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VÍCTOR NÚÑEZ AND ENRIQUE RAMÍREZ-LOSADA

We determine the structure of the circular handle decompositions of the
family of free genus one knots. Namely, if k is a free genus one knot, then the
handle number h.k/D 0, 1 or 2, and, if k is not fibered (that is, if h.k/ > 0),
then k is almost fibered. For this, we develop practical techniques to con-
struct circular handle decompositions of knots with free Seifert surfaces in
the 3-sphere (and compute handle numbers of many knots), and, also, we
characterize the free genus one knots with more than one Seifert surface.
These results are obtained through analysis of spines of surfaces on handle-
bodies. Also we show that there are infinite families of free genus one knots
with either h.k/D 1 or h.k/D 2.

1. Introduction

In the study of the topology of a given 3-manifold, M , it has been useful to consider
regular real-valued Morse functions f W M ! R, where M has some smooth
structure. A regular real-valued Morse function on M corresponds to a handle
decomposition of M of the form M D b0[B1[P1[� � �[Br [Pr [b3, where b0

is a collection of 0-handles, Bj is a collection of 1-handles, Pj is a collection of
2-handles, and b3 is a collection of 3-handles, in such a way that the i-handles of
the decomposition are neighborhoods of the critical points of index i of the Morse
function (j D 1; : : : ; r , and i D 0; 1; 2; 3). In the celebrated paper [Scharlemann
and Thompson 1994], the concept of thin position for 3-manifolds is introduced;
the idea is to build the manifold as described above (that is, step by step: adding to
the set b0 the set B1, and then adding P1, and then adding B2, and so on) with a
sequence of sets of 1-handles and sets of 2-handles chosen to keep the boundaries
of the intermediate steps as simple as possible.

Now if a 3-manifold M satisfies H 1.M IQ/¤ 0, then there are essential (non-
nullhomotopic) regular Morse functions f WM ! S1, and one can always find
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such functions having only critical points of index 1 and 2 (see Section 2B). Such a
function corresponds to a circular handle decomposition

M D F � Œ0; 1�[B1[P1[ � � � [Br [Pr ;

where F is a properly embedded surface in M , Bj is a collection of 1-handles,
and Pj is a collection of 2-handles (the handles are glued along, say, F �f1g), and,
as above, the set of i -handles of the decomposition corresponds to the critical points
of index i of the Morse function. With this kind of circular handle decomposition
we may also require that the intermediate steps be as simple as possible: that
requirement leads to the notion of thin position for circular handle decompositions.
The existence of these decompositions gives rise to numerical topological invariants
such as the (circular) handle number h.M /D

Pr
1D1 #.Bi/, where the sum

P
#.Bi/

is minimal among all circular handle decompositions; also, when the decomposition
is in thin position, we obtain the circular width cw.M / (see Section 2D).

Outstanding examples of manifolds that admit circular handle decompositions are
the exteriors of links in S3. In this case the interesting intermediate surfaces in the
decomposition are Seifert surfaces for the given link. (These intermediate surfaces
have no closed components, and, if the decomposition is in thin position, they are
a sequence of Seifert surfaces which are alternately incompressible and weakly
incompressible. See [Manjarrez 2009, Theorem 3.2], where there is a statement for
knots, but its proof works verbatim for links.)

If the exterior of a link ` in S3 admits a circular decomposition of the form
E.`/ D F � Œ0; 1�[B1 [P1, and this decomposition is in thin position, we say
that ` is an almost fibered link. One may regard the set of almost fibered knots as
the set of knots with the simplest nontrivial circular handle structure.

Thus, an interesting problem of this theory is to determine the set of all almost
fibered knots. We solve this problem for the family of free genus one knots. In fact,
we show that all free genus one knots are almost fibered (Theorem 6.7).

Also it is interesting to find explicit constructions of circular handle decompo-
sitions of the exterior of a given link which are minimal (that is, that realize the
handle number), or that are in thin position. In [Goda 1993], although in a different
context, explicit minimal circular handle decompositions of the exterior of the 250
knots in Rolfsen’s table are given. Of these knots, 117 are fibered and 132 have
handle number one. As far as we know, there are no other previously published
explicit constructions of circular handle decompositions of exteriors of links in the
3-sphere.

As mentioned above, in this paper we are interested mainly in the circular handle
structures of the family of free genus one knots.

In the first part of this work (Section 3) we develop techniques to construct explicit
circular decompositions of link exteriors for links that admit a free Seifert surface;
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these decompositions are interesting, of course, when the free Seifert surface used
in the construction is of minimal genus for the link. The information needed to
construct these decompositions for the exterior of a given link is encoded in some
spine of a free Seifert surface of the link. In this sense, the techniques developed in
Section 3 (and throughout this paper) could be regarded as elements for a possible
theory of spines of surfaces on handlebodies that might be worthy of consideration.
As applications we construct minimal circular decompositions for all rational knots
and links and, also, for a family of pretzel knots, namely, pretzel knots of the
form P .˙3; q; r/ with jqj; jr j odd integers � 3. These circular decompositions for
both families of links are all minimal and have handle number one; they are also
in thin position, giving also the circular width of each link considered. This last
family gives examples of nonfibered knots whose handle number is strictly less
than their tunnel number (Remark 3.10). Also, it is shown that free genus one knots
have handle number at most 2 (Corollary 3.5).

Secondly (Section 4), we construct circular handle decompositions for the ex-
teriors of all pretzel knots of the form P .p; q; r/ with jpj; jqj; jr j odd integers
� 5, and we show that these decompositions are minimal with handle number two
(Theorem 4.1), and are also in thin position, giving the circular width equal to 6 for
each of these knots. These examples answer a question posed in [Veber et al. 2001]
(Remark 4.5).

Next, in Section 5, we give a characterization of the free genus one knots
that admit at least two different (nonparallel) Seifert surfaces of genus one. This
characterization is given in terms of the existence of a special spine for the given
genus one free Seifert surface of the knot (see Theorem 5.2).

Using the characterization given in Section 5 we show, in the final part of this
work, that all (nonfibered) free genus one knots are almost fibered (Theorem 6.7).

It follows from the proof of Theorem 6.7 that the free genus one knots with
handle number two have a unique minimal-genus Seifert surface (that is, free genus
one knots with at least two genus one Seifert surfaces have handle number one). It
is an interesting open problem to determine the family of free genus one knots with
handle number two.

2. Preliminaries

Unless explicitly stated, we will use the word “knot” for a knot or a link in S3.
That is, we will emphasize connectedness if needed. Otherwise, we will admit
nonconnected knots.

Let X be a manifold and let Y � X be a subcomplex. We write E.Y / D

X �N.Y / for the exterior of Y in X , where N.Y / is a regular neighborhood of Y

in X .
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Let X be a manifold and let Y �X be a properly embedded submanifold. Y is
called @-parallel in X , or parallel into @X , if there is an embedding

e W .Y; @Y /� I ! .X; @X /

such that e0 W Y ! Y is the identity, and e1.Y /� @X . If Y is @-parallel in X with
embedding e W .Y; @Y /� I ! .X; @X /, then the submanifold e.Y � I/ is called a
@-parallelism for Y . Notice that if Y is disconnected with components Y1; : : : ;Yn,
and Y is @-parallel in X with a @-parallelism W , then W is a disjoint union of
@-parallelisms W1; : : : ;Wn for Y1; : : : ;Yn, respectively.

2A. Seifert surfaces. Let k � S3 be a knot, and let F be a Seifert surface for k;
that is, F is an orientable surface and @F D k. Then, by drilling out a small
neighborhood N.k/ of k, the surface yF DF\E.k/ is a properly embedded surface
in E.k/, the exterior of k in S3, and one may assume that @yF is parallel to k

in N.k/. Usually we identify F with yF ; but, more appropriately, we start with a
Seifert surface F � E.k/ for k. Seifert surfaces may be disconnected, but they
are not allowed to contain closed components. The genus g.k/ of a knot k is the
minimal genus among all Seifert surfaces for k.

A surface F � S3 is called free if E.F / is a handlebody. The free genus gf .k/

of a knot k is the minimal genus among all free Seifert surfaces for k.
In this work we will be interested mainly in free genus one knots.

2B. Handle decompositions of rel-@ cobordisms. Let W be a cobordism rel @
between surfaces @CW and @�W with no closed components. A moderate handle
decomposition of W is a decomposition of the form

W Š .@CW � I/[ .1-handles/[ .2-handles/:

Given W , a cobordism rel @ between surfaces @CW and @�W with no closed
components, it is easy to find a moderate decomposition as above by considering a
triangulation of the exterior E.@CW /DW �N.@CW /.

Given a cobordism W and a moderate handle decomposition for W , one can
find a regular Morse function f WW ! I which realizes the handle decomposition
of W . That is, f only has critical points of index 1 and 2, neighborhoods of the
critical points of f correspond to the 1- and 2-handles of W , and the preimage of
each regular value of f is a properly embedded surface in W . We will call such a
Morse function a moderate Morse function (see [Veber et al. 2001]).

2C. Circular decompositions. Let k be a knot in S3. Since H1.E.k// is a free
abelian group of positive rank, we can always find an essential (non-nullhomotopic)
moderate Morse function f W E.k/ ! S1. Any such Morse function, as in
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Section 2B, induces a decomposition

E.k/D .F � I/[B [P;

where F �E.k/ is a Seifert surface for k, B is a set of n 1-handles glued along,
say, F � f1g, and P is a set of the same number, n, of 2-handles glued along the
same side.

We call such a decomposition a circular handle decomposition of E.k/ based
on F , and write h.F / D n, the handle number of F , where n is the minimal
number of 1-handles among all circular handle decompositions of E.k/ based on F .
The circular handle number h.k/ of k, or simply the handle number of k, is the
minimal h.F / among all Seifert surfaces F �E.k/. Notice that h.k/D 0 if and
only if k is a fibered knot.

By rearranging the critical points of a moderate Morse function f WE.k/! S1,
we can thin a circular handle decomposition of E.k/:

E.k/D .F � I/[B1[P1[B2[P2[ � � � [B` [P`;

where Bi is a set of 1-handles glued along F � f1g and Pi is a set of 2-handles,
i D 1; : : : ; ` (of course, it is not always possible to thin a given circular handle
decomposition).

For i D 1; : : : ; `, the set Wi D
�
F�

�
1
2
; 1
��
[B1[P1[� � �[Bi gives a moderate

handle decomposition for the rel-@ cobordism Wi with @CWi D F �
˚

1
2

	
. Write

Si D @�Wi . Now we define

c.Si/D

niX
jD1

.1��.Gi;j //;

where � stands for Euler characteristic and Gi;1; : : : ;Gi;ni
are the components of Si .

(Notice that there are no closed components of Si , for F has no closed components
and the handle decomposition is moderate). Order the surfaces S�.1/; : : : ;S�.`/ in
such a way that c.S�.i// � c.S�.iC1// for i D 1; : : : ; `� 1, where � is a permu-
tation on the symbols 1; : : : ; `. Then the circular width of this decomposition is
the tuple .c.S�.1//; : : : ; c.S�.`///. The circular width cw.k/ of k is the minimal
circular width, with respect to lexicographic order, among all thinned circular
decompositions of E.k/ based on all possible Seifert surfaces for k.

Let k � S3 be a knot whose circular width has the form cw.k/D .n/. Then we
write cw.k/D n, or cw.k/ 2 Z. If k is a nonfibered knot and cw.k/ 2 Z, then k is
said to be an almost fibered knot.

Remark 2.1 (equivalence of knots). Let k; `�S3 be two knots. If the pairs .S3; k/

and .S3; `/ are homeomorphic, then their exteriors also are homeomorphic, i.e.,
E.k/ Š E.`/; therefore, the exteriors of k and ` have homeomorphic handle
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decompositions. We regard two knots as being equivalent if their corresponding
pairs are homeomorphic.

Remark 2.2 (construction of circular decompositions). To describe, or, rather, to
actually construct a decomposition

E.k/D .F � I/[B [P;

where B is a set of 1-handles and P is a set of 2-handles, it is convenient to write

E.k/D
�
F �

�
1
2
; 1
��
[B [P [

�
F �

�
0; 1

2

��
:

Then, to obtain (describe) this circular decomposition, we have dual options:

(1) Start with a regular neighborhood N.F / of F in E.k/. Then add a number of
1-handles to N.F / (the elements of B) on one side, say F �f1g, and then add
the same number of 2-handles (the elements of P ) on the same side. The com-
plement of the union above is a regular neighborhood of F � f0g in E.k/. Or,

(2) Start with E.F /, the exterior of F in E.k/. Then drill a number of 2-handles
(the elements of B) out of E.F /. Now drill the same number of 1-handles (the
elements of P ) out of E.F /. Here one should be careful that the drilled-out
2-handles intersect @E.F / on the same side, say F�f1g, and that the following
drilled-out 1-handles intersect the remaining boundary of E.F / on the same
side. The result of this drilling is a regular neighborhood of F � f0g in E.k/.

Of course, in (1) above, N.F / stands for F �
�

1
2
; 1
�
, and in (2), E.F / stands for

the exterior
E.k/�F �

�
1
2
; 1
�
:

To describe a thinned circular decomposition, one proceeds similarly, but now there
will be several steps. Note that in a thinned decomposition the number of 1-handles
and the number of 2-handles at each step are not necessarily the same.

We emphasize that the main use of the program outlined in (1) is to describe an
explicit circular handle decomposition of some given example.

Remark 2.3 (decompositions of non-almost-fibered knots). Now start with a circu-
lar decomposition

E.k/D
�
F �

�
1
2
; 1
��
[B1[P1[B2[P2[ � � � [B` [P` [

�
F �

�
0; 1

2

��
which realizes cw.k/, the circular width of k. For i D 1; : : : ; `, the set

Vi D .F �
�

1
2
; 1
�
/[B1[P1[ � � � [Bi [Pi

gives a moderate handle decomposition for the rel-@ cobordism Vi with @CVi D

F �
˚

1
2

	
. Write Ti D @�Vi . Then the ` disjoint surfaces T1;T2; : : : ;T` D F

are incompressible in E.k/ and are pairwise nonparallel (see [Manjarrez 2009,
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Theorem 3.2]; as noted in the introduction, the theorem also holds for nonconnected
knots). That is, if k is nonfibered and not an almost fibered knot, then k has at least
two nonparallel incompressible Seifert surfaces.

Remark 2.4 (decompositions of pairs). Let k � S3 be a knot with Seifert sur-
face F �E.k/. There is a copy F0 � @E.F / of F such that E.F / is a cobordism
rel @ between F0D@CE.F / and @�E.F /. We commit an abuse of notation by iden-
tifying F with F0. To find a circular decomposition of E.k/ based on F is the same
as finding a moderate handle decomposition of the rel-@ cobordism E.F /. A handle
decomposition of the pair .E.F /;F / is, by definition, a handle decomposition of
the rel-@ cobordism E.F /.

Now let ` � S3 be another knot with Seifert surface G � E.`/. If there is a
homeomorphism of pairs .E.F /;F /Š .E.G/;G/, then the handle decompositions
of the pairs .E.F /;F / and .E.G/;G/ (as well as those of E.F / and E.G/ as
rel-@ cobordisms) are in one-to-one correspondence via the given homeomorphism.
That is, to find circular decompositions of E.k/ based on F , we need only to
construct moderate handle decompositions of the homeomorphism class of the pair
.E.F /;F /. In particular, it is not necessary to regard E.F / as embedded in S3.

This remark is very helpful in the search for circular decompositions.

2D. Spines. Let X be either a handlebody or a surface with boundary. A spine
of X is a graph � �X such that X is a regular neighborhood of � . In this work
we mainly consider spines of the form � Š

Wn
iD1 S1, a wedge of circles. We

write � D a1 _ � � � _ an to emphasize the circles involved, and we assume that the
curves ai carry a given orientation. Notice that it is allowed for � to be a single
simple closed curve.

Let k � S3 be a knot and let F � E.k/ be a Seifert surface for k. A regular
neighborhood N.F / of F in E.k/ admits a product structure N.F /DF �I , where
@F � I D N.k/\N.F /. A spine � � F � f0g, � Š

Wn
iD1 S1, is also a spine for

N.F /, and the graph � induces a product structure N.F / D G � I , where, say,
G � f0g is a regular neighborhood of � in @N.F / (here, of course, G is isotopic
to F in @N.F /). A spine � � F � f0g is also a graph � � @E.F /. A spine for F ,
� � F �f0g (or � � F �f1g), is called a spine for F on @N.F /. Also, we say that
� is a spine for F on @E.F /.

If � is a spine for F on @E.F /, and G is a regular neighborhood of � in @E.F /,
then a handle decomposition for the pair .E.F /; �/ is, by definition, a handle
decomposition for the pair .E.F /;G/.

Let � D a1 _ � � � _ an be a spine for F on @E.F /, and let t.ai/ be a Dehn twist
on F along the curve ai . If z� is the graph obtained from � by replacing the curve aj

by the curve t.ai/.aj /, then z� is also a spine for F . The graph z� is called the spine
for F obtained from � by sliding aj along a˙1

i (i; j 2 f1; : : : ; ng).
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Remark 2.5. Notice that if z� is another spine for F on @E.F /, and zG is a regular
neighborhood of z� in @E.F /, then the pairs .E.F /; �/ and .E.F /; z�/ usually are
not homeomorphic, but the pairs .E.F /;F / and .E.F /; zG/ are homeomorphic.
Thus, to find circular decompositions of E.k/ based on F , we need only to construct
moderate handle decompositions of the homeomorphism class of a pair .E.F /; �/
for some spine � for F on @E.F /.

Remark 2.6. Let F �S3 be a connected orientable surface with boundary kD @F .
If a spine � for F on @N.F / is also a spine for E.F /, then k is a fibered knot with
fiber F . Indeed, E.F / is a handlebody (for it is an irreducible 3-manifold with
connected boundary and with free fundamental group), and both N.F / and E.F /

admit a product structure of the form G � I , where G is a regular neighborhood of
� in @N.F /D @E.F /.

2E. Whitehead diagrams. Let H be a genus-g handlebody, and let x1; : : : ;xg

be a system of meridional disks for H . The exterior E.x1 [ � � � [ xg/ is a 3-
ball with 2g fat vertices x1;x1; : : : ;xg;xg on its boundary, where xi D xi � f0g

and xi D xi �f1g are the copies of xi in the product structure N.xi/D xi �I �H ,
i D 1; : : : ;g.

There is a one-to-one correspondence between isotopy classes of systems of
meridional disks fx1; : : : ;xgg for H and homotopy classes of spines of the form
a1_� � �_ag�H such that #.ai\xi/D 1 and ai\xj D∅ for i ¤ j , i;j D 1; : : : ;g.
It is convenient to commit an abuse of notation and write both fx1; : : : ;xgg for a
meridional system of disks for H , and fx1; : : : ;xgg for the corresponding basis
of �1.H / represented by the curves a1; : : : ; ag in the one-to-one correspondence
above. Throughout this paper we adhere to this abuse of notation.

A graph � D a1 _ � � � _ an � @H intersects E.x1[ � � � [xg/ in a set of subarcs
of the curves ai ; some of these arcs intersect in the base point of � . These arcs,
together with x1;x1; : : : ;xg;xg, form a graph G with 2g fat vertices immersed
in @E.x1[� � �[xg/. The base point of � appears in the drawing on @E.x1[� � �[xg/

as the intersection of some edges of G, but the base point of � is not considered
a vertex of G. We require that the graph G has no loops, that is, that there are
no edges with ends in the same fat vertex of G. In our examples, we will be able
to realize this assumption — no loops in G — through the use of some isotopies
of H . For each i we number the ends of the arcs in xi and xi in such a way that
the gluing homeomorphisms, which recover H from E.x1 [ � � � [ xg/, identify
equally numbered points. The immersion of the graph G in @E.x1 [ � � � [ xg/,
together with these numberings, is called the Whitehead diagram of the pair .H; �/
associated to the system of meridional disks x1; : : : ;xg �H (see Figure 1). The
graph G is called the Whitehead graph of the corresponding Whitehead diagram.
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Figure 1. A Whitehead diagram associated to the exterior of the
pretzel knot p.5; 5; 5/.

Let X be a graph and let e, f be two edges of X ; we say that e and f are
parallel if they connect the same pair of vertices of X . The simple graph associated
to X is the graph obtained from X by replacing each parallelism class of edges
of X by a single edge and deleting each loop in X (if any).

If X is a connected graph, a vertex v of X is called a cut vertex of X if X �fvg

is not connected. Notice that a loopless graph X contains a cut vertex if and only if
the simple graph associated to X contains a cut vertex.

Let F be a free group with basis Y and let A be a set of cyclically reduced words
on Y [ Y �1, regarded as elements of F. The genuine Whitehead graph of A is
the graph � with vertices Y [ Y �1, and for each ˛ 2 A and v1; v2 2 Y [ Y �1,
an edge from v1 to v�1

2
if ˛ contains the word of length two v1v2, up to a cyclic

shift of ˛. If ˛ is of length 1, ˛ D v, then there is an edge from v to v�1. If A

is a set of elements of F, we can replace A with a set A0 of cyclically reduced
words representing the conjugacy classes of the elements of A, and then the genuine
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Whitehead graph of A is, by definition, the genuine Whitehead graph of A0. The
genuine Whitehead graph of a set of elements of F is regarded as being embedded
in 3-space and also contains no loops.

Let F be a free group and let A be a set of elements of F. Then A is called
separable if there exists a nontrivial splitting FŠ F1 �F2 such that each ˛ 2 A

represents, up to conjugacy, an element of Fj for some j .

Theorem 2.7 [Stallings 1999, Theorem 2.4]. Let A be a set of elements of a free
group F with genuine Whitehead graph � . If � is connected and if A is separable
in F, then there is a cut vertex in � .

The next result follows from Theorem 2.7 and is included here for future reference.

Corollary 2.8. Let �Da1_� � �_an be a wedge of n simple closed curves embedded
in the boundary of a handlebody H . Assume that the Whitehead graph for some
Whitehead diagram of the pair .H; �/ is connected and has no cut vertex. Then
� intersects every essential disk of H .

Proof. Let G be the Whitehead graph of the pair .H; �/ with respect to some system
of meridional disks fx1; : : : ;xgg such that G has no cut vertex and is connected. In
particular, G has no loops. If we regard G as a graph G0 embedded in 3-space so that
the base point of � vanishes, then G0 is the genuine Whitehead graph of the set of el-
ements of �1.H / represented by fa1; : : : ; angwith respect to the basis fx1; : : : ;xgg.
Since G is connected and has no cut vertex, it follows that G0 is also connected and
has no cut vertex (recall that the base point of � is not part of G; then G and G0

are isomorphic graphs). If there is an essential disk in H disjoint with � , then the
set of elements of �1.H / represented by fa1; : : : ; ang clearly is separable, and by
Theorem 2.7, G0 has a cut vertex or is disconnected. Since G0 is connected and has
no cut vertex, it follows that � intersects every essential disk of H . �

2F. Handle slides. Handle slides in a handlebody are conveniently visualized when
translated into a Whitehead diagram. Figure 2 shows the effect of sliding the handle
corresponding to the disk x2 along the handle corresponding to x1. But, of course,
in the final step, the meridional disks x1;x1;x2;x2 in the drawing are no longer the
same disks, but are their images after the handle slide in the handlebody (The effect
of such a handle slide in the fundamental group of the handlebody is a Whitehead
automorphism. See [Stallings 1999]).

2F1. @-parallel arcs in handlebodies. Let k � S3 be a knot, and let F �E.k/ be
a free Seifert surface for k. Also let � be a spine for F on @E.F /. In Remark 2.2(2)
a program is outlined to construct a circular decomposition for E.k/. It starts by
drilling some 2-handles out of E.F / disjoint from F . A 2-handle P �E.F / is a
product P DD2�I such that .D2�I/\@E.F /DD2�f0; 1g, and it is determined



CIRCULAR HANDLE DECOMPOSITIONS OF FREE GENUS ONE KNOTS 371

x1

2

0

1 3
4

x1

1

2
0

43

x2

0

1

x2

0

1

x1

2

0

1 3
4

x1

1

2
0

43

x2

0

1

x2

0

1

x1

2

0

1 3
4

x1

1

2
0

43

x2

0

1

x2

1

0

Figure 2. A handle slide.

by its “cocore”  Df0g�I . This cocore,  , can be visualized in E.F / as a properly
embedded arc with ends disjoint from � .

Given two properly embedded arcs  and  0 in E.F / disjoint from � , if the
triples .E.F /; �;  / and .E.F /; �;  0/ are homeomorphic, then the pairs .E. /; �/
and .E. 0/; �/ are homeomorphic, and, therefore, have homeomorphic handle
decompositions. In this sense, we say that  and  0 induce homeomorphic handle
decompositions of .E.F /; �/. Also we say, as an abuse of language, that  and  0

are equivalent 2-handles.
Let k be a knot with h.k/D 1 and let F �E.k/ be a free Seifert surface for k

which realizes a one-handled circular decomposition of E.F /. Let  �E.F / be a
properly embedded arc disjoint from F �f0g. If the arc  is the cocore of the single
2-handle of the one-handled circular decomposition of E.F /, then  is called the
arc of the handle decomposition. Note that in this case we know that  is parallel
into @E.F / (see Corollary 4.3 below).

2F2. Criterion for one-handledness. We will establish a criterion to determine if
an arc is the arc of some one-handled decomposition.
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Figure 3. Drilling out a 2-handle.

Let k be a knot with h.k/D 1 and let F �E.k/ be a free Seifert surface for k

which realizes a one-handled circular decomposition of E.F /. Let  �E.F / be a
@-parallel properly embedded arc disjoint from F � f0g.

Consider a system of meridional disks x1; : : : ;xg � E.F /. Let z be a @-
parallelism disk for  . After an isotopy of E.F / which keeps � fixed pointwise, we
may assume that z is disjoint from the disks x1; : : : ;xg. Then  can be visualized
in the Whitehead diagram of .E.F /; �/ with respect to x1; : : : ;xg � E.F / as
a properly embedded arc in E.x1 [ � � � [ xg/ disjoint from G, where G is the
corresponding Whitehead graph. After drilling out the 2-handle, which is a regular
neighborhood of  , we are “adding a new handle” to E.F /; that is, the exterior
E. / � E.F / is homeomorphic to E.F / plus one 1-handle. We obtain a new
Whitehead diagram for .E. /; �/ with respect to x1; : : : ;xg; z, adding two fat
vertices z and z as in Figure 3.

Define the complexity of a Whitehead graph as the sum of all valences of the fat
vertices of the graph. The new Whitehead diagram obtained in the last paragraph
may contain a cut vertex v. For example, v D x1 in Figure 3. When there is a cut
vertex v in G, this vertex decomposes the graph G into two nontrivial graphs X1

and X2. One of these graphs, say X1, does not contain v. Then we can slide the
part corresponding to the graph X1 along the handle defined by the disk v. If cut
vertices appear after sliding, we continue sliding along some cut vertex on and on.
See Figures 4 and 5. Since each such handle slide lowers the complexity of the
graph, eventually we end up with either

(1) A disconnected diagram, or

(2) A connected diagram with no cut vertices.

In case (1) (see the last drawing of Figure 5) there are obvious essential disks
in E. / disjoint from � (more precisely, disjoint from the image of � on the
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diagram after the slides); the boundaries of these essential disks are curves that
separate the components of the current Whitehead graph. Assume a neighborhood
of one of these disks is a 1-handle B inside E. / such that, after drilling out B,
E. [B/ is a regular neighborhood of F D F � f0g. (See the last drawing in
Figure 5, where the disk labeled x1 corresponds to B.) Then we have found a
circular one-handled decomposition of E.k/ based on F according to the program
outlined in Remark 2.2(2), and  is the arc of this handle decomposition. Otherwise,
we have to restart the program, choosing a different arc to drill out.

In case (2), by Corollary 2.8, the chosen arc is not part of a one-handled circular
decomposition. Again, we have to restart the program, choosing a different arc to
drill out.

2F3. Some definitions. Now let  and  0 be two @-parallel properly embedded
arcs in E.F / disjoint from � , with @-parallelism disks z and z0, respectively;
let fx1; : : : ;xgg be a meridional system of disks for E.F /, and let G be the
corresponding Whitehead graph with respect to this system of disks. Then, by an
isotopy of E.F /, we may assume that z and z0 are contained in E.x1[ � � � [xg/

and (the images of)  and  0 are disjoint from G.
Assume that for two faces of G (that is, two connected components A;B �

@E.x1 [ � � � [ xg/�G) the face A contains an endpoint of  and one of  0, and
the face B contains the other two endpoints of  and  0. Then there is an isotopy
of E.x1[� � �[xg/ that fixes G pointwise and sends  onto  0. Such an isotopy exists
because, since  and  0 are @-parallel, they are unknotted properly embedded arcs in
the 3-ball E.x1[� � �[xg/, and the isotopy can be chosen to fix G, for the endpoints
of the arcs are, by pairs, in components of @E.x1 [ � � � [ xg/�G. Then we see
that a class of “equivalent” 2-handles in the Whitehead diagram of .E.F /; �/ with
respect to x1; : : : ;xg is determined by pairs of faces of G in @E.x1[� � �[xg/ (and
conversely). That is, for @-parallel properly embedded arcs ;  0�E.x1[� � �[xg/,



374 F. MANJARREZ-GUTIÉRREZ, V. NÚÑEZ AND E. RAMÍREZ-LOSADA

1

2

3

4
x

1

1 2
3

6

8

7

5

4

9

x
2

6

7 8

5

4

3

2

1
9

x2

1
2

3

4

x1

1

2

3

4
x

1

1 2
3

6

8

7

5

4

9

x
2

6

7 8

5

4

3

2

1
9

x2

1
2

3

4

x1

1

2

3

4
x

1

6

7 8

5

4

3

2

1
9

x2

1
2

3

4

x1

1 2
3

6

8

7

5

4

9

x
2

1

2

3

4
x

1

6

7 8

5

4

3

2

1
9

x2

1
2

3

4

x1

1 2
3

6

8

7

5

4

9

x
2

1

2

3

4
x

1

1 2
3

6

8

7

5

4

9

x
2

6

7 8

5

4

3

2

1
9

x2

1
2

3

4

x1

1

2

3

4
x

1

1 2
3

6

8

7

5

4

9

x
2

6

7 8

5

4

3

2

1
9

x2

1
2

3

4

x1

1

2

3

4
x

1

1 2
3

6

8

7

5

4

9

x
2

6

7 8

5

4

3

2

1
9

x2

1
2

3

4

x1

1

2

3

4
x

1

6

7 8

5

4

3

2

1
9

x2

1
2

3

4

x1

1 2
3

6

8

7

5

4

9

x
2

Figure 5

the triples .E.x1[� � �[xg/;G;  / and .E.x1[� � �[xg/;G; 
0/ are homeomorphic

if and only if  and  0 connect the same pair of faces of G.
This is a very useful fact. To search for a one-handled decomposition, one

must only test a finite number of @-parallel arcs in some Whitehead diagram, and
analyze as above: there are as many @-parallel arcs to check as pairs of faces of the
corresponding Whitehead graph.

We end this section with some definitions. Assume the arc  is boundary-parallel
into @E.F /. Let z be a @-parallelism disk for  such that @z D  [ B

z , where
B

z is an arc in @E.F /. Then, after a small isotopy of z, if necessary, B
z intersects

the edges of � transversely in a finite number of points. If e1; : : : ; en are the
edges of � that intersect B

z and each ei intersects only once with B
z , we say that
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 encircles the edges e1; : : : ; en. If  encircles the edges e1; : : : ; en, and all ei are
incident in the vertex � of � , we say that the arc  is around the vertex �. Notice
that if e1; : : : ; en; enC1; : : : ; enCm are all the edges incident in the vertex � of � ,
and  is around vertex � encircling the edges e1; : : : ; en, then  also encircles the
edges enC1; : : : ; enCm. The length of  in � is the minimal number of intersection
points of B

z and � among all @-parallelism disks z for  .

3. Primitive elements in spines

Let F be a free group. An element x 2 F is called primitive if x is part of some
basis of F. A set of elements x1;x2; : : : ;xk 2 F are called associated primitive
elements if they are contained in some basis of F.

Let H be a genus-g handlebody. A simple closed curve ˛ � H represents a
primitive element in �1.H / if and only if there is an essential properly embedded
disk D � H such that ˛ \D consists of a single point. A set of simple closed
curves ˛1; : : : ; ˛k �H represents a set of associated primitive elements in �1.H /

if and only if there is a system of meridional disks D1;D2; : : : ;Dg � H such
that, up to renumbering, ˛i \Di consists of a single point, and ˛i \Dj D∅ for
i ¤ j , i D 1; : : : ; k, and j D 1; : : : ;g.

Theorem 3.1. Let k � S3 be a knot and let F � E.k/ be a free Seifert surface
for k. Assume E.F / is a handlebody of genus g.

If there exists a graph � D a1 _ � � � _ ag such that � is a spine for F on @E.F /,
and the ` curves a1; : : : ; a` represent associated primitive elements of �1.E.F //,
then the handle number h.F / is at most g� `.

Proof. We follow the plan in Remark 2.2(2): we will exhibit a system of properly
embedded arcs (the arcs ˇI

j below) which are the cocores of .g�`/ 2-handles to be
drilled out of E.F /, and a system of .g� `/ 2-disks (D`C1; : : : ;Dg below) which
define the cocores of .g� `/ 1-handles to be drilled out of E.F [

S
j ˇ

I
j /

Let D1;D2; : : : ;Dg � E.F / be a system of meridional disks for E.F / such
that jai\Di j D 1 and ai\Dj D∅ for i ¤ j , i D 1; : : : ; `, and j D 1; : : : ;g. This
system of meridional disks exists since a1; : : : ; a` represent associated primitive
elements of �1.E.F //.

Let P �E.F / be a regular neighborhood of the base point x0 2 @E.F / (x0 is
also the base point of the graph �). We visualize P as a 2g-gonal prism (see
Figure 6). For i D 1; : : : ;g, let Ti be a regular neighborhood of ai in E.F / such
that Ti \Tj D P if i ¤ j . Write yTi D Ti �P ; then yTi is a 3-ball. The intersection
yTi \P D dCi [ d�i is the disjoint union of two 2-disks dCi and d�i (see Figure 6).
Also, write @dCi D ˇ

B
i [ ˇ

I
i , where ˇB

i is an arc in @E.F / and ˇI
i is a properly
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embedded arc in E.F /. Finally, write

Ai D @Ti � .d
C
i [ d�i [ @E.F //;

which is a 2-disk.
The arcs ˇI

`C1
; : : : ; ˇI

g are the cocores of 2-handles in E.F / to be drilled out,
according to the plan in Remark 2.2(2).

Notice that the exterior E.ˇI
i / of each ˇI

i satisfies

E.ˇI
i /DE.F /�N.ˇI

i /ŠE.F /�N.Ai/;

and this homeomorphism is the identity map outside a small neighborhood of Ai .
Consider

V DE.F /� . yT`C1[
yT`C2[ � � � [

yTg/:

Then V is a genus-g handlebody and E.F / is a regular neighborhood of V . We
see that

E.F /�
[g

`C1
N.ˇI

i /ŠE.F /�
[g

`C1
N.Ai/Š V [ .g� ` 1-handles/;

where the .g�`/ 1-handles are the .g�`/ balls yTi attached along the disks dCi ; d
�
i ,

i D `C 1; : : : ;g.
By the choice of the disks fDig, we see that V �

Sg

`C1
N.Di \V / is a regular

neighborhood of a1 _ � � � _ a`. Then

E.F /�
�[g

`C1
N.ˇI

i /C
[g

`C1
N.Di \V /

�
is a regular neighborhood of � . In other words,

N.F /[fN.ˇI
i / W i D `C 1; : : : ;gg[ fN.Di \V / W i D `C 1; : : : ;gg

determines a circular handle decomposition of E.k/ based on F , as in Remark 2.2(2).
Therefore h.F /� g� `. �

Corollary 3.2 (the case `D g). Let k � S3 be a knot and let F be a free Seifert
surface for k. Assume that E.F / is a handlebody of genus g.

If there exists a graph � D a1 _ a2 _ � � � _ ag such that � is a spine for F on
@E.F /, and the curves a1; : : : ; ag form a basis of �1.E.F //, then k is a fibered
knot with fiber F .

Proof. In this case h.F /D 0, therefore E.F / admits a product structure E.F /D

F � I induced by � , and k is fibered with fiber F . �
Corollary 3.3 (the case `D 0). Let k � S3 be a knot and let F �E.k/ be a free
Seifert surface for k. Assume that E.F / is a handlebody of genus g.

Then h.k/� g.
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Figure 6. The neighborhood of x0.

Proof. By Theorem 3.1, since `D 0, we have h.F /� g. Therefore h.k/� g. �

Remark 3.4. Corollary 3.3 asserts that h.k/� 2gf .k/ for a connected knot k. See
[Hirasawa and Rudolph 2003] for another proof of this fact (therein called the “free
genus estimate”).

Corollary 3.5. If k is a connected free genus one knot, then h.k/D 0; 1, or 2. �

Remark 3.6. Let k be a connected free genus one knot in S3 such that k is not
fibered (that is, k ¤ 31; 41). At this point we can give some estimates for cw.k/.

If k is almost fibered, it follows from Corollary 3.5 that cw.k/D 4 or cw.k/D 6.
In any case, that is, if k is almost fibered or not, cw.k/� 6.

If k is not almost fibered, consider a circular decomposition

E.k/D .F � I/[B1[P1[B2[P2[ � � � [Bn[Pn;

with n> 1 and Bi ;Pi ¤∅, which realizes cw.k/. Then there are Seifert surfaces

T1; : : : ;Tn D F; S1; : : : ;Sn �E.k/

for k such that Si is obtained from Ti�1 by adding the 1-handles Bi , Ti is ob-
tained from Si by adding the 2-handles Pi , and cw.k/D .c.S�.1//; : : : ; c.S�.n///
with c.S�.1//� � � � � c.S�.n//, where c.S/D 1��.S/.

Now, all Ti are incompressible (Remark 2.3), and of genus one, for if some Tj

is of genus at least two, then Sj is of genus at least three, and the complexity c.Sj /

is at least 6. But then, since n > 1, cw.k/ D .c.S�.1//; : : : ; c.S�.n/// > 6, a
contradiction. It follows that cw.k/D .4; : : : ; 4/.
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Figure 7. A minimal-genus Seifert surface for the knot k D Œ2b1; 2b2; : : : ; 2bn�.
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Figure 8. A spine for k D Œ2b1; 2b2; : : : ; 2bg� in @N.F /.

That is, if k is a connected nonfibered free genus one knot, then cw.k/D 4; 6,
or .4; : : : ; 4/.

As was mentioned in the introduction, a connected nonfibered free genus one
knot in S3 is almost fibered (Theorem 6.7 below). It follows that cw.k/ 2 f4; 6g.

Example 3.7 (rational knots). If k�S3 is a nonfibered rational knot, then h.k/D1.
Also cw.k/D 4g.k/ if k is connected, and cw.k/D 4g.k/C 1 otherwise.

Let k � S3 be a rational knot. Then k is encoded with a continued fraction
of the form Œ2b1; 2b2; : : : ; 2bg� where g is even or odd if k is connected or not,
respectively. Here b1; : : : ; bg are nonzero integers. Now k has a minimal-genus
Seifert surface F as in Figure 7 (see [Gabai 1986, Answer 1.19]). This surface is
free. Note that g.F /D g=2 if k is connected, and g.F /D .g� 1/=2 otherwise.

In a neighborhood V of this surface we can find a spine � � F � f0g � @V

with � D a1 _ a2 _ � � � _ ag, as in Figure 8. For the obvious meridional disks
x1;x2; : : : ;xg, of the handlebody E.F / corresponding to a basis fx1;x2; : : : ;xgg
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F

x1 x2

Figure 9. Black surface for P .7; 9; 9/.

of �1.E.F //, the curves a1; a2; : : : ; ag represent the elements

x
b1

1
;x

b2

2
x1;x

b3

3
x2; : : : ;x

bg�1

g�1
xg�2;x

bg

g xg�1

of �1.E.F //, respectively.
If each jbi j D 1, then a1; a2; : : : ; ag represent a basis of �1.E.F //, and, by

Corollary 3.2, k is fibered with fiber F .
If some jbi j � 2, then fxg;x

b2

2
x1;x

b3

3
x2 : : : ;x

bg�1

g�1
xg�2;x

bg

g xg�1g is a basis
for �1.E.F //; it follows that the curves a2; a3; : : : ; ag � � represent associated
primitive elements of �1.E.F //, and, by Theorem 3.1, h.k/� h.F /D 1. By the
second part of the statement of Answer 1.19 of [Gabai 1986], k is not fibered.
Therefore, 0< h.k/D h.F /D 1, and cw.k/D 2g if k is connected, and cw.k/D
2gC 1 otherwise.

Remark 3.8. In Theorem 3.21 of [Goda 2006] it is claimed that the result in
Example 3.7, the one-handledness of rational knots, is known, but unpublished.

Example 3.9 (pretzel knots). The pretzel knot k D P .˙3; q; r/ with jqj; jr j odd
integers � 3, has h.k/D 1 and, therefore, cw.k/D 4.

Let k be the pretzel knot P .p; q; r/ with p; q; r odd integers. Then k is a
connected knot, and the “black surface” F of a standard projection of k is a free
genus one Seifert surface for k. See Figure 9. If jpj; jqj; jr j � 3, the following facts
are known:

(1) k has a unique incompressible Seifert surface (see [Goda and Ishiwata 2006]),
namely, the free black surface F of genus one;

(2) k has tunnel number two (see [Klimenko and Sakuma 1998]);

(3) h.k/� 2 (see Corollary 3.5);

(4) since t.k/¤ 1, k is not a rational knot;
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(5) k is not fibered (that is, k ¤ 31; 41).

For any permutation s; t;u of p; q; r , the pair .S3; k/ is homeomorphic to the
pair .S3; `/, where ` is the pretzel knot P .s; t;u/. Also, by a reflection, P .p; q; r/

is equivalent to P .�p;�q;�r/. Then, by Remark 2.1, we may assume that either
p; q; r > 0 (case 1) or p < 0 and q; r > 0 (case 2).

There is a spine shown in Figure 9 for the surface F�f0g� @N.F /. This spine is
a � -graph. To obtain a wedge of circles as a spine � D a1_a2 �F �f0g � @N.F /,
we slide the middle edge of the �-graph to the left. Now we examine the two
cases separately.

Case 1: (p; q; r > 0) After sliding the middle edge of the graph to the left, we obtain
the left part of Figure 10. Writing �1.E.F //Š hx1;x2 W �i, we see that the curves
a1 and a2 represent the elements x.rC1/=2

2
x�.p�1/=2

1
and x.pC1/=2

1
.x2x1/

.q�1/=2,
respectively, in �1.E.F //.

Now assume that 32fjpj; q; rg. Using a homeomorphism of S3, we may assume
that pD 3. In this case, the curve a1' x.rC1/=2

2
x�1

1
represents a primitive element

of �1.E.F //, for the set fx.rC1/=2
2

x�1
1
;x2g is a basis of �1.E.F //. Therefore, by

Theorem 3.1, h.k/D h.F /D 1, and cw.k/D 4.

Case 2: (p < 0 and q; r > 0) After sliding the middle edge of the graph to the left
and using an isotopy to avoid unnecessary intersections of the curve a2 with the
disk x1, we obtain the right part of Figure 10. Writing �1.E.F //Š hx1;x2 W �i,
we see that the curves a1 and a2 represent the elements x.rC1/=2

2
x.jpjC1/=2

1
and

x�.jpj�3/=2
1

.x2x1/
.q�3/=2x2, respectively, in �1.E.F //.

Now assume that 32fjpj; q; rg. If pD�3, then the curve a2' .x2x1/
.q�3/=2x2

represents a primitive element of �1.E.F //, for the set f.x2x1/
.q�3/=2x2;x2x1g

is a basis of �1.E.F //. If q D 3 or r D 3, we may assume that q D 3, and then the
curve a2 ' x.jpj�3/=2

1
x2 represents a primitive element of �1.E.F //, for the set

fx�.jpj�3/=2
1

x2;x1g is a basis of �1.E.F //.

a1a2

x1 x2

a1

a2

x1 x2

Figure 10. Spines for P .p; q; r/.
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In both cases (p D �3, or q or r D 3) we conclude by Theorem 3.1 that
h.k/D h.F /D 1, and cw.k/D 4.

Remark 3.10. If jqj; jr j are odd integers�3, then kDP .˙3; q; r/ has tunnel num-
ber two. Then the family of pretzel knots fP .˙3; q; r/ W jqj; jr j odd integers � 3g is
a family of examples of nonfibered knots k for which the strict inequality h.k/< t.k/

holds (compare with [Pajitnov 2010], where it is proved that h.k/� t.k/).

4. Pretzel knots: the case jpj; jqj; jrj � 5

In this section we show:

Theorem 4.1. The free genus one Seifert surface for a pretzel knot P .p; q; r/ with
jpj; jqj; jr j � 5 has handle number two.

As noted in Example 3.9, when dealing with the pretzel knot k D P .p; q; r/ we
may assume that either p; q; r > 0 (case 1) or p < 0 and q; r > 0 (case 2).

4A. Handle decompositions of E.P.p; q; r//.

Lemma 4.2. Let V be a handlebody and let ˛ � V be a properly embedded arc. If
the exterior E.˛/� V is a handlebody, then ˛ is parallel into @V .

Proof. By hypothesis, �1.E.˛// is a finitely generated free group. If N.˛/DD2�I

is a regular neighborhood of ˛ in V , let �D @D2 �
˚

1
2

	
be a meridian of N.˛/. If

Nh�i denotes the normal closure of the element represented by � in �1.E.˛//,
then �1.E.˛//=Nh�i is isomorphic to the fundamental group of the space obtained
from E.˛/ by adding a 2-handle along �. Then �1.E.˛//=Nh�i Š �1.V / is
a free group. It follows that � represents a primitive element in �1.E.˛// (see
[Whitehead 1936, Theorem 4]). Thus, there is an essential disk ı �E.˛/ such that
the number of points #.ı\�/ is equal to 1. After an isotopy, we may assume that
@ı\ @N.˛/D  is an arc and @ı D ˇ[  , where ˇ is an arc contained in @V .

There is a product 2-disk Z D .radius of D2/ � I between  and ˛, with
Z � N.˛/ for some product structure D2 � I of N.˛/. Then ı can be extended
to a disk ı0 DZ [ ı whose boundary is a union of arcs ˛[ˇ0 with ˇ0 � @V (and
ˇ � ˇ0). Therefore ˛ is parallel into @V . �
Corollary 4.3. Let F be a free Seifert surface for a knot k. Suppose F has handle
number one, and let ˛ be the core of the 1-handle of a one-handled circular
decomposition of E.k/ based on F . Then ˛ is parallel into @E.F /.

Proof. As in Remark 2.2(2), the one-handled decomposition of the pair .E.F /;F /
is constructed by first drilling a 2-handle out of E.F / disjoint from, say, F � f1g.
This 2-handle has as cocore the arc ˛ of the statement (see Section 2F1). Secondly,
after drilling out ˛, we drill one 1-handle B out of the exterior E.˛/�E.F /, with
B disjoint from F � f1g. The result of this drilling is a regular neighborhood of



382 F. MANJARREZ-GUTIÉRREZ, V. NÚÑEZ AND E. RAMÍREZ-LOSADA

the surface F � f0g in E.k/, which is a handlebody. Therefore, the exterior E.˛/

in E.F / is the union of the neighborhood of F � f0g and the 1-handle B; that is,
E.˛/ is a handlebody. By Lemma 4.2 we conclude that ˛ is parallel into @E.F /. �
Proof of Theorem 4.1. Let F be the free genus one Seifert surface for kDP .p; q; r/

with jpj; jqj; jr j odd integers � 5.
For the sake of contradiction, we assume that F has handle number one. By

Corollary 4.3, the core  of the 1-handle of the circular decomposition of E.k/ based
on F is parallel into @E.F /. By assumption, there is also a 2-handle B Š I �D2

that completes the decomposition, such that the exterior E. [B/ � E. / is a
regular neighborhood of F in E.k/, and @B is disjoint from F . In particular, the
core

˚
1
2

	
�D2 of B is an essential disk in E. / disjoint from F . We will show
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Figure 11

that any essential disk in E. / intersects F , obtaining the desired contradiction.

Case 1: (p; q; r > 0) Let � D a1 _ a2 be the spine for F given in Example 3.9.
By Remark 2.5, we only need to analyze the handle decompositions of .E.F /; �/.
There is an obvious system of meridional disks x1;x2 � E.F / as depicted in
the upper part of Figure 10. The Whitehead diagram for .E.F /; �/ with respect
to x1;x2 looks like Figure 11.

In the corresponding Whitehead graph G, we see:

� Four fat vertices corresponding to the meridional disks x1 and x2.
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� There are .q � 1/=2 horizontal edges connecting x1 and x2, and .q � 1/=2

horizontal edges connecting x1 and x2; all these horizontal arcs belong to the
curve a2.

� There are .r � 1/=2 vertical edges connecting x2 and x2, one diagonal edge
connecting x1 and x2, and one diagonal edge connecting x1 and x2; all these
vertical and diagonal edges belong to the curve a1.

� Finally, connecting x1 with x1, we find, going from right to left in Figure 11,
first an arc belonging to a2, and then .p� 3/=2 pairs of arcs belonging con-
secutively to a1 and a2, and a last arc belonging to a2 which crosses with the
diagonal arc from x1 to x2 on the base point of � .

Claim 0. Let z be a @-parallelism disk for the arc  in E.F /. Then the disk z

contains at least one point of a1 and one point of a2.

Proof of Claim 0. For i D 1; 2, let Gi be the Whitehead graph of the pair .E.F /; ai/

with respect to x1;x2 (see Figure 12). After sliding the handle defined by the disk
x2 along the handle defined by x1 on the right side of Figure 12, the image of the
graph G2 looks like Figure 13. Since these graphs are connected and contain no cut
vertex, it follows from Corollary 2.8 that any essential disk in E.F / intersects ai

(i D 1; 2). Now, the exterior E. / can be regarded as a copy of E.F / plus one
1-handle defined by the disk z. Assume z \ a2 ¤ ∅. If z \ a1 D ∅, then a1 is
contained in the copy of E.F /�E. /. By hypothesis, there is an essential disk
� � E. / such that � \ .a1 [ a2/ D ∅. Now, � \ z ¤ ∅, otherwise � is a
subset of the copy of E.F /�E. / missing the extra 1-handle, and �\ a1 D∅,
contradicting that any essential disk in E.F / intersects a1. Through isotopies, we
may assume that �\ z is a set of disjoint arcs. Then the intersection of � with
the copy of E.F /�E. /, that is, the set �\ .E. /�N.z//, is a set of disjoint
properly embedded disks�1; : : : ; �n�E.F /. Since� is not parallel to z in E. /,
at least one �i is essential in E.F /, otherwise � would be parallel into @E. /. We
obtain again an essential disk in E.F / disjoint from a1, which is a contradiction,
as above, and therefore z\ a1 ¤∅. �

The arc  , being @-parallel in E.F / by Corollary 4.3, can be isotoped into this
Whitehead diagram as a properly embedded arc with ends disjoint from G (that
is, after an isotopy of E.F /, we may assume that  is disjoint from the system of
disks x1 and x2). Recall that we are assuming that  is the core of a 1-handle of a
one-handled circular decomposition of E.k/ based on F . Therefore, after drilling
out  , there is an essential disk in E. / disjoint from �; that is, after drilling
out  and obtaining a new Whitehead diagram with six fat vertices with Whitehead
graph G0, there is a sequence of handle slides of E. / that disconnect the graph G0,
giving an essential disk in E.F / disjoint from � (see Section 2F).
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Figure 12. The graphs of curves a1 and a2.

Let Gi be the Whitehead graph of the pair .E.F /; ai/ with respect to x1;x2 (see
Figure 12). After drilling out the arc  from the diagram of Gi , we obtain a new
Whitehead diagram for .E. /; ai/ with six fat vertices, corresponding to x1;x2,
and z, and with Whitehead graph G0i . Performing the handle slides of E. / as
above, the image of the graph G0i will be also disconnected, giving an essential disk
in E. / disjoint from ai (i D 1; 2).

Notice that, if we drill out an arc of length one in Gi and perform handle slides,
the image of Gi is disconnected (it contains four isolated fat vertices, i D 1; 2). We
deal with this kind of arc after Claims 1 and 2.

Claim 1. Let ˛ be a properly embedded arc in .E.F /; a2/, disjoint from a2, such
that ˛ is parallel into @E.F / and ˛ has length at least two in G2. Then any essential
disk in E.˛/ intersects a2.

Proof of Claim 1. The arc ˛ minimally encircles a number of edges of the graph G2.
For example, the arc that encircles the two diagonal edges in Figure 13 actually has
length 0.

Now, after sliding the handle defined by the disk x2 along the handle defined
by x1 on the right side of Figure 12, the image of the graph G2 looks like Figure 13.
The fat vertices of this graph are also obtained from the images of the disks x1

and x2 after the slide. We still call the new graph and new disks G2 and x1;x2,
respectively. This graph has .q� 3/=2 vertical edges connecting x2 with x2, one
diagonal edge connecting x2 with x1, one diagonal edge connecting x1 with x2,
and there are .p� 1/=2 vertical arcs connecting x1 with x1.

Let z be a minimal @-parallelism disk for ˛ in E.F /, and let G be the Whitehead
graph of .E.˛/; a2/ with respect to x1;x2, and z, which is obtained from G2 by
cutting along z and adding two fat vertices z and z.

We now treat two separate cases: (i) ˛ has length two, and (ii) ˛ has length at
least three.
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Case (i): (˛ has length two) Since p � 5, there are at least two vertical edges
connecting x1 and x1. Then there are two types of arcs of length two for the edges
of G2 around x1 as in Figure 13, for any arc encircling two consecutive edges of G2

connecting x1 and x1 can be slid in E.F / into an arc of type 1 or type 2. See
Figure 14, where the arcs that can be slid in E.F / into an arc of type 2 are shown.

After drilling out the arc ˛, if ˛ is of type 1 or of type 2, the new Whitehead
graph contains a cut vertex (see Figure 15).

After sliding handles, as in Section 2F, we end up with a graph G0
2

with its simple
associated graph a cycle of six vertices and six edges; that is, this simple graph
contains no cut vertex. Therefore, G0

2
contains no cut vertex, and by Corollary 2.8,

a2 intersects every essential disk of E.˛/.
If q � 7, there are at least two vertical edges connecting x2 and x2. Then, by

symmetry, the analysis of arcs of length two around x2 and x2 is the same as for
arcs of length two around x1 and x1.



386 F. MANJARREZ-GUTIÉRREZ, V. NÚÑEZ AND E. RAMÍREZ-LOSADA

If q D 5, there is a single vertical edge connecting x2 and x2, and then there are
no arcs of length two around x2 or x2.

For arcs not around a vertex of G2, there are two more types of arcs of length two,
as in Figure 16, but, after drilling out the arc ˛ of type 3 or 4, the new Whitehead
graph contains no cut vertex, and then, by Corollary 2.8, a2 intersects every essential
disk of E.˛/.

Case (ii): (˛ has length at least three) If ˛ is an arc around xi , we may assume
that the length of ˛ in G2 is between 3 and degree.xi/=2 (see last paragraph of
Section 2F1), and ˛ contains a subarc of type 1 or 2. After drilling out the arc ˛
and sliding, if cut vertices appear, we end up with a graph with its simple associated
graph a cycle with six vertices and six edges. Therefore, a2 again intersects every
essential disk of E.˛/.

If ˛ is of length at least 3 and ˛ contains a subarc of type 3 or 4 then, after
drilling out the arc ˛, the new Whitehead graph contains no cut vertex, and by
Corollary 2.8 we conclude that a2 intersects every essential disk of E.˛/.

By the final remarks of Section 2F1, the arcs of types 1–4 exhaust all arcs to be
considered as arcs of a one-handled decomposition for G2. �

Claim 2. Let ˛ be a properly embedded arc in .E.F /; a1/, disjoint from a1, such
that ˛ is parallel into @E.F / and ˛ has length at least two in G1. Then any essential
disk in E.˛/ intersects a1.

Proof of Claim 2. The Whitehead graph G1 of .E.F /; a1/ has a shape as in
Figure 13, but with .r � 1/=2 vertical edges connecting x2 with x2, one diagonal
edge connecting x2 with x1, one diagonal edge connecting x1 with x2, and there
are .p� 3/=2 vertical arcs connecting x1 with x1.

x2

x2
x1

x1

p+1( )/2

p+1( )/2

z

0

1

0

1

0 1

0
1

z

type 1
( 1)/2

( 1)/2

q−

q−

x2

x2x1

x1

p+1( )/2

p+1( )/2

z

0

1

0

1

0 1

0
1

z type 2

( 1)/2

( 1)/2

q−

q−

Figure 15



CIRCULAR HANDLE DECOMPOSITIONS OF FREE GENUS ONE KNOTS 387

x2

x2
x1

x1

p+1( )/2

p+1( )/2
0

1

0

1

0 1

0
1

( 1)/2

( 1)/2

q−

q−

type 3

type 4

Figure 16

−1q

2

−1q

2

r−1
2

−3p

2

x

x x

1

1
2

2x

� � � � � �

:::

:::



Figure 17

A similar (symmetric) analysis as in Claim 1 gives that a1 intersects every
essential disk of E.˛/. �

We are assuming that, after drilling out the arc  , there is a set of handle slides
of E. / that disconnect the graph G0, giving an essential disk in E.F / disjoint
from � .

By Claims 1 and 2,  is of length one in G1 and of length one in G2. If  is
around one fat vertex � of G, it might happen that  encircles exactly one edge
of G1, and all but one edge of G2, or vice versa. In this case,  is around either x2

or x2. There are four arcs around x2, and four arcs around x2 of this kind. The
four arcs with this property around x2 can be slid in E.F / and become equivalent
to the four arcs around x2 in Figure 17; see Section 2F1. After drilling out  , there
is a cut vertex in the new Whitehead graph, and a single handle slide produces a
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graph G0 with no cut vertices. By Corollary 2.8, there are no essential disks disjoint
from G in E. /. Another possibility is that  encircles all but one edge of G1 and
all but one edge of G2, but in this case  also encircles exactly one edge of G1 and
exactly one edge of G2.

There are four types of arcs of length two encircling exactly one edge of G1 and
exactly one edge of G2 (see Figure 18). Again, any arc encircling two edges of G,
one of G1 and one of G2 can be slid in E.F / into an arc of one of the four types;
see Section 2F1.

After drilling out the arc  , if  is of one of the four types, the new Whitehead
graph contains a cut vertex. After sliding, we end up with a graph G0 whose simple
associated graph is one of the drawings in Figure 19. Since these graphs contain no
cut vertex, by Corollary 2.8 we conclude that any essential disk in E. / intersects G,
and therefore intersects � � F . This contradiction shows that h.F / ¤ 1. Since
kDP .p; q; r/ is not fibered and h.F /�2, by Corollary 3.5 it follows that h.F /D2

when p; q; r � 5.
This finishes Case 1.

Case 2: (p < 0 and q; r > 0) As in Example 3.9, we construct a spine � D a1_a2

for F starting with the spine shown in Figure 9, but now we slide the middle edge
of the �-graph rightwards. The spine � looks like Figure 20, and the Whitehead
diagram for .E.F /; �/ with respect to the system of disks x1;x2 is as in Figure 21.
By Remark 2.5, we only need to analyze the handle decompositions of .E.F /; �/.

The Whitehead graphs G1 and G2 of the pairs .E.F /; a1/ and .E.F /; a2/,
respectively, are shown in Figure 22. Although these diagrams are similar to the
diagrams in Figure 12 of Case 1, the configuration of the diagram for a1 here is not
the same as the configuration of the positive case (Case 1); that is, the corresponding
Whitehead diagrams are not isomorphic.
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Figure 19

However, the analysis of the different properly embedded arcs in the Whitehead
diagrams of .E.F /; a1/, .E.F /; a2/, and .E.F /; �/, giving rise to a possible
one-handled decomposition, is completely similar to that of Case 1.

The Whitehead diagram for .E.F /; a2/ is isomorphic to the corresponding
Whitehead diagram of Case 1. Then:

Claim 1. Let ˛ be a properly embedded arc in .E.F /; a2/, disjoint from a2, such
that ˛ is parallel into @E.F /, and ˛ has length at least two in G2. Then any
essential disk in E.˛/ intersects a2. �

Claim 2. Let ˛ be a properly embedded arc in .E.F /; a1/, disjoint from a1, such
that ˛ is parallel into @E.F / and ˛ has length at least two in G1. Then any essential
disk in E.˛/ intersects a1.

Proof. We first analyze arcs of length 2 in G1. The arcs around vertices x1 and x1

are shown in Figure 23. There are only two types after sliding the arcs in E.F /.
After drilling out the arc ˛, if ˛ is of type 1 or of type 2 the new Whitehead graph
contains a cut vertex, but after sliding handles, as in Section 2F1, we end up with a
graph G0

1
whose simple associated graph is a cycle of six vertices and six edges;

that is, this simple graph contains no cut vertex. Therefore G0
1

contains no cut
vertex, and, by Corollary 2.8, a2 intersects every essential disk of E.˛/.

a1

a2

x1 x2

Figure 20
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For arcs of length 2 around the vertices x2 and x2, the analysis is identical to
Case 1.

For arcs not around a vertex of G1, there are two more types of arcs of length two,
as in Figure 24, but, after drilling out the arc ˛ of type 3 or 4, the new Whitehead
graph contains no cut vertex, and then, by Corollary 2.8, a2 intersects every essential
disk of E.˛/.

For arcs of length at least three, we follow the same argument as in Case 1, and
conclude that a2 intersects every essential disk of E.˛/. �

Recall that we are assuming that  is the core of a 1-handle of a one-handled
circular decomposition of E.k/ based on F . In view of Claims 1 and 2, as in
Case 1, we see that the arc  encircles exactly one edge of G1 and exactly one edge
of G2.

There are four types of arcs of length two encircling exactly one edge of G1 and
exactly one edge of G2 (see Figure 25). For, such an arc can be slid in E.F / into
an arc of type 1, type 2, type 3, or type 4 (Section 2F1).

After drilling out the arc  , if  is of one of the four types, the new Whitehead
graph contains a cut vertex. After sliding, we end up with a graph G0 whose simple
associated graph is one of the drawings in Figure 26. Since these graphs contain no
cut vertex, by Corollary 2.8 we conclude that any essential disk in E. / intersects G,
and, therefore, intersects � � F . Thus h.F / ¤ 1. Since k D P .p; q; r/ is not
fibered and h.F /� 2, by Corollary 3.5 it follows that h.F /D 2 when p � �5 and
q; r � 5.
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This finishes Case 2, and also the proof of Theorem 4.1. �

Corollary 4.4. Let k be the pretzel knot P .p; q; r/ with jpj; jqj; jr j � 5. Then
cw.k/D 6.

Proof. Since k has a unique incompressible Seifert surface, by Remark 2.3 it follows
that cw.k/ 2 Z. By Theorem 4.1, cw.k/D 6. �

Remark 4.5. Theorem 4.1 gives a family of knots of genus one and handle number
two. This answers in the affirmative a question in [Hirasawa and Rudolph 2003]:
does there exist a knot k with h.k/ > g.k/?
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5. Genus one essential surfaces and powers of primitive elements

In this section we show that if k is a free genus one knot with at least two nonisotopic
Seifert surfaces, then the free Seifert surface of k admits a special type of spine.
This result is essential to prove the main theorem of Section 6 (Theorem 6.7).

Lemma 5.1. Let H be a handlebody of genus g � 2 and let ˛ � @H be a simple
closed curve. Assume that there is a primitive element p 2 �1.H / such that ˛
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represents an element conjugate to pn for some n 2 Z, n ¤ 0. Then there is an
essential 2-disk D �H such that D\˛ D∅.

Proof. Let fp; q2; : : : ; qgg be a basis for �1.H /. Then �1.H /D hpi�hq2; : : : ; qgi

is a nontrivial splitting, and ˛ is conjugate to pn 2 hpi. Then f˛g is separable in
�1.H /, and the disk D is obtained by Theorem 3.2 of [Stallings 1999]. �

Let � Š a1 _ a2 be a graph in the boundary of a genus-two handlebody H . We
say that a2 spoils disks for a1 if, for any essential disk D�H such that D\a1D∅,
the number of points #.D\ a2/ is at least 2.

Theorem 5.2. Let k � S3 be a nontrivial connected knot, and let F �E.k/ be a
free genus one Seifert surface for k. Then:

There is another genus-one Seifert surface for k which is not equivalent to F if
and only if there exists a spine � D a1_ a2 for F in @N.F / such that a1 represents
an element conjugate to gn with n� 2 for some primitive element g 2 �1.E.F //,
and a2 spoils disks for a1.

Figure 26
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Proof. Let �Da1_a2 be a spine for F such that a1 represents an element conjugate
to gn with n � 2 for some primitive element g 2 �1.E.F //, and a2 spoils disks
for a1.

Let D �E.F / be an essential properly embedded disk such that a1\D D∅,
which is given by Lemma 5.1. We may assume that H1 D E.F /�N.D/ is a
solid torus. Let A1 be a regular neighborhood of a1 in @E.F /; then A1 � @H1.
Write B1 D @H1�A1. Since jnj � 2, the annuli A1 and B1 are nonparallel in H1.
We push Int.B1/ into H1 to obtain B0

1
, a properly embedded annulus in H1.

Let N.a2/ � @E.F / be a regular neighborhood of a2 such that A1 \ N.a2/

is a rectangle; then B2 D N.a2/�A1 is a “band” (that is, a 2-disk) such that
B2 \A1 D B2 \B0

1
is a pair of arcs in @B0

1
. Then G D B2 [B0

1
is a genus-one

Seifert surface for k (we push Int.G/ slightly into E.F / to get a properly embedded
surface in E.F /).

Now, yG D G \H1 is the union of the annulus B0
1

with the disk components
of yB2 D B2\H1. Notice that @ yB2 � B1 � @H1.

By hypothesis, #.a2\D/� 2; thus, yG is disconnected, and the components of yG
are B0

1
[ .two 2-disks of yB2/, and at least one subdisk z � yB2 with @z � Int.B1/.

Since jnj � 2, we cannot push B0
1

onto A1 in H1. Then a @-parallelism for
yG in H1 contains a @-parallelism W for B0

1
onto B1, but then W contains the

2-disk z � yG. Therefore, yG is not parallel into @H1. We conclude that G is not
boundary-parallel in E.F /, for a @-parallelism for G induces a @-parallelism for yG.
It follows that G and F are not equivalent. This finishes sufficiency.

Now, if there is another genus-one Seifert surface for k which is not equivalent
to F , we can find still another nonequivalent genus-one Seifert surface G �E.k/

for k such that G and F have disjoint interiors; see [Scharlemann and Thompson
1988]. We write k DG \ @E.F /.

The surface G splits E.F / into two handlebodies, H0 [H1 D E.F /�N.G/,
of genus two, for H0 and H1 are irreducible and, since G is �1-injective into H0

and H1, it follows that H0 and H1 are �1-injective into E.F /; therefore, H0 and H1

have free fundamental groups. We assume @HiDG[.F�fig/ plus a neighborhood
of k (i D 0; 1). By considering a system of disks for the handlebody E.F /, we see
that there is a disk D �E.F / that @-compresses G in E.F /, and D is contained
in, say, H0, and is properly embedded in H0.

Then k is a ..1; 0/; .n;m//-curve in @H0 (Lemma 4.3 of [Tsutsumi 2003]) with
jk \Dj D 2. See Figure 27.

Cutting H0 along D, we obtain a solid torus V �H0 such that yG DG \V is
an .n;m/-torus annulus in @V ; and the complementary annulus

yF D @V � yG
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Figure 27. Surfaces G and F�f0g in H0.
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Figure 28. � D a1_a2 and b1.

contains, and is isotopic to, .F � f0g/\V in @V with an isotopy fixed outside a
regular neighborhood of D.

Let a1 � F � f0g be the core of the annulus yF , and let b1 �
yG be the core of

the annulus yG.
Let C 0 � @V be a 2-disk that contains the pair of disks @V \ N.D/, and let

C � H0 be a properly embedded disk with @C D @C 0. Now let Z � H0 be
a meridional disk such that Z \ C D ∅. Then zF D .F � f0g/ \ .H0�N.Z//

contains a (1,0)-annulus A in the solid torus H0�N.Z/. Let a2 � Int.F �f0g/ be
the core of A, where we can arrange that a1\a2 is just one point. Then �D a1_a2

is a spine for F ; see Figure 28.
The curve a2 spoils disks for a1 in E.F /, for otherwise there is an essential

disk D � E.F / such that D \ a1 D ∅, and the number of points #.D \ a2/ is
less than 2. If D \ a2 D ∅, since � is a spine for F , the surface F is contained
in the solid torus E.D/�E.F /; it follows that F is compressible in E.D/, and
thus F is compressible in E.F /. But, since k is nontrivial and g.F / D 1, F is
incompressible in E.k/. Then D\ a2 is just one point, and D\ @F is a set of two
points. We may assume that D intersects k D @G in exactly two points. Since G is
incompressible, we may arrange that D\G is just one arc. Now, this arc is essential
in G, for otherwise we can slide G along D and obtain G0 homotopic to G in E.F /
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such that G0 is contained in the solid torus E.D/; then G0 is not �1-injective, and,
since G and G0 are homotopic embeddings, thus, G is not �1-injective; but that
makes G compressible. Then yG DG\E.D/ is an annulus, therefore, yG is parallel
into @E.D/. Using the disk D we can extend this parallelism to a parallelism of G

into @E.F /, contradicting that G is essential in .E.F /; k/.
Now, a1 � F � f0g represents, up to conjugacy, the same element as b1 � G

in �1.H0/ for, they are disjoint curves on a torus, and therefore, parallel.
Observe that, since G is not parallel to F � f0g, we have jnj � 2. In particular,
yG and yF are not parallel in V .

We now explore H1.
Recall that D is a @-compression disk for G in E.F /; in particular, D\ @E.F /

is an arc. It follows that, to recover E.F / from E.F /�N.D/, we attach to
E.F /�N.D/ the 3-ball N.D/ along a disk. Then E.F /�N.D/ is a genus-two
handlebody. In fact, E.F / is a regular neighborhood of E.F /�N.D/. In particular,
the inclusion induces an isomorphism �1.E.F /�N.D//! �1.E.F //.

Since E.F /�N.D/ D H1 [ yG
V , then H1 [ yG

V is a genus-two handlebody.
Therefore, the core b1 of yG represents a primitive element ˇ1 2 �1.H1/, for if
�1.V /Dhv W �i then b1 represents vn, which is not primitive in V . The element ˇ1

is part of a basis, say, �1.H1/D hw; ˇ1 W �i. By Seifert–van Kampen,

�1.E.F //Š �1.H1[ yG
V /D hw; ˇ1; v W ˇ1 D v

n
i Š hw; v W �i:

That is, v is primitive in �1.E.F //, and b1 represents vn. �

6. Free genus one knots are almost fibered

In this section we show that all free genus one knots are almost fibered. We outline
here the plan of the proof.

Start with a nonfibered free genus one knot k with a genus-one free Seifert
surface F � E.k/. If k has a unique Seifert surface, then k is almost fibered
(Remark 2.3). If k were not almost fibered, then, as in Remark 3.6, k has a genus-
one Seifert surface not isotopic to F . By Theorem 5.2, there is a spine � D a1_a2

for F in @N.F / such that a1 represents an element conjugate to gp with p � 2 for
some primitive element g 2 �1.E.F //, and a2 spoils disks for a1. By Lemma 5.1,
we can find an essential disk � � E.F / with � \ a1 D ∅, and the exterior
E.�/DE.F /�N.�/ is the disjoint union of two solid tori V0 and V1 with, say,
a1 � @V0. We regard �� @V0. Then � \V0 consists of the curve a1, which is a
.p; q/-curve in V0, and an arc with endpoints on @� intersecting a1 in exactly one
point, and a set of parallel arcs with endpoints on @� which are disjoint from a1;
see Figure 32.
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In Section 6A we show how to find a properly embedded arc in V0 disjoint from �

which, in Section 6B, is shown to be the core of the 1-handle of a one-handled
circular decomposition for E.k/ based on F . In this analysis, the disk� is regarded
as “unreachable”, and should be thought of as very near the point at infinity. That
is, all homeomorphisms in this subsection will fix pointwise the disk �.

6A. Handles for torus manifolds. Let p and q be a pair of coprime integers.
Consider the points fs`g

p

`D1
� S1 with s` D e2�i`=p; also let zV be the cylinder

D2�I , and write sI
`
D s`�I � zV . The rotation �q of angle 2�q=p on D2 gives a

quotient P W
�
zV ;
Sp

`D1
sI
`

�
! .V; ˛/; where V is the solid torus obtained from zV by

identifying .z; 0/ with .�q.z/; 1/ for each z 2D2, and ˛ is the simple closed curve
on @V obtained as the image of the union

Sp

`D1
sI
`

in this quotient. The rotation �q

acts on fs`g
p

`D1
as the cyclic permutation of order p such that �q.si/ D siCq ,

where subindices are taken mod p. We consider also a fixed point 1 2 ˛, the
“point at infinity”. The homeomorphism type of the pair .V; ˛/ is called the .p; q/-
torus sutured manifold, or simply the .p; q/-manifold. Throughout this section, we
assume that 0< q < p. Notice that the .p; q/-torus sutured manifold .V; ˛/ is not
a sutured manifold, but ˛ is a spine of a small regular neighborhood N.˛/� @V ,
and the pair .V;N.˛// is a true sutured manifold with suture ˛.

In the following, we perform several operations on the .p; q/-manifold (drilling
of arcs, homeomorphisms, etc.), and it will be done in such a way that the point at
infinity of the manifold will remain fixed.

Let x � V be the meridional disk P .D2�f0g/. From the pair
�
zV ;
Sp

`D1
sI
`

�
we

give a Whitehead diagram for the .p; q/-manifold .V; ˛/ associated to x as follows.
We regard zV DD2�I as the exterior E.x/�V , and write x and x for D2�f0g

and D2�f1g, respectively. The arcs sI
1
; : : : ; sI

p are the edges of G, the corresponding
Whitehead graph with fat vertices x and x. To obtain a Whitehead diagram, we
have to number the endpoints of sI

1
; : : : ; sI

p . In a plane projection of the graph G,
we assume that the unbounded face of G contains the edges sI

q and sI
qC1

; see
Figure 29. The point at infinity is either the middle point of sI

q or the middle point
of sI

qC1
. If12 sI

q , then we rename vj D .sj ; 0/ and vj D .�q.sj /; 1/D .sjCq; 1/;
if12 sI

qC1
, we rename vj D .sjCq; 0/ and vj D .�q.sjCq/; 1/D .sjC2q; 1/, where

subindices are taken mod p. In any case, we number the point vi with the number i ,
and the point vj with the number j (i; j D 1; : : : ;p). Also, we write ˛i for the
edge of G such that vi 2 ˛i . This diagram and the corresponding Whitehead graph
are called the .p; q/-diagram and the .p; q/-graph, respectively. Notice that the
edge ˛1 connecting x with x starting at the point numbered 1 2 x ends at the point
numbered p� qC 1 2 x.

Remark 6.1. Consider a Whitehead diagram of a pair .V; ˛/ associated to x,
where V is a solid torus, ˛ is a simple closed curve on @V , and x is a meridional
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Figure 29. Whitehead diagrams for the (9,4)-manifold and the
(9,5)-manifold.

disk of V . If, in the fat vertices of the Whitehead diagram of .V; ˛/, the points
corresponding to ends of edges are numbered with elements of the set f1; : : : ;pg
consecutively in the positive (negative) direction on x (on x), in a compatible way
with the gluing homeomorphism to recover the V , then if the edge connecting
x with x starting at the point numbered 1 2 x ends at the point numbered t 2 x,
then t D p� qC 1; that is, the Whitehead diagram corresponds to the .p; q/-torus
sutured manifold with q D p� t C 1.

Let .V; ˛/ be the .p; q/-torus sutured manifold, and let G be the Whitehead
graph of .V; ˛/ with respect to a meridional disk x � V . Let  be a properly
embedded arc in V , such that  is around the vertex x in the Whitehead diagram of
.V; ˛/ with respect to x, and  encircles the edges ˛1; : : : ; ˛q . Also, assume that 
lies “above” the point12 ˛, that is,  is between1 and x; see Figure 29. The
arc  is called the canonical 2-handle of length q for the .p; q/-manifold. Note that
the arc  is the cocore of a 2-handle in V .

If we drill out the canonical 2-handle of length q, we obtain a Whitehead diagram
with respect to the system of disks x; z � E. / � V , where z is the obvious @-
parallelism disk for  ; see Figure 30. We refer to this Whitehead diagram as the
Whitehead diagram obtained by drilling out the canonical 2-handle of length q of
the .p; q/-manifold. Notice that the arc g in Figure 30 is a “longitude” for the handle
defined by z. That is, if we glue back the disks z and z and kill the longitude g with
a 2-handle, we recover the Whitehead diagram of the .p; q/-manifold. In practice,
we just join the ends of the edges in z with the ends of the edges in z with parallel
arcs on the diagram, and delete the disks z and z from the picture, and we get the
Whitehead diagram of the .p; q/-manifold back.

Let G be the graph of the Whitehead diagram obtained by drilling out the
canonical 2-handle of length q of the .p; q/-manifold. Then G is a graph with four
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Figure 30. Whitehead diagram for the (9,4)-torus sutured manifold.

fat vertices x;x; z, and z; there are q edges connecting z and x; there are q edges
connecting z and x; and there are p� q edges connecting x with x. Compare with
Figure 30. Note that x is a cut vertex of G (and z and z are not cut vertices); then
we can slide the handle corresponding to z along the handle defined by x

After sliding, if the new disk x is still a cut vertex, we can again slide the new
disk z along the new disk x, and so on. Let G0 be the image of the graph G after �
handle slides of z along x. The graph G0 is called the �-slid graph obtained from
the .p; q/-graph G.

Lemma 6.2. Let p; q be a pair of coprime integers, 0< q < p, and assume that

p D �1qC r1; with 0� r1 < q and �1 � 1:

Let G be the graph of the Whitehead diagram obtained by drilling out the canonical
2-handle of length q of the .p; q/-manifold, and let G0 be the �1-slid graph obtained
from the .p; q/-graph G. Then G0 is the graph of the Whitehead diagram obtained
by drilling out the canonical 2-handle of length r1 of the .q; r1/-manifold. The point
at infinity is a fixed point of these handle slides.

Proof. In the Whitehead graph G, the ends of the edges connecting the disk z

with the disk x are numbered 1; 2; : : : ; q in the disk x; these ends are the points
v1; v2; : : : ; vq in @x. Then, after sliding z along x, the new disk z carries the
edges with ends that were numbered 1; 2; : : : ; q in x. Thus, now the ends of the
edges connecting z and x, after the slide, have ends which are the images of the
points v1; v2; : : : ; vq under the rotation �q of angle 2�q=p; that is, the ends are
the points vqC1; vqC2; : : : ; v2q , which are numbered qC 1; qC 2; : : : ; 2q in x.

We see that, after sliding �1�1 times z along x, the ends of the edges connecting z

and x are numbered .�1 � 1/q C 1; .�1 � 1/q C 2; : : : ; �1q in x. Then, after
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Figure 31. After sliding z along x.

sliding �1 times z along x, the points still connected by edges in x are numbered
�1qC1; �1qC2; : : : ;p. Now, by hypothesis pD �1qCr1, so �1qC1Dp�r1C1,
which means that there are r1 points left in x. That is (see Figure 31) we have a
graph, the image of G after the slides, with fat vertices x;x; z; z; there are r1 edges
connecting x with z; there are r1 edges connecting x with z; and there are q� r1

edges connecting z with z. Now, the edge with one end in z numbered with 1
has the other end numbered with p� r1C 1 in x; and the edge with one end in x

numbered with p� r1C 1 has the other end in z numbered with q� r1C 1.
Therefore, the new diagram is the Whitehead diagram obtained by drilling out

the canonical 2-handle of length r1 of the .q; r1/-manifold. Since the disks x and z

were never touched, the point at infinity is a fixed point of the handle slides.
Notice that if q D 1, then �1 D p, and r1 D 0, and everything is easier: the

image graph G above, in this case, replacing the values of q and r1, has four
fat vertices x;x; z; z; there are 0 edges connecting x with z; there are 0 edges
connecting x with z; and there is 1 edge connecting z with z. That is, after
canceling the handle defined by x, we obtain the (1,0)-manifold. �

Corollary 6.3. Let r1; r2 be a pair of coprime integers, 0< r2 < r1. Assume that

r1 D �1r2C r3; 0< r3 < r2;

r2 D �2r3C r4; 0< r4 < r3;

:::
:::

rn�1 D �n�1rnC 1; 0< 1< rn;

rn D �n;
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with �i � 1, i D 1; : : : ; n.
Let G be the graph of the Whitehead diagram obtained by drilling out the

canonical 2-handle of length r2 of the .r1; r2/-manifold. Let G1 be the �1-slid
graph obtained from the .r1; r2/-graph G. For i D 1; : : : ; n � 1, let GiC1 be
the �iC1-slid graph obtained from the .ri ; riC1/-graph Gi .

Then Gn is the graph of the Whitehead diagram obtained by drilling out the
canonical 2-handle of length 0 of the .1; 0/-manifold .V; ˛/.

The point at infinity is a fixed point of these handle slides. �
Remark 6.4. The graph Gi in the statement of Corollary 6.3 is the graph of the
Whitehead diagram obtained by drilling out the canonical 2-handle of length riC2

of the .riC1; riC2/-manifold. Then Gi is a graph with four fat vertices �; �; �, and �.
The symbols � and � stand for the symbols x and z in some order (that is, the
sets f�; �g and fx; zg are equal, but just as unordered sets). There are riC2 edges
connecting � and � , there are riC2 edges connecting � and � and there are riC1�riC2

edges connecting � with � .

Remark 6.5. Let p; q be a pair of coprime integers, and assume that p=q D

Œ�1; : : : ; �n� as a continued fraction, with �i � 1 for each i .

(1) Write pi=qi D Œ�1; : : : ; �i �, with pi ; qi coprime. Write p0 D 1;p�1 D 0,
and q0 D 0; q�1 D 1. It is well known that pi D �ipi�1 C pi�2 and qi D

�iqi�1Cqi�2I also piqi�1�pi�1qi D .�1/i for i � 1 [Hall and Knight 1946,
Articles 337 and 338]. Since �i � 1, one easily shows pi > qi > 0 for i � 1.
In particular, p > q > 0. Note also that piC1 > pi .

(2) Let r; s be the two coprime integers pn�1; qn�1, respectively, and let .V; ˛/
be the .p; q/-manifold. Then the .r; s/-torus curve can be drawn on @V as a
simple closed curve ˇ, which intersects ˛ exactly at the point at infinity for
ps� qr D˙1. Note that, if n is even, then the point at infinity is at the right
in the Whitehead diagram, and if n is odd, it is at the left, as in Figure 29. The
curve ˇ can be visualized on the Whitehead diagram of the .p; q/-manifold as
a set of new edges connecting the fat vertices, and disjoint from the Whitehead
graph, and a single new edge intersecting the Whitehead graph at the point
at infinity. Conversely, the curve ˛ can be visualized in a similar way on the
Whitehead diagram of the .r; s/-manifold.

Notice that between two edges of ˛ there is at most one edge of ˇ, for p> r .

Theorem 6.6. Assume p=qD Œ�1; : : : ; �n� with p; q coprime, and �i � 1 for each i .
Let r; s be the pair of coprime integers such that r=sD Œ�1; : : : ; �n�1�. Let .V; ˛/ be
the .p; q/-manifold, and let ˇ� @V be the .r; s/-torus curve such that ˛ intersects ˇ
exactly at the point at infinity.

If  � V is the canonical 2-handle of length q of the .p; q/-manifold, then the
exterior E. / is a regular neighborhood of ˛[ˇ.
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Proof. Let G be the graph of the Whitehead diagram obtained by drilling out the
canonical 2-handle of length q of the .p; q/-manifold, but including the arcs of the
curve ˇ. Call ˛-edges the edges of G corresponding to the .p; q/-torus curve ˛,
and ˇ-edges the edges of G corresponding to the .r; s/-torus curve ˇ.

Writing r1 D p and r2 D q, the statement p=q D Œ�1; : : : ; �n� with �i � 1 means
that there are integers r3; : : : ; rn such that

r1 D �1r2C r3; 0< r3 < r2;

r2 D �2r3C r4; 0< r4 < r3;

:::
:::

rn�1 D �n�1rnC 1; 0< 1< rn;

rn D �n:

See Remark 6.5(1). Writing �1D r and �2D s, the statement r=sD Œ�1; : : : ; �n�1�

means that there are integers �3; : : : ; �n�1 such that

�1 D �1�2C �3; 0< �3 < �2;

�2 D �2�3C �4; 0< �4 < �3;

:::
:::

�n�2 D �n�2�n�1C 1; 0< 1< �n�1;

�n�1 D �n�1:

Notice that the canonical 2-handle of length q for the .p; q/-manifold is the
canonical 2-handle of length q for the ˛-edges of G, but it is also the canonical
2-handle of length s for the ˇ-edges of G. Then the graph Gn�1 of Corollary 6.3
(Remark 6.4) contains four fat vertices �; �; �, and �. Note that rnC1D 1; then there
is a single ˛-edge connecting � and � , there is a single ˛-edge connecting � and � ,
and there are rn� 1 ˛-edges connecting � with � . Note that �n D 1 and �nC1 D 0;
then there is a single ˇ-edge connecting � with � intersecting the ˛-edge connecting
� and � at the point at infinity, and there are no more ˇ-edges. The graph Gn is
obtained by sliding � through � the number �n D rn of times. Then Gn has a single
˛-edge connecting � with � and a single ˇ-edge connecting � with � intersecting at
the point at infinity. The theorem follows.

Notice that when q D 1, then nD 1 and the graph Gn�1 coincides with G. �

6B. One-handledness of knots.

Theorem 6.7. If k is a nonfibered free genus one knot in S3, then k is almost fibered.
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Proof. Let k � S3 be a knot and let F �E.k/ be a genus one free Seifert surface
for k. Assume k is not almost fibered. Then, as in Remark 3.6, k has another genus-
one Seifert surface disjoint from and not equivalent to F . By Theorem 5.2 there is
a spine � D a1 _ a2 for F in @N.F / such that a1 represents an element conjugate
to gp with p � 2, for some primitive element g 2 �1.E.F //, and a2 spoils the
disks of a1. We shall show that the existence of such a graph � implies h.F /D 1,
and, since F is of minimal genus, therefore, cw.k/D 4. This contradiction gives
the theorem.

By Lemma 5.1, there is an essential 2-disk ��E.F / such that �\a1D∅. We
may assume that the exterior E.�/�E.F / is not connected, and is the union of two
solid tori H0 and H1, and a1�H0. There is a copy of� in @H0; then a1�@H0��.
Write T D @H0��; T is a once-punctured torus. A properly embedded arc ˛� T

is called a rel-� curve in @H0, and is visualized as the arc ˛ union a properly
embedded arc in � with the same ends as ˛. Or, rather, we may regard � as a point
at infinity of the torus T=@�.

We have that a1 is a .p; q/-torus curve in H0 for some q (this implies that we
have fixed a longitude-meridian pair in @H0; by changing the longitude-meridian
pair, we may assume that 0< q < p). The intersection a2\H0D a2\@H0 is a set
of disjoint arcs c[b1[� � �[bm � @H0 with ends in @� and such that bi \a1D∅
for each i , and the set c \ a1 is a single point, the base point of � .

Regarding c as a rel-� curve, c is an .r; s/-torus rel-� curve in H0 with ps�qrD

˙1. Since ps�qr D˙1, any other pair .r 0; s0/ such that ps0�qr 0 D˙1 is of the
form .r 0; s0/D .r C `p; sC `q/ for some integer `. Then by sliding a2 along a˙1

1

several times, we obtain a new spine for F . By Remark 2.5, we may assume that
the arc c is an .r; s/-torus rel-� curve in H0 where, if p=q D Œ�1; : : : ; �n� as a
continued fraction with terms �i � 1, then r=s D Œ�1; : : : ; �n�1�.

Since b1; : : : ; bm � @H0� .Int.�/[a1[ c/ŠD2, then each of b1; : : : ; bm are
rel-� curves parallel to a1.

Now consider the graph G of the Whitehead diagram of the .p; q/-manifold
.H0; a1/, and include in G the edges induced by the rel-@ curves c; b1; : : : ; bm. By
deforming the diagram, we may assume that� is contained in a small neighborhood
of the point at infinity, which is the base point of � , the point of intersection of c

and a1. Let  be the canonical 2-handle of length q for .H0; a1/. In the Whitehead
diagram, we place  in such a way that it starts by encircling the arc c coming
from infinity, and then encircles the q edges belonging to a1 and whatever is in the
middle, and nothing more (that is, after encircling the last edge belonging to a1,
the arc  does not encircle any arc belonging to c or b1; : : : ; bm). See Figure 32,
where the dotted line is a set of parallel arcs. We drill out  and, by Theorem 6.6,
if we slide handles in the Whitehead diagram obtained by drilling  out of H0, we
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Figure 32. The (19,12) and (8,5)-torus curves.

obtain a sequence of diagrams as in Figures 33–35. All handle slides fix pointwise
the small neighborhood of the point at infinity, and, thus, also the disk �.

The resulting Whitehead graph on @H0 consists of four fat vertices �; �; �; �; there
is a single a1-edge connecting � and �, and a single c-edge connecting � with �
intersecting in the base point of � (in Figure 32, � D z and � D x). Notice that the
c-arc is actually two arcs, one connecting � with @�, and the other connecting @�
with �. Without loss of generality, this last arc contains the base point of � .

Let v be a meridional disk for H1 disjoint from�. Then �; � and v form a system
of meridional disks for the handlebody E. /. Write �1.E. // D h�; �; v W �i.
Then a1 represents the element � and a2 represents an element � �W .�; v/, where
W .�; v/ is a word in the letters � and v. Since f�; � �W .�; v/; �g is a basis for
�1.E. //, it follows that a1 and a2 represent associated primitive elements. Then
we can find a system of disks D1;D2;D3 for E. / such that ai\Di is exactly one
point, and ai\Dj D∅ for i¤j , iD1; 2, and j D1; 2; 3. Therefore E. /�N.D3/

is a regular neighborhood of � D a1 _ a2. We conclude that D3 is the cocore of a
1-handle that, together with  , gives a one-handled circular decomposition for E.k/

as in Remark 2.2(2). Since k is not fibered, it follows that h.k/D 1, and that k is
almost fibered. This contradiction finishes the proof of the theorem. �

Remark 6.8. By [Pajitnov 2010], a tunnel number one knot admits a one-handled
circular decomposition based on some unspecified surface. In [Scharlemann 2004],
genus-one knots with tunnel number one were classified, and it turns out that these
knots are free genus one knots. Let k be a nonfibered genus-one knot with tunnel
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Figure 33. Left: slide z along x. Right: slide x along z.
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Figure 34. Left: slide z along x. Right: slide x twice along z.

number one. In Example 3.7, we considered the case that k is simple, and in the
proof of Theorem 6.7, we considered the case that k is not simple. It follows
that, for these knots, their circular width is realized with a one-handled circular
decomposition based on a minimal (genus-one) free Seifert surface.
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deletes the curve.
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