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COMPACTNESS RESULTS FOR SEQUENCES OF
APPROXIMATE BIHARMONIC MAPS

CHRISTINE BREINER AND TOBIAS LAMM

We will prove energy quantization for approximate (intrinsic and extrinsic)
biharmonic maps into spheres where the approximate map is in L log L.
Moreover, we demonstrate that if the L log L norm of the approximate
maps does not concentrate, the images of the bubbles are connected without
necks.

1. Introduction

Critical points to the Dirichlet energy

E(u) = %/Q | Dul? dx

are called harmonic maps, and the compactness theory for such a sequence in
two dimensions is well understood. Let 2 C R? be a bounded domain and N
a smooth, compact Riemannian manifold. For a sequence of harmonic maps
ur € Wh2(Q, N) with uniform energy bounds, Sacks and Uhlenbeck [1981]
proved that a subsequence u; converges weakly to a harmonic #s, on €2 and
U = Uoo in C°(Q\ {x1,...,xy}) for some finite £ depending on the energy
bound. For each x;, they showed that there exist some number of “bubbles”, maps
oij - S? — N, that result from appropriate conformal scalings of the sequence
uy near x;. In dimension 2, E(u) is conformally invariant and thus one can ask
whether any energy is lost in the limit. Jost [1991] proved that in fact the energy is
quantized; there is no unaccounted energy loss:

L &
Jim () = E(uoo) + Z Z E(i))-
i=1j=1
Parker [1996] provided the complete description of the C° limit or “bubble tree”.

In particular, he demonstrated that the images of the limiting map #, and the
bubbles ¢;; are connected without necks. Around the same time, various authors
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proved energy quantization and the no-neck property for approximate harmonic
maps [Ding and Tian 1995; Wang 1996; Qing and Tian 1997; Lin and Wang 1998;
Chen and Tian 1999].

In this paper, we are interested in an analogous compactness problem for a
scale-invariant energy in four dimensions. Let (M4, g) and (N¥, ) be compact
Riemannian manifolds without boundary, with N k isometrically embedded in some
R, Consider the energy functional

Eexi(10) ::/ |Au|? dx
M

for u € W22(M, N), where A is the Laplace—Beltrami operator. Critical points
to this functional are called extrinsic biharmonic maps, and the Euler—Lagrange
equation satisfied by such maps is of fourth order. Clearly, this functional depends
upon the immersion of N into R”. To avoid such a dependence, one may instead
consider critical points to the functional

B i= [ | [* dx,

where (Au)T is the projection of Au onto T, N . Critical points to this functional
are called intrinsic biharmonic maps. The Euler—Lagrange equations satisfied by
extrinsic and intrinsic biharmonic maps have been computed (see, for instance,
[Wang 2004b]). We will be interested in approximate critical points.

Definition 1.1. Let u € W2-2(By, N), where B; C R* and N is a C? closed
submanifold of some R”. Let f € Llog L(B;,R"). Then u is an f-approximate
biharmonic map if

A%u — A(A(u)(Du, Du)) —2d*(Au, DP(u)) + (A(P(u)), Au) = f.
We call u an f-approximate intrinsic biharmonic map if
A%u — A(A(u)(Du, Du)) —2d*(Au, DP (1))
+ (A(P(u)), Au) — P(u)(A(u)(Du, Du) D, A(u)(Du, Du))
—2Aw)(Du, Du)A(u)(Du, DP(u)) = f.

Here A is the second fundamental form of N < R"” and P(u) : R" — T, N is the
orthogonal projection from R” to the tangent space of N at u.

Recently, Hornung and Moser [2012], Laurain and Riviere [2013], and Wang
and Zheng [2012] determined the energy quantization result for sequences of
intrinsic biharmonic maps, approximate intrinsic and extrinsic biharmonic maps,
and approximate extrinsic biharmonic maps, respectively. (In fact, the result of
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[Laurain and Riviere 2013] applies to a broader class of solutions to scaling-invariant
variational problems in dimension four.)

As a first result, we demonstrate that when the target manifold is a sphere,
the energy quantization result extends to f-approximate biharmonic maps with
f € Llog L. For the definition of this Banach space, see the appendix.

Theorem 1.2. Let fj € Llog L(B;,R"*1) and uy € W?2(B;,S") a sequence of
fr-approximate biharmonic maps with

(1-1) ID*urllz2py) + 1 DukcllLaca,y + I ficllLiog LBy < A < 0.

If uy — u weakly in W22(B;, S"), there exists {x1, ..., x¢} C By such that uj — u
; 2,2
in W r(By \ {x1,....x¢},S").

Moreover, for each 1 < i < { there exists an {; € N and nontrivial, smooth

biharmonic maps w;j € C®(R*, S™) with finite energy (1 < j < {;) such that

lim |D2uk|2=/ | D?u|* + /|D2a)~|2,
Bri(xi) ]Z: R4 Y

k—)OO Bri (xl)

i
lim |Duk|4=f |Dul“+Zf | Do
Br,-(xi) By; (x;) j=1 R4

k—>o0

Here r; = %minlsjsﬁ,j;éiﬂxi — Xj |, dist(x;, 0B1)}.

As a second result, we demonstrate the no-neck property for approximate bihar-
monic maps with the approximating functions L log L norm not concentrating.

Theorem 1.3. Let fj € Llog L such that the L1og L norm does not concentrate.
For uy, a sequence of fi-approximate biharmonic maps satisfying (1-1), the images
of u and the maps w;j described above are connected in S™ without necks.

In particular, if f; € ¢(L), an Orlicz space such that lim; o ¢ (¢)/ (¢ logt) = oo,
the theorem holds. For a definition of an Orlicz space, see the appendix.

Remark 1.4. The theorems also hold for u; a sequence of f;-approximate intrin-
sic biharmonic maps. We will prove the theorems in detail for fj-approximate
biharmonic maps, and point out the necessary changes one must make to prove the
intrinsic case.

We consider biharmonic maps into spheres because the symmetry of the target
provides structure for the equation that can be exploited to prove higher regularity.
For an f-approximate biharmonic map into S”, the structural equations takes the
form (see [Wang 2004a])

(1-2) d*(DAunu—AunDu)= f Au,
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and, for an f-approximate intrinsic biharmonic u,
(1-3) d*(DAuAu— Au A Du+2|Dul*Dunu) = f Au.

The structure of the equation for harmonic maps from a compact Riemann surface
into $" was determined independently by Chen [1989] and Shatah [1988]. They
demonstrated that u satisfies the conservation law

d*(Dunu)=0.

Hélein [1990] used the structure of this equation and Wente’s inequality [1969] to
determine that any weakly harmonic # € W 12 was in fact C°.

Li and Zhu [2011] used this additional structure to determine energy quantization
for approximate harmonic maps. In their setting, the equation takes the form
d*(Du Au) =t Au for T € Llog L. Our proof of energy quantization is similar
in spirit to their work and to the recent small-energy compactness result of Sharp
and Topping [2013]. Of critical importance are the energy estimates we prove in
Section 2. The first estimates, from Proposition 2.1, are used in two ways. First, the
L? estimates of (2-2), (2-3) provide sufficient control to determine a small-energy
compactness result away from the bubbles. Second, we use the Lorentz space duality
to prove energy quantization and thus require uniform bounds on the appropriate
Lorentz energies as in (2-1). In Section 3 we prove the energy quantization result.
We point out that since the oscillation bound contains an energy term of the form
| DAup||z4/3, we must also prove this energy is quantized. This point justifies the
necessity of the estimate (2-4). We prove the energy quantization result, under the
presumption of the occurrence of one bubble, in Proposition 3.4.

We next use this stronger energy quantization result for maps into spheres to
prove a no-neck property. Zhu [2012] showed the no-neck property for approximate
harmonic maps with t in a space essentially between L? with p > 1 and L log L.
For w a cutoff function of the approximate harmonic map u, Zhu considered a
Hodge decomposition of the 1-form 8 := Dw A u. (This is actually a matrix of 1-
forms, but we gloss over that point for now.) He bounded || || 7.2.1 by bounding each
component of the decomposition, and used this to bound || Dw||;2.1 by || Du||;2
plus a norm of the torsion term, . Using e-compactness and a simple duality
argument, he showed the oscillation of u is controlled by || Dw| 2.1, which in turn
implies the desired result.

Like Zhu, we prove the no-neck property by demonstrating that the oscillation
of an f-approximate biharmonic map is controlled by norms that tend to zero in
the neck region. Using a duality argument, we first determine that the oscillation
of u on an annular region is bounded by quantized energy terms plus a third
derivative of a cutoff function w. Our main work is in determining an appropriate
estimate for || DAw| ;4/3.1. We determine this bound by considering the 1-form
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B = DAw Au— Aw A Du, and we bound DAw by bounding § via its Hodge
decomposition. In particular, we take advantage of the divergence structure of the
equation for biharmonic maps into spheres to show that 8 not only has good L4/3
estimates but in fact has good estimates in L*/3:1_ This second estimate allows
us to prove the necessary oscillation lemma. The proof of the oscillation lemma
constitutes the work of Section 4. Coupling the oscillation lemma with energy
quantization, we prove Theorem 1.3 in Section 5.

Finally, the arguments we use require a familiarity with Lorentz spaces and
the appropriate embedding theorems relevant in dimension four. In the appendix,
we describe the various Banach spaces and collect the necessary embeddings
and estimates.

Many steps of the proof require the use of cutoff functions, so we set:

Definition 1.5. Let¢ € Cj°(By) with¢ =1in By. Forallr >0set ¢, (x) =¢(x /).

Note added in proof: As we finalized the paper, we noticed a somewhat related
preprint [Liu and Yin 2013], in which the authors claim that the no-neck property
holds for sequences of biharmonic maps into general targets. Their methods are
quite different from ours and we believe our results are of independent interest.

2. Energy estimates

To establish strong convergence away from points of energy concentration, we first
prove the necessary energy estimates. The small-energy compactness result relies
on the fact that in both (2-2) and (2-3) there is an extra power of the energy on the
right-hand side of the inequality. Thus, small energy implies that || Dug| ;4 and
| D?uy ||y > must converge to zero on small balls. Measure-theoretic arguments in
the next section will then imply strong convergence for these norms to some Du
and D?u respectively.

Proposition 2.1. Let u € W22(B,,S") be an f-approximate (intrinsic) bihar-
monic map, where [ € Llog L(By, R"*1). Then there exists C > 0 such that

@-1) [|D*ullzassapyy + 1 D*ullp21p,) + | Dull o (p))
< CUID2ul3 2 ) + 1001325 + 10Ul 2+ 17 rog 200
Moreover, there exists € > 0 such that, if
ID*ul 2By + 1 Dull Loy < E.
then, for every 0 <r < l,

(2-2) | D? < Cr?|D?

2 2
“”Lz(Br) u”LZ(BZ)
+ C(”D2””22(32) + ”D””24(32) + ”f”il(Bz)”f”L]ogL(Bz))’
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(2-3) ”D””}t‘L(B,) = CV4||DM||22(BZ)
2118 8 3
+C(|D u”LZ(BZ) + ”D“”L‘*(Bz) + ”f”Ll(Bz)||f||LlogL(B2))’
4/3 4/3
2-4) [DAuIYs ) < Cro3 D2}

+C(| D?u|)¥?

8/3 1/3
Lz(Bz) + ”Du|lL4(Bz) + ”f”Ll(Bz)”f”LlogL(Bz))'

Remark 2.2. In point of fact, we do not need the full strength of (2-4) in application.
We use instead the estimate

4/3 4/3 4/3 1/3
IDAUIY s 5, < CUDUIYa g +IDUl 5 F I ) 1 N o £ (3o

which can be immediately proven via the method outlined below.
Proof. First, find v € Wol’z(Bz, so(n+1))N WZ’Z(BZ, so(n + 1)) such that
Av = Au Au.

Thus, for each i, j € {1,...,n+ 1}, AVY = ul Aut —ut AuJ. Tt follows from
(1-2) that

A%v = A(AuAu) =2d*(Au A Du)+ f Au.
Next we let ¢ € WOZ’Z(BZ, so(n + 1) ® Q'R*) be the solution of
A%p =d*(2Au A Du).

Here so(n + 1) ® 2! R* denotes the space of 1-forms tensored with (7+1) x (n+1)-
antisymmetric matrices. Using Calderén—Zygmund theory coupled with interpola-
tion, and using the estimates from Section A.2, we determine that

2-5) 1D*@llLarsa(pyy + 1 D*@llL21(8y) + 1Dl 218y

<c(1D%ul22 5, + 1 Dull320.):
Moreover, letting ¥ € Woz’z(Bz, so(n + 1)) be the solution of
Ay = f Au,
we conclude that
2-6) DVl a1 By + ID*VlL20(my) + 1D ¥llLessa By < cll L 10g L(B)-

Defining
B:=v—¢—-vy
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and using the above equation for v, we conclude that each B/ is a biharmonic
function on B;. Now every biharmonic function satisfies the mean value property

B() = ]g B»dr—es f B(y)dy.

B (x)

for every By, (x) C B; (see, e.g., [Huilgol 1971]). Hence we estimate

ID?Bllp2.1(8,,,) + ||D3B||L4/3>1(B3/2)
<c||DB| L2z,
<c(IDvlr2s,) + 1/ IL10g L(By) + ||D2u||iZ(Bz) + ”DMHiZ(Bz))'

Since v = 0 on dB;, we can use the divergence theorem and Cauchy—Schwarz to
show that
/ |Dv/ |2 = —/ v AV = —/ Dv - (Du Au)
B> B> B,

51[ |Dv"f|2+c/ | Dul?.
2 /B, B,

||D2B||L2’1(B3/2) + ||D3B||L4/3'I(B3/2)

Thus,

< e(1Dull gy + 17 g £(my + 1021225, + 1Dul22 5.
Now we observe that, since Av = Au Au,
Au = (AuAu).u+ (Au,u)u = Av.u —|Dul?u,
where here 2.u represents matrix multiplication. Therefore,
A%u = A(Av.au — | Dul*u) = d*(DAv.u + Av.Du — D(|Du|?u)).

To get the second- and third-derivative estimates in (2-1), we first observe that
| D20l 221y 0y + 1 D>Vl Lass.1 (85,

< c(1Dull 2 g,y + 1 L 10g LBy T 1D 72y, + 1DuUll 2 5,))-

Using the previous estimates and Section A.2, we observe that the 1-form in the
parentheses is in L4/3-!1. Lemma A.3 in [Lamm and Riviere 2008] implies that

ID*ulp20(p,y + 1D ullpassi(p,
- C(||D3U||L4/3‘1(B3/2) + ||D2U||iz(32) + ||D2”||iz(32) + ”Du“iZ(BZ))

= C(”D””Lz(32) + ||f||L10gL(32) + ||D2u||iz(32) + ”D””zZ(Bz))-
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Finally, Sobolev embedding for Lorentz spaces implies that
IDullpa.1(p,y < c(ID*ull 218,y + | Dull 2.1 (5,))
<c(ID*ullL2.1(py) + 1 DullL2(B,)-

Combining this with the previous estimates finishes the proof of (2-1).
To prove the small-energy estimates, we observe that u satisfies (see, for instance,
[Lamm and Riviere 2008, Equations 1.4 and 1.14])

(2-7) A*u= AV -Du)+d*(wDu) +W - Du + f,
where V¥ = v’ Du’/ —u’/ Du', w’/ = —d*(V")—2|Du|?§;;, and
Wi = —D(d*(VV)) 4+ 2(Au’ Du’ — Au’ Du').

Let M, denote the space of m x m matrices and M;,; ® QKR* the space of
k-forms tensored with m x m matrices. Then V € W12(By, M, 11 @ QIR*),
w e Lz(Bz,Mn_H), and W € W_I’Z(Bz, Mu+1® QIR4).

Without loss of generality we extend f by zero outside of B,. The small-energy
hypothesis implies (see, for instance, [Lamm and Rivieére 2008]) that there exist
Ae L®NW22(By,GL,4;) and B € WL4/3(B;, My 41 ® Q2R*) such that

DAA+ AAV — DAw+ AW = DB

and
A(AAu)
= d*(2DAAu—AADu+ AwD—DA(V-Du)+AD(V-Du)+ B-Du))+ Af
=d*(K)+Af.
Moreover,
| DAll1.2(5,) + || dist(A. SO + D)l Low(my) + I Bllw 14738,
<c(|D?ullp2(y + I Dullpa(p,))-
First, we determine E, F € Wol’z(Bl) such that
AE =d*(K), AF=Af.
Interpolating on standard L? theory, we get the estimates
IEl 2.1y + IDEparsa(py) = clKllpassipy)
< (| D%ul2s ) + 1 DUlZap,).

Note that the estimate on K comes from considering the form of (2-7) and the
estimates on V', w, W and consequently those on A4, B.
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To determine estimates on F', we first observe that the estimates of Section A.2
imply that for G the fundamental solution to A2G = §,

I Fll2.00(8,) < I D*G % (Af)p2.00(8y) < <l L1 (By)-
IDF || pas3.00(p,) < D> Gllpas3.00p) | flIL1 (B,)-
Also, since AF = Af € H!(R*), standard theory implies that D?> F € L' (R*) and
thus, by the embedding of W !-! into L*/31 and Sobolev embeddings in R*,
I Fli2a8y) T IDF | Larzayy =l fLiog L(By)-

Using a duality argument, we conclude that

1F1Z 25,y < I FliL2com Il Fll21(my)
=cllf iyl f L rog LBy

4/3
I DFIs g,y = NDF) 2 Loy | DF Il ar3.1my)

1/3

< CIDF 55 o g1/ 100 B2
1/3

<l S g I ML o LBy

Now, set H = AAu— E—F. Then AH =0 in By, and, using standard estimates

on harmonic functions, we determine that for all 0 < r < %

IHllL2(B,) + IDH | pas3(B,) < crlH w100, ) = crllHllL2p,)-

The previous estimates imply that

IHZ 20 <cUD*ull3s oy + 1Dl acpy 1 11 gl e 2By
(B1) (B2) (B2) (B2) g L(B>)

Since
Au=A"YE + F+ H),

the estimates for D?u now follow from a standard cutoff argument and the previous
estimates.
We estimate || DAul|p4/3(p,) by using the previous estimates and noting that

ID(A™Y(E + F + H)llL3/3(8,)
=C(lE+ F+ Hl| 2B, | DAllL+B,) + | D(E + F + H)||p4/3(p,))-

To estimate Du, we first consider « € W2:2(B;), B € Wol’2 NW22(B;, QIR%)
such that

ADu = do +d*pB.
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Then

A?q = Ad*(ADu) = A(AAu + DA.Du) =d*(K)+ Af on B
and
AB=DAADu on Bj.

Here K is the appropriate modification of K to include the additional term. We
first observe that

IDBllcm,y < c(ID*Bli2s,) + I DBllL2(B,))-

Standard L? theory implies that

ID*Bll 2By < I DAllw12(8,) | Dutlli.2p,)-

Moreover, using a weighted Cauchy—Schwarz inequality and the Poincaré inequality,
we note that

| 1087 =~ [ B D DUy
B B

= c”DAlliéL(Bl)”DulliéL(Bl) + %”D,B”iz(gl)-
Combining this with previous estimates implies that

DBl LacB,) = C(||D2”||12,2(Bz) + ”D””lzﬂ(Bz))'

For the o term, we follow the ideas used to prove (2-1). Indeed, first determine
¢, ¥ € W2 (B,) such that A2¢ = d*(K) and A2y = Af. Then by (2-5), (2-6),
and appropriate duality arguments, we conclude that, for any 0 <r < 1,

1D@llLacs,) < c(I1D*ulF 25,y + | DulZacp,)):
”DWH;A(BV) = C”f”zl(Bz)”f”LlogL(Bz)'

Setting B = a — ¢ — ¢, we have A2B = 0 on By, and we use the mean value
1

property to show that for any 0 <r < 3
IDB||paB,) =< crlIDBl|Loo(Bs,,) < cr | DBl L4(B, 4)-
Noting that
4 X 4 4 2,18
||DB||L4(B7/8) = C(”Da”L4(B7/8) + ||Du||L4(Bl) +|D u”LZ(Bz)
1Dl ey + 1131 oy IS N0 LB)-

we combine the previous estimates to get the result for Du. O
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Remark 2.3. When u is intrinsic, the strategy is the same, except for two things.
In the first part of the argument, the equation for u will have the additional term
—d* (| Du|?> Du Au) on the right side. But this term doesn’t change the estimates. In
the second part of the argument, W%/ will include the term | Du|? (u’ Du’ —u’ Du?).
This gives the same value for d* (W), and all estimates going forward are the same.

We will prove the energy quantization results by appealing to Lorentz duality. In
Proposition 2.1, we determined uniform estimates for Lorentz norms of the form
LP!. The next lemma provides the necessary small-energy estimates for the L 7>
norms on the annular region, presuming small energy on all dyadic annuli:

Lemma 2.4. Let u € W22(B;,S") be an f-approximate biharmonic map with
f € Llog L(By,R"1). Given ¢ > 0, suppose that for all p such that By, \ By, C
Bys \ B;/» we have

(2-8) / |Du|* + | D*u|® + |DAu|*/? < e.
B, \B),
Then,

1Dull a.co(Bs\By) + | D2ull L2008\ B,y + I DU L4300 (B, B,
< C(e5 + (log(1/8)™1).
Proof. Let ¢y 1= @si+2;(1 — pyr—2,) be the annular cutoff supported on Ay :=
B,i+3;\ Bok—2; which is identically 1 on Byk+2,\ Byk—1,. Let G be the distribution
such that A2G = §, in R*. Then | DG(x)| = C|x|~!. Note that operator bounds on
DK G can be found in the appendix. Let i1y := fAk u. Set iy (x):=dp(u—ug)(x).
Therefore on Byi+1; \ Byk,
A%y = (APp) (u—itg)+4 DAy -D(u—itg ) +2Adx Au+4Dpy- DAu+di A%u.
Using the facts that A%u = A(Au Au.u—|Du|?u) and that Au Au= f Au, we
note that
P A*u = d*(&k(zAu A Du.u+2Au Au.Du— D(u|Dul?)))
— D¢y - 2QAu A Dui +2Au Au.Du— D(u|Dul?))
+ ¢x (f Auu—2Au A Du.Du— Au A u.Au).
And thus,
A%l = (A%Pp)(u—iig) +4DAGy - D(u—iig) + 2A¢p Au+ 4Dy - DAu
— D¢y - 2QAu A Dui +2Au Au.Du— D(u|Dul?))
+ d*(x 2Au A Du.u +2Au Au.Du— D(u|Dul?)))
+¢r(f Auat—2Au A Du.Du— Au A u.Au).
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For ease of notation, we let I, denote the first four terms above, and I, III;, IV
denote the last three terms, respectively. Then on each B,k+1; \ Byk;

| Du(x)| = [D(@g (u —x)) (x)| = |A?G % D(Pg (u — i) (x)|
= |DG % A*(¢p (u—i1y))(x)| = | DG * (g + Iy + I + IVg)(x)].
We consider each of these estimates separately. First, note that

|IDG * Ix(x)]

<C

1
/(sz-i-s,\sz+2,)U(sz—1,\sz—2,) |x =l

x (04w —up) + QKO3 D ) + QK02 Au+ (2¥0) "' DAu) dy

=C

f QF O @F ) (u — ) + (2F1) 2 Du
Ak

+ Q)72 Au+ %) DAY) dy

< C/A )| Du| + K1) 73| D%u| + (%) 2| DA
k
= C* ' (|1 Dull s + I D*ull L2 + | DAul|4/3)
<CE* 42+ x|
Using the same ideas as previously, we bound
|DG * 1 (x)]
<c@kn? / |2Au A Du.u+ 2Au Au.Du— D(u|Dul?)|

Ay

< C@* 1) 2Au A Duu+ 2Au Au.Du— Du|Dul®)| pa/34,)
< C* ) (I D?u 2| Du| o + | Dull} )
< CEV8 +63/%)x71

Using the estimates from the appendix, we note that

”DG *IIIk ||L4°°(Ak)
< C|ID*G i (2Au A Duu + 2Au Au.Du— D(u|Dul?)| 4.0 4,)
<C|¢pxQAu A Du.u+2Au Au.Du — D(u|Du|2))||L4/3(Ak)

and

DG * Vi || pa.0004,) = C||$k(f/\u.u—2Au/\Du.Du—Au/\u.Au)llLl(Ak).
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Thus

{x:|DG * (I + IV )(x)| > A}
SATHIDG * (Mg + TV 0o gy
< C)L_4(||$k(f/\u.u—2Au/\Du.Du—Au/\u.Au)||21(Ak)
+||$k(2Au/\Du.u+2Au/\u.Du—D(u|Du|2))||4L4/3(Ak))

2 3
<ci(([upu) [ Fupuit( [ uipurt) )
+C)f4||$k(f/\u.u—2Au/\Du.Du—Au/\u.Au)||‘£1(Al').

Thus, if § = 2M¢, then (letting Sy := B,k +1, \ By«, for ease of notation)

[{x € Bs \ By : | Du(x)| > 3A}]

M—1
< > [{x €Sk :[Du(x)| > 31}
k=0
M-—1 M-1
{x € Sk IDG x| > A} + Y {x €S :|DG *1Ii | > A}

k=0 k=0

M—1
+ [{x € Sk 1 |DG * (I, +1Vg)| > A}

k=0

1

M—1 .
< Z K| DG x (Il +1Vy)| > A} + {xe B, :Cm >A}‘

< (gz ; Z 1S Al )+ Z ((/ ¢k|D2u|)

(faam) +(faam) - (faane))

_ 1 _
< CA7HeZ + (0g(1/8) T 17 1og L(Bay) T8

For the estimate on ||/ A u.ul|;1 we use Lemma A.2, and for the rest of the
L' estimate we just use Cauchy—Schwarz. This proves the estimate for Du. The
estimates for D?u and DAu work in much the same way. In the case of D?u,
the terms like 11T and IV require the fact that D3G : L*/3 — L2:%° and D2G :
L' — L% are bounded operators, where the operation is convolution. For the
term DAu we observe that D3G : L' — L#/3:% and D*G : L*/3 — L4/3:% are
also bounded operators. O
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3. Energy quantization — proof of Theorem 1.2

We now determine a weak convergence result which will give small-energy com-
pactness and help us complete the proof of the energy quantization. We follow
the ideas of [Li and Zhu 2011; Sharp and Topping 2013], which in turn follow the
arguments of [Evans 1990], with appropriate minor modifications. Throughout this
lemma and its proof, we consider a measurable function f as both a function and a
Radon measure.

Lemma 3.1. Suppose {Vi,} C W'4/3(By) is a bounded sequence in By C R*.
Then there exist at most countable {x;} C By and {a; > 0} with )_; a; < oo and
V € W4/3(By) such that, after passing to a subsequence,

V= V24D aiby,
i

weakly as measures.

Proof. As W 1-4/3 embeds continuously into L? in four dimensions, after taking a
subsequence, by Rellich compactness there exists some V € L? such that Vj, — V
strongly in L? for 1 < p < 2 and Vj, — V weakly in L?. Moreover, since
{DV}} is uniformly bounded in L*/3, it follows that DV}, — f € L*/3 and f is
necessarily DV.

Set gx := Vi — V. Then g € L? and Dgj, € L*/3 with uniform bounds. Thus,
in the weak-* topology, both | Dgx|*/3 and g? converge to nonnegative Radon mea-
sures with finite total mass. (We denote this space by M (B)). Then g,% —~veM(B)

and |Dgr|*/? — pu € M(B) where v, u are both nonnegative. Now consider
¢ e CO1 (B1), and observe that the Sobolev embedding of W'! 4/3 into L? implies that

( / ($g)? dx)z < c( / Dbzl dx)“.

Taking k& — oo and noting that gz — 0 in L*/3, we use the weak convergence to

observe that R
2
/¢2dv50(/ |¢|3‘du) |

Let ¢ approximate x g, (x) for B,(x) C By. Then

V(B, (x) < C (1(B, (x)) .

By standard results on the differentiation of measures (see [Evans and Gariepy
1992, Section 1.6]), for any Borel set £

V(E) = / Dyvdp,
E
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where
Dyv(x) = lim —v(Br(x))
r—0 u(Br(x))
Now, as u is a finite, nonnegative Radon measure, there exist at most countably
many x; € By such that ({x;}) > 0. Moreover, for all x € B such that u({x}) =0,
we note that

for p-ae. x € R*.

Duv(x) = lim % < C lim (B, (1)} =0,

For every x; such that u({x;}) > 0, set a; = Dy v(x;j)pu({x;}). Then
v(E):/ Dyvdp = Z aj or v:Zaijj.
E {jix;€E} j

Since gi — v as measures, for ¢ € C(?(Bl),
Zaj(;&(xj-) = lim / g,%(b dx = lim / (Vi — V)2 dx.
7 k—o00 B k—>o0 B

Since (Vi —V)? = sz —V242V(V—=V;)and V =V} = gz — 0 in L?, we have
the result. U

Corollary 3.2. For {V;} as in Lemma 3.1, if
3-1 lim limsup || V; =0
(3-1) lim k_)oop Vil 2B, (x))

forall x € B, then
Vi — V strongly in LIZOC(B).

Proof. Notice the condition (3-1) implies that |V|> — |V|?> weakly as bounded
Radon measures. Then, by [Evans and Gariepy 1992, Section 1.9], for any B, (x) C
By, we have || Villr2¢, (x)) = IV | L2(B, (x)) strongly for all B,(x) C B;. Then,
again using the fact that (V3 — V)% = sz —V242V(V - Vi) and

/ V,f—Vzdx+/ 2V(V = Vi)dx -0 as k — oo,
B (x) B (x)
we conclude that V; — V strongly in leoc(Bl)- O

We now use the energy estimates of Proposition 2.1 to prove a small-energy
compactness result:

Lemma 3.3. Let uy be a sequence of fi.-approximate biharmonic maps in B, with
Jx € Llog L(B,) satisfying (1-1). There exists ey > 0 such that if

I Dugllpacsy + D> ukllL2(8y) < €0
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then there exists u € VVlgc’z(Bz) such that
Duy — Du strongly in Lﬁ)c(Bl) and D?uj — D*u strongly in leoc(Bl).

Proof. We will first prove convergence of Duy to Du and D?uj to D?u in leoc

and then use Gagliardo—Nirenberg interpolation to get the L# convergence.
Begin by choosing 0 < g9 < & from Proposition 2.1. First note that the uniform

bounds on uy in W2-2(B,) imply that there exists a u € W1 (Bz) such that uy, — u

in W] o0 (Bz) We now show strong convergence for the derivatives indicated.

Pick any xo € By and 2R € (0, 4] Then Bygr(xg) C Bs. Let up(x) :=
ur(xo+2Rx) and fk (x) := (2R)* fi.(xo + 2Rx). Then iy, is an fk -approximate
biharmonic map on B;. From (2-2), (2-3), we note that, for any r € (0, 2],

I Diig )| Lacg,y + | Dkl L2 (B,
< Cr(| Digllp2py) + | D*ti |l 2(8,))
+ C(I D24 (g, + 1Dk 1225, + (il 8oy | Fe | L 1o L(B2) 2
L7 1 gy 1k 2 g £.B2)¥)-
Using the scaling relations listed in Section A.3 and Lemma A.3 we observe that
1Dl La(By o)y T 1 P71tk | L2(B, 2 (x0)
< Cr(IDugllLa(ps pxoy + 1 DUkl L2(Ba g (x0)
FC(1DurlZ o, pixgy + 121k 28, e xo))
0 fil 1 B o | Fi L L 0 LB o)
31 3y o I | Lo L(Bar o) F)-
Lemma A.2 and (1-1) together imply that

1 \7! 1\!
I fellz Barceon = € (g 57 ) IfillLiog LeBarieon = CA(log 57 -

Note that the right-hand side goes to zero as R — 0. Therefore, the small-energy
hypothesis implies that

1%111)1 }E}}) lim (”D”k|lL4(B,2R(x0)) + 1D ug |l 2B, 2k (x0))

<Ceg hm lim lim (||Duk||L4(1f32R(xO))Jr ID*ukc ]l L2(By g (xo))-

—->0r—>0k—

Decreasing &g, if necessary, so that g < 1/C, implies that

. . 2 _
rh_I)T{) k&“;o(”D”k 228, (xo)) T 1P Ukl L2(B, (x0)) = O
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for all xg € By. Let Vj = D?uy and V = D?u. Since Vj, — V weakly in L? as
measures and Vy satisfies the hypotheses of Lemma 3.1 and Corollary 3.2 on By,
Vi — V strongly in L2 (B;).

loc
Since Duj — Du weakly as measures in L?(B,) and

lim Um [ Dujc|p2(p, (xoy = im Hm rDugll g, () =0

for all xo € By, Corollary 3.2 again implies that Duy — Du strongly in leoc(B 1)
Now, for any B, (x) C By, we consider the functions

wy = (U —u) — ]é ( )(uk—u).

Then, Dwy = D(uy —u) and D*wy = D?(uy — u). We apply the Gagliardo—
Nirenberg interpolation inequality for wy, and then the Poincaré inequality for the
L? estimates on wy to conclude that

I Dwill 4B, )y < CID*wicll 2B, oy I PwillL2(B, @)y + C I Dwill L2(B, (x))-

Then, using the strong convergence of D?u; — Du in leOC and Duj — Du in

LIZOC, we conclude Duj — Du in LfOC(Bl). O

Finally, we prove the energy quantization result under the presumption of one
bubble at the origin.

Proposition 3.4. Let f;, € Llog L(B;,R"*Y), and let uy € W?2(By,S") be a
sequence of fr-approximate biharmonic maps with bounded energy such that

U — u in W22 (B \ {0}, S"),

loc
g (x) = up(Agx) = o(x) in W2(RY, S").

loc

Presume further that w is the only “bubble” at the origin. Let

Ar (6, R) :={x : A R < |x| <6}
Then

. . . 2
R11_>moo 811_1)110 kli)ﬁéo(llD urll 24, 6,8y + 1Pkl L4, 5,R))

+I1DAUk | L4734, 5.R))) = 0.

The proposition also holds if uy, is a sequence of fi.-approximate intrinsic bihar-
monic maps.
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Proof. We first prove that for any e > 0 there exists K sufficiently large and § small
so that, for all k > K and pg > 0 such that By, \ B, /» C Ax(8, R),

(3-2) ||D2uk||L2(B20k\Bpk) + | DukllLsp,, \B,,) T | PAuklL4/3(B,,, \B,, )
< E&.

Since {0} is the only point of energy concentration, the strong convergence of
D?uy — D*u in L? and Dujy — Du in L* implies that for any & > 0 and any
m € Z% and § sufficiently small, there exists K := K(m) sufficiently large such
that, for all k > K(m),

&

(3-3) ||D214k||L2(325\362_m_1) + 1 Duk a8, \Byy 1) = oS

Here C is an appropriately large constant determined by the bounds of Proposition 2.1
and I" is the number of balls of radius /32 needed to cover B, \ B,/>. By (2-4),
for any x € Byg \ Bsp-m—1 and 0 <r < §27"" 1,

(3-4) ||DA“k||L4/3(B,./32(x)) = C(”Dz“k”Lz(Br/z(X)) + ||D”k||L4(B,‘/2(x))
1/4 3/4
+ ||fk||L1(Br/2(x))”fk”LlogL(Br/z(X)))

Since Lemma A.2 and (1-1) imply that
IR
(3-5) I fellL1(B, 2 = C(log ;) I fk I L 10g L(By /2(x))
for sufficiently small &, (3-3), (3-4), and (3-5) together imply that for k > K(m)

(3-6) | DAukllpa/3(Brs\By, 1) T 1Ptk L2(B2s\Byy 1)

2 1
D%kl L2(Bos\ By, 1) = 26

A similar argument (perhaps requiring a larger K) implies that

(3'7) ”DAuk ”L4/3(BZ’”)\/(R\BAkR) + || Duk ”L4(B2mkkR\B)»kR)

—_

2
+ ”D uklle(B2"1ka\BkkR) = 2¢.
Now suppose there exists a sequence #; with A R < 3, < § such that
2
1D ukllL2(By, \B.) + 1 Dtk L4(Bs,, \B, ) T 1 PAUKN L4738y, \By, ) = &

By (3-6) and (3-7), t — 0 and By, \ Ba, r/1, — R*\{0}. Define v (x) = uy (txx)
and fk (x):= t;{‘ Ji(tix). Then vy, is an fk -approximate biharmonic map, defined on
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P We first observe that vy — v Weakly in ngcz (R*, S™). Notice forany R >0

B

/ o)) dx =/ | fe(s)] ds
BR BRt

k

|Briy |
< /0 )™ (1) di

1\ [ 1
Ec(log(2+R—tk)) /0 (ﬁ()*(t)log(Z-l—;)dt

1 -1
—c(toe(2+ 7)) Welzsosscmn,
By (1-1), fk —0in L} (R4). Moreover, for all k,

loc
ID*vicll 2B\ By) + 1 DVK | L2 B\ By) + I DAVE | Las3(B,\ By = &

If vy — Voo strongly in W22(Bys \ By/16.S"), then voo is a nonconstant bihar-
monic map into §”. Note that by Proposition 2.1 we get

1D*voo ll£2(B,\ By) + [ DVooll L4 B\ By) > O-

This contradicts the fact that there is only one bubble at {0}. If the convergence is
not strong, then Lemma 3.3 implies that the energy must concentrate. That is, there
exists a subsequence vy such that ||D2Uk||L2(Br(x)) + Dkl e, (x)) = 8(2) for
all r > 0. This also contradicts the existence of only one bubble. Thus, (3-2) holds.

Using the duality of Lorentz spaces and the estimates of Section A.2, we get
the bounds

2, 12 2 2
D uplly» = CllD ugllL2.00 | D upll 2.1,

IDug iz < Cll IDug ||| ass.00 || Dutg|| L.

(3-8) < Cl|Dug|l} 4.00 | Dui || 2.1

4/3
I DA 133, < CIDAW) | Lo I D AU a5

< C|DAug |3, I DA pass.

L4/3.00

Using (1-1) and (2-1), we observe that
||D2uk||L2,1 + | Dug||pa1 + | DAug| pa31 < CA.

Since (3-2) allows us to apply Lemma 2.4, appealing to (3-8) implies the result. [

The full proof of Theorem 1.2 now follows immediately from the uniform energy
bounds of (1-1), the small-energy compactness results of this section, and standard
induction arguments on the bubbles.
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4. Oscillation bounds

The proof of the following oscillation lemma will constitute the work of this section:
Lemma 4.1. Let u € W22(B,,S") be an f-approximate biharmonic map for
f € Llog L(B;,R"*1) with

ID?ull2cp,) + I Dullacm,y + 1/ | L10g L)) < A < 0.
Then for 0 <2t <§/2 < 1/16,

sup lu(x) —u(y)|
x,y€Bs/2\Ba;

< C(ID?ullp2(Bos\ B,y + 1 DUl L2(By5\B,) + | F 1L 10g L(Bag)
+ [|DAu| pas3(Bog\B,) T+ IDAU| as3.1 By, \ B,y + | Basl)-
The lemma also holds if u is an f -approximate intrinsic biharmonic map.

Consider the map u; : B; — R*T! such that u;(x) = b + Ax, where b € R"*!
and 4 is an (n + 1) x 4 matrix with

A= ][ Du and b:= ][ (u(x) — Ax) dVol(x).
By \B; 26\ By
Then by construction
][ u—u; =0, ][ Du— Du; =0, Dkulzo for all k > 2.
B>\ B; B>\ B;
Setw = (1—¢;)(u—uy). Let w; : By — R"T! such that wy (x) = m + N x, where
N = ][ Dw and m:= ][ (w(x) — Nx)dVol(x).
Bs\Bs/2 Bs\Bs/2

Let W = (w —wi)¢s/2, 50 W = w —w; on B/, and the support of © is contained
in Bg.
By definition,

sup lu(x)—u(y)| = sup lw(x)—w(y)+u(x)—u(y)|
X,y€Bs/2\ Ba; Xx,y€Bs/2\Bay

= sup |(W+uy+wi)(x)—(W+u +wi)(y)]
Xx,y€Bs/2\ B2y

<2 sup |Wx)—w(O0)+(A+N)x|.
x€Bs/>\ By

We first observe that, outside of By, w = u —u; so the definition of N implies that

A+N:A+][ Du—][ A:][ Du.
Bs\Bs/2 Bs\Bs/> Bs\Bs/>
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Thus, for x € Bs/,, Holder’s inequality implies that

|(A+N)X|§C8_3/ |DM|SC”DH||L4(B5\B§/2)'
Bs\Bs,2

As before, let G be the distribution in R* such that A2G = §,. Then G(x) =
C log |x|, and recall that DG € L**°(R*). It is enough to show that:

w(x)— ][ w
R4
Since all of the above quantities are translation-invariant, we may assume x = 0.
Then
a0~ fa=|[, 826070~ f@)ave)

_ ‘ /R 4 DG(y)DAlE(J/)dV(y)‘

< C||DG || ps.coway| DA La/3.1 ()

Claim 4.2.

< C||DAD|| f4/3.1(gay-

Using the definition of w,
| DAWI| pa/3.1 4y
<ClIE lw—wi| + 872D (w —w)| + 87 [D*w]) L4318\ By )
+ C||[DAw| pas3.1(By)-
Interpolation techniques and Poincaré’s inequality imply that
1873 (w —wi)ll /3 (By\ By ») = C 872 D(w —w1) | Las3.1 (By\ By )
< Cl187 D2 wl| Las3.1(By\ By 2)-

Moreover, the embedding theorems for Lorentz spaces imply that

1671 D2 wllpas3.1 B\ By 2) = CID*WllL2(By\ By )
Therefore,

@1) | DAB| passagay < CID*wl p2(p,\ By ) + C I DAWI Las3.1(py)-
Since D>w = D?u on Bg \ B,;, we conclude that
(4-2) oscpy,,\B,, U

= C(| DAw| pas3.1(gs) + ”D2u||L2(B5\B5/2) + | Dull L4 B4\ B, 2))-

The remainder of the proof will be devoted to bounding the DAw term.
We define 8 = DAw Au— Aw A Du. Then

B :=u/ DAw' —u' DAw’ — Aw' Du’ + Aw’ Du' € Q'R*
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fori,j=1,...,n+ 1. By definition 8 = DAu Au— Au A Du in Bg\ By, and
thus d*B = f Au in Bs\ B,;. We will require an L*/3 bound for 8, and to that
end note that
(4-3)  |IBllLas3(Byg) = CUIDAW Las3(py) + |Aw A Dullpas3(p,y))

= C(| DAw|| pa/3(Byg) + 1AW L2(B5) | DUl L4 B,s))

< C(|DAullp4/3(p,5\B,) + | D71l L2(Bos\ B,))-

For the last inequality, || Du||;4(p,,) is bounded and is absorbed into the constant.
In addition, we use the definition of w and repeated applications of Poincaré and
Holder to determine
I DAl L4/3(By5) < CUD* ull 2B\ B,y + 1 (1 = Pr) DAU| L4/3(B,y))-
1AWl L2(8,5) = CID*ullL2(By5\ B,
Set
y :=d*(DA(w—u) Au— A(w —u) A Du).
Then

d*B= fAu+y, dB = —-2DAw A Du,
AB = (dd* +d*d)B = d(f Au+7y) +d*(—2DAw A Du).

We consider a decomposition B = HY/ 4+ d W + d*®'/ for each component B/,
where H/ is a harmonic 1-form and ®, W satisfy appropriate partial differential

equations. Our objective is to bound || DAw| z4/3.1 by ||B||14/3.1, and to that end
we determine such bounds for d\W, d*®, and H.

Remark 4.3. For the intrinsic case, we modify a few definitions. Let f; :=
B+2|Du|* Dwy Au, where wy = (1—¢;)(u—d) and d := fB \B, - Using the def-

inition of wy, we get the bound || B[l 4/3(p,5) =< I8 ”L4/3(st) e | Dullp4(B,5\B,)
by using Holder’s inequality and Poincaré’s inequality. We then define y; :=
y +d*(2|Du|* D(w; —u) Au), and thus

d*Br = fAu+y; and dBy =dB+ D(|Du|*)Dw; Au—|Du|* Dwy A Du.
We now continue with the proof for the extrinsic case:

Proposition 4.4. Let W'/ be a function on By satisfying

AV = fiyd — fiyl 4 yU  in By,
Vi =0 on dB5s.
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Then

ld W || Lass.1(Byy)
< C(ID?ull 2By \B,) + I DUl Lo\ B, + I DAUNL4/3 (B, B)
+ I f L 10g L(Bas) + | Basl)-

Proof. We decompose W/ = \Ilij + \I’;j so that
AVY =y in By,
W/ =0 ondBy.
Following classical arguments,
ID*T 21 (Bys) < ClY g1 (Byg)-

Thus the embedding theorems impb./ that | DV} L4731 (Byg) = C||yij||H1(328).
Now we consider the ! norm of ¥/ . By definition,

yij = d*(DA(wi—ui)uj—DA(wj —uj)ui—[A(wi—ui)Duj—A(wj—uj)Dui])
= AW —u ) = A?(w! —u) ' — (AW —u') Au! —A(w’ —u’ ) Aub).
Recall that w := (1 — ¢¢)(u —uy). So
A’ —ul) = —A¢ (! —u{)—2D¢; - D —u]) - Au’,
A2(w! —uly = —A2¢,(u? —u]) — A Au/ —2DAG, D(u? —ul)
—2A(D¢;- D —ul)) — Agr Au? —2Dg; DAU — ¢, A2u’ .
Combining all of the terms, we estimate

[y < CID*}||lu—uy| +C|D3¢;| |D(u—uy)| + C|D*¢;| | D?ul
+C| Do |(|DAU| + | D(u —ur)| | Aul) + |de||u’ A%u! —ul A%u'|.

The definition of ¥/ implies that y*/ = 0 on R*\ B,; and
/ )/ij=/ (DA(w—u) Au—A(w—u) ADu)Y -n=0.
R4 0By,

The estimate from Lemma A.1 implies that

177 301 (Bog) < €(tlly7 = pe(u? A*u’ —u' A*ul)|| pas3 (g,
+ [l (! A*u" —u' A*u? )| L 10g L(B,g) + | Bas))-
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Repeating techniques used previously, we bound the first three terms of |y/|:
= lu—urllpass o\ By < CtID W —ur)l| Las3 3o\ By)
< Ct7?||D?ullpa/3 By B,y < Ct ™ 1D ull L2(Boy\ B,)-
We will preserve the term
1~ [ DAullp4/3(p,,\ B,)-

as our energy quantization result implies that this term will vanish when taking limits.
Holder’s inequality and the fact that || D(u —u1) | 4(B,,\B,) = ClIDullp4(B,,\B,)
imply that

1D —ui)Aullparspy\,y < CIDw—u)lLep,\ 81 P>l 28y \5,)

< C||D*ullp2(,\ B,)-

For the last term, since u is an f-approximate biharmonic map into S”,

e (A%u AL 10g L(Bag) < IS AUllL 10 L(Bag) < IS L10g L(Bag)-

All of the above estimates imply that

17 1901 Bapy = C (10?0l L2(Bo\ B, + 1 Dutll Lo (85, B,)
+ ||DA“||L4/3(BZI\Bt) + ||f||LlogL(Bza) + |B45|)'
Finally, consider B
A\I!;J = fiul —ul f7 in By,
{ \If;j -0 on dBs.

Then classical results give ||\IJ’2] Iw21B,5) = ClS Nur(Brs) = CIS L 10g L(Bos)-
Thus

1AW 11 (Byg) < CILS L 10g L(Bas)-

and the embedding theorems in R* imply that

1495 | a3t (Bag) < CLF L 10g L(Bs)- O
Remark 4.5. For the intrinsic case, we define
yr =y +d* Q2| Dul> D(wy —u) Au)
=y —2¢;d*(|Du|®> DuAu)+ 2| Du|*(Ap: (d —u) Au— D; - DuA(d +u))
+2D|Du|*- D (d —u) Au.

We bound ||yr||4;1 by making some observations: First, —2¢:d*(|Du|* Du A u)
is added to the term —¢,;A%u A u that appears in the expansion of y. We then
make the substitution —¢; f A u as in the extrinsic case. Second, using Poincaré’s
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inequality, Holder’s inequality, and the global energy bound for u, the L*/3 norm of
what remains is bounded by C¢~! (I Dull 4By \B,) + ||D2“||L2(th\B,))- Finally,
observe that, by construction, yy is supported on B,; and fR4 yr =0, so the estimate
used for ||y |41 still applies.

Proposition 4.6. Let @7 € Q2R* be the solution to the system

A®Y = —2(DAw! Du/ — DAw’ Du') in By,
ol =0 on B5s.
Then

@-4) ¥V || ass1 (g5 < CUD ull 28,0\ B,) + | DAUI L4735 (B,5\ B,))-

Proof. Using the same techniques and estimates as in the previous proposition,
we note that

DY || Lass.1(Byg) < CIDAW A Dll31 g,y
= C||DAw||pa/3(Byg) I Dttll L4(Bog)
< C(|D*ull 2By \B,) + I DAUl L4/3(B,5\ B,))- O

Remark 4.7. In the intrinsic setting the steps of the proof are the same, though the
equation for AQDII] includes the terms D (| Du|?) Dwy Au—|Du|?> Dwy A Du. Since
[ DwrllL4B,s) < C | DullL4(B,5\ B,)> one can quickly show the intrinsic bound has
the form

|d* @l pas3.1(By5) = 1d* @l Las3.1(8y5) + C I DullLa(py\ B,)-
Now consider the harmonic 1-form
HY = gl —g*&l — g/,
Propositions 4.4 and 4.6, along with (4-3), imply that
I HllLa/3(Byg) < |BlLas3(Byg) + 14" ®llLars(pyg) + 14 Las3 By
< C(ID?ullp2(B,s\B,) + 1 DUl L4 (B,s\ B,

+ 1 DAu| L4/3(Bog\B,) + I/ 1L 10g L(Bs5) + | Basl)-
The mean value property and Holder’s inequality together imply that

HY <Sp D
IHY [[cocps) = 53 (1 D*ull L2(Bys\Byy + 1 Dttll Lo B0\ B,)

+ 1 DAu]| L3/3(Bog\B,) + I/ 1L 108 L(Bos) + | Basl)-
Moreover, a straightforward calculation implies that

||Hij||L4/3.1(Ba) = C53||Hij||C0(Ba)'
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Thus,

IBlLers.1(8s < C(ID*ullL2(Bos\B,) + | Putll 48,5\ B,
+ 1 DAullpa/3(y\ B,) + I/ L 10g L(Bas) + | Basl)-

Using the appropriate harmonic 1-form Hj, we produce an identical estimate for 8;.
We now use the definitions of w and B to determine a bound on || DAw || p.4/3.1(py)-
First we consider the function on B»;
||DAw||L4/3~1(B2,)
<|CElu—uy|+ 172D —uy)| + 17 [ D*ul)l par3.1(By\ By
+ [|(1 —¢:) DAu| pas3.1(B,,)
< C|D*ullp2(,\B,) + CI DAUI| 43,1 (B, \ B,)-

On Bs \ By, w = u—uy so DAw = DAu. We first decompose DAu into
tangential and normal parts with tangency relative to the target manifold S”. Then

DAu = DAuT + DAu™ = DAuAu.u+ (DAu, u)u.

Here we define (Dv,u) := Zi’k(avk/axi)uk dxi. On Bs\ By;, DAuAnu =
B+ Au A Du, and thus
(DAw)T| < |B] +|Au] | Dul.
Since
(DAu,u) = D{Au,u) — (Au, Du) = D(d*(Du,u) —|Du|*) — (Au, Du)
= —D|Du|? — (Au, Du),

we estimate
||DAw||L4/3=1(B3\B2t)
< CllBliLass1 (g + CID*ull 2B\ Bopy I Dtell L4 B\ By
< C(ID?ullp2(Bys\B,) + 1 DUl L2 (Brs\B,) + I DAUN L4/3(B15\ B,
+ 1 f L 1og L(Bas) + | Basl).
Thus,
IDAwI|Las3.1(ps) < CUID*ull2(By5\B,) + 1 DUl L4(Bo5\ By + 1S | L10g L(Bas)
+ | DAullpas3.1(By\B,) + 1DAUl| L4/3(Bys\ B,y + | Basl)-

Inserting this inequality into (4-2) proves the oscillation lemma.
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Remark 4.8. To complete the proof in the intrinsic case, observe that, on Bs\ By,
DAw Au = DAuAu=p+ AuA Du+2|Du|> Du A u. This changes the L™
estimate for |(DAu)T | on Bs\ B;, but using embedding theorems for Lorentz
spaces we note that the L*/31 estimate is unchanged.

5. No-neck property — proof of Theorem 1.3
The proof of the no-neck property now follows easily from combining the energy
quantization and the oscillation bounds.

Proof. As we may use induction to deal with the case of multiple bubbles, we
prove the theorem for one bubble. Let A; be such that i (x) := ug(Axx) —
w(x) € ngc’z([R{“, S"). Since each of the u; € W2-2(By,S") are f-approximate
biharmonic maps with f; € Llog L(B;, R"*1) and have uniform energy bounds,
Lemma 4.1 implies that

sup |uge (x) — ur (¥)]
X,y€Bs/2\ B2y, R

= C(”Dzuk”Lz(Bza\Bka/z) + ||Duk||L4(BZS\BAkR/2)
+ ||fk ||LlOgL(Bza) + ”DAUk ||L4/3'1(B)LkR\BAkR/2)
+ | DA L4/3(Bos\B; /2 T |Bas])-

Theorem 1.2 implies that

. . . 2
(SIEE}) Rh—r>noo klggo(”D ”k”LZ(st\Bxk r/2) T ”D“k||L4(st\B,\k R/2)
+ ||DA”k||L4/3(B23\BAkR/2)) = 0.

Further, (2-1) and Holder’s inequality imply that
||DAuk ||L4/3’1(B)\kR\B)‘kR/2) = C(”Duk ||L4(BZAkR\BAkR/4)
+ ||Dzuk||L2((Bzka\Bka/4) + 1 fkllL10g L(Bas, &))-

Since we presume the L log L norm of f; does not concentrate,

lim Iim lim =0.
Jim lim  lim_ I f% |2 10g L(Bss)

Therefore,

lim lim lim ||DAugl 431 —0.
§—0 R—00 k—00 ” k ”L (B, R\By; R/2)

Taking all of the estimates together implies that

lim lim lim sup |t (x) —ur ()| =0.
§—>0 R—o00 k—00 x,y€Bs/2\B2j, R

Thus, no neck occurs in the blowup. O
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Remark 5.1. For f;, € ¢(L), we use the estimate

| & I 10g L(Bss)

Ifkllog(2+|fk|)dX+/ | fiellog(2 + | fi|) dx
) | fic|>8—1

tlog(2+¢
<C8log2+8 1)+ sup tlog2+1)
i>s—1 PO Jifil=s

tlog(2+¢
<C8log2+68 1)+ sup tlog@ +1)
t>§—1 ¢(ﬂ

Since we presumed lim; o0 ¢ (2)/(t logt) = oo, we determine

/Bzaﬂ{fk|55_1
(| fx ) dx

lim sup I ficll L 10g L(Bas) = O

Appendix: Necessary background
A.1. Hardy spaces, Lorentz spaces, L log L, and Orlicz spaces. Let
T :={®ecC®R*) :spt(®) C By, VP poo(msy < 1}.
For any ® € T, let ®;(x) :=t~*®(x/t). For each f € L'(R*), let

Jx(x) = sup sup [(; x f)(x)].
PeT >0

Then f is in the Hardy space H'(R*) if f, € L'(R*) and
I/ 2t ey = LS5l Lt ey

Thus, one has the continuous embedding #! < L!.
For a measurable function f: Q — R, let /™* denote the nonincreasing rearrange-
ment of | /| on [0, |2]) such that

{x e Q:f()] = s} =[{r €(0,[Q): [*(t) = s}].
Let

t
fw=t /0 £2(s) ds.
For p € (1, 00), let

[ tVPTl @y de ifg =1,
sup,o t!/P f**(t)  if ¢ = o0.

| fllra = {
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We will also occasionally exploit the fact that one may understand || f'||zp.c0 by
understanding instead its seminorm

IS5 oo i= sup Al{x 1 | £(x)] > A}|1/2.

A>0

We define the Banach spaces

LPA = {f | fllLra < oo}.

The spaces L?>! and L?>*® are examples of Lorentz spaces, and can be thought of
as interpolation spaces between the standard L7 spaces. For example, one observes
that the following embeddings are all continuous

L"(By) = LP!(B1) = L?"?(By) = LP(By) < L”"*®(B;) = LI(B)

for all ¢ < p < r [Hélein 1990].
We define

Llog L := {f:/|f(x)|log(2+|f(x)|)dx<oo}.

Since this is nonlinear, we will use the following seminorm which is equivalent to
the norm for L log L

1l Loe L = f Fog(2+ 1) ar.

We also note that L?(B;) < Llog L(B;) — L'(B;) are continuous embeddings
for all p > 1. Finally, we say f isin H#!(B;) if

(f— }, 1@ dx)xBl e 1! RY).
1
We record here the often-used estimate

(A-1) 1/ 31 Byy = Clf L 10g L(BY)-

Finally, for any increasing function ¢ : [0, c0) — [0, o) we define the Orlicz space

(L) = {f: oty = [ 907D < oo}.

Examples include the L2 spaces for ¢ () =t? and L log L when ¢ (¢) =1 log(2+1).
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A.2. Embeddings and estimates for Lorentz spaces. We will frequently use the
following facts about Lorentz spaces:

(1) LP4.LP"4 continuously embeds into L’ for 1/p +1/p’ <1 where

1 1 1 1 1 1

-=—+4+— and - =-+—,

rop p s q 4
with

I /gllLrs = Cll fllLrallgllLr.a-
(2) For feL?>and g e W12,

I/gllparst =Cllfli2lglpr.z.

(3) WLI(R*) — L4/31(R*) and W 12(R*) — L*2(R*) are continuous embed-
dings.
(4) L*! and L2 are dual spaces, as are L4, LA4/3:1 and L41, [4/3:0

(5) Forall 0 < p,r < oo and 0 < g < oo (see [Grafakos 2008], Section 1.4.2),

/" Neea = 1SNz prar-

(6) Let f € LP4(R*) and g € L?9(R*) with 1/p +1/p’ > 1. Then h =
fxge L™ (R*) where 1/r =1/p+1/p’—1 and s is a number such that
1/q+1/q' > 1/s. Moreover,

12l Lrsrey = €l f lLrawsy €l Lo a7 @ay-

For a proof, see [Ziemer 1989].
Let G be the distribution such that A2G = §,. Then, D>G € L?>*°(R%)
and D3G € L*/3:%°(R*). Moreover, DG € L**°(R*).
Using (6), and considering D?G, DG as operators by convolution, we
have:
(7) D*G : L¥3(R*) — L4'(R*) and D3G : L4311 (R*) — LZ'(R?) are
bounded operators.

A.3. Scaling and estimates for L log L and #1. We first prove an essential but
technical lemma that is probably well known, though we have not found a reference
in the literature. (We prove the lemma for our particular setting, though a more
general result is true.)

Lemma A.1. Let [ = fi + f», where f; € L*/3(Bg) and f> € L1og L(BR), be
a compactly supported function with spt(f) C Bg and [z f(x)dx = 0. Then
f € HY(BR) and there exists C > 0 such that

(A-2) I/l Bry = CRI f1llLar3BR) + I /2l L 10g L(BR) T | B2R])-
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Proof. First note that

(A-3) | fallr = fB fuolx)dx + / fu(x)dox.

R*\B2r

Since f; € L*3(R*) and f; € L log L(R*), we see that f € L} (R*) and therefore
fe(x) < cMf(x) for every x € R*. Here M f : R* — R is the maximal function
defined by

M f(x)=sup

1
| /()| dy.
r>0 | Br(X)| JB, (x)

Using the above, Holder’s inequality and the estimates || M f1| p4/3 < cll f1llz4/3
and | M f2ll 1B, ) = ¢l f2lL10g L(Bog) + €| B2RIs

(A-d) [ Fuo(o) dx <cRIC sl + 1wl
<RIMfillgars + | M falls

<cR| fillpass +cll f2llLrog L + | B2rl.

Now we calculate for ¢ € T and x € R*:

e % f(x)] = ‘ /B de(x— ) /() dy\

. (Pr(x =) =1 (X)) f(¥) dy‘

< V] Lo /B L) dy,

where we used the mean value theorem and the cancellation property |; pe S () dy =
0. Since | Véy||zoo < 1/t°, for t > 0, we estimate

(A-5) YO § /B 0y

2 ¢R
||f1||L4/%+ s 2l og -

Assuming now that |x| > 2R, we can apply a technical result to get

RZ
(A6)  fulx)=sup sup i % FOO = N fillgars + el falLog 2
oeT t>|x|/2 | x| |x|
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Inserting (A-4) and (A-6) into (A-3), we conclude that
(A-T) I fsllpr = Rl fillpass +cll f2llLiog L + ¢| B2Rl

1
FCR fillpas + R i) [ o
R\ Bz r | x|

< cR|l fillLass +cll f2llLiog 2 + €| B2rl-
This concludes the proof. O

We also note two important inequalities (with proofs following those of [Sharp
and Topping 2013]):

Lemma A.2. Let f € Llog L(B,(xg)) forr €(0,1/2]. There exists C >0 such that
(A-8) 11218y ey < CU0g(1/EN T 1L 10g LB, (xo))-

Proof. Start by observing that
|B1]

0<r* X t)log(2+ )dt
0

1B, (xo)| 4
:/ f*(s)log(2+—) ds
0 N

|Br (x0)| | B, (x0)| y
= / /™ () log(r*) ds + [ /() log(—4 + —) ds
0 0 r4 s

< —4log(1/ M) fllLr (B, (xo)) T CIIS L 10g LB (x0))-
The last inequality follows from the fact that there exists a fixed C such that

2 1 2wg+1 1\¢
—4=-< <(2+-=
r S S S

for all s < war?. O

Let u be an f-approximate biharmonic map on B; with f € Llog L(B;). For
Xg € By and R > 0 such that BR(xo) C By, define #i(x) := u(xo + Rx) and
f (x) := R* f(xo + Rx). Then 7 is an f -approximate biharmonic map. Moreover,
we note that for any r € (0,1), p > 1,and k = 1,2, 3:

(1) | DFal| pasn g,y = I DXull sk (B, (xo))-

@) 1/ llLees,y = RPN £ Lo, x (xo))-

Lemma A.3. Let [ € Llog L(By(xo)), where r € (0,1/2] and define f(x) :=
r* f(xo 4 rx). Then there exists C > 0 such that

I/ lL10g LB = Cll S L 10g L(B: (x0))-
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Proof. First note that, using the definition of f , one can immediately show that
f*(@t) =r* f*(r*t). Thus,

[Bil 1 |B1] 1
/ X0 log(Z + —) dt = / rd ) log(Z + —) dt
0 t 0 t

1B, (x0)] 4
:/ f*(s)log(Z—l——) ds
0 S

| By (x0)| 1
S/ f*(s) 10g(2+—) ds. d
0 N
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