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CONVEX SOLUTIONS TO THE
POWER-OF-MEAN CURVATURE FLOW

SHIBING CHEN

We prove some estimates for convex ancient solutions (the existence time
for the solution starts at �1) to the power-of-mean curvature flow, when
the power is strictly greater than 1

2
. As an application, we prove that in

dimension two, the blow-down of an entire convex translating solution,
namely uh D

1
h

u.h
1
1C˛x/, locally uniformly converges to 1

1C˛
jxj1C˛ as

h!1. Another application is that for the generalized curve shortening
flow (convex curve evolving in its normal direction with speed equal to a
power of its curvature), if the convex compact ancient solution sweeps the
whole space R2, it must be a shrinking circle. Otherwise the solution must
be defined in a strip region.

1. Introduction

Classifying ancient convex solutions to mean curvature flow is very important in
studying the singularities of mean curvature flow. Translating solutions arise as a
special case of ancient solutions when one uses a proper procedure to blow up the
mean convex flow near type II singular points, and general ancient solutions arise
at general singularities. Some important progress was made by Wang [2011], and
Daskalopoulos, Hamilton and Sesum [Daskalopoulos et al. 2010]. Wang proved
that in dimension nD 2, an entire convex translating solution to mean curvature
flow must be rotationally symmetric in an appropriate coordinate system, which
was a conjecture formulated explicitly by White [2000], but for n� 3 such solutions
are not necessarily rotationally symmetric.

Wang also constructed some entire convex translating solutions with level sets
neither spherical nor cylindrical in dimension greater or equal to 3. In the same
paper, Wang also proved that if a convex ancient solution to the curve shortening
flow sweeps the whole space R2, then it must be a shrinking circle — otherwise the
convex ancient solution must be defined in a strip region, and he indeed constructed
such solutions by a compactness argument. Daskalopoulos et al. [2010] showed
that apart from the shrinking circle, the so called Angenent oval (a convex ancient
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solution of the curve shortening flow discovered by Angenent that decomposes into
two translating solutions of the flow) is the only other embedded convex compact
ancient solution of the curve shortening flow. That means that the corresponding
curve shortening solution defined in a strip region constructed by Wang is exactly
the “Angenent oval”.

The power-of-mean curvature flow, in which a hypersurface evolves in its normal
direction with speed equal to a power ˛ of its mean curvature H, is well-studied
[Andrews 1998; 2003; 2002; Schulze 2005; Chou and Zhu 2001; Sheng and Wu
2009]. Schulze [2005] called it H˛-flow. In the following, we will also call the
one dimensional power-of-curvature flow the generalized curve shortening flow.
It would be very interesting if one could classify the ancient convex solutions. In
this paper, we use the method developed in [Wang 2011] to study the geometric
asymptotic behavior of ancient convex solutions to H˛-flow. The general equation
for H˛-flow is

@F

@t
D�H˛v;

where F WM � Œ0;T /! RnC1 is a time-dependent embedding of the evolving
hypersurface, v is the unit normal vector to the hypersurface F.M; t/ in RnC1, and
H is its mean curvature. If the evolving hypersurface can be represented as a graph
of a function u.x; t/ over some domain in Rn, then we can project the evolution
equation to the .nC 1/-st coordinate direction of RnC1 and the equation becomes

ut D

p
1CjDuj2

�
div

Dup
1CjDuj2

�̨
:

Then a translating solution to the H˛-flow will satisfy the equationp
1CjDuj2

�
div

Dup
1CjDuj2

�̨
D 1;

which is equivalent to the special case � D 1 of the following:

L� .u/D
�p
� CjDuj2

� 1
˛ div

Dup
� CjDuj2

(1)

D
�
� CjDuj2

� 1
2˛
� 1

2

nX
i;jD1

�
ıij �

uiuj

� CjDuj2

�
uij(2)

D 1;(3)

where � 2 Œ0; 1�, ˛ 2
�

1
2
;1

�
is a constant, nD 2 is the dimension of R2. If u is a

convex solution of (3), then uC t , as a function of .x; t/ 2 R2 �R, is a translating
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solution to the flow

(4) ut D

p
� CjDuj2

�
div

Dup
� CjDuj2

�̨
:

When � D 1, Equation (4) is the nonparametric power-of-mean curvature flow.
When � D 0, Equation (3) is the level set flow. That is, if u is a solution of (3)
with � D 0, then the level set fuD�tg, where �1< t < � inf u, evolves by the
power-of-mean curvature.

In the following we will assume � 2 Œ0; 1�, ˛ 2
�

1
2
;1

�
, and the dimension nD 2,

although some of the estimates do hold in higher dimension. The main results of
this paper are the following theorems.

Theorem 1. Let u be an entire convex solution of (3). Let

uh.x/D h�1u.h
1

1C˛ x/:

Then, uh locally uniformly converges to

1
1C˛
jxj1C˛ as h!1:

Theorem 2. Let u� be an entire convex solution of (3). Then,

u0.x/D
1

1C˛
jxj1C˛

up to a translation of the coordinate system. When � 2 .0; 1�, if

jD2u.x/j DO.jxjˇ/ as jxj !1

for some fixed constant ˇ satisfying ˇ < 3˛� 2, then u� is rotationally symmetric
after a proper translation of the coordinate system.

Corollary 3. A convex compact ancient solution to the generalized curve shortening
flow which sweeps the whole space R2 must be a shrinking circle.

Remark 4. The condition ˛ > 1
2

is necessary for our results. One can consider the
translating solution v.x/ to (3) with � D 1 in one dimension. In fact, when ˛ � 1

2
,

the translating solution v.x/ is a convex function defined on the entire real line
[Chou and Zhu 2001, p. 28]. Then one can construct a function u.x;y/D v.x/�y,
defined on the entire plane, and u will satisfy (3) with � D 0; it is obviously not
rotationally symmetric. We can also let u.x;y/D v.x/, which is an entire solution
to (3) with � D 1, and it is not rotationally symmetric.

When the dimension is at least two, similar examples can be given: we can take
an entire rotationally symmetric solution v.x/ to (3) with n � 2 and � D 1, and
again let u.x;y/D v.x/�y (here, y is the .nC 1/-st coordinate for RnC1). It is
easy to see that u will satisfy (3) with n replaced by nC 1 and � D 0, and the level
set of u is neither a sphere nor a cylinder.
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We would also like to point out that this elementary construction can be used to
give a slight simplification of the proof of [Wang 2011, Theorem 2.1] (corresponding
to our Corollary 10 for ˛ D 1). Let v� be an entire convex solution to (3) in
dimension n with � 2 .0; 1�. Then u.x;y/D v� .x/�

p
�y will be an entire convex

solution to (3) in dimension nC1 with � D 0. Hence if one has proved the estimate
in Corollary 10 for � D 0 in all dimensions, the estimate for � 2 .0; 1� follows
immediately from the above construction. The remainder of the paper is divided
into four sections. Sections 2 and 3 contain the proof of Theorem 1 and the first
part of Theorem 2. Section 4 is devoted to the proof of Corollary 10, and the last
section completes the proof of Theorem 2.

2. Power growth estimate

In this section, we prove a key estimate, which says that any entire convex solution u

to (3) must satisfy
u.x/� C.1Cjxj1C˛/;

where the constant C depends only on the upper bound of u.0/ and jDu.0/j.
When ˛ D 1, the estimate was proved by Wang [2011, Theorem 2.1]. To apply
Wang’s method, the main difficulty is that now the speed function is nonlinear in
the curvature. We overcome this difficulty by further exploiting some elementary
convexity properties.

For any constant h> 0, we denote

�h D fx 2 Rn
W u.x/D hg;

�h D fx 2 Rn
W u.x/ < hg;

so that �h is the boundary of �h. Let � be the curvature of the level curve �h. We
have

L� .u/D
�
� Cu2




� 1
2˛
� 1

2

�
�u
 C

�u



� Cu2



�
(5)

� �u
1
˛

 DL0.u/;(6)

where 
 is the unit outward normal to �h, and u

 D 
i
j uij.
Before starting the proof of our main results, we recall a well known convergence

result for the generalized curve shortening flow.

Lemma 5 [Andrews 2003, Theorems 1.3, 1.4, 1.5]. Let `t be a time-dependent
family of closed curves in R2 evolving under the generalized curve shortening flow
with ˛ > 1

3
. Suppose the initial curve `0 is convex. Then the curve converges in

finite time T to a round point P in the sense that ..1C˛/.T � t//�
1

1C˛ .`t �P / is
asymptotic to the unit circle.
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Next, we prove a lemma which will be used to control the shape of the level set
of a complete convex solution to (3).

Lemma 6. Let u be a complete convex solution of (3). Suppose that u.0/D 0 and
that the infimum inffjxj W x 2 �1g is attained at x0 D .0;�ı/ 2 �1 for some ı > 0

sufficiently small. Let D1 be the projection of �1 onto the axis fx2 D 0g. Then, D1

contains the interval .�R;R/, and when ˛ � 1, R satisfies

(7) R� C1.� log ı�C2/
˛
˛C1 ;

where C1;C2 > 0 are independent of ı; when ˛ > 1, R � C for some positive
constant C .

The proof of this lemma follows that of [Wang 2011, Lemma 2.4] with minor
modifications; the for reader’s convenience, we give some details here.

Proof. First, we prove the lemma when 1
2
<˛� 1. Suppose that near x0, �1 is given

by x2 D g.x1/. Then, g is a convex function satisfying g.0/D�ı and g0.0/D 0.
Let b > 0 be a constant such that g0.b/D 1. To prove (7), it suffices to prove

(8) b � C1.� log ı�C2/
˛
˛C1 :

For any y D .y1;y2/ 2 �1, where y1 2 Œ0; b�, as in the proof of [Wang 2011,
Lemma 2.4] we have

(9) u
 .y/�

p
1Cg02

y1g0�y2

;

where 
 is the unit normal of the sublevel set �1. Since L0u� 1, we have

(10)
g00

.1Cg02/
3
2

.1Cg02/
1

2˛

.y1g0�y2/
1
˛

� �u
1
˛

 � 1;

where � is the curvature of the level curve �1. Hence,

g00.y1/� .1Cg02/
3
2
� 1

2˛ .y1g0�y2/
1
˛(11)

� 10y
1
˛

1
g0C 10ı(12)

where y2 D g.y1/ and g0.y1/� 1 for y1 2 .0; b/. The inequality from (11) to (12)
is trivial when y2 � 0. When y2 � 0, since jy2j � ı, we have either y1g0 � ı or
y1g0 > ı. For the former we have

.y1g0�y2/
1
˛ � .2ı/

1
˛ � 4ıI

for the latter, since g0.y1/� 1, we have

.y1g0�y2/
1
˛ � .2y1g0/

1
˛ � 4y

1
˛

1
g0:



122 SHIBING CHEN

We consider the equation

(13) �00.t/D 10t
1
˛ �0C 10ı

with initial conditions �.0/D�ı and �0.0/D 0. Then for t 2 .0; b/, we have

(14) �0.t/D 10ıe
10˛
˛C1

t
˛C1
˛

Z t

0

e�
10˛
˛C1

s
˛C1
˛

ds:

Since
R1

0 e�
10˛
˛C1

s
˛C1
˛

ds is bounded above by some constant C , we have

1� �0.b/D 10ıe
10˛
˛C1

b
˛C1
˛

Z b

0

e�
10˛
˛C1

s
˛C1
˛

ds(15)

� C1ıe
10˛
˛C1

b
˛C1
˛
;(16)

from which (8) follows.
When ˛ > 1, the situation is different. First, we introduce a number a such that

g0.a/D 1
2

. Then, we can follow the proof above until (11). For (12) the inequality
becomes

g00.y1/� 10y
1
˛

1
g0C 10ı

1
˛ ;

for y1 2 Œa; b�. Now (16) becomes

e�
10˛
˛C1

b
˛C1
˛
�0.b/� e�

10˛
˛C1

a
˛C1
˛
�0.a/� C1ı

1
˛ :

Then, it is easy to see that when ı is small, b � C , for some fixed constant C . �

Remark 7. When ˛� 1, it follows from Lemma 6 that when ı is sufficiently small,
by convexity and in view of Figure 1, we have that �1 contains the shadowed
region. Then it is easy to check that �1 contains an ellipse

(17) E D

�
.x1;x2/

ˇ̌̌̌
x2

1�
R
6

�2 C
�
x2�

7ı��5ı
12

�2�
ı�Cı

4

�2 D 1

�
;

where ı� is a positive constant such that u.0; ı�/D 1 and R is defined in Lemma 5.
When ˛ > 1, if ı� is very large, in the part fx W u.x/� 1; x1 � 0g, by convexity

we can find an ellipse which has the length of short axis bounded from below
and the length of long axis very large, and if we let the ellipse evolve under the
generalized curve shortening flow, it will take time more than 1 for it to converge
to a round point. When ı� is less than some fixed constant, we need to consider
two cases.

Case 1: The set fu� 1g is not compact. In this case when we project fu.x/D 1g

to the axis fx2 D 0g, and denote the leftmost and rightmost points as .�l; 0/ and
.r; 0/, respectively. Then either l or r is very large, which guarantees that one can
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.�R;�ı/ .0;�ı/ .R;�ı/

.0; ı�/

O

�1

Figure 1. �1 contains the shadow part.

still find an ellipse inside fx W u.x/� 1; x1 � 0g (or fx W u.x/� 1; x1 � 0g) with
the similar property as before.

Case 2: The set fu � 1g is compact. For this case, we will always assume 0 is
the minimum point of u, and u.0/D 0. We claim that when ı is very small, for
the purpose of the proof of Corollary 10, we can assume one of l or r is very
large. Indeed, if the claim is not true, then we have a sequence of functions ui

such that fui � 1g has width bounded by some constant independent of i , and
dist.0; fui � 1g/! 0 as i !1. In view of the following proof of Corollary 10,
we can assume ui satisfies (3) with �i ! 0. Then by passing to a subsequence, we
can assume that fui D 1g converges to a convex curve C0 in hausdorff distance.
Let C0 evolve under the generalized curve shortening flow; by Lemma 5, it will
converge to a point P , but by the above discussion we see that P is on C0, which is
clearly impossible. Once l or r is very large, we can find an ellipse with the similar
property as in the case 1.

Remark 8. One can also establish a similar lemma in higher dimensions, which
says that D1 (a convex set with dimension greater than 1) contains a ball centered
at the origin with radius

R� Cn.� log ı�C /
˛
˛C1 ;

where Cn is a constant depending only on n and C is a positive constant independent
of ı. The proof can be reduced to the two dimensional case; for the details, refer
to the proof of [Wang 2011, Lemma 2.6].

Lemma 9. Let u be a complete convex solution of (3). Suppose u.0/D 0, ı and ı�

are defined as in Lemma 6 and Remark 7. If ı and ı� are sufficiently small, then u

is defined in a strip region.
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When ˛ D 1, this lemma is proved by Wang [2011, Corollary 2.2]. The proof
of Lemma 9 is based on a careful study of the shape of the level set of u. Before
giving the proof, we will give an important corollary first.

Corollary 10. Let u be an entire convex solution of (3) in R2, then

(18) u.x/� C.1Cjxj1C˛/;

where the constant C depends only on the upper bound for u.0/ and jDu.0/j.

Proof. The proof of this Corollary follows the proof of [Wang 2011, Theorem 2.1].
We only record some necessary changes here. First, the rescaling uh.x/D

1
h
u.h

1
2 x/

used that proof should be replaced by uh.x/D
1
h
u.h

1
1C˛ x/. Note that uh solves (3)

with � D �h! 0 as h!1. Second, the ellipse used in that proof when applying
the comparison argument should be replaced by the one discussed in Remark 7. �

Proof of Lemma 9. By a rotation of coordinates we may assume that the axial
directions of E in Remark 7 coincide with those of the coordinate system. Let Mu

be the graph of u, which consists of two parts, Mu DMC[M�, where

MC D f.x;u.x// 2 R3
W @x2

u� 0g and M� D f.x;u.x// 2 R3
W @x2

u� 0g:

Then M˙ can be represented as the graphs of functions g˙ of the form x2 D

g˙.x1;x3/, for .x1;x3/ 2 D where D is the projection of Mu onto the plane
fx2 D 0g. The functions gC and g� are concave and convex, respectively, and we
have x3 D u.x1;g

˙.x1;x3//. Set

(19) g D gC�g�:

Then g is a positive, concave function on D, vanishing on @D. For any h> 0 let
gh.x1/D g.x1; h/, g˙

h
.x1/D g˙.x1; h/, and DhDfx1 2R1 W .x1; h/2Dg. Then

gh is a positive, concave function in Dh, vanishing on @Dh, and DhD .�ah; ah/ is
an interval containing the origin. Let bh D gh.0/. We consider the case � D 0 first.

Claim 1: Suppose h is large, g1.0/ D ı
�C ı is small, bh � 4, and ah; ah � bh.

Then,

ah �
1

1000

h

b˛
h

for ˛ � 1 and ah �
1

1000

h1=.2˛�1/

b
1=.2˛�1/

h

for ˛ > 1:

Proof. Without loss of generality, we assume ah � ah. Let Uh D�h \ fx1 > 0g.
By the convexity of Uh and the assumption ah; ah � bh, we have as; as �

1
2
bh for

all s 2
�

1
2
h; h

�
. Hence by the concavity of g,ˇ̌̌

d

dx1
gs.0/

ˇ̌̌
� 2 for s 2

�
1
2
h; h

�
;
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`1

`2

�s

EO

Figure 2. �s \fx1 > 0g is trapped between two lines.

which means the arclength of the image of �s \fx1 > 0g under the Gauss map is
bigger then �

6
. Notice that �1 contains E, which was defined in Remark 7. When

ı and ı� are very small, E is very thin and long. The center of E is very close to
the origin; in fact, for our purpose we can just pretend E is centered at the origin.
By convexity of �h and in view of Figure 2, we see that �s \fx1 > 0g is trapped
between two lines `1 and `2, and the slopes of `1 and `2 are very close to 0 when
E is very long and thin. Then it is clear that the largest distance from the points on
�s \fx1 > 0g to the origin can not be bigger than 10ah. By convexity of u,

u
 .x/�
h

20ah
for x 2 �s \fx1 > 0g:

Since �s \ fx1 > 0g evolves under the generalized curve shortening flow, when
˛ � 1 we have the estimate

d

ds
jUsj D

Z
�s\fx1>0g

�˛ d�(20)

D

Z
�s\fx1>0g

u
1
˛
�1


 � d�(21)

�
1

50

�
h

ah

�1
˛
�1�

6
;(22)

where from (20) to (21) we used the equation �u
1
˛

 D 1. The claim follows by the

simple fact that
3

2
bhah � jUhj �

1

50

�
h

ah

�1
˛
�1�

6

h

2
:

When ˛ > 1, let ls denote the arclength of �s \ fx1 > 0g. Then, by the above
discussion, it is not hard to see that ls � C ah. Then by a simple application of
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Jensen’s inequality,

d

ds
.jUsj/D

Z
�s\fx1>0g

�˛ d�

D ls

Z
�s\fx1>0g

�˛
1

ls
d�

� ls

�Z
�s\fx1>0g

�

ls
d�

�̨
� C l1�˛

s � C a1�˛
h :

Again by the simple fact that 3
2
bhah � jUhj, we can complete the proof in the same

way as in the previous case. �

From here until (55) we will prove the lemma for the case 1
2
< ˛ � 1, and then

we will give the details for the case ˛ > 1.

Claim 2: Let hk D 2k , ak D ahk
, bk D bhk

, gk D ghk
, and Dk DDhk

. Then,

(23) gk.0/� gk�1.0/CC02�k=C for all k large;

where C0 is a fixed constant and C depends only on ˛.
Lemma 9 follows from Claims 1 and 2 in the following way. Let the convex

set P be the projection of the graph of g onto the plane fx3 D 0g. By Claim 2 and
the fact that P contains x1-axis (it follows from Claim 1), P must equal I �R for
some interval

I �
�
0; lim

k!1
gk.0/

�
:

Then, by (19), Mu is also contained in a strip region as stated in Lemma 9.

Proof of Claim 2. To prove (23), observe that since g is positive and concave,

gk.0/� hkg0.0/� 2k.ıC ı�/:

Hence, we can start from sufficiently large k0, satisfying gk0
.0/� 1 and

(24) gk0
CC0

1X
jDk0

2�j=C
� 2:

Suppose (23) holds up to k. Then by (24), we have gk.0/� 2. By the concavity
of g and and the fact that g � 0, we have gkC1.0/� 2gk.0/� 4. By Claim 1, we
have akC1 �

1
10000

hk . To prove (23) at kC 1,

Lk D

n
x1 2 R1

W �
C1

4
hk < x1 <

C1

4
hk

o
; C1 D

1

10000
;(25)

Qk DLk � Œhk ; hkC1��D:(26)
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Since g > 0 and g is concave, we have the estimates

g.x1; h/� 8;(27)

j@hg.x1; h/j �
16

hk
;(28)

j@x1
g.x1; h/j �

16

hk
for all .x1; h/ 2Qk :(29)

Let X˙ D f.x1; h/ 2Qk W j@x1x1
g˙.x1; h/j � h

�ˇ

k
g, where ˇ is chosen such that

1
˛
< ˇ < 2. For any h 2 .hk ; hkC1/, by (29),

jfx1 2Lk W .x1; h/ 2 XCgj h
�ˇ

k
�

Z
Lk

@x1x1
gC(30)

�

Z
Lk

@x1x1
g(31)

� 2 sup
Lk

j@x1
gj(32)

�
C

hk
:(33)

So, jXCj � C h
ˇ

k
. Similarly, we have jX�j � C h

ˇ

k
.

For any given y1 2Lk , let X˙y1
D XC\fx1D y1g. Then, by the estimate above,

there is a set zL˙ �Lk with measure

j zL˙j � C h
ˇ=2

k
;

such that for any y1 2Lk �
zL˙, we have jX˙y1

j � h
ˇ

k
=2. When k is large, we can

always find y1 D C hˇ=2 2Lk �
zL˙, where the constant C is under control. For

such y1, we have

(34) g.y1; hkC1/�g.y1; hk/

D gC.y1; hkC1/�gC.y1; hk/Cjg
�.y1; hkC1/�g�.y1; hk/j:

In the following, we will estimate gC.y1; hkC1/�gC.y1; hk/. The estimate for
jg�.y1; hkC1/�g�.y1; hk/j is analogous. By the same reason as that for [Wang
2011, §2.21], we have

(35)
�
.@hgC/�1 D .1C "1/u
 ;

@x1x1
gC D .1C "2/�:

Then, by the equation u
1
˛

 � D 1, we have

(36) @hgC
h
.y1; h/� C.@x1x1

gC/˛ � C h
�ˇ˛

k
:
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Now,

gC.y1; hkC1/�gC.y1; hk/D

Z hkC1

hk

@hgC.y1; h/ dh(37)

D

Z
XCy1

@hgC.y1; h/ dhC

Z
Œhk ;hkC1��XCy1

dh(38)

� C1h
ˇ
2

k

1

hk
CC2h

�ˇ˛

k
hk :(39)

Recall that ˇ satisfies 1
˛
< ˇ < 2, and we have � WDminf1� ˇ

2
; ˇ˛�1g> 0. From

(34) and (39), we have the estimate

g.y1; hkC1/�g.y1; hk/�
C

h
�

k

;

for some fixed constant C . Then, we will assume @x1
g.0; hk/ < 0 (otherwise we

can replace x1 by �x1); therefore, by the above estimate,

g.y1; hkC1/� g.y1; hk/C
C

h
�

k

� g.0; hk/C
C

h
�

k

:

Since g is positive, concave, and defined on Œ0; NakC1�, with NakC1 � C hkC1,

gkC1.0/

gkC1.y1/
�

NakC1

NakC1�y1

� 1CC h
ˇ
2
�1

kC1
:

Therefore, by the two estimates above,

gkC1.0/� gk.0/CC h
��

k
;

which implies (23) immediately. �

For the proof of Lemma 6 when � 2 .0; 1�, we need to use (5) and (6). In fact,
by (6) we see that �h is moving at a velocity greater than or equal to its curvature
to the power ˛. Hence, we still have the lower bound of d

ds
.jUsj/ as in the proof

of Claim 1. Then we can follow the above proof for the case � D 0 until (37),
replacing the equalities “D” in (20) and (21) with inequalities “�”. As in [Wang
2011], when � D 0, in order to control the second integral in (38) we used the
equation �u

1=˛

 D 1. But when � ¤ 0, by (28) and (35) we have

(40) u
 � C.@hgC/�1
� C hk :

Hence, we may assume that u
 is as large as we want, which means that in formula
(5), the only important extra term is

.� Cu2

 /

1
2˛
� 1

2
�u



� Cu2



:
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To handle this term, we divide the integral (39) into three parts:

gC.y1; hkC1/�gC.y1; hk/D

Z hkC1

hk

@hgC.y1; h/ dh(41)

D

�Z
I1

C

Z
I2

C

Z
I3

�
@hgC.y1; h/ dh;(42)

where

I1 D XCy1
;(43)

I2 D

�
h 2 Œhk ; hkC1�� I1 W .� Cu2


 /
1

2˛
� 1

2
�u



� Cu2



�
1

2

�
;(44)

I3 D Œhk ; hkC1�� I1[ I2:(45)

For the first integral, we can do exactly the same thing as we have done from (38)
to (39), namely, Z

I1

@hgC.y1; h/ dh�
C

hk

h
ˇ
2

k
D C h

ˇ
2
�1

k
:

Note that the power ˇ
2
� 1 is a negative number.

Then we estimate the second integral, note that when .y1; h/ 2 I2, we have

.� Cu2

 /

1
2˛ �u
 �

1
2
:

By (40) u
 is large, so we have �u
1
˛

 �

1
4

, hence by (35) we have

(46) @hgC � C.@x1x1
gC/˛ � C h

�˛ˇ

k
:

Therefore, Z
I2

@hgC.y1; h/ dh� C h
�ˇ˛

k
hk D C h

1�ˇ˛

k
:

Note that 1�ˇ˛ is a negative number. Observe that we can assume I2 is on the
right hand side of I3, since by the concavity of gC we know that when h� inf I2,
@hgC.y1; h/ will satisfy the estimate (46).

For the third integral, notice that by the same argument as that for [Wang 2011,
§2.24],

(47)
�

u
 .y1; h/D ux2
.1C "1/;

u

 .y1; h/D ux2x2
.1C "2/C "3ux2

:

Hence, by (47),

(48) .� Cu2
x2
/

1
2˛
� 1

2
�ux2x2

� Cu2



�
1
3
:
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Since � 2 Œ0; 1� and u
 is large, we have

(49) u00 D ux2x2
�

1
4
.u0/3�

1
˛ :

By differentiating the equation u.x1;g
C.x1; h//D h twice with respect to h,

(50) .gC/00 D�u00.gC/03 � �1
4
.gC/0

1
˛
�3.gC/03 D�1

4
.gC/0

1
˛ :

Note that (50) is for points with corresponding h 2 I3. By the discussion after (46)
we only need to estimate Z

ŒhkCh
ˇC2

4
k

;inf I2�

.gC/0 dh:

Therefore, by (50) and noticing that .gC/0 � 0,

(51) ˛
˛�1

.gC/0
˛�1
˛ .h/� ˛

˛�1
.gC/0

˛�1
˛ .hk/�

1
4

ˇ̌
I3\ Œhk ; h�

ˇ̌
:

Hence, when h 2 Œh
.ˇC2/=4

k
; inf I2�,

(52) .gC/0.h/�
�
.gC/0

˛�1
˛ .hk/CC.h� hk/

� ˛
˛�1 :

Finally,Z
ŒhkCh

ˇC2
4

k
; inf I2�

.gC/0 dh�

Z hkC1

hk

�
.gC/0

˛�1
˛ .hk/CC.h� hk/

� ˛
˛�1 dh(53)

�
˛�1

2˛�1

�
.gC/0

˛�1
˛ .hk/CC.h� hk/

� ˛
˛�1
C1
ˇ̌̌2hk

hk

(54)

� C.gC/0
2˛�1
˛ � C h

1�2˛
˛

k
:(55)

Note that 1�2˛
˛

< 0 when ˛ > 1
2

, so we can complete the proof as in the � D 0 case.
When ˛ > 1, we need to choose the constants and exponents more carefully.

First of all, in view of the Lemma 9 for ˛ > 1, in order to have properties (35) and
(47), we need only to replace the number 2 in (24) with some number much smaller
than the constant C in Lemma 9. The definition of Lk in (25) should be modified to

Lk D

n
x1 2 R1

W �
C1

4
h

1
2˛�1

k
< x1 <

C1

4
h

1
2˛�1

k

o
; C1 D

1

10000
;

and the definition of Qk in (26) remains the same. It is easy to see that we still
have the estimates (27)–(28), but (29) becomes

j@x1
g.x1; h/j � 16h

� 1
2˛�1

k
for all .x1; h/ 2Qk :

Then for the definition of

X˙ D f.x1; h/ 2Qk W j@x1x1
g˙.x1; h/j � h

�ˇ

k
g;
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we need to choose the exponent ˇ so that 1
˛
< ˇ < 2

2˛�1
. By doing the same

computation as (30)–(32),ˇ̌
fx1 2Lk W .x1; h/ 2 XCg

ˇ̌
h
�ˇ

k
�

Z
Lk

@x1x1
gC � C h

� 1
2˛�1

k
:

Hence,

jXCj � C h
1Cˇ� 1

2˛�1

k
and jX�j � C h

1Cˇ� 1
2˛�1

k
:

Then, by the above estimate there is a set zL˙ �Lk with measure

j zL˙j � C h
ˇC"� 1

2˛�1

k

such that for any y1 2 Lk �
zL˙, we have jX˙y1

j � h1�"
k

, where " is chosen such
that ˇC " < 2

2˛�1
. Now, (35)–(38) remain the same, and (39) becomes

gC.y1; hkC1/�gC.y1; hk/� C1h1�"
k

1

hk
CC2h

�ˇ˛

k
hk :

By the choice of ˇ, all the exponents of hk are negative. We do not need to change
anything from (40) to (49). Finally from (50) we need to replace the computation
in the case ˛ � 1 with the following computation.

First, we have .gC/00 � �1
4
.gC/0

1
˛ � �

1
4
.gC/0, and we only need to boundZ

ŒhkCh
1�"=2

k
; inf I2�

.gC/0 dh:

Note that .gC/0 � 0. By integrating the above differential inequality, we have

.gC/0.h/� .gC/0.hk/e
� 1

4
jI3j � .gC/0.hk/e

1
8
.h�hk/

when h 2 Œhk C h
1�"=2

k
; inf I2�. Therefore, we haveZ

ŒhkCh
1�"=2

k
; inf I2�

.gC/0 dh�

Z hkC1

hk

.gC/0.hk/e
1
8
.h�hk/ dh

� C.gC/0.hk/�
C

hk
: �

3. Blow-down of an entire convex ancient solutions
converges to a power function

In this section we prove that the blow-down of an entire convex solution to (3)
converges to a power function.

Proof of Theorem 1 and the first part of Theorem 2. First, we prove that there is a
subsequence of uh converging to 1

1C˛
jxj1C˛, where uh.x/D h�1u.h

1
1C˛ x/.
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By adding a constant we may suppose u.0/D 0. Let xnC1D a �x be the equation
of the tangent plane of u at 0. By Corollary 10 and the convexity of u we have

a �x � u.x/� C.1Cjxj1C˛/:

Hence,
h�

˛
1C˛ a �x � uh.x/� C

�
1
h
Cjxj1C˛

�
:

By convexity, Duh is locally uniformly bounded. Hence, uh subconverges to a
convex function u0 which satisfies u0.0/D 0, and

0� u0.x/� C jxj1C˛:

It is easy to check that u0 is an entire convex viscosity solution to (3) with � D 0,
and the comparison principle holds on any bounded domain.

Now we will prove that fu0.x/ D 0g D f0g. In fact, if fx W u0.x/ D 0g is a
bounded set, then fu0.x/D hg is a closed, bounded convex curve which evolves
under the generalized curve shortening flow; from [Andrews 1998] it follows that
fu0.x/D0gDf0g. If fu0.x/D0g contains a straight line, say the line f.t; 0/ W t 2Rg,
then by convexity, u is independent of x1, which is impossible. So we only need to
rule out the possibility that fu0.x/D 0g contains a ray but no straight lines. In this
case, for fixed h> 0, we can find an ellipse E inside fu0.x/ < hg, with the short
axis bounded from below by a constant depending only on h and with the long axis
as long as we want (one only needs to look at the asymptotic cone of fu0.x/D hg),
but since fu0.x/ D hg evolves under the generalized curve shortening flow and
E � fu0.x/� hg, this is impossible by comparison principle.

Then since fu0.x/D 0g D f0g, �1;u0
D fu0.x/D 1g is a bounded convex curve,

and the level set fu0.x/ D �tg evolves under the generalized curve shortening
flow, with time t 2 .�1; 0/. From [Andrews 1998; 2003] we have the following
asymptotic behavior of the convex solution u0 of L0uD 1:

(56) u0.x/D
1

1C˛
jxj1C˛C'.x/;

where '.x/D o.jxj˛C1/ for x¤ 0 near the origin. In fact, if the initial level curve is
in a sufficiently small neighborhood of circle, by Lemma 13, j'.x/j � C jxj1C˛C�

for some small positive �, where C is a constant depending only on the initial
closeness to the circle. Hence, given any � > 0, for sufficiently small h0 > 0,

B.1��/r .0/��h0;u0
� B.1C�/r .0/;

where r D ..1C˛/h0/
1

1C˛ . Hence, there is a sequence hm!1 such that

B.1� 1
m
/rm;i

.0/��hm;u � B.1C 1
m
/rm;i

.0/;

where
rm;i D ..1C˛/ihm/

1
1C˛ ; i D 1; : : : ;m:



CONVEX SOLUTIONS TO THE POWER-OF-MEAN CURVATURE FLOW 133

Then uhm
subconverges to 1

1C˛
jxj1C˛.

Since u0 is an entire convex solution to L0uD 1 (we still use the notation u0,
but it means an arbitrary entire convex solution), from the above argument, we can
find a sequence hm such that

u0hm
.x/D

1

hm
u0

�
h

1
1C˛
m x

�
locally uniformly converges to 1

1C˛
jxj1C˛. Hence, the sublevel set � 1

1C˛
;u0hm

satisfies
B1��m

.0/�� 1
1C˛

;u0hm
� B1C�m

.0/;

where �m! 0 as m!1. By the discussion below (56),

u0hm
.x/D 1

1C˛
jxj1C˛C'.x/;

where j'.x/j � C jxj1C˛C� for some fixed small positive �, and the constant C is
independent of m. Replacing x by h

�1=.1C˛/
m x in the asymptotic formula above,

u0.x/D
1

1C˛
jxj1C˛C hm'

�
h
� 1

1C˛
m x

�
;

where for any fixed x, hm'.h
� 1

1C˛
m x/! 0. Hence u0.x/ D

1
1C˛
jxj1C˛. So we

have proved Theorem 1 and the first part of Theorem 2. �

4. One-dimensional entire convex ancient solution
must be a shrinking circle

This section is devoted to the proof of Corollary 3, which is completed by combining
the following lemma (corresponding to [Wang 2011, Lemma 4.1]) and Theorem 2.

Lemma 11. Let � be a smooth, bounded, convex domain in R2. Let u be the
solution of (3) with � D 0, vanishing on @�. Then for any constant h satisfying
inf� u < h < 0, the level set �h;u D fu D hg is convex. Moreover, log.�u/ is a
concave function.

Proof. Observe that ' WD � log.�u/ satisfies

jD'j
1
˛
�1

2X
i;jD1

�
ıij �

'i'j

jD'j2

�
'ij D e

1
˛
':

Since '.x/!C1 as x! @�, [Kawohl 1985, Theorem 3.13] implies that ' is
convex. �

With the previous lemma and [Wang 2011, Lemma 4.4], we know that any
convex compact ancient solution to the generalized curve shortening flow can be
represented as a convex solution u to (3) with � D 0, and if the solution to the flow
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sweeps the whole space, then the corresponding u will be an entire solution. Thus,
Theorem 2 implies Corollary 3 immediately.

Remark 12. We can also use the method in [Wang 2011, Section 4] to construct
a rotationally nonsymmetric convex compact ancient solution for generalized curve
shortening flow with power ˛ 2

�
1
2
; 1
�
. Indeed, for mean curvature flow, a rota-

tionally nonsymmetric convex compact ancient solution is constructed in Lem-
mas 4.1–4.4 of that reference. By examining the proofs of these lemmas, we can
see that they work well for the generalized curve shortening flow considered here.

5. Two-dimensional entire convex translating solution

In this section, by using the previous results and a delicate iteration argument, we
prove that under some extra condition on the asymptotic behavior of the solution at
infinity the translating solution must be rotationally symmetric.

First of all, we would like to point out that instead of using Gage and Hamilton’s
exponential convergence of the curve shortening flow [1986], we need to use the
corresponding exponential convergence for the generalized curve shortening flow
and we will state it as a lemma, corresponding to [Wang 2011, Lemma 3.2].

Lemma 13. Let f`tg be a convex solution to the generalized curve shortening flow
with initial curve f`0g uniformly convex. Suppose f`0g is in the ı0-neighborhood of
a unit circle, f`tg shrinks to the origin at t D 1

1C˛
. Let

Q̀
t D .1� .1C˛/t/

� 1
1C˛ `t

be the normalization of `t . Then Q̀t is in the ıt -neighborhood of the unit circle
centered at the origin,

Q̀
t �Nıt

S1;

with
ıt � Cı0

�
1

1C˛
� t
��

for some small positive constant �.

Remark 14. Exponential convergence of the standard curve shortening flow (when
˛ D 1) was proved by Gage and Hamilton [1986]. For the general case (when
˛ > 1

3
), as discussed in the following proof, Gage and Hamilton’s method combined

with Andrews’ estimates [1998, Propositions II1.1 and II1.2] can still be used to
prove the corresponding exponential convergence result.

Proof. The proof of Lemma 13 is similar to the proof of [Wang 2011, Lemma 3.2].
Since the initial curve `0 is uniformly convex and close to a unit circle, by [Andrews
1998, Propositions II1.1 and II1.2], the curvature of Q̀t is bounded from below and
from above by some constant depending only on ı0, when t 2

�
1

4˛C4
; 1

2˛C2

�
.
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Hence the evolution equation for Q̀t is uniformly parabolic. Therefore, we can apply
Schauder’s estimates safely for ˛ > 1

2
, as in [Wang 2011], which says that

k Q̀t �S1
k

C k � Cı0 for t 2
�

1
4˛C4

; 1
2˛C2

�
:

Although the constant C will depend on the lower and upper bounds of the curvature
of the initial curve, it is not a problem for our purpose, since when we blow down
the solution for � D 0, the norm of the gradient Duh on the curve fuh.x/ D 1g

approaches 1.
By the equation �u

1
˛

 D 1, we see that the curvature � is also very close to 1

on that curve. For the exponential decay rate of the derivative of curvature, one
can imitate the proof in [Gage and Hamilton 1986, §§5.7.10–5.7.15], and our
corresponding estimate will be j�0.�/j �Cı0e��� for some small positive number �,
where � D� 1

1C˛
log
�

1
1C˛
� t
�
. Indeed, in the case ˛ > 1, this is done by Chen and

Huang [Huang 2011, Corollary 3.2], and it is easy to check that their computation
also works for the case 1

3
< ˛ < 1 by taking ` small enough. This estimate

immediately implies our lemma. �

In the following we will consider the case when � D 1 and ˛ > 1. By translating
and adding some constant we can assume u.0/D inf u. Let

uh.x/D
1

h
u.h

1
1C˛ x/:

Then uh satisfies the equation L�uh D 1 with � D h�
2˛

1C˛ . By Theorem 1, uh

converges to 1
1C˛
jxj1C˛, and the level set � 1

1C˛
;uh

converges to the unit circle as
h!1.

Lemma 15 [Wang 2011, Lemma 3.3]. The function u satisfies

(57) u.x/D 1
1C˛
jxj1C˛CO.jxj1C˛�2˛ˇ/;

where ˇ is a constant, chosen such that 1
2˛
< ˇ <min

˚
1; 1C˛

2˛

	
.

Proof. For any given small ı0 > 0, take h sufficiently large such that

(58) � 1
1C˛

;uh
�Nı0

.S1/

for the unit circle S1 with center p0. Note that when h is large, ı0 is very close
to 0. Then we will prove the following claim:

Claim 3: For small fixed � ,

(59) ��;uh
� ..1C˛/�/

1
1C˛ Nı�

�
.1C a0

�
/

1
1C˛S1

�
with

(60) ı� � C1.�/�
ˇ
CC2ı0�

�;
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where � is a small positive constant, the constants C1 and C2 are independent of ı0
and h, and C2 is also independent of � . Let u0 be the solution of

L0.u/D 1 in � 1
1C˛

;uh
;

satisfying
u0 D uh D

1
1C˛

on @� 1
1C˛

;uh
;

where a0 D jinf u0j and the center of

.1C a0

�
/

1
1C˛S1

is the minimum point of u0 multiplied by the factor ..1C˛/�/�
1

1C˛ .

Proof of Claim 3. We only need to prove that

(61) dist
�
.1C˛/

1
1C˛ .� C a0/

1
1C˛S1; ��;u

�
� C1.�/�

ˇ
CC2ı0�

1
1C˛
C�;

where � is some small positive constant and C2 is independent of � . By Theorem 1
we know that uh converges to 1

1C˛
jxj1C˛ uniformly on any compact subset of R2:

Then by the convexity of uh, we have that jDuhj is bounded above and below by
some constants depending on �0 for large h when

x 2
˚
x 2� 1

1C˛
;uh
W �0 � uh <

1
1C˛

	
:

Hence, by the growth condition for D2u in Theorem 2, we have �.uh/

 � C�ˇ;

where C is a constant depending on �0. Therefore, we have

�.uh/
1=˛

 � 1�C�ˇ on

˚
x 2� 1

1C˛
;uh
W � � uh <

1
1C˛

	
;

where C depends on �0. Let

Qu0 D .1�C�ˇ/˛.u0�
1

1C˛
/C 1

1C˛
I

then
L0. Qu0/D 1�C�ˇ in � 1

1C˛
;uh

with
Qu0 D uh D

1
1C˛

on @� 1
1C˛

;uh
:

Now by the comparison principle, ��;u0
���;uh

���; Qu0
, and by the asymptotic

behavior of u0,

��;u0
�N�

�
.� C a0/

1
1C˛S1

�
and ��;Qu0

�N�
�
.� C a0�C�ˇ/

1
1C˛S1

�
;

where � D Cı0.� C a0/
�. Let

`1 D .� C a0/
1

1C˛S1 and `2 D .� C a0�C�ˇ/
1

1C˛S1;
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both centered at p1, which is the minimum point of u0. Hence

(62) dist..� C a0/
1

1C˛S1; ��;uh
/� dist.`1; `2/CCı0.� C a0/

1
1C˛
C�;

where dist.`1; `2/ can be bounded by C1.�/�
ˇ; hence (60) follows from the above

discussion. �

Now, we will use an iteration argument to prove the following claim, which will
enable us to simplify (59) and (60).

Claim 4: a0 � C�ˇjlog.�/j

Proof. We fix a large constant A such that fu
A=�
D

1
1C˛
g is very close to a unit

circle. Let u0;�k solve L0u D 1 with boundary condition u D �k on fuh D �
kg.

Denote ak D jinf u0;�k j. From the proof of Claim 3, we see that

fu0 < �g � fu0;� < �g � f Qu0 < �g;

by the comparison principle, we have inf u0 < inf u0;� < inf Qu0. So by the construc-
tion of Qu0 and a simple computation, we have a0 � a1 � inf Qu0 � inf u0 � C�ˇ.
When �k �

A
h

, we can iterate this argument for u0;�k and u0;�kC1 by rescaling
them to

1
1C˛

��ku0;�k

�
.1C˛/

1
1C˛ �

k
1C˛ x

�
and 1

1C˛
��ku0;�kC1

�
.1C˛/

1
1C˛ �

k
1C˛ x

�
;

respectively. After rescaling back, we have ak �akC1 �C�ˇ. Note that the choice
of A and the condition �k �

A
h

ensure the uniform gradient bound needed in the
above argument. Let k0 be an integer satisfying �k0 �

A
h
� �k0C1. After k0 steps

we stop the iteration, and notice that

fuh D
A
h
g D h�

1
1C˛ fuDAg

is contained in a circle with radius C h�
1

1C˛ for some constant C . Hence it takes
at most time C h�1 D C�

1C˛
2˛ for fuh D

A
h
g to shrink to a point. Claim 4 follows

from the above discussion. �

By omitting the lower order term we can rewrite (59) and (60) as

��;uh
� ..1C˛/�/

1
1C˛ Nı� .S

1/

with

(63) ı� � C1.�/�
ˇ
CC2ı0�

�:

If we take � small such that C2�
� �

1
4

, then (63) becomes

(64) ı� � C1.�/�
ˇ
C

1
4
ı0:
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Now we can carry out an iteration argument similar to that in [Wang 2011]. We
start at the level 1

1C˛
��k0 for some sufficient large k0. Let

�k D �
k

1C˛ � 1
1C˛

��k;u and �k D @�k :

Note that �k converges to a unit circle as k !1. Suppose that �k is in the ık
neighborhood of S1 centered at yk , where ık!0 as k!1 and yk is the minimum
point of the solution of L0uD 1 in �k with uD 1

1C˛
on �kC1. By (64) we have

(65) ık�1 � C1.�/�
.k�1/ 2˛ˇ

1C˛ C
1
4
ık

for k D k0; k0C 1; : : : . Then we have

(66) �j �Nıj .S
1/

with

(67) ıj � C�j 2˛ˇ
1C˛

It follows that

(68) � 1
1C˛

��j;u �NQıj
.�
�j

1C˛S1/

with

(69) Qıj � C�
2˛ˇ�1

1C˛
j;

where �
�j

1C˛S1 is centered at zj D �
�j

1C˛ yj . From Lemma 13 and (64), it is not
hard to see that

(70) jzj � zj�1j � C�
2˛ˇ�1

1C˛
j:

Let z0 D limj!1 zj . Then

(71) jzj � z0j � C�
2˛ˇ�1

1C˛
j;

which means that in (68) we can assume the circle is centered at z0 by changing
the constant C a little bit. In fact when we choose different � , the corresponding z0

will not change, so we can assume z0 D 0. Hence, for hD 1
1C˛

��j,

�h;u �Nı
�
.1C˛/

1
1C˛ h

1
1C˛S1

�
;

where

(72) ı � C h
1�2˛ˇ

1C˛

and S1 is centered at the origin. By choosing different � , we see that the estimate
holds for all large h. Lemma 15 follows from the above estimates. �
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Remark 16. For the mean curvature flow (when ˛ D 1), I learned the proof
of Claim 4 from Professor Xu-Jia Wang. Indeed, in this case one can do it as
follows. Let vk solve L0w D 1 with boundary condition w D �k on fuh D �

kg,
for k D 1; 2; : : : . Let ak D jinf vk j. Then by [Wang 2011, Lemma 3.1], we have
a0� a1 � C� . By rescaling invariance, we can iterate the argument to show that
ak � akC1 � C� , provided �k �

1
h

. Hence, we stop the iteration at k0 when
�k0 �

1
h
> �k0C1. Notice that

fuh � �
k0g D h�

1
2 fuD h�k0g � h�

1
2 fu� 1

�
g:

So, it is easy to see that it takes at most time C� D C
h

for fuh � �
k0g to shrink to a

point, namely, ak0
� C� . Therefore,

a0 D ak0
C

k0�1X
iD0

ai � aiC1 � C k0� � C� jlog � j:

In order to finish the proof of Theorem 2 we need to use the following fundamental
Liouville theorem by Bernstein [Simon 1997, p. 245].

Lemma 17. Let u be an entire solution to the elliptic equation
nX

i;jD1

aij .x/uij D 0 in R2:

If u satisfies the asymptotic estimate

ju.x/j D o.jxj/ as x!1;

then u is a constant.

Proof of the second part of Theorem 2. Let u� be the Legendre transform of u.
Then u� satisfies equation

(73) G.x;D2u�/D
det D2u��

ıij �
xi xj

1Cjxj2

�
F ij .u�/

D .1Cjxj2/
1

2˛
� 1

2 ;

where F ij .u�/D @ det r
@rij

at r DD2u�. We have

(74) u�.x/D C.˛/jxj1C˛CO
�
jxj

1C˛�2˛ˇ
˛

�
;

where C.˛/ is a constant depending only on ˛. In fact, for big h, by Lemma 15,

uh.x/D
1

1C˛
jxj1C˛CO

�
jhj
�2˛ˇ
1C˛

�
in B1.0/. Denote by u�

h
the Legendre transform of uh. Then,

u�h .x/D C.˛/jxj1C
1
˛ CO

�
jhj
�2˛ˇ
1C˛

�
;
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where C.˛/ is a constant depending only on ˛ and it comes from the Legendre
transform of the function 1

1C˛
jxj1C˛. Note that u�

h
.x/ D h�1u�.h

˛
1C˛ x/, we

obtain (74).
Let u0 be the unique radial solution of (3) with � D 1, and let u�

0
be the Legendre

transform of u0. Similar to (74) we have

(75) u�0 .x/D C.˛/jxj1C˛CO.jxj
1C˛�2˛ˇ

˛ /:

Since both u� and u�
0

satisfy (73), v D u��u�
0

satisfies the elliptic equation

nX
i;jD1

aij .x/vij D 0 in R2;

where

aij D

Z 1

0

Gij .x;D2u�0 C t.D2u��D2u�0 // dt:

Here,

Gij
D
@G.x; r/

@rij

for any symmetric matrix r . Note that by the choice of ˇ, 1C˛�2˛ˇ
˛

< 1; hence, by
(74) and (75),

v DO
�
jxj

1C˛�2˛ˇ
˛

�
D o.jxj/ as jxj !1:

By Lemma 17 we conclude that v is a constant. �
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