jt .�g/-orbit of `t . To correct it, we precompose the folding �0t of jt

with an earthquake, supported on the cuff associated with `t (in the jt -metric),
of length �ı.`t /. We repeat for each jt .�g/-orbit in Ct , and eventually obtain a
new folded representation �t . By construction, there is a family of 1-Lipschitz,
.jt ; �t /-equivariant maps 't WH

2!H2 satisfying Proposition 3.9, obtained simply
by gluing together isometric translates of the 'P

t . �

4. Surjectivity of the two projections

In this section we prove Theorem 1.1. We first construct uniformly lengthening
deformations of surfaces with boundary (Section 4A), then glue these together ac-
cording to combinatorics given by Proposition 3.1 (Sections 4B and 4D). Section 4C
is devoted to the proof of a technical lemma.

4A. Uniformly lengthening deformations of compact hyperbolic surfaces with
boundary. Our two main tools to prove Theorem 1.1 are Proposition 3.1 and the
following lemma:

Lemma 4.1. Let � be the fundamental group and j0 2 Hom.�;PSL.2;R// the
holonomy of a compact, connected, hyperbolic surface † with nonempty geodesic
boundary. Then there exist t0 > 0 and a continuous family of representations
.jt /0�t�t0

with the following properties:

(a) �j0
. /D .1� t/�jt

. / for any t 2 Œ0; t0� and any  2 � corresponding to a
boundary component of †;

(b) sup2�Xf1g �j0
. /=�jt

. / < 1 for any t 2 .0; t0�;

(c) jt . /D j0. /CO.t/ for any  2 � as t ! 0, where both sides are seen as
2� 2 real matrices with determinant 1 modulo˙ Id;

(d) for any compact subset K of H2 projecting to the interior of the convex core of
j0.�/nH

2, there exists L> 0 such that

d.p; ft .p//�Lt

for any p 2K, any t 2 Œ0; t0�, and any 1-Lipschitz, .jt ; j0/-equivariant map
ft W H

2! H2.

As in Section 3B, the convex core of j0.�/nH
2 naturally identifies with †. The

idea is to construct the representations jt as holonomies of hyperbolic surfaces
obtained from j0.�/nH

2 by strip deformations. This type of deformation was first



348 FRANÇOIS GUÉRITAUD, FANNY KASSEL AND MAXIME WOLFF

˛i

ˇ

†

&
ˇ
t

Ai

Figure 3. A strip deformation. In the source of the collapsing map
&
ˇ
t we show the new peripheral geodesic, dotted.

introduced by Thurston [1986, proof of Lemma 3.4]. We refer to [Papadopoulos
and Théret 2010; Danciger et al. 2014] for more details.

Proof. We first explain how to lengthen one boundary component ˇ of †. Choose
a finite collection of disjoint, biinfinite geodesic arcs ˛1; : : : ; ˛n � j0.�/nH

2,
each crossing ˇ orthogonally twice, that subdivide the convex core † into right-
angled hexagons and one-holed right-angled bigons. Along each arc ˛i , following
[Thurston 1986], slice j0.�/nH

2 open and insert a strip Ai of H2, bounded by two
geodesics, with narrowest cross-section at the midpoint of ˛i \† (see Figure 3).

This yields a new complete hyperbolic surface, with a compact convex core,
equipped with a natural 1-Lipschitz map &ˇt to j0.�/nH

2 obtained by collapsing
the strips Ai back to lines. Note that the image under &ˇt of the new convex core is
strictly contained in † (see Figure 3). The geodesic corresponding to ˇ is longer in
the new surface than in †. By adjusting the widths of the strips Ai , we may assume
that the ratio of lengths is 1=.1� t/. The appropriate widths for this ratio are in
O.t/ as t ! 0. All lengths of geodesics corresponding to boundary components
other than ˇ are unchanged.

Repeat the construction, iteratively, for all boundary components ˇ1; : : : ; ˇr

of †, in some arbitrary order. We thus obtain a new complete hyperbolic surface
jt .�/nH

2, with a compact convex core †t , such that jt satisfies (a).
We claim that jt also satisfies (b). Indeed, consider the 1-Lipschitz map

&t WD &
ˇr

t ı � � � ı &
ˇ1

t from †t to †. If 1 were its optimal Lipschitz constant,
then by Lemma 2.2 there would exist a geodesic lamination of †t whose leaves
are isometrically preserved by &t . But this is not the case here since for every i ,
the map &ˇi

t does not isometrically preserve any geodesic lamination except the
boundary components other than ˇi . Therefore &t has Lipschitz constant strictly
less than 1, which implies (b) by Remark 2.6.

Up to replacing each jt with a conjugate under PSL.2;R/, we may assume that (c)
holds. Indeed, it is well known that there exist elements 1; : : : ; n2� whose length
functions form a smooth coordinate system for Hom.�;PSL.2;R//=PSL.2;R/
near Œj0� (see [Goldman and Xia 2011, Theorem 2.1] for instance). For any i , the
preimage under &t of the closed geodesic of † associated with i is obtained by
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�.h/

p h �p

Ah

d.p;Ah/

p

Aj0.1/

Aj0.2/

Aj0.3/

Figure 4. Illustration of the proof of Lemma 4.1. Left: a hyper-
bolic quadrilateral with two right angles. Right: the point ft .p/

belongs to the shaded region.

expanding finitely many strips of width O.t/, hence �jt
.i/ � �j0

.i/CO.t/ as
t ! 0. On the other hand, �jt

.i/� �j0
.i/ due to the existence of the 1-Lipschitz

map &t . Therefore, d 0.j0; jt /DO.t/ for any smooth metric d 0 on a neighborhood
of Œj0� in Hom.�;PSL.2;R//=PSL.2;R/.

To check (d), we use a perturbative version of the argument that a j0.�/-invariant,
1-Lipschitz map must be the identity on the preimage N0 � H2 of the convex core
† of j0.�/nH

2. For any hyperbolic element h 2 PSL.2;R/, with translation axis
Ah � H2, and for any p 2 H2, a classical formula gives

(4-1) sinh
�

1
2
d.p; h �p/

�
D sinh

�
1
2
�.h/

�
� cosh d.p;Ah/

(see Figure 4, left). Consider p 2 H2 in the interior of N0. We can find three
translation axes Aj0.1/, Aj0.2/, Aj0.3/ � @N0 of elements of j0.�/ such that, if
qi denotes the projection of p to Aj0.i /, then p belongs to the interior of the triangle
q1q2q3. For any t � 0 and any 1-Lipschitz, .jt ; j0/-equivariant map ft WH

2!H2,

d.ft .p/; j0.i/ �ft .p//� d.p; jt .i/ �p/;

which by (4-1) may be written as

sinh
�

1
2
�j0
.i/

�
� cosh d.ft .p/;Aj0.i //� sinh

�
1
2
�jt
.i/

�
� cosh d.p;Ajt .i //:

Since �j0
.i/D �jt

.i/CO.t/ and d.p;Ajt .i //D d.p;Aj0.i //CO.t/ by (c),
this implies

cosh d.ft .p/;Aj0.i //� cosh d.p;Aj0.i //CO.t/;

where the error term does not depend on the choice of ft . Since d.p;Aj0.i // > 0,
we may invert the hyperbolic cosine:

d.ft .p/;Aj0.i //� d.p;Aj0.i //CO.t/:

Applied to i D 1, 2, 3, this means that ft .p/ belongs to a curvilinear triangle
around p bounded by three hypercycles (curves at constant distance from a geodesic
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�1 �1 1 0 0 1

Figure 5. A labeled pants decomposition with mD 5. The bound-
ary components of the †i , 1� i � 5, are in bold.

line) expanding at rate O.t/ as t becomes positive, hence d.p; ft .p//DO.t/ (see
Figure 4, right). All estimates O.t/ are robust under small perturbations of p,
hence can be made uniform (and still independent of ft ) for p in a compact set K,
yielding (d). �

4B. Gluing surfaces with boundary. We now prove the first claim of Theorem 1.1.
Namely, given Œ�� 2 Repnfd

g , we construct Œj � 2 Repfd
g that strictly dominates Œ��.

If �� � 0, then any Œj � 2 Repfd
g strictly dominates Œ��. We now suppose �� 6� 0.

Proposition 3.1(1) then gives us an element Œj0� 2 Rep
fd
g , a labeled pants decompo-

sition … of †g, and, for any j0, � 2 Hom.�g;PSL.2;R// in the respective classes
Œj0�, Œ�� (which we now fix), a 1-Lipschitz, .j0; �/-equivariant map f W H2! H2

that is an orientation-preserving (resp. orientation-reversing) isometry in restriction
to any connected subset of H2 projecting to a union of pants labeled �1 (resp. 1)
in j0.�g/nH

2 ' †g and that satisfies Lipp.f / < 1 for any p 2 H2 projecting to
the interior of a pair of pants labeled 0. Not all pairs of pants are labeled �1, and
not all 1, since j0 and � are not conjugate under PGL.2;R/. By Remark 2.6, the
class Œj0� dominates Œ�� in the sense that �.�. // � �.j0. // for all  2 �g. Our
goal is to use Lemma 4.1 to modify j0 into a representation j such that Œj � strictly
dominates Œ��.

For this purpose, we erase all the cuffs that separate two pairs of pants of … with
labels .�1;�1/ or .1; 1/, and write

†g D†
1
[ � � � [†m;

where †i , for any 1� i �m, is a compact surface with boundary that is one of:

� a pair of pants labeled 0,

� a full connected component of the subsurface of †g made of pants labeled �1,

� or a full connected component of the subsurface of†g made of pants labeled 1;

(see Figure 5). The boundary components of the †i are the cuffs that separated two
pairs of pants of… with labels .�1; 1/, .˙1; 0/ or .0; 0/. Choose a small ı > 0 such
that, in all hyperbolic metrics on †g which are close enough to that defined by j0,
any simple geodesic entering the ı-neighborhood of the geodesic representative
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of a cuff of … crosses it. Let C0 � H2 be the union of all geodesic lines of H2

projecting to boundary components of the †i in j0.�g/nH
2'†g, let N ı

0
�H2 be

the complement of the ı-neighborhood of C0, and let K � H2 XC0 be a compact
set whose interior contains a fundamental domain of N ı

0
for the action of j0.�g/,

with m connected components projecting respectively to †1; : : : ; †m.
We apply Lemma 4.1 to � i WD �1.†

i/ and j i
0
WD j0j�i and obtain continuous

families .j i
t /0�t�t0

�Hom.� i ;PSL.2;R// of representations for 1� i �m satisfy-
ing properties (a)–(d) of Lemma 4.1 with a uniform constant L> 0 for the compact
set K � H2 XC0. For any t 2 Œ0; t0�, using (a), we can glue together the (compact)
convex cores of the j i

t .�
i/nH2 following the same combinatorics as the †i . This

gives a closed hyperbolic surface of genus g, hence a holonomy representation
jt 2 Hom.�g;PSL.2;R//. By (c), up to adjusting the twist parameters, we may
assume that

(4-2) jt . /D j0. /CO.t/

for any  2 �g as t ! 0, where both sides are seen as 2� 2 real matrices with
determinant 1 modulo ˙ Id.

To complete the proof of the first statement of Theorem 1.1, it is sufficient to
prove that for small enough t > 0,

(4-3) sup
2.�g/s

��. /

�jt
. /

< 1;

where .�g/s is the set of nontrivial elements of �g corresponding to simple closed
curves on †g; then Œj � WD Œjt � will strictly dominate Œ�� by Theorem 2.5. Note that
�.jt . // D �.j

i
t . // for all  in � i , seen as a subgroup of �g. Thus (b) gives

the control required in (4-3) for simple closed curves contained in one of the †i .
We now explain why the lengths of the other simple closed curves also decrease
uniformly, based on (b), (c), and (d).

For any t 2 .0; t0�, let Ct �H2 be the union of the lifts to H2 of the simple closed
geodesics of jt .�g/nH

2 '†g corresponding to C0 and let N ı
t be the complement

of the ı-neighborhood of Ct in H2. For t small enough, we can find a fundamental
domain Kt of N ı

t for the action of jt .�g/ that is contained in K and has m

connected components. By (b) and Theorem 2.5, for any 1� i �m and t 2 .0; t0�

there exists a .jt j�i ; j0j�i /-equivariant map f i
t W H

2! H2 with Lip.f i
t / < 1. For

small t > 0, we choose a .jt ; j0/-equivariant map ft W .N
ı
t [Ct /! H2 such that:

� ft D f
i
t on the component of Kt projecting to †i for all 1� i �m;

� ft takes any geodesic line in Ct to the corresponding line in C0, multiplying
all distances on it by the uniform factor .1� t/.
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We choose the ft so that, in addition, for any compact set K0 � H2 there exists
L1� 0 such that d.x0; ft .x

0//�L1t for all small enough t > 0 and all x0 2Ct\K0.
Consider the .jt ; �/-equivariant map

Ft WD f ıft W .N
ı
t [Ct / �! H2;

where f WH2!H2 is the .j0; �/-equivariant map from the beginning of the proof.
In order to prove (4-3), it is sufficient to establish the following:

Lemma 4.2. For small enough t > 0, there exists C < 1 such that for all p, q 2 @N ı
t

lying at distance ı from a line `t � Ct , on opposite sides of `t ,

d.Ft .p/;Ft .q//� Cd.p; q/:

Indeed, fix a small t > 0. Any geodesic segment I D Œp; q� of H2 projecting
to a closed geodesic of jt .�g/nH

2 ' †g may be decomposed into subsegments
I1; : : : ; In contained in N ı

t alternating with subsegments I 0
1
; : : : ; I 0n crossing con-

nected components of H2 XN ı
t (indeed, any simple closed curve that enters one

of these components crosses it, by the choice of ı). By construction, the map Ft

has Lipschitz constant strictly less than 1 on each connected component of N ı
t ,

hence moves the endpoints of each Ik closer together by a uniform factor (inde-
pendent of I ). Lemma 4.2 ensures that the same holds for the I 0

k
. Thus the ratio

d.Ft .p/;Ft .q//=d.p; q/ is bounded by some factor C 0 < 1 independent of I , and
the corresponding element  2 �g satisfies �.�. // � C 0�.jt . //. This proves
(4-3), hence completes the proof of the first statement of Theorem 1.1.

4C. Proof of Lemma 4.2. We first make the following observation:

Observation 4.3. There exists L0 � 0 such that, for any small enough t > 0, any
p 2 @N ı

t at distance ı from a geodesic `t � Ct , and any x 2 `t ,

d.ft .p/; ft .x//� .1� t/d.p;x/CL0t:

Proof. Since ft is .jt ; j0/-equivariant and C0 has only finitely many connected
components modulo j0.�g/, we may fix a geodesic `0 � C0 and prove the obser-
vation only for the geodesics `t � Ct corresponding to `0. For any t > 0, the map
ft takes `t linearly to `0, multiplying all distances by the uniform factor 1� t . Let
ht WH

2!H2 be the orientation-preserving map that coincides with ft on `t , takes
any line orthogonal to `t to a line orthogonal to `0, and multiplies all distances by
1� t on such lines. At distance � from `t , the differential of ht has principal values
1� t and .1� t/ cosh..1� t/�/= cosh � � 1� t (see [Guéritaud and Kassel 2013,
(A.9)]), hence Lip.ht /� 1� t and

d.ft .x/; ht .p//D d.ht .x/; ht .p//� .1� t/d.x;p/
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for all x 2 `t and p 2 H2. By the triangle inequality, it is enough to find L0 � 0

such that d.ht .p/; ft .p// � L0t for all small enough t > 0 and all p 2 @N ı
t at

distance ı from `t . Since ft and ht are both .jt ; j0/-equivariant under the stabilizer
S of `0 in �g, and jt .S/ acts cocompactly on the set Ut of points at distance at
most ı from `t , we may restrict to p in a compact fundamental domain of Ut for
jt .S/. Let K0 � H2 be a compact set containing such fundamental domains for all
t 2 Œ0; t0�. By construction of ft , there exists L1 � 0 such that d.x0; ft .x

0//�L1t

for all small enough t > 0 and all x0 2 `t \K0. By definition of ht , this implies the
existence of L2 � 0 such that d.p; ht .p//�L2t for all small enough t > 0 and all
p 2K0. On the other hand, condition (d) of Lemma 4.1 (applied to the � i and j i

0

as in Section 4B) implies the existence of L3 � 0 such that d.p; ft .p//�L3t for
all t and p 2 @N ı

t \K0. By the triangle inequality, we may take L0DL2CL3. �

Proof of Lemma 4.2. As in the proof of Observation 4.3, we may fix a geodesic
`0 � C0 and restrict to the geodesics `t � Ct corresponding to `0. Fix a small
t > 0 and consider p, q 2 @N ı

t lying at distance ı from `t on opposite sides of `t .
The segment Œp; q� can be subdivided at its intersection point x with `t into two
subsegments to which Observation 4.3 applies, yielding

(4-4)
�

d.ft .p/; ft .x//� .1� t/d.p;x/CL0t;

d.ft .x/; ft .q//� .1� t/d.x; q/CL0t:

Up to switching p and q, we may assume that either Œp;x� projects to a pair of
pants labeled 0 in jt .�g/nH

2'†g, or Œp;x� projects to a pair of pants labeled �1

and Œx; q� to a pair of pants labeled 1.
Suppose that Œp;x� projects to a pair of pants labeled 0 in jt .�g/nH

2'†g. We
first observe that, if t is small enough (independently of p), then

(4-5) d.ft .p/; `0/�
3ı

4
:

Indeed, as in the proof of Observation 4.3, the inequality is true for p 2 @N ı
t in a

fixed compact set K0 independent of t , by condition (d) of Lemma 4.1 and (4-2),
and we then use the fact that ft is .jt ; j0/-equivariant under the stabilizer S of `0

in �g, which acts cocompactly (by jt ) on the set of points at distance ı from `t . By
(4-5), if t is small enough (independently of p), then the segment Œft .p/; ft .x/�

spends at least ı=4 units of length in the complement N
ı=2
0

of the ı=2-neighborhood
of C0. The point is that Lipy.f /< 1 for all y 2H2XC0 projecting to a pair of pants
labeled 0 in j0.�g/nH

2 ' †g, and this bound is uniform in restriction to N
ı=2
0

since the function p 7! Lipp.f / is upper semicontinuous and j0.�g/-invariant.
Remark 2.1 thus implies the existence of a constant " > 0, independent of t , `t ,
p, x, such that

(4-6) d.f ıft .p/; f ıft .x//� d.ft .p/; ft .x//� ":
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Using the triangle inequality and the fact that f is 1-Lipschitz, together with (4-4)
and (4-6), we find

d.Ft .p/;Ft .q//� d.f ıft .p/; f ıft .x//C d.f ıft .x/; f ıft .q//

� .1� t/d.p;x/CL0t � "C .1� t/d.x; q/CL0t;

which is bounded by .1� t/d.p; q/ as soon as t � "=.2L0/.
Suppose that Œp;x� projects to a pair of pants labeled �1 and Œx; q� to a pair

of pants labeled 1. We then use the fact that the continuous map f folds along
`0 D ft .`t /. In restriction to the connected component of H2 X C0 containing
ft .p/ (resp. ft .q/), it is an isometry preserving (resp. reversing) the orientation.
In particular, d.Ft .p/;Ft .q// < d.ft .p/; ft .q//. Moreover, this inequality can be
made uniform in the following sense: there exists " > 0 such that

d.Ft .p/;Ft .q//� d.ft .p/; ft .q//� "

whenever ft .p/ and ft .q/ lie at distance at least 3ı=4 from `0 (which is the case
for t small enough by (4-5)) and at distance at most 3L0 from each other. By (4-4),

(4-7) d.ft .p/; ft .q//� .1� t/d.p; q/C 2L0t;

which implies
d.Ft .p/;Ft .q//� .1� t/d.p; q/

for d.p; q/� 3L0 as soon as t � "=.2L0/ is small enough. If d.p; q/� 3L0, then
applying the 1-Lipschitz map f to (4-7) directly gives

d.Ft .p/;Ft .q//� .1� t/d.p; q/C 2L0t �
�
1� 1

3
t
�
d.p; q/: �

4D. Folding a given surface. We now prove the second statement of Theorem 1.1.
Namely, given Œj0� 2 Repfd

g and an integer k 2 .�2gC 2; 2g � 2/, we construct
Œ�� 2 Repnfd

g with eu.�/D k that is strictly dominated by Œj0�.
It is easy to find Œ�� with eu.�/ D k such that ��. / � �j0

. / for all  2 �g:
just decompose †g into pairs of pants and assign arbitrary values 0; 1;�1 to each
so that the sum is k. Consider a lamination ‡ of †g consisting of all the cuffs
together with a triskelion lamination inside each pair of pants labeled 0, and let
c W†g X‡ ! f�1; 1g be a coloring taking the value �1 (resp. 1) on each pair of
pants labeled �1 (resp. 1), and both values on each pair of pants labeled 0. Folding
along ‡ with the coloring c gives an element Œ�� 2 Repnfd

g with ��. / � �j0
. /

for all  2 �g. However, we need a strict domination. The idea is to obtain � by
folding not j0 but a small deformation of j0. For this purpose, we use the following
result, which is analogous to Lemma 4.1.

Lemma 4.4. Let � be the fundamental group and j0 2 Hom.�;PSL.2;R// the
holonomy of a compact, connected hyperbolic surface † with nonempty geodesic
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boundary. Then there exist t0 > 0 and a continuous family of representations
.jt /0�t�t0

with the following properties:

(a) �jt
. /D .1� t/�j0

. / for any t 2 Œ0; t0� and any  2 � corresponding to a
boundary component of †;

(b) sup2�Xf1g �jt
. /=�j0

. / < 1 for any t 2 .0; t0�;

(c) jt . /D j0. /CO.t/ for any  2 � as t ! 0, where both sides are seen as
2� 2 real matrices with determinant 1 modulo˙ Id;

(d) for any compact subset K of H2 projecting to the interior of the convex core of
j0.�/nH

2, there exists L> 0 such that

d.p; ft .p//�Lt

for any p 2K, any t 2 Œ0; t0�, and any 1-Lipschitz, .j0; jt /-equivariant map
ft W H

2! H2.

As in the proof of Lemma 4.1, we construct the representations jt as holonomies
of hyperbolic surfaces obtained from j0.�/nH

2 by deformation. Now the defor-
mation needs to be shortening instead of lengthening, so we use negative strip
deformations.

Proof of Lemma 4.4. We view † as the convex core of j0.�/nH
2. To shorten one

boundary component ˇ of†, choose a finite collection of disjoint, biinfinite geodesic
arcs ˛1; : : : ; ˛n � j0.�/nH

2, each crossing ˇ orthogonally twice, subdividing †
into right-angled hexagons and one-holed right-angled bigons. Near each ˛i , choose
a second geodesic arc ˛0i , also crossing ˇ twice, such that ˛i , ˛0i are closest at some
points pi , p0i 2 †. We take all arcs to be pairwise disjoint. For every i , delete
the hyperbolic strip Ai bounded by ˛i and ˛0i and glue the arcs back together
isometrically, identifying pi with p0i . This yields a new complete hyperbolic surface
with a compact convex core, equipped with a natural 1-Lipschitz map &ˇt from
j0.�/nH

2 obtained by collapsing the strips Ai to lines. The set &ˇt .†/ is strictly
contained in the new convex core. The geodesic corresponding to ˇ is shorter in the
new surface than in†. By adjusting the widths of the strips Ai , we may assume that
the ratio of lengths is 1=.1� t/. Note that the appropriate widths for this ratio are
in O.t/ as t ! 0. All lengths of geodesics corresponding to boundary components
other than ˇ are unchanged.

Repeat the construction, iteratively, for all boundary components ˇ1; : : : ; ˇr

of †, in some arbitrary order. We thus obtain a new complete hyperbolic surface
jt .�/nH

2, with a compact convex core †t , such that jt satisfies (a). As in the
proof of Lemma 4.1, up to replacing each jt with a conjugate under PSL.2;R/,
we may assume that (c) is satisfied. To see that (b) and (d) also hold, we use the
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1-Lipschitz map &t WD &
ˇr

t ı � � � ı &
ˇ1

t from † to †t and argue as in the proof of
Lemma 4.1, switching jt and j0. �

As in Section 4B, we write †g D†
1[ � � � [†m, where †i , for any 1� i �m,

is a compact surface with boundary that is one of:

� a pair of pants labeled 0,

� a full connected component of the subsurface of †g made of pants labeled �1,

� or a full connected component of the subsurface of†g made of pants labeled 1.

Choose a small ı > 0 such that, in all hyperbolic metrics on †g which are close
enough to that defined by j0, any simple geodesic entering the ı-neighborhood of
the geodesic representative of a cuff of our chosen pants decomposition crosses the
cuff. We use again the notation C0, N ı

0
, K from Section 4B. Applying Lemma 4.4

to � i WD �1.†
i/ and j i

0
WD j0j�i , we obtain continuous families of representations

.j i
t /0�t�t0

for 1 � i � m satisfying (a)–(d), with a uniform constant L > 0 for
the compact set K � H2 XC0. For any t � 0, using (a), we can glue together the
convex cores of the j i

t .�
i/nH2 following the same combinatorics as the †i . This

gives a closed hyperbolic surface of genus g, hence a holonomy representation
jt 2 Hom.�g;PSL.2;R//. By (c), up to adjusting the twist parameters, we may
assume that jt . /D j0. /CO.t/ for any  2 �g as t ! 0, where both sides are
seen as 2� 2 real matrices with determinant 1 modulo ˙ Id.

Recall the notation Ct , N ı
t from Section 4B. By Proposition 3.9, there exist

a family .�t /0�t�t0
� Hom.�g;PSL.2;R// of non-Fuchsian representations and,

for any t 2 Œ0; t0�, a 1-Lipschitz, .jt ; �t /-equivariant map 't W H2 ! H2 that is
an orientation-preserving (resp. orientation-reversing) isometry in restriction to
any connected subset of H2 projecting to a union of pants labeled �1 (resp. 1) in
jt .�g/nH

2 '†g, such that

(4-8) Lipp.'t /� C � < 1

for all t 2 Œ0; t0� and all p 2 N ı
t that project to a pair of pants labeled 0 in

jt .�g/nH
2 '†g, for some C � < 1 independent of p and t .

We claim that, for t > 0 small enough,

(4-9) sup
2.�g/s

��t
. /

�j0
. /

< 1;

which by Theorem 2.5 is enough to prove that Œ�t � is strictly dominated by Œj0�.
Indeed, by (b) and Theorem 2.5, for any 1 � i � m and t 2 .0; t0�, there exists
a .jt j�i ; j0j�i /-equivariant map f i

t W H2 ! H2 with Lip.f i
t / < 1. Let ft be a

.j0; jt /-equivariant map .N ı
0
[C0/! H2 such that:

� ft D f
i
t on the component of K projecting to †i for all 1� i �m;
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� ft takes any geodesic line in C0 to the corresponding line in Ct , multiplying
all distances by the uniform factor .1 � t/, and d.x; ft .x// � L1t for all
x 2 C0\K, for some L1 � 0 independent of x and t .

Consider the .j0; �t /-equivariant map

Gt WD 't ıft W .N
ı
0 [C0/ �! H2:

Any geodesic segment I D Œp; q� of H2 that projects to a closed geodesic of
j0.�g/nH

2 ' †g may be decomposed into subsegments I1; : : : ; In contained
in N ı

0
alternating with subsegments I 0

1
; : : : ; I 0n crossing connected components of

H2 XN ı
0

. By contractivity of ft , the map Gt has Lipschitz constant strictly less
than 1 on each connected component of N ı

0
, hence moves the endpoints of each Ik

closer together by a uniform factor (independent of I ). The subsegments I 0
k

are
treated by the following lemma, which implies (4-9) and therefore completes the
proof of the second statement of Theorem 1.1.

Lemma 4.5 (analogue of Lemma 4.2). For small enough t > 0, there exists C < 1

such that, for all p, q 2 @N ı
0

lying at distance ı from a line `0 � C0 on opposite
sides of `0,

d.Gt .p/;Gt .q//� Cd.p; q/:

The proof of Lemma 4.5 uses the following observation, which is identical to
Observation 4.3 after exchanging j0 and jt .

Observation 4.6. There exists L0 � 0 such that, for any small enough t > 0, any
p 2 @N ı

0
at distance ı from a geodesic `0 � C0, and any x 2 `0,

(4-10) d.ft .p/; ft .x//� .1� t/d.p;x/CL0t:

Proof of Lemma 4.5. We argue as in the proof of Lemma 4.2, but switch j0 and jt

and use (4-8) to obtain the analogue

d.'t ıft .p/; 't ıft .x//� d.ft .p/; ft .x//� "

of (4-6) when Œp;x� projects to a pair of pants labeled 0 in j0.�g/nH
2 '†g. �
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