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FUNCTIONS ON THE BIDISK

CATHERINE BÉNÉTEAU, ALBERTO A. CONDORI,
CONSTANZE LIAW, DANIEL SECO AND ALAN A. SOLA

We study Dirichlet-type spaces Dα of analytic functions in the unit bidisk
and their cyclic elements. These are the functions f for which there exists a
sequence ( pn)

∞

n=1 of polynomials in two variables such that ‖ pn f −1‖α→ 0
as n→∞. We obtain a number of conditions that imply cyclicity, and obtain
sharp estimates on the best possible rate of decay of the norms ‖ pn f − 1‖α ,
in terms of the degree of pn, for certain classes of functions using results
concerning Hilbert spaces of functions of one complex variable and compar-
isons between norms in one and two variables.

We give examples of polynomials with no zeros on the bidisk that are not
cyclic in Dα for α > 1/2 (including the Dirichlet space); this is in contrast
with the one-variable case where all nonvanishing polynomials are cyclic in
Dirichlet-type spaces that are not algebras (α≤1). Further, we point out the
necessity of a capacity zero condition on zero sets (in an appropriate sense)
for cyclicity in the setting of the bidisk, and conclude by stating some open
problems.

1. Introduction

Dirichlet-type spaces on the bidisk. We consider a scale of Hilbert spaces of holo-
morphic functions on the bidisk

D2
= {(z1, z2) ∈ C2

: |z1|< 1, |z2|< 1},

indexed by a parameter α ∈ (−∞,∞). A holomorphic function f :D2
→C belongs
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to the Dirichlet-type space Dα if its power series expansion

f (z1, z2)=

∞∑
k=0

∞∑
l=0

ak,l zk
1zl

2

satisfies

(1-1) ‖ f ‖2α =
∞∑

k=0

∞∑
l=0

(k+ 1)α(l + 1)α|ak,l |
2 <∞.

Recall that a function of two complex variables is said to be holomorphic if it is
holomorphic in each variable separately. A review of the definitions and basic
properties such as power series expansions can be found in [Hörmander 1990,
Chapter 2]. Since zero sets on the boundary of functions f ∈Dα will play a role
later on, we point out that the topological boundary of the bidisk is much larger
than the so-called distinguished boundary

T2
= {(z1, z2) ∈ C2

: |z1| = |z2| = 1},

which is still large enough to support standard integral representations and the
maximum principle on the bidisk.

The spaces Dα are a natural generalization to two variables of the classical
Dirichlet-type spaces Dα, −∞< α <∞, consisting of functions

f (z)=
∞∑

k=0

akzk

that are analytic in the unit disk D= {z ∈ C : |z|< 1} and satisfy

‖ f ‖2Dα
=

∞∑
k=0

(k+ 1)α|ak |
2 <∞;

see, for instance, [Taylor 1966; Brown and Shields 1984], and the references therein.
As a remark on notation, we will continue to use ‖ · ‖α for the norm of two variable
functions in Dα while ‖ · ‖Dα

will denote the norm of one variable functions in Dα .
We point out that the particular choice α = 0 in Dα and Dα leads to the classical
Hardy spaces H 2 on the disk and bidisk, respectively, while

D−1 = A2(D) and D−1 = A2(D2)

are the canonical Bergman spaces of the disk and bidisk, and D1 and D1 are the
Dirichlet spaces of the disk and bidisk, respectively.

The spaces Dα were studied in detail by Jupiter and Redett [2006]. Spaces of
this type appear in the earlier work of Kaptanoğlu [1994], which focuses on Möbius
invariance and boundary behavior in Dirichlet-type spaces, and Hedenmalm [1988],
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which concentrates on closed ideals in function algebras. We note here (compare
[Kaptanoğlu 1994, p. 343; Hedenmalm 1988, Section 4]) that an equivalent norm
for Dα is given by

‖ f ‖2α = | f (0, 0)|2

+

∫
D

|∂z1 f (z1, 0)|2 (1− |z1|
2)1−α dA(z1)

+

∫
D

|∂z2 f (0, z2)|
2 (1− |z2|

2)1−α dA(z2)

+

∫
D2
|∂z2∂z1 f (z1, z2)|

2 (1− |z1|
2)1−α(1− |z2|

2)1−α dA(z1) dA(z2),

where dA(z)= π−1 dx dy denotes area measure. The proof involves computations
with power series, and is omitted.

Extending the earlier one-variable work of G. D. Taylor [1966] and Stegenga
[1980], Jupiter and Redett identified multipliers on Dα and studied restriction
properties of these spaces. It was also shown in [Jupiter and Redett 2006] that
evaluation at a point in D2 is a bounded linear functional, and hence Dα is a
reproducing kernel Hilbert space for all α. When α > 1, the spaces Dα are actually
algebras (viz. the proof of [op. cit., Theorem 3.10]) that are contained (as sets) in
H∞(D2), the algebra of bounded holomorphic functions.

It is clear from the definition of the norm in (1-1) that any polynomial p =
p(z1, z2) belongs to Dα. Moreover, any f ∈ Dα lifts to Dα when regarded as
constant in one of the variables. In fact, if g ∈ Dα and h ∈ Dα, then the function

f (z1, z2)= g(z1)h(z2), (z1, z2) ∈ D2,

is analytic in the bidisk and belongs to Dα [op. cit., Proposition 4.7], and so Dα

certainly contains nontrivial holomorphic functions.

Shift operators and cyclic functions. In this paper, we are interested in a natu-
ral pair {S1, S2} of bounded linear operators acting on the spaces Dα. The shift
operators S1 and S2 are defined by setting, for f ∈Dα,

S1 f (z1, z2)= z1 f (z1, z2) and S2 f (z1, z2)= z2 f (z1, z2).

It is then clear that S1 and S2 are linear, and it follows from (1-1) that, for every α,
{S1, S2} forms a pair of bounded operators mapping Dα into itself.

It is a standard problem of operator theory to describe the invariant subspaces of
an operator. In the present context, we are interested in closed subspaces M⊂Dα

such that
S1M⊂M and S2M⊂M.
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As a first step towards understanding the invariant subspaces of the pair {S1, S2},
we seek conditions under which a function f ∈Dα is cyclic, that is,

[ f ] = span{zk
1zl

2 f : k = 0, 1, . . . ; l = 0, 1, . . . } =Dα.

It is easy to see that there exists at least one cyclic function in each Dα , namely
the function f (z1, z2) = 1. This follows from the fact that polynomials in two
variables are dense in Dα. On the other hand, since norm convergence implies
uniform convergence on compact subsets, every g ∈ [ f ] inherits any zeros f may
have inside D2, and so a necessary condition for cyclicity is that f (z1, z2) 6= 0,
(z1, z2) ∈ D2. Note that since g ∈ [ f ] implies [g] ⊂ [ f ], an equivalent condition
for f to be cyclic in Dα is that there exists a sequence of polynomials (pn)

∞

n=1 of
two variables with

‖pn f − 1‖α→ 0, n→∞.

Since point evaluation is a bounded linear functional, this latter condition is equiva-
lent to the existence of a sequence of polynomials (pn) such that

pn(z1, z2) f (z1, z2)− 1→ 0, (z1, z2) ∈ D2,

and
‖pn f − 1‖α ≤ C.

When α > 1 the spaces Dα and Dα are algebras, and cyclic functions have to be
nonvanishing on D and D2, respectively.

In one variable, Beurling characterized the cyclic vectors of H 2(D): a function f
is cyclic if and only if it is outer. In the bidisk, one can show that if f ∈ H 2(D2) or
indeed if f belongs to the Nevanlinna class, then f has (nonzero) radial limits f ∗

at almost every (ζ1, ζ2) ∈ T2. Thus, we can declare f ∈ H 2(D2) to be outer if

log | f (z1, z2)| =

∫
T2

log | f ∗(eiθ , eiη)|P((z1, z2); (eiθ , eiη)) dθdη;

here, P is the product Poisson kernel

P((z1, z2); (eiθ , eiη))= P|z1|(arg z1− θ)P|z2|(arg z2− η),

where (z1, z2) ∈ D2 and θ, η ∈ [0, 2π). As usual,

Pr (θ)=
1− r2

(r2− 2r cos(θ)+ 1)2

denotes the Poisson kernel of the unit disk.
The cyclicity of f ∈ H 2(D2) does imply that f is an outer function. But this

condition is no longer sufficient: there are outer functions that are not cyclic [Rudin
1969, Theorem 4.4.6]; this is another example of how the higher-dimensional theory
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is somewhat different. (See, however, [Mandrekar 1988; Douglas and Yang 2000;
Redett and Tung 2010] for some positive results.)

Polynomials in two variables with no zeros in D2 are outer functions, and are
therefore candidates for being cyclic in Dα for α ≥ 0. Indeed, Gelca [1995] proved
that polynomials f with Z( f )∩D2

=∅ are cyclic in H 2(D2), the Hardy space of
the bidisk, and hence in Dα for all α ≤ 0.

Overview of results. In [Bénéteau et al. 2015], the problem of cyclicity in Dirichlet-
type spaces in the unit disk was studied. More specifically, the authors identified
some subclasses of cyclic functions and derived sharp estimates on the rate of decay
of the norms ‖pn f − 1‖α for such f ∈ Dα . It seems natural to investigate to what
extent these results can be extended to functions f ∈Dα.

To make the notion of best possible norm decay precise, we let Pn , n= 1, 2, . . . ,
be the subspaces of Dα consisting of polynomials of two variables of the form

pn =

n∑
k=0

n∑
l=0

ck,l zk
1zl

2.

Note that we regard a monomial zk
1zl

2 in two variables as having degree k + l,
meaning that members of Pn are polynomials of degree at most 2n. Similarly, we
denote by Pn the space of polynomials of one complex variable having degree at
most n. We now make the following definition.

Definition 1.1. Let f ∈ Dα. We say that a polynomial pn ∈ Pn is an optimal
approximant of order n to 1/ f if pn minimizes ‖p f − 1‖α among all polynomials
p ∈Pn . We call ‖pn f − 1‖α the optimal norm of order n associated with f .

Stated differently, pn is an optimal approximant to 1/ f if we have

‖pn f − 1‖α = distDα
(1, f ·Pn);

here, distX (x, A)= inf{‖x − a‖X : a ∈ A} is the usual distance function between a
point and a subset A ⊂ X of a normed space X .

Sharp estimates on the unit disk analog of distDα
(1, f ·Pn) were obtained for

certain classes of functions in [Bénéteau et al. 2015]. To state these estimates, we
define ϕ1(s)= log+(s) for s ∈ [0,∞) and, when α < 1,

ϕα(s)= s1−α, s ∈ [0,∞).

Theorem 1.2 [Bénéteau et al. 2015, Theorem 3.6]. Let α ≤ 1. If f is a function
admitting an analytic continuation to the closed unit disk and whose zeros lie in
C \D, then there exists a constant C = C(α, f ) such that

dist2
Dα
(1, f ·Pm)≤ Cϕ−1

α (m+ 1)
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holds for all sufficiently large m. This estimate is sharp in the sense that if such a
function f has at least one zero on T, there exists a constant C̃ = C̃(α, f ) such that

C̃ϕ−1
α (m+ 1)≤ dist2

Dα
(1, f ·Pm).

In this paper, we obtain analogous theorems for certain subclasses of functions
in Dα . We begin Section 2 with some general remarks concerning cyclicity in Dα .
For instance, if f is cyclic, then each slice function fz j obtained when fixing the
variable z j , j = 1 or 2, has to be cyclic in Dα. Then the problem of cyclicity and
rates associated with optimal approximants is addressed for separable functions, i.e.,
for functions f of the form f (z1, z2)= g(z1)h(z2). We prove that such a function
is cyclic if and only if the factors g and h are cyclic in the one-variable space Dα,
and then obtain, in Theorem 2.6, sharp estimates on distDα

(1, f ·Pn) under the
assumption that g and h admit analytic continuation to the closed disk and have no
zeros in D.

In Section 3, we turn our attention to functions of the form f (z1, z2)= f (zM
1 ·z

N
2 ),

for integers M, N ≥ 1, and again obtain cyclicity results and sharp estimates in
Theorem 3.1. Our proofs are based on the fact that certain restriction operators
furnish isomorphisms between our subclasses of functions in Dα and the one-
variable spaces D2α, and on comparisons between the associated norms.

In [Bénéteau et al. 2015], a key role was played by certain Riesz-type means of
the power series expansion of 1/ f , which turned out to produce optimal, or near
optimal, approximants to 1/ f . The one-variable construction extends to the bidisk
setting as follows. Suppose 1/ f has formal power series expansion

1
f (z1, z2)

=

∞∑
k=0

∞∑
l=0

bk,l zk
1zl

2.

We then set

(1-2) pn(z1, z2)=

n∑
k=0

n∑
l=0

(
1−

ϕα(max{k, l})
ϕα(n+ 1)

)
bk,l zk

1zl
2.

Note that when α = 0, the polynomials pn are simply the n-th Cesàro means of the
Taylor series of 1/ f :

Cn(1/ f )(z1, z2)=

n∑
k=0

n∑
l=0

(
1−

max{k, l}
n+ 1

)
bk,l zk

1zl
2

=
1

n+ 1

n∑
m=0

tm(1/ f )(z1, z2),

where tm denotes the m-th order Taylor polynomial. In Section 4, we take a closer
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look at some concrete polynomials in two variables, and show that in some cases
the polynomials (1-2) are indeed close to optimal.

Recall that in the case of the unit disk, any polynomial that is zero-free in D is
cyclic in Dα for all α ≤ 1. However, the analogous statement for the bidisk need
not hold. In fact, we give examples of polynomials whose zero sets lie in T2 that
are noncyclic for α > 1

2 , and also polynomials with zeros on the boundary of the
bidisk that are cyclic for all α ≤ 1; in fact, such polynomials can have zero sets that
intersect T2, and extend into ∂D2

\T2.
The existence of noncyclic polynomials in Hilbert spaces of analytic functions

in higher dimensions has also been observed by Richter and Sundberg in the setting
of the Drury–Arveson space in the unit ball of Cd when d ≥ 4; see [Richter and
Sundberg 2012] for this and other results on cyclic vectors in that context.

Many of our results and arguments carry over to the d-dimensional polydisk Dd,
but as notation becomes much more cumbersome, we restrict our attention to
functions on the bidisk.

2. Classes of cyclic vectors in Dα

In this section, we present some examples of cyclic functions in the bidisk. As a
preliminary example, we have already observed that f (z1, z2)= 1 is cyclic in Dα

for all α, and that cyclic functions cannot vanish inside the bidisk. Moreover, it
is not difficult to see that if both f and 1/ f extend to a larger bidisk, then f is
nonvanishing on the closure D2, and f is cyclic; indeed, if (pn) is a sequence of
polynomials such that ‖pn − 1/ f ‖α tends to 0, the estimate

‖pn f − 1‖α ≤ ‖ f ‖M(Dα) ‖pn − 1/ f ‖α,

where ‖·‖M(Dα) denotes the multiplier norm, implies that 1∈ [ f ] and so f is cyclic.
However, there do exist cyclic functions in Dα that vanish on the boundary of

the bidisk, as in the one variable case. In this section, we focus on three different
ways of building functions in the bidisk from one variable functions in the unit disk,
and explore the relationship between the cyclicity in two variables versus that in
one variable. First, let us make some preliminary remarks.

Slices of a function. For a function f = f (z1, z2) in the bidisk, we can fix the
variable z2, say, and consider the slice

fz2(z1)= f (z1, z2), z1 ∈ D,

as a function in the unit disk. The slice fz1 is defined in an analogous manner.

Proposition 2.1. If f is cyclic in Dα, then the slices fz2 and fz1 are cyclic in Dα .
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Proof. As a consequence of the Cauchy–Schwarz inequality applied to the coeffi-
cients of fz2 we obtain

‖ fz2‖Dα
≤ ‖kz2‖Dα

· ‖ f ‖α,

where kz2 denotes the reproducing kernel at z2 for Dα . Therefore, for any polynomial
p = p(z1, z2), we get

‖pz2 fz2 − 1‖Dα
≤ ‖kz2‖Dα

· ‖p f − 1‖α.

If f is cyclic in Dα, then this last norm tends to 0 as the degree of p approaches∞,
and therefore for fixed z2, ‖pz2 fz2 − 1‖Dα

approaches 0 as well. Consequently, the
slice fz2 is cyclic in Dα. An analogous argument applies to the slices in z1, and
thus the result follows. �

Note that the converse of the above statement does not hold: consider, for
example, f (z1, z2)= 1− z1z2. Then each slice fz2 and fz1 is nonvanishing in the
closed unit disk (for a fixed z2 and a fixed z1, respectively), and thus each is cyclic
in every Dα , but it turns out that f is only cyclic in Dα for α ≤ 1

2 ; see Remark 3.2.
Let us now consider three different natural ways to construct a one variable

function from a two variable function and examine issues of cyclicity.

Diagonal restrictions. The restriction to the diagonal of a holomorphic function
on the bidisk produces a function on the disk, and it turns out that these functions
often inherit properties that allow us to transfer information between one and two
variable spaces; see, e.g., [Horowitz and Oberlin 1975; Rudin 1969]. For instance,
Massaneda and Thomas [2013] were able to use restriction arguments to show that
it is not possible to characterize cyclic functions in H 2(D2) in terms of decay at
the boundary.

We define the restriction operator Rdiag on f ∈Dα by

Rdiag : f 7→ (� f )(z)= f (z, z), z ∈ D.

To rigorously define which spaces this restriction operator acts on, we define the
map

β(α)=

{
α− 1 for α ≥ 0,
2α− 1 for α < 0.

In order to shorten notation, we use the abbreviation β = β(α). In the context of
the Dirichlet-type spaces, the following restriction estimate holds.

Proposition 2.2. For all f ∈Dα,

‖� f ‖Dβ
≤ ‖ f ‖α.
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This result is probably known to the experts, and can be proved by appealing to
the theory of reproducing kernels. For the convenience of the reader, we give an
elementary proof.

Proof of Proposition 2.2. Let f (z1, z2) =
∑
∞

k=0
∑
∞

l=0 ak,l zk
1zl

2, which converges
absolutely for every |z1|< 1 and |z2|< 1. Then

� f (z)=
∞∑

k=0

∞∑
l=0

ak,l zk+l

converges absolutely for every |z|<1, hence can be rewritten as� f (z)=
∑
∞

n=0 bnzn,
where bn =

∑
k+l=n ak,l =

∑n
k=0 ak,n−k . Thus,

‖� f ‖2Dβ
=

∞∑
n=0

|bn|
2(n+ 1)β =

∞∑
n=0

∣∣∣∣ n∑
k=0

ak,n−k

∣∣∣∣2(n+ 1)β

and

‖ f ‖2α =
∞∑

n=0

n∑
k=0

|ak,n−k |
2(k+ 1)α(n− k+ 1)α.

By the Cauchy–Schwarz inequality, we have∣∣∣∣ n∑
k=0

ak,n−k

∣∣∣∣2≤ ( n∑
k=0

|ak,n−k |
2(k+ 1)α(n− k+ 1)α

)( n∑
k=0

(k+ 1)−α(n− k+ 1)−α
)

≤

( n∑
k=0

|ak,n−k |
2(k+ 1)α(n− k+ 1)α

)
(n+ 1)−β.

In summary, our observations yield, as required,

‖� f ‖2Dβ
=

∞∑
n=0

∣∣∣∣ n∑
k=0

ak,n−k

∣∣∣∣2(n+ 1)β

≤

∞∑
n=0

n∑
k=0

|ak,n−k |
2(k+ 1)α(n− k+ 1)α = ‖ f ‖2α. �

This result implies that a function g ∈ Dβ that arises as the restriction to the
diagonal of a cyclic function in Dα is itself cyclic. Viewed differently, a function
of two variables cannot be cyclic in Dα unless its restriction � f is cyclic in Dβ ,
though it can happen that � f is cyclic, and f ∈Dα is not: the functions considered
in the examples in Section 4 are not cyclic in D2, but their restrictions � f are
cyclic in the Dirichlet space D (see also [Massaneda and Thomas 2013] for a
discussion in the context of H 2(D2)). Moreover, together with the second assertion
in Theorem 1.2, Proposition 2.2 immediately implies a lower bound for the decay
rate of ‖pn f − 1‖2α for certain “nice” functions f :
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Corollary 2.3. Let α≤ 2. Suppose f ∈Dα is such that the diagonal restriction� f
satisfies the hypotheses of Theorem 1.2. Then,

‖pn f − 1‖2α ≥ Cϕ−1
β (n+ 1), for all pn ∈Pn.

Here, we have used that ϕ−1
β (2n+ 1) is comparable to ϕ−1

β (n+ 1). We will see
later (see Proposition 2.4 and Theorem 3.1) that this decay rate is not optimal in
general. Note that the diagonal restrictions of the functions f (z1, z2)= 1− z1z2,
f (z1, z2)= (1− z1)(1− z2), and f (z1, z2)= 1− z1 all satisfy the hypotheses.

The above remarks show how, given a cyclic function of two variables, one can
easily obtain examples of cyclic functions of one variable (although we might need
to change the index α of the space in which cyclicity is being considered!) In the
next two subsections we examine how to obtain some classes of cyclic functions of
two variables from cyclic functions of one variable, and we obtain sharp rates of
decay in some cases.

Separable functions. Let us now consider functions of two variables that can be
written as products of two functions of one variable:

f (z1, z2)= g(z1)h(z2).(2-1)

We shall refer to such functions as separable. Note that for such products, it follows
from (1-1) that ‖ f ‖α = ‖g‖Dα

‖h‖Dα
.

Proposition 2.4. Let α ∈ R and f be defined as in (2-1), where g, h ∈ Dα. Then,
f is cyclic in Dα if and only if g and h are cyclic in Dα.

Proof. First notice that by Proposition 2.1, if f is cyclic in Dα, then g and h are
constant multiples (with respect to the fixed variable) of the slices of f , and thus
are cyclic in Dα.

For the converse, suppose both g and h are cyclic in Dα. Let (pn) and (qn)

be sequences of polynomials such that ‖png− 1‖Dα
→ 0 and ‖qnh− 1‖Dα

→ 0,
respectively. Since the expression pngh− h = (pn(z1)g(z1)− 1)h(z2) is separable,
we obtain

‖pn f − h‖α = ‖png− 1‖Dα
‖h‖Dα

.

Hence, we get that h ∈ [ f ], where [ · ] denotes the cyclicity class in Dα, and so
[h] ⊂ [ f ]. Since ‖qnh−1‖α = ‖qnh−1‖Dα

, the function h is cyclic in Dα and Dα

simultaneously, and the assertion follows. �

It seems natural to ask whether the growth of the extremal polynomials for
separable functions is the same as for functions in the unit disk. As we will see in
Theorem 2.6, this is indeed the case. Let us first prove a lemma that will help to
establish the sharp growth restrictions.
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Lemma 2.5. Suppose f = g · h ∈ Dα for g, h ∈ Dα, and suppose that g admits
a nonvanishing analytic continuation to the closed bidisk. Then, there exists a
constant C , independent of n, such that

distDα
(1, f ·Pn)≥ C distDα

(1, h ·P2n).

Proof. Notice first that since the power series for g converges in a larger polydisk
than the unit bidisk, there exists R > 1 such that if gn are the Taylor polynomials of
degree n approximating g, the multiplier norm ‖g−gn‖M(Dα) decays exponentially
like R−(n+1). Moreover, since in addition g has no zeros in the closed disk, the
multiplier norm ‖1/g‖M(Dα) is bounded.

Now let pn(z1, z2) be the optimal approximant to 1/ f of degree n. Then by the
above remarks, we have

‖pnh− 1/g‖α ≤ ‖1/g‖M(Dα)‖pn f − 1‖α,

which goes to 0 as n →∞, and therefore, in particular, the norms ‖pnh‖α are
bounded by some constant C1. Moreover,

‖pn f − 1‖α = ‖pnh(g− gn)+ gn pnh− 1‖α
≥ ‖gn pnh− 1‖α −‖pnh‖α ‖g− gn‖M(Dα).

Since ‖pnh‖α is bounded and ‖g− gn‖M(Dα) decays exponentially, we obtain that
there exists a constant C such that

‖pn f − 1‖α ≥ C distDα
(1, h ·P2n). �

Using Lemma 2.5, we obtain sharp estimates on the decay of norms.

Theorem 2.6. Let α ≤ 1 and g, h ∈ Dα. Suppose that g and h admit analytic
continuations to D and have no zeros in D. Define f (z1, z2) = g(z1)h(z2). Then
there exists a constant C = C(g, h, α) such that

dist2
Dα
(1, f ·Pn)≤ Cϕ−1

α (n+ 1),

for all sufficiently large n. Moreover, this estimate is sharp in the sense that if h has
at least one zero on T and g has no zeros in the closed disk D (or vice versa), then
there exists a constant C̃ = C̃(g, h, α) such that

C̃ϕ−1
α (n+ 1)≤ dist2

Dα
(1, f ·Pn).

Proof. By Theorem 1.2, for any polynomials pn(z1) and qn(z2) of degree less than
or equal to n, there exist constants C1 and C2 such that

‖pn(z1)g(z1)− 1‖Dα
≤ C1ϕ

−1/2
α (n+ 1),

‖qn(z2)h(z2)− 1‖Dα
≤ C2ϕ

−1/2
α (n+ 1).
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Therefore,

‖pn(z1)qn(z2)g(z1)h(z2)− 1‖α
≤ ‖qn(z2)h(z2)(pn(z1)g(z1)− 1)‖α +‖qn(z2)h(z2)− 1‖α

≤ ‖qnh‖α ‖png− 1‖α +‖qnh− 1‖α

= ‖qnh‖Dα
‖png− 1‖Dα

+‖qnh− 1‖Dα

≤ (‖qnh− 1‖Dα
+ 1)‖png− 1‖Dα

+‖qnh− 1‖Dα

≤ C2C1ϕ
−1
α (n+ 1)+ (C1+C2)ϕ

−1/2
α (n+ 1)

≤ Cϕ−1/2
α (n+ 1)

for some constant C. Therefore,

dist2
Dα
(1, f ·Pn)≤ Cϕ−1

α (n+ 1),

for all sufficiently large n, as desired.
Moreover, the inequality is sharp. To see this, suppose h has at least one zero

on T and g has no zeros in the closed unit disk. Then, by Lemma 2.5, there exists a
constant C1 such that

(2-2) distDα
(1, f ·Pn)≥ C1 distDα

(1, h ·P2n).

Note that h = h(z2), and so, by orthogonality of monomials in Dα, the quantity
distDα

(1, h ·P2n) is bounded from below by distDα
(1, h ·P2n)= distDα

(1, h ·P2n).
Now, by Theorem 1.2 applied to h, and again since ϕα(2n+ 1) is comparable to
ϕα(n+ 1), there exists a constant C2 such that

(2-3) dist2
Dα
(1, h ·Pn)≥ C2ϕ

−1
α (n+ 1).

Thus, the inequalities in (2-2) and (2-3) imply the desired result. �

3. Norm comparisons and sharp decay of norms for the subspaces Jα,M,N

Let us now consider a third way of relating two variable cyclic functions to one
variable cyclic functions. In particular, we shall show that the polynomials in (1-2)
furnish optimal approximants for a certain subclass of functions.

The subspaces Jα,M,N . In order to formulate our results, we need some notation.
For −∞< α <∞ and integers M, N ≥ 1, we consider the closed subspaces

Jα,M,N =
{

f ∈Dα : f =
∞∑

k=0

akzMk
1 zNk

2

}
.
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For instance, Jα=Jα,1,1 consists of the functions f whose Taylor coefficients (ak,l)

vanish off the diagonal k = l, meaning that f (z1, z2)= f (z1 · z2).
We shall write Dα,z1 for the set of functions in Dα in the variable z1, viewed as

a subspace of Dα.

Theorem 3.1. Let α ≤ 1
2 and suppose that f ∈ Jα,M,N has the property that

R( f )(z) = f (z1/M, 1) is a function that admits an analytic continuation to the
closed unit disk, whose zeros lie in C \D. Then, f is cyclic in Dα, and there exists
a constant C = C(α, f,M, N ) such that

dist2
Dα
(1, f ·Pn)≤ Cϕ−1

2α (n+ 1).

This result is sharp in the sense that, if R( f ) has at least one zero on T, then there
exists a constant c = c(α, f,M, N ) > 0 such that, for large n,

cϕ−1
2α (n+ 1)≤ dist2

Dα
(1, f ·Pn).

The same conclusions remain valid for f ∈ Dα,z1 , with the rate ϕ−1
2α replaced by ϕ−1

α .

We should point out that the hypotheses of Theorem 3.1 imply that f is nonvan-
ishing in D2. Suppose f ∈ Jα,M,N and f (z1, z2)= 0, for some (z1, z2) ∈D2. Then,
the function R( f ) will have a zero at z = zM

1 zN
2 ∈ D.

Remark 3.2. It is straightforward to check that functions like f (z1, z2)= 1− z1,
f (z1, z2) = (1− z1z2)

N , N ∈ N, and f (z1, z2) = z2
1z2

2 − 2 cos θ z1z2 + 1, θ ∈ R,
satisfy the assumptions of Theorem 3.1.

The arguments used in the proof of Theorem 3.1 imply a function f ∈Jα,M,N can
fail to be cyclic in Dα when α > 1

2 . For instance, the function f (z1, z2)= 1− z1z2

is cyclic if and only if α ≤ 1
2 (see Example 2 below), and the Riesz polynomials

(1-2) are optimal approximants to 1/ f when α ≤ 1
2 .

Liftings, restrictions, and norm comparisons. The proof of Theorem 3.1 ulti-
mately relies on Theorem 1.2, and comparison between the norm of Dα and that
of D2α.

Suppose that for some real α, the function F =
∑
∞

k=0 akzk belongs to Dα, a
Dirichlet-type space on the unit disk. We define E : Dα→Dα by

E(F)(z1, z2)= F(z1).

In addition, if f ∈ Dα,z1 , the mapping C :Dα→ Dα given by C( f )(z)= f (z, 1)
is well-defined, and we have E ◦C |Dα,z1

= idDα,z1
. Moreover, it is immediate that

‖E(F)‖α = ‖F‖Dα
, F ∈ Dα

and
‖ f ‖α = ‖C( f )‖Dα

, f ∈ Dα,z1 .
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Another embedding is the following one. For α ∈ R fixed, define the mappings

L M,N : D2α→Dα via L M,N (F)(z1, z2)= F(zM
1 · z

N
2 ),

and
RM,N : Jα,M,N → D2α via RM,N ( f )(z)= f (z1/M, 1).

We initially view f (z1/M, 1) as a formal expression, but the assumption that∑
k

(k+ 1)2α|ak |
2 <∞

implies that f (z1/M
1 , 1) is actually a well-defined holomorphic function on D; this

will become apparent below. By definition, we again have L ◦ R|Jα,M,N = idJα,M,N .

Lemma 3.3. For F ∈ D2α and f ∈ Jα,M,N , there are constants c1 = c1(α,M, N )
and c2 = c2(α,M, N ) such that

‖L M,N (F)‖α ≤ c1‖F‖D2α and c2‖R( f )‖D2α ≤ ‖ f ‖α.

In particular, if f ∈ Jα,M,N , then

(3-1) c2‖R( f )‖D2α ≤ ‖ f ‖α ≤ c1‖R( f )‖D2α .

Proof. We provide the proof of the second inequality; the proof of the first is
analogous.

We first observe that for any α ∈ R and M ≥ 1, there exist constants c1(α,M)
and c2(α,M) such that

c1(α,M)(k+ 1)α ≤ (Mk+ 1)α ≤ c2(α,M)(k+ 1)α,

for any k ∈ N. Thus, writing R( f )(z)=
∑
∞

k=0 akzk, we have

‖R( f )‖2D2α
=

∞∑
k=0

(k+ 1)2α|ak |
2
=

∞∑
k=0

(k+ 1)α(k+ 1)α|ak |
2

≤ [c1(α,M)c1(α, N )]−1
∞∑

k=0

(Mk+ 1)α(Nk+ 1)α|ak |
2

= [c1(α,M)c1(α, N )]−1
‖ f ‖2α,

which proves the assertion. The two-sided bound (3-1) follows from the one-sided
bounds and the fact that f = L(R( f )). �

In particular, we see from the proof of Lemma 3.3 that in the case M = N = 1,
the equalities

‖L(F)‖α = ‖F‖D2α and ‖R( f )‖D2α = ‖ f ‖α

hold; hence, R is an isometric isomorphism between Jα and D2α.
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Sharpness of norm decay. We shall use Lemma 3.3, along with the following
lemma, to prove Theorem 3.1.

Lemma 3.4. Suppose that f ∈Jα,M,N for some α ∈R and some integers M, N ≥ 1.
Let rn =

∑n
k=0

∑n
l=0 ck,l zk

1zl
2 be an arbitrary polynomial, and let sn be its projection

onto Jα,M,N ,

sn =
∑

{k:Mk,Nk≤n}

cMk,NkzMk
1 zNk

2 .

Then,

‖rn f − 1‖α ≥ ‖sn f − 1‖α.

Proof. We begin by noting again that monomials of the form {zk
1zl

2} form an
orthogonal basis for Dα. Next, setting s̃n = rn − sn , we have sn f ∈ Jα,M,N , and
s̃n f /∈ Jα,M,N . Then, by the previous observation, sn f − 1⊥ s̃n f .

This means that

‖rn f − 1‖2α = ‖sn f − 1+ s̃n f ‖2α
= ‖sn f − 1‖2α +‖s̃n f ‖2α
≥ ‖sn f − 1‖2α. �

An analogous result holds for functions in the subspace Dα,z1 .

Proof of Theorem 3.1. We present the details for functions f ∈ Jα; the same type
of arguments work for Jα,M,N , with the appropriate inequalities from Lemma 3.3
in place of equalities, and also for f ∈ Dα,z1 .

We begin by establishing the lower bound. Let rn =
∑

k
∑

l ck,l zk
1zl

2 be any
polynomial, and extract the diagonal part sn from rn as in the preceding lemma.
Note that by construction, sn f − 1 ∈ Jα for each α. By Lemma 3.4 and the norm
inequality (3-1), we obtain

‖rn f − 1‖α ≥ ‖sn f − 1‖α = ‖R(sn f − 1)‖D2α = ‖R(sn)R( f )− 1‖D2α .

It is assumed that R( f ) satisfies the hypotheses of Theorem 1.2; the theorem then
asserts that dist2

D2α
(1, R( f ) ·Pn)≥ C̃ϕ−1

2α (n+ 1). In particular, this yields a lower
bound for ‖R(sn)R( f )− 1‖D2α , and the lower bound on distDα

(1, f ·Pn) follows.
To obtain the upper bound, it is enough to exhibit a concrete sequence (pn)

of polynomials having ‖pn f − 1‖2α ≤ C(α, f )ϕ−1
2α (n+ 1). However, since R( f )

satisfies the hypotheses of Theorem 1.2, there exists a sequence (qn) of polynomials
in one variable that achieves

‖qn R( f )− 1‖2D2α
≤ C(α, f )ϕ−1

2α (n+ 1)
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for large enough n. But then we can define pn = L(qn) ∈ Jα, and the desired
estimate follows since

‖L(qn) f − 1‖2α = ‖R(L(qn))R( f )− 1‖2D2α
= ‖qn R( f )− 1‖2D2α

by Lemma 3.3. �

Note that if R( f ) is a polynomial with only simple zeros on the unit circle T,
then it is shown in [Bénéteau et al. 2015, Section 3] that the one-variable Riesz
polynomials achieve the norm decay obtained above. In the situation M = N = 1
then, we have L(qn)(z1, z2)= pn(z1, z2), where pn are the Riesz-type polynomials
defined in (1-2).

4. Polynomials with zeros on ∂D2 and measures of finite energy

Let us now examine the relationship between cyclicity and boundary zero sets of
functions in Dα. Surprisingly, some functions with large zero sets in some sense
are cyclic while others with smaller zero sets are not.

Examples. Let us examine a few simple examples.

Example 1. Set f (z1, z2)= 1− z1. Then f has zero set

Z( f )= {1}×D,

a (real) 2-dimensional subset of the topological boundary of D2 which meets the
distinguished boundary along the 1-dimensional curve {1} × T. Note that f is
an example of a function of the product type g(z1)h(z2) with g(z1)= 1− z1 and
h(z2)= 1, and therefore by Proposition 2.4, f is cyclic in Dα if and only if α ≤ 1.

Example 2. Consider the function f (z1, z2)= 1− z1z2. The part of the zero set
of f that lies on the boundary of the bidisk,

Z( f )= {(eiθ , e−iθ ) : θ ∈ [0, 2π)},

can be seen as a 1-dimensional real curve contained in the distinguished boundary T2.
One verifies that all the points in Z( f ) are simple zeros. Since

1
f (z1, z2)

=

∞∑
k=0

∞∑
l=0

δk,l zk
1zl

2 =

∞∑
k=0

zk
1zk

2,

we have ‖1/ f ‖2
−1 =

∑
∞

k=0(1+ k)−2 <∞ but ‖1/ f ‖20 =
∑
∞

k=0 1 = +∞, so f is
invertible in the Bergman space, and indeed in Dα whenever α <− 1

2 , but not in
the Hardy space of the bidisk.

Nevertheless, by Theorem 3.1, f is cyclic in Dα if and only if α ≤ 1
2 . Note

in particular that this function is not cyclic in the classical Dirichlet space of the
bidisk!
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Explicit computations with the Riesz polynomials in (1-2) recover the upper
bound in Theorem 3.1. Namely, we have

pn(z1, z2) f (z1, z2)− 1=−
1

ϕα(n+ 1)

n+1∑
k=1

[ϕα(k)−ϕα(k− 1)](z1z2)
k,

and then, since |ϕα(k)−ϕα(k− 1)|2 ≤ C(α)(k− 1)−2α, we obtain

‖pn f − 1‖2α ≤
C1(α)

(n+ 1)1−2α .

Thus ‖pn f − 1‖2α→ 0 as n→∞ and f is cyclic, provided that α ≤ 1
2 .

In fact, considering functions of the form f = 1− zM
1 zN

2 for integer M, N ≥ 1
instead, and performing the analogous computations, we obtain

‖pn f − 1‖2α ≤
C1(α,M, N )
(n+ 1)1−2α(4-1)

with a constant C1(α,M, N ) which does not depend on n.

Example 3. We examine f (z1, z2) = 1− z1− z2+ z1z2 = (1− z1)(1− z2). The
zero set of f is

Z( f )= ({1}×D)∪ (D×{1}),

a 2-dimensional set that extends into the topological boundary of the bidisk. Its
intersection with T2 consists of the curves

Z( f )= ({1}×T)∪ (T×{1}).

All zeros of f are simple, except the point (1, 1), which has order 2. Since

1
f (z1, z2)

=

∞∑
k=0

∞∑
l=0

zk
1zl

2,

it follows that 1/ f /∈ A2(D2). Note that again, f is separable with g(z1)= 1− z1

and h(z2)= 1− z2, and therefore f is cyclic in Dα if and only if α ≤ 1.
In this case, computing with the Riesz polynomials leads to misleading estimates.

Defining polynomials pn , as before, via (1-2), we compute

pn f =−
1

(n+ 1)1−α

n+1∑
k=1

[k1−α
− (k− 1)1−α](zk

1+ zk
2)

+
1

(n+ 1)1−α

n+1∑
k=1

[k1−α
− (k− 1)1−α]zk

1zk
2.
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We use the estimates from the previous example, and exploit the one-variable
estimates from [Bénéteau et al. 2015], to obtain

‖pn f − 1‖2Dα
=

2
(n+ 1)2−2α

n+1∑
k=1

(k+ 1)α[k1−α
− (k− 1)1−α]2

+
1

(n+ 1)2−2α

n+1∑
k=1

(k+ 1)2α[k1−α
− (k− 1)1−α]2

≤
c1(α)

(n+ 1)1−α
+

c2(α)

(n+ 1)1−2α .

The first term in the right-hand side dominates when α < 0, whereas the second
is larger when α > 0. In particular, the estimate does show that f is cyclic in Dα

provided α ≤ 1
2 . However, as we have seen, the rate is not optimal, and f remains

cyclic when α > 1
2 .

Note the interesting contrast between Example 2 and Example 3: the function in
Example 2 is not cyclic in the (classical) Dirichlet space of the bidisk, and yet in
some sense has a much smaller zero set than the function in Example 3, which is
cyclic! On the other hand, as a kind of dual phenomenon, f = 1− z1z2 exhibits a
faster rate of decay of norms ‖pn f −1‖α for α < 0 than does f = (1− z1)(1− z2).

Example 4. The polynomial f (z1, z2)= 1− (z1+ z2)/2 has no zeros in D2, and
vanishes at a single boundary point: Z( f )= {(1, 1)} ⊂ T2.

In [Hedenmalm 1988, Section 4], it is proved that if f ∈D2 has Z( f )= {(1, 1)},
and both f ( · , 1) and f (1, · ) are outer functions, then the closure of the principal
ideal generated by f coincides with the closed ideal

I
(
{(1, 1)}

)
= { f ∈D2 : f (1, 1)= 0}.

(Hedenmalm’s norm is defined using the weights (1+ k2)(1+ l2) but is equivalent
to the norm in D2.) Since the norm of D1 is weaker than that of D2, it follows that
such functions are cyclic in Dα for α≤ 1 as the D1-closure of the invariant subspace
I
(
{(1, 1)}

)
⊂D2 coincides with [ f ], and contains the cyclic function 1− z1.

In particular, the polynomial f (z1, z2)= 1− (z1+ z2)/2 is cyclic in Dα , for all
α≤ 1. (An independent proof of this fact has been given by T. J. Ransford [personal
communication, 2014].) Computing with polynomials of the form

pn(z1, z2)=

n∑
k=0

(
1−

ϕα(k)
ϕα(n+ 1)

)
(z1+ z2)

k

2k
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and using the fact that (z1+ z2)
k1 ⊥ (z1+ z2)

k2 when k1 6= k2, one finds that

‖pn f − 1‖2α =
n+1∑
k=1

4−k
(

k1−α
− (k− 1)1−α

(n+ 1)1−α

)2 k∑
j=0

(
k
j

)2

( j + 1)α(k− j + 1)α.

Using the bound

( j + 1)α(k− j + 1)α ≤ C(k+ 1)2α, 0≤ j ≤ k,

together with the identity
k∑

j=0

(
k
j

)2

=

(
2k
k

)
and standard estimates on binomial coefficients, we obtain the estimate

dist2
Dα
(1, (2− z1− z2) ·Pn)≤ Cϕ2α−1/2(n+ 1).

Unfortunately, we have not been able to obtain a sharp estimate, but the above bound
shows that the optimal rate is different from the two rates we have seen previously.

Measures of finite energy. It would be interesting to understand the relationship
between cyclicity and boundary zero sets — in particular, given a function f , to
find a measure whose support lies on the zero set of the boundary values of f that
relates to the cyclicity properties of f .

We now give a necessary condition for a function to be cyclic. This condition
involves the notion of capacity, and represents a straightforward generalization of
results of Brown and Shields in the one-variable case.

Definition 4.1. Let E ⊂ T2 be a Borel set. We say that a probability measure µ
supported in E has finite logarithmic energy if

I [µ] =
∫

T2

∫
T2

log
e

|eiθ1 − eiϑ1 |
log

e
|eiθ2 − eiϑ2 |

dµ(θ1, θ2) dµ(ϑ1, ϑ2) <∞.

If E supports no such measure, we say that E has logarithmic capacity 0.

The integral defining the energy I [µ] can be seen as a convolution with kernel

h(s, t)= log
e

|1− eis |
log

e
|1− ei t |

.

Replacing the logarithmic product kernel in the definitions above with

hα(s, t)=
1

|1− eis |1−α

1
|1− ei t |1−α

,

one obtains the notions of Riesz energy, denoted by Iα[µ], and Riesz capacity of
order 0< α < 1.
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The α-energy of µ can be expressed in terms of its Fourier coefficients

µ̂(k, l)=
∫

T2
e−i(kθ1+lθ2) dµ(θ1, θ2), k, l ∈ Z.

Namely, we have (compare [El-Fallah et al. 2014, Chapter 2], for instance)

Iα[µ] =
∞∑

k=−∞

∞∑
l=−∞

ĥα(k, l)|µ̂(k, l)|2.

Computing the Fourier coefficients ĥ(k, l) (see [Brown and Shields 1984, p. 294]
for details), we find that

(4-2) I [µ] = 1+
∞∑

k=1

|µ̂(k, 0)|2

k
+

∞∑
l=1

|µ̂(0, l)|2

l
+

1
2

∑
k∈Z\{0}

∞∑
l=1

|µ̂(k, l)|2

|k|l
.

Similarly, one can show (again see [El-Fallah et al. 2014, Chapter 2]) that the
Fourier coefficients of hα satisfy

c1(|k| + 1)−α (|l| + 1)−α ≤ |ĥα(k, l)| ≤ c2(|k| + 1)−α (|l| + 1)−α

for some constants 0< c1 < c2 <∞.
The notion of energy now allows us to identify some noncyclic f ∈ Dα by

looking at their boundary zero sets. To make this notion precise, we note that one
can show that functions f ∈Dα have radial limits

f ∗(eiθ1, eiθ2)= lim
r→1−

f (reiθ1, reiθ2)

quasi-everywhere with respect to the appropriate capacity. That is, the limit exists
for all points outside a set of capacity 0, and hence it makes sense to speak of the
capacity of the set Z( f ∗). (In fact, Kaptanoğlu considers more general approach
regions in [Kaptanoğlu 1994], but we do not need this here.)

Proposition 4.2. If f ∈D and Z( f ∗) has positive logarithmic capacity, then f is
not cyclic.

Proof. The proof is completely analogous to that of [Brown and Shields 1984,
Theorem 5]; we refer the reader to the paper of Brown and Shields for details and
present the arguments in condensed form here.

The key idea is to identify the Bergman space A2(D2) with the dual of D via
the pairing

〈 f, g〉 =
∞∑

k=0

∞∑
l=0

ak,lbk,l,

where f =
∑
k,l

ak,l zk
1zl

2 ∈D and g =
∑
k,l

bk,l zk
1zl

2 ∈ A2(D2). We then consider the
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Cauchy integral

C[µ] =
∫

T2
(1− eiθ1 z1)

−1 (1− eiθ2 z2)
−1 dµ(θ1, θ2)

of µ, a measure of finite logarithmic energy with supp(µ)⊂ Z( f ∗). A comparison
with (4-2) then reveals that

‖C[µ]‖2A2(D2)
=

∞∑
k=0

∞∑
l=0

|µ̂(k, l)|2

(k+ 1)(l + 1)
<∞

so that C[µ] induces a nontrivial element of D∗. On the other hand, since the
measure µ is supported on Z( f ∗) by assumption, the functional induced by C[µ]
annihilates [ f ], and so f is not cyclic. �

For 0< α < 1, the same result holds once we replace logarithmic capacity with
Riesz capacity and make the identification (Dα)

∗
=D−α in the proof.

The argument used in the proof of Proposition 4.2 can be used to give another
proof of the noncyclicity of the function f (z1, z2) = 1 − z1z2 in D. Namely,
consider the probability measure µZ on T2 induced by the (normalized) integration
current associated with the variety Z(1− z1z2) ∩ T2 (see [Lelong and Gruman
1986, Chapter 2] for the relevant definitions). A quick computation reveals that
µ̂Z(k, l) = δkl , so that C[µZ ](z1, z2) = 1/(1− z1z2), a function in the Bergman
space of the bidisk which satisfies〈

zk
1zl

2 f,C[µZ ]
〉
= 0, for all k, l ≥ 0.

In fact, Z(1− z1z2)∩T2 has positive Riesz capacity precisely when α > 1
2 .

5. Concluding remarks and open problems

It appears to be a difficult task to characterize the cyclic elements of Dα for α ≤ 1,
and many basic questions remain. For instance, it is natural to ask whether the
Brown–Shields conjecture is true for functions on the bidisk.

Problem 5.1. Is the condition that f ∈ D is outer and Z( f ∗) has logarithmic
capacity 0 sufficient for f to be cyclic?

This question remains open for the Dirichlet space of the unit disk, and is widely
considered to be a challenging problem. A first step towards understanding cyclic
functions in Dα might be to solve the following natural problem.

Problem 5.2. Characterize the cyclic polynomials f ∈Dα for each α ∈ (0, 1].

An obvious necessary condition for f to be cyclic is that Z( f )∩D2
=∅, and

if f is a polynomial that does not vanish in D2, then f is cyclic because both f
and 1/ f extend analytically to a larger polydisk. But the problem appears to be
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open for polynomials with Z( f ) ∩ ∂D2
6= ∅: we would at least like to identify

the polynomials whose zero sets have positive capacity. We have proved that
polynomials that are products of polynomials in one variable are cyclic, and so the
zero sets associated with such functions must all have zero capacity.

As we have seen in our examples, it can happen that a polynomial with a larger
zero set, in the topological sense and in the sense of measure, is cyclic in Dα for
some α, while a polynomial with a smaller zero set is not. We have also noted that
a polynomial that fails to be cyclic in Dα when α > 1

2 can be “more” cyclic in Dα ,
for α < 0, than polynomials that are cyclic in all Dα . We mean this in the sense that

dist2
Dα
(1, (1− z1z2) ·Pn) � Cϕ−1

2α (n+ 1)

while
dist2

Dα
(1, (1− z1)(1− z2) ·Pn) � Cϕ−1

α (n+ 1).

It would be interesting to develop a rigorous understanding of this phenomenon.
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