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QUASI-EXCEPTIONAL DOMAINS

ALEXANDRE EREMENKO AND ERIK LUNDBERG

Exceptional domains are domains on which there exists a positive harmonic
function, zero on the boundary and such that the normal derivative on
the boundary is constant. Recent results classify (under some mild addi-
tional assumptions) exceptional domains as belonging to either a certain
one-parameter family of simply periodic domains or one of its scaling limits.

We introduce quasi-exceptional domains by allowing the boundary val-
ues to be different constants on each boundary component. This relaxed
definition retains the interesting property of being an arclength quadrature
domain, and also preserves the connection to the hollow vortex problem in
fluid dynamics. We give a partial classification of such domains in terms of
certain abelian differentials. We also provide a new two-parameter family
of periodic quasi-exceptional domains. These examples generalize the hol-
low vortex array found by Baker, Saffman, and Sheffield. A degeneration
of regions of this family provides doubly connected examples.

1. Introduction

A domain D ∈ Rn is called exceptional if there is a positive function u (called a
roof function) harmonic in D, zero on the boundary, and with

(1) ∂

∂n
u(z)= 1, z ∈ ∂D,

where the differentiation is along the normal pointing inwards into D and it is
assumed that the boundary is smooth. Evident examples are exteriors of balls and
half-spaces. For n > 2, the only other known examples are cylinders whose base
is an exceptional domain in R2. If the smoothness assumption on the boundary is
dropped, then there are also certain cones in higher dimensions and pathological
“non-Smirnov” examples in the plane [Khavinson et al. 2013].

The problem of describing of all exceptional domains in the plane was stated in
[Hauswirth et al. 2011] and settled in [Khavinson et al. 2013] under a topological
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assumption which was removed in [Traizet 2014a] using an unexpected correspon-
dence with minimal surfaces. The first nontrivial example was given in [Hauswirth
et al. 2011]. This example appeared in another context, related to fluid dynamics, in
[Longuet-Higgins 1988]. A second nontrivial example was noticed in [Khavinson
et al. 2013] and [Traizet 2014a]. This example had also appeared previously in
studies of fluid dynamics [Baker et al. 1976] (see also [Crowdy and Green 2011]).

Let us introduce quasi-exceptional domains, by relaxing the definition to allow
the Dirichlet condition to be a different constant on each boundary component.
Thus, a domain D ∈ Rn is called quasi-exceptional if there is a positive harmonic
function u in D which is constant on each boundary component (but not necessarily
the same constant) and the Neumann condition (1) holds. We will continue to
call u a roof function. Again, we assume that each component of the boundary
is smooth.

Added in press: In an interesting preprint, Martin Traizet [2014b] has considered
an even more general problem, allowing the Neumann data to take different signs
on different components. As with the current paper, that work is motivated by
the hollow vortex problem from fluid dynamics. Extending [Traizet 2014a], a
correspondence to minimal surfaces is given in that work, and techniques from
minimal surface theory are used to produce new examples.

We summarize several interesting aspects of exceptional domains. These state-
ments all hold true for quasi-exceptional domains.

• Fluid dynamics: As noted above, the two nontrivial examples first appeared in
fluid dynamics [Longuet-Higgins 1988; Baker et al. 1976]. In general, one can
interpret exceptional domains in terms of a hollow vortex problem. The level
lines of u can be interpreted as stream lines of a two-dimensional stationary
flow of ideal fluid, and condition (1) expresses the fact that the pressure is
constant on the boundary. Such conditions may exist if the components of the
complement of D are air bubbles in the surrounding liquid. Notice that the
rotation of the fluid around all bubbles corresponding to exceptional domains
is in the same direction because ∂u/∂n > 0 on the boundary.

• Quadrature domains [Gustafsson 1987]: Exceptional domains provide exam-
ples of arclength null-quadrature domains, that is, domains for which integrals
with respect to arclength over ∂D of every analytic function in the Smirnov
class E1(D) vanish.

• Differentials on Riemann surfaces: By way of the connection to quadrature
domains, the study [Gustafsson 1987] indicates a connection to half-order
differentials. We make use of abelian differentials in Section 4 below.
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• The Schwarz function of a curve: In [Khavinson et al. 2013], it was noticed
that the function u(z) satisfies

∂zu(z)=
√
−S′(z),

where S(z) is the Schwarz function of ∂� and ∂z =
1
2(∂x− i∂y) is the Cauchy–

Riemann operator.

• Minimal surfaces: Traizet [2014a] established a nontrivial correspondence
between exceptional domains and a special type of minimal surfaces called
“minimal bigraphs”. In [Traizet 2014b], this correspondence was extended to
quasi-exceptional domains, but the minimal surfaces in that case need not be
embedded. This prevents applying the results on complete embedded minimal
surfaces that were used in [Traizet 2014a] to classify exceptional domains.

The classification results for exceptional domains of finite connectivity show
that they are quite restricted; all examples can be conformally mapped onto a disk
by elementary functions.

Problem A. Classify quasi-exceptional domains.

We begin to address this problem below, give a partial classification of periodic
and finitely connected exceptional domains, and provide new periodic and doubly
connected examples described in terms of elliptic functions. First, we explain the
relation to arclength null-quadrature domains.

2. Arclength null-quadrature domains

A bounded domain D ⊂C is a quadrature domain if it admits a formula expressing
the area integral of every function f analytic and integrable in D as a finite sum of
weighted point evaluations of the function and its derivatives, i.e.,

(2)
∫

D
g(z) dA(z)=

N∑
m=1

nm∑
k=0

am,k g(k)(zm),

where the zm are distinct points in D and the am,k are constants independent of g.
A (necessarily unbounded) domain D ⊂ C is called a null-quadrature domain

(NQD) if the area integral of every function g analytic and integrable in D vanishes:

(3)
∫

D
g(z) dA(z)= 0.

M. Sakai [1981] completely classified NQDs in the plane.
Following [Khavinson et al. 2013], we refer to a domain D ⊂ C as an arclength

null-quadrature domain (ALNQD) if the integral over ∂D of every function g in
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the Smirnov class E1(D) vanishes (in the case∞ is an isolated point on ∂D, we
take the restricted class of functions g(z) ∈ E1(D) vanishing at infinity):

(4)
∫
∂D

g(z) ds(z)= 0.

The Smirnov class E1(D) is not the same as the Hardy space H 1(D). Namely,
a function g analytic in D is said to belong to E1(D) if there exists a sequence of
domains D1⊂D2⊂· · · , with

⋃
k Dk=D, and with rectifiable boundaries, such that:

sup
k

∫
∂Dk

|g(z)| |dz|<∞.

One may also define quadrature domains in higher dimensions using a test class of
harmonic functions, but we will restrict ourselves to the case of n = 2 dimensions.

Inspired by the successful classification of NQDs [Sakai 1981], the problem of
classifying ALNQDs was suggested in [Khavinson et al. 2013]. We pose this prob-
lem again while stressing that it does not reduce to the classification of exceptional
domains (whereas it might reduce to classification of quasi-exceptional domains).

Problem B. Classify ALNQDs.

The following proposition shows that quasi-exceptional domains are ALNQDs.
Thus, the new examples (described in the last section) of quasi-exceptional domains
also provide new ALNQDs. Problem B is closely related to Problem A, and if the
converse of the proposition is true then the two problems are equivalent.

Proposition 1. If D is a quasi-exceptional domain, then D is an ALNQD.

Proof. Consider the complex analytic function F(z)= ux− iu y , where u is the roof
function. We will need the following claim, which is proved in the next section
(see Lemma 2).

Claim. The roof function u of D satisfies ∇u(z)= O(1) in D, so F(z) is bounded.

Suppose that g is in the Smirnov space E1(D). Using the fact that ds= i F(z) dz,

(5)
∫
∂D

g(z) ds =
∫
∂D

ig(z)F(z) dz.

As F is bounded, gF ∈ E1(D). If∞ is not an isolated boundary point, then the
integral equals zero by Cauchy’s theorem.

If∞ is an isolated boundary point, then we have u(z)= log|z|+const+O(1/z),
so F(z)= O(1/z), z→∞. Now g(∞)= 0, so Fg has a zero of order at least 2
at∞, and the integral is zero again. �
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3. A potential theoretic restriction on the roof function

We restrict ourselves to the case n = 2, and assume that the order of connectivity of
D is finite, or that the roof function u is periodic and a fundamental region for D
has finite connectivity.

Recall that a Martin function is a positive harmonic function M in a domain
� with the property that for any positive harmonic function v in � the condition
v ≤ M implies that v = cM , where c > 0 is a constant. (Often, Martin functions
are called minimal harmonic functions — see [Heins 1950].) Martin functions on
finitely connected domains are simply Poisson kernels evaluated at points of the
Martin boundary, the boundary under Carathéodory compactification (prime ends)
of the domain (see [Brelot 1971]).

Any domain D of finite connectivity in C is conformally equivalent to a circular
domain �. A circular domain is a domain whose boundary components are points
or circles. For a circular domain, a Martin function M can be of two types:

(a) There is a component of ∂� which is a single point z0, and M is proportional
to the Green function of �∪ {z0} with the singularity at z0.

(b) There is a point z0 ∈ ∂� which is not a component of ∂�, and M has boundary
value zero at all points of ∂� \ {z0}. The local behavior in this case is like
− Im(1/z) in the upper half-plane near 0.

Let D be an exceptional domain, and u a harmonic function with the property (1).
The following result was proved for exceptional domains by the current first author,
but was communicated in [Khavinson et al. 2013, Theorem 4.2]. Here we repeat
the proof with minor adjustments.

Lemma 2. The roof function u of a quasi-exceptional domain satisfies the equation
∇u(z)= O(1) in D. Moreover, u is the sum of a bounded harmonic function and
at most two Martin functions.

Proof. We follow the second part of the proof from [Khavinson et al. 2013]. Let
R > 0, and consider an auxiliary function

wR =
|∇u|

u+ R
.

A direct computation shows that

(6) 1 logwR = w
2
R,

and wR(z)= 1/(ck + R)≤ 1/R for z ∈ ∂D, where ck ≥ 0 are the constants taken
in the Dirichlet condition. We claim that

(7) wR(z)≤ 2/R, z ∈ D,
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from which the result follows by letting R→∞, which gives |∇u| ≤ 2 in D.
Suppose, contrary to (7), that wR(z0) > 2/R for some z0 ∈ D. Let

v(z)=
2R

R2− |z− z0|2
, z ∈ B(z0, R)= {z : |z− z0|< R}.

Obviously, v(z)≥ 2/R. A computation reveals that 1 log v = v2. Let

K = {z ∈ D ∩ B(z0, R) : wR(z) > v(z)}.

We have z0 ∈ K , since v(z0)= 2/R. Let K0 be the component of K containing z0.
Then we have wR(z)= v(z) on ∂K0, since wR(z) < v(z) on ∂D ∩ B(z0, R) while
v(z)=+∞ on ∂B(z0, R). On the other hand,

1(logwR − log v)= w2
R − v

2 > 0 in K0.

So the subharmonic function logwR − log v is positive in K0 and vanishes on the
boundary — a contradiction.

This proves that ∇u = O(1). In order to see the second statement, we note
that ∇u = O(1) implies that u(z) = O(|z|) has order 1. The result then follows
by first solving the Dirichlet problem (with a bounded function) having the same
boundary values as u; subtracting this function, one may then apply [Kjellberg
1950, Theorem II]. �

4. Partial classification in terms of abelian differentials

Let D be a QE domain of one of the following types:

Type I: D is finitely connected.

Type II: D/0 is finitely connected, where 0 is the group of transformations
z 7→ z+ nω, and u(z+ω)= u(z) for some ω ∈ C \ {0}. We call this the
periodic case. (As above, u is the roof function.)

In this section we give a classification of QE domains of these two types in
terms of abelian differentials of a compact Riemann surface with an anticonformal
involution.

If D is of type I, and∞ is an isolated boundary point, then D′ = D ∪ {∞} is
conformally equivalent to some bounded circular domain �, and we suppose that
p ∈� corresponds to∞. If∞ is not isolated, we put D′ = D, and � is a bounded
circular domain conformally equivalent to D′. In any case, we have a conformal
map φ :�→ D′, which may have at most one simple pole at p ∈�.

If D is of type II, let G = D/0. The Riemann surface G is a finitely connected
domain on the cylinder C/0; this cylinder is conformally equivalent to the punctured
plane, and we identify it with C∗. Then G ⊂ C∗ must have one or two punctures
of C/0 as isolated boundary points, and we denote by G ′ the union of G with
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these isolated boundary points. Then G ′ is conformally equivalent to a bounded
circular domain of finite connectivity � in which there are one or two points a and
b corresponding to the added punctures. We have a multivalued conformal map
φ :�→ D.

The points a and b are logarithmic singularities of φ.
We pull back u on �; i.e., set v = u ◦φ. As u is periodic, v is a single-valued

positive harmonic function on � \ {a, b}. Consider the differential on �

dv = vz dz = 1
2(vx − ivy)(dx + idy)= g(z) dz.

This is well-defined on �: g is a single-valued meromorphic function in � with
at most simple poles at p or a and b. Indeed, for a positive harmonic function,
an isolated singularity is either removable or logarithmic. In the second case the
gradient has a simple pole.

Next, we extend v as a multivalued function to a compact Riemann surface S.
Let �′ be the mirror image of �; we glue it to � in the standard way (along each
circular boundary component) and obtain a compact Riemann surface S. We denote
by σ : z 7→ z∗ the anticonformal involution which fixes the boundary components
of �. The Riemann surface S is of genus g, and the involution σ has fixed set
corresponding to ∂�, which consists of n = g+1 ovals. Such involutions are called
involutions of maximal type, meaning that the complement of the fixed set of the
involution consists of two regions homeomorphic to planar regions.

Each branch of v is constant on each boundary component, so it extends through
this boundary component by reflection to the double S of �. The extensions of
various branches of v through different boundary components do not match: they
differ by additive constants. On the other hand, the differential dv is well-defined
on the double. Namely,

(8) (dv)∗ =−dv,

where ∗ is the action of involution on differentials. Thus we have a meromorphic
differential dv on S.

Choose a basis of 1-homology in S so that the A-loops are simple closed curves
in �, each homotopic to one boundary component of �, and the B loops are dual
to the A-loops. For type I, all periods over A-loops are purely imaginary, because

v = Re
∫

dv

is single-valued. For type II, these periods are imaginary except those which
correspond to simple loops around one pole, a or b.
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Now we discuss φ, or better, the differential dφ = φ′(z) dz. We have, from the
condition that our domain is quasi-exceptional,

2|dv| = |dφ| on ∂�.

The ratio of two differentials is a function. So we have a meromorphic function B
on � such that

(9) 2B dv = dφ.

This function has absolute value 1 on ∂�. Therefore, it extends to S by symmetry.
It has no zeros in � because dφ has no zeros. Its poles in � must match the zeros
of dv, because dφ is zero-free (indeed, φ is univalent). In fact, B is a meromorphic
function on S. To justify this claim when dv has a singularity on ∂�, we observe
that this singularity is removable for B, which follows from the next lemma:

Lemma 3. Consider the equation

φ′ = Bh,

where h is meromorphic in a neighborhood V of 0, B is holomorphic and zero-free
in V \ {0}, |B(z)| = 1 for z ∈ V ∩R \ {0}, and φ is univalent in {z ∈ V : Im z > 0}.
Then the singularity of B at 0 is removable.

Before proving the lemma, we note that in order to apply it in our setting we
compose B with a linear fractional transformation that sends V to a neighborhood
of the singularity we wish to remove such that the real line is mapped to the circular
boundary component with 0 sent to the singularity.

Proof. In order to prove this by contradiction, assume that 0 is an essential singularity
of B. By symmetry we have B(z )= 1/B(z). We claim that there exists a sequence
zk→ 0 such that

(10) lim inf
k→∞

∣∣zk log|B(zk)|
∣∣> 0.

Indeed, suppose that this is not so. Then log |B(z)| = o(z−1), and the Phragmén–
Lindelöf theorem (see, for example, [Levin 1980, Chapter I, Theorem 22]) implies
that B has a limit as z→ 0. By choosing a subsequence and using symmetry, we
can find a sequence in the upper half-plane with the property

(11) lim inf
k→∞

|zk | log |B(zk)|> 0,

or with the property

(12) lim inf
k→∞

|zk | log |B(zk)|< 0.
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Distortion theorems for univalent functions imply that

(13) c(Im z)3 ≤ |φ′(z)| ≤ C(Im z)−3.

In addition to this, we have, for some integer m,

(14) c|x |m ≤ |φ′(x)| ≤ C |x |m, z ∈ V ∩R,

because h is meromorphic and |B(x)| = 1 for z ∈ V ∩R. Taking n =max{3,−m},
we obtain that the subharmonic function u(z)= log+|znφ′(z)/C | satisfies u(x)= 0
for x ∈ V ∩R, and u(reiθ )≤ ψ(θ), where ψ(θ)=−3 log sin θ for θ ∈ (0, π). As∫ π

0
ψ(θ) dθ <∞,

we can apply Carleman’s “log log” theorem [Carleman 1926; Rashkovskii 2009],
and conclude that u is bounded from above in the intersection of V with the upper
half-plane. This contradicts (11). If (12) holds, one applies the same argument to
1/φ′. This completes the proof of the lemma. �

We can thus restate the problem of finding QE domains (under the restrictions
we impose) as follows:

Proposition 4. All QE domains of types I and II are parametrized by triples
(S, dω, B), where S is a compact Riemann surface with an involution of maximal
type, dω is a meromorphic differential that enjoys the symmetry property (8), and B
is a function that has the symmetry property

B∗(z) := B(z∗)= 1/B(z)

and has poles at the zeros of dω on one half of S, that is, in�. There is an additional
condition: that

(15) φ = 2
∫

B dω

is globally univalent and single-valued in type I, and single-valued except the
residues in type II.

To recover D from a triple (S, dw, B), one takes one of the components �⊂ S
complementary to the fixed set of the involution. Then D = φ(�), where φ is
defined in (15).

In order to check the condition on the global univalence of φ, it is sufficient
to verify that periods of dω/B are zero on the boundary curves, and that these
boundary curves are mapped by φ injectively.

The following is a general conclusion:

Proposition 5. The boundary of a quasi-exceptional domain of type I or type II is
parametrized by an abelian integral.
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Next we provide a partial classification of quasi-exceptional domains in terms of
the data stated in the above formulation.

Theorem 6. The differential dv has either two or four poles on S, counting multi-
plicity. Moreover, if dv has two poles in S, then D is the complement of either a
disk or a half-plane.

Remark. If B 6= const, then 1/B is an Ahlfors function of �.

Proof of Theorem 6. Let us first show that dv has some poles. Otherwise, dv is
holomorphic, and thus u is bounded. Let z1 ∈ ∂D and z2 ∈ ∂D be the points where
u assumes its maximal and minimal values. Then du/dn has opposite signs at these
two points, which contradicts (1).

The differential dv has at most simple poles at p, a, and b (whichever of these
points are present) and at their images σ p, σa, and σb. In addition it may have
double poles on ∂�. The total number of poles (without multiplicity) in� is at most
two by Lemma 2. Thus, on S the differential dv has two or four poles, counting
multiplicity.

Notice that v is constant on each boundary component, so the gradient is perpen-
dicular to the boundary ∂�, so the total rotation of this gradient as we traverse the
boundary is the same as the total rotation of the tangent vector to the boundary.
This is equal to 2π(2− n) because the outer boundary component is traversed
counterclockwise and the rest clockwise, as parts of the boundary of �. So vz ,
which is conjugate to the gradient, rotates n− 2 times.

From this we can conclude how many zeros dv has in �. The number N of zeros
of dv in � satisfies

(16) n− 2= N − (the number of poles in �),

where a double pole on ∂� is counted as a single pole in �. This formula is
well known.

Suppose that dv has exactly two poles, counting multiplicity. This can occur in
one of three ways:

Case (1): dv has a simple pole at p in �.

Case (2): dv has one double pole at z0 ∈ ∂�.

Case (3): dv has a simple pole at a in � (and b does not exist).

If Case (1) holds, then∞ is an isolated point on ∂D, and, by Proposition 1, D is
an arclength quadrature domain with quadrature point at∞. It now follows from
[Gustafsson 1987, Remark 6.1] that D is the exterior of a disk.

In Case (2), we will show that B is constant. First note that dφ has a double
pole at z0, so B does not have a zero or a pole at z0. Since φ is a conformal map, it
follows from (9) that B has no zeros and N poles in � (located at the zeros of dv).



QUASI-EXCEPTIONAL DOMAINS 177

Assume for the sake of contradiction that B is not constant. By Lemma 3, B is
meromorphic in S, and, by Lemma 2, 1/|B| is bounded by a constant in �. Since
|B| = 1 on ∂�, B thus maps � to the exterior of the unit disk and maps each of the
n components of ∂� to the unit circle. This implies that B has at least n poles in
�. Combined with (16), this gives the contradiction N = n− 1≥ n. We conclude
that B is constant, which implies that the gradient of the roof function is constant.
Thus, the roof function is linear, and D is a half-plane.

In Case (3), the behavior of φ at point a is logarithmic, so dφ has a simple pole
at a and B does not have a zero or a pole at a. Arguing as before, we conclude that
B is constant and that D is a half-plane. �

Corollary 7. The only QE domains with compact boundary are exteriors of disks,
and the only QE domains of types I or II with one unbounded boundary component
are half-planes.

If D is a quasi-exceptional domain that is not a disk or half-plane, then dv has
four poles and, more precisely, we have the following two possibilities:

D is of type I: dv has two double poles on ∂�. This implies that the boundary ∂D
consists of two simple curves tending to∞ in both directions and n− 1 bounded
components. The unbounded components are the φ-images of two arcs of one
boundary circle of � which contains both singularities of φ and v.

D is of type II: dv has two simple poles in �. In this case D must be periodic, all
components of ∂D are compact, and there are n such components per period.

Note that the possibility that dv has one simple pole in � and one double pole
on ∂� is excluded by Lemma 2: it is easy to see that in this case the number of
Martin functions in the decomposition of u would be infinite.

We have thus described possible topologies of the QE domains satisfying the
assumptions stated in the beginning of this section.

In the next section we construct the examples of types I and II with S of genus 1.
We conjecture that there exist QE domains of types I and II with S of any genus.

5. New examples

Description of our examples requires elliptic functions (all known exceptional
domains can be parametrized by elementary functions).

Example of type I. Let G be the rectangle with vertices (0, 2ω1, 2ω1 + ω3, ω3),
where ω1 = 2ω, ω > 0, and ω3 = ω

′, where ω′ ∈ iR, ω′/ i > ω. Let G ′ be the
reflection of G in the real line. The union of G,G ′ and the interval (0, 2ω1) make
a fundamental domain of the lattice 3 generated by 2ω1, 2ω3.
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Let us consider the ω1-periodic positive harmonic function h in G which is zero
on the horizontal segments of the boundary ∂G, except for one singularity per
period, at 0, where it behaves in the following way:

h(z)∼− Im(1/z), z→ 0.

Note that the existence of h is clear as it can be expressed (through conformal
mapping) in terms of the Poisson kernel of a ring domain.

The function h has two critical points in G: at w1 and w2 with Rew1 = ω1/2
and Rew2 = 3ω1/2, while the imaginary parts of w1 and w2 are equal. Let us
choose real constants c1 and c2 such that v= 2(h+c1 y)+c2 is a positive harmonic
function with critical points ω1/2+ω3/2 and 3ω1/2+ω3/2. The existence of such
constants c1 and c2 is evident by continuity.

The z-derivative ∂zv = (vx − ivy)/2 is an elliptic function with periods ω1, 2ω3,
and thus also elliptic with periods 3. Asymptotics near 0 show that ∂zv ∼−i/z2,
and, as this function has only one pole per period (with respect to the parallelogram
ω1, 2ω3), we have ∂zv=−i℘+ic0, where ℘ is the Weierstrass function correspond-
ing to the lattice (ω1, 2ω3). Zeros of ∂zv in G∪G ′ are ω1/2+ω3/2, 3ω1/2+ω3/2
and their complex conjugates in G ′.

Let B be an elliptic function with periods 2ω1, 2ω3 having simple poles at
ω1/2+ω3/2, 3ω1/2+ω3/2, and zeros at complex conjugate points. Such a function
exists by Abel’s theorem: the sum of zeros minus the sum of poles equals −2ω3.
This function is unique up to a constant factor. By symmetry, B(z )= c/B(z), so
on the real line |B(x)|2 = c and we can choose the constant factor in the definition
of B so that c = 1. Thus

(17) |B(x)| = 1, x ∈ R.

Then we have B(x +ω3)B(x −ω3)=1, but by periodicity we also have B(x+ω3)=

B(x −ω3), thus |B(x +ω3)| = 1. So

(18) |B(z)| = 1 on the horizontal segments of ∂G.

Now we consider the function

F = ∂v
∂z

B = (−i℘+ ic0)B.

This function F is holomorphic and zero-free in G (the zeros of ∂v/∂z in G are
exactly canceled by the poles of B). Let us show that

(19)
∫ 2ω1

0
F(x + iy) dx = 0, y ∈ (0, ω3).
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Figure 1. A doubly connected quasi-exceptional domain of type I
mapped from the rectangle G.

This property follows from the fact that B(z) and B(z+ω1) have the same poles,
but the residues at these poles are of opposite signs, because B has only two poles
in the period parallelogram. Thus

(20) B(z+ω1)=−B(z).

Property (20) and ω1-periodicity of ℘ imply (19).
As F has no zeros, the primitive f =

∫
F is locally univalent. Assuming for the

moment that it is univalent, it maps G onto some region in the plane, and we have

| f ′| = |F | =
∣∣∣∂v
∂z

∣∣∣|B|.
Define u by composing v with f −1, so u( f (z)) = v(z). Then u is positive and
harmonic in f (G). Taking into account (18), we conclude that u satisfies (1) so
f (G) is a quasi-exceptional domain. Note that, in accordance with the previous
results in [Traizet 2014a], f (G) is not an exceptional domain since the piecewise-
constant Dirichlet data is not the same constant on each boundary component.

In order to show that f is in fact univalent, it is enough to show that it is one-
to-one on the horizontal sides of G (since f is locally univalent). To this end, we
make the following claims:

Claim 1: Re f is increasing along the segment [ω′, ω′+ 2ω] and decreasing along
the segment [ω′+ 2ω,ω′+ 4ω].
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Claim 2: Im f < Im f (ω′) on the segment (ω′, ω′+ 2ω] and Im f > Im f (ω′) on
the segment [ω′+ 2ω,ω′+ 4ω).

Claim 3: Im f achieves its minimum and maximum on the segment [ω′, ω′+ 4ω]
at ω′+ω and ω′+ 3ω, respectively.

Claim 4: Re f is increasing along the segment [0, 2ω] and Re f is decreasing along
the segment [2ω, 4ω].

Claim 5: Im f attains its maximum on the segment [0, 2ω] at ω and its minimum
on the segment [2ω, 4ω] at 3ω.

Claim 6: Im f (ω) < Im f (ω′+ω) < Im f (ω′+ 3ω) < Im f (3ω).

Claim 1 implies that Re f is monotone along each of the named segments, and
since Im f differs between the two segments by Claim 2, f must be one-to-one
on the top side of G. Claim 4 implies that f is one-to-one on each of the two
segments on the bottom side of G. Claims 3, 5, and 6 imply that the images of
these three segments do not intersect each other. This shows that f is one-to-one
on the horizontal sides of G.

The claims can be established by the properties of f ′ = F = ∂zvB. First note
that, since v(z) is positive in G and vanishes on the horizontal sides of G, we have
∂xv(z)= 0 on both sides, and for x ∈R we have ∂yv(x+ω3)< 0 and ∂yv(x)> 0. In
particular, i∂zv(z)= i(∂xv− i∂yv)/2= ∂yv/2 is real. The function B(z) is a Jacobi
sn function, whose properties are well known [Akhiezer 1990, Section 47]. B(z)
sends the top side of G to the unit circle, such that the four segments [ω′, ω′+ω],
[ω′+ω,ω′+2ω], [ω′+2ω,ω′+3ω], and [ω′+3ω,ω′+4ω] correspond to the fourth,
third, second, and first quadrants of the unit circle, respectively. Multiplication
by ∂zv(z) distorts this circle and rotates it by an angle of π/2 (since ∂zv(z)/ i is
positive), but preserves the two-fold symmetry. This determines the sign of the real
and imaginary parts of f ′. Since dz = dx is purely real on the horizontal sides
of G, this gives the monotonicity of Re f stated in Claim 1. Claims 2 and 3 follow
from the sign of Im f ′ and the fact that Im f ′ is an odd function with respect to
reflection in each of the points ω′+ω and ω′+ 3ω.

The four segments [0, ω], [ω, 2ω], [2ω, 3ω], and [3ω, 4ω] on the bottom side
of G are sent to the second, first, fourth, and third quadrants of the unit circle,
respectively. Since ∂zv(z)/ i is negative along the bottom side of G, under f ′(z) this
becomes the first, fourth, third, and second quadrants, respectively. This establishes
Claim 4, and, combined with the reflectional symmetry, also Claim 5. Claim 6
follows from the fact that ∂zv(z)B(z) > 0 along the vertical segment [ω,ω+ω′]
and ∂zv(z)B(z) < 0 along [3ω, 3ω+ω′].
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Figure 2. An example of type II with ω1 = 2, ω3 = 2 and ε = 0.5.

Figure 3. An example of type II with ω1 = 2, ω3 = 1.5, and ε = 0.4.

Remark. For the purpose of plotting Figure 1, instead of the above construction,
we expressed F as a ratio of Weierstrass sigma functions:

f ′(z)= F(z)=
σ(z−ω+ω′/2)2 · σ(z− 3ω+ω′/2)2

σ(z)2 · σ(z− 2ω) · σ(z− 6ω+ 2ω′)
,

where σ is a Weierstrass sigma function with fundamental “periods” 4ω, 2ω′ (but
recall that σ is not itself periodic). As usual, the shifts are chosen based on the
zeros and poles of F , but one of the shifts must be replaced by an equivalent lattice
point in a different rectangle in order to satisfy [Akhiezer 1990, Section 14, (1)].
This explains why one of the poles is placed at 6ω− 2ω′.

Example of type II. Only small modifications of the previous example are needed.
Using the same G,G ′, ω1, ω3, we define h as the ω1-periodic function, positive and
harmonic in G ′ except two logarithmic poles at iε and ω1+ iε, where ε ∈ (0, ω3/2).
Then we can find constants c1 and c2 such that v = h+ c1 y+ c2 has critical points
at ω1/2+ω3/2 and 3ω1/2+ω3/2.

Then vz is an elliptic function with periods ω1, 2ω3 with two simple poles at iε
and −iε per period parallelogram. This elliptic function has the form

−i℘
1+ c℘

+ ic0

for some small real c. The rest of the construction is the same as in the previous
example.

In a similar manner to the above, in order to plot Figures 2 and 3, we expressed
F as a ratio of Weierstrass sigma functions:

f ′(z)= F(z)=
σ(z−ω+ω′/2)2 · σ(z− 3ω+ω′/2)2

σ(z− iε) · σ(z+ iε) · σ(z− 2ω− iε) · σ(z− 6ω+ iε+ 2ω′)
.

Note that we have displayed the figures horizontally in order to plot two periods.
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6. Hollow vortex equilibria

Let G j be smooth Jordan domains on the plane whose closures are disjoint, and

D = C \
⋃

j

G j .

Let F be the complex potential of a flow of an ideal fluid which is divergence-free
and locally irrotational in D. If the pressure (determined by |F ′| according to
Bernoulli’s law) is constant on ∂D then G j can be interpreted as constant-pressure
gas bubbles in the flow.

The first examples of this situation, with two bubbles, were constructed by
Pocklington [1895]. Periodic exceptional domains give periodic examples with one
bubble per period, with the flow on the surface on the bubbles rotating in the same
direction [Baker et al. 1976] (see also [Crowdy and Green 2011]). Crowdy and
Green [2011] constructed periodic examples with two bubbles per period rotating
in the opposite direction. Our example of type II can be interpreted as a periodic
flow with two bubbles per period rotating in the same direction.

The velocity at infinity in our examples is directed in the opposite directions on
the two sides of the row of bubbles.
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