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ON MAXIMAL LINDENSTRAUSS SPACES

PETR PETRÁČEK AND JIŘÍ SPURNÝ

We solve a problem of Lacey (1973) by showing that there exist a metrizable
compact space K and a closed space H ⊂ C(K ) containing constants with
∂HK = K such that H is maximal with respect to ∂HK and H is not a
Lindenstrauss space.

1. Introduction

Let X be a compact convex subset of a real locally convex space and let Ac(X)
denote the space of all affine continuous functions on X . Denote by ext X the set
of all extreme points of X .

Let K be a compact Hausdorff topological space and H⊂C(K ) a closed subspace
of C(K ) containing constants and separating points of K . The space H can be
identified with Ac(X), where

X = {s∗ ∈H∗ : s∗(1)= ‖s∗‖ = 1}

with the weak* topology. Consider the set

∂HK = {x ∈ K : εx |H is an extreme point of the unit ball of H∗},

where εx denotes the Dirac measure at x ∈ K . Then ext X is homeomorphic to ∂HK
via the evaluation mapping (see Theorem 2.1 and [LMNS 2010, Proposition 4.26]).

The space H is called maximal with respect to ∂HK if for every closed space G
with H⊂ G ⊂ C(K ) we have H= G provided ∂HK = ∂GK .

(In [Lacey 1973], the property of separating points is not a part of the definition
of a function space. Nevertheless, in our opinion, this property is necessary for
∂HK to be homeomorphic to ext X . Indeed, consider H= span{1} on [0, 1]. Then
X is a singleton, and thus ∂H[0, 1] = [0, 1]. Obviously, [0, 1] is not homeomorphic
to ext X .)

It is shown in [Edwards and Vincent-Smith 1968] that H is maximal with respect
to ∂HK whenever H is a Lindenstrauss space; see Theorems 2.1 and 2.3 below.
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(A real Banach space X is called a Lindenstrauss space, or an L1-predual, if its dual
space X∗ is isometric to a space L1(X,S, µ) for some measure space (X,S, µ).)
This result serves as a motivation for the following problem, stated as Question 5
in [Lacey 1973, p. 144] (see also [Lacey 1974, p. 198]).

Question 1.1. Let K be a compact space and H⊂ C(K ) a closed subspace contain-
ing constants and separating points of K such that ∂HK = K . Let H be maximal
with respect to ∂HK . Is H then a Lindenstrauss space?

The aim of our paper is to show that the answer to Question 1.1 is in general
negative by proving the following theorem.

Theorem 1.2. There exist a metrizable compact space K and a closed space
H ⊂ C(K ) containing constants and separating points of K with ∂HK = K such
that H is maximal with respect to ∂HK and H is not a Lindenstrauss space.

2. Function spaces

Let K be a compact space (we consider all topological spaces as Hausdorff). We
identify the dual of C(K ) with the space M(K ) of all signed Radon measures
on K . By a positive Radon measure on K we mean a finite complete inner regular
measure defined at least on all Borel subsets of K . Let M1(K ) denote the set of all
probability Radon measures on K , M+(K ) the set of all positive Radon measures
on K , and εx the Dirac measure at x ∈ K .

By a function space H on K we mean a subspace H of C(K ) containing constants
and separating points of K . Assuming H is a function space on K we assign to
each x ∈ K the set

Mx(H)= {µ ∈M1(K ) : µ(h)= h(x), h ∈H}

of all H-representing measures. Clearly, εx ∈Mx(H) for each x ∈ K . We call

ChH K = {x ∈ K :Mx(H)= {εx}}

the Choquet boundary of H. If h ∈H attains its strict minimum at some x ∈ K , we
call h an H-exposing function and x an H-exposed point. It is easy to see that any
H-exposed point belongs to the Choquet boundary of H.

We define the space Ac(H) of all continuous H-affine functions to be the family
of all continuous functions f on K satisfying

f (x)=
∫

K
f dµ for each x ∈ K and µ ∈Mx(H).

Ac(H) is a closed function space containing H and satisfying Mx(H)=Mx(Ac(H))
for every x ∈ K . Thus ChH K = ChAc(H) K . We define the state space of H as

S(H)= {s∗ ∈H∗ : s(1)= ‖s‖ = 1}
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endowed with the weak* topology. The state space S(H) is a compact convex set
and K is homeomorphically embedded into S(H) via φ : K → S(H), where

φ(x) : h→ h(x), h ∈H, x ∈ K .

Let BH∗ stand for the unit ball of H∗. Following the notation in [Lacey 1973,
p. 143] mentioned in the introduction,

∂HK = {x ∈ K : φ(x) ∈ ext BH∗}.

The next assertion shows that our definition of the Choquet boundary coincides
with Lacey’s definition of ∂HK .

Theorem 2.1. If H is a function space on a compact space K , then ChH K = ∂HK .

Proof. By [LMNS 2010, Proposition 4.26(d)], φ(ChH K ) = ext S(H). Since
S(H) is a face of BH∗ (see [LMNS 2010, Section 2.3.A]), we have ext S(H) =
ext BH∗ ∩ S(H). Thus, given any x ∈ K , we have φ(x) ∈ ext S(H) if and only if
φ(x) ∈ ext BH∗ . �

The Choquet ordering on M+(K ) is given as follows: µ≺ ν if µ(k)≤ ν(k) for
each function k of the form k =max{h1, . . . , hn}, where n ∈N and h1, . . . , hn ∈H
(see [LMNS 2010, Definition 3.19 and Proposition 3.56]). A measure µ in M+(K )
is called H-maximal if it is ≺-maximal. By [LMNS 2010, Theorem 3.65], there
exists an H-maximal measure µ ∈Mx(H) for every x ∈ K . Furthermore, if K
is metrizable, the set ChH K is Gδ (see [LMNS 2010, Theorem 3.42 and Propo-
sition 3.43]) and H-maximal measures are precisely those measures carried by
ChH K (see [LMNS 2010, Corollary 3.62]).

If for each x ∈ K there exists only one H-maximal measure in Mx(H), the
function space H is called simplicial (see [LMNS 2010, Chapter 6]). A compact
convex set X is called a simplex if the function space Ac(X) is simplicial. The
relation between simplicial function spaces and Lindenstrauss spaces is given by
the following result.

Theorem 2.2. Let H be a function space on a compact space K . Then H is
simplicial if and only if the Banach space Ac(H) is a Lindenstrauss space.

Proof. Let Ac(H) be a Lindenstrauss space. Since Ac
(
S(Ac(H))

)
is isometric to

the space Ac(H) (see [LMNS 2010, Proposition 4.26]), it is a Lindenstrauss space
as well. By [Fonf et al. 2001, Proposition 3.23], S(Ac(H)) is a simplex. Thus it
follows from [LMNS 2010, Theorem 6.54] that H is simplicial.

Conversely, if H is simplicial, S(Ac(H)) is a simplex by [LMNS 2010, The-
orem 6.54]. Using [Fonf et al. 2001, Proposition 3.23] we conclude that Ac(H),
being isometric to Ac

(
S(Ac(H))

)
, is a Lindenstrauss space. �
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The next result asserts two important properties of closed function spaces that
are Lindenstrauss spaces. As mentioned above, it can be considered a motivation
for the question this paper aims to answer.

Theorem 2.3. Let H be a closed function space on a compact space K such that
H is a Lindenstrauss space. Then H = Ac(H) and H is maximal with respect to
ChH K .

Proof. To prove the first assertion notice that Ac(S(H)), being isometric to H (see
[LMNS 2010, Proposition 4.26]), is a Lindenstrauss space. By [Fonf et al. 2001,
Proposition 3.23], S(H) is a simplex. This implies that Ac(S(H)) is simplicial
and thus, by [LMNS 2010, Theorem 6.16(vi)], Ac(S(H)) has the so-called weak
Riesz interpolation property. This, however, implies that H has the weak Riesz
interpolation property according to [LMNS 2010, Proposition 4.26]. To finish the
proof it is enough to consult [LMNS 2010, Exercise 6.78].

To prove the second assertion, let G ⊃ H be a closed function space with
ChH K = ChG K . Since G ⊂ Ac(G) and ChG K = ChAc(G) K , we can assume
without loss of generality that Ac(G)= G. Using [LMNS 2010, Theorem 10.60]
we infer that G =Ac(H). Since H=Ac(H), we get G =H, finishing the proof. �

3. Proof of Theorem 1.2

We consider a compact subset of R2 defined as follows. Let {s, s1, s2, t1, t2
} be

distinct points in R2. Let (si
n) and (t i

n), i = 0, 1, 2, be sequences of points in R2

such that

• s0
n → s, t0

n → s,

• si
n→ si , t i

n→ t i , i = 1, 2,

• all the elements of these sequences are pairwise distinct and not contained in
{s, s1, s2, t1, t2

}.

Let B(x, r) denote the closed ball in R2 with center x ∈R2 and diameter r > 0. Let
further rn > 0, n ∈ N, be numbers such that

• rn→ 0,

• the family

K =
{
{s}, {s1

}, {s2
}, {t1
}, {t2
}
}
∪ {B(s0

n , rn) : n ∈ N} ∪ {B(t0
n , rn) : n ∈ N}

is disjoint.
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We define the compact space K as K =
⋃

K. Furthermore, we set H to be

H=
{
h ∈ C(K ) : h(s)= 1

2

(
h(s1)+ h(s2)

)
=

1
2

(
h(t1)+ h(t2)

)
,

h(s0
n)=

1
2

(
h(s1

n)+ h(s2
n)
)
, h(t0

n )=
1
2

(
h(t1

n )+ h(t2
n )
)
, n ∈ N

}
.

Lemma 3.1. The space H is a well defined function space with H = Ac(H). Let
L = {s} ∪ {s0

n : n ∈ N} ∪ {t0
n : n ∈ N}. Then ChH K = K \ L. In particular, ChH K

is dense in K .

Proof. Obviously, H contains constant functions. The fact that H=Ac(H) follows
immediately from the definition of H. To verify that H separates points of K it is
enough to consider elementary constructions of functions from H. Given n ∈ N

and z ∈ B(s0
n , rn) \ {s0

n}, we consider a continuous function g : B(s0
n , rn)→ [0, 1]

attaining 0 precisely at z and 1 at s0
n . Then the function

hz(x)=
{

g(x) if x ∈ B(s0
n , rn),

1 otherwise

separates z from the remaining points of K . It also H-exposes z, and thus z∈ChH K .
We can further construct functions hsn and hs in H as follows:

hsn (x)=


0 if x = s1

n ,

2 if x ∈ B(s0
n , rn),

4 if x = s2
n ,

1 otherwise,

hs(x)=



0 if x = s1,

2 if x = s2,
1

2n if x = s1
n ,

2− 1
2n if x = s2

n ,

1 otherwise.

The function hsn then separates the points s1
n , s2

n from any point in K and it separates
s0

n from any point in K \ B(s0
n , rn). Its construction also shows that the points s1

n , s2
n

are H-exposed and thus lie in ChH K . Similarly, the function hs separates points
s1, s, s2 from each other and it separates s from every point in {si

n : n ∈N, i ∈ {1, 2}}.
Furthermore, the construction of hs shows that the points s1, s2 are H-exposed and
thus belong to ChH K .

Analogously we can construct functions htn , h̃s and h y for any n ∈ N and y ∈
B(t0

n , rn) \ {t0
n } to show that H indeed separates points of K and that all points in

{t1, t2} ∪ {t i
n : n ∈ N, i ∈ {1, 2}} ∪

⋃
n∈N

(B(t0
n , rn) \ {t0

n })

lie in ChH K .
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Overall, we have

{s1, s2, t1, t2
} ∪ {si

n : n ∈ N, i ∈ {1, 2}} ∪ {t i
n : n ∈ N, i ∈ {1, 2}} ⊂ ChH K

and ⋃
n∈N

(B(s0
n , rn) \ {s0

n})∪
⋃
n∈N

(B(t0
n , rn) \ {t0

n })⊂ ChH K .

Clearly, any point in L has a nontrivial H-representing measure. This together
with the inclusions above yields ChH K = K \ L . �

Lemma 3.2. Let n ∈ N. Then

Ms0
n
(H)= conv

{
εs0

n
, 1

2(εs1
n
+ εs2

n
)
}

and
Mt0

n
(H)= conv

{
εt0

n
, 1

2(εt1
n
+ εt2

n
)
}
.

Proof. Let n ∈ N and µ ∈Ms0
n
(H) be fixed. Pick a continuous function

g : B(s0
n , rn)→ [0, 1]

such that g(s0
n)= 0 and g(x) > 0 otherwise. Using the function

h(x)=


0 if x ∈ {s1

n , s2
n},

g(x) if x ∈ B(s0
n , rn),

1 otherwise,

we infer that the support of µ is contained in {s0
n , s1

n , s2
n}.

Further, let a = µ({s0
n}). Assume first that a = 0, i.e., µ= bεs1

n
+ (1− b)εs2

n
for

some b ∈ [0, 1]. Then the function

h(x)=


0 if x = s1

n ,

1 if x = s0
n ,

2 if x = s2
n ,

1 otherwise

shows that
1= h(s0

n)= µ(h)= (1− b)h(s2
n)= (1− b)2.

In other words, b = 1
2 and µ= 1

2(εs1
n
+ εs2

n
).

If a ∈ (0, 1), then the measure ν = µ− aεs0
n

satisfies

h(s0
n)= µ(h)= ν(h)+ ah(s0

n), h ∈H.

Hence 1
1−a

ν is in Ms0
n
(H) and is carried by {s1

n , s2
n}. By the first part of the proof,

1
1−a

ν = 1
2(εs1

n
+ εs2

n
).
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Thus

µ= ν+ aεs0
n
= (1− a) 1

1−a
ν+ aεs0

n
= (1− a)1

2(εs1
n
+ εs2

n
)+ aεs0

n

is in conv
{
εs0

n
, 1

2(εs1
n
+ εs2

n
)
}
. If a = 1, obviously

µ= εs0
n
∈ conv

{
εs0

n
, 1

2(εs1
n
+ εs2

n
)
}
.

Thus
µ ∈ conv

{
εs0

n
, 1

2(εs1
n
+ εs2

n
)
}

holds in all cases.
The second part of the assertion can be proved analogously. �

Lemma 3.3. The space H is not simplicial.

Proof. The measures 1
2(εs1 + εs2), 1

2(εt1 + εt2) are different, they H-represent s
and, by Lemma 3.1, both are carried by ChH K . Hence there exist two H-maximal
measures representing s, which implies that H is not simplicial. �

Lemma 3.4. The space H is maximal with respect to ChH K . That is, G =H for
any closed function space H⊂ G such that ChG K = ChH K .

Proof. Fix an index m ∈ N. Let τ ∈Ms0
m
(G) be a measure carried by ChG K . We

aim to show that

(3-1) τ = 1
2(εs1

m
+ εs2

m
).

Since Ms0
m
(G)⊂Ms0

m
(H), we obtain by virtue of Lemma 3.2 that

τ ∈ conv
{
εs0

m
, 1

2(εs1
m
+ εs2

m
)
}
.

This and the fact that τ is carried by ChG K = ChH K ⊂ K \ {s0
m} imply (3-1).

Pick µn ∈Ms0
n
(G), n ∈ N, such that the measures µn are carried by ChG K for

all n ∈ N. The sequence (s0
n) converges to s, while the sequence (µn) converges to

µ= 1
2(εs1 + εs2). Thus µ ∈Ms(G). Analogously we infer that any measure νn in

Mt0
n
(G) carried by ChG K satisfies νn =

1
2(εt1

n
+ εt2

n
), and thus ν = 1

2(εt1 + εt2) is
in Ms(G).

We want to show that G ⊂H. To this end, let g ∈ G be given. We have to verify
the conditions defining the space H. Using the arguments above we get

g(s0
n)= µn(g)= 1

2(g(s
1
n)+ g(s2

n)) and g(s)= µ(g)= 1
2(g(s

1)+ g(s2)),

while simultaneously

g(t0
n )= νn(g)= 1

2(g(t
1
n )+ g(t2

n )) and g(s)= ν(g)= 1
2(g(t

1)+ g(t2)).

Hence g ∈H by definition. This concludes the proof. �
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Thus we have proved Theorem 1.2. Indeed, considering the compact space K
and the closed function space H ⊂ C(K ) defined above, we have by Lemma 3.1
that ChH K is dense in K . Furthermore, H is maximal with respect to ChH K
by Lemma 3.4. Since H is not simplicial according to Lemma 3.3, Theorem 2.2
asserts that Ac(H) is not a Lindenstrauss space. Since H=Ac(H) by Lemma 3.1,
it follows that H is not a Lindenstrauss space.
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