
Pacific
Journal of
Mathematics

A POINTWISE A-PRIORI ESTIMATE
FOR THE N@-NEUMANN PROBLEM

ON WEAKLY PSEUDOCONVEX DOMAINS

R. MICHAEL RANGE

Volume 275 No. 2 June 2015





PACIFIC JOURNAL OF MATHEMATICS
Vol. 275, No. 2, 2015

dx.doi.org/10.2140/pjm.2015.275.409

A POINTWISE A-PRIORI ESTIMATE
FOR THE N@-NEUMANN PROBLEM

ON WEAKLY PSEUDOCONVEX DOMAINS

R. MICHAEL RANGE

The main result is a pointwise a-priori estimate for the N@-Neumann problem
that holds on an arbitrary weakly pseudoconvex domain D. It is shown that
for .0; q/-forms f in the domain of the adjoint N@� of N@, the pointwise growth
of the derivatives of each coefficient of f with respect to zj and in complex
tangential directions is carefully controlled by the sum of the suprema of
f , N@f , and N@�f over D. These estimates provide a pointwise analog of the
classical basic estimate in the L2 theory that has been the starting point for
all major work in this area involving L2 and Sobolev norm estimates for the
complex Neumann and related operators.

1. Introduction

The L2 theory of the @-Neumann problem on pseudoconvex domains has been
highly developed for many years. In particular, J. J. Kohn [1979] introduced the
technique of subelliptic multipliers which led to the proof of subelliptic estimates in
the case where the boundary is of finite type [D’Angelo 1982; Catlin 1987; Siu 2010].
The starting point for these and other investigations has been the following basic
estimate, valid on any smoothly bounded pseudoconvex domainD (see [Folland and
Kohn 1972; Kohn 1979] for more details). Let us fix a point P 2 bD and a smooth
orthonormal frame for .1; 0/-forms !1; !2; : : : ; !n on a small neighborhood U of
P with !n D 
.�/@r , where r is a defining function for D. Let L1; : : : ; Ln be the
corresponding dual frame for .1; 0/ vector fields. One defines

Dq.D/D C
1
.0;q/.D/\ dom N@�;

and one denotes by DqU those forms in Dq.D/ which have compact support in
D \ U . Then f 2 DqU can be written as

P0
J fJ!

J , where the summation is
over strictly increasing q-tuples J . Since f 2 dom @�, one has fJ D 0 on bD\U
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whenever n 2 J . In case q D 1, the “L2 basic estimate” states that there exists a
constant C such thatX

j; k

kLjfkk
2
C

Z
bD\U

L.r; �If ]/ dS.�/� C
�
k@f k2Ck@�f k2Ckf k2

�
for all f D

P
fk!k 2 D1U , where f ] D .f1; : : : ; fn/. The norms here are the

standard L2 norms over D \U , and L is the Levi form of the defining function
r with respect to the frame fL1; : : : ; Lng. Since f 2 dom @�, one has fn D 0 on
bD, so that pseudoconvexity implies that L.r; �If ]/� 0 on bD. Furthermore, it
readily follows from fn jbD\U D 0 that one then also has the estimate

kfnk
2
1 � C1k@fnk

2
� C2

�
k@f k2Ck@�f k2Ckf k2

�
:

Here kfnk1 is the full 1-Sobolev norm, i.e., kfnk21 is the sum of the squares of the
L2 norms of all first order derivatives of fn.

Over the years there has been much interest in obtaining corresponding results
involving pointwise and Hölder estimates. Techniques of integral representations
have been most successful on strictly pseudoconvex domains, where the Levi
polynomial provides a simple explicit local holomorphic support function (see
[Range 1986] for a systematic exposition). Holomorphic support functions also
exist on convex domains, and some results have been obtained in that setting in the
case of finite type [Cumenge 1997; Diederich et al. 1999]. However, it has long
been known that in general there are no analogous holomorphic support functions,
even in very simple pseudoconvex domains of finite type [Kohn and Nirenberg
1973]. This obstruction has blocked any progress on these questions in the case of
more general pseudoconvex domains.

Recently the author has introduced a nonholomorphic modification of the Levi
polynomial to obtain new Cauchy–Fantappié kernels on arbitrary weakly pseudo-
convex domains which reflect the complex geometry of the boundary and satisfy
some significant partial estimates [Range 2013]. In this paper we use the new
kernels in the integral representation formula developed by I. Lieb and the author
in the strictly pseudoconvex case (see [Lieb and Range 1983; 1986]) to prove a
pointwise analog of the classical basic L2-estimate, as follows. This result was
already announced in [Range 2011]. We define

Dkq.D/D C
k
.0;q/.D/\ dom @�

for k D 1; 2; : : : , and we denote by DkqU those forms in Dkq.D/ that have compact
support in D \ U . We shall use the frames !1; !2; : : : ; !n and L1; : : : ; Ln as
above. Vector fields V act on forms coefficientwise, i.e., if f D

P0
J fJ!

J , then
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V.f /D
P
J

0V.fJ /!
J . For a C 1-form f of type .0; q/ on D we define the norm

Q0.f /D jf j0Cj@f j0Cj#f j0;

where # is the formal adjoint of @, and j'j0 denotes the sum of the supremum norms
over D of the coefficients of '. For 0 < ı � 1, j'jı denotes the corresponding
Hölder norm of order ı.

Main Theorem. There exists an integral operator SbD W C
.0;q/

.bD/! C1
.0;q/

.D/

which has the following properties. If bD is (Levi) pseudoconvex in a neighborhood
U of the point P 2 bD and if U is sufficiently small, there exist constants Cı
depending on ı >0, so that one has the following uniform estimates for all f 2D1qU ,
1� q � n, and z 2D\U :

(i) jf �SbD.f /jı � CıQ0.f / for any ı < 1.

(ii) jLjSbD.f /.z/j �Cı dist.z; bD/ı�1Q0.f / for j D 1; : : : ; n and any ı < 1
2

.

(iii) jLjSbD.f /.z/j � Cı dist.z; bD/ı�1Q0.f / for j D 1; : : : ; n � 1 and any
ı < 1

3
.

Furthermore, if fJ!J is a normal component of f with respect to the frame
!1; : : : ; !n, one has

jfJ jı � CıQ0.f / for any ı < 1
2

if n 2 J:

Note that if one also had an estimate analogous to (iii) for the normal derivative
LnS

bD.f /.z/ for some ı > 0 (with ı < 1
3

), standard results would imply the
Hölder estimate jSbD.f /jı � CıQ0.f /; by using (i) one therefore would obtain
an estimate

jf jı � CıQ0.f /;

i.e., the Hölder analog of a subelliptic estimate. It is known that such an estimate does
not hold on arbitrary pseudoconvex domains. On the other hand, the Main Theorem
provides a starting point in a general setting which, combined with additional
suitable properties of the boundary such as finite type, might be useful to obtain
appropriate estimates for LnSbD.f /. In particular, the author is investigating
analogs of Kohn’s subelliptic multipliers in the integral representation setting
underlying the Main Theorem (see [Range 2011] for an outline of such potential
applications).

2. Integral representations

We briefly recall some fundamentals of the integral representation machinery. We
follow the terminology and notation from [Range 1986], where full details may
be found. A (kernel) generating form W.�; z/ for the smoothly bounded domain
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D � Cn is a .1; 0/-form W D
Pn
jD1wj d�j defined on bD �D with coefficients

of class C 1 which satisfies
P
wj .�j � zj /D 1. For 0� q � n� 1, the associated

Cauchy–Fantappié (D CF) form of order q is defined by

�q.W /D cnqW ^ .@�W /
n�q�1

^ .@zW /
q:1

�q.W / is a double form on bD �D of type .n; n� q� 1/ in � and type .0; q/ in
z. One also sets ��1.W /D�n.W /D 0.

With ˇ D j� � zj2, the form B D @ˇ=ˇ D
Pn
jD1 .�j � zj /=j� � zj

2 d�j is the
generating form for the Bochner–Martinelli–Koppelman (D BMK) kernels. One
has the following BMK formula (here and in the following, the integration variable
is always �): if f 2 C 1

.0;q/
.D/ then for z 2D,

(1) f .z/D
Z
bD

f .�/^�q.B/�@z

Z
D

f .�/^�q�1.B/�

Z
D

@�f .�/^�q.B/:

The next formula, due to W. Koppelman, describes how to replace �q.B/ by
some other CF kernel �q.W / on the boundary bD: Since �n.B/ � 0, we shall
assume q < n from now on. Given any generating form W on bD �D, one has

f .z/D

Z
bD

f .�/^�q.W /C@zT
W
q .f /CTWqC1.@f / for f 2C 1.0;q/.D/; z 2D:

Here the integral operator TWq W C
1
.0:q/

.D/! C.0;q�1/.D/ is defined by

TWq .f /D

Z
bD

f ^�q�1.W;B/�

Z
D

f .�/^�q�1.B/

for any 0 � q < n, where the “transition” kernels �q�1.W;B/ involve explicit
expressions in terms of W and B which will be recalled later on.

Remark. For D strictly pseudoconvex, Henkin and Ramirez have constructed a
generating form W HR.�; z/ that is holomorphic in z, so �q.W HR/D 0 on bD for
q�1. Consequently, if f is a @-closed .0; q/-form onD, one has f D@zTW

HR

q .f /,
with an explicit solution operator TW

HR

q . Based on the critical information that
the Levi form of the boundary is positive definite in this case, it is well known
that this solution operator is bounded from L1 into ƒ1=2. Furthermore, one also
has the a-priori Hölder estimate jf j1=2 � CQ0.f / for all f 2D1qU (see [Lieb and
Range 1986]). Attempts to prove corresponding estimates on more general domains
ultimately run into the obstruction of the example by Kohn and Nirenberg [1973]
mentioned above, i.e., in general it is not possible to find a corresponding reasonably
explicit holomorphic generating form on weakly pseudoconvex domains—even if
of finite type—except under very restrictive geometric conditions.

1cnq D ..�1/
q.q�1/=2=.2�i/n/

�n�1
q

�
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In case f 2D1q.D/, one may transform formula (1) into

f D

Z
bD

f ^�q.B/C .@f; @!q/C .#f; #!q/,

where !q denotes the fundamental solution of � on .0; q/-forms, # denotes the
formal adjoint of @, so that #f D @�f , and . � ; � / denotes the standard L2 inner
product of forms over D (see [LR 1983] and [Range 1986]). The fundamental
solution !q is an isotropic kernel whose regularity properties are well understood.
In particular, the operator

S iso
W f ! S iso.f /D .@f; @!q/C .#f; #!q/

satisfies a Hölder estimate

(2) jS iso.f /jı � CıQ0.f / for all f 2 C 1.0;q/.D/ and any ı < 1:

Consequently, the essential information regarding all pointwise estimations is
contained in the boundary integral SbD.f /D

R
bD f ^�q.B/. The kernel of�q.B/

is isotropic; it treats derivatives in all directions equally, and direct differentiation
under the integral in

R
bD f ^�q.B/ leads to an expression that will in general

blow up like dist.z; bD/�1. So this general representation of the operator SbD

does not provide any useful information.
Note that since �n.B/ � 0, the Main Theorem holds trivially with SbD � 0

when q D n.
By the Koppelman formulas, given any generating form W on bD �D, one can

transform SbD.f / into

(3) SbD.f /D
Z
bD

f ^�q.W /C

Z
bD

@f ^�q.W;B/C

Z
bD

f ^@z�q�1.W;B/:

The proof of the Main Theorem relies on formula (3) on a weakly pseudoconvex
domain D b Cn, applied to the nonholomorphic generating form W L.�; z/ intro-
duced in [Range 2013]. Let us briefly recall the key properties of W L.�; z/. Given
a sufficiently small neighborhood U D U.P /, on .bD \U/� .D \U/ the form
W L.�; z/ is represented explicitly by

W L.�; z/D

Pn
jD1 gj .�; z/ d�j

ˆK.�; z/
;

where ˆK.�; z/ D
Pn
jD1 gj .�; z/.�j � zj / for � 2 bD. The (nonholomorphic)

support function ˆK is defined by

ˆK.�; z/D F
.r/.�; z/� r.�/CKj� � zj3;
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where F .r/.�; z/ is the Levi polynomial of a suitable defining function r , andK >0
is a suitably chosen large constant. We note that W L.�; z/ is C1 in z for z ¤ �.
Recall from [Range 2013] that the neighborhood U , the constant K, and " > 0 can
be chosen so that for all �; z 2D\U with j� � zj< ", one has

(4) jˆK.�; z/j&
�
j ImF .r/.�; z/jCjr.�/jCjr.z/jCL.r; �I� t� .��z//CKj��zj

3
�
:

Here � t
�
.�� z/ denotes the projection of .�� z/ onto the complex tangent space

of the level surface Mr.�/ through the point �, and L.r; �I� t
�
.� � z// denotes the

Levi form of r at the point �. As shown in [Range 2013], the defining function
r can be chosen so that L.r; �I� t

�
.� � z// � 0 for all � 2D \U . We also recall

that—as in the classical strictly pseudoconvex case—r.�/ and ImF .r/.�; z/ can be
used as (real) coordinates in a neighborhood of a fixed point z.

Note that since j��zj3 is real and symmetric in � and z, it follows from the known
caseKD0 (see [Range 1986], for example) that if one definesˆ�K.�; z/DˆK.z; �/,
one has the approximate symmetry

(5) ˆ�K �ˆK D E3:2

In the following, we simplify the notation by dropping the subscript K, i.e., we
will write ˆ instead of ˆK .

For 0� q < n we thus consider the integral representation formula

(6) f D SbD.f /CS iso.f / for f 2D10;q.D/;

where the boundary operator SbD is given by

(7)
Z
bD

f ^�q.W
L/C

Z
bD

@f ^�q.W
L; B/C

Z
bD

f ^ @z�q�1.W
L; B/;

for f 2D10;q.D/. Corresponding formulas hold locally on U \ bD whenever the
boundary is Levi pseudoconvex inU . It is then clear that property (i) in the Main The-
orem is satisfied. The main difficulty involves establishing the estimates (ii) and (iii).

The proof of the Main Theorem involves a careful analysis of the boundary
integrals in formula (7). In contrast to [Lieb and Range 1983], which we henceforth
abbreviate [LR 1983], for the most part we deal directly with the integrals over bD,
thereby simplifying the analysis. However, for the most critical terms we will need
to apply Stokes’ theorem and introduce the Hodge � operator as in [LR 1983] to
transform the integrals into standard L2 inner products of forms over D\U , and
exploit certain approximate symmetries in the kernels.

2Ej denotes a smooth expression which satisfies jEj j � C j� � zjj .
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3. The integral
R

bD
f ^ �q.W L/

When D is strictly pseudoconvex, W L can be chosen to be holomorphic in z for
� close to z, so that the estimations become trivial if q � 1, since then @zW D 0
near the singularity. In the general case considered here, this integral needs to be
carefully estimated as well. The analysis of this integral involves straightforward
modifications of the case q D 0 discussed in [Range 2013], as follows.

We only consider �, z with j� � zj< 1
2
", so that we can use the explicit form of

W L D g=ˆ recalled above, and the local frames f!1; : : : ; !ng and fL1; : : : ; Lng.
Recall that for j D 0; 1; 2, an expression E]j denotes a form which is smooth for
� ¤ z and that satisfies a uniform estimate jE]j j . j� � zj

j , and whose precise
formula may change from place to place. While ˆ is not holomorphic in z, one has
@zˆD E]2; furthermore, one has LzjˆD E]1 for j < n, while Lznˆ¤ 0 at � D z.

By the properties of CF forms, on bD one has

�q.W
L/D cnq

g^ .@�g/
n�q�1 ^ .@zg/

q

ˆn
:

The coefficients gj of g D
P
gjd�j are given by

gj D
@r

@�j
�
1

2

X
k

@2r

@�j @�k
.�k � zk/C E]2.

The form of g implies that

g D @r.�/C E1C E]2; @�g D @@r.�/C E]1; and @zg D E]1:

It follows readily that for 0� t � n� 1 one has

g^ .@�g/
t
D @r.�/^

tX
kD0

Œ@@r.�/�k.E]1/
t�k
C

tX
kD0

Œ@@r.�/�k.E]1/
t�kC1;

where .E]1/
s denotes a generic form of appropriate degree whose coefficients are

products of s terms of type E]1 in the case s � 1, or a term of type E]0 for s D 0;�1.
Note that since ��.!n^!n/D 0 on bD, the pullback of @r.�/^ Œ@@r.�/�k to bD

involves only tangential components tanŒ@@r.�/�, while the pullback of Œ@@r.�/�k

alone will involve exterior products of at least k�1 different tangential components.
When estimating integrals involving these expressions, we make use of the

fact that — in suitable z-diagonalizing coordinates (see [Range 2013]) — each
tangential component tanŒ@@r.�/� in the numerator of the kernel reduces the order
of the vanishing of the corresponding factor ˆ in the denominator from three to an
estimate & j�l � zl j2, i.e.,

(8) j tanŒ@@r.�/�=ˆj. 1=.jr.z/jC j�l � zl j2/;
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where �l is an appropriate complex tangential coordinate. Similarly,

jE]1=ˆj. 1=.jr.z/jC j� � zj
2/:

In order to keep track of these estimates, we introduce forms LŒ�� of Levi weight
� as follows. If �� 1, we say LŒ�� has Levi weight � if each summand of LŒ��
contains at least � factors which either are (different) purely tangential components
of N@@r.�/, or of type E]1. We also set LŒ��D E0 if �� 0. It then follows that

g^ .@�g/
t
D LŒt �

on the boundary, and consequently the numerator of �q.W L/ satisfies

(9) g^ .@�g/
n�q�1

^ .@zg/
q
D LŒn� 1�.

Proposition 1. For any q with 0� q � n� 1, the operator

T L
q W C.0;q/.bD/! C1.0;q/.D/;

defined by

T L
q f .z/D

Z
bD

f .�/^�q.W
L/.�; z/;

satisfies the estimatesˇ̌
Lzj .T

L
q f .z//

ˇ̌
� Cı jf j0 dist.z; bD/ı�1 for ı < 2

3
and 1� j � n;(10) ˇ̌

Lzj .T
L
q f .z//

ˇ̌
� Cı jf j0 dist.z; bD/ı�1 for ı < 1

3
and j � n� 1;(11)

for suitable constants Cı .

Given the estimation (9) of the numerator of �q.W L/, the proof given in [Range
2013] for the case q D 0 and for the derivatives Lzj carries over to the general case.
To prove the estimate (11), one uses LzjˆD E]1 for j � n� 1, which implies that
jLzjˆ=ˆj � dist.z; bD/�2=3. The estimations then proceed as in [Range 2013].

Remark. There is no corresponding estimate for the differentiation with respect to
Lzn, i.e., in the normal direction, since Lznˆ¤ 0 for � D z; therefore the operator
T L
q is not smoothing, i.e., there is no Hölder estimate

jT L
q f jı � Cı jf j0 for any ı > 0.

Proposition 1 provides a partial smoothing property:

Definition 2. A kernel �.�; z/, or the integral operator T� W C�.D/ ! C 1� .D/

defined by it, is Nz-smoothing of order ı > 0 if T� satisfies the estimates (10).
Similarly, we say that � (or T� ) is tangentially smoothing of order ı if T� satisfies
the estimates (11) for Lzj and Lzj for j D 1; : : : ; n� 1.

Here C� denotes spaces of forms of appropriate type.
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4. Boundary admissible kernels

Before proceeding with the analysis of the integrals involving the transition kernels,
we introduce admissible kernels and their weighted order by suitably modifying
corresponding notions from [LR 1983]. We say that a kernel �.�; z/ defined on

bD �D�f.�; �/ W � 2 bDg

is simple admissible if for each P 2 bD, there exists a neighborhood U of P , such
that on .bD\U/� .D\U/ there is a representation of the form

� D
LŒ��.E]1/

j

ˆt1ˇt0
;

where all exponents are � 0. Note that j may be a noninteger, in which case .E]1/
j

denotes a form which is estimated by C j� � zjj . Such a representation is said to
have (weighted) boundary order � � (� 2 R) provided:

i) if t1 � 1 and �� 1, then

2n� 1C j � 1� 2max.0;min.t1� 1; �//� 3max.t1� 1��; 0/� 2t0 � �I

while if �� 0 then

2n� 1C j � 1� 3max.t1� 1; 0/� 2t0 � �I

or

ii) if t1 D 0, then
2n� 1C j � 2t0 � �:

This definition of order takes into account that the dimension of bD is 2n� 1, and
that one factor ˆ may be counted with weight 1, since by estimate (4) one has
jˆj& j ImF r j, and ImF r. � ; z/ serves as a local coordinate on the boundary in a
neighborhood of z.

A kernel � is admissible of boundary order � � if it is a finite sum of simple
admissible kernels with representations of boundary order � �.

The results in the previous section show that �q.W L/ is admissible of boundary
order � 0:

As in the strictly pseudoconvex case considered in [LR 1983], an admissible
kernel � of boundary order � � 1 is smoothing of some positive order ı. This
follows from an estimate

jV zT�.f /.z/j � Cı jf j0 dist.z; bD/�1Cı ;

for any vector field V z of unit length acting in z. On the other hand, admissible
kernels of boundary order �D 0 are not smoothing in general.
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More precisely, we have:

Theorem 3. Let �� be an admissible kernel of boundary order � �, and let

J�.z/D

Z
bD

j��.�; z/j dS.�/:

J�.z/ has the following properties:

(a) If � > 0, then supD J�.z/ <1.

(b) If �D 0, then J0.z/. dist.z; bD/�˛ for any ˛ > 0.

(c) If �� 1, then �� is smoothing of order ı for any ı < 1
3

, tangentially smoothing
of order ı < 2

3
, and Nz-smoothing of order ı < 1:

(d) If �� 2, then �� is smoothing of order ı for any ı < 2
3

.

Proof. Part (a) was essentially proved in [Range 2013] for the kernel �0.W L/.
The general case follows by the same arguments. Part (b) follows from (a) by
noting that dist.z; bD/˛ � j� � zj˛ for � 2 bD. For (c), note that given a vector
field V z , all terms in V z�� are of boundary order � � � 1 � 0, except those
where differentiation is applied to ˆ; in that case use V z.ˆ�s/D .ˆ�s/ŒE]0=ˆ� and
j1=ˆj. jr.z/j�2=3=j� � z/j to see that V z� is estimated by jr.z/j�2=3 multiplied
with a kernel of order � 0. Similarly, in the case where V z is tangential, one can
replace jr.z/j�2=3 by jr.z/j�1=3, and in the case V z D Lzj , one uses Lzj .ˆ

�s/D

.ˆ�s/ŒE]2=ˆ� to see that Lzj �� is of order � 0. The required estimates then follow
from (b). Finally, (d) follows by appropriately modifying the proof of (c). �

The most significant part of this paper is the analysis of the kernels of order zero.
Such kernels are not smoothing in general. However, as we saw for �q.W L/, it
turns out that in many cases they are at least Nz-smoothing and tangentially smoothing
of some positive order. On the other hand, one readily checks that kernels of type
such as E]1=ˇ

n (e.g., those appearing in the BMK kernels) or 1=.ˆˇn�1/, which
are of boundary order zero, do not give preference to tangential or Nz-derivatives,
and consequently such kernels are not Nz-smoothing of any positive order. Therefore
one needs to analyze the kernels of boundary order � 0 that arise in the current
setting more carefully in order to obtain the estimates stated in the Main Theorem.
It will be convenient to introduce the following notation:

Definition 4. The symbol �� denotes an admissible kernel of (boundary) order
� �. We denote by � Nz

0;1=2
(resp. � Nz

0;2=3
) an admissible kernel of order � 0 which

is Nz-smoothing of any order ı < 1
2

(resp. ı < 2
3
/ and tangentially smoothing of any

order ı < 1
3

.

According to this definition, Proposition 1 states that �q.W L/ is a kernel of
type � Nz

0;2=3
. Similarly, we note that by Theorem 3 a kernel of type �1 is (better

than) of type � Nz
0;2=3

, and, in fact, is smoothing of order ı < 1
3

in all directions.



A POINTWISE A-PRIORI ESTIMATE FOR THE N@-NEUMANN PROBLEM 419

5. The integrals
R

bD
@f ^ �q.W L; B/ and

R
bD

f ^ @z�q�1.W L; B/

We recall (see [LR 1983] and [Range 1986], for example) that for 0� q � n� 2
the transition kernels �q.W L; B/ are defined by

(12) �q.W
L; B/D .2�i/�n

n�q�2X
�D0

qX
kD0

a�;k;qW
L
^B ^ .@�W

L/�

^ .@�B/
n�q�2��

^ .@zW
L/k ^ .@zB/

q�k;

where the coefficients a�;k;q are certain rational numbers, while�n�1.W L; B/� 0.
Again, it is enough to consider j� � zj � 1

2
", so that W L D g=ˆ. It then follows

from (12) and standard results about CF form that on bD the form �q.W
L; B/ is

given by a sum of terms

(13) Aq;�kD
a�;k;q

.2�i/n

g^ @ˇ^ .@�g/
� ^ .@zg/

k ^ .@�@ˇ/
n�q�2�� ^ .@z@ˇ/

q�k

ˆ1C�Ck ˇn���k�1
;

where a�;k;q 2Q, 0� �� n� q� 2 and 0� k � q. As in the case of the kernel
�q.W

L/, it follows that

Aq;�k.W
L; B/D

LŒ��.E]1/
k

ˆ1C�Ck

E1
ˇn���k�1

:

Consequently the kernelsAq;�k.W L; B/ are admissible of boundary order�1. The
integral

R
bD @f ^�q.W

L; B/ is therefore covered by Theorem 3(c); in particular,
its kernel is smoothing of order ı < 1

3
.

Next, one checks that

@zAq;�k.W
L; B/

D
LŒ��.E]1/

k

ˆ1C�Ck

E0
ˇn���k�1

CC
LŒ��.E]1/

kE]2
ˆ1C�CkC1

E1
ˇn���k�1

C
LŒ��.E]1/

k

ˆ1C�Ck

E2
ˇn���k

:

This shows that the kernels @zAq;�k.W L; B/ are admissible, and one easily verifies
that @zAq;�k is of boundary order � 0:

Recall that 0��� n�q�2 and 0� k � q, so that 0��Ck � n�2. We first
consider the case �C k � 1, which occurs only when n� 3.

Lemma 5. Suppose �C k � 1. Then @zAq;�k.W L; B/ is a kernel of type � Nz
0;1=2

.

Proof. We saw that @zAq;�k.W L; B/ is of order � 0. Applying a derivative with
respect to zj to a factor 1=ˆ in any of the summands of @zAq;�k.W L; B/ results
in a term estimated by a kernel �0 of order � 0 multiplied by jE]2=ˆj, and since
jˆj& jr.z/j1�ı j�� zj3ı , the factor jE]2=ˆj will be bounded by j�� zj˛jr.z/j�1Cı

for some ˛ > 0 if ı < 2
3

. By Theorem 3(a), the kernel j� � zj˛j�0j is integrable
uniformly in z if ˛>0. For the other differentiations, note that since �Ck� 1, each
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summand in @zAq;�k has at least one factor LŒ1�=ˆ or E]1=ˆ with weight ��2 in
addition to the one factor 1=ˆ which is counted with weight ��1 in the calculation
of the order of @zAq;�k . Differentiating the numerator of any such factor of weight
��2 results in a term E0=ˆ, which can be estimated by .1=j��zj3ı/.1=jr.z/j1�ı/,
where the factor 1=j� � zj3ı is of weight > �2 for any ı < 2

3
. If the differentiation

is applied to any of the remaining factors in each of the summands, the order of
the kernel decreases at most by one without affecting any of the factors LŒ1�=ˆ
or E]1=ˆ. In order to compensate for this decrease, one must extract a factor E]1
from such a factor of weight �2, leaving a factor of weight �2 multiplied with a
suitable power jr.z/j�1Cı . This follows as before for a factor E]1=ˆ, since 1=ˆ is
estimated by 1=.j��zj2jr.z/j1=3/. For factors LŒ1�=ˆ, note that according to (8) —
after introducing z-diagonalizing coordinates — one may estimate j tan @@r=ˆj by
terms of the type

1

jr.z/jC j�l � zl j
2
.

1

j�l � zl j
2ı jr.z/j1�ı

.
1

j�l � zl j
2ıC1jr.z/j1�ı

E]1

for a suitable l �n�1 (see [Range 2013] for details). Here the factor 1=j�l�zl j2ıC1

is of weight � �2 for any ı < 1
2

. Altogether we thus proved that @zAq;�k is Nz-
smoothing of any order ı < 1

2
. Finally, if one considers a tangential derivative Lzj ,

j � n� 1, the same arguments apply as long as ı < 1
3

. �

Remark. Note that this last argument restricts the order of Nz-smoothing to ı < 1
2

,
while in all other previous instances one has the stronger estimates of order ı < 2

3
.

6. The kernel @zAq�1;00

We are thus left with @zAq�1;00. This is the critical and most delicate case. Note
that this kernel contains a term E0=.ˆˇn�1/ (of order � 0); however, differentiation
with respect to zj will result, among others, in a term E1=.ˆˇn/ which is estimated,
at best, by jE1=ˇnjjr.z/j�1. We see that @zAq�1;00 contains terms which are not
Nz-smoothing of any positive order ı > 0. In order to proceed we need to identify
these critical terms and exploit certain approximate symmetries in analogy to the
method introduced in [LR 1983].

We begin by applying Stokes’ theorem to replace the integralZ
bD

f ^ @zAq�1;00

by an integral over D. For this purpose we first extend Aq�1;00 — that is, W L

and B — from the boundary into D without introducing any new singularities, as
follows. By the estimate (4) for jˆj, as long as �" < r.�/ < 0, one has jˆj& jr.�/j.
Choose a C1 function ' on D so that '.�/� 1 for �1

2
"� r.�/ and '.�/� 0 for
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r.�/� �3
4
". We then define the .0; 1/-form

bW L.�; z/D '.�/W L.�; z/

on D �D�f.�; �/ W � 2 bDg, so that bW L.�; z/DW L.�; z/ for � 2 bD.
We also define

yB.�; z/D
@�ˇ

P.�; z/
; where P.�; z/D ˇ.�; z/C

2r.�/r.z/

k@r.�/kk@r.z/k

on D �D � f.�; �/ W � 2 bDg. (Note that r.�/r.z/ > 0 for �; z 2 D.) Clearly
yB.�; z/DB.�; z/ for � 2 bD. By replacingW L with bW L and B with yB in Aq�1;00,

one can therefore assume that Aq�1;00 extends to D�D�f.�; �/ W � 2 bDg without
any singularities.

It then follows thatZ
bD

f ^ @zAq�1;00 D

Z
D

@�f ^ @zAq�1;00C .�1/
q

Z
D

f ^ @�@zAq�1;00:

Remark. When one considers kernels that are integrated over D, the definition of
admissible kernels and of their weighted order needs to be modified appropriately.
First of all, the dimension of the domain of integration is now 2n, which leads to an
increase in order by one. Also, each factor r.z/ or r.�/ in the numerator increases
the order by at least one. Furthermore, since both r.�/ and ImF .r/.�; z/ are used
as coordinates in a neighborhood of z for dist.z; bD/ < "; the weighted order is
adjusted to account for the fact that by estimate (4), now up to two factors ˆ are
counted with weight � �1 (see [LR 1983, Definition 4.2] for more details). In
particular, it follows that the (extended) kernel @zAq�1;00, which is admissible of
boundary order � 0, is admissible of order � 1 over D.

It is straightforward to prove the analogous version of Theorem 3 for kernels
integrated over D. In particular, one then obtains:

Lemma 6. The operator Tq�1;00 W C.0;qC1/.D/! C 1
.0;q/

.D/ defined by

Tq�1;00. /D

Z
D

 ^ @zAq�1;00

is smoothing of any order ı < 1
3

and Nz-smoothing of any order ı < 1.

Note that because of the term Kj�� zj3 contained in ˆ, the kernel @zAq�1;00 is
only of class C 1 jointly in .�; z/ near points where � D z.

We are left with estimating integrals of the kernel @�@zAq�1;00 D @z@�Aq�1;00
over D. This kernel is readily seen to be of order � 0, but it contains terms that are
not Nz-smoothing of any order ı > 0.

Proceeding as in [LR 1983], we introduce the kernel Lq�1D .�1/q�Aq�1;00 for
1� q � n� 1, where � is the Hodge operator acting on the variable � with respect
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to the standard inner product of forms in Cn. Note that in [LR 1983] the definition
of Lq�1 involved �q�1.bW L; yB/, while here we only take those summands Aq;�k
with �C k D 0. Since Aq�1;00 D��Lq�1, one then obtains

.�1/q@�Aq�1;00 D �� @�Aq�1;00 D �.�@� /.��Lq�1/D �#�Lq�1;

where #� D�� @�� is the (formal) adjoint of @. It follows that

.�1/q
Z
D

f ^ @�Aq�1;00 D

Z
D

f ^�#�Lq�1 D .f; #�Lq�1/D;

where the inner product is taken by integrating the pointwise inner product of forms
over D. Since @z commutes with �� , one has

.�1/q
Z
D

f ^ @z@�Aq�1;00 D .f; @z#�Lq�1/D:

Let us introduce the Hermitian transpose K� of a double form K DK.�; z/ by

K�.�; z/DK.z; �/:

Note that K�.�; z/ is the kernel of the adjoint T � of T W f ! .f;K. � ; z//D , i.e.,
T �.f /! .f;K�. � ; z//D .

One now writes

.f; @z#�Lq�1/D D .f; @z#�Lq�1� Œ@z#�Lq�1�
�/DC .f; Œ@z#�Lq�1�

�/D:

Since Œ@z#�Lq�1��D @�#zL�q�1, if f 2 dom N@�, one may integrate by parts in the
second inner product, resulting in .f; @�#zL�q�1/D D .@

�f; #zL
�
q�1/D .

Expanding the definition of admissible kernels to allow for factors ˆ�, with
corresponding definition of order, one verifies that the kernel #zL�q�1 is admissible
of order � 1, and consequently it is smoothing of order ı < 1

3
, and Nz-smoothing of

order ı < 1.

7. The critical singularities

We now carefully examine @z#�Lq�1� Œ@z#�Lq�1�� and verify that there is a can-
cellation of critical terms, so that the conjugate of this kernel is partially smoothing
as required for the Main Theorem.

We use the standard orthonormal frame !1; : : : ; !n for .1; 0/-forms on a neigh-
borhoodU ofP 2bD, with!nD@r.�/=k@r.�/k. After shrinking ", we may assume
that B.P; "/� U . As usual, we shall focus on estimating integrals for fixed z 2D
with jz�P j< 1

2
", and integration over � 2D\U with r.�/��1

2
" and j��zj< 1

2
".

Let L1; : : : ; Ln be the corresponding dual frame of .1; 0/-vectors, acting on the �
variables. If LD

Pn
kD1 ak.�/@=@�k , we denote by Lz DLz

�
D
Pn
kD1 ak.�/@=@zk
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the corresponding vector field acting on the z variables. A similar convention
applies to !zj , which we denote by �j .

One then readily verifies the following equations:

(a) @r.�/D !nk@r.�/k;

(b) @ˇ D
Pn
jD1.Ljˇ/!j and @ˇ D

Pn
jD1.Ljˇ/!j ;

(c) @@ˇ D 2
Pn
jD1 !j ^!j C E1;

(d) @z@ˇ D�2
Pn
jD1 �j ^!j C E1;

(e) Lzj ˇ D�LjˇC E2 and LjLkˇ D E1;

(f) LjP D E1 and LzjP D E1 for j < n.

Somewhat more delicate are the following two formulas. They are the analogs
of [LR 1983, Lemmas 5.9 and 5.35], with the differences due to the fact that in the
present paper the defining function is not normalized, as it is restricted to a special
form so that its level surfaces remain pseudoconvex. The definition of the extension
P has been modified accordingly. Since both formulas require exact identification
of the leading terms, we include the details of the proofs.

Lemma 7. LznP D�
2

k@r.�/k
ˆC E0r.�/r.z/C E1r.�/C E2.

Proof. We fix � 2 U . After a unitary change of coordinates in the � variables, one
may assume that @r=@�j .�/D 0 for j < n and @r=@�n.�/ > 0, so that k@r.�/k D
p
2@r=@�n.�/ and .Lzn/z D

p
2@=@znCE1. Then Lznr.z/D

p
2@r=@zn.�/CE1D

k@r.�/kC E1. In this coordinate system one has
p
2ˆ.�; z/D

p
2
@r

@�n
.�/.�n� zn/C E2�

p
2r.�/

D k@r.�/k.�n� zn/�
p
2r.�/C E2;

and

LznP.�; z/D�
p
2.�n� zn/C E2C

2r.�/

k@r.�/k

Lznr.z/

k@r.z/k
C E0r.�/r.z/

D�
p
2.�n� zn/C E2C

2r.�/

k@r.�/k
Œ1C E1�C E0r.�/r.z/

D�
p
2.�n� zn/C

2r.�/

k@r.�/k
C E2C E1r.�/C E0r.�/r.z/

D�

p
2

k@r.�/k
Œk@r.�/k.�n� zn/�

p
2r.�/�

C E2C E1r.�/C E0r.�/r.z/:

The proof is completed by combining these two equations. �
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Lemma 8. 2P �
n�1X
jD1

jLjˇj
2
D

4

k@r.�/kk@r.z/k
jˆj2C E3C E2r.�/.

Proof. Here we fix z, and after a unitary coordinate change in � we may assume that
Lj D

p
2@=@�j C E1, so that Ljˇ D

p
2.�j � zj /C E2. Hence

Pn�1
jD1 jLjˇj

2 D

2
Pn�1
jD1 j�j � zj j

2C E3, and therefore

(14) 2P �
n�1X
jD1

jLjˇj
2
D 2j�n� znj

2
C

4r.�/r.z/

k@r.�/kk@r.z/k
C E3:

Furthermore,
p
2ˆ.�; z/D

p
2
@r

@�n
.z/.�n� zn/C E2�

p
2r.�/

D k@r.z/k.�n� zn/�
p
2r.�/C E2;

It follows that

2jˆ.�; z/j2

D k@r.z/k.�n� zn/
p
2ˆ� 2r.�/ˆC E2ˆ

D k@r.z/k2j�n� znj
2
Ck@r.z/k.�n� zn/Œ�

p
2r.�/C E2�� 2r.�/ˆC E2ˆ

D k@r.z/k2j�n� znj
2
�
p
2r.�/Œk@r.z/k.�n� zn/C

p
2ˆ�C E3C E2ˆ:

By (5) one has
p
2ˆD

p
2ˆ�C E3 D k@r.�/k.zn� �n/�

p
2r.z/C E2

D�k@r.z/k.�n� zn/�
p
2r.z/C E2;

where we used that k@r.�/k D k@r.z/k C E1. Inserting this equation into the
previous one and using E2ˆD E3C E2r.�/, results in

2jˆ.�; z/j2 D k@r.z/k2j�n� znj
2
�
p
2r.�/.�

p
2r.z/C E2/C E3C E2r.�/

D k@r.�/kk@r.z/kj�n� znj
2
C 2r.�/r.z/C E3C E2r.�/

D
1
2
k@r.�/kk@r.z/k

�
2j�n� znj

2
C

4r.�/r.z/

k@r.�/kk@r.z/k

�
C E3C E2r.�/:

The lemma follows after inserting (14) and rearranging. �

We now identify precisely the kernel Lq�1 and the critical highest order singular-
ity of @z#�Lq�1 with respect to the standard frames introduced above. To simplify
notation we replace q � 1 with q and consider Aq;00 and Lq for 0 � q � n� 2.
The computations follow closely those for the case �D 0 in [LR 1983]; therefore
we just state the relevant formulas, and provide more details only where critical
differences arise.
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From (13) one sees that

Aq;00 D
aq

.2�i/n

g^ @ˇ^ .@�@ˇ/
n�q�2 ^ .@z@ˇ/

q

ˆPn�1

D
aq

.2�i/n

@r ^ @ˇ^ .@�@ˇ/
n�q�2 ^ .@z@ˇ/

qC E2
ˆPn�1

:

Then
Lq D .�1/

qC1
�Aq;00 D CqC

E2
ˆPn�1

;

where

Cq D .�1/
qC1 aq

.2�i/n
��

@r ^ @ˇ^ .@�@ˇ/
n�q�2 ^ .@z@ˇ/

q

ˆPn�1
:

It follows that
@z#�Lq D @z#�CqC @z#�

E2
ˆPn�1

:

Remark. Note that in contrast to [LR 1983], the kernels Lq D CqC E2=.ˆPn�1/
and @z#�Lq analyzed here only involve the term corresponding to � D 0 in the
same reference. Since in this paper we are concerned with Nz-smoothing, we need
to consider the conjugates Lq , Cq , and @z#�Lq , which are the kernels that appear
in the integral

R
f ^�@z#�Lq D .f; @z#�Lq/D .

Lemma 9. @z#�
E2

ˆPn�1
is of type �1.

Proof. The proof of this lemma involves a straightforward verification. Note that
E2=.ˆPn�1/ is of order � 3. Differentiation with respect to � reduces the order by
one only, since after differentiating 1=ˆ the resulting factor 1=ˆ2 has weight �2.
Similarly, since @zˆD E]2, subsequent application of @z also reduces the order by
one only. �

Next we represent Cq in terms of the local orthonormal frames. By utilizing the
various formulas recalled above, it follows that

Cq D

qk@r.�/k

inˆPn�1
��

X
jQjDq
j<n

!n ^ .Ljˇ/!j ^ .! ^!/
J
^!Q ^ �QC

E2
ˆPn�1

;

where 
q is a real constant. The summation is over all strictly increasing q-tuples
Q with n … Q, over j < n with j … Q, and J is the ordered (n� q � 2)-tuple
complementary to njQ in f1; : : : ; ng. Since �Œ!njQ ^ .! ^ !/J � D bqi

n!njQ,
where bq is real, it follows that

Cq D e
qk@r.�/k X
jQjDq
j<n

Ljˇ

ˆPn�1
!njQ ^ �QC

E2
ˆPn�1

;
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for another real constant e
q . By using Lemma 9, it then follows that

@z#�Cq D e
qk@r.�/k@z#�� X
jQjDq
j<n

Ljˇ

ˆPn�1
!njQ ^ �Q

�
C�1:

Let us introduce
C 0q D

X
jQjDq
j<n

Ljˇ

ˆPn�1
!njQ ^ �Q:

The heart of the analysis of @z#�Lq � Œ@z#�Lq�� is contained in:

Theorem 10. For 0� q � n� 2 the kernel

@z#�C
0
q � Œ@z#�C

0
q �
�

is of type � Nz
0;2=3

.

Corollary 11. The operator

f ! .f; @z#�Lq�1� Œ@z#�Lq�1�
�/D

is Nz-smoothing of order ı < 2
3

and tangentially smoothing of order ı < 1
3

for
1� q � n� 1.

Proof. This follows from Theorem 10 by using Lemma 9 and also by observing that
the differentiation of k@r.�/k results in an error term of type �1. Similarly, when
considering the difference Œ � � � �� Œ � � � ��, the substitution k@r.�/k D k@r.z/kC E1
leads to an error term of the same type. �

Remark. In order to be consistent with the notation and formulas in [LR 1983], in
the proof of Theorem 10 we analyze �q D @z#�C 0q � Œ@z#�C

0
q �
�. In the end we

must verify that its conjugate �q is of type � Nz
0;2=3

.

Since C 0q is a double form of type .0; qC 2/ in � and type .q; 0/ in z, the form
@z#�C

0
q is of type .0; qC 1/ in � and type .qC 1; 0/ in z. Consequently,

@z#�C
0
q D #�@zC

0
q D

X
jLjDqC1

� X
jKjDqC1

AKL!
K

�
^ �L;

where the sums are taken over all strictly increasing (qC 1)-tuples L and K. It
follows that

@z#�C
0
q � Œ@z#�C

0
q �
�
D

X
jLjDqC1

� X
jKjDqC1

ŒAKL� .ALK/
��!K

�
^ �L:

In the next section we identify the coefficients AKL precisely in order to verify
that ŒAKL� .ALK/�� is of order � 0 and that its conjugate is at least of type � Nz

0;2=3
.
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8. The approximate symmetries

The computation of #�@zC 0q uses the expressions for @z and #� in terms of the stan-
dard adapted boundary frames plus error terms which do not involve differentiation.
These error terms — in the end — result in kernels which are conjugates of admis-
sible kernels of order � 1, and hence will be ignored in the discussion that follows.

As usual "L
lQ

denotes the sign of the permutation which carries the ordered
.qC 1/-tuple lQ into the ordered .qC 1/-tuple L if lQD L as sets, and "L

lQ
D 0

otherwise. We introduce mlj D .1=ˆ/Lzl .Ljˇ=P
n�1/ for 1� j < n and 1� l � n.

Lemma 12. For any K, L one has

AKL D�
X
Q

j; l; k

"LlQ"
njQ

kK
.Lkmlj /C�

Nz
0;2=3

C�1:

Proof. This lemma is the analogue of [LR 1983, Lemma 5.6]. In the present case,
the computation shows that the error term is of the form E3=Œˆ3Pn�1�C�1, where
the first term is only of order zero. (In the case where D is strictly pseudoconvex,
and hence jˆj& j��zj2, this term is �1 as well.) However, one readily checks that
its conjugate E3=Œˆ3Pn�1� is of type � Nz

0;2=3
. �

We are therefore left with

(15) A
.0/
KL D�

X
Q

j; l; k

"LlQ"
njQ

kK
.Lkmlj /:

Only terms with j < n appear with nonzero coefficients. In the following it will
be assumed that j < n.

For l < n one has

(16) mlj D
�2ılj

ˆPn�1
� .n� 1/

Lz
l
ˇLjˇ

ˆPn
C

E1
ˆPn�1

,

while by using Lemma 7 one obtains

(17) mnj D
1

ˆ

�
LznLjˇ

Pn�1
� .n� 1/

.LznP/Ljˇ
Pn

�
D
2.n� 1/

k@r.�/k

Ljˇ

Pn
C

E1
ˆPn�1

C
E1r.�/r.z/C E2r.�/C E3

ˆPn
:

Note that all the error terms are of order � 2, and that they have only one factor
ˆ in the denominator. Consequently, applying Lk to the error terms results in �1
terms. So only the leading terms of mlj identified above need to be considered in
the following analysis.
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Proof of Theorem 10. Since all relevant error terms are of type � Nz
0;2=3

or better, it is
enough to examine

A
.0/
KL�A

.0/�
LK ; where A.0/KL D�

X
Q

j; l; k

"
lQ
L "

njQ

kK
.Lkmlj /:

We need to consider separate cases, depending on whether n is inK (resp.L), or not:

Case 1. n 2K and n 2 L.
In this case the computations in [LR 1983] apply without further changes, subject

to the adjustments due to the fact that the defining function r is not normalized.
Combined with k@r.�/k D k@r.z/kC E1, it follows that

A
.0/
KL�A

.0/�
LK D �1:

Case 2. n …K and n … L.
In this case "njQ

kK
¤ 0 only for k D n. Hence

A
.0/
KL D�

X
Q
j; l

"LlQ"
njQ
nK .Lnmlj /C�1 D�

X
l2L
j2K

"LlQ"
jQ
K .Lnmlj /C�1:

Lemma 5.21 in [LR 1983] needs to be replaced by:

Lemma 13. Lnmlj � .Lnmjl/� D � Nz0;2=3 for j; l < n.

Assuming the lemma, one obtains (after replacing j with l in the last equation)

A
.0/�
LK D�

X
j; l<n

"KlQ"
jQ
L .Lnmlj /

�
C�1 D�

X
j2L
l2K

"KlQ"
jQ
L .Lnmjl/C�

Nz
0;2=3

D A
.0/
KLC�

Nz
2=3
:

To prove the lemma, one uses (16). The calculation of Lnmlj proceeds as in [LR
1983] with the obvious changes. By using k@r.�/k D k@r.z/kC E1 one obtains

.Lnmjl/
�
�Lnmlj

D�
2ılj k@r.�/k

Pn�1

�
1

ˆ�2
�
1

ˆ2

�
� 4

ılj .n� 1/

k@r.�/kPn

�
ˆ�

ˆ�
�
ˆ

ˆ

�
�.n� 1/

Lzj ˇLlˇk@r.�/k

Pn

�
1

ˆ�2
�
1

ˆ2

�
�
2n.n� 1/

k@r.�/k

Lzj ˇLlˇ

PnC1

�
ˆ�

ˆ�
�
ˆ

ˆ

�
C�1:

In the strictly pseudoconvex case the differences in Œ � � � � are of higher order than the
terms individually, resulting in .Lnmjl/��Lnmlj D �1. In the present case, only
a weaker result holds, as follows. Note that — after taking conjugates — one has

1

ˆ�2
�
1

ˆ2
D
.ˆ�ˆ�/.ˆCˆ�/

ˆ�2ˆ2
D

E3
ˆ�2ˆ

C
E3

ˆ�ˆ2
;
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where we have used the approximate symmetry (5) in the second equation. It now
readily follows that E3=ŒPn�1ˆ�2ˆ� and E3=ŒPn�1ˆ�ˆ2� (while of order zero,
and hence not smoothing as in the strictly pseudoconvex case) are in fact of type
� Nz
0;2=3

. Since E2=Pn is estimated by E0=Pn�1, the same argument works for the
third term above. For the conjugate of the second term, note that

1

Pn

�
ˆ�

ˆ�
�
ˆ

ˆ

�
D

1

Pn

�
ˆˆ��ˆ�ˆ

ˆ�ˆ

�
D

1

Pn
E3
ˆ�ˆ

D �1.

The fourth term is estimated the same way by first estimating E2=PnC1 by E0=Pn.

Case 3. The mixed case n 2K and n … L.
As in [LR 1983], this is — computationally — the most complicated case. On the

other hand, aside from the differences as noted, for example, in Lemmas 7 and 8,
the details of the proof essentially carry over from [LR 1983] to the case considered
here, with the result that one has

A
.0/
KL�A

.0/�
LK D �1:

In more detail, since n 2 K, there is exactly one ordered q-tuple J such that
K D J [fng, and one then has "KnJA

.0/
KL D A

.0/

.nJ /L
.

Note that we need to identify the leading terms of both A.0/KL and A.0/LK . Let us

first consider the simpler term A
.0/
LK . After interchanging L and K in (15), one has

A
.0/
LK D�

X
Q

j; l; k

"KlQ"
njQ

kL
.Lkmlj /C�1:

Since n … L, the factor "K
lQ
"
njQ

kL
¤ 0 only if k D n and l D n, and furthermore

Q D J . Therefore the leading term of A.0/LK , i.e., the sum, is different from zero
only if J � L so that "jJL ¤ 0 only for that unique j for which LD J [ fj g. It
follows that for j < n one has

A
.0/

.jJ /.nJ /
D "

jJ
L "

K
nJA

.0/
LK C�1 D�Lnmnj C�1.

Since LnP D .LznP/
�, Lemma 7 implies that

LnP D�
2

k@r.z/k
ˆ�C E0r.�/r.z/C E1r.z/C E2:

By using this equation and (17), it follows that

(18) A
.0/

.jJ /.nJ /
D�

4n.n� 1/

k@r.�/kk@r.z/k

Ljˇˆ
�

PnC1
C�1:
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Finally we calculate A.0/KL. With J as before, one has

A
.0/
KL D�

X
Q

j; l; k

"LlQ"
njQ

kK
.Lkmlj /C�1 D "

nJ
K

X
n…Q

j; l; k<n

"LlQ"
jQ

kJ
.Lkmlj /C�1:

Continuing with the intricate calculations as in [LR 1983, pp. 237–239, Case Id)]
and using Lemma 8 above in place of [LR 1983, Lemma 5.35], one obtains

A
.0/
KL D�"

nJ
K

4n.n� 1/

k@r.�/kk@r.z/k

X
l<n

"LlJ
.Lz
l
ˇ/ˆ

PnC1
C�1:

Here the only nonzero term in the sum arises for that unique l , for whichLDJ[flg.
Consequently, the last formula implies

(19) A
.0/

.nJ /.lJ /
D�

4n.n� 1/

k@r.�/kk@r.z/k

.Lz
l
ˇ/ˆ

PnC1
C�1.

Let us now consider A.0/KL�A
.0/�
LK . As the preceding formulas show, each sum-

mand is of type �1 except in the case that for the unique q-tuple J �f1; 2; : : : ; n�1g
with K D J [fng, L satisfies LD J [flg as sets for some unique l < n. In this
latter case, equations (19) and (18) imply

A
.0/

.nJ /.lJ /
�A

.0/�

.lJ /.nJ /
D�

4n.n� 1/

k@r.�/kk@r.z/k

1

PnC1
Œ.Lz

l
ˇ/ˆ�.L

l
ˇ/�ˆ�C�1D�1:

The last equation holds because .L
l
ˇ/� D Lz

l
ˇ.

Case 4. n …K and n 2 L:
This is reduced to Case 3 by noting that

A
.0/
KL�A

.0/�
LK D�

�
A
.0/
LK �A

.0/�
KL

��
:

It thus follows that for all K and L one has A.0/KL � A
.0/�
LK D � Nz

0;2=3
. This

completes the proof of Theorem 10. �

9. Proof of the Main Theorem

In Sections 4–8, we have analyzed the integrals that appear in the representation (3)
of the boundary operator SbD . By combining these results, it follows that for all
f 2 D1qU and z 2D\U one has the estimates

jLzj S
bD.f /.z/j � Cı dist.z; bD/ı�1Q0.f / for j D 1; : : : ; n and any ı < 1

2
;

jLzj S
bD.f /.z/j � Cı dist.z; bD/ı�1Q0.f / for j D 1; : : : ; n�1 and any ı < 1

3
:

We have thus completed the proof of claims (ii) and (iii) of the Main Theorem.
As noted earlier, (i) follows trivially from the classical estimate (2) for S iso.
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Finally we prove the statement about the normal components of f . We use the fol-
lowing lemma, which is a routine variation of classical estimates for the BMK kernel.
For 0� ˛ < 1, set C�˛

.0;1/
.D/D fg 2C.0;1/.D/ W supz2D jg.z/j dist.z; bD/˛ <1g,

with the norm jgj�˛ defined by the relevant supremum.

Lemma 14. The operator T BM W C�˛
.0;1/

.D/! C.D/ defined by

T BM .g/D

Z
D

g.�/^�0.B/

satisfies the estimate

(20)
ˇ̌
T BM .g/

ˇ̌
1�˛0 . jgj�˛ for any ˛0 > ˛:

Now suppose f 2D1qU and let fJ be a normal component of f , so that fJ jbDD0.
Decompose fJ D hJ C ŒS

iso.f /�J , where h D SbD.f /. We already know by
estimate (2) that jS iso.f /j˛ . Q0.f / for any ˛ < 1. Note that on bD \U one
has hJ D�ŒS iso.f /�J , so that j.hJ jbD\U /j˛ . jS iso.f /j˛ .Q0.f / as well. By
standard properties of the BM kernel �0.B/, it follows that

R
bD hJ�0.B/ satisfies

the same estimate on D\U if ˛ > 0. By the case qD 0 of the BMK representation
formula (1) applied to hJ , one has

(21) hJ D

Z
bD

hJ �0.B/�

Z
D

@hJ ^�0.B/:

Given ı < 1
2

, choose ı0 with ı < ı0 < 1
2

. By part (ii) of the Main Theorem, @hJ 2
C
�.1�ı 0/

.0;1/
.D/, with j@hJ j�.1�ı 0/�Cı 0Q0.f /. It then follows from Lemma 14 thatˇ̌

T BM .@hJ /
ˇ̌
ı
.Q0.f /:

Each summand in the representation (21) therefore satisfies the desired Hölder
estimate, so that

jhJ jƒı.D\U/ .Q0.f /:

Since fJ DhJCŒS iso.f /�J , the required estimate jfJ jı .Q0.f / holds as well. �
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