
Pacific
Journal of
Mathematics

EXPLICIT HILBERT–KUNZ FUNCTIONS
OF 2× 2 DETERMINANTAL RINGS

MARCUS ROBINSON AND IRENA SWANSON

Volume 275 No. 2 June 2015



PACIFIC JOURNAL OF MATHEMATICS
Vol. 275, No. 2, 2015

dx.doi.org/10.2140/pjm.2015.275.433

EXPLICIT HILBERT–KUNZ FUNCTIONS
OF 2× 2 DETERMINANTAL RINGS

MARCUS ROBINSON AND IRENA SWANSON

Let k[X] = k[xi, j : i = 1, . . . , m; j = 1, . . . , n] be the polynomial ring
in mn variables xi, j over a field k of arbitrary characteristic. Denote by
I2(X) the ideal generated by the 2× 2 minors of the generic m× n matrix
[xi, j ]. We give a closed polynomial formulation for the dimensions of the
k-vector space k[X]/(I2(X)+ (xq

1,1, . . . , xq
m,n)) as q varies over all positive

integers, i.e., we give a closed polynomial form for the generalized Hilbert–
Kunz function of the determinantal ring k[X]/I2(X). We also give a closed
formulation of dimensions of other related quotients of k[X]/I2(X). In the
process we establish a formula for the numbers of some compositions (or-
dered partitions of integers), and we give a proof of a new binomial identity.

1. Introduction

Throughout, let m, n, q be nonnegative integers, and let k, k[X ], and I2(X) be as
in the abstract. We write N for the set of nonnegative integers.

The generalized Hilbert–Kunz function of R = k[X ]/I2(X) is the function
HKR,X : N→ N given by

HKR,X (q)=

(
k[X ]

I2(X)+ (xq
1,1, . . . , xq

m,n)

)
.

Namely, k[X ]/(I2(X)+ (xq
1,1, . . . , xq

m,n)) is a finite-dimensional k-vector space,
and length measures that dimension. The standard Hilbert–Kunz function is only
defined when k has positive prime characteristic p and when q varies over powers
of p, whereas the generalized Hilbert–Kunz function is defined for arbitrary field k,
regardless of the characteristic. While the Hilbert–Kunz function is not necessarily
a polynomial function, it has a well-defined normalized leading coefficient. The
normalized leading coefficient of the generalized Hilbert–Kunz function has been
studied for example in [Conca 1996; Eto 2002; Eto and Yoshida 2003], while
[Miller and Swanson 2013] studied the whole generalized Hilbert–Kunz function.
Miller and Swanson gave a recursive formulation for HKR,X and proved that it is a

MSC2010: primary 13D40; secondary 05A15, 05A10.
Keywords: Hilbert–Kunz function, multiplicity, combinatorial identity.

433

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.275-2


434 MARCUS ROBINSON AND IRENA SWANSON

polynomial function. They gave closed formulations in the case m ≤ 2. This paper
is an extension of [Miller and Swanson 2013].

The main result of this paper, Theorem 3.3, is the closed formulation of HKR,X

for arbitrary positive integers m, n. We also give, in Theorem 3.1, an explicit
formula for the length of

k[X ]
I2(X)+ (xq

i, j : i, j)+
∑n

j=1(x1, j , . . . , xm, j )q
.

In Lemma 2.5 and Corollary 3.4 we give some explicit formulas for the number
of tuples of specific length of nonnegative integers that sum up to at most a fixed
number and whose first few entries are at most another fixed number. (In other
words, we give formulas for the numbers of some specific compositions of integers.)

2. Set-up

Our proofs are based on the following result:

Theorem 2.1 [Miller and Swanson 2013, Theorem 2.4]. The quotient ring

k[X ]
I2(X)+ (xq

1,1, . . . , xq
m,n)

has a k-vector space basis consisting precisely of monomials
∏

i, j x pi, j
i, j with the

following properties:

(1) Whenever pi, j > 0 and i ′< i, j < j ′, we have pi ′, j ′ = 0. (Monomials satisfying
this property will be called staircase monomials. The name comes from the
southwest-northeast staircase-like shape of the nonzero entries pi, j in the m×n
matrix of all the pi, j .)

(2) Either
∑

j pi, j < q for all i = 1, . . . , m or
∑

i pi, j < q for all j = 1, . . . , n.
�

Thus, to compute the Hilbert–Kunz function, we need to be able to count such
monomials. The recursive formulations for this function in [Miller and Swanson
2013], as well as the explicit formulations below, require counting related sets of
monomials:

Definition 2.2 [Miller and Swanson 2013, Section 3]. Let r1, . . . , rm, c1, . . . , cn ∈

N ∪ {∞}. (In general we think of the ri as the row sums and the c j as the column
sums.) Define Nq(m, n; r1, . . . , rm; c1, . . . , cn) to be the number of monomials∏

i, j x pi, j
i, j with the following properties:

(1)
∏

i, j x pi, j
i, j is a staircase monomial, i.e., whenever pi, j > 0 and i ′ < i, j < j ′,

we have pi ′, j ′ = 0.
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(2)
∑

j pi, j ≤ ri for all i ∈ {1, . . . , m} and
∑

i pi, j ≤ c j for all j ∈ {1, . . . , n}.

(3) Either
∑

j pi, j < q for all i ∈ {1, . . . , m} or
∑

i pi, j < q for all j ∈ {1, . . . , n}.

For ease of notation, for any c∈N∪{∞} we let c denote a repetition of cs, where
the number of occurrences depends on the context. For example, Nq(m, n;∞,∞)

stands for Nq(m, n;∞, . . . ,∞;∞, . . . ,∞), with m occurrences of∞ in the first
instance and n in the second. By convention, Nq(0, n; ; c1, . . . , cn)= 1.

It was proved in [Miller and Swanson 2013, Section 3] that

Nq(m, n; r1, . . . , rm; c1, . . . , cn)= length of(
k[X ]

I2(X)+ (xq
i, j : i, j)+

∑m
i=1(xi,1, . . . , xi,n)ri+1+

∑n
j=1(x1, j , . . . , xm, j )

c j+1

)
,

where for an ideal I , we set I∞ to be the 0 ideal. Thus, in particular,

Nq(m, n;∞;∞)= HKK [X ]/I2(X),X (q).

Our main result in this paper relies on the count of the following monomials as
well:

Definition 2.3. Let r1, . . . , rm, c1, . . . , cn ∈N∪{∞}. (We think of ri as the i-th row
sum, and of c j as the j-th column sum.) Define Mq(m, n; r1, . . . , rm; c1, . . . , cn)

to be the number of monomials
∏

i, j x pi, j
i, j such that:

(1)
∏

i, j x pi, j
i, j is a staircase monomial, i.e., whenever pi, j > 0 and i ′ < i, j < j ′,

we have pi ′, j ′ = 0.

(2)
∑

j pi, j ≤min{ri , q − 1} for all i ∈ {1, . . . , m}.

(3) There exists j ∈ {1, . . . , n} such that
∑

i pi, j > c j .

The following lemma says that mn exponents pi, j of a staircase monomial can
be identified by m+ n or even m+ n− 1 numbers:

Lemma 2.4. Suppose that r1, . . . , rm, c1, . . . , cn are nonnegative integers and that∑
i ri =

∑
j c j . Then there exists a unique staircase monomial

∏
i, j x pi, j

i, j such that
ri =

∑
j pi, j for all i = 1, . . . m and c j =

∑
i pi, j for all j = 1, . . . , n.

Proof. If m = 1, then clearly p1, j = c j , which is uniquely determined. If n = 1,
necessarily pi,1 = ri .

In general, for arbitrary m and n, knowing c1 and rm is enough information to
uniquely determine pm,1: if pm,1 < min{c1, rm}, then the m-th row has a nonzero
number beyond the first entry and the first column has a nonzero number in the first
m−1 rows, which then makes the corresponding monomial nonstaircase and is not
allowed. So necessarily pm,1 = min{c1, rm}. If pm,1 = c1, then no more nonzero
exponents appear in the first column, and it remains to fill in the remaining m×(n−1)
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matrix of pi, j with the remaining numbers r1, . . . , rm−1, rm − c1, c2, . . . , cn . If
instead pm,1 = rm , then no more nonzero exponents appear in the last row, and
it remains to fill in the remaining (m − 1)× n matrix of pi, j with the remaining
numbers r1, . . . , rm−1, c1− rm, c2, . . . , cn . �

Lemma 2.5. Let a, b, w, z be integers with a ≤ b. The number of b-tuples of
nonnegative integers that sum up to at most w and for which the first a entries are
strictly smaller than z equals

a∑
i=0

(−1)i
(a

i

)(
w−i z+b

b

)
.

Proof. (This proof was suggested by the referee.) Let E be the set of all b-tuples
(v1, . . . , vb) of nonnegative integers that sum up to at most w. It is well known
that |E | =

(
w+b

b

)
. Let E j be the subset E of those tuples for which vi ≥ z. Then

|E j | =
(
w−z+b

b

)
, and more generally, |E j1 ∩ · · · ∩ E ji | =

(
w−i z+b

b

)
. The desired

cardinality is |E \ (E1 ∪ · · · ∪ Ea)|, which, by the inclusion-exclusion principle,
equals

|E | −
a∑

i=1

(−1)i−1
∑

1≤ j1<···< ji≤a

|E j1 ∩ · · · ∩ E ji |

=

(
w−i z+b

b

)
−

a∑
i=1

(−1)i−1
(a

i

)(
w−i z+b

b

)
=

a∑
i=0

(−1)i
(a

i

)(
w−i z+b

b

)
. �

Lemma 2.6. Let a, b, w, z be integers with a < b. The following numbers are the
same:

(1) The number of b-tuples of nonnegative integers that sum to at most a(z− 1)−w

and for which the first a entries are strictly smaller than z.

(2)

a∑
i=0

(−1)i
(a

i

)(a(z−1)−w−i z+b
b

)
.

(3) The number of b-tuples of nonnegative integers for which the first a entries are
strictly smaller than z and the sum of the first a entries is greater than or equal to
w plus the sum of the remaining entries.

Proof. The first two numbers are the same by Lemma 2.5.
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Let

E =
{
(v1, . . . , vb) ∈ Nb

: v1, . . . , va < z,
∑

i

vi ≤ a(z− 1)−w

}
,

F =
{
(u1, . . . , ub) ∈ Nb

: u1, . . . , ua < z,
a∑

i=1

ui ≥
∑
i>a

ui +w

}
,

so |E | is the number in (1) and |F | is the number in (3). Define ϕ : E→ F by

ϕ(v1, . . . , vb)= (z− 1− v1, . . . , z− 1− va, va+1, . . . , vb).

Certainly this image is in Nb, each of the first a entries is strictly smaller than z, and
the sum of the first a entries is a(z−1)−

∑a
i=1 vi = a(z−1)−

∑b
i=1 vi+

∑b
i=a+1 vi

≥w+
∑b

i=a+1vi , so that the range of ϕ is in F . The proof of surjectivity is similar,
and injectivity is clear. Thus ϕ is bijective, which proves that the numbers in (1)
and (3) are the same. �

3. Main theorems

In this section we give explicit (nonrecursive) formulas for Nq(m, n;∞; q − 1),
Mq(m, n; q − 1; q − 1), and Nq(m, n;∞;∞) for arbitrary positive integers m, n.

Theorem 3.1. For all nonnegative integers m, n, q, the k-length of the quotient
ring k[X ]/

(
I2(X)+ (xq

i, j : i, j)+
∑n

j=1(x1, j , . . . , xm, j )
q
)

equals

Nq(m, n;∞; q − 1)=

n∑
i=0

(−1)n−i
(n

i

)( iq+m−1
m+n−1

)
,

and furthermore, this number equals the number of (m+n−1)-tuples of nonnegative
integers that sum up to at most n(q − 1) and for which the first n entries are strictly
smaller than q.

Proof. Let Tm,n,q be the set of all staircase monomials
∏

i, j x pi, j
i, j such that

∑
i pi, j < q

for all j = 1, . . . , n. By [Miller and Swanson 2013, Section 3],

|Tm,n,q | = Nq(m, n;∞; q − 1)

=

(
k[X ]

I2(X)+ (xq
i, j : i, j)+

∑n
j=1(x1, j , . . . , xm, j )q

)
.

Let W be the set of (m+ n− 1)-tuples of nonnegative integers such that the first
n entries are strictly smaller than q , and the sum of the first n entries is greater than
or equal to the sum of the remaining entries. To each element

∏
i, j x pi, j

i, j in Tm,n,q

we associate the (m+n− 1)-tuple
(∑

i pi1, . . . ,
∑

i pin,
∑

j p2 j , . . . ,
∑

j pmj
)

of
nonnegative integers. This is an element of W . For any (c1, . . . , cn, r2, . . . , rm)∈W ,
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set r1 =
∑

j c j −
∑m

i=2 rm ∈ N. By Lemma 2.4, there is a unique element of
Tm,n,q that corresponds to (c1, . . . , cn, r2, . . . , rm)W . Thus |Tm,n,q | = |W |, and by
Lemma 2.6 applied with w = 0,

Nq(m, n;∞; q − 1)= |W |

=

n∑
i=0

(−1)i
(n

i

)(n(q−1)−iq+m+n−1
m+n−1

)
=

n∑
i=0

(−1)i
( n

n−i

)(
(n−i)q+m−1

m+n−1

)
=

n∑
i=0

(−1)n−i
(n

i

)( iq+m−1
m+n−1

)
. �

Theorem 3.2. For all positive integers m, n,

Mq(m, n; q − 1; q − 1)=

n∑
i=1

m∑
j=0

(−1)m− j+i−1
(n

i

)(m
j

)( jq−iq+n−1
m+n−1

)
.

Proof. Let S be the set of all (m + n)-tuples (r1, . . . , rm, c1, . . . , cn) of nonneg-
ative integers such that

∑
i ri =

∑
j c j , r1, . . . , rm < q, and there exists j such

that c j ≥ q. By Lemma 2.4, each such tuple uniquely determines a staircase
monomial, and by definition of Mq , the number of these monomials is precisely
Mq(m, n; q − 1; q − 1). We will count these monomials via the tuples.

We define the function f : S→2{1,...,n} as f (r1, . . . , rm, c1, . . . , cn)={ j :c j ≥q}.
By Sk we denote the set of all those x ∈ S for which | f (x)| = k. Consider the
set A of all (L , x) for which x ∈ S and L is a nonempty subset of f (x). For each
l = 1, . . . , n, the number of (L , x) ∈ A with |L| = l equals

n∑
k=l

(k
l

)
|Sk |.

In other words, (L , x) only arises if L ⊆ f (x), and each x ∈ Sk , generates
(k

l

)
distinct elements (L , x) in A with |L| = l.

We count the elements of A another way. Put (L , x)= (L , r1, . . . , rm, c1, . . . , cn)

with |L| = l. Since
∑

i ri =
∑

j c j , one of the c j is redundant, and we remove cs ,
where s=min L . Furthermore, we lose no information if we subtract q from each cl

with l ∈ L . Set c′j = c j−q if j ∈ L and c′j = c j otherwise. Thus, to count all (L , x),
it suffices to count all (L , r1, . . . , rm, c′1, . . . , c′s−1, c′s+1, . . . , c′n). But the set of
all such (m+ n)-tuples equals Pl(n)×W , where Pl(n) is the set of all l-element
subsets of {1, . . . , n}, and W is the set of all (m + n − 1)-tuples of nonnegative
integers whose first m entries are strictly smaller than q, and the sum of the first
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m entries is greater than or equal to lq plus the sum of the remaining entries. By
Lemma 2.6, W has cardinality

m∑
i=0

(−1)i
(m

i

)(m(q−1)−lq−iq+m+n−1
m+n−1

)
=

m∑
i=0

(−1)i
( m

m−i

)(
(m−i)q−lq+n−1

m+n−1

)
=

m∑
i=0

(−1)m−i
(m

i

)( iq−lq+n−1
m+n−1

)
.

Using |Pl(n)| =
(n

l

)
, this gives a system of n linear equations with matrix form:



(1
1

) (2
1

) (3
1

)
· · ·

(n
1

)
(1

2

) (2
2

) (3
2

)
· · ·

(n
2

)
(1

3

) (2
3

) (3
3

)
· · ·

(n
3

)
...

...
...

. . .
...(1

n

) (2
n

) (3
n

)
· · ·

(n
n

)





|S1|

|S2|

|S2|

...

|Sn|


=



(n
1

) m∑
i=0

(−1)m−i
(m

i

)( iq−1q+n−1
m+n−1

)
(n

2

) m∑
i=0

(−1)m−i
(m

i

)( iq−2q+n−1
m+n−1

)
(n

3

) m∑
i=0

(−1)m−i
(m

i

)( iq−3q+n−1
m+n−1

)
...(n

n

) m∑
i=0

(−1)m−i
(m

i

)( iq−nq+n−1
m+n−1

)


.

Note that the matrix
[( j

i

)]
i, j is upper triangular with determinant 1. Its inverse is

the upper triangular matrix
[
(−1)i+ j

( j
i

)]
i, j , as for all i ≤ j ,

n∑
k=1

(−1)i+k
(k

i

)( j
k

)
=

j∑
k=i

(−1)i+k k!
i !(k− i)!

j !
k!( j − k)!

=

j∑
k=i

(−1)i+k j !
i !( j − i)!

( j − i)!
(k− i)!( j − k)!

=

( j
i

) j∑
k=i

(−1)i+k
( j−i

k−i

)
=

( j
i

) j−i∑
k=0

(−1)k
( j−i

k

)
,
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which is 0 if j > i and is 0 if j = i . Thus, by Cramer’s rule,

Mq(m, n; q − 1; q − 1)=

n∑
k=1

|Sk |

=

n∑
k=1

n∑
j=1

(−1)k+ j
( j

k

)(n
j

) m∑
i=0

(−1)m−i
(m

i

)( iq− jq+n−1
m+n−1

)

=

n∑
j=1

(−1) j
(n

j

) n∑
k=1

(−1)k
( j

k

) m∑
i=0

(−1)m−i
(m

i

)( iq− jq+n−1
m+n−1

)

=

n∑
j=1

(−1) j−1
(n

j

) m∑
i=0

(−1)m−i
(m

i

)( iq− jq+n−1
m+n−1

)

=

n∑
j=1

m∑
i=0

(−1)m−i+ j−1
(n

j

)(m
i

)( iq− jq+n−1
m+n−1

)

=

n∑
j=1

m∑
i=1

(−1)m−i+ j−1
(n

j

)(m
i

)( iq− jq+n−1
m+n−1

)
. �

The main theorem on the generalized Hilbert–Kunz function now follows:

Theorem 3.3. For all positive integers m, n, the Hilbert function HKR,X (q) of
k[X ]/I2(X) at q, i.e., the length of k[X ]/

(
I2(X)+ (xq

1,1, . . . , xq
m,n)

)
, equals

Nq(m, n;∞;∞)= Nq(m, n;∞; q − 1)+Mq(m, n; q − 1; q − 1)

=

n∑
i=1

(−1)n−i
(n

i

)( iq+m−1
m+n−1

)
+

n∑
i=1

m∑
j=1

(−1)m− j+i−1
(n

i

)(m
j

)( jq−iq+n−1
m+n−1

)
.

Proof. By Definition 2.2, Nq(m, n;∞;∞) counts all the staircase monomials∏
i, j x pi, j

i, j with the property that either
∑

i pi, j < q for all j or
∑

j pi, j < q for all i .
The number Nq(m, n;∞; q − 1) counts those monomials in the previous para-

graph for which
∑

i pi, j < q for all j , and Mq(m, n; q − 1; q − 1) counts those
monomials for which

∑
i pi, j ≥ q for some j . Thus

Nq(m, n;∞;∞)= Nq(m, n;∞; q − 1)+Mq(m, n; q − 1; q − 1),

and by Theorems 3.1 and 3.2, this is equal to the claimed sums of binomial coeffi-
cients. �

In particular, comparison with Theorem 4.4 in [Miller and Swanson 2013] when
m = 2 gives:
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Corollary 3.4. The number of (n+1)-tuples of nonnegative integers that sum up to
at most n(q − 1) and for which the first n entries are strictly smaller than q equals

n∑
i=1

(−1)n−i
(n

i

)( iq+1
n+1

)
=

nqn+1
− (n− 2)qn

2
.

Proof. According Theorem 4.4 in to [Miller and Swanson 2013],

Nq(2, n;∞;∞)=
nqn+1

− (n− 2)qn

2
+ n

(q+n−1
n+1

)
,

and by Theorem 3.3,

Nq(2, n;∞;∞)=

n∑
i=1

(−1)n−i
(n

i

)( iq+1
n+1

)
+ 2

n∑
i=1

(−1)i
(n

i

)(q−iq+n−1
n+1

)
+

n∑
i=1

(−1)i−1
(n

i

)(2q−iq+n−1
n+1

)
=

n∑
i=1

(−1)n−i
(n

i

)( iq+1
n+1

)
+

(n
1

)(2q−1q+n−1
n+1

)
=

n∑
i=1

(−1)n−i
(n

i

)( iq+1
n+1

)
+ n

(q+n−1
n+1

)
.

Thus
∑n

i=1(−1)n−i
(n

i

)(iq+1
n+1

)
=
(
nqn+1

− (n − 2)qn
)
/2. By Theorem 3.1, this

number is the number of (n+ 1)-tuples of nonnegative integers that sum up to at
most n(q − 1) and for which the first n entries are strictly smaller than q . �

We remark here that we know of no other proof of the equality in the last corollary.
Natural first attempts would be induction and Gosper’s algorithm, and neither of
these is successful, as for one thing, the summands depend not only on the summing
index i but also on n. The challenge remains to establish a closed-form expression
for Nq(m, n;∞;∞) and Nq(m, n;∞; q − 1) for higher m.
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