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TORUS ACTIONS AND TENSOR PRODUCTS
OF INTERSECTION COHOMOLOGY

ASILATA BAPAT

Given certain intersection cohomology sheaves on a projective variety with
a torus action, we relate the cohomology groups of their tensor product to
the cohomology groups of the individual sheaves. We also prove a similar
result in the case of equivariant cohomology.

1. Introduction

Let X be a smooth complex projective variety together with an action of a complex
algebraic torus T with isolated fixed points. We fix a regular algebraic one-parameter
subgroup λ : C∗→ T, which means that the set of λ-fixed points on X equals the set
of T-fixed points on X (denoted X T ). Consider the Białynicki-Birula decomposition
[1973] of X : for each w ∈ X T define the plus and minus cells to be respectively

Uw =U+w = {x ∈ X | lim
t→0

λ(t) · x = w}, t ∈ C∗, and

U−w = {x ∈ X | lim
t→∞

λ(t) · x = w}, t ∈ C∗.

Each plus or minus cell is a λ-stable affine space, and hence the decompositions
X =

∐
w∈X T Uw and X =

∐
w∈X T U−w are cell decompositions. For the purposes of

this paper, we make the following additional assumptions on the T-action on X .

Assumption 1.1. The cell decompositions X =
∐
w∈X T Uw and X =

∐
w∈X T U−w

are algebraic stratifications of X . In particular, the closure of every plus cell is a
union of plus cells, and analogously for minus cells.

Assumption 1.2. For eachw∈ X T, there is a one-parameter subgroup λw : C∗→ T
and a neighborhood Vw of w such that limt→0 λw(t) · v = w for every v ∈ Vw and
t ∈ C∗.

In this paper, we use the words sheaf and complex of sheaves interchangeably
to mean an object in Db

c,BB(X,C), the bounded derived category of sheaves of
C-vector spaces on X that are constructible with respect to the Białynicki-Birula
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stratification. (Here we make use of Assumption 1.1.) Moreover all functors are
derived, so for ease of notation we omit the decorations R and L.

For each w ∈ X T, let ICw denote the intersection cohomology sheaf on the
closure of the cell Uw, extended by zero to all of X . The main theorem of the paper
describes the cohomology of the tensor products of a collection of ICw, in terms of
the tensor products of the cohomologies of the individual ICw.

Main result. Let 1 : X→ Xm be the diagonal embedding. Consider any sheaves
F1, . . . ,Fm in Db

c,BB(X,C). Then their (derived) tensor product is also a sheaf in
Db

c,BB(X,C), and will be denoted by F1⊗ · · ·⊗Fm . Recall that

F1⊗ · · ·⊗Fm =1
−1(F1 � · · ·�Fm).

For any sheaf F, its cohomology H •(F) = H •(X,F) is a graded vector space.
There is a natural cup product ∪: H •(F1)⊗· · ·⊗ H •(Fm)→ H •(F1⊗ · · ·⊗Fm),
defined on page 22.

Let C denote the constant sheaf on X . For any sheaf F, its cohomology H •(F) is
naturally a (graded) left and right module over the (graded) ring H(X)= H •(X,C),
as follows:

∪: H(X)⊗ H •(F)→ H •(C⊗F)−→
∼= H •(F),

∪: H •(F)⊗ H(X)→ H •(F⊗C)−→
∼= H •(F).

Moreover, the cup product descends to a morphism

H •(F1) ⊗
H(X)
· · · ⊗

H(X)
H •(Fm)→ H •(F1⊗ · · ·⊗Fm).

Theorem 1.3. Let (p1, . . . , pm) be an m-tuple of T-fixed points of X , and suppose
that Assumptions 1.1 and 1.2 hold. Then the cup product map

(1-1) H •(ICp1) ⊗
H(X)
· · · ⊗

H(X)
H •(ICpm )→ H •(ICp1 ⊗ · · ·⊗ ICpm )

is an isomorphism.

As X is a T-space, each IC sheaf ICp j carries a canonical T-equivariant structure,
and so does the tensor product ICp1 ⊗ · · · ⊗ ICpm . Let HT (X) = H •

T (X,C) be
the T-equivariant cohomology of X . For any T-equivariant sheaf F on X , its
T-equivariant cohomology H •

T (F) = H •

T (X,F) is a graded HT (X)-module. As
before, there is a cup product map for T-equivariant cohomology, which factors
through HT (X).

Theorem 1.4. Under Assumptions 1.1 and 1.2, the cup product map

H •

T (ICp1) ⊗
HT (X)

· · · ⊗
HT (X)

H •

T (ICpm )→ H •

T (ICp1 ⊗ · · ·⊗ ICpm )

is an isomorphism.
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Remark 1.5. Even though our results are stated using IC sheaves, it is possible that
they generalize to parity sheaves (defined and discussed by Juteau, Mautner, and
Williamson in [Juteau et al. 2014]). Our results and proof methods are similar to the
main theorem from [Ginzburg 1991]. Achar and Rider [2014, Theorem 4.1] prove
a version of Ginzburg’s theorem for parity sheaves on generalized flag varieties of
a Kac–Moody group. Similar generalizations may work in our case as well.

2. Setup

The Białynicki-Birula stratification. One can find (see, e.g., [Sumihiro 1974] or
[Kambayashi 1966]) a T-equivariant projective embedding of X into some PN, such
that the action of T on PN is linear. Consider the following standard Morse–Bott
function on PN :

[z0 : · · · : zN ] 7→

∑N
i=0 ci |zi |

2∑N
i=0|zi |

2
,

where ci are the weights of the λ-action on PN. The critical sets of this function
are precisely the T-fixed points on PN. The Morse–Bott cells of this function are
locally closed algebraic subvarieties of PN. Since X has isolated T-fixed points, one
can show that the composition f : X→ PN

→ R is a Morse function with critical
set X T (see, e.g., [Audin 2004]). Each cell of the Morse decomposition under f
is a preimage of a Morse–Bott cell of PN. Hence it is a locally closed algebraic
subvariety of X . Moreover, each cell of the Morse decomposition is known to be a
union of Białynicki-Birula plus cells. A discussion of this may also be found in
[Chriss and Ginzburg 1997, Section 2.4].

The collection of fixed points of the λ-action carries a partial order, where
v < w if Uv ⊂ Uw. By the previous discussion, we see that v < w if and only if
f (v) < f (w). Fix a weakly increasing enumeration {0, 1, . . . , N } of the points of
X T (sometimes denoted {w0, . . . , wN }), and set Xn =

⋃
i≤n Ui . Since the closure

of every plus cell is a union of plus cells, it follows from the previous discussion
that each Xn is a closed subvariety of X .

Similarly, set X−n =
⋃

i≥n U−i . By using the Morse function (− f ) instead of f ,
we see that each X−n is a closed subvariety of X . Hence we obtain two increasing
filtrations of X by closed subvarieties: X0⊂· · ·⊂ X N = X and X−N ⊂· · ·⊂ X−0 = X .

We have the following inclusions:

Xn
in
↪→ X, Xn−1

v
↪→ Xn

u
←↩Un.

For any point p ∈ X−n , we have f (wn) ≤ f (p), with equality only if p ∈ X T.
For any point p ∈ Xn , we have f (p)≤ f (wn), with equality only if p ∈ X T. Hence
if p ∈ X−n ∩ Xn , then f (p)= f (wn), and p ∈ X T. But X−n ∩ Xn ∩ X T

= {wn}, and
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it follows that p = wn . Hence for every n, the subvarieties X−n and Xn intersect
transversally in the single point wn .

Let cn ∈ H •(X) be the Poincaré dual to the homology class of X−n . As a
vector space, H •(X) is generated by the collection {cn}. Finally, fix an m-tuple
(p1, . . . , pm) of T-fixed points of X , and set L j,n = i−1

n ICp j for each j and n.

The cup product in cohomology. Let π : X → pt be the unique morphism to a
point. For any sheaf F on X , its cohomology H •(F) is a graded vector space, and
may be thought of as π∗F. We use this to define the cup product map.

Recall that the functors (π−1, π∗) form an adjoint pair, which has a counit
π−1
◦ π∗ → id. Let F1, . . . ,Fm be sheaves on X . Tensoring the counit maps

together, we have a map

π−1
◦π∗(F1)⊗ · · ·⊗π

−1
◦π∗(Fm)→ F1⊗ · · ·⊗Fm .

The left hand side is canonically isomorphic to π−1(π∗F1⊗ · · ·⊗π∗Fm). Using
the (π−1, π∗) adjunction once more, we obtain the cup product:

∪: π∗F1⊗ · · ·⊗π∗Fm→ π∗(F1⊗ · · ·⊗Fm).

The cup product gives each H •(Fi ) the structure of a left and right module
over H(X). This module structure induces the following map, also called the cup
product:

H •(F1) ⊗
H(X)
· · · ⊗

H(X)
H •(Fm)→ H •(F1⊗ · · ·⊗Fm).

Proposition 2.1. For every n, the cup product map

(2-1) H •(L1,n) ⊗
H(X)
· · · ⊗

H(X)
H •(Lm,n)→ H •(L1,n ⊗ · · ·⊗ Lm,n)

is an isomorphism.

When Xn = X , we have L j,n = ICp j for each j . Hence Theorem 1.3 follows
from this proposition, and we now focus on proving the proposition.

3. Proof of the isomorphism

We prove Proposition 2.1 by induction on the nth filtered piece of X0 ⊂ · · · ⊂ X N .
In the base case of n = 0, the space X0 is zero-dimensional. Hence each sheaf L j,0

is isomorphic to its cohomology. In this case the cup product map (2-1) reduces to
the identity map, which is an isomorphism.



TORUS ACTIONS AND TENSOR PRODUCTS OF INTERSECTION COHOMOLOGY 23

Now we prove the induction step on the filtered piece Xn . We mainly use the
following distinguished triangles:

u!u−1L j,n→ L j,n→ v∗v
−1L j,n,(3-1)

v!v
!L j,n→ L j,n→ u∗u−1L j,n.(3-2)

After taking cohomology, each of the above distinguished triangles produces a
long exact sequence. In our case, all connecting homomorphisms of these long
exact sequences vanish (see, e.g., [Soergel 1990, Lemma 20] and [Ginzburg 1991,
Proposition 3.2]).

For brevity, we will use the following notation through the remainder of the
paper.

(3-3)

Mm,n = L2,n ⊗ · · ·⊗ Lm,n,

Am,n = H •(L2,n) ⊗
H(X)
· · · ⊗

H(X)
H •(Lm,n),

Bm,n = H •(u∗u−1L2,n) ⊗
H(X)
· · · ⊗

H(X)
H •(u∗u−1Lm,n).

The following two lemmas prove the proposition on the open part Un in Xn .

Lemma 3.1. Let F and G be any complexes of sheaves on Un with locally constant
cohomology sheaves. Then the cup product map

∪: H •(u!F)⊗ H •(u∗ G)→ H •(u!F⊗ u∗ G)

is an isomorphism. Since ∪ factors through the surjection

H •(u!F)⊗ H •(u∗ G)� H •(u!F) ⊗
H(X)

H •(u∗ G),

the induced cup product

∪: H •(u!F) ⊗
H(X)

H •(u∗ G)→ H •(u!F⊗ u∗ G)

is also an isomorphism.

Proof. Consider the following commutative diagram, where π is the projection to a
point.

Un Xn

pt

u

p=π◦u
π
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Recall that if A and B are any two complexes on X , then the cup product is
induced by adjunction from the natural map

π−1(π∗A⊗π∗B)∼= π−1π∗A⊗π−1π∗B→ A⊗ B,

which may be broken up as follows:

π−1π∗A⊗π−1π∗B→ A⊗π−1π∗B→ A⊗ B.

Therefore the cup product map may be broken up as follows:

π∗A⊗π∗B→ π∗(A⊗π−1π∗B)→ π∗(A⊗ B).

In our case, this becomes the following sequence of maps:

π∗u!F⊗π∗u∗ G
µ1
−→ π∗(u!F⊗π−1π∗u∗ G)

µ2
−→ π∗(u!F⊗ u∗ G).

Since π is a proper map, we know that π∗ ∼= π!, and hence µ1 is an isomorphism
by the projection formula. It remains to show that µ2 is an isomorphism.

The pair of adjoint functors (π−1, π∗) gives the counit morphism p−1 p∗ G→

u−1u∗ G. The key observation is that this map is an isomorphism, because G is a
direct sum of its cohomology sheaves on the affine space Un . Now consider the
following commutative diagram.

(3-4)

u!F⊗π−1π∗u∗ G u!(F⊗ p−1 p∗ G)

u!F⊗ u∗ G u!(F⊗ u−1u∗ G)

∼=

(proj.)

µ2 (counit) ∼= (counit)

∼=

(proj.)

The map µ2 is obtained by applying the functor π∗ to the left vertical map in (3-4)
above. The diagram shows that this map is an isomorphism, and hence µ2 is also
an isomorphism. �

Lemma 3.2. The cup product map induces an isomorphism

H •(u!u−1L1,n) ⊗
H(X)

Bm,n −→
∼= H •

c (u
−1(L1,n ⊗Mm,n)).

Proof. Using Lemma 3.1 with complexes of sheaves F= u−1L1,n and G= u−1L2,n ,
we obtain an isomorphism

H •(u!u−1L1,n) ⊗
H(X)

H •(u∗u−1L2,n)−→
∼= H •(u!u−1L1,n ⊗ u∗u−1L2,n).

Moreover, u−1u∗u−1L2,n ∼= u−1L2,n . Using this fact and the projection formula,

H •(u!u−1L1,n ⊗ u∗u−1L2,n)∼= H •(u!(u−1L1,n ⊗ u−1u∗u−1L2,n))

∼= H •(u!u−1(L1,n ⊗ L2,n)).
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All together, we get an isomorphism

H •(u!u−1L1,n) ⊗
H(X)

H •(u∗u−1L2,n)−→
∼= H •(u!u−1(L1,n ⊗ L2,n)),

which can be written in our previously introduced notation as

H •(u!u−1L1,n) ⊗
H(X)

B2,n −→
∼= H •(u!u−1(L1,n ⊗M2,n)).

Now we can successively tensor the above map over H(X) with the spaces
H •(u∗u−1L i,n), with i ranging from 3 to m. Each time, we apply Lemma 3.1 for
F= u−1(L1,n ⊗Mi−1,n) and G= u−1L i,n and use the argument above. Ultimately
this construction yields

H •(u!u−1L1,n) ⊗
H(X)

Bm,n −→
∼= H •(u!u−1(L1,n ⊗Mm−1,n)) ⊗

H(X)
H •(u∗u−1Lm,n)

−→
∼= H •(u!(u−1(L1,n ⊗Mm,n)))

∼= H •

c (u
−1(L1,n ⊗Mm,n)). �

The next lemma is a refinement of a standard cohomology exact sequence to our
particular case.

Lemma 3.3. There is an exact sequence

H •(u!u−1L1,n) ⊗
H(X)

Bm,n→ H •(L1,n) ⊗
H(X)

Am,n→ H •(v∗v
−1L1,n) ⊗

H(X)
Am,n→ 0.

Proof. Consider the distinguished triangle (3-1) for the sheaf L1,n . Taking coho-
mology and applying the functor (−) ⊗

H(X)
Am,n , we obtain the right-exact sequence

H •(u!u−1L1,n) ⊗
H(X)

Am,n
f
→ H •(L1,n) ⊗

H(X)
Am,n

g
→ H •(v∗v

−1L1,n) ⊗
H(X)

Am,n→ 0.

Using the distinguished triangles (3-2) for each of the sheaves L j,n for j ≥ 2, we
have surjective morphisms

H •(L j,n)� H •(u∗u−1L j,n).

Taking the tensor product of all of these along with H •(u!u−1L1,n), we obtain a
surjective morphism

H •(u!u−1L1,n) ⊗
H(X)

Am,n
h
� H •(u!u−1L1,n) ⊗

H(X)
Bm,n.

We now show that the map f factors through the map h, by showing that
f (ker h)= 0. Since all boundary maps in the cohomology long exact sequence of
the triangles (3-2) vanish, the following set generates ker h:

{a1⊗ a2⊗ · · ·⊗ an | a j ∈ H •(v∗v
!L j,n) for some 2≤ j ≤ m}.



26 ASILATA BAPAT

Consider any element a1⊗ a2⊗ · · ·⊗ an ∈ ker h. Suppose that a j ∈ H •(v∗v
!L j,n).

Recall the commutative diagram (3.8a) from [Ginzburg 1991], reproduced below.

H •(v∗v
!L j,n) H •(L j,n) H •(u−1L j,n)

H •(L j,n) H •

c (u
−1L j,n)

cn cn ∼=

From this diagram it follows that cna j = 0, and that a1 ∈ cn H •(L1,n). Since all
tensor products are over H(X), the image of h(a1⊗· · ·⊗an) under f must be zero.
Therefore f factors through h, and we obtain the desired short exact sequence. �

Finally, we use the induction hypothesis to tackle the right side of the right-exact
sequence from the previous lemma.

Lemma 3.4. The cup product map induces an isomorphism

H •(v∗v
−1L1,n) ⊗

H(X)
Am,n −→

∼= H •(L1,n−1⊗Mm,n−1).

Proof of lemma. The cup product map on the left hand side is the following
composition:

H •(v∗v
−1L1,n) ⊗

H(X)
Am,n→H •(v∗v

−1L1,n) ⊗
H(X)

H •(Mm,n)→H •(v∗v
−1L1,n⊗Mm,n),

where the first map is the cup product on the last (m− 1) factors, and the second
map is the cup product of the first factor with the rest. The projection formula also
shows that

H •(v∗v
−1L1,n ⊗Mm,n)∼= H •(v−1L1,n ⊗ v

−1 Mm,n)∼= H •(L1,n−1⊗Mm,n−1).

By induction on m, we may assume that the cup product Am,n→ H •(Mm,n) is
an isomorphism, and hence the first map above is an isomorphism. It remains to
show that the following map is an isomorphism:

H •(v∗v
−1L1,n) ⊗

H(X)
H •(Mm,n)→ H •(v∗v

−1L1,n ⊗Mm,n)

Since L1,n−1 is supported on Xn−1, the element cn ∈ H acts on H •(v∗L1,n−1) by
zero. Recall from [op. cit.] that the cokernel of cn on H •(Mm,n) is just H •(Mm,n−1).
Hence

H •(v∗v
−1L1,n) ⊗

H(X)
H •(Mm,n)∼= H •(L1,n−1) ⊗

H(X)
H •(Mm,n−1).

Therefore, the map above can be rewritten as the cup product map

H •(L1,n−1) ⊗
H(X)

H •(Mm,n−1)→ H •(L1,n−1⊗Mm,n−1),
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which is an isomorphism by the induction hypothesis. �

We now apply Saito’s theory [1990; 1988] of mixed Hodge modules to obtain
another short exact sequence, as follows. Every IC-sheaf has the additional structure
of a pure mixed Hodge module, which induces a mixed Hodge structure on tensor
products of the L i,n .

Lemma 3.5. (i) The cohomology H •(L1,n ⊗Mm,n) is pure.

(ii) There is a short exact sequence

0→ H •

c (u
−1(L1,n ⊗Mm,n))→ H •(L1,n ⊗Mm,n)→ H •(L1,n−1⊗Mm,n−1)→ 0.

Proof. The proof is by induction on n. When n = 0, we have X−1 =∅ and U = X0.
The open inclusion u is the identity map, and the closed inclusion v is the zero map,
hence (ii) is clear in the base case.

The set X0 consists of a single T-fixed point of X . Call this point w. By
Assumption 1.2, there exists a neighborhood Vw of w and a one-parameter subgroup
λw : C∗→ T that contracts Vw to w. Let iw denote the inclusion of {w} into the
corresponding Vw. Let jw denote the inclusion of Vw into X . By applying [Springer
1984, Corollary 1] or [Braden 2003, Lemma 6] to the sheaves j−1

w ICpi for each i ,
we see that

H •(Vw, j−1
w ICpi )

∼= H •(i−1
w j−1

w ICpi )= H •(L i,0).

The functor H •(Vw, j−1
w (−)) weakly increases weights; on the other hand, the

functor H •(i−1
w j−1

w (−)) weakly decreases weights. Hence H •(L i,0) is pure for
each i . Taking the tensor product, we see that H •(L1,0)⊗ · · ·⊗ H •(Lm,0) is pure.
Since w is a single point, we can naturally make the following identification:

H •(L1,0)⊗ · · ·⊗ H •(Lm,0)∼= H •(L1,0⊗ · · ·⊗ Lm,0)= H •(L1,0⊗Mm,0).

Hence H •(L1,0 ⊗ Mm,0) is pure, and (i) is proved in the base case. A similar
argument has been used in [Ginzburg 1991, Lemma 3.5].

For the induction step, consider the distinguished triangle (3-1) for L1,n . Apply
the functor (−⊗ L2,n ⊗ · · ·⊗ Lm,n), which may be written as (−⊗Mm,n) in the
notation of (3-3). This yields the following distinguished triangle:

u!u−1L1,n ⊗Mm,n→ L1,n ⊗Mm,n→ v∗v
−1L1,n ⊗Mm,n.

By a repeated application of the projection formula, we may write the first term of
this triangle as

u!u−1L1,n ⊗Mm,n ∼= u!(u−1L1,n ⊗ · · ·⊗ u−1Lm,n)= u!u−1(L1,n ⊗Mm,n),

and the third term of this triangle as

v∗v
−1L1,n ⊗Mm,n ∼= v∗(v

−1L1,n ⊗ · · ·⊗ v
−1Lm,n)= v∗(L1,n−1⊗Mm,n−1).
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Taking cohomology, we obtain the following long exact sequence:

· · · → H •

c (u
−1(L1,n ⊗Mm,n))→ H •(L1,n ⊗Mm,n)

→ H •(L1,n−1⊗Mm,n−1)→ · · · .

The term H •(L1,n−1⊗Mm,n−1) is pure by the induction hypothesis.
From Lemma 3.2, we know that

H •

c (u
−1(L1,n⊗Mm,n))∼= H •

c (u
−1L1,n) ⊗

H(X)
H •(u−1L2,n) ⊗

H(X)
· · · ⊗

H(X)
H •(u−1Lm,n).

Recall that Un is the Białynicki-Birula plus cell for the fixed point wn . Hence
the λ-action contracts Un to wn . By [Springer 1984, Corollary 2], we know that
H •

c (u
−1L1,n) is isomorphic to the costalk of u−1L1,n at wn , which is isomorphic

to a shift of the stalk of ICp1 at wn . For any i > 1, we know by [Springer 1984,
Corollary 1] that H •(u−1L i,n) is isomorphic to the stalk of u−1L i,n at wn , which is
equal to the stalk of ICpi at wn . By using Assumption 1.2 and the argument used
earlier in this proof, we know that the stalk of each ICpi at any T-fixed point is
pure, and hence the spaces H •

c (u
−1L1,n) as well as H •(u−1L i,n) for i > 1 are all

pure. Therefore the tensor product H •

c (u
−1(L1,n ⊗Mm,n)) is pure.

Since the terms on either side of the long exact sequence are pure, the connecting
homomorphisms are zero, and hence H •(L1,n ⊗Mm,n) is also pure. This argument
completes the induction step, and hence completes the proof. �

Putting together the exact sequences from Lemmas 3.3 and 3.5, we obtain
the following commutative diagram, where the vertical maps are induced by cup
products. In particular, the middle map b is just the map from Proposition 2.1.

(3-5)

H •(u!u−1L1,n) ⊗
H(X)

Bm,n H •(L1,n) ⊗
H(X)

Am,n H •(v∗v−1L1,n) ⊗
H(X)

Am,n

H •c (u
−1(L1,n ⊗Mm,n)) H •(L1,n ⊗Mm,n) H •(L1,n−1⊗Mm,n−1)

a b c

The leftmost map a is an isomorphism by Lemma 3.2. The rightmost map c
is an isomorphism by Lemma 3.4. By the snake lemma, the middle map b is an
isomorphism as well, and Proposition 2.1 is proved.

4. Computation of equivariant cohomology

Consider a smooth complex projective variety X with the same assumptions as in
Section 1. The goal of this section is to prove Theorem 1.4.

First, recall some constructions in equivariant cohomology, following [Bernstein
and Lunts 1994] and [Goresky et al. 1998]. Fix a universal principal T-bundle
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ET → BT, where ET is the direct limit over m of algebraic approximations ETm

and analogously for BT and BTm . Consider the following diagram, where the map
p is the second projection, and the map q is the quotient by the diagonal T-action.

ET × X

X ET ×T X

p q

Since each stratum Un is a locally closed T-invariant affine subvariety of X , the triv-
ial local system on Un gives rise to a canonically defined sheaf ICn on ET×T X and
a canonical isomorphism β : p−1 ICn −→

∼= q−1ICn (see, e.g., [Bernstein and Lunts
1994]). The triple (ICn, ICn, β) is called the equivariant IC sheaf corresponding
to Un .

Equivariant homology and cohomology. For a variety Y equipped with a T-action,
the cohomology of ET ×T Y is called the equivariant cohomology of Y, and is
denoted by H •

T (Y ). In particular, since ET×T pt∼= BT, we have H •

T (pt)∼= H •(BT ).
The space H •

T (Y ) is a ring under cup product and is also an HT (X)-module
via pullback under the projection Y → pt. For convenience, we will denote
H •

T (X) by HT (X). In our case, HT (X) is isomorphic to H •(X)⊗ H •(BT ) as an
HT (X)-module (see, e.g., [Goresky et al. 1998, Theorem 14.1]). Similarly, the equi-
variant cohomology of any T-equivariant sheaf on X also carries an HT (X)-module
structure.

One can define the T-equivariant Borel–Moore homology of X , denoted H T
•
(X).

Every T-equivariant closed subvariety Y of X defines a class [Y ]T of degree
2 dimC Y in H T

•
(X). If X is smooth, then every class [Y ]T has an equivariant

Poincaré dual cohomology class in H •

T (X). More details can be found in [Graham
2001] and [Brion 2000].

Proof of the equivariant case. Consider an m-tuple (p1, . . . , pm) of T-fixed points
of X . Then ICp1, . . . , ICpm are the IC sheaves corresponding to Up1, . . . ,Upm

respectively. Let L j,n = i−1
n ICp j for each j and n.

Proposition 4.1. Under Assumptions 1.1 and 1.2, the cup product maps

H •

T (L1,n) ⊗
HT (X)

· · · ⊗
HT (X)

H •

T (Lm,n)→ H •

T (L1,n ⊗ · · ·⊗ Lm,n)

are isomorphisms for each n.

When Xn = X , we have L j,n = ICp j for each j . Hence this proposition implies
Theorem 1.4. To prove the proposition, we first state two general lemmas about
T-equivariant cohomology of sheaves.
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Lemma 4.2. Consider the fiber bundle ET ×T X→ BT, with fiber X. Let ICw be
the (T-equivariant) IC sheaf on the closure of a stratum Xw, extended by zero to
all of X. Then the Leray spectral sequence for the computation of H •

T (X; ICw)=
H •(ET ×T X; ICw) collapses at the E2 page. Hence H •

T (ICw) is isomorphic to
H •(ICw)⊗ H •(BT ) as a graded H •(BT )-module.

Proof. See [Goresky et al. 1998, Theorem 14.1]. The proof uses the fact that the
cohomology of BT ∼= (CP∞)dim T is pure. �

Lemma 4.3. Let Y be any T-space, and let F be a T-equivariant sheaf on Y such
that the space H •(Y ;F) is pure. Then H •

T (Y ;F) is pure as well.

Proof. Recall that H •

T (Y,F)=H •(ET×T X,F). The result follows from computing
the Leray spectral sequence for the fiber bundle ET ×T Y → BT, and by using that
H •(BT ) and H •(Y,F) are pure. �

We also record some equivariant analogues of results stated in Section 3. First
note that the boundary maps in the long exact sequences of T-equivariant cohomol-
ogy for the distinguished triangles (3-1) and (3-2) vanish. The proof is analogous
to the nonequivariant case, using Lemma 4.3.

The following lemma is an analogue of Lemma 3.1.

Lemma 4.4. Let U = Xn\Xn−1. Let F and G be any T-equivariant complexes of
sheaves on U. Then the cup product map

∪: H •

T (u!F) ⊗
H•(BT )

H •

T (u∗ G)→ H •

T (u!F⊗ u∗ G)

is an isomorphism. Since ∪ factors through the surjection

H •

T (u!F) ⊗
H•(BT )

H •

T (u∗ G)� H •

T (u!F) ⊗
HT (X)

H •

T (u∗ G),

the induced cup product

H •

T (u!F) ⊗
HT (X)

H •

T (u∗ G)→ H •

T (u!F⊗ u∗ G)

is also an isomorphism.

Proof. Consider the fiber bundle ET ×T Xn→ BT, with fiber Xn . The E2 pages
of the Leray spectral sequences for u!F and u∗ G are as follows:

H p(BT, Hq(u!F))=⇒ H p+q
T (u!F),

H r (BT, H s(u∗ G))=⇒ H r+s
T (u∗ G).

On the E2 page, the cup product map can be written as the composition of the
following two maps. The first map is the cup product with local coefficients, and
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the second is the fiberwise cup product on the local systems.

H p(BT, Hq(u!F)) ⊗
H•(BT )

H r(BT, H s(u∗ G))→ H p+r(BT, Hq(u!F)⊗ H s(u∗ G)),

H p+r(BT, Hq(u!F)⊗ H s(u∗ G))→ H p+r(BT, Hq+s(u!F⊗ u∗ G)).

Since the local systems Hq(u!F) and H s(u∗ G) are constant on BT, the first map
yields isomorphisms

H •(BT, Hq(u!F)) ⊗
H•(BT )

H •(BT, H s(u∗ G))−→
∼= H •(BT, Hq(u!F)⊗ H s(u∗ G)).

Finally, we know from Lemma 3.1 that H •(u!F)⊗ H •(u∗ G)−→
∼= H •(u!F⊗ u∗ G)

via the cup product map. Altogether, the cup product maps on the E2 page yield an
isomorphism

H •(BT, H •(u!F)) ⊗
H•(BT )

H •(BT, H •(u∗ G))−→
∼= H •(BT, H •(u!F⊗ u∗ G)).

The left hand side is a tensor product of two free H •(BT )-modules over H •(BT ).
Hence it converges to

H •

T (u!F) ⊗
H•(BT )

H •

T (u∗ G).

The right hand side converges to H •

T (u!F⊗ u∗ G). Since the E2 pages of the left
hand side and the right hand side are isomorphic via the cup product map, the
following cup product map

H •

T (u!F) ⊗
H•(BT )

H •

T (u∗ G)→ H •

T (u!F⊗ u∗ G)

is an isomorphism. �

Let c̃n ∈ HT (X) be the equivariant Poincaré dual of [X−n ]T. Each c̃n restricts to
the class cn under the map HT (X)→ H •(X), hence the collection {̃cn} generates
HT (X) over H •(BT ).

The following lemma (analogous to [Ginzburg 1991, (3.8a)]) describes the action
of c̃n on the equivariant cohomology of the sheaves L j,n on X .

Lemma 4.5. For every j , the action of c̃n on H •

T (L j,n) fits into the following
commutative diagram:

H •

T (L j,n) H •

T (u
−1L j,n)

H •

T (L j,n) H •

T,c(u
−1L j,n)

c̃n c̃n ∼=
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Proof. Recall that the intersection of Xn and X−n lies away from Xn−1. Hence c̃n

restricts to zero on Xn−1, and cup product by c̃n annihilates the cohomology of
any sheaf supported on Xn−1. The kernel of H •

T (L j,n)� H •

T (u
−1L j,n) and the

cokernel of H •

T,c(u
−1L j,n)→ H •

T (L j,n) are both supported on Xn−1. So the map
of multiplication by c̃n from H •

T (Xn) to H •

T (Xn) factors as follows.

H •

T (L j,n) H •

T (u
−1L j,n)

H •

T (L j,n) H •

T,c(u
−1L j,n)

c̃n c̃n

It remains to show that the vertical map on the right is an isomorphism. Since Xn

and X−n intersect transversally in the single pointwn , the restriction of c̃n to Xn is the
image in H •

T (Xn) of a generator of the local cohomology group H •

T (Xn, Xn\{wn}).
Since wn ∈ Un , we have H •

T (Xn, Xn\{wn}) ∼= H •

T (Un,Un\{wn}) by excision.
But Un is an affine space that is T-equivariantly contractible to wn , and hence
H •

T (Un,Un\{wn})∼= H •

T,c(Un). This shows that multiplication by c̃n maps H •

T (Un)

isomorphically to H •

T,c(Un).
Since u−1L j,n is T-equivariant, the above argument applies to the cohomology

of u−1L j,n as well. This means that c̃n maps H •

T (u
−1L j,n) isomorphically to

H •

T,c(u
−1L j,n), and the proof is complete. �

Once again, let Mm,n denote the sheaf L2,n ⊗ · · ·⊗ Lm,n . For brevity, we set up
the following additional notation.

Am,n = H •

T (L2,n) ⊗
HT (X)

· · · ⊗
HT (X)

H •

T (Lm,n),

Bm,n = H •

T (u∗u
−1L2,n) ⊗

HT (X)
· · · ⊗

HT (X)
H •

T (u∗u
−1Lm,n).

The following two lemmas are analogues of Lemmas 3.3 and 3.5, respectively.

Lemma 4.6. There is an exact sequence

H •

T (u!u
−1L1,n) ⊗

HT (X)
Bm,n→H •

T (L1,n) ⊗
HT (X)

Am,n→H •

T (v∗v
−1L1,n) ⊗

HT (X)
Am,n→0.

Proof. The proof is analogous to the proof of Lemma 3.3. We use the fact that
H •

T (X)∼= H •(X)⊗H •(BT ) and use Lemma 4.5 as a substitute for the commutative
diagram (3.8a) in [Ginzburg 1991]. �

Lemma 4.7. (i) The cohomology H •

T (L1,n ⊗Mm,n) is pure.

(ii) There is a short exact sequence

0→ H •

T,c(u
−1(L1,n⊗Mm,n))→ H •

T (L1,n⊗Mm,n)→ H •

T (L1,n−1⊗Mm,n−1)→ 0.
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Proof. The proofs are analogous to the proofs of their counterparts from Section 3,
using the observation of Lemma 4.3 and the fact that H •(BT ) is pure. �

We now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. We obtain the following commutative diagram from the
exact sequences of Lemmas 4.6 and 4.7.

(4-1)

H •T (u!u
−1L1,n) ⊗

HT (X)
Bm,n H •T (L1,n) ⊗

HT (X)
Am,n H •T (v∗v

−1L1,n) ⊗
HT (X)

Am,n

H •T (u!u
−1L1,n ⊗Mm,n) H •T (L1,n ⊗Mm,n) H •T (v∗v

−1L1,n ⊗Mm,n)

a b c

First observe that the action of HT (X) on H •

T (u!u
−1L1,n) and on Bm,n factors

through the map HT (X)→ H •

T (U )∼= H •(BT ), so

H •

T (u!u
−1L1,n) ⊗

HT (X)
Bm,n ∼= H •

T (u!u
−1L1,n) ⊗

H•(BT )
Bm,n.

We prove by induction on m that the map a is an isomorphism. As in the proof of
Lemma 3.2, the case of m = 2 is proved by Lemma 4.4, and the general case is
proved by iterating the argument. An argument similar to the proof of Lemma 3.4
proves that the map c is an isomorphism.

Hence by the snake lemma, the middle map b is an isomorphism as well. Conse-
quently, we obtain the following isomorphisms for every n:

H •

T (L1,n) ⊗
HT (X)

· · · ⊗
HT (X)

H •

T (Lm,n)→ H •

T (L1,n ⊗ · · ·⊗ Lm,n).

In particular when Xn = X , we see that the cup product map

H •

T (ICp1) ⊗
HT (X)

· · · ⊗
HT (X)

H •

T (ICpm )→ H •

T (ICp1 ⊗ · · ·⊗ ICpm )

is an isomorphism. �
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