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ON THE DEGREE OF CERTAIN LOCAL L-FUNCTIONS

U. K. ANANDAVARDHANAN AND AMIYA KUMAR MONDAL

Let π be an irreducible supercuspidal representation of GLn(F), where F is
a p-adic field. By a result of Bushnell and Kutzko, the group of unramified
self-twists of π has cardinality n/e, where e is the oF-period of the principal
oF-order in Mn(F) attached to π . This is the degree of the local Rankin–
Selberg L-function L(s, π × π∨). In this paper, we compute the degree of
the Asai, symmetric square, and exterior square L-functions associated to π .
As an application, assuming p is odd, we compute the conductor of the Asai
lift of a supercuspidal representation, where we also make use of the con-
ductor formula for pairs of supercuspidal representations due to Bushnell,
Henniart, and Kutzko (1998).

1. Introduction

Let F be a p-adic field. Let oF denote its ring of integers and let pF be the unique
maximal ideal of oF . Let q denote the cardinality of the residue field oF/pF . Let
W ′F denote the Weil–Deligne group of F . For a reductive algebraic group G defined
over F , let L G be its Langlands dual. Given a Langlands parameter ρ :W ′F →

L G
and a finite-dimensional representation r : L G→ GL(V ), we have an L-function
L(s, ρ, r) defined as follows. If N is the nilpotent endomorphism of V associated
to r ◦ ρ, then

L(s, ρ, r)=
1

det
(
1− (r ◦ ρ)(Frob)|(Ker N )I q−s

)
where Frob is the geometric Frobenius and I is the inertia subgroup of the Weil
group of F . Thus, L(s, ρ, r)= P(q−s)−1 for some polynomial P(X)with P(0)=1,
and by the degree of L(s, ρ, r) we mean the degree of P(X). If π = π(ρ) denotes
the L-packet of irreducible admissible representations of G(F) corresponding to ρ
under the conjectural Langlands correspondence, then its Langlands L-function,
denoted by L(s, π, r), is expected to coincide with L(s, ρ, r). In many cases,
candidates for L(s, π, r) can also be obtained either via the Rankin–Selberg method

MSC2010: primary 22E50; secondary 11F33, 11F70, 11F85.
Keywords: Asai L-function, symmetric square L-function, exterior square L-function, degree of a

local L-function.
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of integral representations or by the Langlands–Shahidi method, and in several
instances it is known that all these approaches lead to the same L-function [Shahidi
1984; 1990; Anandavardhanan and Rajan 2005; Henniart 2010; Matringe 2011;
Kewat and Raghunathan 2012].

Let G = GL(n1)×GL(n2). If πi is an irreducible admissible representation of
GLni (F) (i = 1, 2), and if r is the tensor product representation of L G=GLn1(C)×

GLn2(C) on Cn
⊗ Cn given by r((a, b)) · (x ⊗ y) = ax ⊗ by, then the resulting

L-function is the Rankin–Selberg L-function L(s, π1× π2) [Jacquet et al. 1983;
Shahidi 1984]. If we assume that both π1 and π2 are supercuspidal representations,
then we know that L(s, π1×π2)≡ 1 unless n1 = n2 and π∨2 ∼= π1⊗χ ◦ det for an
unramified character χ of F×. Here, π∨ denotes the representation contragredient
to π . Moreover, in the latter case, the degree of L(s, π1×π2) is equal to the degree
of L(s, π1×π

∨

1 ), which in turn equals the cardinality of the group

{
η : F×→ C× | π1⊗ η ◦ det∼= π1, η unramified

}
.

The result of Bushnell and Kutzko mentioned in the abstract computes the
cardinality of the above group of unramified self-twists of π = π1 [Bushnell
and Kutzko 1993, Lemma 6.2.5]. In order to state the result, let [A,m, 0, β] be
the simple stratum defining a maximal simple type occurring in the irreducible
supercuspidal representation π . Here, A is a principal oF -order in Mn(F), m ≥ 0
is an integer called the level of π , and β ∈ Mn(F) is such that F[β] is a field with
F[β]× normalizing A. Let e= e(A|oF ) be the oF -period of A; this quantity in fact
equals the ramification index e(F[β]/F) of F[β]/F . Then e divides n, and the
cardinality of the group of unramified self-twists of π is n/e. We mention in passing
that the level m of π is related to the conductor f (π) of π by f (π)= n(1+m/e).

The aim of the present work is to analogously compute the degree of some other
local L-functions in the supercuspidal case. Investigating the supercuspidal case
would suffice as the L-function of any irreducible admissible representation can
usually be built out of L-functions associated to supercuspidal representations. The
L-functions that we study in this paper are the Asai L-function, the symmetric
square L-function, and the exterior square L-function.

For the Asai L-function, take G = ResE/F GL(n), the Weil restriction of GL(n),
where E is a quadratic extension of F . Thus, G(F) = GLn(E). In this case, the
dual group is L G = GLn(C)×GLn(C)oGal(E/F), where the nontrivial element
σ of the Galois group Gal(E/F) acts by σ · (a, b)= (b, a). The representation r is
the Asai representation, also known as the twisted tensor representation, of L G on
Cn
⊗Cn given by r((a, b)) ·(x⊗ y)= ax⊗by and r(σ ) ·(x⊗ y)= y⊗ x . The Asai

L-function can be studied both by the Rankin–Selberg method (see [Flicker 1993,
Appendix; Kable 2004]) and by the Langlands–Shahidi method [Shahidi 1990]. It
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is also known that all three definitions match [Anandavardhanan and Rajan 2005;
Henniart 2010; Matringe 2011].

For the symmetric square L-function (resp. the exterior square L-function), take
G = GL(n) and let r be the symmetric square (resp. the exterior square) of the
standard representation of L G = GLn(C). The Langlands–Shahidi theory of these
L-functions is satisfactorily understood [Shahidi 1990; 1992] and this definition is
known to match with the one via the Langlands formalism [Henniart 2010]. For
the Rankin–Selberg theory of these L-functions, we refer to [Jacquet and Shalika
1990; Bump and Ginzburg 1992; Kewat and Raghunathan 2012].

These L-functions are ubiquitous in number theory and the degree of L(s, π, r)
often has several meaningful and important interpretations. For instance, these
L-functions detect functorial lifts from classical groups. In particular, by the work of
Shahidi [1992] and Goldberg [1994], for an irreducible supercuspidal representation
π , the degree of L(s, π, r) is either the number of unramified twists or half the
number of unramified twists of π which are functorial lifts from classical groups
(see [Shahidi 1992, Theorem 7.7] and [Goldberg 1994, Theorems 5.1 and 5.2]).
We refer to Section 2 for some more details in this regard. Since reducibility
of parabolic induction is understood in terms of poles of these L-functions, the
degree of L(s, π, r) when π is self-dual if r = Sym2 or

∧2, or when π is conjugate
self-dual if r = Asai, counts the number of unramified twists or half the number
of unramified twists of π such that the parabolically induced representation to
the relevant classical group is irreducible (see [Shahidi 1992, Theorem 7.6] and
[Goldberg 1994, Theorem 6.5]).

These L-functions are also related to the theory of distinguished representa-
tions. If π is a supercuspidal representation of GLn(E), then the degree of its
Asai L-function is the number of unramified characters µ of F× for which π
is µ-distinguished with respect to GLn(F) (see [Anandavardhanan et al. 2004,
Corollary 1.5]). Similarly, if π is a supercuspidal representation of GLn(F), the
degree of its exterior square L-function is half the number of unramified characters
µ of F× such that π ⊗µ ◦ det admits a Shalika functional (see [Jiang et al. 2008,
Theorem 5.5]).

Our main theorem computes the degree of L(s, π, r), when π is a supercuspidal
representation, in terms of the simple stratum [A,m, 0, β] defining a maximal
simple type occurring in the irreducible supercuspidal representation π . Note that
π is a supercuspidal representation of GLn(E), with E/F a quadratic extension, in
the Asai case, whereas otherwise it is a supercuspidal representation of GLn(F).
As before, let e denote the o-period of A where o= oE in the Asai case and o= oF

otherwise.
Let ω = ωE/F be the quadratic character of F× associated to the extension

E/F and let κ be an extension of ω to E×. For the purposes of this paper, let



4 U. K. ANANDAVARDHANAN AND AMIYA KUMAR MONDAL

us say that a supercuspidal representation, and more generally a discrete series
representation, π of GLn(E) is distinguished (resp. ω-distinguished) if its Asai L-
function L(s, π, r) (resp. L(s, π ⊗κ, r)) has a pole at s = 0. Strictly speaking, this
is not how distinction is usually defined, but the property above does characterize
distinction for the pair (GLn(E),GLn(F)) (see [Anandavardhanan et al. 2004,
Corollary 1.5]). It follows that a supercuspidal representation, and more generally
a discrete series representation, cannot be both distinguished and ω-distinguished
because of the identity

L(s, π ×πσ )= L(s, π, r)L(s, π ⊗ κ, r).

Here, σ is the nontrivial element of the Galois group Gal(E/F).
Recall also that a supercuspidal representation π , and more generally a discrete

series representation, of GLn(F) which is self-dual is said to be orthogonal (resp.
symplectic) if its symmetric square L-function L(s, π,Sym2) (resp. its exterior
square L-function L(s, π,

∧2
)) has a pole at s = 0. Thus, a supercuspidal rep-

resentation, and more generally a discrete series representation, cannot be both
orthogonal and symplectic, since we have the factorization

L(s, π ×π)= L(s, π,Sym2)L(s, π,
∧2
).

Thanks to the above factorizations, if π is a supercuspidal representation of
GLn(E), we can conclude that

deg L(s, π, r)+ deg L(s, π ⊗ κ, r)=
{

2n/e if E/F is unramified,
n/e if E/F is ramified.

Similarly, if π is a supercuspidal representation of GLn(F), then

deg L(s, π,Sym2)+ deg L(s, π,
∧2
)= n/e

by the result of Bushnell and Kutzko mentioned earlier. Our main results assert that
if both the degrees on the left-hand side of the above identities are nonzero, then
they are equal.

To state the result more precisely, we introduce the following notion. Let [π ]
denote the inertial equivalence class of π ; thus [π ] consists of all the unramified
twists of π . We say that [π ] is µ-distinguished (resp. orthogonal, symplectic)
if there is an unramified twist of π which is µ-distinguished (resp. orthogonal,
symplectic). Now we state the main results of this paper.

Theorem 1.1. Let π be a supercuspidal representation of GLn(E), with E/F a
quadratic extension. Let e be the oE -period of the principal oE -order in Mn(E)
attached to π . Let L(s, π, r) be the Asai L-function of π .
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(1) Suppose E/F is unramified. Then the degree of L(s, π, r) is

d(Asai)=
{

0 if [π ] is not distinguished,
n/e if [π ] is distinguished.

(2) Suppose E/F is ramified. Then the degree of L(s, π, r) is

d(Asai)=


0 if [π ] is not distinguished,
n/2e if [π ] is both distinguished and ω-distinguished,
n/e if [π ] is distinguished but not ω-distinguished.

Theorem 1.2. Let π be a supercuspidal representation of GLn(F). Let e be the
oF -period of the principal oF -order in Mn(F) attached to π . Then the degree of its
symmetric square L-function L(s, π,Sym2) is

d(Sym2)=


0 if [π ] is not orthogonal,
n/2e if [π ] is both orthogonal and symplectic,
n/e if [π ] is orthogonal but not symplectic.

Theorem 1.3. Let π be a supercuspidal representation of GLn(F). Let e be the
oF -period of the principal oF -order in Mn(F) attached to π . Then the degree of its
exterior square L-function L(s, π,

∧2
) is

d(
∧2
)=


0 if [π ] is not symplectic,
n/2e if [π ] is both symplectic and orthogonal,
n/e if [π ] is symplectic but not orthogonal.

Remark. As mentioned earlier, a consequence of Theorems 1.2 and 1.3 is that

deg L(s, π,Sym2)= deg L(s, π,
∧2
)

if both these L-functions are not identically 1. In this context, we also refer to the
remark following Theorem 2.1 in Section 2, which places the above observation in
the framework of the work of Shahidi [1992].

Finally, in Section 6, we prove the following theorem. We stress that the assump-
tion of odd residue characteristic is essential in its proof.

Theorem 1.4. Let E/F be a quadratic extension of p-adic fields. If it is ramified,
assume also that p 6= 2. Let κ be a character of E× which restricts to the quadratic
character ωE/F of F× associated to E/F. Let π be an irreducible supercuspidal
representation of GLn(E) and let r(π) be its Asai lift to GLn2(F). Then

f (r(π))+ deg L(s, π, r)= f (r(π)⊗ωE/F )+ deg L(s, π ⊗ κ, r).

Remark. The conductor formula of Bushnell, Henniart, and Kutzko [1998, Theo-
rem 6.5] gives an explicit formula for f (π ×πσ ) (see Section 5). Thus, together
with Theorem 1.1 and this explicit conductor formula for pairs of supercuspidal
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representations of general linear groups, Theorem 1.4 in fact produces an explicit
conductor formula for the Asai lift. Since the statement of such an explicit formula
involves introducing further notations, we leave the precise formula to Section 6
(see Theorem 6.1).

2. Results of Shahidi and Goldberg

We recall the results of [Shahidi 1992; Goldberg 1994] to place our Theorems 1.1,
1.2, and 1.3 in context. For the unexplained definitions in the following, we refer to
[Shahidi 1992, Definitions 7.4 and 7.5].

Theorem 2.1 [Shahidi 1992, Theorem 7.7]. Let π be an irreducible supercuspidal
representation of GLn(F).

(1) The L-function L(s, π,
∧2
) is identically 1 unless some unramified twist of π

is self-dual. Assume π is self-dual. Let S be the (possibly empty) set of all
the unramified characters η, no two of which have equal squares, for which
π ⊗ η ◦ det comes from SOn+1(F). Then

L(s, π,
∧2
)=

∏
η∈S

(
1− η2($)q−s)−1

.

(2) The L-function L(s, π,Sym2) is identically 1 unless some unramified twist of
π is self-dual. Assume π is self-dual. If π comes from Spn−1(F), then

L(s, π,Sym2)= (1− q−rs)−1,

where r is the number of unramified self-twists of π . Otherwise, let S′ be the
(possibly empty) set of all the unramified characters η, no two of which have
equal squares, for which π ⊗ η ◦ det comes from SO∗n(F). Then

L(s, π,Sym2)=
∏
η∈S′

(
1− η2($)q−s)−1

.

Remark. A consequence of Theorem 1.2 and Theorem 1.3 is that S and S′ have
the same cardinality if both these sets are nonempty.

Next we state Theorems 5.1 and 5.2 of [Goldberg 1994]. Here, E/F is a quadratic
extension of p-adic fields and σ denotes the nontrivial element of Gal(E/F). For
an irreducible admissible representation of GLn(E), let L(s, π, r) denote its Asai
L-function. In the following, q = qF is the residue cardinality of F . For the
unexplained definitions in the following two theorems, we refer to Definitions 1.11
and 1.12 of [Goldberg 1994].

Theorem 2.2. Let n be odd. Suppose that π is an irreducible supercuspidal rep-
resentation of GLn(E) such that π∨ ∼= πσ . Let S be the set of all unramified
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characters η of E×, no two of which have equal squares, such that π ⊗ η ◦ det is a
stable lift from U (n, E/F).

(1) Suppose E/F is ramified. Then

L(s, π, r)=
∏
η∈S

(
1− η($F )q

−s)−1
.

(2) Suppose E/F is unramified. Then

L(s, π, r)=
∏
η∈S

(
1− η2($F )q

−s)−1
.

Theorem 2.3. Let n be even. Suppose that π is an irreducible supercuspidal
representation of GLn(E) such that π∨ ∼= πσ . Let S be the set of all unramified
characters η of E×, no two of which have equal value at $F , such that π ⊗ η ◦ det
is an unstable lift from U (n, E/F). Then

L(s, π, r)=
∏
η∈S

(
1− η($F )q

−s)−1
.

Remark. Theorem 1.1 computes explicitly the cardinality of S in Theorems 2.2
and 2.3.

3. The Asai lift

We collect together various results on the Asai representation in this section.
Let H be a subgroup of index two in a group G. Let ρ be a finite dimensional

representation of H of dimension n. Its Asai lift, which we do not define here, is a
representation of G of dimension n2. Let r(ρ) denote the Asai lift of ρ to G. The
following proposition summarizes the key properties of the Asai lift (see [Prasad
1999; Murty and Prasad 2000]).

Proposition 3.1. The Asai lift satisfies:

(1) r(ρ1⊗ ρ2)∼= r(ρ1)⊗ r(ρ2).

(2) r(ρ)∨ ∼= r(ρ∨).

(3) r(χ) for a character χ is χ ◦ tr, where tr is the transfer map from G to the
abelianization of H.

(4) r(ρσ )∼= r(ρ), where σ is the nontrivial element of G/H.

(5) r(ρ)|H ∼= ρ⊗ ρσ .

(6) For a representation τ of G, we have r(τ |H ) ∼= Sym2 τ ⊕ ωG/H
∧2
τ , where

ωG/H is the nontrivial character of G/H.

(7) Let IndG
H ρ denote the representation of G induced from ρ. Then:
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(a) Sym2(IndG
H ρ)
∼= IndG

H Sym2 ρ⊕ r(ρ).
(b)

∧2
(IndG

H ρ)
∼= IndG

H
∧2
ρ⊕ r(ρ)⊗ωG/H .

Remark. We have assumed [G : H ] = 2 since that is the case of interest to us. The
Asai lift can be more generally defined when H is of any finite index in G.

4. Proofs of Theorems 1.1–1.3

We now prove Theorems 1.1, 1.2, and 1.3. We first prove (1) of Theorem 1.1, use
this to prove Theorems 1.2 and 1.3, and finally prove (2) of Theorem 1.1. We will
appeal to a result mentioned in Section 1, which we formally state now for ease of
reference.

Theorem 4.1 [Bushnell and Kutzko 1993, Lemma 6.2.5]. Let π be an irreducible
supercuspidal representation of GLn(E). Let [A,m, 0, β] be the simple stratum
defining a maximal simple type occurring in π , where A is a principal oE -order
in Mn(E), m ≥ 0 is the level of π , and β ∈ Mn(E) is such that E[β] is a field
with E[β]× normalizing A. Let e = e(A|oE) be the oE -period of A (which is the
same as the ramification index e(E[β]/E) of E[β]/E). Then e divides n, and the
cardinality of the group of unramified self-twists of π is n/e.

Proof of Theorem 1.1(1). Let E/F be quadratic unramified. Let π be a supercuspidal
representation of GLn(E). Let ρπ :WE→GLn(C) be its Langlands parameter. We
assume that its Asai lift r(ρπ ) :WF→GLn2(C) contains the trivial character of WF ,
which in particular implies that ρσπ ∼= ρ

∨
π . Since ω = ωE/F is unramified, clearly

the number of unramified characters in r(ρπ ) and r(ρπ )⊗ω is the same. Since

deg L(s, π, r)+ deg L(s, π ⊗ κ, r)= deg L(s, π ×π∨)= 2n/e

by Theorem 4.1, item (1) of Theorem 1.1 is immediate. �

Proof of Theorems 1.2 and 1.3. Let π be a supercuspidal representation of GLn(F).
Let ρπ :WF→GLn(C) be its Langlands parameter. We assume that r(ρπ ) contains
the trivial character of WF , which in particular implies that ρπ ∼= ρ∨π . Here, r is
either the symmetric square representation or the exterior square representation of
GLn(C). Thus, the dimension of r(ρπ ) is either n(n+1)/2 or n(n−1)/2. We have
the identity

L(s, π ×π)= L(s, π,Sym2)L(s, π,
∧2
),

and we know that the left-hand side L-function has degree n/e by Theorem 4.1.
If n/e = 1, then the trivial character of WF is the only unramified character

appearing in ρπ ⊗ ρ∨π and hence in r(ρπ ). Therefore, in this case there is nothing
to prove. Otherwise, there is a nontrivial unramified character χ :WF → C× such
that ρπ ⊗χ ∼= ρπ . Thus,

ρπ = IndWF
WF ′

τ
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for some irreducible representation τ of WF ′ , where F ′/F is the unramified exten-
sion of degree n/e. Let σ denote a generator of Gal(F ′/F).

We know that

ρπ ⊗ ρπ = IndWF
WF ′
(τ ⊗ τ)⊕ IndWF

WF ′
(τ ⊗ τ σ )⊕ · · ·⊕ IndWF

WF ′

(
τ ⊗ τ σ

n/e−1)
.

If n/e is an odd integer, then observe that each summand other than the first one on
the right-hand side of the above identity appears twice. This is indeed the case since

IndWF
WF ′

(
τ ⊗ τ σ

a)
= IndWF

WF ′

(
τ ⊗ τ σ

n/e−a)
for every 1≤ a ≤ n/e. Since the trivial character of WF appears exactly once on
the left-hand side, it follows that

1 ∈ IndWF
WF ′
(τ ⊗ τ)

when n/e is odd. Therefore, precisely one of Sym2 τ or
∧2
τ contains the trivial

character of WF ′ , and hence precisely one of IndWF
WF ′
(Sym2 τ) or IndWF

WF ′
(
∧2
τ) con-

tains all the unramified self-twists of ρπ . Thus, Theorems 1.2 and 1.3 follow in the
case when n/e is an odd integer.

If n/e is an even integer, we proceed by induction on dim ρπ . We start by
writing ρπ = IndWF

WE
τ for an irreducible representation τ of WE , where E is the

quadratic unramified extension of F . This can always be done because an unramified
extension of even degree necessarily has the quadratic unramified subextension. By
(7) of Proposition 3.1, we have

r(ρπ )∼=

{
IndWF

WE
Sym2 τ ⊕Asai(τ ) if r = Sym2,

IndWF
WE

∧2
τ ⊕Asai(τ )⊗ωE/F if r =

∧2
.

Now either τ ∼= τ∨ or τ σ ∼= τ∨ but not both, since ρπ is an irreducible representa-
tion of WF . Here, σ is the element of order two in Gal(E/F). We claim that Asai(τ )
(resp. Asai(τ )⊗ωE/F ) contains an unramified character of WF only if Sym2 τ (resp.∧2
τ ) does not contain an unramified character of WF . Indeed, if Asai(τ ) contains

an unramified character of WF , the total number of unramified characters in

Asai(τ )⊕Asai(τ )⊗ωE/F

is n/2e+ n/2e = n/e, by applying part (1) of Theorem 1.1 to the representation
τ which has dimension n/2, and by observing that ωE/F is unramified. Note also
that e = e(ρπ )= e(τ ), since the extension E/F is unramified. Since this number
equals the number of unramified characters contained in

ρπ ⊗ ρπ = Sym2 ρπ ⊕
∧2
ρπ ,

the claim follows.
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Therefore, if Asai(τ ) contains an unramified character, the proof is complete by
appealing to part (1) of Theorem 1.1. Otherwise, since dim τ = 1

2 dim ρπ , the proof
is complete by appealing to the induction hypothesis. Note that the base case of
the induction is easily verified since there are at most two unramified characters
to consider when dim ρπ = 2, i.e., when dim τ = 1. �

Proof of Theorem 1.1(2). Now let E/F be a ramified quadratic extension, and let
π be a supercuspidal representation of GLn(E). Let ρπ : WE → GLn(C) be its
Langlands parameter. We may assume that r(ρπ ) 3 1, where r denotes the Asai
lift from WE to WF . Note that this implies that r(ρπ ) does not contain ωE/F , the
nontrivial character of WF/WE . In what follows, we use this assumption many
times to reduce the number of cases that we need to analyze.

Consider the 2n-dimensional representation IndWF
WE
ρπ of WF . We have

Sym2(IndWF
WE
ρπ )∼= IndWF

WE
Sym2 ρπ ⊕ r(ρπ ),(1) ∧2

(IndWF
WE
ρπ )∼= IndWF

WE

∧2
ρπ ⊕ r(ρπ )⊗ωE/F .(2)

We divide the proof into two cases.
First, we assume that π 6∼= πσ so that IndWF

WE
ρπ is irreducible. Let IndF

E π

denote the corresponding supercuspidal representation of GL2n(F). Note that by
our assumption that r(ρπ ) 3 1, IndF

E π is orthogonal and not symplectic by (1).
Therefore, it follows from Theorems 1.2 and 1.3 that

x = deg L(s, IndF
E π,Sym2)− deg L(s, IndF

E π,
∧2
)

is given by

(3) x =
{

deg L(s, IndF
E π,Sym2) if [IndF

E π ] is orthogonal but not symplectic,
0 if [IndF

E π ] is orthogonal and symplectic.

Since the extension E/F is ramified, the period associated to IndF
E π may be e or

2e, and thus the degree of L(s, IndF
E π,Sym2) is either 2n/e or n/e.

On the other hand, the difference

(4) y = deg L(s, π,Sym2)− deg L(s, π,
∧2
)

could be, a priori, n/e or 0 or −n/e.
Now we do a case-by-case analysis to list all the possible candidates for the pair

(x, y). To this end, note that:

(i) In (1) and (2), possible values for the degree of the first summand on the
right-hand side are 0, n/e, and n/2e (by Theorems 1.2 and 1.3).

(ii) In (1) and (2), the second summand on the right-hand side cannot have degree
more than n/e (since deg L(s, π, r)+ deg L(s, π ⊗ κ, r)= n/e).
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(iii) In addition, in (1), the second summand on the right hand side has nonzero
degree (by the assumption that r(ρπ ) 3 1).

We have already observed, using (3), that when x 6= 0, it is either 2n/e or n/e,
and the degree of L(s, IndF

E π,
∧2
) is 0. In particular, when x 6= 0, all the terms

in (2) have degree 0. When x = 2n/e, both the summands in (1) have degree n/e
by (i) and (ii), and thus y = n/e. When x = n/e, we claim that the degree of the
first summand in (1) is 0 (and that of the second summand is n/e), and thus y = 0.
Indeed, if the first summand had nonzero degree it would have to be either n/e or
n/2e by (i). But it cannot be n/e by (iii), and it cannot be n/2e since this would
imply that the second summand in (2), which we know to be 0, would have degree
n/2e as well.

When x = 0, the degrees of the left-hand sides in both (1) and (2) are equal
by (3), and are either n/e or n/2e. When this degree is n/e, the degree of the
first summand in (1) is either 0 or n/2e by (iii). Note that the degree of the first
summand in (2) would then be either n/e or n/2e respectively, and thus y =−n/e
or 0 respectively. In the preceding argument, we have made use of the identity

(5) deg L(s, π, r)+ deg L(s, π ⊗ κ, r)= n/e.

When the degrees of the left-hand sides in both (1) and (2) are n/2e, the degrees of
the first summands are both 0. Thus y = 0, once again by arguing with (i), (iii),
and (5).

Observe that since E/F is ramified, the number of unramified characters in
IndWF

WE
Sym2 ρπ (resp. in IndWF

WE

∧2
ρπ ) is the same as the number of unramified

characters in Sym2 ρπ (resp. in
∧2
ρπ ). It follows that

deg L(s, π, r)− deg L(s, π ⊗ κ, r)= x − y

is either n/e or 0. This proves (2) of Theorem 1.1 in this case.
Next, suppose that π ∼= πσ ∼= π∨. Since π ∼= πσ , it follows that

ρπ ∼= τ |WE

for an irreducible representation τ of WF . In this case,

IndWF
WE
ρπ ∼= τ ⊕ τ ⊗ωE/F .

Thus, we get

(6) Sym2 τ⊕Sym2 τ⊕τ⊗τ⊗ωE/F
∼=Sym2(IndWF

WE
ρπ )∼= IndWF

WE
Sym2 ρπ⊕r(ρπ )

and

(7)
∧2
τ ⊕

∧2
τ ⊕τ ⊗τ ⊗ωE/F

∼=
∧2
(IndWF

WE
ρπ )∼= IndWF

WE

∧2
ρπ ⊕r(ρπ )⊗ωE/F .
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By our assumption that r(ρπ ) 3 1, we conclude that the irreducible representation τ
is not symplectic. This is because if

∧2
τ 3 1, then the left-hand side of (7) contains

the trivial character at least twice whereas the right-hand side can contain the trivial
character at most once since r(ρπ )⊗ωE/F 63 1.

As before, we now do a case-by-case analysis to list all possible pairs (a, b)where

a = deg L(s, τ,Sym2)− deg L(s, τ,
∧2
),(8)

b = deg L(s, ρπ ,Sym2)− deg L(s, ρπ ,
∧2
),(9)

and we verify that

deg L(s, ρπ , r)− deg L(s, ρπ ⊗ κ, r)= 2a− b

is either n/e or 0.
Since we have observed that the irreducible representation τ is not symplectic,

a ≥ 0 and it is either n/e or 0 by Theorems 1.2 and 1.3. Now the possible values
for b could be, a priori, n/e or 0 or −n/e.

When a = n/e, considering the sum of (6) and (7), we can conclude that all the
terms in (7) are of degree 0. Also, note that both the terms on the right-hand side
of (6) will have degree n/e, and in particular b = n/e. When a = 0, the left-hand
sides of both (6) and (7) are each of total degree n/e. Since r(ρπ ) 3 1, the degree
of L(s, ρπ ,Sym2) is either 0 or n/2e. It follows that the value of b is either −n/e
or 0 respectively. Thus, in all cases 2a− b is n/e or 0, and the result follows. �

5. The conductor formula of Bushnell, Henniart, and Kutzko

We state the explicit conductor formula for pairs of supercuspidal representation
due to Bushnell, Henniart, and Kutzko. This section closely follows [Bushnell et al.
1998, § 6].

Let π be a supercuspidal representation of GLn(F). Following [Bushnell and
Kutzko 1993], let [A,m, 0, β] be a simple stratum of a maximal simple type
occurring in π . Here, A is a principal oF -order in Mn(F), m is the level of π ,
and β ∈ Mn(F) is such that E = F[β] is a field with E× normalizing A. If e
denotes the oF -period of A, then the number of unramified self-twists of π is n/e
by Theorem 4.1. As mentioned in the introduction, the conductor f (π) of π is
given by

f (π)= n
(

1+ m
e

)
.

Let πi be two supercuspidal representations of GLni (F) for i = 1, 2. There are
three distinct possibilities: (i) π1 and π2 are unramified twists of each other, (ii) π1

and π2 are completely distinct, and (iii) π1 and π2 admit a common approximation.
We do not get into defining these notions and refer to [Bushnell et al. 1998, § 6]
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instead. Suffice to say that when π1 and π2 admit a common approximation, there is
a best common approximation and this is an object of the form ([3,m, 0, γ ], l, ϑ),
where the stratum [3,m, 0, γ ] is determined by π1 and π2, 0≤ l <m is an integer,
and ϑ is a character of a compact group attached to the data coming from π1 and π2.

Another ingredient in the conductor formula is an integer c(β) associated to
β. This comes from the “generalized discriminant”, say C(β), associated to the
exact sequence

0−→ E −→ EndF (E)
aβ
−→EndF (E)

sβ
−→ E −→ 0,

where sβ is a tame corestriction relative to E/F [Bushnell and Kutzko 1993, § 1.3]
and aβ is the adjoint map x 7→ βx − xβ. The constant c(β) is defined such that

C(β)= qc(β).

Now we state the conductor formula of [Bushnell et al. 1998].

Theorem 5.1 (Bushnell, Henniart, and Kutzko). For i=1, 2, let πi be an irreducible
supercuspidal representation of GLni (F). Define quantities mi , ei , βi as above. Let
e = lcm(e1, e2) and m/e =max{m1/e1,m2/e2}.

(1) Suppose that n1 = n2 = n and π1 and π2 are unramified twists of each other.
Let β = β1 and d = [F[β] : F]. Then

f (π∨1 ×π2)= n2
(

1+
c(β)

d2

)
− deg L(s, π∨1 ×π2).

(2) Suppose that π1 and π2 are completely distinct. Then

f (π∨1 ×π2)= n1n2

(
1+ m

e

)
.

(3) Suppose that π2 is not equivalent to an unramified twist of π1, but that π1

and π2 are not completely distinct. Let ([3,m, 0, γ ], l, ϑ) be a best common
approximation to the πi , and assume that the stratum [3,m, l, γ ] is simple.
Put d = [F[γ ] : F]. Then

f (π∨1 ×π2)= n1n2

(
1+

c(γ )

d2 +
l

de

)
.

Remark. Observe that in (2) and (3), deg L(s, π∨1 ×π2)= 0.

6. Conductor of the Asai lift

Let E/F be a quadratic extension of p-adic fields. Let π be a supercuspidal
representation of GLn(E). Let ρπ : WE → GLn(C) be its Langlands parameter.
Let r(ρπ ) :WF → GLn2(C) be the Asai lift of ρπ . In this section, we compute the
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Artin conductor of r(ρπ ). Throughout this section, we assume that p is odd. For a
representation τ of the Weil–Deligne group, let f (τ ) denote its Artin conductor.

Our formula for the Asai lift is a consequence of the conductor formula for
pairs of supercuspidal representations due to Bushnell, Henniart, and Kutzko [1998,
Theorem 6.5]. Since

r(ρπ )|WE
∼= ρπ ⊗ ρ

σ
π ,

it follows that

f (ρπ ⊗ ρσπ )=
{

f (r(ρπ )) if E/F is unramified,
f (r(ρπ ))+ f (r(ρπ )⊗ωE/F )− n2 if E/F is ramified.

In the second case of the above, we have made use of the fact that E/F is tamely
ramified, which is true since p is odd by our assumption. Since the formula of
Bushnell, Henniart, and Kutzko [1998] computes the left hand side, in order to derive
a formula for the Asai lift, it suffices to compute f (r(ρπ ))− f (r(ρπ )⊗ωE/F ).

Let
r(ρπ )∼=

⊕
i
ρi

be the direct sum decomposition of r(ρπ ) into irreducible representations. Now

r(ρπ )⊗ωE/F
∼=

⊕
i
ρi ⊗ωE/F ,

and since the Artin conductor is additive, it follows that

f (r(ρπ ))− f (r(ρπ )⊗ωE/F )=
⊕

i
[ f (ρi )− f (ρi ⊗ωE/F )].

We know that
f (ρ⊗χ)≤max{ f (ρ), dim ρ · f (χ)},

with equality in the above identity if f (ρ) 6= dim ρ · f (χ). Thus,

f (ρi ⊗ωE/F )= f (ρi )

unless ρi is a one-dimensional character with Artin conductor one, in which case
f (ρi ⊗ωE/F ) can be 0 or 1.

Observe that the contribution to

f (r(ρπ ))− f (r(ρπ )⊗ωE/F )

from tamely ramified characters ρi in r(ρπ ) such that ρi ⊗ωE/F is unramified is

deg L(s, π ⊗ κ, r),

whereas the contribution from unramified characters ρi in r(ρπ ) such that ρi⊗ωE/F
is tamely ramified is

− deg L(s, π, r).
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Therefore, it follows that

f (r(ρπ ))− f (r(ρπ )⊗ωE/F )= deg L(s, π ⊗ κ, r)− deg L(s, π, r).

Now making use of Theorem 5.1, we get the following conductor formula for
the Asai lift.

Theorem 6.1. Let E/F be a quadratic extension of p-adic fields, where p is odd,
with ramification index e(E/F). Let σ denote the nontrivial element of Gal(E/F).
Let π be a supercuspidal representation of GLn(E). Let e be the oE -period of the
principal oE -order in Mn(E) attached to π . Let r(π) be its Asai lift to GLn2(F)
and let L(s, π, r) be the Asai L-function attached to π .

(1) Suppose π∨ and πσ are unramified twists of each other. Then

f (r(π))= n2
(

1+
c(β)

e(E/F)d2

)
− deg L(s, π, r).

(2) Suppose π∨ and πσ are completely distinct. Then

f (r(π))= n2
(

1+
m

e(E/F)e

)
.

(3) Suppose that π∨ is not equivalent to an unramified twist of πσ and that
they are not completely distinct. Let ([3,m, 0, γ ], l, ϑ) be a best common
approximation to π∨ and πσ , and assume that the stratum [3,m, l, γ ] is
simple. Set d = [F[γ ] : F]. Then

f (r(π))= n2
(

1+
c(γ )

e(E/F)d2 +
l

e(E/F)de

)
.

Remark. Together with Theorem 1.1, Theorem 6.1 gives an explicit conductor
formula for the Asai lift. As in the case of Theorem 5.1, deg L(s, π, r)= 0 in cases
(2) and (3).
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TORUS ACTIONS AND TENSOR PRODUCTS
OF INTERSECTION COHOMOLOGY

ASILATA BAPAT

Given certain intersection cohomology sheaves on a projective variety with
a torus action, we relate the cohomology groups of their tensor product to
the cohomology groups of the individual sheaves. We also prove a similar
result in the case of equivariant cohomology.

1. Introduction

Let X be a smooth complex projective variety together with an action of a complex
algebraic torus T with isolated fixed points. We fix a regular algebraic one-parameter
subgroup λ : C∗→ T, which means that the set of λ-fixed points on X equals the set
of T-fixed points on X (denoted X T ). Consider the Białynicki-Birula decomposition
[1973] of X : for each w ∈ X T define the plus and minus cells to be respectively

Uw =U+w = {x ∈ X | lim
t→0

λ(t) · x = w}, t ∈ C∗, and

U−w = {x ∈ X | lim
t→∞

λ(t) · x = w}, t ∈ C∗.

Each plus or minus cell is a λ-stable affine space, and hence the decompositions
X =

∐
w∈X T Uw and X =

∐
w∈X T U−w are cell decompositions. For the purposes of

this paper, we make the following additional assumptions on the T-action on X .

Assumption 1.1. The cell decompositions X =
∐
w∈X T Uw and X =

∐
w∈X T U−w

are algebraic stratifications of X . In particular, the closure of every plus cell is a
union of plus cells, and analogously for minus cells.

Assumption 1.2. For eachw∈ X T, there is a one-parameter subgroup λw : C∗→ T
and a neighborhood Vw of w such that limt→0 λw(t) · v = w for every v ∈ Vw and
t ∈ C∗.

In this paper, we use the words sheaf and complex of sheaves interchangeably
to mean an object in Db

c,BB(X,C), the bounded derived category of sheaves of
C-vector spaces on X that are constructible with respect to the Białynicki-Birula

MSC2010: 14F05, 14F43, 14L30, 55N33.
Keywords: intersection cohomology, torus action.
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stratification. (Here we make use of Assumption 1.1.) Moreover all functors are
derived, so for ease of notation we omit the decorations R and L.

For each w ∈ X T, let ICw denote the intersection cohomology sheaf on the
closure of the cell Uw, extended by zero to all of X . The main theorem of the paper
describes the cohomology of the tensor products of a collection of ICw, in terms of
the tensor products of the cohomologies of the individual ICw.

Main result. Let 1 : X→ Xm be the diagonal embedding. Consider any sheaves
F1, . . . ,Fm in Db

c,BB(X,C). Then their (derived) tensor product is also a sheaf in
Db

c,BB(X,C), and will be denoted by F1⊗ · · ·⊗Fm . Recall that

F1⊗ · · ·⊗Fm =1
−1(F1 � · · ·�Fm).

For any sheaf F, its cohomology H •(F) = H •(X,F) is a graded vector space.
There is a natural cup product ∪: H •(F1)⊗· · ·⊗ H •(Fm)→ H •(F1⊗ · · ·⊗Fm),
defined on page 22.

Let C denote the constant sheaf on X . For any sheaf F, its cohomology H •(F) is
naturally a (graded) left and right module over the (graded) ring H(X)= H •(X,C),
as follows:

∪: H(X)⊗ H •(F)→ H •(C⊗F)−→
∼= H •(F),

∪: H •(F)⊗ H(X)→ H •(F⊗C)−→
∼= H •(F).

Moreover, the cup product descends to a morphism

H •(F1) ⊗
H(X)
· · · ⊗

H(X)
H •(Fm)→ H •(F1⊗ · · ·⊗Fm).

Theorem 1.3. Let (p1, . . . , pm) be an m-tuple of T-fixed points of X , and suppose
that Assumptions 1.1 and 1.2 hold. Then the cup product map

(1-1) H •(ICp1) ⊗
H(X)
· · · ⊗

H(X)
H •(ICpm )→ H •(ICp1 ⊗ · · ·⊗ ICpm )

is an isomorphism.

As X is a T-space, each IC sheaf ICp j carries a canonical T-equivariant structure,
and so does the tensor product ICp1 ⊗ · · · ⊗ ICpm . Let HT (X) = H •

T (X,C) be
the T-equivariant cohomology of X . For any T-equivariant sheaf F on X , its
T-equivariant cohomology H •

T (F) = H •

T (X,F) is a graded HT (X)-module. As
before, there is a cup product map for T-equivariant cohomology, which factors
through HT (X).

Theorem 1.4. Under Assumptions 1.1 and 1.2, the cup product map

H •

T (ICp1) ⊗
HT (X)

· · · ⊗
HT (X)

H •

T (ICpm )→ H •

T (ICp1 ⊗ · · ·⊗ ICpm )

is an isomorphism.
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Remark 1.5. Even though our results are stated using IC sheaves, it is possible that
they generalize to parity sheaves (defined and discussed by Juteau, Mautner, and
Williamson in [Juteau et al. 2014]). Our results and proof methods are similar to the
main theorem from [Ginzburg 1991]. Achar and Rider [2014, Theorem 4.1] prove
a version of Ginzburg’s theorem for parity sheaves on generalized flag varieties of
a Kac–Moody group. Similar generalizations may work in our case as well.

2. Setup

The Białynicki-Birula stratification. One can find (see, e.g., [Sumihiro 1974] or
[Kambayashi 1966]) a T-equivariant projective embedding of X into some PN, such
that the action of T on PN is linear. Consider the following standard Morse–Bott
function on PN :

[z0 : · · · : zN ] 7→

∑N
i=0 ci |zi |

2∑N
i=0|zi |

2
,

where ci are the weights of the λ-action on PN. The critical sets of this function
are precisely the T-fixed points on PN. The Morse–Bott cells of this function are
locally closed algebraic subvarieties of PN. Since X has isolated T-fixed points, one
can show that the composition f : X→ PN

→ R is a Morse function with critical
set X T (see, e.g., [Audin 2004]). Each cell of the Morse decomposition under f
is a preimage of a Morse–Bott cell of PN. Hence it is a locally closed algebraic
subvariety of X . Moreover, each cell of the Morse decomposition is known to be a
union of Białynicki-Birula plus cells. A discussion of this may also be found in
[Chriss and Ginzburg 1997, Section 2.4].

The collection of fixed points of the λ-action carries a partial order, where
v < w if Uv ⊂ Uw. By the previous discussion, we see that v < w if and only if
f (v) < f (w). Fix a weakly increasing enumeration {0, 1, . . . , N } of the points of
X T (sometimes denoted {w0, . . . , wN }), and set Xn =

⋃
i≤n Ui . Since the closure

of every plus cell is a union of plus cells, it follows from the previous discussion
that each Xn is a closed subvariety of X .

Similarly, set X−n =
⋃

i≥n U−i . By using the Morse function (− f ) instead of f ,
we see that each X−n is a closed subvariety of X . Hence we obtain two increasing
filtrations of X by closed subvarieties: X0⊂· · ·⊂ X N = X and X−N ⊂· · ·⊂ X−0 = X .

We have the following inclusions:

Xn
in
↪→ X, Xn−1

v
↪→ Xn

u
←↩Un.

For any point p ∈ X−n , we have f (wn) ≤ f (p), with equality only if p ∈ X T.
For any point p ∈ Xn , we have f (p)≤ f (wn), with equality only if p ∈ X T. Hence
if p ∈ X−n ∩ Xn , then f (p)= f (wn), and p ∈ X T. But X−n ∩ Xn ∩ X T

= {wn}, and
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it follows that p = wn . Hence for every n, the subvarieties X−n and Xn intersect
transversally in the single point wn .

Let cn ∈ H •(X) be the Poincaré dual to the homology class of X−n . As a
vector space, H •(X) is generated by the collection {cn}. Finally, fix an m-tuple
(p1, . . . , pm) of T-fixed points of X , and set L j,n = i−1

n ICp j for each j and n.

The cup product in cohomology. Let π : X → pt be the unique morphism to a
point. For any sheaf F on X , its cohomology H •(F) is a graded vector space, and
may be thought of as π∗F. We use this to define the cup product map.

Recall that the functors (π−1, π∗) form an adjoint pair, which has a counit
π−1
◦ π∗ → id. Let F1, . . . ,Fm be sheaves on X . Tensoring the counit maps

together, we have a map

π−1
◦π∗(F1)⊗ · · ·⊗π

−1
◦π∗(Fm)→ F1⊗ · · ·⊗Fm .

The left hand side is canonically isomorphic to π−1(π∗F1⊗ · · ·⊗π∗Fm). Using
the (π−1, π∗) adjunction once more, we obtain the cup product:

∪: π∗F1⊗ · · ·⊗π∗Fm→ π∗(F1⊗ · · ·⊗Fm).

The cup product gives each H •(Fi ) the structure of a left and right module
over H(X). This module structure induces the following map, also called the cup
product:

H •(F1) ⊗
H(X)
· · · ⊗

H(X)
H •(Fm)→ H •(F1⊗ · · ·⊗Fm).

Proposition 2.1. For every n, the cup product map

(2-1) H •(L1,n) ⊗
H(X)
· · · ⊗

H(X)
H •(Lm,n)→ H •(L1,n ⊗ · · ·⊗ Lm,n)

is an isomorphism.

When Xn = X , we have L j,n = ICp j for each j . Hence Theorem 1.3 follows
from this proposition, and we now focus on proving the proposition.

3. Proof of the isomorphism

We prove Proposition 2.1 by induction on the nth filtered piece of X0 ⊂ · · · ⊂ X N .
In the base case of n = 0, the space X0 is zero-dimensional. Hence each sheaf L j,0

is isomorphic to its cohomology. In this case the cup product map (2-1) reduces to
the identity map, which is an isomorphism.
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Now we prove the induction step on the filtered piece Xn . We mainly use the
following distinguished triangles:

u!u−1L j,n→ L j,n→ v∗v
−1L j,n,(3-1)

v!v
!L j,n→ L j,n→ u∗u−1L j,n.(3-2)

After taking cohomology, each of the above distinguished triangles produces a
long exact sequence. In our case, all connecting homomorphisms of these long
exact sequences vanish (see, e.g., [Soergel 1990, Lemma 20] and [Ginzburg 1991,
Proposition 3.2]).

For brevity, we will use the following notation through the remainder of the
paper.

(3-3)

Mm,n = L2,n ⊗ · · ·⊗ Lm,n,

Am,n = H •(L2,n) ⊗
H(X)
· · · ⊗

H(X)
H •(Lm,n),

Bm,n = H •(u∗u−1L2,n) ⊗
H(X)
· · · ⊗

H(X)
H •(u∗u−1Lm,n).

The following two lemmas prove the proposition on the open part Un in Xn .

Lemma 3.1. Let F and G be any complexes of sheaves on Un with locally constant
cohomology sheaves. Then the cup product map

∪: H •(u!F)⊗ H •(u∗ G)→ H •(u!F⊗ u∗ G)

is an isomorphism. Since ∪ factors through the surjection

H •(u!F)⊗ H •(u∗ G)� H •(u!F) ⊗
H(X)

H •(u∗ G),

the induced cup product

∪: H •(u!F) ⊗
H(X)

H •(u∗ G)→ H •(u!F⊗ u∗ G)

is also an isomorphism.

Proof. Consider the following commutative diagram, where π is the projection to a
point.

Un Xn

pt

u

p=π◦u
π
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Recall that if A and B are any two complexes on X , then the cup product is
induced by adjunction from the natural map

π−1(π∗A⊗π∗B)∼= π−1π∗A⊗π−1π∗B→ A⊗ B,

which may be broken up as follows:

π−1π∗A⊗π−1π∗B→ A⊗π−1π∗B→ A⊗ B.

Therefore the cup product map may be broken up as follows:

π∗A⊗π∗B→ π∗(A⊗π−1π∗B)→ π∗(A⊗ B).

In our case, this becomes the following sequence of maps:

π∗u!F⊗π∗u∗ G
µ1
−→ π∗(u!F⊗π−1π∗u∗ G)

µ2
−→ π∗(u!F⊗ u∗ G).

Since π is a proper map, we know that π∗ ∼= π!, and hence µ1 is an isomorphism
by the projection formula. It remains to show that µ2 is an isomorphism.

The pair of adjoint functors (π−1, π∗) gives the counit morphism p−1 p∗ G→

u−1u∗ G. The key observation is that this map is an isomorphism, because G is a
direct sum of its cohomology sheaves on the affine space Un . Now consider the
following commutative diagram.

(3-4)

u!F⊗π−1π∗u∗ G u!(F⊗ p−1 p∗ G)

u!F⊗ u∗ G u!(F⊗ u−1u∗ G)

∼=

(proj.)

µ2 (counit) ∼= (counit)

∼=

(proj.)

The map µ2 is obtained by applying the functor π∗ to the left vertical map in (3-4)
above. The diagram shows that this map is an isomorphism, and hence µ2 is also
an isomorphism. �

Lemma 3.2. The cup product map induces an isomorphism

H •(u!u−1L1,n) ⊗
H(X)

Bm,n −→
∼= H •

c (u
−1(L1,n ⊗Mm,n)).

Proof. Using Lemma 3.1 with complexes of sheaves F= u−1L1,n and G= u−1L2,n ,
we obtain an isomorphism

H •(u!u−1L1,n) ⊗
H(X)

H •(u∗u−1L2,n)−→
∼= H •(u!u−1L1,n ⊗ u∗u−1L2,n).

Moreover, u−1u∗u−1L2,n ∼= u−1L2,n . Using this fact and the projection formula,

H •(u!u−1L1,n ⊗ u∗u−1L2,n)∼= H •(u!(u−1L1,n ⊗ u−1u∗u−1L2,n))

∼= H •(u!u−1(L1,n ⊗ L2,n)).
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All together, we get an isomorphism

H •(u!u−1L1,n) ⊗
H(X)

H •(u∗u−1L2,n)−→
∼= H •(u!u−1(L1,n ⊗ L2,n)),

which can be written in our previously introduced notation as

H •(u!u−1L1,n) ⊗
H(X)

B2,n −→
∼= H •(u!u−1(L1,n ⊗M2,n)).

Now we can successively tensor the above map over H(X) with the spaces
H •(u∗u−1L i,n), with i ranging from 3 to m. Each time, we apply Lemma 3.1 for
F= u−1(L1,n ⊗Mi−1,n) and G= u−1L i,n and use the argument above. Ultimately
this construction yields

H •(u!u−1L1,n) ⊗
H(X)

Bm,n −→
∼= H •(u!u−1(L1,n ⊗Mm−1,n)) ⊗

H(X)
H •(u∗u−1Lm,n)

−→
∼= H •(u!(u−1(L1,n ⊗Mm,n)))

∼= H •

c (u
−1(L1,n ⊗Mm,n)). �

The next lemma is a refinement of a standard cohomology exact sequence to our
particular case.

Lemma 3.3. There is an exact sequence

H •(u!u−1L1,n) ⊗
H(X)

Bm,n→ H •(L1,n) ⊗
H(X)

Am,n→ H •(v∗v
−1L1,n) ⊗

H(X)
Am,n→ 0.

Proof. Consider the distinguished triangle (3-1) for the sheaf L1,n . Taking coho-
mology and applying the functor (−) ⊗

H(X)
Am,n , we obtain the right-exact sequence

H •(u!u−1L1,n) ⊗
H(X)

Am,n
f
→ H •(L1,n) ⊗

H(X)
Am,n

g
→ H •(v∗v

−1L1,n) ⊗
H(X)

Am,n→ 0.

Using the distinguished triangles (3-2) for each of the sheaves L j,n for j ≥ 2, we
have surjective morphisms

H •(L j,n)� H •(u∗u−1L j,n).

Taking the tensor product of all of these along with H •(u!u−1L1,n), we obtain a
surjective morphism

H •(u!u−1L1,n) ⊗
H(X)

Am,n
h
� H •(u!u−1L1,n) ⊗

H(X)
Bm,n.

We now show that the map f factors through the map h, by showing that
f (ker h)= 0. Since all boundary maps in the cohomology long exact sequence of
the triangles (3-2) vanish, the following set generates ker h:

{a1⊗ a2⊗ · · ·⊗ an | a j ∈ H •(v∗v
!L j,n) for some 2≤ j ≤ m}.
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Consider any element a1⊗ a2⊗ · · ·⊗ an ∈ ker h. Suppose that a j ∈ H •(v∗v
!L j,n).

Recall the commutative diagram (3.8a) from [Ginzburg 1991], reproduced below.

H •(v∗v
!L j,n) H •(L j,n) H •(u−1L j,n)

H •(L j,n) H •

c (u
−1L j,n)

cn cn ∼=

From this diagram it follows that cna j = 0, and that a1 ∈ cn H •(L1,n). Since all
tensor products are over H(X), the image of h(a1⊗· · ·⊗an) under f must be zero.
Therefore f factors through h, and we obtain the desired short exact sequence. �

Finally, we use the induction hypothesis to tackle the right side of the right-exact
sequence from the previous lemma.

Lemma 3.4. The cup product map induces an isomorphism

H •(v∗v
−1L1,n) ⊗

H(X)
Am,n −→

∼= H •(L1,n−1⊗Mm,n−1).

Proof of lemma. The cup product map on the left hand side is the following
composition:

H •(v∗v
−1L1,n) ⊗

H(X)
Am,n→H •(v∗v

−1L1,n) ⊗
H(X)

H •(Mm,n)→H •(v∗v
−1L1,n⊗Mm,n),

where the first map is the cup product on the last (m− 1) factors, and the second
map is the cup product of the first factor with the rest. The projection formula also
shows that

H •(v∗v
−1L1,n ⊗Mm,n)∼= H •(v−1L1,n ⊗ v

−1 Mm,n)∼= H •(L1,n−1⊗Mm,n−1).

By induction on m, we may assume that the cup product Am,n→ H •(Mm,n) is
an isomorphism, and hence the first map above is an isomorphism. It remains to
show that the following map is an isomorphism:

H •(v∗v
−1L1,n) ⊗

H(X)
H •(Mm,n)→ H •(v∗v

−1L1,n ⊗Mm,n)

Since L1,n−1 is supported on Xn−1, the element cn ∈ H acts on H •(v∗L1,n−1) by
zero. Recall from [op. cit.] that the cokernel of cn on H •(Mm,n) is just H •(Mm,n−1).
Hence

H •(v∗v
−1L1,n) ⊗

H(X)
H •(Mm,n)∼= H •(L1,n−1) ⊗

H(X)
H •(Mm,n−1).

Therefore, the map above can be rewritten as the cup product map

H •(L1,n−1) ⊗
H(X)

H •(Mm,n−1)→ H •(L1,n−1⊗Mm,n−1),
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which is an isomorphism by the induction hypothesis. �

We now apply Saito’s theory [1990; 1988] of mixed Hodge modules to obtain
another short exact sequence, as follows. Every IC-sheaf has the additional structure
of a pure mixed Hodge module, which induces a mixed Hodge structure on tensor
products of the L i,n .

Lemma 3.5. (i) The cohomology H •(L1,n ⊗Mm,n) is pure.

(ii) There is a short exact sequence

0→ H •

c (u
−1(L1,n ⊗Mm,n))→ H •(L1,n ⊗Mm,n)→ H •(L1,n−1⊗Mm,n−1)→ 0.

Proof. The proof is by induction on n. When n = 0, we have X−1 =∅ and U = X0.
The open inclusion u is the identity map, and the closed inclusion v is the zero map,
hence (ii) is clear in the base case.

The set X0 consists of a single T-fixed point of X . Call this point w. By
Assumption 1.2, there exists a neighborhood Vw of w and a one-parameter subgroup
λw : C∗→ T that contracts Vw to w. Let iw denote the inclusion of {w} into the
corresponding Vw. Let jw denote the inclusion of Vw into X . By applying [Springer
1984, Corollary 1] or [Braden 2003, Lemma 6] to the sheaves j−1

w ICpi for each i ,
we see that

H •(Vw, j−1
w ICpi )

∼= H •(i−1
w j−1

w ICpi )= H •(L i,0).

The functor H •(Vw, j−1
w (−)) weakly increases weights; on the other hand, the

functor H •(i−1
w j−1

w (−)) weakly decreases weights. Hence H •(L i,0) is pure for
each i . Taking the tensor product, we see that H •(L1,0)⊗ · · ·⊗ H •(Lm,0) is pure.
Since w is a single point, we can naturally make the following identification:

H •(L1,0)⊗ · · ·⊗ H •(Lm,0)∼= H •(L1,0⊗ · · ·⊗ Lm,0)= H •(L1,0⊗Mm,0).

Hence H •(L1,0 ⊗ Mm,0) is pure, and (i) is proved in the base case. A similar
argument has been used in [Ginzburg 1991, Lemma 3.5].

For the induction step, consider the distinguished triangle (3-1) for L1,n . Apply
the functor (−⊗ L2,n ⊗ · · ·⊗ Lm,n), which may be written as (−⊗Mm,n) in the
notation of (3-3). This yields the following distinguished triangle:

u!u−1L1,n ⊗Mm,n→ L1,n ⊗Mm,n→ v∗v
−1L1,n ⊗Mm,n.

By a repeated application of the projection formula, we may write the first term of
this triangle as

u!u−1L1,n ⊗Mm,n ∼= u!(u−1L1,n ⊗ · · ·⊗ u−1Lm,n)= u!u−1(L1,n ⊗Mm,n),

and the third term of this triangle as

v∗v
−1L1,n ⊗Mm,n ∼= v∗(v

−1L1,n ⊗ · · ·⊗ v
−1Lm,n)= v∗(L1,n−1⊗Mm,n−1).
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Taking cohomology, we obtain the following long exact sequence:

· · · → H •

c (u
−1(L1,n ⊗Mm,n))→ H •(L1,n ⊗Mm,n)

→ H •(L1,n−1⊗Mm,n−1)→ · · · .

The term H •(L1,n−1⊗Mm,n−1) is pure by the induction hypothesis.
From Lemma 3.2, we know that

H •

c (u
−1(L1,n⊗Mm,n))∼= H •

c (u
−1L1,n) ⊗

H(X)
H •(u−1L2,n) ⊗

H(X)
· · · ⊗

H(X)
H •(u−1Lm,n).

Recall that Un is the Białynicki-Birula plus cell for the fixed point wn . Hence
the λ-action contracts Un to wn . By [Springer 1984, Corollary 2], we know that
H •

c (u
−1L1,n) is isomorphic to the costalk of u−1L1,n at wn , which is isomorphic

to a shift of the stalk of ICp1 at wn . For any i > 1, we know by [Springer 1984,
Corollary 1] that H •(u−1L i,n) is isomorphic to the stalk of u−1L i,n at wn , which is
equal to the stalk of ICpi at wn . By using Assumption 1.2 and the argument used
earlier in this proof, we know that the stalk of each ICpi at any T-fixed point is
pure, and hence the spaces H •

c (u
−1L1,n) as well as H •(u−1L i,n) for i > 1 are all

pure. Therefore the tensor product H •

c (u
−1(L1,n ⊗Mm,n)) is pure.

Since the terms on either side of the long exact sequence are pure, the connecting
homomorphisms are zero, and hence H •(L1,n ⊗Mm,n) is also pure. This argument
completes the induction step, and hence completes the proof. �

Putting together the exact sequences from Lemmas 3.3 and 3.5, we obtain
the following commutative diagram, where the vertical maps are induced by cup
products. In particular, the middle map b is just the map from Proposition 2.1.

(3-5)

H •(u!u−1L1,n) ⊗
H(X)

Bm,n H •(L1,n) ⊗
H(X)

Am,n H •(v∗v−1L1,n) ⊗
H(X)

Am,n

H •c (u
−1(L1,n ⊗Mm,n)) H •(L1,n ⊗Mm,n) H •(L1,n−1⊗Mm,n−1)

a b c

The leftmost map a is an isomorphism by Lemma 3.2. The rightmost map c
is an isomorphism by Lemma 3.4. By the snake lemma, the middle map b is an
isomorphism as well, and Proposition 2.1 is proved.

4. Computation of equivariant cohomology

Consider a smooth complex projective variety X with the same assumptions as in
Section 1. The goal of this section is to prove Theorem 1.4.

First, recall some constructions in equivariant cohomology, following [Bernstein
and Lunts 1994] and [Goresky et al. 1998]. Fix a universal principal T-bundle
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ET → BT, where ET is the direct limit over m of algebraic approximations ETm

and analogously for BT and BTm . Consider the following diagram, where the map
p is the second projection, and the map q is the quotient by the diagonal T-action.

ET × X

X ET ×T X

p q

Since each stratum Un is a locally closed T-invariant affine subvariety of X , the triv-
ial local system on Un gives rise to a canonically defined sheaf ICn on ET×T X and
a canonical isomorphism β : p−1 ICn −→

∼= q−1ICn (see, e.g., [Bernstein and Lunts
1994]). The triple (ICn, ICn, β) is called the equivariant IC sheaf corresponding
to Un .

Equivariant homology and cohomology. For a variety Y equipped with a T-action,
the cohomology of ET ×T Y is called the equivariant cohomology of Y, and is
denoted by H •

T (Y ). In particular, since ET×T pt∼= BT, we have H •

T (pt)∼= H •(BT ).
The space H •

T (Y ) is a ring under cup product and is also an HT (X)-module
via pullback under the projection Y → pt. For convenience, we will denote
H •

T (X) by HT (X). In our case, HT (X) is isomorphic to H •(X)⊗ H •(BT ) as an
HT (X)-module (see, e.g., [Goresky et al. 1998, Theorem 14.1]). Similarly, the equi-
variant cohomology of any T-equivariant sheaf on X also carries an HT (X)-module
structure.

One can define the T-equivariant Borel–Moore homology of X , denoted H T
•
(X).

Every T-equivariant closed subvariety Y of X defines a class [Y ]T of degree
2 dimC Y in H T

•
(X). If X is smooth, then every class [Y ]T has an equivariant

Poincaré dual cohomology class in H •

T (X). More details can be found in [Graham
2001] and [Brion 2000].

Proof of the equivariant case. Consider an m-tuple (p1, . . . , pm) of T-fixed points
of X . Then ICp1, . . . , ICpm are the IC sheaves corresponding to Up1, . . . ,Upm

respectively. Let L j,n = i−1
n ICp j for each j and n.

Proposition 4.1. Under Assumptions 1.1 and 1.2, the cup product maps

H •

T (L1,n) ⊗
HT (X)

· · · ⊗
HT (X)

H •

T (Lm,n)→ H •

T (L1,n ⊗ · · ·⊗ Lm,n)

are isomorphisms for each n.

When Xn = X , we have L j,n = ICp j for each j . Hence this proposition implies
Theorem 1.4. To prove the proposition, we first state two general lemmas about
T-equivariant cohomology of sheaves.
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Lemma 4.2. Consider the fiber bundle ET ×T X→ BT, with fiber X. Let ICw be
the (T-equivariant) IC sheaf on the closure of a stratum Xw, extended by zero to
all of X. Then the Leray spectral sequence for the computation of H •

T (X; ICw)=
H •(ET ×T X; ICw) collapses at the E2 page. Hence H •

T (ICw) is isomorphic to
H •(ICw)⊗ H •(BT ) as a graded H •(BT )-module.

Proof. See [Goresky et al. 1998, Theorem 14.1]. The proof uses the fact that the
cohomology of BT ∼= (CP∞)dim T is pure. �

Lemma 4.3. Let Y be any T-space, and let F be a T-equivariant sheaf on Y such
that the space H •(Y ;F) is pure. Then H •

T (Y ;F) is pure as well.

Proof. Recall that H •

T (Y,F)=H •(ET×T X,F). The result follows from computing
the Leray spectral sequence for the fiber bundle ET ×T Y → BT, and by using that
H •(BT ) and H •(Y,F) are pure. �

We also record some equivariant analogues of results stated in Section 3. First
note that the boundary maps in the long exact sequences of T-equivariant cohomol-
ogy for the distinguished triangles (3-1) and (3-2) vanish. The proof is analogous
to the nonequivariant case, using Lemma 4.3.

The following lemma is an analogue of Lemma 3.1.

Lemma 4.4. Let U = Xn\Xn−1. Let F and G be any T-equivariant complexes of
sheaves on U. Then the cup product map

∪: H •

T (u!F) ⊗
H•(BT )

H •

T (u∗ G)→ H •

T (u!F⊗ u∗ G)

is an isomorphism. Since ∪ factors through the surjection

H •

T (u!F) ⊗
H•(BT )

H •

T (u∗ G)� H •

T (u!F) ⊗
HT (X)

H •

T (u∗ G),

the induced cup product

H •

T (u!F) ⊗
HT (X)

H •

T (u∗ G)→ H •

T (u!F⊗ u∗ G)

is also an isomorphism.

Proof. Consider the fiber bundle ET ×T Xn→ BT, with fiber Xn . The E2 pages
of the Leray spectral sequences for u!F and u∗ G are as follows:

H p(BT, Hq(u!F))=⇒ H p+q
T (u!F),

H r (BT, H s(u∗ G))=⇒ H r+s
T (u∗ G).

On the E2 page, the cup product map can be written as the composition of the
following two maps. The first map is the cup product with local coefficients, and
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the second is the fiberwise cup product on the local systems.

H p(BT, Hq(u!F)) ⊗
H•(BT )

H r(BT, H s(u∗ G))→ H p+r(BT, Hq(u!F)⊗ H s(u∗ G)),

H p+r(BT, Hq(u!F)⊗ H s(u∗ G))→ H p+r(BT, Hq+s(u!F⊗ u∗ G)).

Since the local systems Hq(u!F) and H s(u∗ G) are constant on BT, the first map
yields isomorphisms

H •(BT, Hq(u!F)) ⊗
H•(BT )

H •(BT, H s(u∗ G))−→
∼= H •(BT, Hq(u!F)⊗ H s(u∗ G)).

Finally, we know from Lemma 3.1 that H •(u!F)⊗ H •(u∗ G)−→
∼= H •(u!F⊗ u∗ G)

via the cup product map. Altogether, the cup product maps on the E2 page yield an
isomorphism

H •(BT, H •(u!F)) ⊗
H•(BT )

H •(BT, H •(u∗ G))−→
∼= H •(BT, H •(u!F⊗ u∗ G)).

The left hand side is a tensor product of two free H •(BT )-modules over H •(BT ).
Hence it converges to

H •

T (u!F) ⊗
H•(BT )

H •

T (u∗ G).

The right hand side converges to H •

T (u!F⊗ u∗ G). Since the E2 pages of the left
hand side and the right hand side are isomorphic via the cup product map, the
following cup product map

H •

T (u!F) ⊗
H•(BT )

H •

T (u∗ G)→ H •

T (u!F⊗ u∗ G)

is an isomorphism. �

Let c̃n ∈ HT (X) be the equivariant Poincaré dual of [X−n ]T. Each c̃n restricts to
the class cn under the map HT (X)→ H •(X), hence the collection {̃cn} generates
HT (X) over H •(BT ).

The following lemma (analogous to [Ginzburg 1991, (3.8a)]) describes the action
of c̃n on the equivariant cohomology of the sheaves L j,n on X .

Lemma 4.5. For every j , the action of c̃n on H •

T (L j,n) fits into the following
commutative diagram:

H •

T (L j,n) H •

T (u
−1L j,n)

H •

T (L j,n) H •

T,c(u
−1L j,n)

c̃n c̃n ∼=
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Proof. Recall that the intersection of Xn and X−n lies away from Xn−1. Hence c̃n

restricts to zero on Xn−1, and cup product by c̃n annihilates the cohomology of
any sheaf supported on Xn−1. The kernel of H •

T (L j,n)� H •

T (u
−1L j,n) and the

cokernel of H •

T,c(u
−1L j,n)→ H •

T (L j,n) are both supported on Xn−1. So the map
of multiplication by c̃n from H •

T (Xn) to H •

T (Xn) factors as follows.

H •

T (L j,n) H •

T (u
−1L j,n)

H •

T (L j,n) H •

T,c(u
−1L j,n)

c̃n c̃n

It remains to show that the vertical map on the right is an isomorphism. Since Xn

and X−n intersect transversally in the single pointwn , the restriction of c̃n to Xn is the
image in H •

T (Xn) of a generator of the local cohomology group H •

T (Xn, Xn\{wn}).
Since wn ∈ Un , we have H •

T (Xn, Xn\{wn}) ∼= H •

T (Un,Un\{wn}) by excision.
But Un is an affine space that is T-equivariantly contractible to wn , and hence
H •

T (Un,Un\{wn})∼= H •

T,c(Un). This shows that multiplication by c̃n maps H •

T (Un)

isomorphically to H •

T,c(Un).
Since u−1L j,n is T-equivariant, the above argument applies to the cohomology

of u−1L j,n as well. This means that c̃n maps H •

T (u
−1L j,n) isomorphically to

H •

T,c(u
−1L j,n), and the proof is complete. �

Once again, let Mm,n denote the sheaf L2,n ⊗ · · ·⊗ Lm,n . For brevity, we set up
the following additional notation.

Am,n = H •

T (L2,n) ⊗
HT (X)

· · · ⊗
HT (X)

H •

T (Lm,n),

Bm,n = H •

T (u∗u
−1L2,n) ⊗

HT (X)
· · · ⊗

HT (X)
H •

T (u∗u
−1Lm,n).

The following two lemmas are analogues of Lemmas 3.3 and 3.5, respectively.

Lemma 4.6. There is an exact sequence

H •

T (u!u
−1L1,n) ⊗

HT (X)
Bm,n→H •

T (L1,n) ⊗
HT (X)

Am,n→H •

T (v∗v
−1L1,n) ⊗

HT (X)
Am,n→0.

Proof. The proof is analogous to the proof of Lemma 3.3. We use the fact that
H •

T (X)∼= H •(X)⊗H •(BT ) and use Lemma 4.5 as a substitute for the commutative
diagram (3.8a) in [Ginzburg 1991]. �

Lemma 4.7. (i) The cohomology H •

T (L1,n ⊗Mm,n) is pure.

(ii) There is a short exact sequence

0→ H •

T,c(u
−1(L1,n⊗Mm,n))→ H •

T (L1,n⊗Mm,n)→ H •

T (L1,n−1⊗Mm,n−1)→ 0.
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Proof. The proofs are analogous to the proofs of their counterparts from Section 3,
using the observation of Lemma 4.3 and the fact that H •(BT ) is pure. �

We now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. We obtain the following commutative diagram from the
exact sequences of Lemmas 4.6 and 4.7.

(4-1)

H •T (u!u
−1L1,n) ⊗

HT (X)
Bm,n H •T (L1,n) ⊗

HT (X)
Am,n H •T (v∗v

−1L1,n) ⊗
HT (X)

Am,n

H •T (u!u
−1L1,n ⊗Mm,n) H •T (L1,n ⊗Mm,n) H •T (v∗v

−1L1,n ⊗Mm,n)

a b c

First observe that the action of HT (X) on H •

T (u!u
−1L1,n) and on Bm,n factors

through the map HT (X)→ H •

T (U )∼= H •(BT ), so

H •

T (u!u
−1L1,n) ⊗

HT (X)
Bm,n ∼= H •

T (u!u
−1L1,n) ⊗

H•(BT )
Bm,n.

We prove by induction on m that the map a is an isomorphism. As in the proof of
Lemma 3.2, the case of m = 2 is proved by Lemma 4.4, and the general case is
proved by iterating the argument. An argument similar to the proof of Lemma 3.4
proves that the map c is an isomorphism.

Hence by the snake lemma, the middle map b is an isomorphism as well. Conse-
quently, we obtain the following isomorphisms for every n:

H •

T (L1,n) ⊗
HT (X)

· · · ⊗
HT (X)

H •

T (Lm,n)→ H •

T (L1,n ⊗ · · ·⊗ Lm,n).

In particular when Xn = X , we see that the cup product map

H •

T (ICp1) ⊗
HT (X)

· · · ⊗
HT (X)

H •

T (ICpm )→ H •

T (ICp1 ⊗ · · ·⊗ ICpm )

is an isomorphism. �
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CYCLICITY IN DIRICHLET-TYPE SPACES
AND EXTREMAL POLYNOMIALS II:

FUNCTIONS ON THE BIDISK
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We study Dirichlet-type spaces Dα of analytic functions in the unit bidisk
and their cyclic elements. These are the functions f for which there exists a
sequence ( pn)

∞

n=1 of polynomials in two variables such that ‖ pn f −1‖α→ 0
as n→∞. We obtain a number of conditions that imply cyclicity, and obtain
sharp estimates on the best possible rate of decay of the norms ‖ pn f − 1‖α ,
in terms of the degree of pn, for certain classes of functions using results
concerning Hilbert spaces of functions of one complex variable and compar-
isons between norms in one and two variables.

We give examples of polynomials with no zeros on the bidisk that are not
cyclic in Dα for α > 1/2 (including the Dirichlet space); this is in contrast
with the one-variable case where all nonvanishing polynomials are cyclic in
Dirichlet-type spaces that are not algebras (α≤1). Further, we point out the
necessity of a capacity zero condition on zero sets (in an appropriate sense)
for cyclicity in the setting of the bidisk, and conclude by stating some open
problems.

1. Introduction

Dirichlet-type spaces on the bidisk. We consider a scale of Hilbert spaces of holo-
morphic functions on the bidisk

D2
= {(z1, z2) ∈ C2

: |z1|< 1, |z2|< 1},

indexed by a parameter α ∈ (−∞,∞). A holomorphic function f :D2
→C belongs
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to the Dirichlet-type space Dα if its power series expansion

f (z1, z2)=

∞∑
k=0

∞∑
l=0

ak,l zk
1zl

2

satisfies

(1-1) ‖ f ‖2α =
∞∑

k=0

∞∑
l=0

(k+ 1)α(l + 1)α|ak,l |
2 <∞.

Recall that a function of two complex variables is said to be holomorphic if it is
holomorphic in each variable separately. A review of the definitions and basic
properties such as power series expansions can be found in [Hörmander 1990,
Chapter 2]. Since zero sets on the boundary of functions f ∈Dα will play a role
later on, we point out that the topological boundary of the bidisk is much larger
than the so-called distinguished boundary

T2
= {(z1, z2) ∈ C2

: |z1| = |z2| = 1},

which is still large enough to support standard integral representations and the
maximum principle on the bidisk.

The spaces Dα are a natural generalization to two variables of the classical
Dirichlet-type spaces Dα, −∞< α <∞, consisting of functions

f (z)=
∞∑

k=0

akzk

that are analytic in the unit disk D= {z ∈ C : |z|< 1} and satisfy

‖ f ‖2Dα
=

∞∑
k=0

(k+ 1)α|ak |
2 <∞;

see, for instance, [Taylor 1966; Brown and Shields 1984], and the references therein.
As a remark on notation, we will continue to use ‖ · ‖α for the norm of two variable
functions in Dα while ‖ · ‖Dα

will denote the norm of one variable functions in Dα .
We point out that the particular choice α = 0 in Dα and Dα leads to the classical
Hardy spaces H 2 on the disk and bidisk, respectively, while

D−1 = A2(D) and D−1 = A2(D2)

are the canonical Bergman spaces of the disk and bidisk, and D1 and D1 are the
Dirichlet spaces of the disk and bidisk, respectively.

The spaces Dα were studied in detail by Jupiter and Redett [2006]. Spaces of
this type appear in the earlier work of Kaptanoğlu [1994], which focuses on Möbius
invariance and boundary behavior in Dirichlet-type spaces, and Hedenmalm [1988],
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which concentrates on closed ideals in function algebras. We note here (compare
[Kaptanoğlu 1994, p. 343; Hedenmalm 1988, Section 4]) that an equivalent norm
for Dα is given by

‖ f ‖2α = | f (0, 0)|2

+

∫
D

|∂z1 f (z1, 0)|2 (1− |z1|
2)1−α dA(z1)

+

∫
D

|∂z2 f (0, z2)|
2 (1− |z2|

2)1−α dA(z2)

+

∫
D2
|∂z2∂z1 f (z1, z2)|

2 (1− |z1|
2)1−α(1− |z2|

2)1−α dA(z1) dA(z2),

where dA(z)= π−1 dx dy denotes area measure. The proof involves computations
with power series, and is omitted.

Extending the earlier one-variable work of G. D. Taylor [1966] and Stegenga
[1980], Jupiter and Redett identified multipliers on Dα and studied restriction
properties of these spaces. It was also shown in [Jupiter and Redett 2006] that
evaluation at a point in D2 is a bounded linear functional, and hence Dα is a
reproducing kernel Hilbert space for all α. When α > 1, the spaces Dα are actually
algebras (viz. the proof of [op. cit., Theorem 3.10]) that are contained (as sets) in
H∞(D2), the algebra of bounded holomorphic functions.

It is clear from the definition of the norm in (1-1) that any polynomial p =
p(z1, z2) belongs to Dα. Moreover, any f ∈ Dα lifts to Dα when regarded as
constant in one of the variables. In fact, if g ∈ Dα and h ∈ Dα, then the function

f (z1, z2)= g(z1)h(z2), (z1, z2) ∈ D2,

is analytic in the bidisk and belongs to Dα [op. cit., Proposition 4.7], and so Dα

certainly contains nontrivial holomorphic functions.

Shift operators and cyclic functions. In this paper, we are interested in a natu-
ral pair {S1, S2} of bounded linear operators acting on the spaces Dα. The shift
operators S1 and S2 are defined by setting, for f ∈Dα,

S1 f (z1, z2)= z1 f (z1, z2) and S2 f (z1, z2)= z2 f (z1, z2).

It is then clear that S1 and S2 are linear, and it follows from (1-1) that, for every α,
{S1, S2} forms a pair of bounded operators mapping Dα into itself.

It is a standard problem of operator theory to describe the invariant subspaces of
an operator. In the present context, we are interested in closed subspaces M⊂Dα

such that
S1M⊂M and S2M⊂M.
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As a first step towards understanding the invariant subspaces of the pair {S1, S2},
we seek conditions under which a function f ∈Dα is cyclic, that is,

[ f ] = span{zk
1zl

2 f : k = 0, 1, . . . ; l = 0, 1, . . . } =Dα.

It is easy to see that there exists at least one cyclic function in each Dα , namely
the function f (z1, z2) = 1. This follows from the fact that polynomials in two
variables are dense in Dα. On the other hand, since norm convergence implies
uniform convergence on compact subsets, every g ∈ [ f ] inherits any zeros f may
have inside D2, and so a necessary condition for cyclicity is that f (z1, z2) 6= 0,
(z1, z2) ∈ D2. Note that since g ∈ [ f ] implies [g] ⊂ [ f ], an equivalent condition
for f to be cyclic in Dα is that there exists a sequence of polynomials (pn)

∞

n=1 of
two variables with

‖pn f − 1‖α→ 0, n→∞.

Since point evaluation is a bounded linear functional, this latter condition is equiva-
lent to the existence of a sequence of polynomials (pn) such that

pn(z1, z2) f (z1, z2)− 1→ 0, (z1, z2) ∈ D2,

and
‖pn f − 1‖α ≤ C.

When α > 1 the spaces Dα and Dα are algebras, and cyclic functions have to be
nonvanishing on D and D2, respectively.

In one variable, Beurling characterized the cyclic vectors of H 2(D): a function f
is cyclic if and only if it is outer. In the bidisk, one can show that if f ∈ H 2(D2) or
indeed if f belongs to the Nevanlinna class, then f has (nonzero) radial limits f ∗

at almost every (ζ1, ζ2) ∈ T2. Thus, we can declare f ∈ H 2(D2) to be outer if

log | f (z1, z2)| =

∫
T2

log | f ∗(eiθ , eiη)|P((z1, z2); (eiθ , eiη)) dθdη;

here, P is the product Poisson kernel

P((z1, z2); (eiθ , eiη))= P|z1|(arg z1− θ)P|z2|(arg z2− η),

where (z1, z2) ∈ D2 and θ, η ∈ [0, 2π). As usual,

Pr (θ)=
1− r2

(r2− 2r cos(θ)+ 1)2

denotes the Poisson kernel of the unit disk.
The cyclicity of f ∈ H 2(D2) does imply that f is an outer function. But this

condition is no longer sufficient: there are outer functions that are not cyclic [Rudin
1969, Theorem 4.4.6]; this is another example of how the higher-dimensional theory



CYCLICITY IN DIRICHLET-TYPE SPACES AND EXTREMAL POLYNOMIALS II 39

is somewhat different. (See, however, [Mandrekar 1988; Douglas and Yang 2000;
Redett and Tung 2010] for some positive results.)

Polynomials in two variables with no zeros in D2 are outer functions, and are
therefore candidates for being cyclic in Dα for α ≥ 0. Indeed, Gelca [1995] proved
that polynomials f with Z( f )∩D2

=∅ are cyclic in H 2(D2), the Hardy space of
the bidisk, and hence in Dα for all α ≤ 0.

Overview of results. In [Bénéteau et al. 2015], the problem of cyclicity in Dirichlet-
type spaces in the unit disk was studied. More specifically, the authors identified
some subclasses of cyclic functions and derived sharp estimates on the rate of decay
of the norms ‖pn f − 1‖α for such f ∈ Dα . It seems natural to investigate to what
extent these results can be extended to functions f ∈Dα.

To make the notion of best possible norm decay precise, we let Pn , n= 1, 2, . . . ,
be the subspaces of Dα consisting of polynomials of two variables of the form

pn =

n∑
k=0

n∑
l=0

ck,l zk
1zl

2.

Note that we regard a monomial zk
1zl

2 in two variables as having degree k + l,
meaning that members of Pn are polynomials of degree at most 2n. Similarly, we
denote by Pn the space of polynomials of one complex variable having degree at
most n. We now make the following definition.

Definition 1.1. Let f ∈ Dα. We say that a polynomial pn ∈ Pn is an optimal
approximant of order n to 1/ f if pn minimizes ‖p f − 1‖α among all polynomials
p ∈Pn . We call ‖pn f − 1‖α the optimal norm of order n associated with f .

Stated differently, pn is an optimal approximant to 1/ f if we have

‖pn f − 1‖α = distDα
(1, f ·Pn);

here, distX (x, A)= inf{‖x − a‖X : a ∈ A} is the usual distance function between a
point and a subset A ⊂ X of a normed space X .

Sharp estimates on the unit disk analog of distDα
(1, f ·Pn) were obtained for

certain classes of functions in [Bénéteau et al. 2015]. To state these estimates, we
define ϕ1(s)= log+(s) for s ∈ [0,∞) and, when α < 1,

ϕα(s)= s1−α, s ∈ [0,∞).

Theorem 1.2 [Bénéteau et al. 2015, Theorem 3.6]. Let α ≤ 1. If f is a function
admitting an analytic continuation to the closed unit disk and whose zeros lie in
C \D, then there exists a constant C = C(α, f ) such that

dist2
Dα
(1, f ·Pm)≤ Cϕ−1

α (m+ 1)
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holds for all sufficiently large m. This estimate is sharp in the sense that if such a
function f has at least one zero on T, there exists a constant C̃ = C̃(α, f ) such that

C̃ϕ−1
α (m+ 1)≤ dist2

Dα
(1, f ·Pm).

In this paper, we obtain analogous theorems for certain subclasses of functions
in Dα . We begin Section 2 with some general remarks concerning cyclicity in Dα .
For instance, if f is cyclic, then each slice function fz j obtained when fixing the
variable z j , j = 1 or 2, has to be cyclic in Dα. Then the problem of cyclicity and
rates associated with optimal approximants is addressed for separable functions, i.e.,
for functions f of the form f (z1, z2)= g(z1)h(z2). We prove that such a function
is cyclic if and only if the factors g and h are cyclic in the one-variable space Dα,
and then obtain, in Theorem 2.6, sharp estimates on distDα

(1, f ·Pn) under the
assumption that g and h admit analytic continuation to the closed disk and have no
zeros in D.

In Section 3, we turn our attention to functions of the form f (z1, z2)= f (zM
1 ·z

N
2 ),

for integers M, N ≥ 1, and again obtain cyclicity results and sharp estimates in
Theorem 3.1. Our proofs are based on the fact that certain restriction operators
furnish isomorphisms between our subclasses of functions in Dα and the one-
variable spaces D2α, and on comparisons between the associated norms.

In [Bénéteau et al. 2015], a key role was played by certain Riesz-type means of
the power series expansion of 1/ f , which turned out to produce optimal, or near
optimal, approximants to 1/ f . The one-variable construction extends to the bidisk
setting as follows. Suppose 1/ f has formal power series expansion

1
f (z1, z2)

=

∞∑
k=0

∞∑
l=0

bk,l zk
1zl

2.

We then set

(1-2) pn(z1, z2)=

n∑
k=0

n∑
l=0

(
1−

ϕα(max{k, l})
ϕα(n+ 1)

)
bk,l zk

1zl
2.

Note that when α = 0, the polynomials pn are simply the n-th Cesàro means of the
Taylor series of 1/ f :

Cn(1/ f )(z1, z2)=

n∑
k=0

n∑
l=0

(
1−

max{k, l}
n+ 1

)
bk,l zk

1zl
2

=
1

n+ 1

n∑
m=0

tm(1/ f )(z1, z2),

where tm denotes the m-th order Taylor polynomial. In Section 4, we take a closer
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look at some concrete polynomials in two variables, and show that in some cases
the polynomials (1-2) are indeed close to optimal.

Recall that in the case of the unit disk, any polynomial that is zero-free in D is
cyclic in Dα for all α ≤ 1. However, the analogous statement for the bidisk need
not hold. In fact, we give examples of polynomials whose zero sets lie in T2 that
are noncyclic for α > 1

2 , and also polynomials with zeros on the boundary of the
bidisk that are cyclic for all α ≤ 1; in fact, such polynomials can have zero sets that
intersect T2, and extend into ∂D2

\T2.
The existence of noncyclic polynomials in Hilbert spaces of analytic functions

in higher dimensions has also been observed by Richter and Sundberg in the setting
of the Drury–Arveson space in the unit ball of Cd when d ≥ 4; see [Richter and
Sundberg 2012] for this and other results on cyclic vectors in that context.

Many of our results and arguments carry over to the d-dimensional polydisk Dd,
but as notation becomes much more cumbersome, we restrict our attention to
functions on the bidisk.

2. Classes of cyclic vectors in Dα

In this section, we present some examples of cyclic functions in the bidisk. As a
preliminary example, we have already observed that f (z1, z2)= 1 is cyclic in Dα

for all α, and that cyclic functions cannot vanish inside the bidisk. Moreover, it
is not difficult to see that if both f and 1/ f extend to a larger bidisk, then f is
nonvanishing on the closure D2, and f is cyclic; indeed, if (pn) is a sequence of
polynomials such that ‖pn − 1/ f ‖α tends to 0, the estimate

‖pn f − 1‖α ≤ ‖ f ‖M(Dα) ‖pn − 1/ f ‖α,

where ‖·‖M(Dα) denotes the multiplier norm, implies that 1∈ [ f ] and so f is cyclic.
However, there do exist cyclic functions in Dα that vanish on the boundary of

the bidisk, as in the one variable case. In this section, we focus on three different
ways of building functions in the bidisk from one variable functions in the unit disk,
and explore the relationship between the cyclicity in two variables versus that in
one variable. First, let us make some preliminary remarks.

Slices of a function. For a function f = f (z1, z2) in the bidisk, we can fix the
variable z2, say, and consider the slice

fz2(z1)= f (z1, z2), z1 ∈ D,

as a function in the unit disk. The slice fz1 is defined in an analogous manner.

Proposition 2.1. If f is cyclic in Dα, then the slices fz2 and fz1 are cyclic in Dα .
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Proof. As a consequence of the Cauchy–Schwarz inequality applied to the coeffi-
cients of fz2 we obtain

‖ fz2‖Dα
≤ ‖kz2‖Dα

· ‖ f ‖α,

where kz2 denotes the reproducing kernel at z2 for Dα . Therefore, for any polynomial
p = p(z1, z2), we get

‖pz2 fz2 − 1‖Dα
≤ ‖kz2‖Dα

· ‖p f − 1‖α.

If f is cyclic in Dα, then this last norm tends to 0 as the degree of p approaches∞,
and therefore for fixed z2, ‖pz2 fz2 − 1‖Dα

approaches 0 as well. Consequently, the
slice fz2 is cyclic in Dα. An analogous argument applies to the slices in z1, and
thus the result follows. �

Note that the converse of the above statement does not hold: consider, for
example, f (z1, z2)= 1− z1z2. Then each slice fz2 and fz1 is nonvanishing in the
closed unit disk (for a fixed z2 and a fixed z1, respectively), and thus each is cyclic
in every Dα , but it turns out that f is only cyclic in Dα for α ≤ 1

2 ; see Remark 3.2.
Let us now consider three different natural ways to construct a one variable

function from a two variable function and examine issues of cyclicity.

Diagonal restrictions. The restriction to the diagonal of a holomorphic function
on the bidisk produces a function on the disk, and it turns out that these functions
often inherit properties that allow us to transfer information between one and two
variable spaces; see, e.g., [Horowitz and Oberlin 1975; Rudin 1969]. For instance,
Massaneda and Thomas [2013] were able to use restriction arguments to show that
it is not possible to characterize cyclic functions in H 2(D2) in terms of decay at
the boundary.

We define the restriction operator Rdiag on f ∈Dα by

Rdiag : f 7→ (� f )(z)= f (z, z), z ∈ D.

To rigorously define which spaces this restriction operator acts on, we define the
map

β(α)=

{
α− 1 for α ≥ 0,
2α− 1 for α < 0.

In order to shorten notation, we use the abbreviation β = β(α). In the context of
the Dirichlet-type spaces, the following restriction estimate holds.

Proposition 2.2. For all f ∈Dα,

‖� f ‖Dβ
≤ ‖ f ‖α.
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This result is probably known to the experts, and can be proved by appealing to
the theory of reproducing kernels. For the convenience of the reader, we give an
elementary proof.

Proof of Proposition 2.2. Let f (z1, z2) =
∑
∞

k=0
∑
∞

l=0 ak,l zk
1zl

2, which converges
absolutely for every |z1|< 1 and |z2|< 1. Then

� f (z)=
∞∑

k=0

∞∑
l=0

ak,l zk+l

converges absolutely for every |z|<1, hence can be rewritten as� f (z)=
∑
∞

n=0 bnzn,
where bn =

∑
k+l=n ak,l =

∑n
k=0 ak,n−k . Thus,

‖� f ‖2Dβ
=

∞∑
n=0

|bn|
2(n+ 1)β =

∞∑
n=0

∣∣∣∣ n∑
k=0

ak,n−k

∣∣∣∣2(n+ 1)β

and

‖ f ‖2α =
∞∑

n=0

n∑
k=0

|ak,n−k |
2(k+ 1)α(n− k+ 1)α.

By the Cauchy–Schwarz inequality, we have∣∣∣∣ n∑
k=0

ak,n−k

∣∣∣∣2≤ ( n∑
k=0

|ak,n−k |
2(k+ 1)α(n− k+ 1)α

)( n∑
k=0

(k+ 1)−α(n− k+ 1)−α
)

≤

( n∑
k=0

|ak,n−k |
2(k+ 1)α(n− k+ 1)α

)
(n+ 1)−β.

In summary, our observations yield, as required,

‖� f ‖2Dβ
=

∞∑
n=0

∣∣∣∣ n∑
k=0

ak,n−k

∣∣∣∣2(n+ 1)β

≤

∞∑
n=0

n∑
k=0

|ak,n−k |
2(k+ 1)α(n− k+ 1)α = ‖ f ‖2α. �

This result implies that a function g ∈ Dβ that arises as the restriction to the
diagonal of a cyclic function in Dα is itself cyclic. Viewed differently, a function
of two variables cannot be cyclic in Dα unless its restriction � f is cyclic in Dβ ,
though it can happen that � f is cyclic, and f ∈Dα is not: the functions considered
in the examples in Section 4 are not cyclic in D2, but their restrictions � f are
cyclic in the Dirichlet space D (see also [Massaneda and Thomas 2013] for a
discussion in the context of H 2(D2)). Moreover, together with the second assertion
in Theorem 1.2, Proposition 2.2 immediately implies a lower bound for the decay
rate of ‖pn f − 1‖2α for certain “nice” functions f :
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Corollary 2.3. Let α≤ 2. Suppose f ∈Dα is such that the diagonal restriction� f
satisfies the hypotheses of Theorem 1.2. Then,

‖pn f − 1‖2α ≥ Cϕ−1
β (n+ 1), for all pn ∈Pn.

Here, we have used that ϕ−1
β (2n+ 1) is comparable to ϕ−1

β (n+ 1). We will see
later (see Proposition 2.4 and Theorem 3.1) that this decay rate is not optimal in
general. Note that the diagonal restrictions of the functions f (z1, z2)= 1− z1z2,
f (z1, z2)= (1− z1)(1− z2), and f (z1, z2)= 1− z1 all satisfy the hypotheses.

The above remarks show how, given a cyclic function of two variables, one can
easily obtain examples of cyclic functions of one variable (although we might need
to change the index α of the space in which cyclicity is being considered!) In the
next two subsections we examine how to obtain some classes of cyclic functions of
two variables from cyclic functions of one variable, and we obtain sharp rates of
decay in some cases.

Separable functions. Let us now consider functions of two variables that can be
written as products of two functions of one variable:

f (z1, z2)= g(z1)h(z2).(2-1)

We shall refer to such functions as separable. Note that for such products, it follows
from (1-1) that ‖ f ‖α = ‖g‖Dα

‖h‖Dα
.

Proposition 2.4. Let α ∈ R and f be defined as in (2-1), where g, h ∈ Dα. Then,
f is cyclic in Dα if and only if g and h are cyclic in Dα.

Proof. First notice that by Proposition 2.1, if f is cyclic in Dα, then g and h are
constant multiples (with respect to the fixed variable) of the slices of f , and thus
are cyclic in Dα.

For the converse, suppose both g and h are cyclic in Dα. Let (pn) and (qn)

be sequences of polynomials such that ‖png− 1‖Dα
→ 0 and ‖qnh− 1‖Dα

→ 0,
respectively. Since the expression pngh− h = (pn(z1)g(z1)− 1)h(z2) is separable,
we obtain

‖pn f − h‖α = ‖png− 1‖Dα
‖h‖Dα

.

Hence, we get that h ∈ [ f ], where [ · ] denotes the cyclicity class in Dα, and so
[h] ⊂ [ f ]. Since ‖qnh−1‖α = ‖qnh−1‖Dα

, the function h is cyclic in Dα and Dα

simultaneously, and the assertion follows. �

It seems natural to ask whether the growth of the extremal polynomials for
separable functions is the same as for functions in the unit disk. As we will see in
Theorem 2.6, this is indeed the case. Let us first prove a lemma that will help to
establish the sharp growth restrictions.
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Lemma 2.5. Suppose f = g · h ∈ Dα for g, h ∈ Dα, and suppose that g admits
a nonvanishing analytic continuation to the closed bidisk. Then, there exists a
constant C , independent of n, such that

distDα
(1, f ·Pn)≥ C distDα

(1, h ·P2n).

Proof. Notice first that since the power series for g converges in a larger polydisk
than the unit bidisk, there exists R > 1 such that if gn are the Taylor polynomials of
degree n approximating g, the multiplier norm ‖g−gn‖M(Dα) decays exponentially
like R−(n+1). Moreover, since in addition g has no zeros in the closed disk, the
multiplier norm ‖1/g‖M(Dα) is bounded.

Now let pn(z1, z2) be the optimal approximant to 1/ f of degree n. Then by the
above remarks, we have

‖pnh− 1/g‖α ≤ ‖1/g‖M(Dα)‖pn f − 1‖α,

which goes to 0 as n →∞, and therefore, in particular, the norms ‖pnh‖α are
bounded by some constant C1. Moreover,

‖pn f − 1‖α = ‖pnh(g− gn)+ gn pnh− 1‖α
≥ ‖gn pnh− 1‖α −‖pnh‖α ‖g− gn‖M(Dα).

Since ‖pnh‖α is bounded and ‖g− gn‖M(Dα) decays exponentially, we obtain that
there exists a constant C such that

‖pn f − 1‖α ≥ C distDα
(1, h ·P2n). �

Using Lemma 2.5, we obtain sharp estimates on the decay of norms.

Theorem 2.6. Let α ≤ 1 and g, h ∈ Dα. Suppose that g and h admit analytic
continuations to D and have no zeros in D. Define f (z1, z2) = g(z1)h(z2). Then
there exists a constant C = C(g, h, α) such that

dist2
Dα
(1, f ·Pn)≤ Cϕ−1

α (n+ 1),

for all sufficiently large n. Moreover, this estimate is sharp in the sense that if h has
at least one zero on T and g has no zeros in the closed disk D (or vice versa), then
there exists a constant C̃ = C̃(g, h, α) such that

C̃ϕ−1
α (n+ 1)≤ dist2

Dα
(1, f ·Pn).

Proof. By Theorem 1.2, for any polynomials pn(z1) and qn(z2) of degree less than
or equal to n, there exist constants C1 and C2 such that

‖pn(z1)g(z1)− 1‖Dα
≤ C1ϕ

−1/2
α (n+ 1),

‖qn(z2)h(z2)− 1‖Dα
≤ C2ϕ

−1/2
α (n+ 1).
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Therefore,

‖pn(z1)qn(z2)g(z1)h(z2)− 1‖α
≤ ‖qn(z2)h(z2)(pn(z1)g(z1)− 1)‖α +‖qn(z2)h(z2)− 1‖α

≤ ‖qnh‖α ‖png− 1‖α +‖qnh− 1‖α

= ‖qnh‖Dα
‖png− 1‖Dα

+‖qnh− 1‖Dα

≤ (‖qnh− 1‖Dα
+ 1)‖png− 1‖Dα

+‖qnh− 1‖Dα

≤ C2C1ϕ
−1
α (n+ 1)+ (C1+C2)ϕ

−1/2
α (n+ 1)

≤ Cϕ−1/2
α (n+ 1)

for some constant C. Therefore,

dist2
Dα
(1, f ·Pn)≤ Cϕ−1

α (n+ 1),

for all sufficiently large n, as desired.
Moreover, the inequality is sharp. To see this, suppose h has at least one zero

on T and g has no zeros in the closed unit disk. Then, by Lemma 2.5, there exists a
constant C1 such that

(2-2) distDα
(1, f ·Pn)≥ C1 distDα

(1, h ·P2n).

Note that h = h(z2), and so, by orthogonality of monomials in Dα, the quantity
distDα

(1, h ·P2n) is bounded from below by distDα
(1, h ·P2n)= distDα

(1, h ·P2n).
Now, by Theorem 1.2 applied to h, and again since ϕα(2n+ 1) is comparable to
ϕα(n+ 1), there exists a constant C2 such that

(2-3) dist2
Dα
(1, h ·Pn)≥ C2ϕ

−1
α (n+ 1).

Thus, the inequalities in (2-2) and (2-3) imply the desired result. �

3. Norm comparisons and sharp decay of norms for the subspaces Jα,M,N

Let us now consider a third way of relating two variable cyclic functions to one
variable cyclic functions. In particular, we shall show that the polynomials in (1-2)
furnish optimal approximants for a certain subclass of functions.

The subspaces Jα,M,N . In order to formulate our results, we need some notation.
For −∞< α <∞ and integers M, N ≥ 1, we consider the closed subspaces

Jα,M,N =
{

f ∈Dα : f =
∞∑

k=0

akzMk
1 zNk

2

}
.
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For instance, Jα=Jα,1,1 consists of the functions f whose Taylor coefficients (ak,l)

vanish off the diagonal k = l, meaning that f (z1, z2)= f (z1 · z2).
We shall write Dα,z1 for the set of functions in Dα in the variable z1, viewed as

a subspace of Dα.

Theorem 3.1. Let α ≤ 1
2 and suppose that f ∈ Jα,M,N has the property that

R( f )(z) = f (z1/M, 1) is a function that admits an analytic continuation to the
closed unit disk, whose zeros lie in C \D. Then, f is cyclic in Dα, and there exists
a constant C = C(α, f,M, N ) such that

dist2
Dα
(1, f ·Pn)≤ Cϕ−1

2α (n+ 1).

This result is sharp in the sense that, if R( f ) has at least one zero on T, then there
exists a constant c = c(α, f,M, N ) > 0 such that, for large n,

cϕ−1
2α (n+ 1)≤ dist2

Dα
(1, f ·Pn).

The same conclusions remain valid for f ∈ Dα,z1 , with the rate ϕ−1
2α replaced by ϕ−1

α .

We should point out that the hypotheses of Theorem 3.1 imply that f is nonvan-
ishing in D2. Suppose f ∈ Jα,M,N and f (z1, z2)= 0, for some (z1, z2) ∈D2. Then,
the function R( f ) will have a zero at z = zM

1 zN
2 ∈ D.

Remark 3.2. It is straightforward to check that functions like f (z1, z2)= 1− z1,
f (z1, z2) = (1− z1z2)

N , N ∈ N, and f (z1, z2) = z2
1z2

2 − 2 cos θ z1z2 + 1, θ ∈ R,
satisfy the assumptions of Theorem 3.1.

The arguments used in the proof of Theorem 3.1 imply a function f ∈Jα,M,N can
fail to be cyclic in Dα when α > 1

2 . For instance, the function f (z1, z2)= 1− z1z2

is cyclic if and only if α ≤ 1
2 (see Example 2 below), and the Riesz polynomials

(1-2) are optimal approximants to 1/ f when α ≤ 1
2 .

Liftings, restrictions, and norm comparisons. The proof of Theorem 3.1 ulti-
mately relies on Theorem 1.2, and comparison between the norm of Dα and that
of D2α.

Suppose that for some real α, the function F =
∑
∞

k=0 akzk belongs to Dα, a
Dirichlet-type space on the unit disk. We define E : Dα→Dα by

E(F)(z1, z2)= F(z1).

In addition, if f ∈ Dα,z1 , the mapping C :Dα→ Dα given by C( f )(z)= f (z, 1)
is well-defined, and we have E ◦C |Dα,z1

= idDα,z1
. Moreover, it is immediate that

‖E(F)‖α = ‖F‖Dα
, F ∈ Dα

and
‖ f ‖α = ‖C( f )‖Dα

, f ∈ Dα,z1 .
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Another embedding is the following one. For α ∈ R fixed, define the mappings

L M,N : D2α→Dα via L M,N (F)(z1, z2)= F(zM
1 · z

N
2 ),

and
RM,N : Jα,M,N → D2α via RM,N ( f )(z)= f (z1/M, 1).

We initially view f (z1/M, 1) as a formal expression, but the assumption that∑
k

(k+ 1)2α|ak |
2 <∞

implies that f (z1/M
1 , 1) is actually a well-defined holomorphic function on D; this

will become apparent below. By definition, we again have L ◦ R|Jα,M,N = idJα,M,N .

Lemma 3.3. For F ∈ D2α and f ∈ Jα,M,N , there are constants c1 = c1(α,M, N )
and c2 = c2(α,M, N ) such that

‖L M,N (F)‖α ≤ c1‖F‖D2α and c2‖R( f )‖D2α ≤ ‖ f ‖α.

In particular, if f ∈ Jα,M,N , then

(3-1) c2‖R( f )‖D2α ≤ ‖ f ‖α ≤ c1‖R( f )‖D2α .

Proof. We provide the proof of the second inequality; the proof of the first is
analogous.

We first observe that for any α ∈ R and M ≥ 1, there exist constants c1(α,M)
and c2(α,M) such that

c1(α,M)(k+ 1)α ≤ (Mk+ 1)α ≤ c2(α,M)(k+ 1)α,

for any k ∈ N. Thus, writing R( f )(z)=
∑
∞

k=0 akzk, we have

‖R( f )‖2D2α
=

∞∑
k=0

(k+ 1)2α|ak |
2
=

∞∑
k=0

(k+ 1)α(k+ 1)α|ak |
2

≤ [c1(α,M)c1(α, N )]−1
∞∑

k=0

(Mk+ 1)α(Nk+ 1)α|ak |
2

= [c1(α,M)c1(α, N )]−1
‖ f ‖2α,

which proves the assertion. The two-sided bound (3-1) follows from the one-sided
bounds and the fact that f = L(R( f )). �

In particular, we see from the proof of Lemma 3.3 that in the case M = N = 1,
the equalities

‖L(F)‖α = ‖F‖D2α and ‖R( f )‖D2α = ‖ f ‖α

hold; hence, R is an isometric isomorphism between Jα and D2α.
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Sharpness of norm decay. We shall use Lemma 3.3, along with the following
lemma, to prove Theorem 3.1.

Lemma 3.4. Suppose that f ∈Jα,M,N for some α ∈R and some integers M, N ≥ 1.
Let rn =

∑n
k=0

∑n
l=0 ck,l zk

1zl
2 be an arbitrary polynomial, and let sn be its projection

onto Jα,M,N ,

sn =
∑

{k:Mk,Nk≤n}

cMk,NkzMk
1 zNk

2 .

Then,

‖rn f − 1‖α ≥ ‖sn f − 1‖α.

Proof. We begin by noting again that monomials of the form {zk
1zl

2} form an
orthogonal basis for Dα. Next, setting s̃n = rn − sn , we have sn f ∈ Jα,M,N , and
s̃n f /∈ Jα,M,N . Then, by the previous observation, sn f − 1⊥ s̃n f .

This means that

‖rn f − 1‖2α = ‖sn f − 1+ s̃n f ‖2α
= ‖sn f − 1‖2α +‖s̃n f ‖2α
≥ ‖sn f − 1‖2α. �

An analogous result holds for functions in the subspace Dα,z1 .

Proof of Theorem 3.1. We present the details for functions f ∈ Jα; the same type
of arguments work for Jα,M,N , with the appropriate inequalities from Lemma 3.3
in place of equalities, and also for f ∈ Dα,z1 .

We begin by establishing the lower bound. Let rn =
∑

k
∑

l ck,l zk
1zl

2 be any
polynomial, and extract the diagonal part sn from rn as in the preceding lemma.
Note that by construction, sn f − 1 ∈ Jα for each α. By Lemma 3.4 and the norm
inequality (3-1), we obtain

‖rn f − 1‖α ≥ ‖sn f − 1‖α = ‖R(sn f − 1)‖D2α = ‖R(sn)R( f )− 1‖D2α .

It is assumed that R( f ) satisfies the hypotheses of Theorem 1.2; the theorem then
asserts that dist2

D2α
(1, R( f ) ·Pn)≥ C̃ϕ−1

2α (n+ 1). In particular, this yields a lower
bound for ‖R(sn)R( f )− 1‖D2α , and the lower bound on distDα

(1, f ·Pn) follows.
To obtain the upper bound, it is enough to exhibit a concrete sequence (pn)

of polynomials having ‖pn f − 1‖2α ≤ C(α, f )ϕ−1
2α (n+ 1). However, since R( f )

satisfies the hypotheses of Theorem 1.2, there exists a sequence (qn) of polynomials
in one variable that achieves

‖qn R( f )− 1‖2D2α
≤ C(α, f )ϕ−1

2α (n+ 1)
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for large enough n. But then we can define pn = L(qn) ∈ Jα, and the desired
estimate follows since

‖L(qn) f − 1‖2α = ‖R(L(qn))R( f )− 1‖2D2α
= ‖qn R( f )− 1‖2D2α

by Lemma 3.3. �

Note that if R( f ) is a polynomial with only simple zeros on the unit circle T,
then it is shown in [Bénéteau et al. 2015, Section 3] that the one-variable Riesz
polynomials achieve the norm decay obtained above. In the situation M = N = 1
then, we have L(qn)(z1, z2)= pn(z1, z2), where pn are the Riesz-type polynomials
defined in (1-2).

4. Polynomials with zeros on ∂D2 and measures of finite energy

Let us now examine the relationship between cyclicity and boundary zero sets of
functions in Dα. Surprisingly, some functions with large zero sets in some sense
are cyclic while others with smaller zero sets are not.

Examples. Let us examine a few simple examples.

Example 1. Set f (z1, z2)= 1− z1. Then f has zero set

Z( f )= {1}×D,

a (real) 2-dimensional subset of the topological boundary of D2 which meets the
distinguished boundary along the 1-dimensional curve {1} × T. Note that f is
an example of a function of the product type g(z1)h(z2) with g(z1)= 1− z1 and
h(z2)= 1, and therefore by Proposition 2.4, f is cyclic in Dα if and only if α ≤ 1.

Example 2. Consider the function f (z1, z2)= 1− z1z2. The part of the zero set
of f that lies on the boundary of the bidisk,

Z( f )= {(eiθ , e−iθ ) : θ ∈ [0, 2π)},

can be seen as a 1-dimensional real curve contained in the distinguished boundary T2.
One verifies that all the points in Z( f ) are simple zeros. Since

1
f (z1, z2)

=

∞∑
k=0

∞∑
l=0

δk,l zk
1zl

2 =

∞∑
k=0

zk
1zk

2,

we have ‖1/ f ‖2
−1 =

∑
∞

k=0(1+ k)−2 <∞ but ‖1/ f ‖20 =
∑
∞

k=0 1 = +∞, so f is
invertible in the Bergman space, and indeed in Dα whenever α <− 1

2 , but not in
the Hardy space of the bidisk.

Nevertheless, by Theorem 3.1, f is cyclic in Dα if and only if α ≤ 1
2 . Note

in particular that this function is not cyclic in the classical Dirichlet space of the
bidisk!
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Explicit computations with the Riesz polynomials in (1-2) recover the upper
bound in Theorem 3.1. Namely, we have

pn(z1, z2) f (z1, z2)− 1=−
1

ϕα(n+ 1)

n+1∑
k=1

[ϕα(k)−ϕα(k− 1)](z1z2)
k,

and then, since |ϕα(k)−ϕα(k− 1)|2 ≤ C(α)(k− 1)−2α, we obtain

‖pn f − 1‖2α ≤
C1(α)

(n+ 1)1−2α .

Thus ‖pn f − 1‖2α→ 0 as n→∞ and f is cyclic, provided that α ≤ 1
2 .

In fact, considering functions of the form f = 1− zM
1 zN

2 for integer M, N ≥ 1
instead, and performing the analogous computations, we obtain

‖pn f − 1‖2α ≤
C1(α,M, N )
(n+ 1)1−2α(4-1)

with a constant C1(α,M, N ) which does not depend on n.

Example 3. We examine f (z1, z2) = 1− z1− z2+ z1z2 = (1− z1)(1− z2). The
zero set of f is

Z( f )= ({1}×D)∪ (D×{1}),

a 2-dimensional set that extends into the topological boundary of the bidisk. Its
intersection with T2 consists of the curves

Z( f )= ({1}×T)∪ (T×{1}).

All zeros of f are simple, except the point (1, 1), which has order 2. Since

1
f (z1, z2)

=

∞∑
k=0

∞∑
l=0

zk
1zl

2,

it follows that 1/ f /∈ A2(D2). Note that again, f is separable with g(z1)= 1− z1

and h(z2)= 1− z2, and therefore f is cyclic in Dα if and only if α ≤ 1.
In this case, computing with the Riesz polynomials leads to misleading estimates.

Defining polynomials pn , as before, via (1-2), we compute

pn f =−
1

(n+ 1)1−α

n+1∑
k=1

[k1−α
− (k− 1)1−α](zk

1+ zk
2)

+
1

(n+ 1)1−α

n+1∑
k=1

[k1−α
− (k− 1)1−α]zk

1zk
2.
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We use the estimates from the previous example, and exploit the one-variable
estimates from [Bénéteau et al. 2015], to obtain

‖pn f − 1‖2Dα
=

2
(n+ 1)2−2α

n+1∑
k=1

(k+ 1)α[k1−α
− (k− 1)1−α]2

+
1

(n+ 1)2−2α

n+1∑
k=1

(k+ 1)2α[k1−α
− (k− 1)1−α]2

≤
c1(α)

(n+ 1)1−α
+

c2(α)

(n+ 1)1−2α .

The first term in the right-hand side dominates when α < 0, whereas the second
is larger when α > 0. In particular, the estimate does show that f is cyclic in Dα

provided α ≤ 1
2 . However, as we have seen, the rate is not optimal, and f remains

cyclic when α > 1
2 .

Note the interesting contrast between Example 2 and Example 3: the function in
Example 2 is not cyclic in the (classical) Dirichlet space of the bidisk, and yet in
some sense has a much smaller zero set than the function in Example 3, which is
cyclic! On the other hand, as a kind of dual phenomenon, f = 1− z1z2 exhibits a
faster rate of decay of norms ‖pn f −1‖α for α < 0 than does f = (1− z1)(1− z2).

Example 4. The polynomial f (z1, z2)= 1− (z1+ z2)/2 has no zeros in D2, and
vanishes at a single boundary point: Z( f )= {(1, 1)} ⊂ T2.

In [Hedenmalm 1988, Section 4], it is proved that if f ∈D2 has Z( f )= {(1, 1)},
and both f ( · , 1) and f (1, · ) are outer functions, then the closure of the principal
ideal generated by f coincides with the closed ideal

I
(
{(1, 1)}

)
= { f ∈D2 : f (1, 1)= 0}.

(Hedenmalm’s norm is defined using the weights (1+ k2)(1+ l2) but is equivalent
to the norm in D2.) Since the norm of D1 is weaker than that of D2, it follows that
such functions are cyclic in Dα for α≤ 1 as the D1-closure of the invariant subspace
I
(
{(1, 1)}

)
⊂D2 coincides with [ f ], and contains the cyclic function 1− z1.

In particular, the polynomial f (z1, z2)= 1− (z1+ z2)/2 is cyclic in Dα , for all
α≤ 1. (An independent proof of this fact has been given by T. J. Ransford [personal
communication, 2014].) Computing with polynomials of the form

pn(z1, z2)=

n∑
k=0

(
1−

ϕα(k)
ϕα(n+ 1)

)
(z1+ z2)

k

2k
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and using the fact that (z1+ z2)
k1 ⊥ (z1+ z2)

k2 when k1 6= k2, one finds that

‖pn f − 1‖2α =
n+1∑
k=1

4−k
(

k1−α
− (k− 1)1−α

(n+ 1)1−α

)2 k∑
j=0

(
k
j

)2

( j + 1)α(k− j + 1)α.

Using the bound

( j + 1)α(k− j + 1)α ≤ C(k+ 1)2α, 0≤ j ≤ k,

together with the identity
k∑

j=0

(
k
j

)2

=

(
2k
k

)
and standard estimates on binomial coefficients, we obtain the estimate

dist2
Dα
(1, (2− z1− z2) ·Pn)≤ Cϕ2α−1/2(n+ 1).

Unfortunately, we have not been able to obtain a sharp estimate, but the above bound
shows that the optimal rate is different from the two rates we have seen previously.

Measures of finite energy. It would be interesting to understand the relationship
between cyclicity and boundary zero sets — in particular, given a function f , to
find a measure whose support lies on the zero set of the boundary values of f that
relates to the cyclicity properties of f .

We now give a necessary condition for a function to be cyclic. This condition
involves the notion of capacity, and represents a straightforward generalization of
results of Brown and Shields in the one-variable case.

Definition 4.1. Let E ⊂ T2 be a Borel set. We say that a probability measure µ
supported in E has finite logarithmic energy if

I [µ] =
∫

T2

∫
T2

log
e

|eiθ1 − eiϑ1 |
log

e
|eiθ2 − eiϑ2 |

dµ(θ1, θ2) dµ(ϑ1, ϑ2) <∞.

If E supports no such measure, we say that E has logarithmic capacity 0.

The integral defining the energy I [µ] can be seen as a convolution with kernel

h(s, t)= log
e

|1− eis |
log

e
|1− ei t |

.

Replacing the logarithmic product kernel in the definitions above with

hα(s, t)=
1

|1− eis |1−α

1
|1− ei t |1−α

,

one obtains the notions of Riesz energy, denoted by Iα[µ], and Riesz capacity of
order 0< α < 1.
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The α-energy of µ can be expressed in terms of its Fourier coefficients

µ̂(k, l)=
∫

T2
e−i(kθ1+lθ2) dµ(θ1, θ2), k, l ∈ Z.

Namely, we have (compare [El-Fallah et al. 2014, Chapter 2], for instance)

Iα[µ] =
∞∑

k=−∞

∞∑
l=−∞

ĥα(k, l)|µ̂(k, l)|2.

Computing the Fourier coefficients ĥ(k, l) (see [Brown and Shields 1984, p. 294]
for details), we find that

(4-2) I [µ] = 1+
∞∑

k=1

|µ̂(k, 0)|2

k
+

∞∑
l=1

|µ̂(0, l)|2

l
+

1
2

∑
k∈Z\{0}

∞∑
l=1

|µ̂(k, l)|2

|k|l
.

Similarly, one can show (again see [El-Fallah et al. 2014, Chapter 2]) that the
Fourier coefficients of hα satisfy

c1(|k| + 1)−α (|l| + 1)−α ≤ |ĥα(k, l)| ≤ c2(|k| + 1)−α (|l| + 1)−α

for some constants 0< c1 < c2 <∞.
The notion of energy now allows us to identify some noncyclic f ∈ Dα by

looking at their boundary zero sets. To make this notion precise, we note that one
can show that functions f ∈Dα have radial limits

f ∗(eiθ1, eiθ2)= lim
r→1−

f (reiθ1, reiθ2)

quasi-everywhere with respect to the appropriate capacity. That is, the limit exists
for all points outside a set of capacity 0, and hence it makes sense to speak of the
capacity of the set Z( f ∗). (In fact, Kaptanoğlu considers more general approach
regions in [Kaptanoğlu 1994], but we do not need this here.)

Proposition 4.2. If f ∈D and Z( f ∗) has positive logarithmic capacity, then f is
not cyclic.

Proof. The proof is completely analogous to that of [Brown and Shields 1984,
Theorem 5]; we refer the reader to the paper of Brown and Shields for details and
present the arguments in condensed form here.

The key idea is to identify the Bergman space A2(D2) with the dual of D via
the pairing

〈 f, g〉 =
∞∑

k=0

∞∑
l=0

ak,lbk,l,

where f =
∑
k,l

ak,l zk
1zl

2 ∈D and g =
∑
k,l

bk,l zk
1zl

2 ∈ A2(D2). We then consider the
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Cauchy integral

C[µ] =
∫

T2
(1− eiθ1 z1)

−1 (1− eiθ2 z2)
−1 dµ(θ1, θ2)

of µ, a measure of finite logarithmic energy with supp(µ)⊂ Z( f ∗). A comparison
with (4-2) then reveals that

‖C[µ]‖2A2(D2)
=

∞∑
k=0

∞∑
l=0

|µ̂(k, l)|2

(k+ 1)(l + 1)
<∞

so that C[µ] induces a nontrivial element of D∗. On the other hand, since the
measure µ is supported on Z( f ∗) by assumption, the functional induced by C[µ]
annihilates [ f ], and so f is not cyclic. �

For 0< α < 1, the same result holds once we replace logarithmic capacity with
Riesz capacity and make the identification (Dα)

∗
=D−α in the proof.

The argument used in the proof of Proposition 4.2 can be used to give another
proof of the noncyclicity of the function f (z1, z2) = 1 − z1z2 in D. Namely,
consider the probability measure µZ on T2 induced by the (normalized) integration
current associated with the variety Z(1− z1z2) ∩ T2 (see [Lelong and Gruman
1986, Chapter 2] for the relevant definitions). A quick computation reveals that
µ̂Z(k, l) = δkl , so that C[µZ ](z1, z2) = 1/(1− z1z2), a function in the Bergman
space of the bidisk which satisfies〈

zk
1zl

2 f,C[µZ ]
〉
= 0, for all k, l ≥ 0.

In fact, Z(1− z1z2)∩T2 has positive Riesz capacity precisely when α > 1
2 .

5. Concluding remarks and open problems

It appears to be a difficult task to characterize the cyclic elements of Dα for α ≤ 1,
and many basic questions remain. For instance, it is natural to ask whether the
Brown–Shields conjecture is true for functions on the bidisk.

Problem 5.1. Is the condition that f ∈ D is outer and Z( f ∗) has logarithmic
capacity 0 sufficient for f to be cyclic?

This question remains open for the Dirichlet space of the unit disk, and is widely
considered to be a challenging problem. A first step towards understanding cyclic
functions in Dα might be to solve the following natural problem.

Problem 5.2. Characterize the cyclic polynomials f ∈Dα for each α ∈ (0, 1].

An obvious necessary condition for f to be cyclic is that Z( f )∩D2
=∅, and

if f is a polynomial that does not vanish in D2, then f is cyclic because both f
and 1/ f extend analytically to a larger polydisk. But the problem appears to be
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open for polynomials with Z( f ) ∩ ∂D2
6= ∅: we would at least like to identify

the polynomials whose zero sets have positive capacity. We have proved that
polynomials that are products of polynomials in one variable are cyclic, and so the
zero sets associated with such functions must all have zero capacity.

As we have seen in our examples, it can happen that a polynomial with a larger
zero set, in the topological sense and in the sense of measure, is cyclic in Dα for
some α, while a polynomial with a smaller zero set is not. We have also noted that
a polynomial that fails to be cyclic in Dα when α > 1

2 can be “more” cyclic in Dα ,
for α < 0, than polynomials that are cyclic in all Dα . We mean this in the sense that

dist2
Dα
(1, (1− z1z2) ·Pn) � Cϕ−1

2α (n+ 1)

while
dist2

Dα
(1, (1− z1)(1− z2) ·Pn) � Cϕ−1

α (n+ 1).

It would be interesting to develop a rigorous understanding of this phenomenon.
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COMPACTNESS RESULTS FOR SEQUENCES OF
APPROXIMATE BIHARMONIC MAPS

CHRISTINE BREINER AND TOBIAS LAMM

We will prove energy quantization for approximate (intrinsic and extrinsic)
biharmonic maps into spheres where the approximate map is in L log L.
Moreover, we demonstrate that if the L log L norm of the approximate
maps does not concentrate, the images of the bubbles are connected without
necks.

1. Introduction

Critical points to the Dirichlet energy

E.u/ WD
1

2

Z
�

jDuj2 dx

are called harmonic maps, and the compactness theory for such a sequence in
two dimensions is well understood. Let � � R2 be a bounded domain and N

a smooth, compact Riemannian manifold. For a sequence of harmonic maps
uk 2 W 1;2.�;N / with uniform energy bounds, Sacks and Uhlenbeck [1981]
proved that a subsequence uk converges weakly to a harmonic u1 on � and
uk ! u1 in C1.� n fx1; : : : ;x`g/ for some finite ` depending on the energy
bound. For each xi , they showed that there exist some number of “bubbles”, maps
�ij W S2 ! N , that result from appropriate conformal scalings of the sequence
uk near xi . In dimension 2, E.u/ is conformally invariant and thus one can ask
whether any energy is lost in the limit. Jost [1991] proved that in fact the energy is
quantized; there is no unaccounted energy loss:

lim
k!1

E.uk/DE.u1/C
X̀
iD1

`iX
jD1

E.�ij /:

Parker [1996] provided the complete description of the C 0 limit or “bubble tree”.
In particular, he demonstrated that the images of the limiting map u1 and the
bubbles �ij are connected without necks. Around the same time, various authors
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proved energy quantization and the no-neck property for approximate harmonic
maps [Ding and Tian 1995; Wang 1996; Qing and Tian 1997; Lin and Wang 1998;
Chen and Tian 1999].

In this paper, we are interested in an analogous compactness problem for a
scale-invariant energy in four dimensions. Let .M 4;g/ and .N k ; h/ be compact
Riemannian manifolds without boundary, with N k isometrically embedded in some
Rn. Consider the energy functional

Eext.u/ WD

Z
M

j�uj2 dx

for u 2W 2;2.M;N /, where � is the Laplace–Beltrami operator. Critical points
to this functional are called extrinsic biharmonic maps, and the Euler–Lagrange
equation satisfied by such maps is of fourth order. Clearly, this functional depends
upon the immersion of N into Rn. To avoid such a dependence, one may instead
consider critical points to the functional

Eint.u/ WD

Z
M

ˇ̌
.�u/T

ˇ̌2
dx;

where .�u/T is the projection of �u onto TuN . Critical points to this functional
are called intrinsic biharmonic maps. The Euler–Lagrange equations satisfied by
extrinsic and intrinsic biharmonic maps have been computed (see, for instance,
[Wang 2004b]). We will be interested in approximate critical points.

Definition 1.1. Let u 2 W 2;2.B1;N /, where B1 � R4 and N is a C 3 closed
submanifold of some Rn. Let f 2L log L.B1;R

n/. Then u is an f-approximate
biharmonic map if

�2u��.A.u/.Du;Du//� 2d�h�u;DP .u/iC h�.P .u//;�ui D f:

We call u an f-approximate intrinsic biharmonic map if

�2u��.A.u/.Du;Du//� 2d�h�u;DP .u/i

C h�.P .u//;�ui �P .u/.A.u/.Du;Du/DuA.u/.Du;Du//

� 2A.u/.Du;Du/A.u/.Du;DP .u//D f:

Here A is the second fundamental form of N ,! Rn and P .u/ W Rn! TuN is the
orthogonal projection from Rn to the tangent space of N at u.

Recently, Hornung and Moser [2012], Laurain and Rivière [2013], and Wang
and Zheng [2012] determined the energy quantization result for sequences of
intrinsic biharmonic maps, approximate intrinsic and extrinsic biharmonic maps,
and approximate extrinsic biharmonic maps, respectively. (In fact, the result of
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[Laurain and Rivière 2013] applies to a broader class of solutions to scaling-invariant
variational problems in dimension four.)

As a first result, we demonstrate that when the target manifold is a sphere,
the energy quantization result extends to f-approximate biharmonic maps with
f 2L log L. For the definition of this Banach space, see the appendix.

Theorem 1.2. Let fk 2L log L.B1;R
nC1/ and uk 2W 2;2.B1;S

n/ a sequence of
fk-approximate biharmonic maps with

(1-1) kD2ukkL2.B1/
CkDukkL4.B1/

CkfkkL log L.B1/ �ƒ<1:

If uk *u weakly in W 2;2.B1;S
n/, there exists fx1; : : : ;x`g�B1 such that uk!u

in W
2;2

loc .B1 n fx1; : : : ;x`g;S
n/.

Moreover, for each 1 � i � ` there exists an `i 2 N and nontrivial, smooth
biharmonic maps !ij 2 C1.R4;Sn/ with finite energy (1� j � `i) such that

lim
k!1

Z
Bri

.xi /

jD2uk j
2
D

Z
Bri

.xi /

jD2uj2C

`iX
jD1

Z
R4

jD2!ij j
2;

lim
k!1

Z
Bri

.xi /

jDuk j
4
D

Z
Bri

.xi /

jDuj4C

`iX
jD1

Z
R4

jD!ij j
4:

Here ri D
1
2

min1�j�`;j¤ifjxi �xj j; dist.xi ; @B1/g.

As a second result, we demonstrate the no-neck property for approximate bihar-
monic maps with the approximating functions L log L norm not concentrating.

Theorem 1.3. Let fk 2L log L such that the L log L norm does not concentrate.
For uk a sequence of fk-approximate biharmonic maps satisfying (1-1), the images
of u and the maps !ij described above are connected in Sn without necks.

In particular, if fk 2�.L/, an Orlicz space such that limt!1 �.t/=.t log t/D1,
the theorem holds. For a definition of an Orlicz space, see the appendix.

Remark 1.4. The theorems also hold for uk a sequence of fk-approximate intrin-
sic biharmonic maps. We will prove the theorems in detail for fk-approximate
biharmonic maps, and point out the necessary changes one must make to prove the
intrinsic case.

We consider biharmonic maps into spheres because the symmetry of the target
provides structure for the equation that can be exploited to prove higher regularity.
For an f-approximate biharmonic map into Sn, the structural equations takes the
form (see [Wang 2004a])

(1-2) d�.D�u^u��u^Du/D f ^u;
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and, for an f-approximate intrinsic biharmonic u,

(1-3) d�.D�u^u��u^DuC 2jDuj2Du^u/D f ^u:

The structure of the equation for harmonic maps from a compact Riemann surface
into Sn was determined independently by Chen [1989] and Shatah [1988]. They
demonstrated that u satisfies the conservation law

d�.Du^u/D 0:

Hélein [1990] used the structure of this equation and Wente’s inequality [1969] to
determine that any weakly harmonic u 2W 1;2 was in fact C1.

Li and Zhu [2011] used this additional structure to determine energy quantization
for approximate harmonic maps. In their setting, the equation takes the form
d�.Du^u/D � ^u for � 2L log L. Our proof of energy quantization is similar
in spirit to their work and to the recent small-energy compactness result of Sharp
and Topping [2013]. Of critical importance are the energy estimates we prove in
Section 2. The first estimates, from Proposition 2.1, are used in two ways. First, the
Lp estimates of (2-2), (2-3) provide sufficient control to determine a small-energy
compactness result away from the bubbles. Second, we use the Lorentz space duality
to prove energy quantization and thus require uniform bounds on the appropriate
Lorentz energies as in (2-1). In Section 3 we prove the energy quantization result.
We point out that since the oscillation bound contains an energy term of the form
kD�ukkL4=3 , we must also prove this energy is quantized. This point justifies the
necessity of the estimate (2-4). We prove the energy quantization result, under the
presumption of the occurrence of one bubble, in Proposition 3.4.

We next use this stronger energy quantization result for maps into spheres to
prove a no-neck property. Zhu [2012] showed the no-neck property for approximate
harmonic maps with � in a space essentially between Lp with p > 1 and L log L.
For w a cutoff function of the approximate harmonic map u, Zhu considered a
Hodge decomposition of the 1-form ˇ WDDw^u. (This is actually a matrix of 1-
forms, but we gloss over that point for now.) He bounded kˇkL2;1 by bounding each
component of the decomposition, and used this to bound kDwkL2;1 by kDukL2

plus a norm of the torsion term, � . Using "-compactness and a simple duality
argument, he showed the oscillation of u is controlled by kDwkL2;1 , which in turn
implies the desired result.

Like Zhu, we prove the no-neck property by demonstrating that the oscillation
of an f-approximate biharmonic map is controlled by norms that tend to zero in
the neck region. Using a duality argument, we first determine that the oscillation
of u on an annular region is bounded by quantized energy terms plus a third
derivative of a cutoff function w. Our main work is in determining an appropriate
estimate for kD�wkL4=3;1 . We determine this bound by considering the 1-form
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ˇ D D�w ^ u��w ^Du, and we bound D�w by bounding ˇ via its Hodge
decomposition. In particular, we take advantage of the divergence structure of the
equation for biharmonic maps into spheres to show that ˇ not only has good L4=3

estimates but in fact has good estimates in L4=3;1. This second estimate allows
us to prove the necessary oscillation lemma. The proof of the oscillation lemma
constitutes the work of Section 4. Coupling the oscillation lemma with energy
quantization, we prove Theorem 1.3 in Section 5.

Finally, the arguments we use require a familiarity with Lorentz spaces and
the appropriate embedding theorems relevant in dimension four. In the appendix,
we describe the various Banach spaces and collect the necessary embeddings
and estimates.

Many steps of the proof require the use of cutoff functions, so we set:

Definition 1.5. Let �2C1
0
.B2/with ��1 in B1. For all r>0 set �r .x/D�.x=r/.

Note added in proof: As we finalized the paper, we noticed a somewhat related
preprint [Liu and Yin 2013], in which the authors claim that the no-neck property
holds for sequences of biharmonic maps into general targets. Their methods are
quite different from ours and we believe our results are of independent interest.

2. Energy estimates

To establish strong convergence away from points of energy concentration, we first
prove the necessary energy estimates. The small-energy compactness result relies
on the fact that in both (2-2) and (2-3) there is an extra power of the energy on the
right-hand side of the inequality. Thus, small energy implies that kDukkL4 and
kD2ukkL2 must converge to zero on small balls. Measure-theoretic arguments in
the next section will then imply strong convergence for these norms to some Du

and D2u respectively.

Proposition 2.1. Let u 2 W 2;2.B2;S
n/ be an f-approximate (intrinsic) bihar-

monic map, where f 2L log L.B2;R
nC1/. Then there exists C > 0 such that

(2-1) kD3ukL4=3;1.B1/
CkD2ukL2;1.B1/

CkDukL4;1.B1/

� C.kD2uk2
L2.B2/

CkDuk2
L2.B2/

CkDuk
L2.B2/

Ckf k
L log L.B2/

/:

Moreover, there exists Q" > 0 such that, if

kD2ukL2.B2/
CkDukL4.B2/

< Q";

then, for every 0< r < 1
2

,

kD2uk2
L2.Br /

� C r2
kD2uk2

L2.B2/

CC.kD2uk4
L2.B2/

CkDuk4
L4.B2/

Ckf k2
L1.B2/

kf k
L log L.B2/

/;

(2-2)
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kDuk4
L4.Br /

� C r4
kDuk4

L2.B2/

CC.kD2uk8
L2.B2/

CkDuk8
L4.B2/

Ckf k3
L1.B2/

kf k
L log L.B2/

/;

(2-3)

kD�uk
4=3

L4=3.Br /
� C r4=3

kD2uk
4=3

L2.B2/

CC.kD2uk
8=3

L2.B2/
CkDuk

8=3

L4.B2/
Ckf k

1=3

L1.B2/
kf k

L log L.B2/
/:

(2-4)

Remark 2.2. In point of fact, we do not need the full strength of (2-4) in application.
We use instead the estimate

kD�uk
4=3

L4=3.Br /
�C.kD2uk

4=3

L2.B8r /
CkDuk

4=3

L4.B8r /
Ckf k

1=3

L1.B8r /
kf k

L log L.B8r /
/;

which can be immediately proven via the method outlined below.

Proof. First, find v 2W
1;2

0
.B

2
; so.nC 1//\W 2;2.B

2
; so.nC 1// such that

�v D�u^u:

Thus, for each i; j 2 f1; : : : ; nC 1g, �vij D uj�ui � ui�uj . It follows from
(1-2) that

�2v D�.�u^u/D 2d�.�u^Du/Cf ^u:

Next we let � 2W
2;2

0
.B

2
; so.nC 1/˝�1R4/ be the solution of

�2� D d�.2�u^Du/:

Here so.nC 1/˝�1R4 denotes the space of 1-forms tensored with .nC1/�.nC1/-
antisymmetric matrices. Using Calderón–Zygmund theory coupled with interpola-
tion, and using the estimates from Section A.2, we determine that

(2-5) kD3�kL4=3;1.B2/
CkD2�kL2;1.B2/

CkD�kL4;1.B2/

� c.kD2uk2
L2.B2/

CkDuk2
L2.B2/

/:

Moreover, letting  2W
2;2

0
.B2; so.nC 1// be the solution of

�2 D f ^u;

we conclude that

(2-6) kD kL4;1.B2/
CkD2 kL2;1.B2/

CkD3 kL4=3;1.B2/
� ckf kL log L.B2/:

Defining

B WD v�� � 
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and using the above equation for v, we conclude that each Bij is a biharmonic
function on B2. Now every biharmonic function satisfies the mean value property

B.x/D c1 �

Z
Br .x/

B.y/ dy � c2 �

Z
B2r .x/

B.y/ dy;

for every B2r .x/� B2 (see, e.g., [Huilgol 1971]). Hence we estimate

kD2BkL2;1.B3=2/
CkD3BkL4=3;1.B3=2/

� ckDBkL2.B2/

� c.kDvkL2.B2/
Ckf kL log L.B2/CkD

2uk2
L2.B2/

CkDuk2
L2.B2/

/:

Since v D 0 on @B2, we can use the divergence theorem and Cauchy–Schwarz to
show that Z

B2

jDvij
j
2
D�

Z
B2

vij�vij
D�

Z
B2

Dvij
� .Du^u/ij

�
1

2

Z
B2

jDvij
j
2
CC

Z
B2

jDuj2:

Thus,

kD2BkL2;1.B3=2/
CkD3BkL4=3;1.B3=2/

� c.kDuk
L2.B2/

Ckf k
L log L.B2/

CkD2uk2
L2.B2/

CkDuk2
L2.B2/

/:

Now we observe that, since �v D�u^u,

�uD .�u^u/:uCh�u;uiuD�v:u� jDuj2u;

where here �:u represents matrix multiplication. Therefore,

�2uD�.�v:u� jDuj2u/D d�.D�v:uC�v:Du�D.jDuj2u//:

To get the second- and third-derivative estimates in (2-1), we first observe that

kD2vkL2;1.B3=2/
CkD3vkL4=3;1.B3=2/

� c.kDuk
L2.B2/

Ckf k
L log L.B2/

CkD2uk2
L2.B2/

CkDuk2
L2.B2/

/:

Using the previous estimates and Section A.2, we observe that the 1-form in the
parentheses is in L4=3;1. Lemma A.3 in [Lamm and Rivière 2008] implies that

kD2ukL2;1.B1/
CkD3ukL4=3;1.B1/

� c.kD3vk
L4=3;1.B3=2/

CkD2vk2
L2.B2/

CkD2uk2
L2.B2/

CkDuk2
L2.B2/

/

� c.kDuk
L2.B2/

Ckf k
L log L.B2/

CkD2uk2
L2.B2/

CkDuk2
L2.B2/

/:
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Finally, Sobolev embedding for Lorentz spaces implies that

kDukL4;1.B1/
� c.kD2ukL2;1.B2/

CkDukL2;1.B2/
/

� c.kD2ukL2;1.B2/
CkDukL2.B2/

/:

Combining this with the previous estimates finishes the proof of (2-1).
To prove the small-energy estimates, we observe that u satisfies (see, for instance,

[Lamm and Rivière 2008, Equations 1.4 and 1.14])

(2-7) �2uD�.V �Du/C d�.wDu/CW �DuCf;

where V ij D uiDuj �uj Dui , wij D�d�.V ij /� 2jDuj2ıij , and

W ij
D�D.d�.V ij //C 2.�uiDuj

��uj Dui/:

Let Mm denote the space of m � m matrices and Mm ˝ �
kR4 the space of

k-forms tensored with m �m matrices. Then V 2 W 1;2.B2;MnC1 ˝�
1R4/,

w 2L2.B2;MnC1/, and W 2W �1;2.B2, MnC1˝�
1R4/.

Without loss of generality we extend f by zero outside of B2. The small-energy
hypothesis implies (see, for instance, [Lamm and Rivière 2008]) that there exist
A 2L1\W 2;2.B1;GLnC1/ and zB 2W 1;4=3.B1;MnC1˝�

2R4/ such that

D�AC�AV �DAwCAW DD zB

and

�.A�u/

D d�.2DA�u��ADuCAwD�DA.V �Du/CAD.V �Du/C zB �Du//CAf

WD d�.K/CAf:

Moreover,

kDAkW 1;2.B1/
Ck dist.A;SO.nC 1//kL1.B1/Ck

zBkW 1;4=3.B1/

� c.kD2ukL2.B2/
CkDukL4.B2/

/:

First, we determine E;F 2W
1;2

0
.B1/ such that

�E D d�.K/; �F DAf:

Interpolating on standard Lp theory, we get the estimates

kEkL2;1.B1/
CkDEkL4=3;1.B1/

� ckKkL4=3;1.B2/

� c.kD2uk2
L2.B2/

CkDuk2
L4.B2/

/:

Note that the estimate on K comes from considering the form of (2-7) and the
estimates on V , w, W and consequently those on A, zB.
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To determine estimates on F , we first observe that the estimates of Section A.2
imply that for G the fundamental solution to �2G D ı0,

kFkL2;1.B1/
� ckD2G � .Af /kL2;1.B1/

� ckf kL1.B2/
;

kDFkL4=3;1.B1/
� ckD3GkL4=3;1.B2/

kf kL1.B2/
:

Also, since �F DAf 2H1.R4/, standard theory implies that D2F 2L1.R4/ and
thus, by the embedding of W 1;1 into L4=3;1 and Sobolev embeddings in R4,

kFkL2;1.B1/
CkDFkL4=3;1.B1/

� ckf kL log L.B2/
:

Using a duality argument, we conclude that

kFk2
L2.B1/

� ckFkL2;1.B1/
kFkL2;1.B1/

� ckf kL1.B2/
kf kL log L.B2/

;

kDFk
4=3

L4=3.B1/
� ck.DF /1=3kL4;1.B1/

kDFkL4=3;1.B1/

� ckDFk
1=3

L4=3;1.B2/
kf kL log L.B2/

� ckf k
1=3

L1.B2/
kf kL log L.B2/

:

Now, set H DA�u�E�F . Then�H D 0 in B1, and, using standard estimates
on harmonic functions, we determine that for all 0< r < 1

2

kHkL2.Br /
CkDHkL4=3.Br /

� crkHkW 1;1.B1=2/
� crkHkL2.B1/

:

The previous estimates imply that

kHk2
L2.B1/

� c.kD2uk2
L2.B2/

CkDuk4
L4.B2/

Ckf k
L1.B2/

kf k
L log L.B2/

/:

Since
�uDA�1.ECF CH /;

the estimates for D2u now follow from a standard cutoff argument and the previous
estimates.

We estimate kD�ukL4=3.Br /
by using the previous estimates and noting that

kD.A�1.ECF CH //kL4=3.Br /

� C.kECF CHkL2.Br /
kDAkL4.Br /

CkD.ECF CH /kL4=3.Br /
/:

To estimate Du, we first consider ˛ 2W 2;2.B1/, ˇ 2W
1;2

0
\W 2;2.B1; �

1R4/

such that
ADuD d˛C d�ˇ:
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Then

�2˛ D�d�.ADu/D�.A�uCDA:Du/D d�. zK/CAf on B1

and
�ˇ DDA^Du on B1:

Here zK is the appropriate modification of K to include the additional term. We
first observe that

kDˇkL4.Br /
� c.kD2ˇkL2.B1/

CkDˇkL2.B1/
/:

Standard Lp theory implies that

kD2ˇkL2.B2/
� ckDAkW 1;2.B1/

kDukW 1;2.B1/
:

Moreover, using a weighted Cauchy–Schwarz inequality and the Poincaré inequality,
we note thatZ

B1

jDˇij
j
2
D�

Z
B1

ˇij .DA^Du/ij

� ckDAk2
L4.B1/

kDuk2
L4.B1/

C
1
2
kDˇk2

L2.B1/
:

Combining this with previous estimates implies that

kDˇkL4.Br /
� c.kD2uk2

L2.B2/
CkDuk2

L4.B2/
/:

For the ˛ term, we follow the ideas used to prove (2-1). Indeed, first determine
�; 2W

2;2
0
.B2/ such that �2� D d�.K/ and �2 DAf . Then by (2-5), (2-6),

and appropriate duality arguments, we conclude that, for any 0< r < 1,

kD�kL4.Br /
� c.kD2uk2

L2.B2/
CkDuk2

L4.B2/
/;

kD k4
L4.Br /

� ckf k3
L1.B2/

kf k
L log L.B2/

:

Setting B D ˛ � � �, we have �2B D 0 on B1, and we use the mean value
property to show that for any 0< r < 1

2

kDBkL4.Br /
� crkDBkL1.B3=4/ � crkDBkL4.B7=8/

:

Noting that

kDBk4
L4.B7=8/

� c
�
kD˛k4

L4.B7=8/
CkDuk4

L4.B1/
CkD2uk8

L2.B2/

CkDuk8
L4.B2/

Ckf k3
L1.B2/

kf kL log L.B2/

�
;

we combine the previous estimates to get the result for Du. �
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Remark 2.3. When u is intrinsic, the strategy is the same, except for two things.
In the first part of the argument, the equation for u will have the additional term
�d�.jDuj2Du^u/ on the right side. But this term doesn’t change the estimates. In
the second part of the argument, W ij will include the term jDuj2.uiDuj�uj Dui/.
This gives the same value for d�.W ij /, and all estimates going forward are the same.

We will prove the energy quantization results by appealing to Lorentz duality. In
Proposition 2.1, we determined uniform estimates for Lorentz norms of the form
Lp;1. The next lemma provides the necessary small-energy estimates for the Lp;1

norms on the annular region, presuming small energy on all dyadic annuli:

Lemma 2.4. Let u 2 W 2;2.B1;S
n/ be an f-approximate biharmonic map with

f 2L log L.B1;R
nC1/. Given " > 0, suppose that for all � such that B2� nB� �

B2ı nBt=2 we have

(2-8)
Z

B2�nB�

jDuj4CjD2uj2CjD�uj4=3 < ":

Then,

kDukL4;1.BınBt /
CkD2ukL2;1.BınBt /

CkD�ukL4=3;1.BınBt /

� C."
1
8 C .log.1=ı//�1/:

Proof. Let z�k WD �2kC2t .1� �2k�2t / be the annular cutoff supported on Ak WD

B2kC3t nB2k�2t which is identically 1 on B2kC2t nB2k�1t . Let G be the distribution
such that�2GD ı0 in R4. Then jDG.x/j DC jxj�1. Note that operator bounds on
DkG can be found in the appendix. Let uk WD �

R
Ak

u. Set Quk.x/ WD z�k.u�uk/.x/.
Therefore on B2kC1t nB2k t

�2
QukD .�

2z�k/.u�uk/C4D�z�k �D.u�uk/C2�z�k�uC4Dz�k �D�uCz�k�
2u:

Using the facts that �2uD�.�u^u:u� jDuj2u/ and that �2u^uD f ^u, we
note that

z�k�
2uD d�

�
z�k.2�u^Du:uC 2�u^u:Du�D.ujDuj2//

�
�Dz�k � .2�u^Du:uC 2�u^u:Du�D.ujDuj2//

C z�k.f ^u:u� 2�u^Du:Du��u^u:�u/:

And thus,

�2
Quk D .�

2z�k/.u�uk/C 4D�z�k �D.u�uk/C 2�z�k�uC 4Dz�k �D�u

�Dz�k � .2�u^Du:uC 2�u^u:Du�D.ujDuj2//

C d�
�
z�k.2�u^Du:uC 2�u^u:Du�D.ujDuj2//

�
C z�k.f ^u:u� 2�u^Du:Du��u^u:�u/:
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For ease of notation, we let Ik denote the first four terms above, and IIk ; IIIk ; IVk

denote the last three terms, respectively. Then on each B2kC1t nB2k t

jDu.x/j D jD.z�k.u�uk//.x/j D j�
2G �D.z�k.u�uk//.x/j

D jDG ��2.z�k.u�uk//.x/j D jDG � .Ik C IIk C IIIk C IVk/.x/j:

We consider each of these estimates separately. First, note that

jDG � Ik.x/j

� C

ˇ̌̌̌Z
.B

2kC3t
nB

2kC2t
/[.B

2k�1t
nB

2k�2t
/

1

jx�yj

�
�
.2k t/�4.u�uk/C .2

k t/�3D.u�uk/C .2
k t/�2�uC .2k t/�1D�u

�
dy

ˇ̌̌̌
� C

ˇ̌̌̌Z
Ak

.2k t/�1
�
.2k t/�4.u�uk/C .2

k t/�3Du

C .2k t/�2�uC .2k t/�1D�u
�

dy

ˇ̌̌̌
� C

Z
Ak

.2k t/�4
jDujC .2k t/�3

jD2ujC .2k t/�2
jD�uj

� C.2k t/�1.kDukL4 CkD2ukL2 CkD�ukL4=3/

� C."1=4
C "1=2

C "3=4/jxj�1:

Using the same ideas as previously, we bound

jDG � IIk.x/j

� C.2k t/�2

Z
Ak

j2�u^Du:uC 2�u^u:Du�D.ujDuj2/j

� C.2k t/�1
k2�u^Du:uC 2�u^u:Du�D.ujDuj2/kL4=3.Ak/

� C.2k t/�1.kD2ukL2kDukL4 CkDuk3
L4/

� C."1=8
C "3=4/jxj�1:

Using the estimates from the appendix, we note that

kDG � IIIk kL4;1.Ak/

� CkD2G� z�k.2�u^Du:uC 2�u^u:Du�D.ujDuj2/kL4;1.Ak/

� Ckz�k.2�u^Du:uC 2�u^u:Du�D.ujDuj2//kL4=3.Ak/

and

kDG � IVk kL4;1.Ak/
� Ckz�k.f ^u:u� 2�u^Du:Du��u^u:�u/kL1.Ak/

:
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Thus

jfx W jDG � .IIIk C IVk/.x/j> �gj

� ��4
kDG�.IIIk C IVk/k

4
L4;1.R4/

� C��4
�
kz�k.f ^u:u�2�u^Du:Du��u^u:�u/k4

L1.Ak/

Ckz�k.2�u^Du:uC2�u^u:Du�D.ujDuj2//k4
L4=3.Ak/

�
� C��4

��Z
z�k jD

2uj2
�2Z

z�k jDuj4C

�Z
z�k jDuj4

�3�
CC��4

kz�k.f ^u:u�2�u^Du:Du��u^u:�u/k4
L1.Ak/

:

Thus, if ı D 2M t , then (letting Sk WD B2kC1t nB2k t for ease of notation)

jfx 2 Bı nBt W jDu.x/j> 3�gj

�

M�1X
kD0

jfx 2 Sk W jDu.x/j> 3�gj

�

M�1X
kD0

jfx 2 Sk W jDG � Ik j> �gjC

M�1X
kD0

jfx 2 Sk W jDG � IIk j> �gj

C

M�1X
kD0

jfx 2 Sk W jDG � .IIIk C IVk/j> �gj

�

M�1X
kD0

jfjDG � .IIIk C IVk/j> �gjC

ˇ̌̌̌�
x 2 B1 W C

"
1
8

jxj
> �

�ˇ̌̌̌

� C��4

 
"

1
2 C

M�1X
kD0

kz�k.f ^u:u/k4
L1.Ak/

C

M�1X
kD0

��Z
z�k jD

2uj2
�4

C

�Z
z�k jDuj4

�4

C

�Z
z�k jDuj4

�3

C

�Z
z�k jDuj4

�2�!
� C��4."

1
2 C .log.1=ı//�4

kf k4L log L.B2ı/
C "2/:

For the estimate on kf ^ u:ukL1 we use Lemma A.2, and for the rest of the
L1 estimate we just use Cauchy–Schwarz. This proves the estimate for Du. The
estimates for D2u and D�u work in much the same way. In the case of D2u,
the terms like IIIk and IVk require the fact that D3G WL4=3!L2;1 and D2G W

L1! L2;1 are bounded operators, where the operation is convolution. For the
term D�u we observe that D3G WL1!L4=3;1 and D4G WL4=3!L4=3;1 are
also bounded operators. �
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3. Energy quantization — proof of Theorem 1.2

We now determine a weak convergence result which will give small-energy com-
pactness and help us complete the proof of the energy quantization. We follow
the ideas of [Li and Zhu 2011; Sharp and Topping 2013], which in turn follow the
arguments of [Evans 1990], with appropriate minor modifications. Throughout this
lemma and its proof, we consider a measurable function f as both a function and a
Radon measure.

Lemma 3.1. Suppose fVkg � W 1;4=3.B1/ is a bounded sequence in B1 � R4.
Then there exist at most countable fxig � B1 and fai > 0g with

P
i ai <1 and

V 2W 1;4=3.B1/ such that, after passing to a subsequence,

V 2
k * V 2

C

X
i

aiıxi

weakly as measures.

Proof. As W 1;4=3 embeds continuously into L2 in four dimensions, after taking a
subsequence, by Rellich compactness there exists some V 2L2 such that Vk ! V

strongly in Lp for 1 � p < 2 and Vk * V weakly in L2. Moreover, since
fDVkg is uniformly bounded in L4=3, it follows that DVk *f 2L4=3 and f is
necessarily DV .

Set gk WD Vk �V . Then gk 2L2 and Dgk 2L4=3 with uniform bounds. Thus,
in the weak-� topology, both jDgk j

4=3 and g2
k

converge to nonnegative Radon mea-
sures with finite total mass. (We denote this space by M.B/). Then g2

k
*� 2M.B/

and jDgk j
4=3 * � 2 M.B/ where �, � are both nonnegative. Now consider

�2C 1
0
.B1/, and observe that the Sobolev embedding of W 1;4=3 into L2 implies that�Z

.�gk/
2 dx

�1
2

� C

�Z
jD.�gk/j

4
3 dx

�3
4

:

Taking k!1 and noting that gk ! 0 in L4=3, we use the weak convergence to
observe that Z

�2 d� � C

�Z
j�j

4
3 d�

�3
2

:

Let � approximate �Br .x/ for Br .x/� B1. Then

�.Br .x//� C
�
�.Br .x//

� 3
2 :

By standard results on the differentiation of measures (see [Evans and Gariepy
1992, Section 1.6]), for any Borel set E

�.E/D

Z
E

D�� d�;



COMPACTNESS RESULTS FOR SEQUENCES OF APPROXIMATE BIHARMONIC MAPS 73

where

D��.x/D lim
r!0

�.Br .x//

�.Br .x//
for �-a.e. x 2 R4:

Now, as � is a finite, nonnegative Radon measure, there exist at most countably
many xi 2B1 such that �.fxig/ > 0. Moreover, for all x 2B such that �.fxg/D 0,
we note that

D��.x/D lim
r!0

�.Br .x//

�.Br .x//
� C lim

r!0
�.Br .x//

1
2 D 0:

For every xj such that �.fxj g/ > 0, set aj DD��.xj /�.fxj g/. Then

�.E/D

Z
E

D�� d�D
X

fj Wxj2Eg

aj or � D
X

j

ajıxj :

Since g2
k
*� as measures, for � 2 C 0

0
.B1/,X

j

aj�.xj /D lim
k!1

Z
B1

g2
k� dx D lim

k!1

Z
B1

.Vk �V /2 dx:

Since .Vk �V /2D V 2
k
�V 2C2V .V �Vk/ and V �Vk D gk * 0 in L2, we have

the result. �
Corollary 3.2. For fVkg as in Lemma 3.1, if

(3-1) lim
r!0

lim sup
k!1

kVkkL2.Br .x//
D 0

for all x 2 B, then
Vk ! V strongly in L2

loc.B/:

Proof. Notice the condition (3-1) implies that jVk j
2 * jV j2 weakly as bounded

Radon measures. Then, by [Evans and Gariepy 1992, Section 1.9], for any Br .x/�

B1, we have kVkkL2.Br .x//
!kV kL2.Br .x//

strongly for all Br .x/� B1. Then,
again using the fact that .Vk �V /2 D V 2

k
�V 2C 2V .V �Vk/ andZ

Br .x/

V 2
k �V 2 dxC

Z
Br .x/

2V .V �Vk/ dx! 0 as k!1;

we conclude that Vk ! V strongly in L2
loc.B1/. �

We now use the energy estimates of Proposition 2.1 to prove a small-energy
compactness result:

Lemma 3.3. Let uk be a sequence of fk-approximate biharmonic maps in B2 with
fk 2L log L.B2/ satisfying (1-1). There exists "0 > 0 such that if

kDukkL4.B2/
CkD2ukkL2.B2/

< "0;
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then there exists u 2W
2;2

loc .B2/ such that

Duk !Du strongly in L4
loc.B1/ and D2uk !D2u strongly in L2

loc.B1/:

Proof. We will first prove convergence of Duk to Du and D2uk to D2u in L2
loc

and then use Gagliardo–Nirenberg interpolation to get the L4 convergence.
Begin by choosing 0< "0 < Q" from Proposition 2.1. First note that the uniform

bounds on uk in W 2;2.B2/ imply that there exists a u2W
2;2

loc .B2/ such that uk *u

in W
2;2

loc .B2/. We now show strong convergence for the derivatives indicated.
Pick any x0 2 B1 and 2R 2 .0; 3

4
�. Then B2R.x0/ � B2. Let yuk.x/ WD

uk.x0C2Rx/ and yfk.x/ WD .2R/4fk.x0C2Rx/. Then yuk is an yfk-approximate
biharmonic map on B1. From (2-2), (2-3), we note that, for any r 2 .0; 1

2
�,

kDyukkL4.Br /
CkD2

yukkL2.Br /

� C r.kDyukkL4.B2/
CkD2

yukkL2.B2/
/

CC
�
kDyukk

2
L4.B2/

CkD2
yukk

2
L2.B2/

C .k yfkkL1.B2/
k yfkkL log L.B2//

1
2

C.k yfkk
3
L1.B2/

k yfkkL log L.B2//
1
4

�
:

Using the scaling relations listed in Section A.3 and Lemma A.3 we observe that

kDukkL4.Br 2R.x0//
CkD2ukkL2.Br 2R.x0//

� C r.kDukkL4.B2R.x0//
CkD2ukkL2.B2R.x0//

/

CC
�
kDukk

2
L4.B2R.x0//

CkD2ukk
2
L2.B2R.x0//

C.kfkkL1.B2R.x0//
kfkkL log L.B2R.x0///

1
2

C.kfkk
3
L1.B2R.x0//

kfkkL log L.B2R.x0///
1
4

�
:

Lemma A.2 and (1-1) together imply that

kfkkL1.B2R.x0//
� C

�
log 1

2R

��1
kfkkL log L.B2R.x0// � Cƒ

�
log 1

2R

��1
:

Note that the right-hand side goes to zero as R! 0. Therefore, the small-energy
hypothesis implies that

lim
R!0

lim
r!0

lim
k!1

.kDukkL4.Br 2R.x0//
CkD2ukkL2.Br 2R.x0//

/

� C "0 lim
R!0

lim
r!0

lim
k!1

.kDukkL4.B2R.x0//
CkD2ukkL2.B2R.x0//

/:

Decreasing "0, if necessary, so that "0 < 1=C , implies that

lim
r!0

lim
k!1

.kDukkL4.Br .x0//
CkD2ukkL2.Br .x0//

/D 0
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for all x0 2 B1. Let Vk DD2uk and V DD2u. Since Vk * V weakly in L2 as
measures and Vk satisfies the hypotheses of Lemma 3.1 and Corollary 3.2 on B1,
Vk ! V strongly in L2

loc.B1/.
Since Duk *Du weakly as measures in L2.B2/ and

lim
r!0

lim
k!1

kDukkL2.Br .x0//
� lim

r!0
lim

k!1
rkDukkL4.Br .x0//

D 0

for all x0 2 B1, Corollary 3.2 again implies that Duk !Du strongly in L2
loc.B1/.

Now, for any Br .x/� B1, we consider the functions

wk WD .uk �u/� �

Z
Br .x/

.uk �u/:

Then, Dwk D D.uk � u/ and D2wk D D2.uk � u/. We apply the Gagliardo–
Nirenberg interpolation inequality for wk and then the Poincaré inequality for the
L2 estimates on wk to conclude that

kDwkkL4.Br .x//
� CkD2wkkL2.Br .x//

kDwkkL2.Br .x//
CCkDwkkL2.Br .x//

:

Then, using the strong convergence of D2uk ! Du in L2
loc and Duk ! Du in

L2
loc, we conclude Duk !Du in L4

loc.B1/. �

Finally, we prove the energy quantization result under the presumption of one
bubble at the origin.

Proposition 3.4. Let fk 2 L log L.B1;R
nC1/, and let uk 2 W 2;2.B1;S

n/ be a
sequence of fk-approximate biharmonic maps with bounded energy such that

uk ! u in W
2;2

loc .B1 n f0g;S
n/;

Quk.x/ WD uk.�kx/! !.x/ in W
2;2

loc .R
4;Sn/:

Presume further that ! is the only “bubble” at the origin. Let

Ak.ı;R/ WD fx W �kR� jxj � ıg:

Then

lim
R!1

lim
ı!0

lim
k!1

�
kD2ukkL2.Ak.ı;R//

CkDukkL4.Ak.ı;R//

CkD�ukkL4=3.Ak.ı;R//

�
D 0:

The proposition also holds if uk is a sequence of fk-approximate intrinsic bihar-
monic maps.
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Proof. We first prove that for any " > 0 there exists K sufficiently large and ı small
so that, for all k �K and �k > 0 such that B4�k

nB�k=2 �Ak.ı;R/,

(3-2) kD2ukkL2.B2�k
nB�k

/CkDukkL4.B2�k
nB�k

/CkD�ukkL4=3.B2�k
nB�k

/

< ":

Since f0g is the only point of energy concentration, the strong convergence of
D2uk ! D2u in L2 and Duk ! Du in L4 implies that for any " > 0 and any
m 2 ZC and ı sufficiently small, there exists K WDK.m/ sufficiently large such
that, for all k �K.m/,

(3-3) kD2ukkL2.B
2ı
nB
ı2�m�1 /

CkDukkL4.B
2ı
nB
ı2�m�1 /

�
"

C�mC3
:

Here C is an appropriately large constant determined by the bounds of Proposition 2.1
and � is the number of balls of radius r=32 needed to cover Br nBr=2. By (2-4),
for any x 2 B2ı nBı2�m�1 and 0< r < ı2�m�1,

(3-4) kD�ukkL4=3.Br=32.x//
� C

�
kD2ukkL2.Br=2.x//

CkDukkL4.Br=2.x//

Ckfkk
1=4

L1.Br=2.x//
kfkk

3=4

L log L.Br=2.x//

�
Since Lemma A.2 and (1-1) imply that

(3-5) kfkkL1.Br=2.x//
� C

�
log 1

r

��1
kfkkL log L.Br=2.x//;

for sufficiently small ı, (3-3), (3-4), and (3-5) together imply that for k �K.m/

(3-6) kD�ukkL4=3.B2ınBı2�m�1 /
CkDukkL4.B2ınBı2�m�1 /

CkD2ukkL2.B2ınBı2�m�1 /
�

1
2
":

A similar argument (perhaps requiring a larger K) implies that

(3-7) kD�ukkL4=3.B2m�k RnB�k R/
CkDukkL4.B2m�k RnB�k R/

CkD2ukkL2.B2m�k RnB�k R/
�

1
2
":

Now suppose there exists a sequence tk with �kR< tk < ı such that

kD2ukkL2.B2tk
nBtk

/CkDukkL4.B2tk
nBtk

/CkD�ukkL4=3.B2tk
nBtk

/ � ":

By (3-6) and (3-7), tk!0 and Bı=tk
nB�kR=tk

!R4nf0g. Define vk.x/Duk.tkx/

and Qfk.x/ WD t4
k
fk.tkx/. Then vk is an Qfk-approximate biharmonic map, defined on
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Bt�1
k

. We first observe that vk!v1 weakly in W
2;2

loc .R
4;Sn/. Notice for any R>0Z

BR

j Qfk.x/j dx D

Z
BRtk

jfk.s/j ds

�

Z jBRtk
j

0

.fk/
�.t/ dt

� c

�
log
�

2C
1

Rtk

���1Z 1
0

.fk/
�.t/ log

�
2C

1

t

�
dt

D c

�
log
�

2C
1

Rtk

���1

kfkkL log L.B1/:

By (1-1), Qfk ! 0 in L1
loc.R

4/. Moreover, for all k,

kD2vkkL2.B2nB1/
CkDvkkL4.B2nB1/

CkD�vkkL4=3.B2nB1/
� ":

If vk ! v1 strongly in W 2;2.B16 nB1=16;S
n/, then v1 is a nonconstant bihar-

monic map into Sn. Note that by Proposition 2.1 we get

kD2v1kL2.B2nB1/
CkDv1kL4.B2nB1/

> 0:

This contradicts the fact that there is only one bubble at f0g. If the convergence is
not strong, then Lemma 3.3 implies that the energy must concentrate. That is, there
exists a subsequence vk such that kD2vkkL2.Br .x//

CkDvkkL4.Br .x//
� "2

0
for

all r > 0. This also contradicts the existence of only one bubble. Thus, (3-2) holds.
Using the duality of Lorentz spaces and the estimates of Section A.2, we get

the bounds

(3-8)

kD2ukk
2
L2 � CkD2ukkL2;1kD2ukkL2;1 ;

kDukk
4
L4 � Ck jDuk j

3
kL4=3;1kDukkL4;1

� CkDukk
3
L4;1kDukkL4;1 ;

kD�ukk
4=3

L4=3 � Ck.D�uk/
1=3
kL4;1kD�ukkL4=3;1

� CkD�ukk
1=3

L4=3;1kD�ukkL4=3;1 :

Using (1-1) and (2-1), we observe that

kD2ukkL2;1 CkDukkL4;1 CkD�ukkL4=3;1 � Cƒ:

Since (3-2) allows us to apply Lemma 2.4, appealing to (3-8) implies the result. �

The full proof of Theorem 1.2 now follows immediately from the uniform energy
bounds of (1-1), the small-energy compactness results of this section, and standard
induction arguments on the bubbles.
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4. Oscillation bounds

The proof of the following oscillation lemma will constitute the work of this section:

Lemma 4.1. Let u 2 W 2;2.B1;S
n/ be an f -approximate biharmonic map for

f 2L log L.B1;R
nC1/ with

kD2ukL2.B1/
CkDukL4.B1/

Ckf kL log L.B1/ �ƒ<1:

Then for 0< 2t < ı=2< 1=16,

sup
x;y2Bı=2nB2t

ju.x/�u.y/j

� C
�
kD2ukL2.B2ınBt /

CkDukL4.B2ınBt /
Ckf kL log L.B2ı/

CkD�ukL4=3.B2ınBt /
CkD�ukL4=3;1.B2tnBt /

CjB4ıj
�
:

The lemma also holds if u is an f -approximate intrinsic biharmonic map.

Consider the map u1 WB1! RnC1 such that u1.x/D bCAx, where b 2 RnC1

and A is an .nC 1/� 4 matrix with

A WD �

Z
B2tnBt

Du and b WD �

Z
B2tnBt

.u.x/�Ax/ dVol.x/:

Then by construction

�

Z
B2tnBt

u�u1 D 0; �

Z
B2tnBt

Du�Du1 D 0; Dku1 � 0 for all k � 2:

Set wD .1��t /.u�u1/. Let w1 WB1!RnC1 such that w1.x/DmCN x, where

N WD �

Z
BınBı=2

Dw and m WD �

Z
BınBı=2

.w.x/�N x/ dVol.x/:

Let zw D .w�w1/�ı=2, so zw Dw�w1 on Bı=2 and the support of zw is contained
in Bı.

By definition,

sup
x;y2Bı=2nB2t

ju.x/�u.y/j D sup
x;y2Bı=2nB2t

jw.x/�w.y/Cu1.x/�u1.y/j

D sup
x;y2Bı=2nB2t

j. zwCu1Cw1/.x/�. zwCu1Cw1/.y/j

� 2 sup
x2Bı=2nB2t

j zw.x/� zw.0/C.ACN /xj:

We first observe that, outside of B2t , wD u�u1 so the definition of N implies that

ACN DAC �

Z
BınBı=2

Du� �

Z
BınBı=2

AD �

Z
BınBı=2

Du:
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Thus, for x 2 Bı=2, Hölder’s inequality implies that

j.ACN /xj � Cı�3

Z
BınBı=2

jDuj � CkDukL4.BınBı=2/
:

As before, let G be the distribution in R4 such that �2G D ı0. Then G.x/ D

C log jxj, and recall that DG 2L4;1.R4/. It is enough to show that:

Claim 4.2.
ˇ̌̌̌
zw.x/� �

Z
R4

zw

ˇ̌̌̌
� CkD� zwkL4=3;1.R4/:

Since all of the above quantities are translation-invariant, we may assume x D 0.
Then ˇ̌̌̌

zw.0/� �

Z
zw

ˇ̌̌̌
D

ˇ̌̌̌Z
R4

�2G.y/

�
zw.y/� �

Z
zw

�
dV .y/

ˇ̌̌̌
D

ˇ̌̌̌Z
R4

DG.y/D� zw.y/ dV .y/

ˇ̌̌̌
� CkDGkL4;1.R4/kD� zwkL4=3;1.R4/:

Using the definition of zw,

kD� zwkL4=3;1.R4/

� Ck.ı�3
jw�w1jC ı

�2
jD.w�w1/jC ı

�1
jD2wj/kL4=3;1.BınBı=2/

CCkD�wkL4=3;1.Bı/
:

Interpolation techniques and Poincaré’s inequality imply that

kı�3.w�w1/kL4=3;1.BınBı=2/
� Ckı�2D.w�w1/kL4=3;1.BınBı=2/

� Ckı�1D2wkL4=3;1.BınBı=2/
:

Moreover, the embedding theorems for Lorentz spaces imply that

kı�1D2wkL4=3;1.BınBı=2/
� CkD2wkL2.BınBı=2/

:

Therefore,

(4-1) kD� zwkL4=3;1.R4/ � CkD2wkL2.BınBı=2/
CCkD�wkL4=3;1.Bı/

:

Since D2w DD2u on Bı nB2t , we conclude that

(4-2) oscBı=2nB2t
u

� C.kD�wkL4=3;1.Bı/
CkD2ukL2.BınBı=2/

CkDukL4.BınBı=2/
/:

The remainder of the proof will be devoted to bounding the D�w term.
We define ˇ DD�w^u��w^Du. Then

ˇij
WD uj D�wi

�uiD�wj
��wiDuj

C�wj Dui
2�1R4
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for i; j D 1; : : : ; nC 1. By definition ˇ DD�u^ u��u^Du in Bı nB2t and
thus d�ˇ D f ^u in Bı nB2t . We will require an L4=3 bound for ˇ, and to that
end note that

(4-3) kˇkL4=3.B2ı/
� C.kD�wkL4=3.B2ı/

Ck�w^DukL4=3.B2ı/
/

� C.kD�wkL4=3.B2ı/
Ck�wkL2.B2ı/

kDukL4.B2ı/
/

� C.kD�ukL4=3.B2ınBt /
CkD2ukL2.B2ınBt /

/:

For the last inequality, kDukL4.B2ı/
is bounded and is absorbed into the constant.

In addition, we use the definition of w and repeated applications of Poincaré and
Hölder to determine

kD�wkL4=3.B2ı/
� C.kD2ukL2.B2tnBt /

Ck.1��t /D�ukL4=3.B2ı/
/;

k�wkL2.B2ı/
� CkD2ukL2.B2ınBt /

:

Set

 WD d�.D�.w�u/^u��.w�u/^Du/:

Then

d�ˇ D f ^uC ; dˇ D�2D�w^Du;

�ˇ D .dd�C d�d/ˇ D d.f ^uC  /C d�.�2D�w^Du/:

We consider a decomposition ˇij DH ij Cd‰ij Cd�ˆij for each component ˇij ,
where H ij is a harmonic 1-form and ˆ;‰ satisfy appropriate partial differential
equations. Our objective is to bound kD�wkL4=3;1 by kˇkL4=3;1 , and to that end
we determine such bounds for d‰, d�ˆ, and H .

Remark 4.3. For the intrinsic case, we modify a few definitions. Let ˇI WD

ˇC2jDuj2DwI^u, wherewI D .1��t /.u�d/ and d WD �
R

B2tnBt
u. Using the def-

inition ofwI , we get the bound kˇIkL4=3.B2ı/
�kˇkL4=3.B2ı/

CCkDukL4.B2ınBt /

by using Hölder’s inequality and Poincaré’s inequality. We then define I WD

 C d�.2jDuj2D.wI �u/^u/, and thus

d�ˇI D f ^uC I and dˇI D dˇCD.jDuj2/DwI ^u� jDuj2DwI ^Du:

We now continue with the proof for the extrinsic case:

Proposition 4.4. Let ‰ij be a function on B2ı satisfying�
�‰ij D f iuj �f j ui C  ij in B2ı;

‰ij D 0 on @B2ı:
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Then

kd‰ij
kL4=3;1.B2ı/

� C
�
kD2ukL2.B2tnBt /

CkDukL4.B2tnBt /
CkD�ukL4=3.B2tnBt /

Ckf kL log L.B2ı/CjB4ıj
�
:

Proof. We decompose ‰ij D‰
ij
1
C‰

ij
2

so that(
�‰

ij
1
D  ij in B2ı;

‰
ij
1
D 0 on @B2ı:

Following classical arguments,

kD2‰
ij
1
kL1.B2ı/

� Ck ij
kH1.B2ı/

:

Thus the embedding theorems imply that kD‰ij
1
kL4=3;1.B2ı/

� Ck ijkH1.B2ı/
.

Now we consider the H1 norm of  ij . By definition,

 ij
D d�.D�.wi

�ui/uj
�D�.wj

�uj /ui
�Œ�.wi

�ui/Duj
��.wj

�uj /Dui �/

D�2.wi
�ui/uj

��2.wj
�uj /ui

�.�.wi
�ui/�uj

��.wj
�uj /�ui/:

Recall that w WD .1��t /.u�u1/. So

�.wj
�uj /D���t .u

j
�u

j
1
/� 2D�t �D.u

j
�u

j
1
/��t�uj ;

�2.wj
�uj /D��2�t .u

j
�u

j
1
/���t�uj

� 2D��tD.u
j
�u

j
1
/

� 2�.D�t �D.u
j
�u

j
1
//���t�uj

� 2D�tD�uj
��t�

2uj :

Combining all of the terms, we estimate

j ij
j � C jD4�t j ju�u1jCC jD3�t j jD.u�u1/jCC jD2�t j jD

2uj

CC jD�t j.jD�ujC jD.u�u1/j j�uj/Cj�t jju
i�2uj

�uj�2ui
j:

The definition of  ij implies that  ij D 0 on R4 nB2t andZ
R4

 ij
D

Z
@B2t

.D�.w�u/^u��.w�u/^Du/ij �nD 0:

The estimate from Lemma A.1 implies that

k ij
kH1.B2ı/

� c
�
tk ij

��t .u
j�2ui

�ui�2uj /kL4=3.B2t /

Ck�t .u
j�2ui

�ui�2uj /kL log L.B2ı/CjB4ıj
�
:
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Repeating techniques used previously, we bound the first three terms of j ij j:

t�4
ku�u1kL4=3.B2tnBt /

� C t�3
kD.u�u1/kL4=3.B2tnBt /

� C t�2
kD2ukL4=3.B2tnBt /

� C t�1
kD2ukL2.B2tnBt /

:

We will preserve the term

t�1
kD�ukL4=3.B2tnBt /

;

as our energy quantization result implies that this term will vanish when taking limits.
Hölder’s inequality and the fact that kD.u�u1/kL4.B2tnBt /

� CkDukL4.B2tnBt /

imply that

kD.u�u1/�ukL4=3.B2tnBt /
� CkD.u�u1/kL4.B2tnBt /

kD2ukL2.B2tnBt /

� CkD2ukL2.B2tnBt /
:

For the last term, since u is an f -approximate biharmonic map into Sn,

k�t .�
2u^u/kL log L.B2ı/ � kf ^ukL log L.B2ı/ � kf kL log L.B2ı/:

All of the above estimates imply that

k ij
kH1.B2ı/

� C
�
kD2ukL2.B2tnBt /

CkDukL4.B2tnBt /

CkD�ukL4=3.B2tnBt /
Ckf kL log L.B2ı/CjB4ıj

�
:

Finally, consider (
�‰

ij
2
D f iuj �uif j in B2ı;

‰
ij
2
D 0 on @B2ı:

Then classical results give k‰ij
2
kW 2;1.B2ı/

� Ckf kH1.B2ı/
� Ckf kL log L.B2ı/.

Thus
kd‰

ij
2
kW 1;1.B2ı/

� Ckf kL log L.B2ı/;

and the embedding theorems in R4 imply that

kd‰
ij
2
kL4=3;1.B2ı/

� Ckf kL log L.B2ı/: �

Remark 4.5. For the intrinsic case, we define

I D  Cd�.2jDuj2D.wI �u/^u/

D  �2�td
�.jDuj2Du^u/C2jDuj2.��t .d�u/^u�D�t �Du^.dCu//

C2DjDuj2 �D�t .d�u/^u:

We bound kIkH1 by making some observations: First, �2�td
�.jDuj2Du^ u/

is added to the term ��t�
2u ^ u that appears in the expansion of  . We then

make the substitution ��tf ^u as in the extrinsic case. Second, using Poincaré’s
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inequality, Hölder’s inequality, and the global energy bound for u, the L4=3 norm of
what remains is bounded by C t�1.kDukL4.B2tnBt /

CkD2ukL2.B2tnBt /
/. Finally,

observe that, by construction, I is supported on B2t and
R

R4 I D0, so the estimate
used for kkH1 still applies.

Proposition 4.6. Let ˆij 2�2R4 be the solution to the system�
�ˆij D�2.D�wiDuj �D�wj Dui/ in B2ı;

ˆij D 0 on @B2ı:

Then

(4-4) kd�ˆij
kL4=3;1.B2ı/

� C.kD2ukL2.B2tnBt /
CkD�ukL4=3.B2ınBt /

/:

Proof. Using the same techniques and estimates as in the previous proposition,
we note that

kdˆij
kL4=3;1.B2ı/

� CkD�w^DukH1.B2ı/

� CkD�wkL4=3.B2ı/
kDukL4.B2ı/

� C.kD2ukL2.B2tnBt /
CkD�ukL4=3.B2ınBt /

/: �

Remark 4.7. In the intrinsic setting the steps of the proof are the same, though the
equation for�ˆij

I
includes the terms D.jDuj2/DwI ^u�jDuj2DwI ^Du. Since

kDwIkL4.B2ı/
�CkDukL4.B2ınBt /

, one can quickly show the intrinsic bound has
the form

kd�ˆIkL4=3;1.B2ı/
� kd�ˆkL4=3;1.B2ı/

CCkDukL4.B2ınBt /
:

Now consider the harmonic 1-form

H ij
D ˇij

� d�ˆij
� d‰ij :

Propositions 4.4 and 4.6, along with (4-3), imply that

kHkL4=3.B2ı/
� kˇkL4=3.B2ı/

Ckd�ˆkL4=3.B2ı/
Ckd‰kL4=3.B2ı/

� C
�
kD2ukL2.B2ınBt /

CkDukL4.B2ınBt /

CkD�ukL4=3.B2ınBt /
Ckf kL log L.B2ı/CjB4ıj

�
:

The mean value property and Hölder’s inequality together imply that

kH ij
kC 0.Bı/

�
C

ı3

�
kD2ukL2.B2ınBt /

CkDukL4.B2ınBt /

CkD�ukL4=3.B2ınBt /
Ckf kL log L.B2ı/CjB4ıj

�
:

Moreover, a straightforward calculation implies that

kH ij
kL4=3;1.Bı/

� Cı3
kH ij

kC 0.Bı/
:
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Thus,

kˇkL4=3;1.Bı/
� C

�
kD2ukL2.B2ınBt /

CkDukL4.B2ınBt /

CkD�ukL4=3.B2ınBt /
Ckf kL log L.B2ı/CjB4ıj

�
:

Using the appropriate harmonic 1-form HI , we produce an identical estimate for ˇI .
We now use the definitions ofw and ˇ to determine a bound on kD�wkL4=3;1.Bı/

.
First we consider the function on B2t

kD�wkL4=3;1.B2t /

� kC.t�3
ju�u1jC t�2

jD.u�u1/jC t�1
jD2uj/kL4=3;1.B2tnBt /

Ck.1��t /D�ukL4=3;1.B2t /

� CkD2ukL2.B2tnBt /
CCkD�ukL4=3;1.B2tnBt /

:

On Bı nB2t , w D u� u1 so D�w � D�u. We first decompose D�u into
tangential and normal parts with tangency relative to the target manifold Sn. Then

D�uDD�uT
CD�uN

DD�u^u:uChD�u;uiu:

Here we define hDv;ui WD
P

i;k.@v
k=@xi/u

k dxi . On Bı n B2t , D�u ^ u D

ˇC�u^Du, and thus

j.D�u/T j � jˇjC j�uj jDuj:

Since

hD�u;ui DDh�u;ui � h�u;Dui DD.d�hDu;ui � jDuj2/� h�u;Dui

D �DjDuj2� h�u;Dui;

we estimate

kD�wkL4=3;1.BınB2t /

� CkˇkL4=3;1.Bı/
CCkD2ukL2.BınB2t /

kDukL4.BınB2t /

� C
�
kD2ukL2.B2ınBt /

CkDukL4.B2ınBt /
CkD�ukL4=3.B2ınBt /

Ckf kL log L.B2ı/CjB4ıj
�
:

Thus,

kD�wkL4=3;1.Bı/
� C.kD2ukL2.B2ınBt /

CkDukL4.B2ınBt /
Ckf kL log L.B2ı/

CkD�ukL4=3;1.B2tnBt /
CkD�ukL4=3.B2ınBt /

CjB4ıj/:

Inserting this inequality into (4-2) proves the oscillation lemma.
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Remark 4.8. To complete the proof in the intrinsic case, observe that, on Bı nB2t ,
D�w ^ uDD�u^ uD ˇC�u^DuC 2jDuj2Du^ u. This changes the L1

estimate for j.D�u/T j on Bı nB2t , but using embedding theorems for Lorentz
spaces we note that the L4=3;1 estimate is unchanged.

5. No-neck property — proof of Theorem 1.3

The proof of the no-neck property now follows easily from combining the energy
quantization and the oscillation bounds.

Proof. As we may use induction to deal with the case of multiple bubbles, we
prove the theorem for one bubble. Let �k be such that Quk.x/ WD uk.�kx/ !

!.x/ 2W
2;2

loc .R
4;Sn/. Since each of the uk 2W 2;2.B1;S

n/ are fk-approximate
biharmonic maps with fk 2L log L.B1;R

nC1/ and have uniform energy bounds,
Lemma 4.1 implies that

sup
x;y2Bı=2nB2�k R

juk.x/�uk.y/j

� C
�
kD2ukkL2.B2ınB�k R=2/

CkDukkL4.B2ınB�k R=2/

CkfkkL log L.B2ı/CkD�ukkL4=3;1.B�k RnB�k R=2/

CkD�ukkL4=3.B2ınB�k R=2/
CjB4ıj

�
:

Theorem 1.2 implies that

lim
ı!0

lim
R!1

lim
k!1

�
kD2ukkL2.B2ınB�k R=2/

CkDukkL4.B2ınB�k R=2/

CkD�ukkL4=3.B2ınB�k R=2/

�
D 0:

Further, (2-1) and Hölder’s inequality imply that

kD�ukkL4=3;1.B�k RnB�k R=2/
� C.kDukkL4.B2�k RnB�k R=4/

CkD2ukkL2..B2�k RnB�k R=4/
CkfkkL log L.B2�k R//:

Since we presume the L log L norm of fk does not concentrate,

lim
ı!0

lim
R!1

lim
k!1

kfkkL log L.B2ı/ D 0:

Therefore,

lim
ı!0

lim
R!1

lim
k!1

kD�ukkL4=3;1.B�k RnB�k R=2/
D 0:

Taking all of the estimates together implies that

lim
ı!0

lim
R!1

lim
k!1

sup
x;y2Bı=2nB2�k R

juk.x/�uk.y/j D 0:

Thus, no neck occurs in the blowup. �
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Remark 5.1. For fk 2 �.L/, we use the estimate

kfkkL log L.B2ı/

D

Z
B2ı\fjfk j�ı�1g

jfk j log.2Cjfk j/ dxC

Z
jfk j>ı�1

jfk j log.2Cjfk j/ dx

� Cı3 log.2C ı�1/C sup
t>ı�1

t log.2C t/

�.t/

Z
jfk j>ı�1

�.jfk j/ dx

� Cı3 log.2C ı�1/C sup
t>ı�1

t log.2C t/

�.t/
ƒ:

Since we presumed limt!1 �.t/=.t log t/D1, we determine

lim
ı!0

sup
k

kfkkL log L.B2ı/ D 0:

Appendix: Necessary background

A.1. Hardy spaces, Lorentz spaces, L log L, and Orlicz spaces. Let

T WD fˆ 2 C1.R4/ W spt.ˆ/� B1; krˆkL1.R4/ � 1g:

For any ˆ 2 T , let ˆt .x/ WD t�4ˆ.x=t/. For each f 2L1.R4/, let

f�.x/D sup
ˆ2T

sup
t>0

j.ˆt �f /.x/j:

Then f is in the Hardy space H1.R4/ if f� 2L1.R4/ and

kf kH1.R4/ D kf�kL1.R4/:

Thus, one has the continuous embedding H1 ,!L1.
For a measurable function f W�!R, let f � denote the nonincreasing rearrange-

ment of jf j on Œ0; j�j/ such that

jfx 2� W jf .x/j � sgj D jft 2 .0; j�j/ W f �.t/� sgj:

Let

f ��.t/ WD
1

t

Z t

0

f �.s/ ds:

For p 2 .1;1/, let

kf kLp;q D

�R1
0 t1=p�1f ��.t/ dt if q D 1;

supt>0 t1=pf ��.t/ if q D1:
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We will also occasionally exploit the fact that one may understand kf kLp;1 by
understanding instead its seminorm

kf k�Lp;1 WD sup
�>0

�jfx W jf .x/j> �gj1=p:

We define the Banach spaces

Lp;q
WD ff W kf kLp;q <1g:

The spaces Lp;1 and Lp;1 are examples of Lorentz spaces, and can be thought of
as interpolation spaces between the standard Lp spaces. For example, one observes
that the following embeddings are all continuous

Lr .B1/ ,!Lp;1.B1/ ,!Lp;p.B1/DLp.B1/ ,!Lp;1.B1/ ,!Lq.B1/

for all q < p < r [Hélein 1990].
We define

L log L WD

�
f W

Z
jf .x/j log.2Cjf .x/j/ dx <1

�
:

Since this is nonlinear, we will use the following seminorm which is equivalent to
the norm for L log L

kf kL log L WD

Z
f �.t/ log

�
2C

1

t

�
dt:

We also note that Lp.B1/ ,!L log L.B1/ ,!L1.B1/ are continuous embeddings
for all p > 1. Finally, we say f is in H1.B1/ if�

f � �

Z
B1

f .x/ dx

�
�B1
2H1.R4/:

We record here the often-used estimate

(A-1) kf kH1.B1/
� Ckf kL log L.B1/:

Finally, for any increasing function � W Œ0;1/! Œ0;1/we define the Orlicz space

�.L/ WD

�
f W kf k�.L/ WD

Z
�.jf j/ dx <1

�
:

Examples include the Lp spaces for �.t/D tp and L log L when �.t/D t log.2Ct/.
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A.2. Embeddings and estimates for Lorentz spaces. We will frequently use the
following facts about Lorentz spaces:

(1) Lp;q �Lp0;q0 continuously embeds into Lr;s for 1=pC 1=p0 � 1 where

1

r
D

1

p
C

1

p0
and

1

s
D

1

q
C

1

q0
;

with
kfgkLr;s � Ckf kLp;qkgkLp0;q0 :

(2) For f 2L2 and g 2W 1;2,

kfgkL4=3;1 � Ckf kL2kgkW 1;2 :

(3) W 1;1.R4/ ,!L4=3;1.R4/ and W 1;2.R4/ ,!L4;2.R4/ are continuous embed-
dings.

(4) L2;1 and L2;1 are dual spaces, as are L4;1, L4=3;1 and L4;1, L4=3;1.

(5) For all 0< p; r <1 and 0< q �1 (see [Grafakos 2008], Section 1.4.2),

kf r
kLp;q D kf krLpr;qr :

(6) Let f 2 Lp;q.R4/ and g 2 Lp0;q0.R4/ with 1=p C 1=p0 > 1. Then h D

f � g 2 Lr;s.R4/ where 1=r D 1=pC 1=p0 � 1 and s is a number such that
1=qC 1=q0 � 1=s. Moreover,

khkLr;s.R4/ � ckf kLp;q.R4/kgkLp0;q0 .R4/:

For a proof, see [Ziemer 1989].
Let G be the distribution such that �2G D ı0. Then, D2G 2 L2;1.R4/

and D3G 2L4=3;1.R4/. Moreover, DG 2L4;1.R4/.
Using (6), and considering D2G;D3G as operators by convolution, we

have:

(7) D2G W L4=3;1.R4/ ! L4;1.R4/ and D3G W L4=3;1.R4/ ! L2;1.R4/ are
bounded operators.

A.3. Scaling and estimates for L log L and H1. We first prove an essential but
technical lemma that is probably well known, though we have not found a reference
in the literature. (We prove the lemma for our particular setting, though a more
general result is true.)

Lemma A.1. Let f D f1Cf2, where f1 2L4=3.BR/ and f2 2L log L.BR/, be
a compactly supported function with spt.f / � BR and

R
R4 f .x/ dx D 0. Then

f 2H1.BR/ and there exists C > 0 such that

(A-2) kf kH1.BR/
� C.Rkf1kL4=3.BR/

Ckf2kL log L.BR/CjB2Rj/:
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Proof. First note that

(A-3) kf�kL1 D

Z
B2R

f�.x/ dxC

Z
R4nB2R

f�.x/ dx:

Since f1 2L4=3.R4/ and f2 2L log L.R4/, we see that f 2L1
loc.R

4/ and therefore
f�.x/� cMf .x/ for every x 2 R4. Here Mf W R4! R is the maximal function
defined by

Mf .x/D sup
r>0

1

jBr .x/j

Z
Br .x/

jf .y/j dy:

Using the above, Hölder’s inequality and the estimates kMf1kL4=3 � ckf1kL4=3

and kMf2kL1.B2R/
� ckf2kL log L.B2R/C cjB2Rj,

(A-4)
Z

B2R

f�.x/ dx �cRk.f1/�kL4=3 Ck.f2/�kL1

�cRkMf1kL4=3 C ckMf2kL1

�cRkf1kL4=3 C ckf2kL log LC cjB2Rj:

Now we calculate for � 2 T and x 2 R4:

j�t ?f .x/j D

ˇ̌̌̌Z
BR

�t .x�y/f .y/ dy

ˇ̌̌̌
D

ˇ̌̌̌Z
BR

.�t .x�y/��t .x//f .y/ dy

ˇ̌̌̌
� kr�tkL1

Z
BR

jyjjf .y/j dy;

where we used the mean value theorem and the cancellation property
R

R4 f .y/ dyD

0. Since kr�tkL1 � 1=t5, for t > 0, we estimate

(A-5) j�t ?f .x/j �
R

t5

Z
BR

jf .y/j dy

�
cR2

t5
kf1kL4=3 C

cR

t5
kf2kL log L:

Assuming now that jxj � 2R, we can apply a technical result to get

(A-6) f�.x/D sup
�2T

sup
t>jxj=2

j�t ?f .x/j �
cR2

jxj5
kf1kL4=3 C

cR

jxj5
kf2kL log L:
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Inserting (A-4) and (A-6) into (A-3), we conclude that

(A-7) kf�kL1 � cRkf1kL4=3 C ckf2kL log LC cjB2Rj

C .cR2
kf1kL4=3 C cRkf2kL log L/

Z
R4nB2R

1

jxj5
dx

� cRkf1kL4=3 C ckf2kL log LC cjB2Rj:

This concludes the proof. �

We also note two important inequalities (with proofs following those of [Sharp
and Topping 2013]):

Lemma A.2. Let f 2L log L.Br .x0// for r 2 .0; 1=2�. There exists C >0 such that

(A-8) kf kL1.Br .x0//
� C.log.1=r//�1

kf kL log L.Br .x0//:

Proof. Start by observing that

0� r4

Z jB1j

0

f �.r4t/ log
�

2C
1

t

�
dt

D

Z jBr .x0/j

0

f �.s/ log
�

2C
r4

s

�
ds

D

Z jBr .x0/j

0

f �.s/ log.r4/ dsC

Z jBr .x0/j

0

f �.s/ log
�

2

r4
C

1

s

�
ds

� �4 log.1=r/kf kL1.Br .x0//
CCkf kL log L.Br .x0//:

The last inequality follows from the fact that there exists a fixed C such that

2

r4
C

1

s
�

2!4C 1

s
�

�
2C

1

s

�C

for all s � !4r4. �

Let u be an f -approximate biharmonic map on B1 with f 2L log L.B1/. For
x0 2 B1 and R > 0 such that BR.x0/ � B1, define Ou.x/ WD u.x0 CRx/ and
Of .x/ WDR4f .x0CRx/. Then Ou is an Of -approximate biharmonic map. Moreover,

we note that for any r 2 .0; 1/, p � 1, and k D 1; 2; 3:

(1) kDk OukL4=k.Br /
D kDkukL4=k.BrR.x0//

.

(2) k Of kLp.Br / DR4.1�1=p/kf kLp.BrR.x0//.

Lemma A.3. Let f 2 L log L.Br .x0//, where r 2 .0; 1=2� and define Of .x/ WD
r4f .x0C rx/. Then there exists C > 0 such that

k Of kL log L.B1/ � Ckf kL log L.Br .x0//:
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Proof. First note that, using the definition of Of , one can immediately show that
Of �.t/D r4f �.r4t/. Thus,Z jB1j

0

Of �.t/ log
�

2C
1

t

�
dt D

Z jB1j

0

r4f �.r4t/ log
�

2C
1

t

�
dt

D

Z jBr .x0/j

0

f �.s/ log
�

2C
r4

s

�
ds

�

Z jBr .x0/j

0

f �.s/ log
�

2C
1

s

�
ds: �

References

[Chen 1989] Y. M. Chen, “The weak solutions to the evolution problems of harmonic maps”, Math.
Z. 201:1 (1989), 69–74. MR 90i:58030 Zbl 0685.58015

[Chen and Tian 1999] J. Chen and G. Tian, “Compactification of moduli space of harmonic mappings”,
Comment. Math. Helv. 74:2 (1999), 201–237. MR 2001k:58024 Zbl 0958.53047

[Ding and Tian 1995] W. Ding and G. Tian, “Energy identity for a class of approximate harmonic
maps from surfaces”, Comm. Anal. Geom. 3:3-4 (1995), 543–554. MR 97e:58055 Zbl 0855.58016

[Evans 1990] L. C. Evans, Weak convergence methods for nonlinear partial differential equations,
CBMS Regional Conference Series in Mathematics 74, Amer. Math. Soc., Providence, RI, 1990.
MR 91a:35009 Zbl 0698.35004

[Evans and Gariepy 1992] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of
functions, CRC Press, Boca Raton, FL, 1992. MR 93f:28001 Zbl 0804.28001

[Grafakos 2008] L. Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics
249, Springer, New York, 2008. MR 2011c:42001 Zbl 1220.42001

[Hélein 1990] F. Hélein, “Régularité des applications faiblement harmoniques entre une surface et une
sphère”, C. R. Acad. Sci. Paris Sér. I Math. 311:9 (1990), 519–524. MR 92a:58034 Zbl 0728.35014

[Hornung and Moser 2012] P. Hornung and R. Moser, “Energy identity for intrinsically biharmonic
maps in four dimensions”, Anal. PDE 5:1 (2012), 61–80. MR 2957551 Zbl 1273.58007

[Huilgol 1971] R. R. Huilgol, “On Liouville’s theorem for biharmonic functions”, SIAM J. Appl.
Math. 20 (1971), 37–39. MR 43 #552 Zbl 0217.10502

[Jost 1991] J. Jost, Two-dimensional geometric variational problems, Wiley, Chichester, 1991.
MR 92h:58045 Zbl 0729.49001

[Lamm and Rivière 2008] T. Lamm and T. Rivière, “Conservation laws for fourth order systems in
four dimensions”, Comm. Partial Differential Equations 33:1-3 (2008), 245–262. MR 2009h:35095
Zbl 1139.35328

[Laurain and Rivière 2013] P. Laurain and T. Rivière, “Energy quantization for biharmonic maps”,
Adv. Calc. Var. 6:2 (2013), 191–216. MR 3043576 Zbl 1275.35098

[Li and Zhu 2011] J. Li and X. Zhu, “Small energy compactness for approximate harmomic map-
pings”, Commun. Contemp. Math. 13:5 (2011), 741–763. MR 2847227 Zbl 1245.58008

[Lin and Wang 1998] F. Lin and C. Wang, “Energy identity of harmonic map flows from surfaces at
finite singular time”, Calc. Var. Partial Differential Equations 6:4 (1998), 369–380. MR 99k:58047
Zbl 0908.58008

http://dx.doi.org/10.1007/BF01161995
http://msp.org/idx/mr/90i:58030
http://msp.org/idx/zbl/0685.58015
http://dx.doi.org/10.1007/s000140050086
http://msp.org/idx/mr/2001k:58024
http://msp.org/idx/zbl/0958.53047
http://msp.org/idx/mr/97e:58055
http://msp.org/idx/zbl/0855.58016
http://msp.org/idx/mr/91a:35009
http://msp.org/idx/zbl/0698.35004
http://msp.org/idx/mr/93f:28001
http://msp.org/idx/zbl/0804.28001
http://dx.doi.org/10.1007/978-0-387-09432-8
http://msp.org/idx/mr/2011c:42001
http://msp.org/idx/zbl/1220.42001
http://webusers.imj-prg.fr/~frederic.helein/articles/cras311.pdf
http://webusers.imj-prg.fr/~frederic.helein/articles/cras311.pdf
http://msp.org/idx/mr/92a:58034
http://msp.org/idx/zbl/0728.35014
http://dx.doi.org/10.2140/apde.2012.5.61
http://dx.doi.org/10.2140/apde.2012.5.61
http://msp.org/idx/mr/2957551
http://msp.org/idx/zbl/1273.58007
http://dx.doi.org/10.1137/0120005
http://msp.org/idx/mr/43:552
http://msp.org/idx/zbl/0217.10502
http://msp.org/idx/mr/92h:58045
http://msp.org/idx/zbl/0729.49001
http://dx.doi.org/10.1080/03605300701382381
http://dx.doi.org/10.1080/03605300701382381
http://msp.org/idx/mr/2009h:35095
http://msp.org/idx/zbl/1139.35328
http://dx.doi.org/10.1515/acv-2012-0105
http://msp.org/idx/mr/3043576
http://msp.org/idx/zbl/1275.35098
http://dx.doi.org/10.1142/S0219199711004427
http://dx.doi.org/10.1142/S0219199711004427
http://msp.org/idx/mr/2847227
http://msp.org/idx/zbl/1245.58008
http://dx.doi.org/10.1007/s005260050095
http://dx.doi.org/10.1007/s005260050095
http://msp.org/idx/mr/99k:58047
http://msp.org/idx/zbl/0908.58008


92 CHRISTINE BREINER AND TOBIAS LAMM

[Liu and Yin 2013] L. Liu and H. Yin, “Neck analysis for biharmonic maps”, preprint, 2013.
arXiv 1312.4600v1

[Parker 1996] T. H. Parker, “Bubble tree convergence for harmonic maps”, J. Differential Geom. 44:3
(1996), 595–633. MR 98k:58069 Zbl 0874.58012

[Qing and Tian 1997] J. Qing and G. Tian, “Bubbling of the heat flows for harmonic maps from
surfaces”, Comm. Pure Appl. Math. 50:4 (1997), 295–310. MR 98k:58070 Zbl 0879.58017

[Sacks and Uhlenbeck 1981] J. Sacks and K. Uhlenbeck, “The existence of minimal immersions of
2-spheres”, Ann. of Math. .2/ 113:1 (1981), 1–24. MR 82f:58035 Zbl 0462.58014

[Sharp and Topping 2013] B. Sharp and P. Topping, “Decay estimates for Rivière’s equation, with
applications to regularity and compactness”, Trans. Amer. Math. Soc. 365:5 (2013), 2317–2339.
MR 3020100 Zbl 1270.35152

[Shatah 1988] J. Shatah, “Weak solutions and development of singularities of the SU.2/ �-model”,
Comm. Pure Appl. Math. 41:4 (1988), 459–469. MR 89f:58044 Zbl 0686.35081

[Wang 1996] C. Wang, “Bubble phenomena of certain Palais–Smale sequences from surfaces to
general targets”, Houston J. Math. 22:3 (1996), 559–590. MR 98h:58053 Zbl 0879.58019

[Wang 2004a] C. Wang, “Remarks on biharmonic maps into spheres”, Calc. Var. Partial Differential
Equations 21:3 (2004), 221–242. MR 2005e:58026 Zbl 1060.58011

[Wang 2004b] C. Wang, “Stationary biharmonic maps from Rm into a Riemannian manifold”, Comm.
Pure Appl. Math. 57:4 (2004), 419–444. MR 2005e:58027 Zbl 1055.58008

[Wang and Zheng 2012] C. Wang and S. Zheng, “Energy identity of approximate biharmonic maps
to Riemannian manifolds and its application”, J. Funct. Anal. 263:4 (2012), 960–987. MR 2927401
Zbl 1257.58010

[Wente 1969] H. C. Wente, “An existence theorem for surfaces of constant mean curvature”, J. Math.
Anal. Appl. 26 (1969), 318–344. MR 39 #4788 Zbl 0181.11501

[Zhu 2012] X. Zhu, “No neck for approximate harmonic maps to the sphere”, Nonlinear Anal. 75:11
(2012), 4339–4345. MR 2921993 Zbl 1243.58011

[Ziemer 1989] W. P. Ziemer, Weakly differentiable functions: Sobolev spaces and functions of
bounded variation, Graduate Texts in Mathematics 120, Springer, New York, 1989. Sobolev spaces
and functions of bounded variation. MR 91e:46046 Zbl 0692.46022

Received December 30, 2013. Revised July 4, 2014.

CHRISTINE BREINER

DEPARTMENT OF MATHEMATICS

FORDHAM UNIVERSITY

BRONX, NY 10458
UNITED STATES

cbreiner@fordham.edu

TOBIAS LAMM

INSTITUTE FOR ANALYSIS

KARLSRUHE INSTITUTE OF TECHNOLOGY

KAISERSTRASSE 89-93
D-76133 KARLSRUHE

GERMANY

tobias.lamm@kit.edu

http://msp.org/idx/arx/1312.4600v1
http://projecteuclid.org/euclid.jdg/1214459224
http://msp.org/idx/mr/98k:58069
http://msp.org/idx/zbl/0874.58012
http://dx.doi.org/10.1002/(SICI)1097-0312(199704)50:4<295::AID-CPA1>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1097-0312(199704)50:4<295::AID-CPA1>3.0.CO;2-5
http://msp.org/idx/mr/98k:58070
http://msp.org/idx/zbl/0879.58017
http://dx.doi.org/10.2307/1971131
http://dx.doi.org/10.2307/1971131
http://msp.org/idx/mr/82f:58035
http://msp.org/idx/zbl/0462.58014
http://dx.doi.org/10.1090/S0002-9947-2012-05671-6
http://dx.doi.org/10.1090/S0002-9947-2012-05671-6
http://msp.org/idx/mr/3020100
http://msp.org/idx/zbl/1270.35152
http://dx.doi.org/10.1002/cpa.3160410405
http://msp.org/idx/mr/89f:58044
http://msp.org/idx/zbl/0686.35081
http://msp.org/idx/mr/98h:58053
http://msp.org/idx/zbl/0879.58019
http://dx.doi.org/10.1007/s00526-003-0252-7
http://msp.org/idx/mr/2005e:58026
http://msp.org/idx/zbl/1060.58011
http://dx.doi.org/10.1002/cpa.3045
http://msp.org/idx/mr/2005e:58027
http://msp.org/idx/zbl/1055.58008
http://dx.doi.org/10.1016/j.jfa.2012.05.008
http://dx.doi.org/10.1016/j.jfa.2012.05.008
http://msp.org/idx/mr/2927401
http://msp.org/idx/zbl/1257.58010
http://dx.doi.org/10.1016/0022-247X(69)90156-5
http://msp.org/idx/mr/39:4788
http://msp.org/idx/zbl/0181.11501
http://dx.doi.org/10.1016/j.na.2012.03.020
http://msp.org/idx/mr/2921993
http://msp.org/idx/zbl/1243.58011
http://dx.doi.org/10.1007/978-1-4612-1015-3
http://dx.doi.org/10.1007/978-1-4612-1015-3
http://msp.org/idx/mr/91e:46046
http://msp.org/idx/zbl/0692.46022
mailto:cbreiner@fordham.edu
mailto:tobias.lamm@kit.edu


PACIFIC JOURNAL OF MATHEMATICS
Vol. 276, No. 1, 2015

dx.doi.org/10.2140/pjm.2015.276.93

CRITERIA FOR VANISHING OF TOR
OVER COMPLETE INTERSECTIONS

OLGUR CELIKBAS, SRIKANTH B. IYENGAR,
GREG PIEPMEYER AND ROGER WIEGAND

We exploit properties of Dao’s η-pairing (see Trans. Amer. Math. Soc. 365:6
(2013), 2803–2821), as well as techniques of Huneke, Jorgensen, and Wie-
gand (J. Algebra 238:2 (2001), 684–702), to study the vanishing of Tori (M,N)
for finitely generated modules M, N over complete intersections. We prove
vanishing of Tori (M, N) for all i ≥ 1 under depth conditions on M, N , and
M ⊗ N . Our arguments improve a result of Dao and establish a new connec-
tion between the vanishing of Tor and the depth of tensor products.

1. Introduction

In a seminal paper, Auslander [1961] proved that if R is a local ring and M and N are
nonzero finitely generated R-modules such that pd(M) <∞ and Tor R

i (M, N )= 0
for all i ≥ 1, then

(1.0.1) depth(M)+ depth(N )= depth(R)+ depth(M ⊗R N ),

that is, the depth formula holds. Huneke and Wiegand [1994, Theorem 2.5] es-
tablished the depth formula for Tor-independent modules (not necessarily of finite
projective dimension) over complete intersection rings. Christensen and Jorgensen
[2015] extended that result to AB rings [Huneke and Jorgensen 2003], a class
of Gorenstein rings strictly containing the class of complete intersections. The
depth formula is important for the study of depths of tensor products of modules
[Auslander 1961; Huneke and Wiegand 1994], as well as of complexes [Foxby
1980; Iyengar 1999]. We seek conditions on the modules M , N and M ⊗R N
forcing such a formula to hold, in particular, conditions implying Tor R

i (M, N )= 0
for all i ≥ 1. The following conjecture — implicit in the work of Huneke, Jorgensen,
and Wiegand — guides our search.
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Conjecture 1.1 [Huneke et al. 2001]. Let M , N be finitely generated modules over
a complete intersection R of codimension c. If M ⊗R N is a (c+ 1)-st syzygy and
M has rank, then Tor R

i (M, N )= 0 for all i ≥ 1.

The conjecture is true if c= 0 or c= 1, by [Lichtenbaum 1966, Corollary 1] and
[Huneke and Wiegand 1994, Theorem 2.7], respectively. Without the assumption of
rank, there are easy counterexamples, e.g., R= k[[x, y]]/(xy) and M = N = R/(x);
M is an n-th syzygy for all n, but the odd index Tor modules are nonzero.

A finitely generated module over a complete intersection is an n-th syzygy of
some finitely generated module if and only if it satisfies Serre’s condition (Sn); see
§2.6. Our methods yield a sharpening of the following theorem due to Dao:

Theorem 1.2 [Dao 2007]. Let R be a complete intersection in an unramified regular
local ring, of relative codimension c, and let M , N be finitely generated R-modules.
Assume

(i) M and N satisfy (Sc),

(ii) M ⊗R N satisfies (Sc+1), and

(iii) Mp is a free Rp-module for all prime ideals p of height at most c.

Then Tor R
i (M, N )= 0 for all i ≥ 1 (and hence the depth formula holds).

By analyzing Serre’s conditions, we remove Dao’s assumption that the ambient
regular local ring be unramified; see Corollary 3.14. Even though complete intersec-
tions in unramified regular local rings suffice for many applications, our conclusion
is of interest: Dao’s proof uses the nonnegativity of partial Euler characteristics, but
nonnegativity remains unknown for the ramified case; see [Dao 2007, Theorem 6.3
and the proof of Lemma 7.7].

If the ambient regular local ring is unramified, we can replace c with c − 1
in both hypotheses (i) and (ii), remove hypothesis (iii), and still conclude that
Tor R

i (M, N ) = 0 for all i ≥ 1 provided that ηR
c (M, N ) = 0; see §3.1 for the

definition of ηR
c (− ,− ) and Theorem 3.10 for our result.

Moore, Piepmeyer, and Spiroff [Moore et al. 2013] and Walker [2014] have
proved vanishing of the η-pairing in several important cases. These, in turn, yield
results on vanishing of Tor. See Proposition 4.1, Theorem 4.2, and Corollary 4.3.

Our proofs rely on a reduction technique using quasiliftings; see §2.8. Quasi-
liftings were initially defined and studied in [Huneke et al. 2001]. The key ingredient
for our argument is Lemma 3.9. It shows that if R = S/( f ) and S is a complete
intersection of codimension c − 1, and if ηR

c (M, N ) = 0, then ηS
c−1(E, F) = 0,

where E and F are quasiliftings of M and N to S, respectively. By induction, we
get that Tor S

i (E, F) = 0 for all i ≥ 1. This allows us to prove the vanishing of
Tor R

i (M, N ) from the depth and syzygy relations between the pairs E, F and M, N .
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In the Appendices we revisit [Huneke and Wiegand 1994] and use our work to
obtain one of the main results there. Moreover, we point out an oversight in [Miller
1998] and state the author’s result in its corrected form as Corollary B.3.

2. Preliminaries

We review a few concepts and results, especially universal pushforwards and quasi-
liftings [Huneke et al. 2001; Huneke and Wiegand 1994]. Throughout R will be a
commutative noetherian ring.

Let νR(M) denote the minimal number of generators of the R-module M . If
(R,m) is local, then the codimension of R is codim(R) := νR(m)− dim(R), a
nonnegative integer. We have codim(R̂) = codim(R), where R̂ is the m-adic
completion of R.

2.1. Complete intersections. R is a complete intersection in a local ring (Q, n)
if there a surjection π : Q � R with ker(π) generated by a Q-regular sequence
in n; the length of this regular sequence is the relative codimension of R in Q. A
hypersurface in Q is a complete intersection of relative codimension one in Q.

Assume R̂ is a complete intersection in a regular local ring (Q, n), of relative
codimension c. Then R̂ = Q/( f ) for a regular sequence f = f1, . . . , fc, where
codim(R)≤ c. Moreover, the codimension of R is c if and only if ( f )⊆ n2.

A ring is a complete intersection (resp., hypersurface) if it is local and its
completion is a complete intersection (resp., hypersurface) in a regular local ring.

2.2. Ramified regular local rings. A regular local ring (Q, n, k) is said to be
unramified if either (i) Q is equicharacteristic, i.e., contains a field, or else (ii) Q⊃Z,
char(k) = p, and p /∈ n2. In contrast, the regular local ring R = V [x]/(x2

− p),
where V is the ring of p-adic integers, is ramified. Every localization, at a prime
ideal, of an unramified regular local ring is again unramified; see [Auslander 1961,
Lemma 3.4].

Let (Q, n, k) be a d-dimensional complete regular local ring. If Q is ramified,
then k has characteristic p. Further, there is a complete unramified discrete valuation
ring (V, pV ) such that Q ∼= T/(p − f ), where T = V [[x1, . . . , xd ]] and f is
contained in the square of the maximal ideal of T ; see for example [Bourbaki 2006,
Chaper IX, §3]. Hence every complete regular local ring is a hypersurface in an
unramified one. Consequently, when R is a complete intersection, R̂ is a complete
intersection in an unramified regular local ring Q such that

codim R ≤ c ≤ codim R+ 1,

where c is the relative codimension of R̂ in Q.

2.3. The depth formula [Huneke and Wiegand 1994, Theorem 2.5]. Let R
be a complete intersection and let M , N be finitely generated R-modules. If
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Tor R
i (M, N )= 0 for all i ≥ 1, then the depth formula (1.0.1) holds, that is,

depth(M)+ depth(N )= depth(R)+ depth(M ⊗R N ).

Recall that depth(0)=∞, so the formula holds trivially if a zero module appears.

2.4. Torsion submodule. The torsion submodule >R M of M is the kernel of the
natural homomorphism M→Q(R)⊗R M , where Q(R)={non-zerodivisors}−1 R is
the total quotient ring of R. The module M is torsion if>R M =M , and torsion-free
if >R M = 0. To restate, M is torsion-free if and only if every non-zerodivisor of R
is a non-zerodivisor on M , that is, if and only if

⋃
Ass M ⊆

⋃
Ass R. Similarly,

M is torsion if and only if Mp = 0 for all p ∈ Ass(R). For notation, the inclusion
>R M ⊆ M has cokernel ⊥R M :

(2.4.1) 0−→>R M −→ M −→⊥R M −→ 0.

2.5. Torsionless and reflexive modules. Let M be a finitely generated R-module;
M∗ denotes its dual HomR(M, R). The module M is torsionless if it embeds in a
free module, equivalently, the canonical map M→ M∗∗ is injective. Torsionless
modules are torsion-free, and the converse holds if Rp is Gorenstein for every
associated prime p of R; see [Vasconcelos 1968, Theorem A.1]. The module M is
reflexive provided the map M→ M∗∗ is an isomorphism.

2.6. Serre’s conditions (see [Leuschke and Wiegand 2012, Appendix A, §1] and
[Evans and Griffith 1985, Theorem 3.8]). Let M be a finitely generated R-module
and let n be a nonnegative integer. Then M is said to satisfy Serre’s condition (Sn)

provided that

depthRp
(Mp)≥min{n, height(p)} for all p ∈ Supp(M).

A finitely generated module M over a local ring R is maximal Cohen–Macaulay
if depth(M)= dim(R); necessary for this equality is that M 6= 0.

If M satisfies (S1), then M is torsion-free, and the converse holds if R has no
embedded primes, e.g., is reduced or Cohen–Macaulay; see §2.4. If R is Gorenstein,
then M satisfies (S2) if and only if M is reflexive; see §2.5 and [Evans and Griffith
1985, Theorem 3.6]. Moreover, if R is Gorenstein, then M satisfies (Sn) if and only
if M is an n-th syzygy module; see [Leuschke and Wiegand 2012, Corollary A.12].

A localization of a torsion-free module need not be torsion-free; see, for example,
[Epstein and Yao 2012, Example 3.9]. However, over Cohen–Macaulay rings, we
have the following.

Remark 2.7. Assume that R is Cohen–Macaulay and M is a finitely generated
R-module. Let p be a prime ideal of R. Note that, since >R M is killed by a
non-zerodivisor of R, (>R M)p is a torsion Rp-module. Next, ⊥R M satisfies (S1)

as R is Cohen–Macaulay, and so (⊥R M)p is a torsion-free Rp-module; see §2.6.
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Localizing the exact sequence (2.4.1) at p, we see that (>R M)p ∼= >Rp(Mp). In
particular, if M is a torsion-free R-module, then Mp is a torsion-free Rp-module.

We recall a technique from [Huneke et al. 2001, §1] for lowering the codimension.

2.8. Pushforward and quasilifting [Huneke et al. 2001, §1]. Let R be a Gorenstein
local ring and let M be a finitely generated torsion-free R-module. Choose a
surjection ε : R(ν)� M∗ with ν= νR(M∗). Applying Hom(−, R) to this surjection,
we obtain an injection ε∗ : M∗∗ ↪→ R(ν). Let M1 be the cokernel of the composition
M ↪→ M∗∗ ↪→ R(ν). The exact sequence

(2.8.1) 0→ M→ R(ν)→ M1→ 0

is called a pushforward of M . The extension (2.8.1) and the module M1 are unique
up to noncanonical isomorphism; see [Celikbas 2011, pp. 174–175]. We refer to
such a module M1 as the pushforward of M . Note M1 = 0 if and only if M is free.

Assume R = S/( f ) where (S, n) is a local ring and f is a non-zerodivisor in n.
Let S(ν) � M1 be the composition of the canonical map S(ν) � R(ν) and the map
R(ν) � M1 in (2.8.1). The quasilifting of M to S is the module E in the exact
sequence of S-modules:

(2.8.2) 0→ E→ S(ν)→ M1→ 0 .

The quasilifting of M is unique up to isomorphism of S-modules.

Proposition 2.9 is from [Huneke et al. 2001, Propositions 1.6 and 1.7]; while
Proposition 2.10 is embedded in the proofs of [Huneke et al. 2001, Propositions 1.8
and 2.4] and is recorded explicitly in [Celikbas 2011, Proposition 3.2(3)(b)]. We
will use Proposition 2.10 in the proofs of Theorem 3.10 and Theorem B.2 below.

Proposition 2.9 [Huneke et al. 2001]. Let R be a Gorenstein local ring and let
M be a finitely generated torsion-free R-module. Let M1 denote the pushforward
of M.

(i) Let n ≥ 0. Then M satisfies (Sn+1) if and only if M1 satisfies (Sn).

(ii) Let p be a prime ideal. If Mp is a maximal Cohen–Macaulay Rp-module, then
(M1)p is either zero or a maximal Cohen–Macaulay Rp-module.

Proposition 2.10 [Huneke et al. 2001]. Let R = S/( f ) where S is a complete
intersection and f is a non-zerodivisor in S. Let N be a finitely generated torsion-
free R-module such that M ⊗R N is reflexive. Assume Tor R

i (M, N )p = 0 for all
i ≥ 1 and for all primes p of R with height(p)≤ 1.

(i) Then M1⊗R N is torsion-free.

(ii) Let E and F denote the quasiliftings of M and N to S, respectively; see §2.8.
Assume Tor S

i (E, F)= 0 for all i ≥ 1. Then Tor R
i (M, N )= 0 for all i ≥ 1.



98 O. CELIKBAS, S. IYENGAR, G. PIEPMEYER AND R. WIEGAND

Serre’s conditions (Sn) need not ascend along flat local homomorphisms. This
can be problematic:

Example 2.11. The ring C[[x, y, u, v]]/(x2, xy) has depth two and therefore, by
Heitmann’s theorem [1993, Theorem 8], it is the completion R̂ of a unique factor-
ization domain (R,m). Then R, being normal, satisfies (S2), but R̂ does not even
satisfy (S1), since the localization at the height-one prime ideal (x, y) has depth zero.

For flat local homomorphisms between Cohen–Macaulay rings, and more gener-
ally when the fibers are Cohen–Macaulay, however, (Sn) does ascend and descend:

Lemma 2.12. Let R be a local ring, p a prime ideal of R, and let M be a finitely
generated R-module.

(1) If M is reflexive, then so is the Rp-module Mp.

(2) Suppose R is Cohen–Macaulay. Then (>R M)p =>Rp Mp; in particular, if M is
torsion-free, then so is Mp.

(3) Suppose R→ S is a flat local homomorphism. If S⊗R M satisfies (Sn) as an
S-module, then M satisfies (Sn) as an R-module; the converse holds when the
fibers of the map R→ S are Cohen–Macaulay.

Proof. For part (1), localize the isomorphism M→ M∗∗. Part (2) is Remark 2.7.
Part (3) can be proved along the same lines as [Matsumura 1989, Theorem 23.9]:
For any q in Spec S with p=q∩R, it follows from [Matsumura 1989, Theorems 15.1
and 23.3] that

height(q)= height(p)+ dim(Sq/pSq),

depthSq(S⊗R M)q = depthRp
(Mp)+ depth(Sq/pSq).

When S⊗R M satisfies (Sn), for q minimal in S/pS, these equalities give

depthRp
(Mp)= depthSq(S⊗R M)q ≥min{n, height(q)} =min{n, height(p)}.

Thus M satisfies (Sn). Conversely, if Sq/pSq is Cohen–Macaulay and the R-module
M satisfies (Sn), one gets

depthSq(S⊗R M)q ≥min{n, height(p)}+ dim(Sq/pSq)≥min{n, height(q)}.

This completes the proof of part (3). �

3. Main theorem

Our main result, Theorem 3.10, is here. We use the θ- and η-pairings introduced
by Hochster [1981] and Dao [2007]. After preliminaries on these, we focus on
complete intersections; see §2.1, the setting of our applications.



CRITERIA FOR VANISHING OF TOR OVER COMPLETE INTERSECTIONS 99

3.1. The θ - and η-pairings [Hochster 1981; Dao 2013a; Dao 2007]. Let R be a
local ring and let M and N be finitely generated R-modules. Assume that there
exists an integer f (depending on M and N ), such that Tor R

i (M, N ) has finite
length for all i ≥ f .

If R is a hypersurface, then Tor R
i (M, N ) ∼= Tor R

i+2(M, N ) for all i � 0; see
[Eisenbud 1980]. Hochster [1981] introduced the θ pairing for n� 0 by

θ R(M, N )= length(Tor R
2n(M, N ))− length(Tor R

2n−1(M, N ))

When R is any complete intersection, Dao [2007, Definition 4.2.] made the definition

ηR
e (M, N )= lim

n→∞

1
ne

n∑
i= f

(−1)i length(Tor R
i (M, N )).

The η-pairing is a natural extension to complete intersections of the θ-pairing.
Moreover the following statements hold; see [Dao 2007, Theorem 4.3].

(i) ηR
e (M,−) and ηR

e (−, N ) are additive on short exact sequences, provided ηR
e

is defined on the pairs of modules involved.

(ii) If R is a hypersurface, then ηR
1 (M, N )= 1

2θ
R(M, N ). Hence ηR

1 (M, N )= 0
if and only if θ R(M, N )= 0.

Assume R is a complete intersection.

(iii) ηR
e (M, N )= 0 if e ≥ codim R and either M or N has finite length.

(iv) ηR
e is finite when e = codim(R), and ηR

e is zero when e > codim R.

The next result [Dao 2007, Theorem 6.3], on Tor-rigidity, shows the utility of
the η-pairing.

Theorem 3.2 [Dao 2007]. Let R be a local ring whose completion is a complete
intersection, of relative codimension c ≥ 1, in an unramified regular local ring. Let
M, N be finitely generated R-modules. Assume Tor R

i (M, N ) has finite length for
all i � 0, and that ηR

c (M, N ) = 0. Then the pair M, N is c-Tor-rigid, that is, if
s ≥ 0 and Tor R

i (M, N )= 0 for all i = s, . . . , s+ c− 1, then Tor R
i (M, N )= 0 for

all i ≥ s.

The following conjectures have received quite a bit of attention:

Conjectures 3.3. Assume R is a local ring which is an isolated singularity, i.e., Rp

is a regular local ring for all nonmaximal prime ideals p of R.

(i) [Dao 2013a, Conjecture 3.15] If R is an equicharacteristic hypersurface of even
dimension, then ηR

1 (M, N )= 0 for all finitely generated R-modules M and N .

(ii) [Moore et al. 2013, Conjecture 2.4] If R is a complete intersection of codimen-
sion c ≥ 2, then ηR

c (M, N )= 0 for all finitely generated R-modules M and N .
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Moore, Piepmeyer, Spiroff and Walker [2011] have settled Conjecture 3.3(i)
in the affirmative for certain types of affine algebras. Polishchuk and Vaintrob
[2012, Remark 4.1.5], as well as Buchweitz and Van Straten [2012, Main Theorem],
have since given other proofs, in somewhat different contexts, of this result; see
Theorem 4.2 for a recent result of Walker [2014] concerning Conjecture 3.3(ii), and
Corollary 4.3 for an application of his result.

Our proofs of Lemma 3.6 and Theorem B.2 use the following (see [Auslander
1961, Lemma 3.1] or [Huneke and Wiegand 1994, Lemma 1.1]).

Remark 3.4. Let R be a local ring, and let M and N be nonzero finitely generated
R-modules. Assume M⊗R N is torsion-free. Then M⊗R N ∼=M⊗⊥R N . Moreover,
if Tor R

1 (M,⊥R N )= 0, then >R N = 0, and hence N is torsion-free.

We encounter the same hypotheses often enough to warrant a piece of notation.

Notation 3.5. Let c be a positive integer. A pair M, N of finitely generated modules
over a ring R satisfies (SPc) provided the following conditions hold:

(i) M and N satisfy Serre’s condition (Sc−1).

(ii) M ⊗R N satisfies (Sc).

(iii) Tor R
i (M, N ) has finite length for all i � 0.

Hypersurfaces. We begin with a lemma analogous to [Dao 2008, Proposition 3.1];
however, we do not assume any depth properties on either M or N ; see §2.1 and
Notation 3.5.

Lemma 3.6. Let R be a local ring whose completion is a hypersurface in an un-
ramified regular local ring, and let M , N be finitely generated R-modules. Assume
that the following hold:

(i) dim(R)≥ 1.

(ii) The pair M, N satisfies (SP1).

(iii) SuppR(>R N )⊆ SuppR(M).

(iv) θ R(M, N )= 0.

Then Tor R
i (M, N )= 0 for all i ≥ 1, and N is torsion-free.

Proof. Consider the following conditions for a prime ideal p of R:

(3.6.1) (>R N )p has finite length over Rp and dim(Rp)≥ 1.

Claim: If p is as in (3.6.1), then Tor Rp
i (Mp, (⊥R N )p)= 0 for all i ≥ 1.

We may assume that Mp 6= 0. We know from (ii) that Tor Rp
i (Mp, Np) has

finite length over Rp for all i � 0. Since (>R N )p has finite length, the exact
sequence (2.4.1) for N , localized at p, shows that Tor Rp

i (Mp, (⊥R N )p) has finite
length over Rp for all i � 0.
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Using the additivity of θ Rp along the same exact sequence, we see that

(3.6.2) θ Rp(Mp, (⊥R N )p)=−θ Rp(Mp, (>R N )p)= 0,

the last by §3.1.
Since ⊥R N is a torsionless R-module (see §2.5), there exists an exact sequence

(3.6.3) 0→⊥R N → R(n)→ Z→ 0.

Localizing this sequence at p, we see that, for i�0, Tor Rp
i (Mp, Zp) has finite length

and hence (since dim(Rp)≥ 1) is torsion. Now Corollary A.2 forces Tor Rp
i (Mp, Zp)

to be torsion for all i ≥ 1.
From (3.6.3), we see that Tor Rp

1 (Mp, Zp) embeds into Mp ⊗Rp (⊥R N )p. But
Tor Rp

1 (Mp, Zp) is torsion, and (by Remarks 2.7 and Remark 3.4) Mp⊗Rp (⊥R N )p
is torsion-free; therefore Tor Rp

1 (Mp, Zp)= 0.
Next we note that θ Rp(Mp, Zp) = −θ

Rp(Mp, (⊥R N )p) = 0; see (3.6.3) and
(3.6.2). This implies, by Theorem 3.2, that Tor Rp

i (Mp, Zp) = 0 for all i ≥ 1; see
§3.1. The claim now follows from (3.6.3).

If >R N 6= 0, then there is a prime p, minimal in SuppR(>R N ), and so (>R N )p is
a nonzero module of finite length. Moreover dim(Rp)≥ 1: otherwise p ∈ Ass(R)
and hence (>R N )p = 0; see §2.4. Thus p satisfies (3.6.1) and, by our claim,
Tor Rp

i (Mp, (⊥R N )p) = 0 for i ≥ 1. The hypothesis (iii) on supports implies that
Mp 6= 0, and now Remark 3.4 yields a contradiction. We conclude that >R N = 0.

Applying the claim to the maximal ideal p of R yields the required vanishing. �

Remark 3.7. (i) The hypothesis (iii) of Lemma 3.6 holds when, for example, the
support of N is contained in that of M . Moreover, if R is a domain and M and N are
nonzero, then, since M⊗R N is torsion-free, we see that Supp(M⊗R N )=Spec(R),
whence Supp(M)= Spec(R).

(ii) Most of the hypotheses in Lemma 3.6 are essential; see the discussion after
[Huneke and Wiegand 1997, Remark 1.5]. Notice, without the assumption that
dim(R) ≥ 1, the lemma would fail. Take, for example, R = C[x]/(x2) and M =
R/(x)= N . The vanishing of θ is also essential: let R=C[[x, y]]/(xy), M = R/(x)
and N = R/(x2). Then the pair M, N satisfies conditions (ii) and (iii) of Lemma 3.6.
On the other hand Tor R

2i+1(M, N ) ∼= k for all i ≥ 0, and Tor R
2i (M, N ) = 0 for all

i ≥ 1. (Thus θ R(M, N )=−1.)

The completion of any regular ring is a hypersurface in an unramified regular
local ring; see §2.2. Hence the following consequence of Lemma 3.6 extends [Licht-
enbaum 1966, Corollary 3], which in turn builds on [Auslander 1961, Theorem 3.2];
see C. Miller’s result recorded as Corollary B.3 here.

Proposition 3.8. Let (R,m) be a d-dimensional local ring whose completion is
a hypersurface in an unramified regular local ring, with d ≥ 1, and let M be a
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finitely generated R-module. Assume pdRp
(Mp) <∞ for all prime ideals p 6= m

and that θ R(M,−) = 0. If
⊗n

R M is torsion-free for some integer n ≥ 2, then
pd(M) ≤ (d − 1)/n. Consequently, if M is not free, then

⊗n
R M has torsion for

each n ≥max{2, d}.

Proof. We may assume M 6= 0. Iterating Lemma 3.6 shows that
⊗ p

R M is torsion-
free for p = 1, . . . , n, and that Tor R

i (M,
⊗ p−1

R M)= 0 for all i ≥ 1. Taking p = 2,
we see from [Huneke and Wiegand 1997, Theorem 1.9] that pd(M) <∞. Since
depth(

⊗n
R M) ≥ 1, one obtains, using [Auslander 1961, Corollary 1.3] and the

Auslander–Buchsbaum formula [1957, Theorem 3.7],

n · pd(M)= pd
( n⊗

R

M
)
= d − depth

( n⊗
R

M
)
≤ d − 1. �

Complete intersections. Hypersurfaces in complete intersections give the inductive
step for our proof of Theorem 3.10; see §2.8 on pushforwards.

Lemma 3.9. Let (S, n) be a complete intersection, and let R be a hypersurface
in S. Let M and N be finitely generated torsion-free R-modules, and let E and F
be the quasiliftings of M and N , respectively, to S. Assume Tor R

i (M, N ) has finite
length for all i � 0. Let e be an integer with e ≥max{2, codim(S)+ 1}. Then

(i) Tor S
i (E, F) has finite length for all i � 0, and

(ii) ηS
e−1(E, F)= 2e · ηR

e (M, N ).

Proof. By hypothesis, R ∼= S/( f ), where f is a non-zerodivisor in S. The spectral
sequence associated to the change of rings S → R yields the following exact
sequence — see [Lichtenbaum 1966, pp. 223–224] or [Murthy 1963, p. 561] — for
all n ≥ 1:

· · · → Tor R
n−1(M, N )→ Tor S

n (M, N )→ Tor R
n (M, N )→ · · · .

Consequently Tor S
i (M, N ) has finite length for i � 0. Let M1 and N1 be the

pushforwards of M and N , respectively. Since Tor S
i (R,−) = 0 for all i ≥ 2, the

sequences (2.8.2) and (2.8.1) yield isomorphisms

Tor S
i (E, N )∼= Tor S

i+1(M1, N )∼= Tor S
i (M, N ) for all i ≥ 2 .

Arguing in the same vein, one gets isomorphisms

Tor S
i (E, F)∼= Tor S

i (E, N ) for all i ≥ 2.

Hence the length of Tor S
i (E, F) is finite for all i � 0, and so (i) holds.

Similar arguments show the η-pairing, over both R and S, as appropriate, is
defined for all pairs (X, Y ) with X ∈ {M,M1, E} and Y ∈ {N , N1, F}.
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By hypothesis, codim(S)≤ e−1, and hence codim(R)≤ e; see §2.1. Additivity
of η along the exact sequences (2.8.1) and (2.8.2) thus gives

ηR
e (M, N )=−ηR

e (M1, N )= ηR
e (M1, N1),

ηS
e−1(E, F)=−ηS

e−1(M1, F)= ηS
e−1(M1, N1).

Our assumption that e ≥max{2, codim S+ 1}, together with Theorem 4.1(3) from
[Dao 2007], allow us to invoke Theorem 4.3(3) from the same reference, which
says that

2e · ηR
e (M1, N1)= η

S
e−1(M1, N1).

This gives (ii), completing the proof. �

The next theorem is our main result. As its hypotheses are technical, several of
its consequences are discussed in Section 4; see Section 2 for background.

Theorem 3.10. Let R be a local ring whose completion is a complete intersection
in an unramified regular local ring, of relative codimension c ≥ 1. Let M, N be
finitely generated R-modules. Assume the following hold:

(i) dim(R)≥ c.

(ii) The pair (M, N ) satisfies (SPc).

(iii) SuppR(>R N )⊆ SuppR(M).

(iv) ηR
c (M, N )= 0.

Then, Tor R
i (M, N )= 0 for all i ≥ 1.

Proof. The case c= 1 is Lemma 3.6. For c ≥ 2, proceed by induction on c. We can
assume R is complete, so that R = Q/( f ), where Q is an unramified regular local
ring and f = f1, . . . , fc is a Q-regular sequence; see §2.2 and Lemma 2.12. Let
R = S/( f ), where S = Q/( f1, . . . , fc−1) and f = fc.

Hypothesis (ii) implies Tor R
i (M, N ) has finite length for all i�0; see 3.5. Hence

Corollary A.3 implies that, for all primes p with height(p)≤ c− 1,

(3.10.1) Tor R
i (M, N )p = 0 for all i ≥ 1.

Condition (ii) also implies M and N are torsion-free since c ≥ 2; see 3.5. Hence
quasiliftings E and F of M and N to S, respectively, exist; see §2.8. Using the
vanishing of Tor modules in (3.10.1) and [Huneke et al. 2001, Theorem 4.8] —
compare [Celikbas 2011, Proposition 3.1(7)] — one gets that

(3.10.2) E ⊗S F satisfies (Sc−1) as an S-module.

It follows from [Huneke et al. 2001, Propositions 1.6 and 1.7] (see also [Celikbas
2011, Propositions 3.1(2) and 3.1(6)]) that the assumptions in (i) of (SPc) pass to
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E and F ; see Notation 3.5. So,

(3.10.3) E and F satisfy (Sc−1) as S-modules.

Lemma 3.9 guarantees that Tor S
i (E, F) has finite length for all i � 0 and that

ηc−1(E, F) = 0. In particular the pair E, F satisfies (SPc−1) over the ring S.
Moreover, E and F , being syzygies, are torsion-free, so we indeed have that
SuppS(>S F)⊆ SuppS(E). Now the inductive hypothesis implies that

(3.10.4) Tor S
i (E, F)= 0 for all i ≥ 1.

Condition (ii) also implies that M ⊗R N is reflexive since c ≥ 2; see §2.6. Further-
more, Tor R

i (M, N )p = 0 for all i ≥ 1 and for all p ∈ Spec(R) with height(p) ≤ 1;
see (3.10.1). Thus Proposition 2.10 and (3.10.4) yield Tor R

i (M, N ) = 0 for all
i ≥ 1. �

Remark 3.11. In Theorem 3.10, if c ≥ 2, hypothesis (ii) implies that N is torsion-
free, i.e., >R N = 0; see §2.6 and Notation 3.5. Thus, when c ≥ 2, hypothesis (iii)
of Theorem 3.10 is redundant.

When dim(R)> c, the equivalence of (i) and (ii) in the following corollary seems
interesting; see also §2.3. Actually, in that case the equivalence of (ii) and (iii) holds
without the assumption that ηR

c (M, N )= 0. See [Celikbas 2011, Corollary 2.4].

Corollary 3.12. Let R be an isolated singularity whose completion is a complete
intersection in an unramified regular local ring, of relative codimension c. Let M
and N be maximal Cohen–Macaulay R-modules. Assume dim(R) ≥ c. Assume
further that ηR

c (M, N )= 0. The following conditions are equivalent:

(i) M ⊗R N satisfies (Sc).

(ii) M ⊗R N is maximal Cohen–Macaulay.

(iii) Tor R
i (M, N )= 0 for all i ≥ 1, and hence the depth formula holds.

Over a complete intersection, vanishing of Ext is closely related to vanishing of
Tor: Ext i

R(M, N ) = 0 for all i � 0 if and only if Tor R
i (M, N ) = 0 for all i � 0;

see [Avramov and Buchweitz 2000, Remark 6.3]. Our next example shows the
hypotheses of Theorem 3.10 do not force the vanishing of Ext i

R(M, N ) for all i ≥ 1.

Example 3.13. Let (R,m, k) be a complete intersection with codim(R) = 2 and
dim(R)≥ 3. Let N be the d-th syzygy of k, where d = dim(R), and let M be the
second syzygy of R/(x), where x is a maximal R-regular sequence.

Note that N is maximal Cohen–Macaulay, depth(M)= 2, and Np is free over Rp

for all primes p 6= m. It follows, since pd(M) < ∞, that ηR
2 (M, N ) = 0 and

Tor R
i (M, N ) = 0 for all i ≥ 1; see §3.1 and Theorem A.1. Therefore the depth

formula §2.3 shows that depth(M ⊗R N ) = 2. Since M is a second syzygy, it
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satisfies (S2) and hence M ⊗R N satisfies (S2); see §2.6. In particular, the pair
M, N satisfies (SP2); see 3.5. However Extd−2

R (M, N )=Extd(R/(x), N ) 6= 0; see,
for example, [Matsumura 1989, Chapter 19, Lemma 1(iii)].

Here is the extension of Dao’s theorem [2007, Theorem 7.7] promised in the
introduction (compare Theorem 1.2):

Corollary 3.14. Let R be a local ring that is a complete intersection, and let M
and N be finitely generated R-modules. Assume that the following conditions hold
for some integer e ≥ codim(R):

(i) M and N satisfy (Se).

(ii) M ⊗R N satisfies (Se+1).

(iii) Mp is a free for all prime ideals p of R of height at most e.

Then Tor R
i (M, N )= 0 for all i ≥ 1, and hence the depth formula holds.

Proof. If e = 0 this is a theorem in [Auslander 1961] and [Lichtenbaum 1966,
Corollary 2]. Assume now that e ≥ 1. We use induction on dim R. If dim R ≤ e,
condition (iii) implies that M is free, and there is nothing to prove. Assuming
dim R ≥ e + 1, we note that the hypotheses localize, so Tor R

i (M, N )p = 0 for
each i ≥ 1 and each prime ideal p in the punctured spectrum of R; that is to say,
Tor R

i (M, N ) has finite length for all i ≥ 1. Thus the pair M, N satisfies (SPe+1).
Moreover, since codim R < e+ 1, we have ηR

e+1 = 0 by item (iv) of §3.1. The
completion of R can be realized as a complete intersection, of relative codimension
e+1, in an unramified regular local ring (see §2.2). Hence the desired result follows
from Theorem 3.10. �

4. Vanishing of η

In this section we apply our results to situations where the η-pairing is known
to vanish. We know, from Theorem 3.10, that, as long as the critical hypothesis
ηR

c (M, N )= 0 holds, we can replace c with c−1 in the hypotheses of Theorem 1.2
and still conclude the vanishing of Tor. Although it is not easy to verify vanishing
of η (see Conjectures 3.3), there are several classes of rings R for which it is
known that ηR(M, N ) = 0 for all finitely generated R-modules M and N . For
example, if R is an even-dimensional simple (“ADE”) singularity in characteristic
zero, then Dao observed [2013a, Corollary 3.16] that θ R(M, N ) = 0; see [Dao
2013a, Corollary 3.6] and also [Dao 2013a, §3] for more examples.

Now we give a localized version of a vanishing theorem for graded rings, due to
Moore, Piepmeyer, Spiroff, and Walker [2013].

Proposition 4.1. Let k be a perfect field and Q = k[x1, . . . , xn] the polynomial
ring with the standard grading. Let f = f1, . . . , fc be a Q-regular sequence of
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homogeneous polynomials, with c ≥ 2. Put A = Q/( f ) and R = Am, where
m= (x1, . . . , xn). Assume that Ap is a regular local ring for each p in Spec(A)\{m}.
Then ηR

c (M, N )= 0 for all finitely generated R-modules M and N. In particular,
if n ≥ 2c and the pair M, N satisfies (SPc), then M and N are Tor-independent.

Proof. Choose finitely generated A-modules U and V such that Um
∼= M and

Vm
∼= N . For any maximal ideal n 6= m, the local ring An is regular, and hence

Tor A
i (U, V )n = 0 for i � 0. It follows that the map Tor A

i (U, V )→ Tor R
i (M, N )

induced by the localization maps U→ M and V → N is an isomorphism for i� 0.
Also, for any A-module supported at m, its length as an A-module is equal to its
length as an R-module. In conclusion, ηR

c (M, N )= ηA
c (U, V ).

As k is perfect, the hypothesis on A implies that the k-algebra Ap is smooth
for each nonmaximal prime p in A; see [Eisenbud 1995, Corollary 16.20]. Thus,
the morphism of schemes Spec(R)\{m} → Spec(k) is smooth. Now [Moore et al.
2013, Corollary 4.7] yields ηA

c (U, V )= 0, and hence ηR
c (M, N )= 0. It remains to

note that if n ≥ 2c, then dim R ≥ c, so Theorem 3.10 applies. �

Next, we quote a recent theorem due to Walker; it provides strong support for
Conjectures 3.3, at least in equicharacteristic zero.

Theorem 4.2 [Walker 2014, Theorem 1.2]. Let k be a field of characteristic zero,
and let Q a smooth k-algebra. Let f = f1, . . . , fc be a Q-regular sequence, with
c ≥ 2, and put A = Q/( f1, . . . , fc). Assume the singular locus {p ∈ Spec(A) :
Ap is not regular} is a finite set of maximal ideals of A. Then ηA

c (U, V )= 0 for all
finitely generated A-modules U , V.

Corollary 4.3. With A as in Theorem 4.2, put R = Am, where m is any maximal
ideal of A. Then ηR

c (M, N ) = 0 for all finitely generated R-modules M and N.
In particular, if dim R ≥ c and the pair M, N satisfies (SPc), then M and N are
Tor-independent.

Proof. By inverting a suitable element of Q, we may assume that Ap is a regular
local ring for every prime ideal p 6=m. Now proceed as in the first paragraph of the
proof of Proposition 4.1. �

Theorem 4.4. Let (R,m, k) be a two-dimensional, equicharacteristic, normal,
excellent complete intersection of codimension c, with c ∈ {1, 2}, and let M and N
be finitely generated R-modules. Assume k is contained in the algebraic closure of
a finite field. Assume further that M and N satisfy conditions (i) and (ii) of (SPc).
Then Tor R

i (M, N )= 0 for all i ≥ 1.

Proof. The completion R̂ is an isolated singularity because R is excellent; see
[Leuschke and Wiegand 2012, Proposition 10.9], and so R̂ is a normal domain.
Replacing R by R̂, we may assume that R = S/( f ), where (S, n, k) is a regular
local ring and f is a regular sequence in n2 of length c. Let k be an algebraic
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closure of k, and choose a gonflement S ↪→ (S, n, k) lifting the field extension
k ↪→ k; see [2012, Chapter 10, §3]. This is a flat local homomorphism and is an
inductive limit of étale extensions. Moreover, nS = n, so S is a regular local ring.
By [2012, Proposition 10.15], both S and R := S/( f ) are excellent, and R is an
isolated singularity. Therefore (R,m, k) is a normal domain. Finally, we pass to the
completion Ŝ of S and put 3= Ŝ/( f ). This is still an isolated singularity, a normal
domain, and a complete intersection of codimension c. Moreover, our hypotheses
on M and N ascend along the flat local homomorphism R→3; see Lemma 2.12.
Since 3 is an isolated singularity, Tor3i (3⊗R M,3⊗R N ) has finite length for
i � 0; thus the pair 3⊗R M , 3⊗R N satisfies (SPc).

It follows from [Celikbas and Dao 2011, Proposition 2.5 and Remark 2.6] that
G(3)/L is torsion, where G(3) is the Grothendieck group of 3 and L is the
subgroup generated by classes of modules of finite projective dimension. This
implies that η3c (3⊗R M,3⊗R N ) = 0; see [Dao 2013a, Corollary 3.1] and the
paragraph preceding it. Now Theorem 3.10 implies that Tor3i (3⊗R M,3⊗R N )=0
for all i ≥ 1: the requirement on supports is automatically satisfied, since 3 is a
domain; see Remark 3.7(i). Faithfully flat descent completes the proof. �

Appendix A: An application of pushforwards

In Theorem A.4 we use pushforwards to generalize [Celikbas 2011, Theorem 3.16].
We have two preparatory results. The first one is a special case of a theorem of
Jorgensen:

Theorem A.1 [Jorgensen 1999, Theorem 2.1]. Let R be a complete intersection
and let M and N be finitely generated R-modules. Assume M is maximal Cohen–
Macaulay. If Tor R

i (M, N )= 0 for all i � 0, then Tor R
i (M, N )= 0 for all i ≥ 1.

Corollary A.2. Let R be a complete intersection and let M, N be finitely generated
R-modules. If Tor R

i (M, N ) is torsion for all i � 0, then Tor R
i (M, N ) is torsion for

all i ≥ 1.

Proof. Let p be a minimal prime ideal of R. By §2.4, it suffices to prove that
Tor Rp

i (Mp, Np)= 0 for all i ≥ 1. For that we may assume Mp 6= 0. Then, since Rp

is artinian, it follows that Mp is a maximal Cohen–Macaulay Rp-module. Therefore,
Theorem A.1 gives the desired vanishing. �

Corollary A.3. Let R be a complete intersection, and let M, N be finitely generated
R-modules. Assume M satisfies (Sw), where w is a positive integer, and that
Tor R

i (M, N ) has finite length for all i� 0. Let p be a nonmaximal prime ideal of R
such that height(p)≤ w. Then Tor R

i (M, N )p = 0 for all i ≥ 1.
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Proof. Serre’s condition (Sw) localizes, so Mp is either zero or a maximal Cohen–
Macaulay Rp-module; see §2.6. As Tor Rp

i (Mp, Np) = 0 for i � 0, Theorem A.1
implies that Tor Rp

i (Mp, Np)= 0 for all i ≥ 1. �

The next theorem generalizes [Celikbas 2011, Theorem 3.16; see also Theorems
3.4 and 3.15]; we emphasize that the ambient regular local ring in Theorem A.4 is
allowed to be ramified.

Theorem A.4. Let R be a complete intersection with dim R ≥ codim R, and let
M and N be finitely generated R-modules. Assume the pair M, N satisfies (SPc)

for some c ≥ codim R. If c = 1, assume further that M or N is torsion-free. If
Tor R

1 (M, N )= 0, then Tor R
i (M, N )= 0 for all i ≥ 1.

Proof. Without loss of generality, one may assume that c = codim R. When c = 0,
the desired result is the rigidity theorem of Auslander [1961] and Lichtenbaum
[1966], so in the remainder of the proof we assume that c ≥ 1.

Assume first that c = 1. By hypotheses Tor R
i (M, N ) has finite length for i � 0

and M ⊗R N is torsion-free; see Notation 3.5. Moreover, we may assume N (say)
is torsion-free. Tensoring M with the pushforward §2.8 for N gives the following:

Tor R
1 (M, N1) ↪→ M⊗R N ,(A.4.1)

Tor R
i (M, N1)∼= Tor R

i−1(M, N ) for all i ≥ 2.(A.4.2)

Equation (A.4.2) implies that Tor R
i (M, N1) has finite length for all i� 0. Therefore,

since dim(R)≥1, Tor R
i (M, N1) is torsion for all i�0; see §2.4. Now Corollary A.2

implies that Tor R
i (M, N1) is torsion for all i ≥ 1. As M ⊗R N is torsion-free, we

deduce from (A.4.1) that Tor R
1 (M, N1)= 0. By (A.4.2) we have Tor R

2 (M, N1)∼=

Tor R
1 (M, N )=0. Therefore Tor R

2 (M, N1)=0=Tor R
1 (M, N1), and hence Murthy’s

rigidity theorem [1963, Theorem 1.6] implies that Tor R
i (M, N1)= 0 for all i ≥ 1.

Now (A.4.2) completes the proof for the case c = 1.
Assume now that c≥ 2. We define a sequence M0,M1, . . . ,Mc−1 of finitely gen-

erated modules by setting M0 = M , and Mn to be the pushforward of Mn−1, for all
n=1, . . . , c−1. These pushforwards exist: M0 satisfies (Sc−1) by Hypothesis 3.5(i),
and so, by Proposition 2.9(i),

(1) each Mn satisfies (Sc−n−1).

For the desired result, it suffices to prove that Tor R
i (Mc−1, N )= 0 for all i ≥ c. We

will, in fact, prove this for all i ≥ 1. To this end, we establish by induction that the
following hold for n = 0, . . . , c− 1:

(2) Mn ⊗R N satisfies (Sc−n);

(3) Tor R
i (Mn, N ) has finite length for all i � 0;

(4) Tor R
i (Mn, N )= 0 for i = 1, . . . , n+ 1.
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For n = 0, conditions (2) and (3) are part of Hypothesis 3.5, while (4) is from
our hypothesis that Tor R

1 (M, N )= 0; recall that M0 = M . Assume that (2), (3) and
(4) hold for some integer n with 0≤ n ≤ c− 2.

Tensor the pushforward of Mn with N — see §2.8 — to obtain

(A.4.3) Tor R
i (Mn+1, N )∼= Tor R

i−1(Mn, N ) for all i ≥ 2,

and the following exact sequence in which F is finitely generated and free:

(A.4.4) 0→ Tor R
1 (Mn+1, N )→ Mn ⊗R N → F ⊗R N → Mn+1⊗R N → 0.

Induction and (A.4.3) imply that Tor R
i (Mn+1, N ) has finite length for all i � 0,

so (3) holds; furthermore, by Corollary A.2, Tor R
i (Mn+1, N ) is torsion for all

i ≥ 1. (Recall that dim(R) ≥ codim(R) = c ≥ 1 so that finite length modules
are torsion.) Since n ≤ c− 1, condition (2) implies that Mn ⊗R N satisfies (S1)

and hence Mn ⊗R N is torsion-free; therefore the exact sequence (A.4.4) forces
Tor R

1 (Mn+1, N ) to vanish. Now (A.4.3) gives (4). It remains to verify (2), namely,
that Mn+1 ⊗R N satisfies (Sc−n−1). To that end, let p ∈ Supp(Mn+1 ⊗R N ). We
will verify that depthRp

(Mn+1⊗R N )p ≥min{c− n− 1, height(p)}; see §2.6.
Suppose height(p) ≥ c − n. Recall, by Hypothesis 3.5(i), N satisfies (Sc−1).

Hence F ⊗R N , a direct sum of copies of N , satisfies (Sc−n−1). In particular it
follows that depthRp

(F⊗R N )p≥ c−n−1. Furthermore, by (2) of the induction hy-
pothesis, we have that depthRp

(Mn⊗R N )p≥ c−n. Recall that Tor R
1 (Mn+1, N )= 0.

Therefore, localizing the short exact sequence in (A.4.4) at p, we conclude by the
depth lemma that depthRp

(Mn+1⊗R N )p ≥ c− n− 1.
Next assume height(p) ≤ c− n − 1. We want to show that (Mn+1 ⊗R N )p is

maximal Cohen–Macaulay. By the induction hypotheses, Tor R
i (Mn, N ) has finite

length for all i � 0. As n ≥ 0, we see that dim(R) ≥ codim(R) = c ≥ c − n,
whence p is not the maximal ideal. Thus Tor R

i (Mn, N )p = 0 for all i � 0. Now,
setting w= c−n−1 and using Corollary A.3 for the pair Mn, N , we conclude that
Tor R

i (Mn, N )p = 0 for all i ≥ 1. Then (A.4.3) and the already established fact that
Tor R

1 (Mn+1, N )= 0 give that Tor R
i (Mn+1, N )p = 0 for all i ≥ 1. Thus, the depth

formula holds — see §2.3:

depthRp
(Mn+1)p+ depthRp

(Np)= depth(Rp)+ depthRp
(Mn+1⊗R N )p.

Since Serre’s conditions localize, Np is maximal Cohen–Macaulay over Rp; see
Hypothesis 3.5(i). Also, (Mn+1)p is maximal Cohen–Macaulay whether or not
(Mn)p is zero; see the pushforward sequence or Proposition 2.9(ii). By the depth
formula, (Mn+1⊗R N )p is maximal Cohen–Macaulay. Thus Mn+1⊗R N satisfies (2),
and the induction is complete.

Now we parallel the argument for the case c = 1. At the end, Tor R
i (Mc−1, N )

has finite length for all i � 0, and is equal to 0 for i = 1, . . . , c. Tensoring Mc−1
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with the pushforward of N , we get

Tor R
i (Mc−1, N1)∼= Tor R

i−1(Mc−1, N ) for all i ≥ 2,(A.4.5)

Tor R
1 (Mc−1, N1) ↪→ Mc−1⊗R N .(A.4.6)

In view of (A.4.5), it suffices to show that Tor R
1 (Mc−1, N1) = 0: this will im-

ply Tor R
i (Mc−1, N1) = 0 for all i = 1, . . . , c + 1, and hence Murthy’s rigidity

theorem [1963, Theorem 1.6] will yield that Tor R
i (Mc−1, N1) = 0 for all i ≥ 1,

and consequently Tor R
i (Mc−1, N ) = 0 for all i ≥ 1 by (A.4.5). We know that

Mc−1⊗R N is torsion-free. Therefore we use (A.4.6) and Corollary A.2, and obtain
Tor R

1 (Mc−1, N1)= 0, as we did in the case c = 1. �

Appendix B: Amending the literature

We use Theorem A.4 to give a different proof of an important result of Huneke and
Wiegand; see Theorem B.2 and the ensuing paragraph. We also point out a missing
hypothesis in a result of C. Miller [1998, Theorem 3.1], and state the corrected form
of her theorem in Corollary B.3. At the end of the paper we indicate an alternative
route to the proof of [Huneke and Wiegand 1994, Theorem 3.1], the main theorem
in that reference.

Theorem B.1 [Huneke and Wiegand 1994]. Let R be a hypersurface and let M , N
be finitely generated R-modules. If M or N has rank and M ⊗R N is maximal
Cohen–Macaulay, then both M and N are maximal Cohen–Macaulay, and either
M or N is free.

Theorem B.1 and its variations have been analyzed, used, and studied in the
literature; see [Celikbas and Wiegand 2015] and [Dao 2013b] for some history and
many consequences of the theorem. The following result [Huneke and Wiegand
1994, Theorem 2.7] played an important role in its proof.

Theorem B.2 [Huneke and Wiegand 1994]. Let R be a hypersurface and let M , N
be nonzero finitely generated R-modules. Assume M ⊗R N is reflexive and that N
has rank. Then the following conditions hold:

(i) Tor R
i (M, N )= 0 for all i ≥ 1.

(ii) M is reflexive, and N is torsion-free.

Theorem B.2 was established in [Huneke and Wiegand 1994, Theorem 2.7].
However, the conclusion there was that both M and N are reflexive, and the proof
of this stronger claim is flawed. Dao realized this, and subsequently Huneke
and Wiegand corrected their oversight [2007]. A similar flaw can be found in
[Miller 1998]; see Theorems 1.3 and 1.4 there and compare with our correction in
Corollary B.3. The version stated above reflects our current understanding and is
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from [Celikbas and Piepmeyer 2014]. We do not yet know whether N is forced to
be reflexive — that is, the question below remains open; cf. [Huneke and Wiegand
1994, Theorem 2.7] and [Miller 1998, Theorem 1.3].

Question. Let R be a hypersurface and M, N nonzero finitely generated R-modules.
If N has rank and M ⊗R N is reflexive, must both M and N be reflexive?

This question has been recently studied in [Celikbas and Piepmeyer 2014], which
gives partial answers using the New Intersection Theorem.

We now show how Theorem B.2 follows from Theorem A.4. In fact, one needs
only the case c = 1 of Theorem A.4.

Proof of Theorem B.2 using Theorem A.4. Set d = dim R. If d = 0, then N is free
(since it has rank), so all is well. From now on assume d ≥ 1. We remark at the
outset that neither M nor N can be torsion, i.e., ⊥R M 6= 0 and ⊥R N 6= 0. Also,
by the assumption of rank, Supp(N )= Spec(R). Suppose first that both M and N
are torsion-free; we will prove (i) by induction on d = dim R. Let M1 denote the
pushforward of M ; see §2.8. Then Tor R

1 (M1, N ) is torsion as N has rank. Since
M ⊗R N is torsion-free, applying −⊗R N to (2.8.1) shows that

(B.2.1) Tor R
1 (M1, N )= 0.

Suppose for the moment that d = 1. Since N has rank, there is an exact sequence

0→ N → F→ C→ 0,

in which F is free and C is torsion; see [Huneke and Wiegand 1994, Lemma 1.3].
Note that C is of finite length since d = 1. Note also that Tor R

2 (M1,C) ∼=
Tor R

1 (M1, N )= 0; see (B.2.1). Therefore, Corollary 2.3 from that same reference
implies that Tor R

i (M1,C) = 0 for all i ≥ 2, and hence Tor R
i (M1, N ) = 0 for all

i ≥ 1. Now (2.8.1) establishes (i).
Still assuming that both M and N are torsion-free, let d ≥ 2. The inductive

hypothesis implies that Tor R
i (M, N ) has finite length for all i ≥ 1. In particular

Tor R
i (M, N )q = 0 for all prime ideals q of R of height at most one. Therefore,

Proposition 2.10 shows that M1⊗R N is torsion-free, that is, M1⊗R N satisfies (S1);
see §2.5 and §2.6. Furthermore, from the pushforward exact sequence (2.8.1), we
see that Tor R

i (M1, N ) has finite length for all i ≥ 2. Consequently the pair M1, N
satisfies (SP1). Now Theorem A.4, applied to M1, N , shows that Tor R

i (M1, N )= 0
for all i ≥ 1. By (2.8.1), we see that Tor R

i (M, N )= 0 for all i ≥ 1. This proves (i)
under the additional assumption that M and N are torsion-free.

Since M ⊗R N is torsion-free, by Remark 3.4, there are isomorphisms

M ⊗R N ∼= M ⊗R ⊥R N ∼=⊥R M ⊗R N ∼=⊥R M ⊗R ⊥R N .
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In particular, ⊥R M ⊗R ⊥R N is also reflexive. As noted before, neither M nor
N is torsion, so ⊥R M and ⊥R N are nonzero. As N has rank so does ⊥R N , so
the already established part of the result (applied to ⊥R M and ⊥R N ) yields that
Tor R

i (⊥R M,⊥R N ) = 0 for i ≥ 1. Given this, since ⊥R M ⊗R N is torsion-free
by the isomorphisms above, applying Remark 3.4 to the R-modules ⊥R M and N
gives N = ⊥R N ; then applying Remark 3.4 to M and N yields M = ⊥R M . In
conclusion, M and N are torsion-free, and hence Tor R

i (M, N ) = 0 for all i ≥ 1.
From the last, the depth formula holds.

The remaining step is to prove that M is reflexive. Since Supp(N )= Spec(R),
we have depth(Np)≤ height(p) for all primes p of R. Localizing the depth formula
§2.3 shows Serre’s condition (S2) on M ; see §2.6. �

The next result is due to C. Miller [1998]. In the original formulation, the
essential requirement — that M have rank — is missing: for example, the module
M = R/(x) over the node k[[x, y]]/(xy) is not free, yet M ⊗R M , which is just M ,
is maximal Cohen–Macaulay and hence reflexive. We state her result here in its
corrected form and include a proof for completeness.

Corollary B.3 [Miller 1998, Theorem 3.1]. Let R be a d-dimensional hypersurface
and let M be a finitely generated R-module with rank. If

⊗n
R M is reflexive for

some n ≥max{2, d − 1}, then M is free.

Proof. If d ≤ 2, then
⊗n

R M is maximal Cohen–Macaulay, and Theorem B.1 gives
the result. Assume now that d ≥ 3. Applying Theorem B.2 and [Huneke and
Wiegand 1997, Theorem 1.9] repeatedly, we conclude the following:

(i)
⊗r

R M is reflexive for all r = 1, . . . , n.

(ii) Tor R
i (M,

⊗r−1
R M)= 0 for all i ≥ 1 and all r = 2, . . . , n.

(iii) pd(M) <∞.

It follows from (i) that depth(
⊗r

R M)≥ 2 for all r = 1, . . . , n; see §2.6. Also, (ii)
implies the depth formula

depth(M)+ depth
( r−1⊗

R
M
)
= d + depth

( r⊗
R

M
)
,

for all r = 2, . . . , n. One checks by induction on r that

r · depth(M)= (r − 1) · d + depth
( r⊗

R
M
)
,

for r = 2, . . . , n. By setting r = n, and using the inequalities n ≥ d − 1 and
depth(

⊗n
R M)≥ 2, we obtain

n · depth(M)≥ (n− 1) · d + 2= n · (d − 1)+ n− d + 2≥ n · (d − 1)+ 1.
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Therefore, depth(M)≥ d, that is, M is maximal Cohen–Macaulay. Now (iii) and
the Auslander–Buchsbaum formula [1957, Theorem 3.7] imply that M is free. �

A consequence of Theorems B.1 and B.2 is the following result:

Proposition B.4 [Huneke and Wiegand 1997, Theorem 1.9]. Suppose M and N are
finitely generated modules over a hypersurface R, and assume that Tor R

i (M, N )= 0
for i � 0. Then at least one of the modules has finite projective dimension.

At about the same time, Miller [1998] obtained the same result independently,
by an elegant, direct argument. As Miller observed in that reference, one can
turn things around and easily deduce Theorem B.1 from Proposition B.4 and the
vanishing result Theorem B.2.

Acknowledgment

We would like to thank the referee for a careful reading of the paper.

References

[Auslander 1961] M. Auslander, “Modules over unramified regular local rings”, Illinois J. Math. 5
(1961), 631–647. MR 31 #3460 Zbl 0104.26202

[Auslander and Buchsbaum 1957] M. Auslander and D. A. Buchsbaum, “Homological dimension in
local rings”, Trans. Amer. Math. Soc. 85 (1957), 390–405. MR 19,249d Zbl 0078.02802

[Avramov and Buchweitz 2000] L. L. Avramov and R.-O. Buchweitz, “Support varieties and co-
homology over complete intersections”, Invent. Math. 142:2 (2000), 285–318. MR 2001j:13017
Zbl 0999.13008

[Bourbaki 2006] N. Bourbaki, Éléments de mathématique: algèbre commutative, chapitres 8 et 9,
Springer, Berlin, 2006. Reprint of the 1983 original. MR 2007h:13001 Zbl 1103.13003

[Buchweitz and Van Straten 2012] R.-O. Buchweitz and D. Van Straten, “An index theorem for
modules on a hypersurface singularity”, Mosc. Math. J. 12:2 (2012), 237–259. MR 2978754
Zbl 1269.32016

[Celikbas 2011] O. Celikbas, “Vanishing of Tor over complete intersections”, J. Commut. Algebra
3:2 (2011), 169–206. MR 2012f:13030 Zbl 1237.13031 arXiv 0904.1408

[Celikbas and Dao 2011] O. Celikbas and H. Dao, “Asymptotic behavior of Ext functors for modules
of finite complete intersection dimension”, Math. Z. 269:3-4 (2011), 1005–1020. MR 2860275
Zbl 1235.13010

[Celikbas and Piepmeyer 2014] O. Celikbas and G. Piepmeyer, “Syzygies and tensor product of
modules”, Math. Z. 276:1-2 (2014), 457–468. MR 3150213 Zbl 06259147

[Celikbas and Wiegand 2015] O. Celikbas and R. Wiegand, “Vanishing of Tor, and why we care about
it”, J. Pure Appl. Algebra 219:3 (2015), 429–448. MR 3279364 Zbl 1301.13017 arXiv 1302.2170

[Christensen and Jorgensen 2015] L. W. Christensen and D. A. Jorgensen, “Vanishing of Tate
homology and depth formulas over local rings”, J. Pure Appl. Algebra 219:3 (2015), 464–481.
MR 3279366 Zbl 06371703

[Dao 2007] H. Dao, “Asymptotic behavior of Tor over complete intersections and applications”,
preprint, 2007. arXiv 0710.5818

http://projecteuclid.org/euclid.ijm/1255631585
http://msp.org/idx/mr/31:3460
http://msp.org/idx/zbl/0104.26202
http://dx.doi.org/10.2307/1992937
http://dx.doi.org/10.2307/1992937
http://msp.org/idx/mr/19,249d
http://msp.org/idx/zbl/0078.02802
http://dx.doi.org/10.1007/s002220000090
http://dx.doi.org/10.1007/s002220000090
http://msp.org/idx/mr/2001j:13017
http://msp.org/idx/zbl/0999.13008
http://dx.doi.org/10.1007/3-540-33980-9
http://msp.org/idx/mr/2007h:13001
http://msp.org/idx/zbl/1103.13003
http://ams.org/distribution/mmj/vol12-2-2012/abst12-2-2012.html
http://ams.org/distribution/mmj/vol12-2-2012/abst12-2-2012.html
http://msp.org/idx/mr/2978754
http://msp.org/idx/zbl/1269.32016
http://dx.doi.org/10.1216/JCA-2011-3-2-169
http://msp.org/idx/mr/2012f:13030
http://msp.org/idx/zbl/1237.13031
http://msp.org/idx/arx/0904.1408
http://dx.doi.org/10.1007/s00209-010-0771-9
http://dx.doi.org/10.1007/s00209-010-0771-9
http://msp.org/idx/mr/2860275
http://msp.org/idx/zbl/1235.13010
http://dx.doi.org/10.1007/s00209-013-1208-z
http://dx.doi.org/10.1007/s00209-013-1208-z
http://msp.org/idx/mr/3150213
http://msp.org/idx/zbl/06259147
http://dx.doi.org/10.1016/j.jpaa.2014.05.003
http://dx.doi.org/10.1016/j.jpaa.2014.05.003
http://msp.org/idx/mr/3279364
http://msp.org/idx/zbl/1301.13017
http://msp.org/idx/arx/1302.2170
http://dx.doi.org/10.1016/j.jpaa.2014.05.005
http://dx.doi.org/10.1016/j.jpaa.2014.05.005
http://msp.org/idx/mr/3279366
http://msp.org/idx/zbl/06371703
http://msp.org/idx/arx/0710.5818


114 O. CELIKBAS, S. IYENGAR, G. PIEPMEYER AND R. WIEGAND

[Dao 2008] H. Dao, “Some observations on local and projective hypersurfaces”, Math. Res. Lett. 15:2
(2008), 207–219. MR 2009c:13032 Zbl 1229.13014 arXiv math/0701881

[Dao 2013a] H. Dao, “Decent intersection and Tor-rigidity for modules over local hypersurfaces”,
Trans. Amer. Math. Soc. 365:6 (2013), 2803–2821. MR 3034448 Zbl 1285.13018

[Dao 2013b] H. Dao, “Some homological properties of modules over a complete intersection, with
applications”, pp. 335–371 in Commutative algebra, edited by I. Peeva, Springer, New York, 2013.
MR 3051378 Zbl 1262.13024

[Eisenbud 1980] D. Eisenbud, “Homological algebra on a complete intersection, with an appli-
cation to group representations”, Trans. Amer. Math. Soc. 260:1 (1980), 35–64. MR 82d:13013
Zbl 0444.13006

[Eisenbud 1995] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Gradu-
ate Texts in Mathematics 150, Springer, New York, 1995. MR 97a:13001 Zbl 0819.13001

[Epstein and Yao 2012] N. Epstein and Y. Yao, “Criteria for flatness and injectivity”, Math. Z. 271:3-4
(2012), 1193–1210. MR 2945604 Zbl 1245.13009

[Evans and Griffith 1985] E. G. Evans and P. Griffith, Syzygies, London Mathematical Society Lecture
Note Series 106, Cambridge University Press, 1985. MR 87b:13001 Zbl 0569.13005

[Foxby 1980] H.-B. Foxby, “Homological dimensions of complexes of modules”, pp. 360–368 in
Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979), edited
by M.-P. Malliavin, Lecture Notes in Mathematics 795, Springer, Berlin, 1980. MR 82a:13001
Zbl 0438.13010

[Heitmann 1993] R. C. Heitmann, “Characterization of completions of unique factorization domains”,
Trans. Amer. Math. Soc. 337:1 (1993), 379–387. MR 93g:13006 Zbl 0792.13011

[Hochster 1981] M. Hochster, “The dimension of an intersection in an ambient hypersurface”, pp.
93–106 in Algebraic geometry (Chicago, 1980), edited by A. Libgober and P. Wagreich, Lecture
Notes in Mathematics 862, Springer, Berlin, 1981. MR 83g:13017 Zbl 0472.13005

[Huneke and Jorgensen 2003] C. Huneke and D. A. Jorgensen, “Symmetry in the vanishing of Ext
over Gorenstein rings”, Math. Scand. 93:2 (2003), 161–184. MR 2004k:13039 Zbl 1062.13005

[Huneke and Wiegand 1994] C. Huneke and R. Wiegand, “Tensor products of modules and the
rigidity of Tor”, Math. Ann. 299:3 (1994), 449–476. MR 95m:13008 Zbl 0803.13008

[Huneke and Wiegand 1997] C. Huneke and R. Wiegand, “Tensor products of modules, rigidity and
local cohomology”, Math. Scand. 81:2 (1997), 161–183. MR 2000d:13027 Zbl 0908.13010

[Huneke and Wiegand 2007] C. Huneke and R. Wiegand, “Correction to ‘Tensor products of modules
and the rigidity of Tor”’, Math. Ann. 338:2 (2007), 291–293. MR 2007m:13018 Zbl 1122.13301

[Huneke et al. 2001] C. Huneke, D. A. Jorgensen, and R. Wiegand, “Vanishing theorems for complete
intersections”, J. Algebra 238:2 (2001), 684–702. MR 2002h:13025 Zbl 1082.13504

[Iyengar 1999] S. B. Iyengar, “Depth for complexes, and intersection theorems”, Math. Z. 230:3
(1999), 545–567. MR 2000a:13027 Zbl 0927.13015

[Jorgensen 1999] D. A. Jorgensen, “Complexity and Tor on a complete intersection”, J. Algebra
211:2 (1999), 578–598. MR 99k:13014 Zbl 0926.13007

[Leuschke and Wiegand 2012] G. J. Leuschke and R. Wiegand, Cohen–Macaulay representations,
Mathematical Surveys and Monographs 181, American Mathematical Society, Providence, RI, 2012.
MR 2919145 Zbl 1252.13001

[Lichtenbaum 1966] S. Lichtenbaum, “On the vanishing of Tor in regular local rings”, Illinois J.
Math. 10 (1966), 220–226. MR 32 #5688 Zbl 0139.26601

[Matsumura 1989] H. Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced
Mathematics 8, Cambridge University Press, 1989. MR 90i:13001 Zbl 0666.13002

http://dx.doi.org/10.4310/MRL.2008.v15.n2.a1
http://msp.org/idx/mr/2009c:13032
http://msp.org/idx/zbl/1229.13014
http://msp.org/idx/arx/math/0701881
http://dx.doi.org/10.1090/S0002-9947-2012-05574-7
http://msp.org/idx/mr/3034448
http://msp.org/idx/zbl/1285.13018
http://dx.doi.org/10.1007/978-1-4614-5292-8_10
http://dx.doi.org/10.1007/978-1-4614-5292-8_10
http://msp.org/idx/mr/3051378
http://msp.org/idx/zbl/1262.13024
http://dx.doi.org/10.2307/1999875
http://dx.doi.org/10.2307/1999875
http://msp.org/idx/mr/82d:13013
http://msp.org/idx/zbl/0444.13006
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://msp.org/idx/mr/97a:13001
http://msp.org/idx/zbl/0819.13001
http://dx.doi.org/10.1007/s00209-011-0910-y
http://msp.org/idx/mr/2945604
http://msp.org/idx/zbl/1245.13009
http://dx.doi.org/10.1017/CBO9781107325661
http://msp.org/idx/mr/87b:13001
http://msp.org/idx/zbl/0569.13005
http://dx.doi.org/10.1007/BFb0090128
http://msp.org/idx/mr/82a:13001
http://msp.org/idx/zbl/0438.13010
http://dx.doi.org/10.2307/2154327
http://msp.org/idx/mr/93g:13006
http://msp.org/idx/zbl/0792.13011
http://dx.doi.org/10.1007/BFb0090890
http://msp.org/idx/mr/83g:13017
http://msp.org/idx/zbl/0472.13005
http://www.mscand.dk/article/view/14418
http://www.mscand.dk/article/view/14418
http://msp.org/idx/mr/2004k:13039
http://msp.org/idx/zbl/1062.13005
https://eudml.org/doc/165218
https://eudml.org/doc/165218
http://msp.org/idx/mr/95m:13008
http://msp.org/idx/zbl/0803.13008
https://eudml.org/doc/167433
https://eudml.org/doc/167433
http://msp.org/idx/mr/2000d:13027
http://msp.org/idx/zbl/0908.13010
http://dx.doi.org/10.1007/s00208-006-0076-9
http://dx.doi.org/10.1007/s00208-006-0076-9
http://msp.org/idx/mr/2007m:13018
http://msp.org/idx/zbl/1122.13301
http://dx.doi.org/10.1006/jabr.2000.8603
http://dx.doi.org/10.1006/jabr.2000.8603
http://msp.org/idx/mr/2002h:13025
http://msp.org/idx/zbl/1082.13504
http://dx.doi.org/10.1007/PL00004705
http://msp.org/idx/mr/2000a:13027
http://msp.org/idx/zbl/0927.13015
http://dx.doi.org/10.1006/jabr.1998.7743
http://msp.org/idx/mr/99k:13014
http://msp.org/idx/zbl/0926.13007
http://dx.doi.org/10.1090/surv/181
http://msp.org/idx/mr/2919145
http://msp.org/idx/zbl/1252.13001
http://projecteuclid.org/euclid.ijm/1256055103
http://msp.org/idx/mr/32:5688
http://msp.org/idx/zbl/0139.26601
http://dx.doi.org/10.1017/CBO9781139171762
http://msp.org/idx/mr/90i:13001
http://msp.org/idx/zbl/0666.13002


CRITERIA FOR VANISHING OF TOR OVER COMPLETE INTERSECTIONS 115

[Miller 1998] C. Miller, “Complexity of tensor products of modules and a theorem of Huneke–
Wiegand”, Proc. Amer. Math. Soc. 126:1 (1998), 53–60. MR 98c:13022 Zbl 0886.13006

[Moore et al. 2011] W. F. Moore, G. Piepmeyer, S. Spiroff, and M. E. Walker, “Hochster’s theta
invariant and the Hodge–Riemann bilinear relations”, Advances in Math. 226:2 (2011), 1692–1714.
MR 2011m:13029 Zbl 1221.13027

[Moore et al. 2013] W. F. Moore, G. Piepmeyer, S. Spiroff, and M. E. Walker, “The vanishing of
a higher codimension analogue of Hochster’s theta invariant”, Math. Z. 273:3-4 (2013), 907–920.
MR 3030683 Zbl 1278.13013

[Murthy 1963] M. P. Murthy, “Modules over regular local rings”, Illinois J. Math. 7 (1963), 558–565.
MR 28 #126 Zbl 0117.02701

[Polishchuk and Vaintrob 2012] A. Polishchuk and A. Vaintrob, “Chern characters and Hirzebruch–
Riemann–Roch formula for matrix factorizations”, Duke Math. J. 161:10 (2012), 1863–1926.
MR 2954619 Zbl 1249.14001

[Vasconcelos 1968] W. V. Vasconcelos, “Reflexive modules over Gorenstein rings”, Proc. Amer. Math.
Soc. 19 (1968), 1349–1355. MR 38 #5762 Zbl 0167.31201

[Walker 2014] M. E. Walker, “Chern characters for twisted matrix factorizations and the vanishing of
the higher Herbrand difference”, preprint, 2014. arXiv 1404.0352

Received October 27, 2014. Revised December 17, 2014.

OLGUR CELIKBAS

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CONNECTICUT

STORRS, CT 06269
UNITED STATES

olgur.celikbas@uconn.edu

SRIKANTH B. IYENGAR

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF UTAH

SALT LAKE CITY, UT 84112
UNITED STATES

iyengar@math.utah.edu

GREG PIEPMEYER

DEPARTMENT OF MATHEMATICS

COLUMBIA BASIN COLLEGE

PASCO, WA 99301
UNITED STATES

gpiepmeyer@columbiabasin.edu

ROGER WIEGAND

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF NEBRASKA, LINCOLN

LINCOLN, NE 68588
UNITED STATES

rwiegand1@math.unl.edu

http://dx.doi.org/10.1090/S0002-9939-98-04017-9
http://dx.doi.org/10.1090/S0002-9939-98-04017-9
http://msp.org/idx/mr/98c:13022
http://msp.org/idx/zbl/0886.13006
http://dx.doi.org/10.1016/j.aim.2010.09.005
http://dx.doi.org/10.1016/j.aim.2010.09.005
http://msp.org/idx/mr/2011m:13029
http://msp.org/idx/zbl/1221.13027
http://dx.doi.org/10.1007/s00209-012-1037-5
http://dx.doi.org/10.1007/s00209-012-1037-5
http://msp.org/idx/mr/3030683
http://msp.org/idx/zbl/1278.13013
http://projecteuclid.org/euclid.ijm/1255645094
http://msp.org/idx/mr/28:126
http://msp.org/idx/zbl/0117.02701
http://dx.doi.org/10.1215/00127094-1645540
http://dx.doi.org/10.1215/00127094-1645540
http://msp.org/idx/mr/2954619
http://msp.org/idx/zbl/1249.14001
http://dx.doi.org/10.2307/2036210
http://msp.org/idx/mr/38:5762
http://msp.org/idx/zbl/0167.31201
http://msp.org/idx/arx/1404.0352
mailto:olgur.celikbas@uconn.edu
mailto:iyengar@math.utah.edu
mailto:gpiepmeyer@columbiabasin.edu
mailto:rwiegand1@math.unl.edu




PACIFIC JOURNAL OF MATHEMATICS
Vol. 276, No. 1, 2015

dx.doi.org/10.2140/pjm.2015.276.117

CONVEX SOLUTIONS TO THE
POWER-OF-MEAN CURVATURE FLOW

SHIBING CHEN

We prove some estimates for convex ancient solutions (the existence time
for the solution starts at �1) to the power-of-mean curvature flow, when
the power is strictly greater than 1

2
. As an application, we prove that in

dimension two, the blow-down of an entire convex translating solution,
namely uh D

1
h

u.h
1
1C˛x/, locally uniformly converges to 1

1C˛
jxj1C˛ as

h!1. Another application is that for the generalized curve shortening
flow (convex curve evolving in its normal direction with speed equal to a
power of its curvature), if the convex compact ancient solution sweeps the
whole space R2, it must be a shrinking circle. Otherwise the solution must
be defined in a strip region.

1. Introduction

Classifying ancient convex solutions to mean curvature flow is very important in
studying the singularities of mean curvature flow. Translating solutions arise as a
special case of ancient solutions when one uses a proper procedure to blow up the
mean convex flow near type II singular points, and general ancient solutions arise
at general singularities. Some important progress was made by Wang [2011], and
Daskalopoulos, Hamilton and Sesum [Daskalopoulos et al. 2010]. Wang proved
that in dimension nD 2, an entire convex translating solution to mean curvature
flow must be rotationally symmetric in an appropriate coordinate system, which
was a conjecture formulated explicitly by White [2000], but for n� 3 such solutions
are not necessarily rotationally symmetric.

Wang also constructed some entire convex translating solutions with level sets
neither spherical nor cylindrical in dimension greater or equal to 3. In the same
paper, Wang also proved that if a convex ancient solution to the curve shortening
flow sweeps the whole space R2, then it must be a shrinking circle — otherwise the
convex ancient solution must be defined in a strip region, and he indeed constructed
such solutions by a compactness argument. Daskalopoulos et al. [2010] showed
that apart from the shrinking circle, the so called Angenent oval (a convex ancient

MSC2010: 35J60.
Keywords: mean curvature flow, convexity, translating solution, ancient solution.
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solution of the curve shortening flow discovered by Angenent that decomposes into
two translating solutions of the flow) is the only other embedded convex compact
ancient solution of the curve shortening flow. That means that the corresponding
curve shortening solution defined in a strip region constructed by Wang is exactly
the “Angenent oval”.

The power-of-mean curvature flow, in which a hypersurface evolves in its normal
direction with speed equal to a power ˛ of its mean curvature H, is well-studied
[Andrews 1998; 2003; 2002; Schulze 2005; Chou and Zhu 2001; Sheng and Wu
2009]. Schulze [2005] called it H˛-flow. In the following, we will also call the
one dimensional power-of-curvature flow the generalized curve shortening flow.
It would be very interesting if one could classify the ancient convex solutions. In
this paper, we use the method developed in [Wang 2011] to study the geometric
asymptotic behavior of ancient convex solutions to H˛-flow. The general equation
for H˛-flow is

@F

@t
D�H˛v;

where F WM � Œ0;T /! RnC1 is a time-dependent embedding of the evolving
hypersurface, v is the unit normal vector to the hypersurface F.M; t/ in RnC1, and
H is its mean curvature. If the evolving hypersurface can be represented as a graph
of a function u.x; t/ over some domain in Rn, then we can project the evolution
equation to the .nC 1/-st coordinate direction of RnC1 and the equation becomes

ut D

p
1CjDuj2

�
div

Dup
1CjDuj2

�̨
:

Then a translating solution to the H˛-flow will satisfy the equationp
1CjDuj2

�
div

Dup
1CjDuj2

�̨
D 1;

which is equivalent to the special case � D 1 of the following:

L� .u/D
�p
� CjDuj2

� 1
˛ div

Dup
� CjDuj2

(1)

D
�
� CjDuj2

� 1
2˛
� 1

2

nX
i;jD1

�
ıij �

uiuj

� CjDuj2

�
uij(2)

D 1;(3)

where � 2 Œ0; 1�, ˛ 2
�

1
2
;1

�
is a constant, nD 2 is the dimension of R2. If u is a

convex solution of (3), then uC t , as a function of .x; t/ 2 R2 �R, is a translating
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solution to the flow

(4) ut D

p
� CjDuj2

�
div

Dup
� CjDuj2

�̨
:

When � D 1, Equation (4) is the nonparametric power-of-mean curvature flow.
When � D 0, Equation (3) is the level set flow. That is, if u is a solution of (3)
with � D 0, then the level set fuD�tg, where �1< t < � inf u, evolves by the
power-of-mean curvature.

In the following we will assume � 2 Œ0; 1�, ˛ 2
�

1
2
;1

�
, and the dimension nD 2,

although some of the estimates do hold in higher dimension. The main results of
this paper are the following theorems.

Theorem 1. Let u be an entire convex solution of (3). Let

uh.x/D h�1u.h
1

1C˛ x/:

Then, uh locally uniformly converges to

1
1C˛
jxj1C˛ as h!1:

Theorem 2. Let u� be an entire convex solution of (3). Then,

u0.x/D
1

1C˛
jxj1C˛

up to a translation of the coordinate system. When � 2 .0; 1�, if

jD2u.x/j DO.jxjˇ/ as jxj !1

for some fixed constant ˇ satisfying ˇ < 3˛� 2, then u� is rotationally symmetric
after a proper translation of the coordinate system.

Corollary 3. A convex compact ancient solution to the generalized curve shortening
flow which sweeps the whole space R2 must be a shrinking circle.

Remark 4. The condition ˛ > 1
2

is necessary for our results. One can consider the
translating solution v.x/ to (3) with � D 1 in one dimension. In fact, when ˛ � 1

2
,

the translating solution v.x/ is a convex function defined on the entire real line
[Chou and Zhu 2001, p. 28]. Then one can construct a function u.x;y/D v.x/�y,
defined on the entire plane, and u will satisfy (3) with � D 0; it is obviously not
rotationally symmetric. We can also let u.x;y/D v.x/, which is an entire solution
to (3) with � D 1, and it is not rotationally symmetric.

When the dimension is at least two, similar examples can be given: we can take
an entire rotationally symmetric solution v.x/ to (3) with n � 2 and � D 1, and
again let u.x;y/D v.x/�y (here, y is the .nC 1/-st coordinate for RnC1). It is
easy to see that u will satisfy (3) with n replaced by nC 1 and � D 0, and the level
set of u is neither a sphere nor a cylinder.
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We would also like to point out that this elementary construction can be used to
give a slight simplification of the proof of [Wang 2011, Theorem 2.1] (corresponding
to our Corollary 10 for ˛ D 1). Let v� be an entire convex solution to (3) in
dimension n with � 2 .0; 1�. Then u.x;y/D v� .x/�

p
�y will be an entire convex

solution to (3) in dimension nC1 with � D 0. Hence if one has proved the estimate
in Corollary 10 for � D 0 in all dimensions, the estimate for � 2 .0; 1� follows
immediately from the above construction. The remainder of the paper is divided
into four sections. Sections 2 and 3 contain the proof of Theorem 1 and the first
part of Theorem 2. Section 4 is devoted to the proof of Corollary 10, and the last
section completes the proof of Theorem 2.

2. Power growth estimate

In this section, we prove a key estimate, which says that any entire convex solution u

to (3) must satisfy
u.x/� C.1Cjxj1C˛/;

where the constant C depends only on the upper bound of u.0/ and jDu.0/j.
When ˛ D 1, the estimate was proved by Wang [2011, Theorem 2.1]. To apply
Wang’s method, the main difficulty is that now the speed function is nonlinear in
the curvature. We overcome this difficulty by further exploiting some elementary
convexity properties.

For any constant h> 0, we denote

�h D fx 2 Rn
W u.x/D hg;

�h D fx 2 Rn
W u.x/ < hg;

so that �h is the boundary of �h. Let � be the curvature of the level curve �h. We
have

L� .u/D
�
� Cu2



� 1
2˛
� 1

2

�
�u C

�u

� Cu2


�
(5)

� �u
1
˛
 DL0.u/;(6)

where  is the unit outward normal to �h, and u D ij uij.
Before starting the proof of our main results, we recall a well known convergence

result for the generalized curve shortening flow.

Lemma 5 [Andrews 2003, Theorems 1.3, 1.4, 1.5]. Let `t be a time-dependent
family of closed curves in R2 evolving under the generalized curve shortening flow
with ˛ > 1

3
. Suppose the initial curve `0 is convex. Then the curve converges in

finite time T to a round point P in the sense that ..1C˛/.T � t//�
1

1C˛ .`t �P / is
asymptotic to the unit circle.
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Next, we prove a lemma which will be used to control the shape of the level set
of a complete convex solution to (3).

Lemma 6. Let u be a complete convex solution of (3). Suppose that u.0/D 0 and
that the infimum inffjxj W x 2 �1g is attained at x0 D .0;�ı/ 2 �1 for some ı > 0

sufficiently small. Let D1 be the projection of �1 onto the axis fx2 D 0g. Then, D1

contains the interval .�R;R/, and when ˛ � 1, R satisfies

(7) R� C1.� log ı�C2/
˛
˛C1 ;

where C1;C2 > 0 are independent of ı; when ˛ > 1, R � C for some positive
constant C .

The proof of this lemma follows that of [Wang 2011, Lemma 2.4] with minor
modifications; the for reader’s convenience, we give some details here.

Proof. First, we prove the lemma when 1
2
<˛� 1. Suppose that near x0, �1 is given

by x2 D g.x1/. Then, g is a convex function satisfying g.0/D�ı and g0.0/D 0.
Let b > 0 be a constant such that g0.b/D 1. To prove (7), it suffices to prove

(8) b � C1.� log ı�C2/
˛
˛C1 :

For any y D .y1;y2/ 2 �1, where y1 2 Œ0; b�, as in the proof of [Wang 2011,
Lemma 2.4] we have

(9) u .y/�

p
1Cg02

y1g0�y2

;

where  is the unit normal of the sublevel set �1. Since L0u� 1, we have

(10)
g00

.1Cg02/
3
2

.1Cg02/
1

2˛

.y1g0�y2/
1
˛

� �u
1
˛
 � 1;

where � is the curvature of the level curve �1. Hence,

g00.y1/� .1Cg02/
3
2
� 1

2˛ .y1g0�y2/
1
˛(11)

� 10y
1
˛

1
g0C 10ı(12)

where y2 D g.y1/ and g0.y1/� 1 for y1 2 .0; b/. The inequality from (11) to (12)
is trivial when y2 � 0. When y2 � 0, since jy2j � ı, we have either y1g0 � ı or
y1g0 > ı. For the former we have

.y1g0�y2/
1
˛ � .2ı/

1
˛ � 4ıI

for the latter, since g0.y1/� 1, we have

.y1g0�y2/
1
˛ � .2y1g0/

1
˛ � 4y

1
˛

1
g0:
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We consider the equation

(13) �00.t/D 10t
1
˛ �0C 10ı

with initial conditions �.0/D�ı and �0.0/D 0. Then for t 2 .0; b/, we have

(14) �0.t/D 10ıe
10˛
˛C1

t
˛C1
˛

Z t

0

e�
10˛
˛C1

s
˛C1
˛

ds:

Since
R1

0 e�
10˛
˛C1

s
˛C1
˛

ds is bounded above by some constant C , we have

1� �0.b/D 10ıe
10˛
˛C1

b
˛C1
˛

Z b

0

e�
10˛
˛C1

s
˛C1
˛

ds(15)

� C1ıe
10˛
˛C1

b
˛C1
˛
;(16)

from which (8) follows.
When ˛ > 1, the situation is different. First, we introduce a number a such that

g0.a/D 1
2

. Then, we can follow the proof above until (11). For (12) the inequality
becomes

g00.y1/� 10y
1
˛

1
g0C 10ı

1
˛ ;

for y1 2 Œa; b�. Now (16) becomes

e�
10˛
˛C1

b
˛C1
˛
�0.b/� e�

10˛
˛C1

a
˛C1
˛
�0.a/� C1ı

1
˛ :

Then, it is easy to see that when ı is small, b � C , for some fixed constant C . �

Remark 7. When ˛� 1, it follows from Lemma 6 that when ı is sufficiently small,
by convexity and in view of Figure 1, we have that �1 contains the shadowed
region. Then it is easy to check that �1 contains an ellipse

(17) E D

�
.x1;x2/

ˇ̌̌̌
x2

1�
R
6

�2 C
�
x2�

7ı��5ı
12

�2�
ı�Cı

4

�2 D 1

�
;

where ı� is a positive constant such that u.0; ı�/D 1 and R is defined in Lemma 5.
When ˛ > 1, if ı� is very large, in the part fx W u.x/� 1; x1 � 0g, by convexity

we can find an ellipse which has the length of short axis bounded from below
and the length of long axis very large, and if we let the ellipse evolve under the
generalized curve shortening flow, it will take time more than 1 for it to converge
to a round point. When ı� is less than some fixed constant, we need to consider
two cases.

Case 1: The set fu� 1g is not compact. In this case when we project fu.x/D 1g

to the axis fx2 D 0g, and denote the leftmost and rightmost points as .�l; 0/ and
.r; 0/, respectively. Then either l or r is very large, which guarantees that one can
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.�R;�ı/ .0;�ı/ .R;�ı/

.0; ı�/

O

�1

Figure 1. �1 contains the shadow part.

still find an ellipse inside fx W u.x/� 1; x1 � 0g (or fx W u.x/� 1; x1 � 0g) with
the similar property as before.

Case 2: The set fu � 1g is compact. For this case, we will always assume 0 is
the minimum point of u, and u.0/D 0. We claim that when ı is very small, for
the purpose of the proof of Corollary 10, we can assume one of l or r is very
large. Indeed, if the claim is not true, then we have a sequence of functions ui

such that fui � 1g has width bounded by some constant independent of i , and
dist.0; fui � 1g/! 0 as i !1. In view of the following proof of Corollary 10,
we can assume ui satisfies (3) with �i ! 0. Then by passing to a subsequence, we
can assume that fui D 1g converges to a convex curve C0 in hausdorff distance.
Let C0 evolve under the generalized curve shortening flow; by Lemma 5, it will
converge to a point P , but by the above discussion we see that P is on C0, which is
clearly impossible. Once l or r is very large, we can find an ellipse with the similar
property as in the case 1.

Remark 8. One can also establish a similar lemma in higher dimensions, which
says that D1 (a convex set with dimension greater than 1) contains a ball centered
at the origin with radius

R� Cn.� log ı�C /
˛
˛C1 ;

where Cn is a constant depending only on n and C is a positive constant independent
of ı. The proof can be reduced to the two dimensional case; for the details, refer
to the proof of [Wang 2011, Lemma 2.6].

Lemma 9. Let u be a complete convex solution of (3). Suppose u.0/D 0, ı and ı�

are defined as in Lemma 6 and Remark 7. If ı and ı� are sufficiently small, then u

is defined in a strip region.
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When ˛ D 1, this lemma is proved by Wang [2011, Corollary 2.2]. The proof
of Lemma 9 is based on a careful study of the shape of the level set of u. Before
giving the proof, we will give an important corollary first.

Corollary 10. Let u be an entire convex solution of (3) in R2, then

(18) u.x/� C.1Cjxj1C˛/;

where the constant C depends only on the upper bound for u.0/ and jDu.0/j.

Proof. The proof of this Corollary follows the proof of [Wang 2011, Theorem 2.1].
We only record some necessary changes here. First, the rescaling uh.x/D

1
h
u.h

1
2 x/

used that proof should be replaced by uh.x/D
1
h
u.h

1
1C˛ x/. Note that uh solves (3)

with � D �h! 0 as h!1. Second, the ellipse used in that proof when applying
the comparison argument should be replaced by the one discussed in Remark 7. �

Proof of Lemma 9. By a rotation of coordinates we may assume that the axial
directions of E in Remark 7 coincide with those of the coordinate system. Let Mu

be the graph of u, which consists of two parts, Mu DMC[M�, where

MC D f.x;u.x// 2 R3
W @x2

u� 0g and M� D f.x;u.x// 2 R3
W @x2

u� 0g:

Then M˙ can be represented as the graphs of functions g˙ of the form x2 D

g˙.x1;x3/, for .x1;x3/ 2 D where D is the projection of Mu onto the plane
fx2 D 0g. The functions gC and g� are concave and convex, respectively, and we
have x3 D u.x1;g

˙.x1;x3//. Set

(19) g D gC�g�:

Then g is a positive, concave function on D, vanishing on @D. For any h> 0 let
gh.x1/D g.x1; h/, g˙

h
.x1/D g˙.x1; h/, and DhDfx1 2R1 W .x1; h/2Dg. Then

gh is a positive, concave function in Dh, vanishing on @Dh, and DhD .�ah; ah/ is
an interval containing the origin. Let bh D gh.0/. We consider the case � D 0 first.

Claim 1: Suppose h is large, g1.0/ D ı
�C ı is small, bh � 4, and ah; ah � bh.

Then,

ah �
1

1000

h

b˛
h

for ˛ � 1 and ah �
1

1000

h1=.2˛�1/

b
1=.2˛�1/

h

for ˛ > 1:

Proof. Without loss of generality, we assume ah � ah. Let Uh D�h \ fx1 > 0g.
By the convexity of Uh and the assumption ah; ah � bh, we have as; as �

1
2
bh for

all s 2
�

1
2
h; h

�
. Hence by the concavity of g,ˇ̌̌

d

dx1
gs.0/

ˇ̌̌
� 2 for s 2

�
1
2
h; h

�
;
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`1

`2

�s

EO

Figure 2. �s \fx1 > 0g is trapped between two lines.

which means the arclength of the image of �s \fx1 > 0g under the Gauss map is
bigger then �

6
. Notice that �1 contains E, which was defined in Remark 7. When

ı and ı� are very small, E is very thin and long. The center of E is very close to
the origin; in fact, for our purpose we can just pretend E is centered at the origin.
By convexity of �h and in view of Figure 2, we see that �s \fx1 > 0g is trapped
between two lines `1 and `2, and the slopes of `1 and `2 are very close to 0 when
E is very long and thin. Then it is clear that the largest distance from the points on
�s \fx1 > 0g to the origin can not be bigger than 10ah. By convexity of u,

u .x/�
h

20ah
for x 2 �s \fx1 > 0g:

Since �s \ fx1 > 0g evolves under the generalized curve shortening flow, when
˛ � 1 we have the estimate

d

ds
jUsj D

Z
�s\fx1>0g

�˛ d�(20)

D

Z
�s\fx1>0g

u
1
˛
�1

 � d�(21)

�
1

50

�
h

ah

�1
˛
�1�

6
;(22)

where from (20) to (21) we used the equation �u
1
˛
 D 1. The claim follows by the

simple fact that
3

2
bhah � jUhj �

1

50

�
h

ah

�1
˛
�1�

6

h

2
:

When ˛ > 1, let ls denote the arclength of �s \ fx1 > 0g. Then, by the above
discussion, it is not hard to see that ls � C ah. Then by a simple application of
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Jensen’s inequality,

d

ds
.jUsj/D

Z
�s\fx1>0g

�˛ d�

D ls

Z
�s\fx1>0g

�˛
1

ls
d�

� ls

�Z
�s\fx1>0g

�

ls
d�

�̨
� C l1�˛

s � C a1�˛
h :

Again by the simple fact that 3
2
bhah � jUhj, we can complete the proof in the same

way as in the previous case. �

From here until (55) we will prove the lemma for the case 1
2
< ˛ � 1, and then

we will give the details for the case ˛ > 1.

Claim 2: Let hk D 2k , ak D ahk
, bk D bhk

, gk D ghk
, and Dk DDhk

. Then,

(23) gk.0/� gk�1.0/CC02�k=C for all k large;

where C0 is a fixed constant and C depends only on ˛.
Lemma 9 follows from Claims 1 and 2 in the following way. Let the convex

set P be the projection of the graph of g onto the plane fx3 D 0g. By Claim 2 and
the fact that P contains x1-axis (it follows from Claim 1), P must equal I �R for
some interval

I �
�
0; lim

k!1
gk.0/

�
:

Then, by (19), Mu is also contained in a strip region as stated in Lemma 9.

Proof of Claim 2. To prove (23), observe that since g is positive and concave,

gk.0/� hkg0.0/� 2k.ıC ı�/:

Hence, we can start from sufficiently large k0, satisfying gk0
.0/� 1 and

(24) gk0
CC0

1X
jDk0

2�j=C
� 2:

Suppose (23) holds up to k. Then by (24), we have gk.0/� 2. By the concavity
of g and and the fact that g � 0, we have gkC1.0/� 2gk.0/� 4. By Claim 1, we
have akC1 �

1
10000

hk . To prove (23) at kC 1,

Lk D

n
x1 2 R1

W �
C1

4
hk < x1 <

C1

4
hk

o
; C1 D

1

10000
;(25)

Qk DLk � Œhk ; hkC1��D:(26)
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Since g > 0 and g is concave, we have the estimates

g.x1; h/� 8;(27)

j@hg.x1; h/j �
16

hk
;(28)

j@x1
g.x1; h/j �

16

hk
for all .x1; h/ 2Qk :(29)

Let X˙ D f.x1; h/ 2Qk W j@x1x1
g˙.x1; h/j � h

�ˇ

k
g, where ˇ is chosen such that

1
˛
< ˇ < 2. For any h 2 .hk ; hkC1/, by (29),

jfx1 2Lk W .x1; h/ 2 XCgj h
�ˇ

k
�

Z
Lk

@x1x1
gC(30)

�

Z
Lk

@x1x1
g(31)

� 2 sup
Lk

j@x1
gj(32)

�
C

hk
:(33)

So, jXCj � C h
ˇ

k
. Similarly, we have jX�j � C h

ˇ

k
.

For any given y1 2Lk , let X˙y1
D XC\fx1D y1g. Then, by the estimate above,

there is a set zL˙ �Lk with measure

j zL˙j � C h
ˇ=2

k
;

such that for any y1 2Lk �
zL˙, we have jX˙y1

j � h
ˇ

k
=2. When k is large, we can

always find y1 D C hˇ=2 2Lk �
zL˙, where the constant C is under control. For

such y1, we have

(34) g.y1; hkC1/�g.y1; hk/

D gC.y1; hkC1/�gC.y1; hk/Cjg
�.y1; hkC1/�g�.y1; hk/j:

In the following, we will estimate gC.y1; hkC1/�gC.y1; hk/. The estimate for
jg�.y1; hkC1/�g�.y1; hk/j is analogous. By the same reason as that for [Wang
2011, §2.21], we have

(35)
�
.@hgC/�1 D .1C "1/u ;

@x1x1
gC D .1C "2/�:

Then, by the equation u
1
˛
 � D 1, we have

(36) @hgC
h
.y1; h/� C.@x1x1

gC/˛ � C h
�ˇ˛

k
:
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Now,

gC.y1; hkC1/�gC.y1; hk/D

Z hkC1

hk

@hgC.y1; h/ dh(37)

D

Z
XCy1

@hgC.y1; h/ dhC

Z
Œhk ;hkC1��XCy1

dh(38)

� C1h
ˇ
2

k

1

hk
CC2h

�ˇ˛

k
hk :(39)

Recall that ˇ satisfies 1
˛
< ˇ < 2, and we have � WDminf1� ˇ

2
; ˇ˛�1g> 0. From

(34) and (39), we have the estimate

g.y1; hkC1/�g.y1; hk/�
C

h
�

k

;

for some fixed constant C . Then, we will assume @x1
g.0; hk/ < 0 (otherwise we

can replace x1 by �x1); therefore, by the above estimate,

g.y1; hkC1/� g.y1; hk/C
C

h
�

k

� g.0; hk/C
C

h
�

k

:

Since g is positive, concave, and defined on Œ0; NakC1�, with NakC1 � C hkC1,

gkC1.0/

gkC1.y1/
�

NakC1

NakC1�y1

� 1CC h
ˇ
2
�1

kC1
:

Therefore, by the two estimates above,

gkC1.0/� gk.0/CC h
��

k
;

which implies (23) immediately. �

For the proof of Lemma 6 when � 2 .0; 1�, we need to use (5) and (6). In fact,
by (6) we see that �h is moving at a velocity greater than or equal to its curvature
to the power ˛. Hence, we still have the lower bound of d

ds
.jUsj/ as in the proof

of Claim 1. Then we can follow the above proof for the case � D 0 until (37),
replacing the equalities “D” in (20) and (21) with inequalities “�”. As in [Wang
2011], when � D 0, in order to control the second integral in (38) we used the
equation �u

1=˛
 D 1. But when � ¤ 0, by (28) and (35) we have

(40) u � C.@hgC/�1
� C hk :

Hence, we may assume that u is as large as we want, which means that in formula
(5), the only important extra term is

.� Cu2
 /

1
2˛
� 1

2
�u

� Cu2


:
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To handle this term, we divide the integral (39) into three parts:

gC.y1; hkC1/�gC.y1; hk/D

Z hkC1

hk

@hgC.y1; h/ dh(41)

D

�Z
I1

C

Z
I2

C

Z
I3

�
@hgC.y1; h/ dh;(42)

where

I1 D XCy1
;(43)

I2 D

�
h 2 Œhk ; hkC1�� I1 W .� Cu2

 /
1

2˛
� 1

2
�u

� Cu2


�
1

2

�
;(44)

I3 D Œhk ; hkC1�� I1[ I2:(45)

For the first integral, we can do exactly the same thing as we have done from (38)
to (39), namely, Z

I1

@hgC.y1; h/ dh�
C

hk

h
ˇ
2

k
D C h

ˇ
2
�1

k
:

Note that the power ˇ
2
� 1 is a negative number.

Then we estimate the second integral, note that when .y1; h/ 2 I2, we have

.� Cu2
 /

1
2˛ �u �

1
2
:

By (40) u is large, so we have �u
1
˛
 �

1
4

, hence by (35) we have

(46) @hgC � C.@x1x1
gC/˛ � C h

�˛ˇ

k
:

Therefore, Z
I2

@hgC.y1; h/ dh� C h
�ˇ˛

k
hk D C h

1�ˇ˛

k
:

Note that 1�ˇ˛ is a negative number. Observe that we can assume I2 is on the
right hand side of I3, since by the concavity of gC we know that when h� inf I2,
@hgC.y1; h/ will satisfy the estimate (46).

For the third integral, notice that by the same argument as that for [Wang 2011,
§2.24],

(47)
�

u .y1; h/D ux2
.1C "1/;

u .y1; h/D ux2x2
.1C "2/C "3ux2

:

Hence, by (47),

(48) .� Cu2
x2
/

1
2˛
� 1

2
�ux2x2

� Cu2


�
1
3
:
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Since � 2 Œ0; 1� and u is large, we have

(49) u00 D ux2x2
�

1
4
.u0/3�

1
˛ :

By differentiating the equation u.x1;g
C.x1; h//D h twice with respect to h,

(50) .gC/00 D�u00.gC/03 � �1
4
.gC/0

1
˛
�3.gC/03 D�1

4
.gC/0

1
˛ :

Note that (50) is for points with corresponding h 2 I3. By the discussion after (46)
we only need to estimate Z

ŒhkCh
ˇC2

4
k

;inf I2�

.gC/0 dh:

Therefore, by (50) and noticing that .gC/0 � 0,

(51) ˛
˛�1

.gC/0
˛�1
˛ .h/� ˛

˛�1
.gC/0

˛�1
˛ .hk/�

1
4

ˇ̌
I3\ Œhk ; h�

ˇ̌
:

Hence, when h 2 Œh
.ˇC2/=4

k
; inf I2�,

(52) .gC/0.h/�
�
.gC/0

˛�1
˛ .hk/CC.h� hk/

� ˛
˛�1 :

Finally,Z
ŒhkCh

ˇC2
4

k
; inf I2�

.gC/0 dh�

Z hkC1

hk

�
.gC/0

˛�1
˛ .hk/CC.h� hk/

� ˛
˛�1 dh(53)

�
˛�1

2˛�1

�
.gC/0

˛�1
˛ .hk/CC.h� hk/

� ˛
˛�1
C1
ˇ̌̌2hk

hk

(54)

� C.gC/0
2˛�1
˛ � C h

1�2˛
˛

k
:(55)

Note that 1�2˛
˛

< 0 when ˛ > 1
2

, so we can complete the proof as in the � D 0 case.
When ˛ > 1, we need to choose the constants and exponents more carefully.

First of all, in view of the Lemma 9 for ˛ > 1, in order to have properties (35) and
(47), we need only to replace the number 2 in (24) with some number much smaller
than the constant C in Lemma 9. The definition of Lk in (25) should be modified to

Lk D

n
x1 2 R1

W �
C1

4
h

1
2˛�1

k
< x1 <

C1

4
h

1
2˛�1

k

o
; C1 D

1

10000
;

and the definition of Qk in (26) remains the same. It is easy to see that we still
have the estimates (27)–(28), but (29) becomes

j@x1
g.x1; h/j � 16h

� 1
2˛�1

k
for all .x1; h/ 2Qk :

Then for the definition of

X˙ D f.x1; h/ 2Qk W j@x1x1
g˙.x1; h/j � h

�ˇ

k
g;
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we need to choose the exponent ˇ so that 1
˛
< ˇ < 2

2˛�1
. By doing the same

computation as (30)–(32),ˇ̌
fx1 2Lk W .x1; h/ 2 XCg

ˇ̌
h
�ˇ

k
�

Z
Lk

@x1x1
gC � C h

� 1
2˛�1

k
:

Hence,

jXCj � C h
1Cˇ� 1

2˛�1

k
and jX�j � C h

1Cˇ� 1
2˛�1

k
:

Then, by the above estimate there is a set zL˙ �Lk with measure

j zL˙j � C h
ˇC"� 1

2˛�1

k

such that for any y1 2 Lk �
zL˙, we have jX˙y1

j � h1�"
k

, where " is chosen such
that ˇC " < 2

2˛�1
. Now, (35)–(38) remain the same, and (39) becomes

gC.y1; hkC1/�gC.y1; hk/� C1h1�"
k

1

hk
CC2h

�ˇ˛

k
hk :

By the choice of ˇ, all the exponents of hk are negative. We do not need to change
anything from (40) to (49). Finally from (50) we need to replace the computation
in the case ˛ � 1 with the following computation.

First, we have .gC/00 � �1
4
.gC/0

1
˛ � �

1
4
.gC/0, and we only need to boundZ

ŒhkCh
1�"=2

k
; inf I2�

.gC/0 dh:

Note that .gC/0 � 0. By integrating the above differential inequality, we have

.gC/0.h/� .gC/0.hk/e
� 1

4
jI3j � .gC/0.hk/e

1
8
.h�hk/

when h 2 Œhk C h
1�"=2

k
; inf I2�. Therefore, we haveZ

ŒhkCh
1�"=2

k
; inf I2�

.gC/0 dh�

Z hkC1

hk

.gC/0.hk/e
1
8
.h�hk/ dh

� C.gC/0.hk/�
C

hk
: �

3. Blow-down of an entire convex ancient solutions
converges to a power function

In this section we prove that the blow-down of an entire convex solution to (3)
converges to a power function.

Proof of Theorem 1 and the first part of Theorem 2. First, we prove that there is a
subsequence of uh converging to 1

1C˛
jxj1C˛, where uh.x/D h�1u.h

1
1C˛ x/.



132 SHIBING CHEN

By adding a constant we may suppose u.0/D 0. Let xnC1D a �x be the equation
of the tangent plane of u at 0. By Corollary 10 and the convexity of u we have

a �x � u.x/� C.1Cjxj1C˛/:

Hence,
h�

˛
1C˛ a �x � uh.x/� C

�
1
h
Cjxj1C˛

�
:

By convexity, Duh is locally uniformly bounded. Hence, uh subconverges to a
convex function u0 which satisfies u0.0/D 0, and

0� u0.x/� C jxj1C˛:

It is easy to check that u0 is an entire convex viscosity solution to (3) with � D 0,
and the comparison principle holds on any bounded domain.

Now we will prove that fu0.x/ D 0g D f0g. In fact, if fx W u0.x/ D 0g is a
bounded set, then fu0.x/D hg is a closed, bounded convex curve which evolves
under the generalized curve shortening flow; from [Andrews 1998] it follows that
fu0.x/D0gDf0g. If fu0.x/D0g contains a straight line, say the line f.t; 0/ W t 2Rg,
then by convexity, u is independent of x1, which is impossible. So we only need to
rule out the possibility that fu0.x/D 0g contains a ray but no straight lines. In this
case, for fixed h> 0, we can find an ellipse E inside fu0.x/ < hg, with the short
axis bounded from below by a constant depending only on h and with the long axis
as long as we want (one only needs to look at the asymptotic cone of fu0.x/D hg),
but since fu0.x/ D hg evolves under the generalized curve shortening flow and
E � fu0.x/� hg, this is impossible by comparison principle.

Then since fu0.x/D 0g D f0g, �1;u0
D fu0.x/D 1g is a bounded convex curve,

and the level set fu0.x/ D �tg evolves under the generalized curve shortening
flow, with time t 2 .�1; 0/. From [Andrews 1998; 2003] we have the following
asymptotic behavior of the convex solution u0 of L0uD 1:

(56) u0.x/D
1

1C˛
jxj1C˛C'.x/;

where '.x/D o.jxj˛C1/ for x¤ 0 near the origin. In fact, if the initial level curve is
in a sufficiently small neighborhood of circle, by Lemma 13, j'.x/j � C jxj1C˛C�

for some small positive �, where C is a constant depending only on the initial
closeness to the circle. Hence, given any � > 0, for sufficiently small h0 > 0,

B.1��/r .0/��h0;u0
� B.1C�/r .0/;

where r D ..1C˛/h0/
1

1C˛ . Hence, there is a sequence hm!1 such that

B.1� 1
m
/rm;i

.0/��hm;u � B.1C 1
m
/rm;i

.0/;

where
rm;i D ..1C˛/ihm/

1
1C˛ ; i D 1; : : : ;m:
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Then uhm
subconverges to 1

1C˛
jxj1C˛.

Since u0 is an entire convex solution to L0uD 1 (we still use the notation u0,
but it means an arbitrary entire convex solution), from the above argument, we can
find a sequence hm such that

u0hm
.x/D

1

hm
u0

�
h

1
1C˛
m x

�
locally uniformly converges to 1

1C˛
jxj1C˛. Hence, the sublevel set � 1

1C˛
;u0hm

satisfies
B1��m

.0/�� 1
1C˛

;u0hm
� B1C�m

.0/;

where �m! 0 as m!1. By the discussion below (56),

u0hm
.x/D 1

1C˛
jxj1C˛C'.x/;

where j'.x/j � C jxj1C˛C� for some fixed small positive �, and the constant C is
independent of m. Replacing x by h

�1=.1C˛/
m x in the asymptotic formula above,

u0.x/D
1

1C˛
jxj1C˛C hm'

�
h
� 1

1C˛
m x

�
;

where for any fixed x, hm'.h
� 1

1C˛
m x/! 0. Hence u0.x/ D

1
1C˛
jxj1C˛. So we

have proved Theorem 1 and the first part of Theorem 2. �

4. One-dimensional entire convex ancient solution
must be a shrinking circle

This section is devoted to the proof of Corollary 3, which is completed by combining
the following lemma (corresponding to [Wang 2011, Lemma 4.1]) and Theorem 2.

Lemma 11. Let � be a smooth, bounded, convex domain in R2. Let u be the
solution of (3) with � D 0, vanishing on @�. Then for any constant h satisfying
inf� u < h < 0, the level set �h;u D fu D hg is convex. Moreover, log.�u/ is a
concave function.

Proof. Observe that ' WD � log.�u/ satisfies

jD'j
1
˛
�1

2X
i;jD1

�
ıij �

'i'j

jD'j2

�
'ij D e

1
˛
':

Since '.x/!C1 as x! @�, [Kawohl 1985, Theorem 3.13] implies that ' is
convex. �

With the previous lemma and [Wang 2011, Lemma 4.4], we know that any
convex compact ancient solution to the generalized curve shortening flow can be
represented as a convex solution u to (3) with � D 0, and if the solution to the flow
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sweeps the whole space, then the corresponding u will be an entire solution. Thus,
Theorem 2 implies Corollary 3 immediately.

Remark 12. We can also use the method in [Wang 2011, Section 4] to construct
a rotationally nonsymmetric convex compact ancient solution for generalized curve
shortening flow with power ˛ 2

�
1
2
; 1
�
. Indeed, for mean curvature flow, a rota-

tionally nonsymmetric convex compact ancient solution is constructed in Lem-
mas 4.1–4.4 of that reference. By examining the proofs of these lemmas, we can
see that they work well for the generalized curve shortening flow considered here.

5. Two-dimensional entire convex translating solution

In this section, by using the previous results and a delicate iteration argument, we
prove that under some extra condition on the asymptotic behavior of the solution at
infinity the translating solution must be rotationally symmetric.

First of all, we would like to point out that instead of using Gage and Hamilton’s
exponential convergence of the curve shortening flow [1986], we need to use the
corresponding exponential convergence for the generalized curve shortening flow
and we will state it as a lemma, corresponding to [Wang 2011, Lemma 3.2].

Lemma 13. Let f`tg be a convex solution to the generalized curve shortening flow
with initial curve f`0g uniformly convex. Suppose f`0g is in the ı0-neighborhood of
a unit circle, f`tg shrinks to the origin at t D 1

1C˛
. Let

Q̀
t D .1� .1C˛/t/

� 1
1C˛ `t

be the normalization of `t . Then Q̀t is in the ıt -neighborhood of the unit circle
centered at the origin,

Q̀
t �Nıt

S1;

with
ıt � Cı0

�
1

1C˛
� t
��

for some small positive constant �.

Remark 14. Exponential convergence of the standard curve shortening flow (when
˛ D 1) was proved by Gage and Hamilton [1986]. For the general case (when
˛ > 1

3
), as discussed in the following proof, Gage and Hamilton’s method combined

with Andrews’ estimates [1998, Propositions II1.1 and II1.2] can still be used to
prove the corresponding exponential convergence result.

Proof. The proof of Lemma 13 is similar to the proof of [Wang 2011, Lemma 3.2].
Since the initial curve `0 is uniformly convex and close to a unit circle, by [Andrews
1998, Propositions II1.1 and II1.2], the curvature of Q̀t is bounded from below and
from above by some constant depending only on ı0, when t 2

�
1

4˛C4
; 1

2˛C2

�
.
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Hence the evolution equation for Q̀t is uniformly parabolic. Therefore, we can apply
Schauder’s estimates safely for ˛ > 1

2
, as in [Wang 2011], which says that

k Q̀t �S1
k

C k � Cı0 for t 2
�

1
4˛C4

; 1
2˛C2

�
:

Although the constant C will depend on the lower and upper bounds of the curvature
of the initial curve, it is not a problem for our purpose, since when we blow down
the solution for � D 0, the norm of the gradient Duh on the curve fuh.x/ D 1g

approaches 1.
By the equation �u

1
˛
 D 1, we see that the curvature � is also very close to 1

on that curve. For the exponential decay rate of the derivative of curvature, one
can imitate the proof in [Gage and Hamilton 1986, §§5.7.10–5.7.15], and our
corresponding estimate will be j�0.�/j �Cı0e��� for some small positive number �,
where � D� 1

1C˛
log
�

1
1C˛
� t
�
. Indeed, in the case ˛ > 1, this is done by Chen and

Huang [Huang 2011, Corollary 3.2], and it is easy to check that their computation
also works for the case 1

3
< ˛ < 1 by taking ` small enough. This estimate

immediately implies our lemma. �

In the following we will consider the case when � D 1 and ˛ > 1. By translating
and adding some constant we can assume u.0/D inf u. Let

uh.x/D
1

h
u.h

1
1C˛ x/:

Then uh satisfies the equation L�uh D 1 with � D h�
2˛

1C˛ . By Theorem 1, uh

converges to 1
1C˛
jxj1C˛, and the level set � 1

1C˛
;uh

converges to the unit circle as
h!1.

Lemma 15 [Wang 2011, Lemma 3.3]. The function u satisfies

(57) u.x/D 1
1C˛
jxj1C˛CO.jxj1C˛�2˛ˇ/;

where ˇ is a constant, chosen such that 1
2˛
< ˇ <min

˚
1; 1C˛

2˛

	
.

Proof. For any given small ı0 > 0, take h sufficiently large such that

(58) � 1
1C˛

;uh
�Nı0

.S1/

for the unit circle S1 with center p0. Note that when h is large, ı0 is very close
to 0. Then we will prove the following claim:

Claim 3: For small fixed � ,

(59) ��;uh
� ..1C˛/�/

1
1C˛ Nı�

�
.1C a0

�
/

1
1C˛S1

�
with

(60) ı� � C1.�/�
ˇ
CC2ı0�

�;
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where � is a small positive constant, the constants C1 and C2 are independent of ı0
and h, and C2 is also independent of � . Let u0 be the solution of

L0.u/D 1 in � 1
1C˛

;uh
;

satisfying
u0 D uh D

1
1C˛

on @� 1
1C˛

;uh
;

where a0 D jinf u0j and the center of

.1C a0

�
/

1
1C˛S1

is the minimum point of u0 multiplied by the factor ..1C˛/�/�
1

1C˛ .

Proof of Claim 3. We only need to prove that

(61) dist
�
.1C˛/

1
1C˛ .� C a0/

1
1C˛S1; ��;u

�
� C1.�/�

ˇ
CC2ı0�

1
1C˛
C�;

where � is some small positive constant and C2 is independent of � . By Theorem 1
we know that uh converges to 1

1C˛
jxj1C˛ uniformly on any compact subset of R2:

Then by the convexity of uh, we have that jDuhj is bounded above and below by
some constants depending on �0 for large h when

x 2
˚
x 2� 1

1C˛
;uh
W �0 � uh <

1
1C˛

	
:

Hence, by the growth condition for D2u in Theorem 2, we have �.uh/ � C�ˇ;

where C is a constant depending on �0. Therefore, we have

�.uh/
1=˛
 � 1�C�ˇ on

˚
x 2� 1

1C˛
;uh
W � � uh <

1
1C˛

	
;

where C depends on �0. Let

Qu0 D .1�C�ˇ/˛.u0�
1

1C˛
/C 1

1C˛
I

then
L0. Qu0/D 1�C�ˇ in � 1

1C˛
;uh

with
Qu0 D uh D

1
1C˛

on @� 1
1C˛

;uh
:

Now by the comparison principle, ��;u0
���;uh

���; Qu0
, and by the asymptotic

behavior of u0,

��;u0
�N�

�
.� C a0/

1
1C˛S1

�
and ��;Qu0

�N�
�
.� C a0�C�ˇ/

1
1C˛S1

�
;

where � D Cı0.� C a0/
�. Let

`1 D .� C a0/
1

1C˛S1 and `2 D .� C a0�C�ˇ/
1

1C˛S1;
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both centered at p1, which is the minimum point of u0. Hence

(62) dist..� C a0/
1

1C˛S1; ��;uh
/� dist.`1; `2/CCı0.� C a0/

1
1C˛
C�;

where dist.`1; `2/ can be bounded by C1.�/�
ˇ; hence (60) follows from the above

discussion. �

Now, we will use an iteration argument to prove the following claim, which will
enable us to simplify (59) and (60).

Claim 4: a0 � C�ˇjlog.�/j

Proof. We fix a large constant A such that fu
A=�
D

1
1C˛
g is very close to a unit

circle. Let u0;�k solve L0u D 1 with boundary condition u D �k on fuh D �
kg.

Denote ak D jinf u0;�k j. From the proof of Claim 3, we see that

fu0 < �g � fu0;� < �g � f Qu0 < �g;

by the comparison principle, we have inf u0 < inf u0;� < inf Qu0. So by the construc-
tion of Qu0 and a simple computation, we have a0 � a1 � inf Qu0 � inf u0 � C�ˇ.
When �k �

A
h

, we can iterate this argument for u0;�k and u0;�kC1 by rescaling
them to

1
1C˛

��ku0;�k

�
.1C˛/

1
1C˛ �

k
1C˛ x

�
and 1

1C˛
��ku0;�kC1

�
.1C˛/

1
1C˛ �

k
1C˛ x

�
;

respectively. After rescaling back, we have ak �akC1 �C�ˇ. Note that the choice
of A and the condition �k �

A
h

ensure the uniform gradient bound needed in the
above argument. Let k0 be an integer satisfying �k0 �

A
h
� �k0C1. After k0 steps

we stop the iteration, and notice that

fuh D
A
h
g D h�

1
1C˛ fuDAg

is contained in a circle with radius C h�
1

1C˛ for some constant C . Hence it takes
at most time C h�1 D C�

1C˛
2˛ for fuh D

A
h
g to shrink to a point. Claim 4 follows

from the above discussion. �

By omitting the lower order term we can rewrite (59) and (60) as

��;uh
� ..1C˛/�/

1
1C˛ Nı� .S

1/

with

(63) ı� � C1.�/�
ˇ
CC2ı0�

�:

If we take � small such that C2�
� �

1
4

, then (63) becomes

(64) ı� � C1.�/�
ˇ
C

1
4
ı0:
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Now we can carry out an iteration argument similar to that in [Wang 2011]. We
start at the level 1

1C˛
��k0 for some sufficient large k0. Let

�k D �
k

1C˛ � 1
1C˛

��k;u and �k D @�k :

Note that �k converges to a unit circle as k !1. Suppose that �k is in the ık
neighborhood of S1 centered at yk , where ık!0 as k!1 and yk is the minimum
point of the solution of L0uD 1 in �k with uD 1

1C˛
on �kC1. By (64) we have

(65) ık�1 � C1.�/�
.k�1/ 2˛ˇ

1C˛ C
1
4
ık

for k D k0; k0C 1; : : : . Then we have

(66) �j �Nıj .S
1/

with

(67) ıj � C�j 2˛ˇ
1C˛

It follows that

(68) � 1
1C˛

��j;u �NQıj
.�
�j

1C˛S1/

with

(69) Qıj � C�
2˛ˇ�1

1C˛
j;

where �
�j

1C˛S1 is centered at zj D �
�j

1C˛ yj . From Lemma 13 and (64), it is not
hard to see that

(70) jzj � zj�1j � C�
2˛ˇ�1

1C˛
j:

Let z0 D limj!1 zj . Then

(71) jzj � z0j � C�
2˛ˇ�1

1C˛
j;

which means that in (68) we can assume the circle is centered at z0 by changing
the constant C a little bit. In fact when we choose different � , the corresponding z0

will not change, so we can assume z0 D 0. Hence, for hD 1
1C˛

��j,

�h;u �Nı
�
.1C˛/

1
1C˛ h

1
1C˛S1

�
;

where

(72) ı � C h
1�2˛ˇ

1C˛

and S1 is centered at the origin. By choosing different � , we see that the estimate
holds for all large h. Lemma 15 follows from the above estimates. �
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Remark 16. For the mean curvature flow (when ˛ D 1), I learned the proof
of Claim 4 from Professor Xu-Jia Wang. Indeed, in this case one can do it as
follows. Let vk solve L0w D 1 with boundary condition w D �k on fuh D �

kg,
for k D 1; 2; : : : . Let ak D jinf vk j. Then by [Wang 2011, Lemma 3.1], we have
a0� a1 � C� . By rescaling invariance, we can iterate the argument to show that
ak � akC1 � C� , provided �k �

1
h

. Hence, we stop the iteration at k0 when
�k0 �

1
h
> �k0C1. Notice that

fuh � �
k0g D h�

1
2 fuD h�k0g � h�

1
2 fu� 1

�
g:

So, it is easy to see that it takes at most time C� D C
h

for fuh � �
k0g to shrink to a

point, namely, ak0
� C� . Therefore,

a0 D ak0
C

k0�1X
iD0

ai � aiC1 � C k0� � C� jlog � j:

In order to finish the proof of Theorem 2 we need to use the following fundamental
Liouville theorem by Bernstein [Simon 1997, p. 245].

Lemma 17. Let u be an entire solution to the elliptic equation
nX

i;jD1

aij .x/uij D 0 in R2:

If u satisfies the asymptotic estimate

ju.x/j D o.jxj/ as x!1;

then u is a constant.

Proof of the second part of Theorem 2. Let u� be the Legendre transform of u.
Then u� satisfies equation

(73) G.x;D2u�/D
det D2u��

ıij �
xi xj

1Cjxj2

�
F ij .u�/

D .1Cjxj2/
1

2˛
� 1

2 ;

where F ij .u�/D @ det r
@rij

at r DD2u�. We have

(74) u�.x/D C.˛/jxj1C˛CO
�
jxj

1C˛�2˛ˇ
˛

�
;

where C.˛/ is a constant depending only on ˛. In fact, for big h, by Lemma 15,

uh.x/D
1

1C˛
jxj1C˛CO

�
jhj
�2˛ˇ
1C˛

�
in B1.0/. Denote by u�

h
the Legendre transform of uh. Then,

u�h .x/D C.˛/jxj1C
1
˛ CO

�
jhj
�2˛ˇ
1C˛

�
;
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where C.˛/ is a constant depending only on ˛ and it comes from the Legendre
transform of the function 1

1C˛
jxj1C˛. Note that u�

h
.x/ D h�1u�.h

˛
1C˛ x/, we

obtain (74).
Let u0 be the unique radial solution of (3) with � D 1, and let u�

0
be the Legendre

transform of u0. Similar to (74) we have

(75) u�0 .x/D C.˛/jxj1C˛CO.jxj
1C˛�2˛ˇ

˛ /:

Since both u� and u�
0

satisfy (73), v D u��u�
0

satisfies the elliptic equation

nX
i;jD1

aij .x/vij D 0 in R2;

where

aij D

Z 1

0

Gij .x;D2u�0 C t.D2u��D2u�0 // dt:

Here,

Gij
D
@G.x; r/

@rij

for any symmetric matrix r . Note that by the choice of ˇ, 1C˛�2˛ˇ
˛

< 1; hence, by
(74) and (75),

v DO
�
jxj

1C˛�2˛ˇ
˛

�
D o.jxj/ as jxj !1:

By Lemma 17 we conclude that v is a constant. �
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CONSTRUCTIONS OF PERIODIC MINIMAL SURFACES
AND MINIMAL ANNULI IN SOL3

CHRISTOPHE DESMONTS

We construct two one-parameter families of minimal properly embedded
surfaces in the Lie group Sol3 using a Weierstrass-type representation.
These surfaces are not invariant by a one-parameter group of ambient
isometries. The first one can be viewed as a family of helicoids, and the
second one as a family of minimal annuli called catenoids. Finally we study
limits of these catenoids, and in particular we show that one of these limits
is a new minimal entire graph.

1. Introduction

The aim of this paper is to construct two one-parameter families of examples of
properly embedded minimal surfaces in the Lie group Sol3, endowed with its
standard metric. This Lie group is a homogeneous Riemannian manifold with a
3-dimensional isometry group and is one of the eight Thurston geometries. There
is no rotation in Sol3, and so no surface of revolution.

The Hopf differential, which exists on surfaces in every 3-dimensional space
form, has been generalized by Abresch and Rosenberg [2004; 2005] to every
3-dimensional homogeneous Riemannian manifold with 4-dimensional isometry
group. This tool leads to a lot of works in the field of constant mean curvature
(CMC) surfaces in Nil3, APSL2.R/ and in the Berger spheres. More precisely,
Abresch and Rosenberg [2005] proved that the generalized Hopf differential exists
in a simply connected Riemannian 3-manifold if and only if its isometry group has
at least dimension 4.

Berdinskii and Taimanov [2005] gave a representation formula for minimal
surfaces in 3-dimensional Lie groups in terms of spinors, but they pointed out
some difficulties for using this theory in the case of Sol3. Nevertheless, some
explicit simple examples of minimal surfaces in Sol3 have been constructed in
the past decade. Masaltsev [2006] and Daniel and Mira [2013] gave some basic
examples of minimal graphs in Sol3: x1 D ax2C b, x1 D ae�x3 , x1 D ax2e�x3

and x1 D x2e�2x3 (and their images by ambient isometries). López and Munteanu

MSC2010: 53A10.
Keywords: periodic minimal surfaces, minimal annuli, Sol3.
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[2011; 2012; 2014], López [2014] and Masaltsev [2006] studied minimal surfaces
in Sol3 invariant by a one-parameter group of ambient isometries. Finally, Ana
Menezes [2014] constructed singly and doubly periodic Scherk minimal surfaces
in Nil3 and Sol3, and Minh Hoang Nguyen [2014] gave conditions for the Dirichlet
problem for the minimal surface equation in Sol3 to have solutions.

The method that we use in this paper is the one used by Daniel and Hauswirth
[2009] in Nil3 to construct minimal embedded annuli: We first construct a one-
parameter family of embedded minimal surfaces called helicoids and we calculate
its Gauss map g. A result of Inoguchi and Lee [2008] shows that this map is
harmonic for a certain metric on C. Then we seek another family of maps g with
separated variables that still satisfies the harmonic map equation, and we use a
Weierstrass-type representation given by Inoguchi and Lee to construct a minimal
immersion whose Gauss map is g. We prove that these immersions are periodic,
so we get minimal annuli. As far as the authors know, these annuli are the first
examples of nonsimply connected minimal surfaces with finite topology (that is,
diffeomorphic to a compact surface without a finite number of points) in Sol3.

The model we use for Sol3 is described in Section 2. In the third section, we
give some properties of the Gauss map of a conformal minimal immersion in
Sol3 (see [Daniel and Mira 2013]). In the fourth section, we construct the family
.HK /K2��1I1Œ of helicoids, and finally we construct the family .C˛/˛2��1I1Œnf0g of
embedded minimal annuli. The study of the limit case of the parameter of this
family gives another example of a minimal surface in Sol3, which is an entire graph.
None of these surfaces is invariant by a one-parameter family of isometries.

Theorem. There exists a one-parameter family .C˛/˛2��1I1Œnf0g of properly embed-
ded minimal annuli in Sol3, called catenoids, having the following properties:

(1) The intersection of C˛ with any plane fx3D �g is a nonempty closed embedded
convex curve.

(2) The annulus C˛ is conformally equivalent to C nf0g.

(3) The annulus C˛ has three symmetries fixing the origin: rotation by � around
the x3-axis, reflection in fx1 D 0g and reflection in fx2 D 0g.

2. The Lie group Sol3

Definition. The Lie group Sol3 is R3 with the multiplication � defined by

.x1;x2;x3/� .y1;y2;y3/D .y1e�x3 Cx1;y2ex3 Cx2;x3Cy3/

for all .x1;x2;x3/; .y1;y2;y3/ 2 R3. The identity element is 0 and the inverse
element of .x1;x2;x3/ is .x1;x2;x3/

�1 D .�x1ex3 ;�x2e�x3 ;�x3/. The Lie
group is noncommutative.
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The left multiplication la by an element aD .a1; a2; a3/ 2 R3 is given for all
x D .x1;x2;x3/ 2 R3 by

la.x/D a�x D .x1e�a3 C a1;x2ea3 C a2; a3Cx3/

D aCMax;

where

Ma D

0@e�a3 0 0

0 ea3 0

0 0 1

1A :
For the metric . �; � / on Sol3 to be left-invariant, it has to satisfy

.MaX;MaY /a�x D .X;Y /x

for all a;x;X;Y 2R3. We define a left-invariant Riemannian metric for x;X;Y 2R3

by the formula

(1) .X;Y /x D hMx�1X;Mx�1Y i;

where h � ; � i is the canonical scalar product on R3 and x�1 is the inverse element
of x in Sol3. The formula (1) leads to the expression of the previous metric

(2) ds2
x D e2x3 dx2

1 C e�2x3 dx2
2 C dx2

3 ;

where .x1;x2;x3/ are canonical coordinates of R3. Since the translations are
isometries now, Sol3 is a homogeneous manifold with this metric.

Remark. This metric is not the only possible left-invariant one on Sol3. In fact,
there exists a two-parameter family of nonisometric left-invariant metrics on Sol3.
One of these parameters is a homothetic one. The metrics that are nonhomothetic
to (2) have no reflections; see [Meeks and Pérez 2012].

By setting

E1.x/D e�x3 @1; E2.x/D ex3 @2; and E3.x/D @3;

we obtain a left-invariant orthonormal frame .E1;E2;E3/. Thus, we now have two
frames to express the coordinates of a vector field on Sol3; we will use brackets to
denote the coordinates in the frame .E1;E2;E3/; then at a point x 2 Sol3, we have

(3) a1 @1C a2 @2C a3 @3 D

0@a1

a2

a3

1AD
24 ex3a1

e�x3a2

a3

35 :
The following property holds (see [Daniel and Mira 2013]):
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Proposition 1. The isotropy group of the origin of Sol3 is isomorphic to the dihe-
dral group D4 and generated by orientation-reversing isometries

� W .x1;x2;x3/ 7�! .x2;�x1;�x3/ and � W .x1;x2;x3/ 7�! .�x1;x2;x3/;

whose orders are 4 and 2, respectively.

While � is simply a reflection in the plane fx1 D 0g, the generator � can be
described as a rotation by ��=3 around E3 composed with reflection in fx3 D 0g.
The cyclic group h�i also contains �3 D ��1 and �2, the reflection in E3 (rotation
by � around E3). The remaining nonidentity elements of the isotropy group
of the origin are �� and �3� , which are respectively the reflections in the lines
f.x1;x1; 0/g and f.x1;�x1; 0/g, and �2� , which is reflection in the plane fx2D 0g.

We deduce the following theorem:

Theorem 2. The isometry group of Sol3 has dimension 3.

Finally, we express the Levi-Civita connection r of Sol3 associated to the metric
given by (2) in the frame .E1;E2;E3/. First, we calculate the Lie brackets of the
vectors of the frame. The Lie bracket in the Lie algebra sol3 of Sol3 is given by

ŒX;Y �D .Y3X1�X3Y1;X3Y2�Y3X2; 0/

for all X D .X1;X2;X3/ and Y D .Y1;Y2;Y3/. Then we have

ŒE1;E2�D 0; ŒE1;E3�DE1; ŒE2;E3�D�E2:

Hence,
rE1

E1 D�E3; rE2
E1 D 0; rE3

E1 D 0;

rE1
E2 D 0; rE2

E2 DE3; rE3
E2 D 0;

rE1
E3 DE1; rE2

E3 D�E2; rE3
E3 D 0:

3. The Gauss map

Let † be a Riemann surface and z D uC iv local complex coordinates in †. Let
x W†! Sol3 be a conformal immersion. We set

x D

0@x1

x2

x3

1A ;
and we define � 2 R�C by

2.xz;xNz/D kxuk
2
D kxvk

2
D �:



PERIODIC MINIMAL SURFACES AND MINIMAL ANNULI IN SOL3 147

Thus, a unit normal vector field is N W†! T Sol3 defined by

N D�
2i

�
xz ^xNz WD

24N1

N2

N3

35 :
Hence we define yN W†! S2 � R3 by the formula Mx�1N D yN , that is,

yN D

0@ex3 0 0

0 e�x3 0

0 0 1

1A0@N1e�x3

N2ex3

N3

1AD
0@N1

N2

N3

1A :
Definition. The Gauss map of the immersion x is the application

g D � ı yN W† �! C[f1g D C;

where � is the stereographic projection with respect to the southern pole, i.e.,

N D
1

1Cjgj2

24 2<.g/

2=.g/

1� jgj2

35 ;(4)

g D
N1C iN2

1CN3

:(5)

The following result is due to [Inoguchi and Lee 2008]. It can be viewed as a
Weierstrass representation in Sol3.

Theorem 3. Let x W†! Sol3 be a conformal minimal immersion and g W†! C

its Gauss map. Then, whenever g is neither real nor purely imaginary, it is nowhere
antiholomorphic (gz ¤ 0 for every point for any local conformal parameter z on†),
and it satisfies the second order elliptic equation

(6) gz Nz D
2ggzg

Nz

g2� Ng2
:

Moreover, the immersion x D .x1;x2;x3/ can be expressed in terms of g by the
representation formulas

(7) x1z D e�x3
. Ng2� 1/gz

g2� Ng2
; x2z D iex3

. Ng2C 1/gz

g2� Ng2
; x3z D

2 Nggz

g2� Ng2

whenever it is well-defined.
Conversely, given a map g W †! C defined on a simply connected Riemann

surface † satisfying (6), then the map x W †! Sol3 given by the representation
formulas (7) is a conformal minimal immersion with possibly branched points
whenever it is well-defined, and its Gauss map is g.
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Remark. (1) There exists a similar result for the case of CMC H -surfaces ; see
[Daniel and Mira 2013].

(2) Equation (6) is the harmonic map equation for maps g W†! .C; ds2/ equipped
with the metric

ds2
D
jd!j2

j!2� N!2j
:

This is a singular metric, not defined on the real and pure imaginary axes. See
[Inoguchi and Lee 2008] for more details.

(3) Equation (6) can be only considered at points where g ¤ 1. But if g is a
solution of (6), i=g is also a solution at points where g ¤ 0. The conjugate map Ng
and every g ı �, with � a locally injective holomorphic function, are solutions
too. Moreover, if g is a nowhere antiholomorphic solution of (6), and x is the
induced conformal minimal immersion, then ig and 1=g induce conformal minimal
immersions given by �x and �x. Finally, Ng is the Gauss map of �2�x after a
change of orientation.

Definition. The Hopf differential of the map g is the quadratic form

QD q dz2
D

gz Ngz

g2� Ng2
dz2:

Remark. (1) The function q depends on the choice of coordinates, whereas Q

does not.

(2) As stated in the introduction, the Hopf differential (or its Abresch–Rosenberg
generalization) is not defined on Sol3. If we apply the definition of the Hopf
differential of the harmonic maps on .C; ds2/, we get

QD
gz Ngz

jg2� Ng2j
dz2;

but this leads to a nonsmooth differential. Because g2 � Ng2 is purely imaginary
on each quarter of the complex plane, the definitions are related by multiplication
by i or �i , depending on the quarter. Thus, this “Hopf differential” is defined and
holomorphic only on each of the four quarters delimited by the real and purely
imaginary axes.

4. Construction of the helicoids in Sol3

In this section we construct a one-parameter family of helicoids in Sol3: we define a
helicoid to be a minimal surface containing the x3-axis whose intersection with every
plane fx3 D constantg is a straight line and which is invariant by left multiplication
by an element of Sol3 of the form .0; 0;T / for some T ¤ 0.
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Theorem 4. There exists a one-parameter family .HK /K2��1I1Œnf0g of properly
embedded minimal helicoids in Sol3 having the following properties:

(1) For all K 2 ��1I 1Œnf0g, the surface HK contains the x3-axis.

(2) For all K 2 ��1I 1Œnf0g, the intersection of HK and any horizontal plane
fx3 D �g is a straight line.

(3) For all K 2 ��1I 1Œnf0g, there exists TK such that HK is invariant by left
multiplication by .0; 0;TK /.

(4) The helicoids HK have three symmetries fixing the origin: rotation by � around
the x3-axis, rotation by � around the .x;x; 0/-axis and rotation by � around
the .x;�x; 0/-axis.

Let K 2 ��1; 1Œ; we define a map g W C! C by

g.z D uC iv/D e�ueib.v/e�i�=4;

where b satisfies the ODE

(8) b0 D
p

1�K cos .2b/; b.0/D 0:

Proposition 5. The map b is well-defined and has the following properties:

(1) The function b is an increasing diffeomorphism from R onto R.

(2) The function b is odd.

(3) There exists a real number W > 0 such that

8v 2 R; b.vCW /D b.v/C�:

(4) The function b satisfies b.kW /D k� , for all k 2 Z.

Proof. Since K 2 ��1; 1Œ, there exists r > 0 such that 1�K cos .2b/ 2 �r; 2Œ; the
Cauchy–Lipschitz theorem can be applied, and b is well-defined. By (8) we have
b0 > 0 on its domain of definition, and

p
r < b0 < 2. Since b0 is bounded by two

positive constants, b is defined on R, and

lim
v!˙1

b.v/D˙1:

The function Ob W v 7! �b.�v/ satisfies (8) with Ob.0/ D 0; hence Ob D b and
b is odd. Finally, there exists W > 0 such that b.W / D �; then the function
Qb W v 7! b.vCW /�� satisfies (8) with Qb.0/D 0; hence, Qb D b. �
Corollary 6. We have b.kW =2/D k�=2 for all k 2 2ZC 1.

Proof. We have

b
�

W

2

�
D b

�
�

W

2
CW

�
D�b

�
W

2

�
C�;

which gives the formula for k D 1, and the corollary easily follows. �
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Proposition 7. The function g satisfies .g2 � Ng2/gz Nz D 2ggzg
Nz , and its Hopf

differential is

(9) QD
iK

8
dz2:

Proof. A direct calculation shows that g satisfies the equation. Hence, the Hopf
differential is given by

QD
gz Ngz

g2� Ng2
dz2
D

i.1� b02/

8 cos .2b/
dz2
D

iK

8
dz2: �

Thus the map g induces a conformal minimal immersion x D .x1;x2;x3/

such that

x1z D e�x3
. Ng2� 1/gz

g2� Ng2
D
.1C ie�2ue�2ib/.1� b0/eibei�=4

4e�u cos .2b/
e�x3 ;

x2z D iex3
. Ng2C 1/gz

g2� Ng2
D�

.1� ie�2ue�2ib/i.1� b0/eibei�=4

4e�u cos .2b/
ex3 ;

x3z D
2 Nggz

g2� Ng2
D

i.b0� 1/

2 cos .2b/
:

This map is an immersion since the metric induced by x is given by

dw2
D kxuk

2
jdzj2 D

K2

.1C b0/2
cosh2 ujdzj2:

We obtain immediately that x3 is a one-variable function and satisfies

x03.v/D
1� b0.v/

cos .2b.v//
D

K

1C b0.v/
:

Remark. For K D 0, we get x3 is constant, and the image of x is a point. In the
sequel, we will always exclude this case.

By setting x3.0/D 0, we choose x3 among the primitive functions.

Proposition 8. (1) The function x3 is defined on R and is bijective.

(2) The function x3 is odd.

(3) The function x3 satisfies

x3.vCW /D x3.v/Cx3.W /

for all real numbers v.

Proof. The map x3 is bijective on R since it is a primitive of a continuous function,
and its derivative has the sign of K. Since the map b is odd, b0 is even, so x0

3
is even

and x3 is odd. Finally, we have x0
3
.vCW /D x0

3
.v/, and the result follows. �
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Hence, the functions

x1.uC iv/D
p

2
2
.cos b.v/� sin b.v//x03e�x3 sinh u;

x2.uC iv/D
p

2
2
.cos b.v/C sin b.v//x03ex3 sinh u;

satisfy the equations above.

Theorem 9. Let K be a real number such that jKj < 1 and K ¤ 0, and b the
function defined by (8). We define the function x3 by

x03 D
K

1C b0
; x3.0/D 0:

Then the map

x W uC iv 2 C 7�!

0B@
p

2
2
.cos b.v/� sin b.v//x0

3
e�x3 sinh u

p
2

2
.cos b.v/C sin b.v//x0

3
ex3 sinh u

x3.v/

1CA
is a conformal minimal immersion whose Gauss map is

g W uC iv 2 C 7�! e�ueib.v/e�i�=4:

Moreover,

(10) .0; 0; 2x3.W //�x.uC iv/D x.uC i.vC 2W //

for all u; v 2 R. The surface given by x is called a helicoid of parameter K and
will be denoted by HK .

Proof. Equation (10) means that the helicoid is invariant by left multiplication by
.0; 0; 2x3.W //. Recall that we have the identity

x3.vC 2W /D x3.vCW /Cx3.W /D x3.v/C 2x3.W /

for all real numbers v. Thus we get the result for the third coordinate and we
prove in the same way that e�2x3.W /x1.u C iv/ D x1.u C i.v C 2W // and
e2x3.W /x2.uC iv/Dx2.uC i.vC 2W //. �

Remark. (1) The surface HK is embedded because x3 is bijective. It is easy to
see that it is even properly embedded.

(2) The surfaces HK and H�K are related; if we denote by the indices K and K0

the data describing HK and H�K , we get(
b�K .v/D bK .vCW =2/��=2;

x3�K .v/D�x3K .vCW =2/Cx3K .W =2/:
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In particular, x3�K .W / D �x3K .W / and both surfaces have the same period
jx3K .W /j. Finally,

x�K .uC iv/D .0; 0;x3K .W =2//� �3xK .uC i.vCW =2//:

Thus, there exists an isometry of Sol3 that puts H�K on HK .

Proposition 10. For every real number T , there exists a unique helicoid HK (up
to isometry, i.e., up to K 7!�K) whose period is T .

Proof. We noticed that the period of the helicoid HK is

2x3.W / WD 2x3K .W /D 2

Z W

0

K

1C b0.s/
ds

D 2K

Z �

0

dup
1�K cos .2u/.1C

p
1�K cos .2u//

;

with the change of variables uD b.s/ and b.W /D� . Seeing x3K .W / as a function
of the variable K, we get

@x3K .W /

@K
D

Z �

0

1

.1�K cos .2u//3=2
du

(valid for K in every compact set Œ0; a�� Œ0; 1Œ, and so in Œ0; 1Œ). Then the function
K 7! x3K .W / is injective. Moreover, we have x30.W /D 0 and

x31.W /D

Z �

0

1p
1� cos .2u/.1C

p
1� cos .2u//

du

D

Z �

0

1
p

2 sin u.1C
p

2 sin u/
du

D
1
p

2

Z 1
0

1C t2

1C 2
p

2t C t2
dt DC1;

so x3K .W / is a bijection from �0; 1Œ onto �0;C1Œ. �

The vector field defined by

N D
1

1Cjgj2

24 2<.g/

2=.g/

1� jgj2

35
D

p
2

2 cosh u

24cos bC sin b

sin b� cos b
p

2 sinh u

35
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is normal to the surface. We get

rxu
N D� sin .2b/

sinh u

cosh u
xuC

�
1C b0

K cosh2 u
� cos .2b/

�
xv;

rxv
N D

�
1C b0

K cosh2 u
� cos .2b/

�
xuC sin .2b/

sinh u

cosh u
xv;

and thus the Gauss curvature is given by

KD�1C
1

cosh2 u

�
2.1C b0/ cos .2b/

K
�

.1C b0/2

K2 cosh2 u
C sin2 .2b/

�
:

In particular, the fundamental pieces of the helicoids have infinite total curvature
since

KdAD

�
�

K2

.1C b0/2
cosh2 uC

2K cos .2b/

1C b0
�

1

cosh2 u
C

K2 sin2 .2b/

.1C b0/2

�
du dv:

We notice that

x.�uC iv/D

0@�x1.uC iv/

�x2.uC iv/

x3.v/

1AD �2x.uC iv/;

where � and � are the isometries introduced in the first section: the helicoid HK is
symmetric by rotation by � around the x3-axis, which is included in the helicoid
as the image by x of the purely imaginary axis of C. On this axis we have

g.0C iv/D�ieib.v/:

Hence, the straight line f.x;x; 0/ j x 2 Rg is included in the helicoid as the image
by x of the real line. Along this line, we have

g.uC i0/D e�ue�i�=4:

Then we notice that

x.u� iv/D

0@x2.uC iv/

x1.uC iv/

�x3.v/

1AD ��x.uC iv/:

Thus, HK is symmetric by rotation by � around the axis f.x;x; 0/ j x 2 Rg.

Remark. The straight line f.x;x; 0/ j x 2 Rg is a geodesic of the helicoid. It’s
even a geodesic of Sol3.
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Figure 1. Helicoid for K D 0:4, created with Scilab.

Since the function sinh is odd, we deduce that

x.�u� iv/D

0@�x2.uC iv/

�x1.uC iv/

�x3.v/

1AD �3�x.uC iv/:

Thus, HK is symmetric by rotation by � around the axis f.x;�x; 0/ j x 2 Rg (but
this axis is not included in the surface).

The helicoid HK has no more symmetry fixing the origin; indeed if it did, there
would exist a diffeomorphism � of C such that x ı� D �2 ıx (we choose �2 as an
example, but it is the same idea for the other elements of the isotropy group of the
origin of Sol3). By composition, the surface would have every symmetry of the
isotropy group. But if x ı� D �x, the decomposition � D �1C i�2 leads to0B@x1

�
�1.uC iv/C i�2.uC iv/

�
x2

�
�1.uC iv/C i�2.uC iv/

�
x3.�2.uC iv//

1CAD
0@�x1.uC iv/

x2.uC iv/

x3.v/

1A :
Because x3 is bijective, we get �2.uC iv/D v for all u; v, and then we get at the
same time sinh .�1.uC iv//D sinh u and sinh .�1.uC iv//D� sinh u, which is
impossible.

5. Catenoids in Sol3

In this section we construct examples of minimal annuli in Sol3. Let ˛ 2 ��1I 1Œ.
We start from a map g defined on C by

g.z D uC iv/D�ie�u�.v/ei�.v/;

where � satisfies the ODE

(11) �0 D

q
1�˛2 sin2 .2�/; �.0/D 0;
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and  is defined by

(12)  0 D�˛ sin .2�/;  .0/D 0:

Proposition 11. The map � is well-defined and has the following properties:

(1) The function � is an increasing diffeomorphism from R onto R.

(2) The function � is odd.

(3) There exists a real number V > 0 such that

8v 2 R; �.vCV /D �.v/C�:

(4) The function � satisfies �.kV /D k� for all k 2 Z.

Proof. Since ˛ 2 ��1; 1Œ , there exists r > 0 such that 1�˛2 sin2 .2�/ 2 �r; 1�; the
Cauchy–Lipschitz theorem can be applied, and � is well-defined. By (11) we have
�0 > 0 on its domain of definition, and

p
r < �0 < 1. Since �0 is bounded by two

positive constants, � is defined on R, and

lim
v!˙1

�.v/D˙1:

The function O� W v 7! ��.�v/ satisfies (11) with O�.0/ D 0; hence O� D � and
� is odd. Finally, there exists V > 0 such that �.V / D �; Then the function
Q� W v 7! �.vCV /�� satisfies (11) with Q�.0/D 0; hence Q�D �. �

Corollary 12. (1) We have �.kV =2/D k�=2 for all k 2 2ZC 1.

(2) We have �.�vCV =2/D��.v/C �
2

for all v 2R. In particular, �.V =4/D �
4

and �.3V =4/D 3�
4

.

Proof. (1) We have

�
�

V

2

�
D �

�
�

V

2
CV

�
D��

�
V

2

�
C�;

which gives the formula for k D 1, and part (1) easily follows.

(2) The functions �� W v 7! �=2� �.�vCV =2/ and � satisfy equation (11) with
��.0/D �.0/D 0, so �� D � and

�.V =4/D ��.V =4/D �
2
� �

�
�
2
�
�
4

�
;

and the result follows. �

Proposition 13. The function g satisfies .g2 � Ng2/gz Nz D 2ggzg
Nz , and its Hopf

differential is

(13) QD�
˛

4
dz2:
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Proof. A direct calculation shows that g satisfies the equation. Hence, the Hopf
differential is given by

zQD
i.1� �02�  02� 2i 0/

8 sin .2�/
dz2
D�

˛

4
dz2: �

Thus the map g induces a conformal minimal immersion x D .x1;x2;x3/

such that

x1z D e�x3
. Ng2� 1/gz

g2� Ng2
; x2z D iex3

. Ng2C 1/gz

g2� Ng2
; x3z D

2 Nggz

g2� Ng2
:

This application is an immersion since the metric induced by x is given by

dw2
D kxuk

2
jdzj2

D .F 0
2
C˛2/ cosh2 .uC  /jdzj2

D

�
˛4 sin2 .2�/

.1C �0/2
C˛2

�
cosh2 .uC  /jdzj2

D
2˛2

1C �0
cosh2 .uC  /jdzj2:

In particular,

x3z D
i�0�  0� i

2 sin .2�/
;

that is, 8̂̂̂<̂
ˆ̂:

x3u D 2<.x3z/D�
 0

sin .2�/
D ˛;

x3v D�2=.x3z/D
1� �0

sin .2�/
D
˛2 sin .2�/

1C �0
:

Thus

x3.uC iv/D ˛uC˛2

Z v sin .2�.s//
1C �0.s/

ds:

Here we have to choose an initial condition; we set

F.v/D ˛2

Z v

0

sin .2�.s//
1C �0.s/

ds;

and define
x3.uC iv/D ˛uCF.v/:

The function F is well-defined on R.

Proposition 14. The function F is even and V -periodic.
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Proof. The function F 0 is odd because � is odd and �0 is even, so F is even. Then
we get

F 0.vCV /D ˛2 sin .2�.v/C 2�/

1C �0.v/
D F 0.v/;

so there exists a constant C such that F.vC V / D F.v/C C for all v 2 R. By
evaluating at zero, we get C D F.V /, that is,

C D ˛2

Z V

0

sin .2�.s//
1C �0.s/

ds D ˛2

Z V

0

H.s/ ds

D ˛2

�Z V =4

0

H.s/ dsC

Z 3V =4

V =4

H.s/ dsC

Z V

3V =4

H.s/ ds

�

WD

2X
kD0

Lk.˛/:

We can now do the change of variable uD sin .2�.s// in each integral Lk.˛/, with

duD 2�0.s/ cos .2�.s// ds D 2.�1/k
q
.1�˛2u2/.1�u2/ ds:

Thus,

C D ˛2

Z 1

�1

u du

.1C
p

1�˛2u2/
p
.1�˛2u2/.1�u2/

D 0

and F is V -periodic. �

Proposition 15. The function  is even and V -periodic.

Proof. We prove the proposition in exactly the same way as for the function F . �

The two other equations become

x1z D e�x3
.e�u��i�C euCCi�/.1� �0� i 0/

4 sin .2�/
;

x2z D�ex3
.euCCi� � e�u��i�/.i � i�0C  0/

4 sin .2�/
:

Those equations lead to

x1 D e�˛u�F

�
euC

2.1�˛/
.F 0 cos ��˛ sin �/�

e�u�

2.1C˛/
.˛ sin �CF 0 cos �/

�
;

x2 D e˛uCF

�
�euC

2.1C˛/
.˛ cos �CF 0 sin �/C

e�u�

2.˛� 1/
.˛ cos ��F 0 sin �/

�
:

Remark. If ˛ D 0, then x.C/D f0g. This case will be excluded in the sequel.
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Theorem 16. Let ˛ be a real number such that j˛j< 1 and ˛¤ 0, and � and  the
functions defined by (11) and (12). We define the function F by

F.v/D ˛2

Z v

0

sin .2�.s//
1C �0.s/

ds:

Then the map x W C! Sol3 defined by0BBBBB@
e�˛u�F

�
euC

2.1�˛/
.F 0 cos ��˛ sin �/�

e�u�

2.1C˛/
.˛ sin �CF 0 cos �/

�
e˛uCF

�
�euC

2.1C˛/
.˛ cos �CF 0 sin �/C

e�u�

2.˛� 1/
.˛ cos ��F 0 sin �/

�
˛uCF

1CCCCCA
is a conformal minimal immersion whose Gauss map is

g W uC iv 2 C 7�! �ie�u�.v/ei�.v/:

Moreover,

(14) x.uC i.vC 2V //D x.uC iv/

for all u; v 2R. The surface given by x is called a catenoid of parameter ˛ and will
be denoted by C˛.

Proof. The periodicity of C˛ is an application of Propositions 11, 14 and 15. �

Remark. The surfaces C˛ and C�˛ are related; if we denote by the indices ˛ and�˛
the data describing C˛ and C�˛, we get8<:

��˛ D �˛;

F�˛D F˛;

�˛ D�˛:

Thus, we get
x�˛.�uC iv/D �2x˛.uC iv/:

In particular, there exists an orientation-preserving isometry of Sol3 fixing the origin
that sends C˛ on C�˛.

Now we show that the catenoids are embedded:

Proposition 17. For all � 2 R, the intersection of C˛ with the plane fx3 D �g is a
nonempty closed embedded convex curve.

Proof. This intersection is nonempty: x.�=˛C i0/ 2 C˛ \ fx3 D �g. We look at
the curve in C defined by x3.uC iv/D ˛uCF.v/D �, i.e., the curve

c W t 2 R 7�!

�
��F.t/

˛
; t
�
:
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Its image by x is

c W t 2R 7�!

0BBBBBB@
e��

�
eıC

2.1�˛/
.F 0 cos��˛ sin�/�

e�ı�

2.1C˛/
.˛ sin�CF 0 cos�/

�

e�
�
�eıC

2.1C˛/
.˛ cos�CF 0 sin�/C

e�ı�

2.˛�1/
.˛ cos��F 0 sin�/

�
c

1CCCCCCA.t/;

where ı D ��F
˛

. The calculation leads to

c01.t/D
e��

˛.1�˛2/

�
A.t/ cosh

�
��F

˛
C 

�
CB.t/ sinh

�
��F

˛
C 

��
;

with8̂̂̂̂
<̂̂
ˆ̂̂̂:

AD�F 02 cos �C˛ 0F 0 cos ��˛2�0 cos �C˛2F 0 sin ��˛3 0 sin �

C˛2F 00 cos ��˛2F 0�0 sin �;

B D ˛F 0 sin ��˛2 0 sin �C˛F 00 cos ��˛F 0�0 sin ��˛F 02 cos �

C˛2 0F 0 cos ��˛3�0 cos �:

We remark that B � 0 after simplifications, and

A.t/D .F 02.t/C˛2/.˛2
� 1/ cos �.t/:

Finally,

c01.t/D�
e��

˛
.F 02.t/C˛2/ cos �.t/ cosh

�
��F.t/

˛
C  .t/

�
:

In the same way, we get

c02.t/D�
e��

˛
.F 02.t/C˛2/ sin �.t/ cosh

�
��F.t/

˛
C  .t/

�
:

Thus

c021 C c022 D
e�2�

˛2
.F 02.t/C˛2/2 cosh2

�
��F.t/

˛
C  .t/

�
> 0;

so the intersection C˛ \ fx3 D �g is a smooth curve; moreover, it’s closed since
c.t C 2V /D c.t/ for all t 2 R.

The planes fx3 D �g are flat: indeed, the metrics on these planes are e2�dx2
1
C

e�2�dx2
2

, so up to an affine transformation, we can work in euclidean coordinates,
as we suppose in this proof since affinities preserve convexity.

To prove that c is embedded and convex, we consider the part of c corresponding to
t 2 .�V =2;V =2/. On .�V =2;V =2/, we have cos �.t/>0, thanks to Proposition 11
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Figure 2. Sections with fx3 D �1g, fx3 D 0g, and fx3 D 1g,
created with Scilab.

and Corollary 12. So c0
1
.t/ < 0 if ˛ > 0 (and c0

1
.t/ > 0 if ˛ < 0) and c1 is injective

and decreasing if ˛ > 0 (and increasing if ˛ < 0). We get

dc2

dc1

D tan �.t/;

so dc2=dc1 is an increasing function of t , and also of c1 if ˛ < 0 (and a decreasing
function of the decreasing function c1 if ˛ > 0). In both cases, the curve is convex.

Then, the half of c corresponding to t 2 .�V =2;V =2/ is convex and embedded.
Since c.t CV /D�c.t/, the entire curve is convex and embedded. �

Figure 2 shows sections of the catenoid ˛ D�0:6 with planes fx3 D constantg.

Corollary 18. The surface C˛ is properly embedded for all ˛ 2 ��1; 1Œnf0g.

Proposition 19. For all ˛ 2 ��1; 1Œnf0g, the surface C˛ is conformally equivalent
to C nf0g.

Proof. The map x W C=.2iV Z/ ! C˛ is a conformal bijective parametrization
of C˛. �

The vector field defined by

N D
1

cosh u

24 e� sin �
�e� cos �

sinh u

35
is normal to the surface.

We have

x.uC i.vCV //D

0@�x1.uC iv/

�x2.uC iv/

x3.uC iv/

1AD �2x.uC iv/:

Thus, the surface C˛ is symmetric by rotation by � around the x3-axis.
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Figure 3. Catenoid for ˛ D�0:6, created with Scilab.

Remark. The x3-axis is contained in the “interior” of C˛ since each curve
C˛ \fx3 D �g is convex and symmetric with respect to this axis.

We also get

x.u� iv/D

0@�x1.uC iv/

x2.uC iv/

x3.uC iv/

1AD �x.uC iv/;

and the surface C˛ is symmetric by reflection in the plane fx1 D 0g, and finally we
have

x.uC i.�vCV //D �2�x.uC iv/;

and C˛ is symmetric by reflection in the plane fx2 D 0g.

If C˛ had another symmetry fixing the origin, it would have every symmetry of
the isotropy group of Sol3, and we prove as for the helicoid that it is impossible.

6. Limits of catenoids

6.1. The case ˛ D 0. In this part we consider the limit surface of the catenoids C˛
when ˛ goes to zero. For this, we do the change of parameters(

u0 D uC ln˛;

v0 D v:

In these coordinates, the immersion x given in Theorem 16 takes the form0BBBBBB@
e˛ ln˛�˛u0�F

�
eu0C

2˛.1�˛/
.cos�F 0�˛ sin�/�

˛e�u0�

2.1C˛/
.˛ sin�Ccos�F 0/

�

e�˛ ln˛C˛u0CF

�
�eu0C

2˛.1C˛/
.˛ cos�CF 0 sin�/C

˛e�u0�

2.˛�1/
.˛ cos��F 0 sin�/

�
�˛ ln˛C˛u0CF

1CCCCCCA :
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Letting ˛ go to zero, we get 8̂̂̂̂
<̂
ˆ̂̂:

� �! Id;

F=˛ �! 0;

F 0=˛ �! 0;

 �! 0;

and so the limit immersion is 0BBBBB@
�

eu0

2
sin v0

�
eu0

2
cos v0

0

1CCCCCA :
Thus, we obtain a parametrization of the plane fx3 D 0g, which is the limit of the
family .C˛/ when ˛! 0.

6.2. The case ˛ D 1. We end by the study of the case ˛ D 1 (the case ˛ D�1 is
exactly the same). We show that the limit surface is a minimal entire graph:

Proposition 20. Let x W R2! Sol3 be defined by

x.uC iv/D

0@x1

x2

x3

1AD
0BBBBB@
�

tanh v
2

.1C e�2u/

e2u

4
�

u

2
�

cosh .2v/
4

uC ln .cosh v/

1CCCCCA :
Then x is a minimal immersion and there exists a C1-function f defined on R2

such that the image of x (called S) is the x2-graph of f given by x2 D f .x1;x3/.

Proof. We show that this surface is (up to a translation) the limit surface of the
family .C˛/˛2��1;1Œ when ˛ goes to 1. For ˛ D 1, the Gauss map is still given by
g.z D uC iv/D�ie�u�.v/ei�.v/, but � satisfies the ODE

(15) �0 D cos .2�/; �.0/D 0;

and  is still defined by

(16)  0 D� sin .2�/;  .0/D 0:

We have explicit expressions for these functions, which are given by

�.v/D arctan e2v
��=4D arctan .tanh v/;

 .v/D�1
2

ln .cosh .2v//:
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Figure 4. Sections with fx3 D 0g, fx3 D 10g, and fx3 D �2g,
created with Maxima.

Thus by setting

F.v/D

Z v

0

sin .2�.s//
1C cos .2�.s//

ds;

we obtain F.v/D ln .cosh v/. Then, the immersion x is given by

x D

0BBBBB@
�

e�2u

2
tanh vC

e�v

2 cosh v
e2u

4
�

u

2
�

cosh .2v/
4

uC ln .cosh v/

1CCCCCA :

A unit normal vector field is given by

N D
1

1C e�2u cosh .2v/

24 2e�u sinh v
�2e�u cosh v

1� e�2u cosh .2v/

35 :
Thus, we get

g.uC iv/D�ie�u.cosh vC i sinh v/;

which satisfies the harmonic equation (6). The metric induced by this immersion
on the surface is

ds2
D .e�4u tanh2 vC e2u sinh2 uC 1/jdzj2:

This surface is symmetric by reflection in the plane fx1 D 1=2g since

x.uC iv/D

0BBBBB@
1

2
�

tanh v
2

.1C e�2u/

e2u

4
�

u

2
�

cosh .2v/
4

uC ln .cosh v/

1CCCCCAD
0@1

2
C Qx1.u; v/

x2.u; v/

x3.u; v/

1A ;
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Figure 5. The surface S, created with Maxima.

and so

x.u� iv/D

0@1
2
� Qx1.u; v/

x2.u; v/

x3.u; v/

1A :
This property is equivalent to the property that the translated surface .�1=2; 0; 0/�

x.uC iv/ is symmetric with respect to fx1 D 0g. This translated surface is the
image of the immersion x defined by

x.uC iv/D .�1=2; 0; 0/�x.uC iv/D

0BBBBB@
�

tanh v
2

.1C e�2u/

e2u

4
�

u

2
�

cosh .2v/
4

uC ln .cosh v/

1CCCCCA :
Then, this surface is analytic (like any minimal surface in Sol3), so it is a local
analytic x2-graph around every point where @2 doesn’t belong to the tangent plane,
i.e., hN; @2i ¤ 0. But

hN; @2i D 0 ” cosh ve�u
D 0;

which is impossible. Thus, S is a local analytic x2-graph around every point. Then,
we consider sections of the surface S with planes fx3 D constantg: on the plane
fx3 D �g, we get the curve

c�.t/D

0BB@ �
tanh t

2
.1C e�2� cosh2 t/

e2�

4 cosh2 t
�
�

2
C

ln .cosh t/

2
�

cosh .2t/

4

1CCA WD �x1�.t/

x2�.t/

�
:

Then,

x1
0
�.t/D

tanh2 t � 1

2
�

e�2�

2
.cosh2 t C sinh2 t/ < 0
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for all t 2R. Thus, the curves are injective, so the surface S is embedded. Moreover,
by the implicit function theorem, we deduce that for every � 2 R, there exists a
function f� such that x2� D f�.x1�/. Because the function x1� is a decreasing
diffeomorphism of R, the function f� is defined on R. This calculus is valid for
all � 2 R, so there exists a function f W R2! R such that x2 D f .x1;x3/.

Finally, this function f coincides around every point with the local C1-functions
which give the local graphs, and so f is C1. �

As a conclusion, we can notice that, for a fixed x3,

� when x1!C1, x2 ��x1e2x3 ;

� when x1!�1, x2 � x1e2x3 .
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QUASI-EXCEPTIONAL DOMAINS

ALEXANDRE EREMENKO AND ERIK LUNDBERG

Exceptional domains are domains on which there exists a positive harmonic
function, zero on the boundary and such that the normal derivative on
the boundary is constant. Recent results classify (under some mild addi-
tional assumptions) exceptional domains as belonging to either a certain
one-parameter family of simply periodic domains or one of its scaling limits.

We introduce quasi-exceptional domains by allowing the boundary val-
ues to be different constants on each boundary component. This relaxed
definition retains the interesting property of being an arclength quadrature
domain, and also preserves the connection to the hollow vortex problem in
fluid dynamics. We give a partial classification of such domains in terms of
certain abelian differentials. We also provide a new two-parameter family
of periodic quasi-exceptional domains. These examples generalize the hol-
low vortex array found by Baker, Saffman, and Sheffield. A degeneration
of regions of this family provides doubly connected examples.

1. Introduction

A domain D ∈ Rn is called exceptional if there is a positive function u (called a
roof function) harmonic in D, zero on the boundary, and with

(1) ∂

∂n
u(z)= 1, z ∈ ∂D,

where the differentiation is along the normal pointing inwards into D and it is
assumed that the boundary is smooth. Evident examples are exteriors of balls and
half-spaces. For n > 2, the only other known examples are cylinders whose base
is an exceptional domain in R2. If the smoothness assumption on the boundary is
dropped, then there are also certain cones in higher dimensions and pathological
“non-Smirnov” examples in the plane [Khavinson et al. 2013].

The problem of describing of all exceptional domains in the plane was stated in
[Hauswirth et al. 2011] and settled in [Khavinson et al. 2013] under a topological
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assumption which was removed in [Traizet 2014a] using an unexpected correspon-
dence with minimal surfaces. The first nontrivial example was given in [Hauswirth
et al. 2011]. This example appeared in another context, related to fluid dynamics, in
[Longuet-Higgins 1988]. A second nontrivial example was noticed in [Khavinson
et al. 2013] and [Traizet 2014a]. This example had also appeared previously in
studies of fluid dynamics [Baker et al. 1976] (see also [Crowdy and Green 2011]).

Let us introduce quasi-exceptional domains, by relaxing the definition to allow
the Dirichlet condition to be a different constant on each boundary component.
Thus, a domain D ∈ Rn is called quasi-exceptional if there is a positive harmonic
function u in D which is constant on each boundary component (but not necessarily
the same constant) and the Neumann condition (1) holds. We will continue to
call u a roof function. Again, we assume that each component of the boundary
is smooth.

Added in press: In an interesting preprint, Martin Traizet [2014b] has considered
an even more general problem, allowing the Neumann data to take different signs
on different components. As with the current paper, that work is motivated by
the hollow vortex problem from fluid dynamics. Extending [Traizet 2014a], a
correspondence to minimal surfaces is given in that work, and techniques from
minimal surface theory are used to produce new examples.

We summarize several interesting aspects of exceptional domains. These state-
ments all hold true for quasi-exceptional domains.

• Fluid dynamics: As noted above, the two nontrivial examples first appeared in
fluid dynamics [Longuet-Higgins 1988; Baker et al. 1976]. In general, one can
interpret exceptional domains in terms of a hollow vortex problem. The level
lines of u can be interpreted as stream lines of a two-dimensional stationary
flow of ideal fluid, and condition (1) expresses the fact that the pressure is
constant on the boundary. Such conditions may exist if the components of the
complement of D are air bubbles in the surrounding liquid. Notice that the
rotation of the fluid around all bubbles corresponding to exceptional domains
is in the same direction because ∂u/∂n > 0 on the boundary.

• Quadrature domains [Gustafsson 1987]: Exceptional domains provide exam-
ples of arclength null-quadrature domains, that is, domains for which integrals
with respect to arclength over ∂D of every analytic function in the Smirnov
class E1(D) vanish.

• Differentials on Riemann surfaces: By way of the connection to quadrature
domains, the study [Gustafsson 1987] indicates a connection to half-order
differentials. We make use of abelian differentials in Section 4 below.



QUASI-EXCEPTIONAL DOMAINS 169

• The Schwarz function of a curve: In [Khavinson et al. 2013], it was noticed
that the function u(z) satisfies

∂zu(z)=
√
−S′(z),

where S(z) is the Schwarz function of ∂� and ∂z =
1
2(∂x− i∂y) is the Cauchy–

Riemann operator.

• Minimal surfaces: Traizet [2014a] established a nontrivial correspondence
between exceptional domains and a special type of minimal surfaces called
“minimal bigraphs”. In [Traizet 2014b], this correspondence was extended to
quasi-exceptional domains, but the minimal surfaces in that case need not be
embedded. This prevents applying the results on complete embedded minimal
surfaces that were used in [Traizet 2014a] to classify exceptional domains.

The classification results for exceptional domains of finite connectivity show
that they are quite restricted; all examples can be conformally mapped onto a disk
by elementary functions.

Problem A. Classify quasi-exceptional domains.

We begin to address this problem below, give a partial classification of periodic
and finitely connected exceptional domains, and provide new periodic and doubly
connected examples described in terms of elliptic functions. First, we explain the
relation to arclength null-quadrature domains.

2. Arclength null-quadrature domains

A bounded domain D ⊂C is a quadrature domain if it admits a formula expressing
the area integral of every function f analytic and integrable in D as a finite sum of
weighted point evaluations of the function and its derivatives, i.e.,

(2)
∫

D
g(z) dA(z)=

N∑
m=1

nm∑
k=0

am,k g(k)(zm),

where the zm are distinct points in D and the am,k are constants independent of g.
A (necessarily unbounded) domain D ⊂ C is called a null-quadrature domain

(NQD) if the area integral of every function g analytic and integrable in D vanishes:

(3)
∫

D
g(z) dA(z)= 0.

M. Sakai [1981] completely classified NQDs in the plane.
Following [Khavinson et al. 2013], we refer to a domain D ⊂ C as an arclength

null-quadrature domain (ALNQD) if the integral over ∂D of every function g in
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the Smirnov class E1(D) vanishes (in the case∞ is an isolated point on ∂D, we
take the restricted class of functions g(z) ∈ E1(D) vanishing at infinity):

(4)
∫
∂D

g(z) ds(z)= 0.

The Smirnov class E1(D) is not the same as the Hardy space H 1(D). Namely,
a function g analytic in D is said to belong to E1(D) if there exists a sequence of
domains D1⊂D2⊂· · · , with

⋃
k Dk=D, and with rectifiable boundaries, such that:

sup
k

∫
∂Dk

|g(z)| |dz|<∞.

One may also define quadrature domains in higher dimensions using a test class of
harmonic functions, but we will restrict ourselves to the case of n = 2 dimensions.

Inspired by the successful classification of NQDs [Sakai 1981], the problem of
classifying ALNQDs was suggested in [Khavinson et al. 2013]. We pose this prob-
lem again while stressing that it does not reduce to the classification of exceptional
domains (whereas it might reduce to classification of quasi-exceptional domains).

Problem B. Classify ALNQDs.

The following proposition shows that quasi-exceptional domains are ALNQDs.
Thus, the new examples (described in the last section) of quasi-exceptional domains
also provide new ALNQDs. Problem B is closely related to Problem A, and if the
converse of the proposition is true then the two problems are equivalent.

Proposition 1. If D is a quasi-exceptional domain, then D is an ALNQD.

Proof. Consider the complex analytic function F(z)= ux− iu y , where u is the roof
function. We will need the following claim, which is proved in the next section
(see Lemma 2).

Claim. The roof function u of D satisfies ∇u(z)= O(1) in D, so F(z) is bounded.

Suppose that g is in the Smirnov space E1(D). Using the fact that ds= i F(z) dz,

(5)
∫
∂D

g(z) ds =
∫
∂D

ig(z)F(z) dz.

As F is bounded, gF ∈ E1(D). If∞ is not an isolated boundary point, then the
integral equals zero by Cauchy’s theorem.

If∞ is an isolated boundary point, then we have u(z)= log|z|+const+O(1/z),
so F(z)= O(1/z), z→∞. Now g(∞)= 0, so Fg has a zero of order at least 2
at∞, and the integral is zero again. �
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3. A potential theoretic restriction on the roof function

We restrict ourselves to the case n = 2, and assume that the order of connectivity of
D is finite, or that the roof function u is periodic and a fundamental region for D
has finite connectivity.

Recall that a Martin function is a positive harmonic function M in a domain
� with the property that for any positive harmonic function v in � the condition
v ≤ M implies that v = cM , where c > 0 is a constant. (Often, Martin functions
are called minimal harmonic functions — see [Heins 1950].) Martin functions on
finitely connected domains are simply Poisson kernels evaluated at points of the
Martin boundary, the boundary under Carathéodory compactification (prime ends)
of the domain (see [Brelot 1971]).

Any domain D of finite connectivity in C is conformally equivalent to a circular
domain �. A circular domain is a domain whose boundary components are points
or circles. For a circular domain, a Martin function M can be of two types:

(a) There is a component of ∂� which is a single point z0, and M is proportional
to the Green function of �∪ {z0} with the singularity at z0.

(b) There is a point z0 ∈ ∂� which is not a component of ∂�, and M has boundary
value zero at all points of ∂� \ {z0}. The local behavior in this case is like
− Im(1/z) in the upper half-plane near 0.

Let D be an exceptional domain, and u a harmonic function with the property (1).
The following result was proved for exceptional domains by the current first author,
but was communicated in [Khavinson et al. 2013, Theorem 4.2]. Here we repeat
the proof with minor adjustments.

Lemma 2. The roof function u of a quasi-exceptional domain satisfies the equation
∇u(z)= O(1) in D. Moreover, u is the sum of a bounded harmonic function and
at most two Martin functions.

Proof. We follow the second part of the proof from [Khavinson et al. 2013]. Let
R > 0, and consider an auxiliary function

wR =
|∇u|

u+ R
.

A direct computation shows that

(6) 1 logwR = w
2
R,

and wR(z)= 1/(ck + R)≤ 1/R for z ∈ ∂D, where ck ≥ 0 are the constants taken
in the Dirichlet condition. We claim that

(7) wR(z)≤ 2/R, z ∈ D,
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from which the result follows by letting R→∞, which gives |∇u| ≤ 2 in D.
Suppose, contrary to (7), that wR(z0) > 2/R for some z0 ∈ D. Let

v(z)=
2R

R2− |z− z0|2
, z ∈ B(z0, R)= {z : |z− z0|< R}.

Obviously, v(z)≥ 2/R. A computation reveals that 1 log v = v2. Let

K = {z ∈ D ∩ B(z0, R) : wR(z) > v(z)}.

We have z0 ∈ K , since v(z0)= 2/R. Let K0 be the component of K containing z0.
Then we have wR(z)= v(z) on ∂K0, since wR(z) < v(z) on ∂D ∩ B(z0, R) while
v(z)=+∞ on ∂B(z0, R). On the other hand,

1(logwR − log v)= w2
R − v

2 > 0 in K0.

So the subharmonic function logwR − log v is positive in K0 and vanishes on the
boundary — a contradiction.

This proves that ∇u = O(1). In order to see the second statement, we note
that ∇u = O(1) implies that u(z) = O(|z|) has order 1. The result then follows
by first solving the Dirichlet problem (with a bounded function) having the same
boundary values as u; subtracting this function, one may then apply [Kjellberg
1950, Theorem II]. �

4. Partial classification in terms of abelian differentials

Let D be a QE domain of one of the following types:

Type I: D is finitely connected.

Type II: D/0 is finitely connected, where 0 is the group of transformations
z 7→ z+ nω, and u(z+ω)= u(z) for some ω ∈ C \ {0}. We call this the
periodic case. (As above, u is the roof function.)

In this section we give a classification of QE domains of these two types in
terms of abelian differentials of a compact Riemann surface with an anticonformal
involution.

If D is of type I, and∞ is an isolated boundary point, then D′ = D ∪ {∞} is
conformally equivalent to some bounded circular domain �, and we suppose that
p ∈� corresponds to∞. If∞ is not isolated, we put D′ = D, and � is a bounded
circular domain conformally equivalent to D′. In any case, we have a conformal
map φ :�→ D′, which may have at most one simple pole at p ∈�.

If D is of type II, let G = D/0. The Riemann surface G is a finitely connected
domain on the cylinder C/0; this cylinder is conformally equivalent to the punctured
plane, and we identify it with C∗. Then G ⊂ C∗ must have one or two punctures
of C/0 as isolated boundary points, and we denote by G ′ the union of G with
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these isolated boundary points. Then G ′ is conformally equivalent to a bounded
circular domain of finite connectivity � in which there are one or two points a and
b corresponding to the added punctures. We have a multivalued conformal map
φ :�→ D.

The points a and b are logarithmic singularities of φ.
We pull back u on �; i.e., set v = u ◦φ. As u is periodic, v is a single-valued

positive harmonic function on � \ {a, b}. Consider the differential on �

dv = vz dz = 1
2(vx − ivy)(dx + idy)= g(z) dz.

This is well-defined on �: g is a single-valued meromorphic function in � with
at most simple poles at p or a and b. Indeed, for a positive harmonic function,
an isolated singularity is either removable or logarithmic. In the second case the
gradient has a simple pole.

Next, we extend v as a multivalued function to a compact Riemann surface S.
Let �′ be the mirror image of �; we glue it to � in the standard way (along each
circular boundary component) and obtain a compact Riemann surface S. We denote
by σ : z 7→ z∗ the anticonformal involution which fixes the boundary components
of �. The Riemann surface S is of genus g, and the involution σ has fixed set
corresponding to ∂�, which consists of n = g+1 ovals. Such involutions are called
involutions of maximal type, meaning that the complement of the fixed set of the
involution consists of two regions homeomorphic to planar regions.

Each branch of v is constant on each boundary component, so it extends through
this boundary component by reflection to the double S of �. The extensions of
various branches of v through different boundary components do not match: they
differ by additive constants. On the other hand, the differential dv is well-defined
on the double. Namely,

(8) (dv)∗ =−dv,

where ∗ is the action of involution on differentials. Thus we have a meromorphic
differential dv on S.

Choose a basis of 1-homology in S so that the A-loops are simple closed curves
in �, each homotopic to one boundary component of �, and the B loops are dual
to the A-loops. For type I, all periods over A-loops are purely imaginary, because

v = Re
∫

dv

is single-valued. For type II, these periods are imaginary except those which
correspond to simple loops around one pole, a or b.
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Now we discuss φ, or better, the differential dφ = φ′(z) dz. We have, from the
condition that our domain is quasi-exceptional,

2|dv| = |dφ| on ∂�.

The ratio of two differentials is a function. So we have a meromorphic function B
on � such that

(9) 2B dv = dφ.

This function has absolute value 1 on ∂�. Therefore, it extends to S by symmetry.
It has no zeros in � because dφ has no zeros. Its poles in � must match the zeros
of dv, because dφ is zero-free (indeed, φ is univalent). In fact, B is a meromorphic
function on S. To justify this claim when dv has a singularity on ∂�, we observe
that this singularity is removable for B, which follows from the next lemma:

Lemma 3. Consider the equation

φ′ = Bh,

where h is meromorphic in a neighborhood V of 0, B is holomorphic and zero-free
in V \ {0}, |B(z)| = 1 for z ∈ V ∩R \ {0}, and φ is univalent in {z ∈ V : Im z > 0}.
Then the singularity of B at 0 is removable.

Before proving the lemma, we note that in order to apply it in our setting we
compose B with a linear fractional transformation that sends V to a neighborhood
of the singularity we wish to remove such that the real line is mapped to the circular
boundary component with 0 sent to the singularity.

Proof. In order to prove this by contradiction, assume that 0 is an essential singularity
of B. By symmetry we have B(z )= 1/B(z). We claim that there exists a sequence
zk→ 0 such that

(10) lim inf
k→∞

∣∣zk log|B(zk)|
∣∣> 0.

Indeed, suppose that this is not so. Then log |B(z)| = o(z−1), and the Phragmén–
Lindelöf theorem (see, for example, [Levin 1980, Chapter I, Theorem 22]) implies
that B has a limit as z→ 0. By choosing a subsequence and using symmetry, we
can find a sequence in the upper half-plane with the property

(11) lim inf
k→∞

|zk | log |B(zk)|> 0,

or with the property

(12) lim inf
k→∞

|zk | log |B(zk)|< 0.
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Distortion theorems for univalent functions imply that

(13) c(Im z)3 ≤ |φ′(z)| ≤ C(Im z)−3.

In addition to this, we have, for some integer m,

(14) c|x |m ≤ |φ′(x)| ≤ C |x |m, z ∈ V ∩R,

because h is meromorphic and |B(x)| = 1 for z ∈ V ∩R. Taking n =max{3,−m},
we obtain that the subharmonic function u(z)= log+|znφ′(z)/C | satisfies u(x)= 0
for x ∈ V ∩R, and u(reiθ )≤ ψ(θ), where ψ(θ)=−3 log sin θ for θ ∈ (0, π). As∫ π

0
ψ(θ) dθ <∞,

we can apply Carleman’s “log log” theorem [Carleman 1926; Rashkovskii 2009],
and conclude that u is bounded from above in the intersection of V with the upper
half-plane. This contradicts (11). If (12) holds, one applies the same argument to
1/φ′. This completes the proof of the lemma. �

We can thus restate the problem of finding QE domains (under the restrictions
we impose) as follows:

Proposition 4. All QE domains of types I and II are parametrized by triples
(S, dω, B), where S is a compact Riemann surface with an involution of maximal
type, dω is a meromorphic differential that enjoys the symmetry property (8), and B
is a function that has the symmetry property

B∗(z) := B(z∗)= 1/B(z)

and has poles at the zeros of dω on one half of S, that is, in�. There is an additional
condition: that

(15) φ = 2
∫

B dω

is globally univalent and single-valued in type I, and single-valued except the
residues in type II.

To recover D from a triple (S, dw, B), one takes one of the components �⊂ S
complementary to the fixed set of the involution. Then D = φ(�), where φ is
defined in (15).

In order to check the condition on the global univalence of φ, it is sufficient
to verify that periods of dω/B are zero on the boundary curves, and that these
boundary curves are mapped by φ injectively.

The following is a general conclusion:

Proposition 5. The boundary of a quasi-exceptional domain of type I or type II is
parametrized by an abelian integral.
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Next we provide a partial classification of quasi-exceptional domains in terms of
the data stated in the above formulation.

Theorem 6. The differential dv has either two or four poles on S, counting multi-
plicity. Moreover, if dv has two poles in S, then D is the complement of either a
disk or a half-plane.

Remark. If B 6= const, then 1/B is an Ahlfors function of �.

Proof of Theorem 6. Let us first show that dv has some poles. Otherwise, dv is
holomorphic, and thus u is bounded. Let z1 ∈ ∂D and z2 ∈ ∂D be the points where
u assumes its maximal and minimal values. Then du/dn has opposite signs at these
two points, which contradicts (1).

The differential dv has at most simple poles at p, a, and b (whichever of these
points are present) and at their images σ p, σa, and σb. In addition it may have
double poles on ∂�. The total number of poles (without multiplicity) in� is at most
two by Lemma 2. Thus, on S the differential dv has two or four poles, counting
multiplicity.

Notice that v is constant on each boundary component, so the gradient is perpen-
dicular to the boundary ∂�, so the total rotation of this gradient as we traverse the
boundary is the same as the total rotation of the tangent vector to the boundary.
This is equal to 2π(2− n) because the outer boundary component is traversed
counterclockwise and the rest clockwise, as parts of the boundary of �. So vz ,
which is conjugate to the gradient, rotates n− 2 times.

From this we can conclude how many zeros dv has in �. The number N of zeros
of dv in � satisfies

(16) n− 2= N − (the number of poles in �),

where a double pole on ∂� is counted as a single pole in �. This formula is
well known.

Suppose that dv has exactly two poles, counting multiplicity. This can occur in
one of three ways:

Case (1): dv has a simple pole at p in �.

Case (2): dv has one double pole at z0 ∈ ∂�.

Case (3): dv has a simple pole at a in � (and b does not exist).

If Case (1) holds, then∞ is an isolated point on ∂D, and, by Proposition 1, D is
an arclength quadrature domain with quadrature point at∞. It now follows from
[Gustafsson 1987, Remark 6.1] that D is the exterior of a disk.

In Case (2), we will show that B is constant. First note that dφ has a double
pole at z0, so B does not have a zero or a pole at z0. Since φ is a conformal map, it
follows from (9) that B has no zeros and N poles in � (located at the zeros of dv).



QUASI-EXCEPTIONAL DOMAINS 177

Assume for the sake of contradiction that B is not constant. By Lemma 3, B is
meromorphic in S, and, by Lemma 2, 1/|B| is bounded by a constant in �. Since
|B| = 1 on ∂�, B thus maps � to the exterior of the unit disk and maps each of the
n components of ∂� to the unit circle. This implies that B has at least n poles in
�. Combined with (16), this gives the contradiction N = n− 1≥ n. We conclude
that B is constant, which implies that the gradient of the roof function is constant.
Thus, the roof function is linear, and D is a half-plane.

In Case (3), the behavior of φ at point a is logarithmic, so dφ has a simple pole
at a and B does not have a zero or a pole at a. Arguing as before, we conclude that
B is constant and that D is a half-plane. �

Corollary 7. The only QE domains with compact boundary are exteriors of disks,
and the only QE domains of types I or II with one unbounded boundary component
are half-planes.

If D is a quasi-exceptional domain that is not a disk or half-plane, then dv has
four poles and, more precisely, we have the following two possibilities:

D is of type I: dv has two double poles on ∂�. This implies that the boundary ∂D
consists of two simple curves tending to∞ in both directions and n− 1 bounded
components. The unbounded components are the φ-images of two arcs of one
boundary circle of � which contains both singularities of φ and v.

D is of type II: dv has two simple poles in �. In this case D must be periodic, all
components of ∂D are compact, and there are n such components per period.

Note that the possibility that dv has one simple pole in � and one double pole
on ∂� is excluded by Lemma 2: it is easy to see that in this case the number of
Martin functions in the decomposition of u would be infinite.

We have thus described possible topologies of the QE domains satisfying the
assumptions stated in the beginning of this section.

In the next section we construct the examples of types I and II with S of genus 1.
We conjecture that there exist QE domains of types I and II with S of any genus.

5. New examples

Description of our examples requires elliptic functions (all known exceptional
domains can be parametrized by elementary functions).

Example of type I. Let G be the rectangle with vertices (0, 2ω1, 2ω1 + ω3, ω3),
where ω1 = 2ω, ω > 0, and ω3 = ω

′, where ω′ ∈ iR, ω′/ i > ω. Let G ′ be the
reflection of G in the real line. The union of G,G ′ and the interval (0, 2ω1) make
a fundamental domain of the lattice 3 generated by 2ω1, 2ω3.
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Let us consider the ω1-periodic positive harmonic function h in G which is zero
on the horizontal segments of the boundary ∂G, except for one singularity per
period, at 0, where it behaves in the following way:

h(z)∼− Im(1/z), z→ 0.

Note that the existence of h is clear as it can be expressed (through conformal
mapping) in terms of the Poisson kernel of a ring domain.

The function h has two critical points in G: at w1 and w2 with Rew1 = ω1/2
and Rew2 = 3ω1/2, while the imaginary parts of w1 and w2 are equal. Let us
choose real constants c1 and c2 such that v= 2(h+c1 y)+c2 is a positive harmonic
function with critical points ω1/2+ω3/2 and 3ω1/2+ω3/2. The existence of such
constants c1 and c2 is evident by continuity.

The z-derivative ∂zv = (vx − ivy)/2 is an elliptic function with periods ω1, 2ω3,
and thus also elliptic with periods 3. Asymptotics near 0 show that ∂zv ∼−i/z2,
and, as this function has only one pole per period (with respect to the parallelogram
ω1, 2ω3), we have ∂zv=−i℘+ic0, where ℘ is the Weierstrass function correspond-
ing to the lattice (ω1, 2ω3). Zeros of ∂zv in G∪G ′ are ω1/2+ω3/2, 3ω1/2+ω3/2
and their complex conjugates in G ′.

Let B be an elliptic function with periods 2ω1, 2ω3 having simple poles at
ω1/2+ω3/2, 3ω1/2+ω3/2, and zeros at complex conjugate points. Such a function
exists by Abel’s theorem: the sum of zeros minus the sum of poles equals −2ω3.
This function is unique up to a constant factor. By symmetry, B(z )= c/B(z), so
on the real line |B(x)|2 = c and we can choose the constant factor in the definition
of B so that c = 1. Thus

(17) |B(x)| = 1, x ∈ R.

Then we have B(x +ω3)B(x −ω3)=1, but by periodicity we also have B(x+ω3)=

B(x −ω3), thus |B(x +ω3)| = 1. So

(18) |B(z)| = 1 on the horizontal segments of ∂G.

Now we consider the function

F = ∂v
∂z

B = (−i℘+ ic0)B.

This function F is holomorphic and zero-free in G (the zeros of ∂v/∂z in G are
exactly canceled by the poles of B). Let us show that

(19)
∫ 2ω1

0
F(x + iy) dx = 0, y ∈ (0, ω3).
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Figure 1. A doubly connected quasi-exceptional domain of type I
mapped from the rectangle G.

This property follows from the fact that B(z) and B(z+ω1) have the same poles,
but the residues at these poles are of opposite signs, because B has only two poles
in the period parallelogram. Thus

(20) B(z+ω1)=−B(z).

Property (20) and ω1-periodicity of ℘ imply (19).
As F has no zeros, the primitive f =

∫
F is locally univalent. Assuming for the

moment that it is univalent, it maps G onto some region in the plane, and we have

| f ′| = |F | =
∣∣∣∂v
∂z

∣∣∣|B|.
Define u by composing v with f −1, so u( f (z)) = v(z). Then u is positive and
harmonic in f (G). Taking into account (18), we conclude that u satisfies (1) so
f (G) is a quasi-exceptional domain. Note that, in accordance with the previous
results in [Traizet 2014a], f (G) is not an exceptional domain since the piecewise-
constant Dirichlet data is not the same constant on each boundary component.

In order to show that f is in fact univalent, it is enough to show that it is one-
to-one on the horizontal sides of G (since f is locally univalent). To this end, we
make the following claims:

Claim 1: Re f is increasing along the segment [ω′, ω′+ 2ω] and decreasing along
the segment [ω′+ 2ω,ω′+ 4ω].



180 ALEXANDRE EREMENKO AND ERIK LUNDBERG

Claim 2: Im f < Im f (ω′) on the segment (ω′, ω′+ 2ω] and Im f > Im f (ω′) on
the segment [ω′+ 2ω,ω′+ 4ω).

Claim 3: Im f achieves its minimum and maximum on the segment [ω′, ω′+ 4ω]
at ω′+ω and ω′+ 3ω, respectively.

Claim 4: Re f is increasing along the segment [0, 2ω] and Re f is decreasing along
the segment [2ω, 4ω].

Claim 5: Im f attains its maximum on the segment [0, 2ω] at ω and its minimum
on the segment [2ω, 4ω] at 3ω.

Claim 6: Im f (ω) < Im f (ω′+ω) < Im f (ω′+ 3ω) < Im f (3ω).

Claim 1 implies that Re f is monotone along each of the named segments, and
since Im f differs between the two segments by Claim 2, f must be one-to-one
on the top side of G. Claim 4 implies that f is one-to-one on each of the two
segments on the bottom side of G. Claims 3, 5, and 6 imply that the images of
these three segments do not intersect each other. This shows that f is one-to-one
on the horizontal sides of G.

The claims can be established by the properties of f ′ = F = ∂zvB. First note
that, since v(z) is positive in G and vanishes on the horizontal sides of G, we have
∂xv(z)= 0 on both sides, and for x ∈R we have ∂yv(x+ω3)< 0 and ∂yv(x)> 0. In
particular, i∂zv(z)= i(∂xv− i∂yv)/2= ∂yv/2 is real. The function B(z) is a Jacobi
sn function, whose properties are well known [Akhiezer 1990, Section 47]. B(z)
sends the top side of G to the unit circle, such that the four segments [ω′, ω′+ω],
[ω′+ω,ω′+2ω], [ω′+2ω,ω′+3ω], and [ω′+3ω,ω′+4ω] correspond to the fourth,
third, second, and first quadrants of the unit circle, respectively. Multiplication
by ∂zv(z) distorts this circle and rotates it by an angle of π/2 (since ∂zv(z)/ i is
positive), but preserves the two-fold symmetry. This determines the sign of the real
and imaginary parts of f ′. Since dz = dx is purely real on the horizontal sides
of G, this gives the monotonicity of Re f stated in Claim 1. Claims 2 and 3 follow
from the sign of Im f ′ and the fact that Im f ′ is an odd function with respect to
reflection in each of the points ω′+ω and ω′+ 3ω.

The four segments [0, ω], [ω, 2ω], [2ω, 3ω], and [3ω, 4ω] on the bottom side
of G are sent to the second, first, fourth, and third quadrants of the unit circle,
respectively. Since ∂zv(z)/ i is negative along the bottom side of G, under f ′(z) this
becomes the first, fourth, third, and second quadrants, respectively. This establishes
Claim 4, and, combined with the reflectional symmetry, also Claim 5. Claim 6
follows from the fact that ∂zv(z)B(z) > 0 along the vertical segment [ω,ω+ω′]
and ∂zv(z)B(z) < 0 along [3ω, 3ω+ω′].



QUASI-EXCEPTIONAL DOMAINS 181

Figure 2. An example of type II with ω1 = 2, ω3 = 2 and ε = 0.5.

Figure 3. An example of type II with ω1 = 2, ω3 = 1.5, and ε = 0.4.

Remark. For the purpose of plotting Figure 1, instead of the above construction,
we expressed F as a ratio of Weierstrass sigma functions:

f ′(z)= F(z)=
σ(z−ω+ω′/2)2 · σ(z− 3ω+ω′/2)2

σ(z)2 · σ(z− 2ω) · σ(z− 6ω+ 2ω′)
,

where σ is a Weierstrass sigma function with fundamental “periods” 4ω, 2ω′ (but
recall that σ is not itself periodic). As usual, the shifts are chosen based on the
zeros and poles of F , but one of the shifts must be replaced by an equivalent lattice
point in a different rectangle in order to satisfy [Akhiezer 1990, Section 14, (1)].
This explains why one of the poles is placed at 6ω− 2ω′.

Example of type II. Only small modifications of the previous example are needed.
Using the same G,G ′, ω1, ω3, we define h as the ω1-periodic function, positive and
harmonic in G ′ except two logarithmic poles at iε and ω1+ iε, where ε ∈ (0, ω3/2).
Then we can find constants c1 and c2 such that v = h+ c1 y+ c2 has critical points
at ω1/2+ω3/2 and 3ω1/2+ω3/2.

Then vz is an elliptic function with periods ω1, 2ω3 with two simple poles at iε
and −iε per period parallelogram. This elliptic function has the form

−i℘
1+ c℘

+ ic0

for some small real c. The rest of the construction is the same as in the previous
example.

In a similar manner to the above, in order to plot Figures 2 and 3, we expressed
F as a ratio of Weierstrass sigma functions:

f ′(z)= F(z)=
σ(z−ω+ω′/2)2 · σ(z− 3ω+ω′/2)2

σ(z− iε) · σ(z+ iε) · σ(z− 2ω− iε) · σ(z− 6ω+ iε+ 2ω′)
.

Note that we have displayed the figures horizontally in order to plot two periods.
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6. Hollow vortex equilibria

Let G j be smooth Jordan domains on the plane whose closures are disjoint, and

D = C \
⋃

j

G j .

Let F be the complex potential of a flow of an ideal fluid which is divergence-free
and locally irrotational in D. If the pressure (determined by |F ′| according to
Bernoulli’s law) is constant on ∂D then G j can be interpreted as constant-pressure
gas bubbles in the flow.

The first examples of this situation, with two bubbles, were constructed by
Pocklington [1895]. Periodic exceptional domains give periodic examples with one
bubble per period, with the flow on the surface on the bubbles rotating in the same
direction [Baker et al. 1976] (see also [Crowdy and Green 2011]). Crowdy and
Green [2011] constructed periodic examples with two bubbles per period rotating
in the opposite direction. Our example of type II can be interpreted as a periodic
flow with two bubbles per period rotating in the same direction.

The velocity at infinity in our examples is directed in the opposite directions on
the two sides of the row of bubbles.
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The analytic properties of the complete Asai L-functions attached to cusp-
idal automorphic representations of the general linear group over a qua-
dratic extension of a number field are obtained. The proof is based on
the comparison of the Langlands–Shahidi method and Mok’s endoscopic
classification of automorphic representations of quasisplit unitary groups.
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Introduction

In this paper we study the analytic properties of the complete Asai L-function
attached to a cuspidal automorphic representation of the general linear group over
a quadratic extension of a number field. The approach is based on the Langlands–
Shahidi method, combined with the knowledge of the poles of Eisenstein series
coming from a recent endoscopic classification of automorphic representations of
the quasisplit unitary groups by Mok [2015].

In order to state the main result more precisely, we introduce some notation. Let
E/F be a quadratic extension of number fields, and let θ be the unique nontrivial
element in the Galois group Gal(E/F). Let AE and AF be the rings of adèles of E
and F , respectively. Let δ̂ be any extension to A×E /E

× of the quadratic character of
A×F /F

× attached to E/F by class field theory.
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For a cuspidal automorphic representation σ of GLn(AE), we denote by σ θ its
Galois conjugate and by σ̃ its contragredient representation. We say that σ is Galois
self-dual if σ ∼= σ̃ θ , that is, σ is isomorphic to its Galois conjugate contragredient.

Let L(s, σ, rA) denote the complete Asai L-function attached to σ and the Asai
representation rA via the Langlands–Shahidi method. See Section 2.A for a definition.
Our main result on the holomorphy and nonvanishing of the Asai L-function
L(s, σ, rA) is the following theorem.

Theorem 4.3. Let σ be a cuspidal automorphic representation of GLn(AE). Let
L(s, σ, rA) (respectively, L(s, σ ⊗ δ̂, rA)) be the Asai (respectively, twisted Asai)
L-function attached to σ , where δ̂ is any extension to A×E /E

× of the quadratic
character of A×F /F

× attached to the extension E/F by class field theory.

(1) If σ is not Galois self-dual, i.e., if σ 6∼= σ̃ θ , then L(s, σ, rA) is entire. It is
nonzero for Re(s)≥ 1 and Re(s)≤ 0.

(2) If σ is Galois self-dual, i.e., if σ ∼= σ̃ θ , then

(a) L(s, σ, rA) is entire, except for possible simple poles at s = 0 and s = 1,
and nonzero for Re(s)≥ 1 and Re(s)≤ 0;

(b) exactly one of the L-functions L(s, σ, rA) and L(s, σ ⊗ δ̂, rA) has simple
poles at s = 0 and s = 1, while the other is holomorphic at those points.

The idea of the proof is to consider the Eisenstein series attached to σ on the
quasisplit unitary group U2n(AF ) defined by the quadratic extension E/F , where
σ is viewed as a representation of the Levi factor of the Siegel maximal parabolic
subgroup of U2n in 2n variables. We look at the contribution of this Eisenstein series
to the residual spectrum from two different points of view. On the one hand, by the
Langlands–Shahidi method [2010], the poles of the Eisenstein series for the complex
argument in the positive Weyl chamber are determined by certain ratio of the Asai
L-functions. The residues at such a pole span a residual representation of U2n(AF ).
On the other hand, this residual representation should have an Arthur parameter,
according to Mok’s endoscopic classification [2015] of automorphic representations
of quasisplit unitary groups (see also [Arthur 2005; 2013]). Comparing the possible
Arthur parameters and poles of Asai L-functions, we are able to deduce the analytic
properties of these L-functions.

Mok’s work, as well as Arthur’s, still depends on the stabilization of the twisted
trace formula for the general linear group. Hence, our result is also conditional
on this stabilization. This issue is considered by Waldspurger [2014a; 2014b;
2014c]. In our paper, we always make a remark when a partial result could have
been obtained without using Mok’s work. In fact, the crucial insight coming from
endoscopic classification is holomorphy of the Asai L-function L(s, σ, rA) inside
the critical strip 0< Re(s) < 1.
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This method was applied in [Grbac 2011] to the complete exterior and symmetric
square L-functions attached to a cuspidal automorphic representation of GLn(AF ).
It relies on Arthur’s endoscopic classification of automorphic representations for
split classical groups [Arthur 2013; 2005]. The result and the approach are of the
same nature as the above theorem for Asai L-functions. The approach has also
already been used as a part of a long term project to study endoscopy via descent
by Jiang, Liu and Zhang [Jiang et al. 2013].

A different approach to describing the analytic properties of L-functions is that
of integral representations. However, this approach usually gives holomorphy of
partial L-functions, which is weaker than our result due to ramification or problems
at archimedean places. For the exterior square L-function this was pursued in [Bump
and Friedberg 1990; Kewat and Raghunathan 2012; Belt 2012], for the symmetric
square L-function in [Bump and Ginzburg 1992] and more generally for twisted
symmetric square in a series of papers [Takeda 2014b; 2014a; 2013], and for the
Asai L-functions in [Flicker 1988; Flicker and Zinoviev 1995; Anandavardhanan
and Rajan 2005].

The paper is organized as follows. In Section 1 we introduce the unitary group
structure and fix the notation. In Section 2 the relation between poles of Eisenstein
series on quasisplit unitary groups and the Asai L-functions is investigated. Section 3
provides a definition of Arthur parameters and packets for quasisplit unitary groups
in terms of results of Mok. Finally, in Section 4 we prove the main result on the
analytic properties of Asai L-functions.

1. The quasisplit unitary groups

1.A. Definition and basic structure. Let E/F be a quadratic extension of number
fields. The nontrivial Galois automorphism in the Galois group Gal(E/F) is denoted
by θ . Let NE/F denote the norm map from E to F . Let AF and AE be the rings
of adèles of F and E , respectively, and A×F and A×E the corresponding groups of
idèles.

The quadratic character of A×F /F
× attached to E/F by class field theory is

denoted by δE/F . We always identify δE/F with the corresponding character of the
Weil group WF of F under class field theory. Let δ̂ be any extension of δE/F to a
character of A×E /E

×. Such extension is not unique.
We denote by Fv the completion of F at the place v. If a place v of F does not

split in E , we always denote by w the unique place of E lying over v. Then Ew/Fv
is a quadratic extension of local fields. If v splits in E , we denote by w1 and w2

the two places of E lying over v. Then we have Ew1
∼= Ew2

∼= Fv. We use F∞ to
denote the product of Fv over archimedean places.

For an integer N ≥ 2, we consider in this paper the F-quasisplit unitary group
UN in N variables defined by the extension E/F , viewed as an algebraic group
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over F . More precisely, UN is a group scheme over F , whose functor of points is
defined as follows. Consider θ as an element of the Galois group Gal(F/F) trivial
on F/E , where F is a fixed algebraic closure of F . Let V be an N -dimensional
vector space over E . We fix a form on V as in [Kim and Krishnamurthy 2004;
2005], that is, let

Jn =

 1
. ..

1

 and J ′N =



(
0 Jn
−Jn 0

)
for N = 2n, 0 0 Jn

0 1 0
−Jn 0 0

 for N = 2n+ 1.

Then the functor of points of UN is given by

UN (R)= {g ∈ GLE⊗F R(V ⊗F R) : ∗g J ′N g = J ′N }

for any F-algebra R, where ∗g = tgθ is the conjugate transpose of g. In particular,
the F-points of UN are given as

UN (F)= {g ∈ GLN (E) : ∗g J ′N g = J ′N }.

Writing N = 2n if N is even, and N = 2n+1 if N is odd, the F-rank of UN in both
cases equals n ≥ 1. For N = 1, the unitary group U1 in one variable is obtained by
inserting N = 1 in the definition of UN . Its F-points are nothing else than

U1(F)= {x ∈ E× : θ(x)x = 1},

which is the norm-one subgroup E1 of E×.
For m ≥ 1, let Gm = ResE/F GLm be the algebraic group over F obtained from

the general linear group GLm over E by restriction of scalars from E to F . If m ≤ n,
it appears in the Levi factors of parabolic subgroups of UN .

We fix the Borel subgroup P0 of UN consisting of upper-triangular matrices.
Let P0 = M0 N0, where M0 is a maximally split maximal torus of UN (i.e., one
containing a maximal split torus of UN ; see [Shahidi 2010, Chapter I]), and N0 the
unipotent radical of P0. Then

M0 ∼=

{
G1× · · ·×G1 for N = 2n,
G1× · · ·×G1×U1 for N = 2n+ 1,

with n copies of G1, so that the F-points of M0 are given by

M0(F)

=

{
{diag(t1, . . . , tn, θ(tn)−1, . . . , θ(t1)−1) : ti ∈ E×} for N = 2n,
{diag(t1, . . . , tn, t, θ(tn)−1, . . . , θ(t1)−1) : ti ∈ E×, t ∈ E1

} for N = 2n+1.
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Let A0 be a maximal F-split torus of UN , which is a subtorus of M0. Then

A0(F)=
{
{diag(t1, . . . , tn, t−1

n , . . . , t−1
1 ) : ti ∈ F×} for N = 2n,

{diag(t1, . . . , tn, 1, t−1
n , . . . , t−1

1 ) : ti ∈ F×} for N = 2n+ 1.

The absolute root system8=8(UN ,M0) of UN with respect to M0 is of type AN−1.
The root system 8red = 8(UN , A0) of UN with respect to A0 is a reduced root
system. It is of type Cn for N = 2n and of type BCn for N = 2n+ 1. We make the
choice of positive roots according to the fixed Borel subgroup P0, and let 1 be the
set of simple roots. We order the simple roots as in Bourbaki [1968].

Let P be the Siegel maximal proper standard parabolic F-subgroup of UN . That
is, it is defined, in a standard fashion, by a subset of simple roots obtained by
removing the last simple root in the Bourbaki ordering (cf. [Bourbaki 1968] and
[Shahidi 2010, Section 1.2]). Let P = MP NP be the Levi decomposition of P ,
where

MP ∼=

{
Gn for N = 2n,
Gn ×U1 for N = 2n+ 1,

is the Levi factor, and NP the unipotent radical.

1.B. L-groups. The L-group of UN is a semidirect product

LUN = GLN (C)o WF ,

where WF is the Weil group of F . It is acting on the connected component LU ◦N =
GLN (C) through the quotient WF/WE ∼= Gal(E/F). The action of the nontrivial
Galois automorphism θ ∈ Gal(E/F) is given by

θ(g)= J ′−1
N

tg−1 J ′N
for all g ∈ GLN (C).

The L-group of the Levi factor MP is a semidirect product

LMP =

{
GLn(C)×GLn(C)o WF for N = 2n,
GLn(C)×GL1(C)×GLn(C)o WF for N = 2n+ 1,

where the Weil group WF acts through the quotient WF/WE ∼= Gal(E/F) on the
connected component of the L-group, and θ ∈ Gal(E/F) acts by interchanging the
two GLn(C) factors.

2. Eisenstein series and Asai L-functions

In this section we relate the analytic behavior of the Eisenstein series on the unitary
group supported in the Siegel parabolic subgroup to a ratio of the Asai L-functions
appearing in its constant term. For the study of analytic properties of the Asai L-
functions, it is sufficient to consider the even quasisplit unitary group U2n . However,
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for completeness and future reference, we also study the Eisenstein series in the
odd case.

We retain all the notation of Section 1. So, P is the Siegel maximal proper
standard parabolic F-subgroup of UN , with the Levi factor MP ∼= Gn if N = 2n
is even, and MP ∼= Gn ×U1 if N = 2n+ 1 is odd, and the unipotent radical NP .
Recall that Gn = ResE/F GLn .

2.A. Asai L-functions. Let σ denote a cuspidal automorphic representation of
Gn(AF )∼=GLn(AE) and ν a character of U1(AF )∼=A1

E trivial on U1(F)∼= E1. To
make a convenient normalization in the case of odd unitary groups, as in [Rogawski
1990] and [Goldberg 1994, Section 6], we denote by ν̂ a unitary character of
GLn(AE) given by

ν̂(g)= ν(det(g ∗g−1))

for all g ∈ GLn(AE). Observe that det(g ∗g−1) is of norm one. Then we define a
cuspidal automorphic representation 6 of the Levi factor MP(AF ) as

6 =

{
σ for N = 2n,
(σ ν̂)⊗ ν for N = 2n+ 1.

More precisely, in the case of odd unitary groups the action of 6 is given by

6(g, t)= σ(g)ν(det(g ∗g−1))ν(t)

for g ∈ GLn(AE) and t ∈ A1
E . We always assume that 6 is irreducible unitary and

trivial on AP(F∞)◦, the identity connected component of AP(F∞), where AP is
a maximal F-split torus in the center of MP . The last condition is not restrictive.
It is just a convenient normalization, obtained by twisting by a unitary character,
which makes the poles of Eisenstein series real.

We define first the local L-functions. Let v be a place of F . By extension of
scalars from F to Fv, we may view the unitary group UN as an algebraic group
over Fv. This algebraic group is denoted by UN . Then we have the parabolic
subgroup Pv of UN defined over Fv with Levi decomposition MP,v NP,v, where
MP,v is the Levi factor and NP,v the unipotent radical.

In the case of the even unitary group, say N = 2n, the adjoint representation rv of
the L-group LMP,v on the Lie algebra LnP,v of the L-group of NP,v is irreducible
for all places v of F . If v does not split in E , then rv is called the Asai representation,
as it generalizes the case considered by Asai in [1977]. We denote it by rA,v. This
situation is labeled 2A2n−1− 2 in the list of [Shahidi 1988, Section 4] and [2010,
Appendix C]. Explicit action of rA,v is given in [Goldberg 1994, Section 3].

In the case of the odd unitary group, say N = 2n + 1, the analogous adjoint
representation is a direct sum r1,v⊕ r2,v of two irreducible representations for all
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places v of F , ordered as in [Shahidi 1990]. If v does not split in E , then r2,v is the
twisted Asai representation rA,v⊗ δEw/Fv , where w is the unique place of E lying
over v. This situation is labeled 2A2n − 3 in the list of [1988, Section 4] and [2010,
Appendix C].

For a cuspidal automorphic representation 6 of MP(AF ), let 6 ∼= ⊗′v6v be a
decomposition into a restricted tensor product over all places. Let Rv be one of
the adjoint representations defined above. Then the local L-functions L(s, 6v, Rv)
attached to 6v and Rv are defined as follows.

• At archimedean places, they are the Artin L-functions attached to the Langlands
parameter of 6v as in [Shahidi 1985] (see also [2010, Section 8.2], and
[Langlands 1989] where the Langlands parametrization over reals was first
introduced).

• At unramified nonarchimedean places, they are given in terms of Satake
parameters of 6v (see [Shahidi 1988; 2010, Definition 2.3.5], and also [Harder
et al. 1986] where Asai’s name came up first).

• At the remaining nonarchimedean places, they are defined using the Langlands–
Shahidi method [Shahidi 1990, Section 7] (see also [Shahidi 2010, Sec-
tion 8.4]).

The corresponding global L-functions are defined as the analytic continuation
from the domain of convergence of the product over all places of local L-functions
L(s, 6v, Rv). According to [Langlands 1971] (see also [Shahidi 2010, Section 2.5]),
the product over all places defining the global L-functions converges absolutely in
some right half-plane Re(s) > C , where C is sufficiently large.

The global L-function obtained in this way from 6 = σ ∼=⊗′vσv and Rv = r1,v
is denoted by L(s, σ, rA) and called the Asai L-function attached to σ . Its analytic
properties are the main concern of this paper.

The global L-function obtained from 6 ∼= ⊗′v6v and Rv = r2,v is denoted by
L(s, 6, rA⊗ δE/F ) and called the twisted Asai L-function attached to 6. In fact, it
is the same as the Asai L-function L(s, σ ⊗ δ̂, rA) attached to σ ⊗ δ̂ (see [Goldberg
1994]). Hence, the analytic properties of the twisted Asai L-function follow from
the analytic properties of the Asai L-function attached to a twisted representation.
Recall that δ̂ is any extension of the quadratic character δE/F to A×E .

Finally, as shown in [Goldberg 1994], the choice of the normalization of 6 in
the case of odd unitary groups implies that the global L-function obtained from
6 ∼=⊗′v6v and Rv = r1,v is the same as the principal L-function L(s, σ ) attached
to σ by [Godement and Jacquet 1972]. Its analytic properties are well known. It is
entire, unless n = 1 and σ is the trivial character 1A×E

of A×E . In that case L(s, 1A×E
)

is holomorphic except for simple poles at s = 0 and s = 1.
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2.B. Eisenstein series. For s ∈ C and 6 a cuspidal automorphic representation of
MP(AF ) as above, let

I (s, 6)=

{
IndUN (AF )

P(AF )
(σ | det |sE) for N = 2n,

IndUN (AF )
P(AF )

(σ ν̂| det |sE ⊗ ν) for N = 2n+ 1,

be the induced representation, where the induction is normalized. As in [Shahidi
2010, page 108], we realize I (s, 6) for all s ∈ C on the same space W6 of smooth
functions

f : NP(AF )MP(F)AP(F∞)◦\UN (AF )→ C,

K -finite with respect to a fixed maximal compact subgroup K of UN (AF ) compatible
to P (as in [Mœglin and Waldspurger 1995, Section I.1.4]), and such that the function
on MP(AF ) given by the assignment m 7→ f (mg) for m ∈ MP(AF ) belongs to the
space of 6 for all g ∈UN (AF ). The dependence on s ∈C is hidden in the action of
UN (AF ).

Given f ∈W6 and s ∈ C, set

fs(g)= f (g) exp〈s+ ρP, HP(g)〉

for all g ∈UN (AF ). Here ρP is the half-sum of positive roots not being the roots of
MP , and HP is a map

HP :UN (AF )→ Hom(X (MP)F ,R),

where X (MP)F denotes the group of F-rational characters of MP , defined on
m = (mv)v ∈ MP(AF ) by the condition

exp〈χ, HP(m)〉 =
∏
v

|χ(mv)|v

for every χ ∈ X (MP)F , and extended via Iwasawa decomposition to UN (AF ) triv-
ially on the unipotent radical NP(AF ) and the fixed maximal compact subgroup K
(cf. [Shahidi 2010, Section 1.3]). Then the Eisenstein series is defined as the analytic
continuation from the domain of convergence Re(s) > ρP of the series

E( f, s)(g)=
∑

γ∈P(F)\UN (F)

f (γ g) exp〈s+ ρP, HP(γ g)〉 =
∑

γ∈P(F)\UN (F)

fs(γ g)

for g ∈UN (AF ). The Eisenstein series E( f, s) has a finite number of simple poles
in the real interval 0< s ≤ ρP, and all other poles have Re(s) < 0 (cf. [Mœglin and
Waldspurger 1995, Section IV.1.11 and IV.3.12]). The residue of the Eisenstein
series E( f, s) at s > 0 is a square-integrable automorphic form on UN (AF ), but
not cuspidal, thus belonging to the residual spectrum of UN (AF ). In fact, such
residues for all f ∈ W6 span the summand of the residual spectrum of UN (AF )

with cuspidal support in 6 (see [Mœglin and Waldspurger 1995, Section III.2.6]
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or [Franke and Schwermer 1998, Section 1] for the decomposition of the space of
automorphic forms with respect to their cuspidal support).

2.C. Asai L-functions in the constant term. Now we prove that the poles of Eisen-
stein series E( f, s)(g) for Re(s) > 0 coincide with the poles for Re(s) > 0 of the
ratio of L-functions appearing in its constant term.

Theorem 2.1. Let σ be a cuspidal automorphic representation of Gn(AF ) ∼=

GLn(AE) and ν a unitary character of U1(AF ) ∼= A1
E trivial on U1(F) ∼= E1.

As in Section 2.B, form a cuspidal automorphic representation 6 of the Levi factor
MP(AF ) in UN . Then the poles with Re(s) > 0 of the Eisenstein series E( f, s) for
some f ∈W6 coincide with the poles satisfying Re(s) > 0 of

L(2s, σ, rA)

L(1+ 2s, σ, rA)
if N = 2n,

L(s, σ )
L(1+ s, σ )

·
L(2s, σ ⊗ δ̂, rA)

L(1+ 2s, σ ⊗ δ̂, rA)
if N = 2n+ 1,

where δ̂ is any extension to A×E /E
× of the quadratic character δE/F of A×F /F

×

attached to E/F by class field theory.

Remark 2.2. Observe the factor 2 appearing in the argument 2s of the Asai L-
function in the case of even unitary groups. The reason is that we have chosen, as
in [Shahidi 1992], the determinant character to normalize the identification with
C of the complex parameter s in the Eisenstein series, instead of the character α̃
given in terms of the half-sum of positive roots and the coroot of the unique simple
root α not being a root of MP , as in [Shahidi 1990].

Proof of Theorem 2.1. This is an application of the Langlands spectral theory, using
the Langlands–Shahidi method to normalize the intertwining operator.

The poles of the Eisenstein series E( f, s) coincide with the poles of its constant
term E( f, s)P along P . The constant term is defined as

E( f, s)P(g)=
∫

NP (F)\NP (AF )

E( f, s)(ng) dn,

where dn is a fixed Haar measure on NP(AF ). On the other hand, the constant term
can be written as

E( f, s)P(g)= fs(g)+
(
M(s, 6,w0) f

)
−s(g),

where M(s, 6,w0) is the standard intertwining operator. Here w0 is the unique
nontrivial Weyl group element such that w0(α) is a simple root for all simple roots α
except the last one in the ordering of [Bourbaki 1968].
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As in [Shahidi 2010, page 109], the standard intertwining operator is defined as
the analytic continuation from the domain of convergence of the integral

M(s, 6,w0) f (g)=
(∫

NP (AF )

fs(ẇ
−1
0 ng) dn

)
exp〈s− ρP, HP(g)〉,

where ẇ0 is a fixed representative for w0 in UN (F). For s ∈C away from poles, the
assignment f 7→ M(s, 6,w0) f defines a linear map on W6 , which depends on s.
It intertwines the actions of I (s, 6) and I (−s, 6w0). Let σ θ denote σ conjugated
by the nontrivial Galois automorphism θ ∈ Gal(E/F), that is, σ θ (m)= σ(mθ ) for
all m ∈ GLn(AE). Note that in our case the conjugation by w0 amounts to taking
σ̃ θ , where σ̃ is the contragredient of σ . In the case of odd unitary groups this means
that 6w0 ∼= σ̃ θ ν̂⊗ ν (see [Goldberg 1994]).

It is clear from the expression for the constant term that the poles of the Eisenstein
series are the same as those of the standard intertwining operator. We apply the
Langlands–Shahidi method to normalize this operator. The normalizing factor in
this situation, labeled 2A2n−1− 2 for the even unitary group and 2A2n − 3 for the
odd unitary group in the list of [Shahidi 1988, Section 4] and [2010, Appendix C],
is given in terms of L-functions and corresponding ε-factors as

r(s, 6,w0)

=


L(2s, σ, rA)

L(1+ 2s, σ, rA)ε(2s, σ, rA)
for N = 2n,

L(s, σ )
L(1+ s, σ )ε(s, σ )

·
L(2s, σ ⊗ δ̂, rA)

L(1+ 2s, σ ⊗ δ̂, rA)ε(2s, σ ⊗ δ̂, rA)
for N = 2n+1.

The normalized intertwining operator

r(s, 6,w0)
−1 M(s, 6,w0)

is holomorphic and not identically vanishing on I (s, 6) for Re(s) > 0. This is
essentially a local fact proved in Lemma 2.3 below.

Assuming this fact, we now finish the proof. The holomorphy and nonvanishing
of the normalized operator implies that the poles of M(s, 6,w0) for Re(s) > 0
coincide with those of r(s, 6,w0). Since the ε-factors are entire and nonvanishing
for all s ∈ C, these are the same as the poles of the ratios of L-functions given in
the theorem. �

2.D. Holomorphy and nonvanishing of normalized intertwining operators. It re-
mains to show the fact that r(s, 6,w0)

−1 M(s, 6,w0) is holomorphic and nonvan-
ishing for Re(s) > 0. The notation is as in the proof of the previous theorem. This
is essentially a local problem, because one can decompose over the places of F
the action of the standard intertwining operator acting on a decomposable function
using the fact that all ingredients are unramified at all but finitely many places.
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Hence, the problem reduces to a finite number of ramified and archimedean places,
which is solved for each place separately.

We introduce some local notation first. Let 6 ∼= ⊗′v6v be the decomposition
of 6 into a restricted tensor product, where in the case of odd unitary groups
6v=σv ν̂v⊗νv . We denote the local standard intertwining operator by M(s, 6v, w0).
It is defined as the analytic continuation of the local analogue of the integral defining
the global operator M(s, 6,w0) (see the proof of Theorem 2.1). Let r(s, 6v, w0)

be the local factor at v of r(s, 6,w0). We show in the lemma below that the
normalized local intertwining operator

N (s, 6v, w0)= r(s, 6v, w0)
−1 M(s, 6v, w0)

is holomorphic and not identically vanishing on the local induced representation
I (s, 6v) for Re(s) > 0.

Lemma 2.3. Let6v be a local component of a cuspidal automorphic representation
6 of the Levi factor MP(AF ) in the unitary group UN . Then, for Re(s) > 0,
the normalized local intertwining operator N (s, 6v, w0) is holomorphic and not
identically vanishing on the induced representation I (s, 6v).

Proof. Consider first the case in which the place v of F splits in E . Then UN (Fv)
is isomorphic to GLN (Fv), and the Levi factor

MP(Fv)∼=
{

GLn(Fv)×GLn(Fv) for N = 2n,
GLn(Fv)×GL1(Fv)×GLn(Fv) for N = 2n+ 1.

Hence, the normalized operator considered in the lemma is attached to a unitary
representation of a Levi factor MP(Fv) in GLN (Fv). The holomorphy and nonvan-
ishing for Re(s) > 0 follow from [Mœglin and Waldspurger 1989, Proposition I.10].

We consider now the case in which the place v of F does not split in E , and
denote by w the unique place of E lying over v. Then Ew/Fv is a quadratic
extension of local fields, and UN (Fv) is the quasisplit unitary group in N variables
given by the extension Ew/Fv. The Levi factor MP(Fv) is isomorphic to

MP(Fv)∼=
{

Gn(Fv)∼= GLn(Ew) for N = 2n,
Gn(Fv)×U1(Fv)∼= GLn(Ew)× E1

w for N = 2n+ 1,

so that

6v ∼=

{
σw for N = 2n,
(σwν̂w)⊗ νw for N = 2n+ 1,

where σw is the local component of a cuspidal automorphic representation σ of
GLn(AE) at the place w of E , and νw the local component of a unitary character ν
of A1

E trivial on E1.
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In particular, σw is unitary and generic, since it is a local component of a cuspidal
automorphic representation of GLn(AE). Hence, by [Tadić 1986] and [Vogan 1986],
in the nonarchimedean and archimedean cases, respectively, there is

• a standard parabolic subgroup Q of GLn such that the Levi factor MQ of Q is
isomorphic to GLd1 × · · ·×GLd` , where d1+ · · ·+ d` = n,

• unitary square-integrable representations δi of GLdi (Ew), for i = 1, . . . , `, and
• real numbers αi with 0≤ |αi |<

1
2 , for i = 1, . . . , `,

such that σw is isomorphic to the fully induced representation

σw ∼= IndGLn(Ew)
Q(Ew) (δ1| det |α1 ⊗ · · ·⊗ δ`| det |α`).

Let R be the standard parabolic F-subgroup of UN with the Levi factor

MR ∼=

{
Gd1 × · · ·×Gd` for N = 2n,
Gd1 × · · ·×Gd` ×U1 for N = 2n+ 1,

so that R ⊂ P and MR(Fv)= MQ(Ew) for N = 2n and MR(Fv)= MQ(Ew)× E1
w

for N = 2n+ 1. Let

δ =

{
δ1⊗ · · ·⊗ δ` for N = 2n,
δ1ν̂1⊗ · · ·⊗ δ`ν̂`⊗ ν for N = 2n+ 1,

be a unitary square-integrable representation of MR(Fv), where ν̂i is the character
of GLdi (Ew) given by ν̂i (hi )= ν(det(hi

∗h−1
i )) for hi ∈ GLdi (Ew).

By induction in stages, the intertwining operator N (s, 6v, w0) coincides with
the intertwining operator

N ((s+α1, . . . , s+α`), δ, w0)

acting on the induced representation{
IndUN (Fv)

R(Fv) (δ1| det |s+α1 ⊗ · · ·⊗ δ`| det |s+α`) for N = 2n,

IndUN (Fv)
R(Fv) (δ1ν̂1| det |s+α1 ⊗ · · ·⊗ δ`ν̂`| det |s+α` ⊗ ν) for N = 2n+ 1.

By Zhang’s lemma [1997] (see also [Kim 2000, Lemma 1.7]), the holomorphy
of this last operator at s implies nonvanishing. Hence, to show the lemma, it is
sufficient to prove the holomorphy for Re(s) > 0.

To prove the holomorphy for Re(s) > 0, we decompose the intertwining operator
into a product of intertwining operators as in [Shahidi 1981, Section 2.1]. If we show
that each factor is holomorphic for Re(s) > 0, then the product is holomorphic for
Re(s)> 0 as well, and the lemma is proved. The factors are normalized intertwining
operators that can be viewed as intertwining operators on representations induced
from appropriate maximal proper parabolic subgroups in certain reductive groups.
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In our case these rank-one factors are normalized operators

N (2s+αi +α j , δi ⊗ δ̃
θ
j ),

for 1≤ i < j ≤ `, acting on the induced representations

Ind
GLdi+d j (Ew)
Qi, j (Ew)

(
δi | det |s+αi ⊗ δ̃ θj | det |−s−α j

)
,

where Qi, j is the maximal standard proper parabolic subgroup of GLdi+d j with the
Levi factor GLdi ×GLd j , and normalized operators{

N (s+αk, δk) for N = 2n,
N (s+αk, (δk ν̂k)⊗ ν) for N = 2n+ 1,

for 1≤ k ≤ `, acting on the induced representation{
Ind

U2dk (Fv)
Qk(Fv) (δk | det |s+αk ) for N = 2n,

Ind
U2dk+1(Fv)
Qk(Fv) (δk ν̂k | det |s+αk ⊗ ν) for N = 2n+ 1,

where Qk is the maximal standard proper parabolic subgroup of U2dk with the Levi
factor Gdk if N = 2n, and of U2dk+1 with the Levi factor Gdk×U1 if N = 2n+1. We
suppress the Weyl group element from the notation for these intertwining operators,
because they are always determined by the maximal parabolic subgroup in question.

According to [Zhang 1997, Section 2], the rank-one normalized intertwining
operator is holomorphic when the real part of its complex parameter is greater than
the first negative point of reducibility of the induced representation on which it acts.
For Re(s) > 0, using the bound on αi , we have

Re(s+αi +α j ) >−1 and Re(s+αk) >−
1
2 .

But these two bounds are precisely the first negative points of reducibility in the
cases Qi, j ⊂ GLdi+d j and Qk ⊂ U2dk or U2dk+1. This essentially follows from
the standard module conjecture, proved in [Vogan 1978] for any quasisplit real
group, and thus for complex groups as well, and in [Muić 2001] for quasisplit
classical groups over a p-adic field. In [Casselman and Shahidi 1998, Section 5]
the reducibility points are determined in terms of local coefficients over any local
field. A convenient reference making explicit the first reducibility points of such
complementary series using local coefficients for any quasisplit classical group over
a local field of characteristic zero is [Lapid et al. 2004, Lemma 2.6 and 2.7]. For the
general linear group the reducibility is obtained in [Zelevinsky 1980] over a p-adic
field, in [Speh 1981] over reals, and in [Wallach 1979] over complex numbers
(see also [Kim 2000, Lemma 2.10]). For the unitary group over a nonarchimedean
field, it is obtained in [Goldberg 1994, Section 3 and 6] by applying the general
reducibility result of [Shahidi 1990], while at an archimedean place, the L-functions
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in the local coefficient that control reducibility are the L-functions of the restriction
to R× of a character of C× (see [Lapid et al. 2004, Lemma 2.6]). Thus, the rank-one
factors are all holomorphic and the lemma is proved. �

Remark 2.4. Kim and Krishnamurthy [2004; 2005] have proved the holomorphy
and nonvanishing of normalized intertwining operators for a representation of the
Levi factor of any maximal proper parabolic subgroup of UN , which is a local
component of a generic cuspidal automorphic representation. Since in our case all
cuspidal automorphic representations of the Levi factor are generic, Lemma 2.3
follows from their work. Their proof uses their stable base change lift and bounds
towards the Ramanujan conjecture obtained by Luo, Rudnick and Sarnak [1999] to
bound the exponents on the unitary group. In our case these bounds are not required
because our unitary factor in the Levi is either trivial or rank zero. This simplifies
the proof.

3. Arthur parameters for unitary groups

Our next task is to introduce the notion of Arthur parameters and the endoscopic
classification of automorphic representations for the quasisplit unitary group UN in
N variables. We consider both the even and odd case for completeness, although
for the application to the analytic properties of the Asai L-functions only the even
case is required.

In [Mok 2015], the results of [Arthur 2013] (see also [Arthur 2005]) are extended
to the case of quasisplit unitary groups. As in [Arthur 2004], we avoid the conjectural
Langlands group by describing the parameters in terms of irreducible constituents
of the discrete spectrum of general linear groups. For quasisplit classical groups
this approach was taken in [Mœglin 2008].

3.A. Arthur parameters. Let µ be a Galois self-dual cuspidal automorphic repre-
sentation of GLm(AE). One of the crucial results in Mok’s proof of endoscopic
classification of representations in the discrete spectrum for quasisplit unitary groups
is the uniqueness (up to equivalence) of the twisted endoscopic datum associated to
µ. This is the content of [Mok 2015, Theorem 2.4.2]. In fact, this unique endoscopic
datum is simple, thus, determining a unique sign κ ∈ {±1} attached to µ. The
parity of the endoscopic datum associated to µ is then defined as κ(−1)m−1 (as in
Section 2.4 of the same reference). Using parity we make the following definition
as in [ibid., Theorem 2.5.4] (see also [Gan et al. 2012]).

Definition 3.1. Let µ be a Galois self-dual cuspidal automorphic representation
of GLm(AE). We say that µ is Galois orthogonal (resp. Galois symplectic), if the
parity of the unique twisted endoscopic datum associated to µ is +1 (resp. −1).
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It turns out, as also proved by Mok, that this definition can be rephrased in terms
of poles at s = 1 of the Asai L-function L(s, µ, rA) attached to µ.

Theorem 3.2 [Mok 2015, Theorem 2.5.4(a)]. Let µ be a Galois self-dual cuspidal
automorphic representation of GLm(AE). Thenµ is Galois orthogonal (resp. Galois
symplectic) if and only if the Asai L-function L(s, µ, rA) (resp. the twisted Asai
L-function L(s, µ⊗ δ̂, rA)) has a pole at s = 1, where δ̂ is any extension to A×E /E

×

of the quadratic character δE/F of A×F /F
× attached to E/F by class field theory.

We are now ready to define global Arthur parameters for the quasisplit unitary
group UN in N variables. We in fact define the square-integrable Arthur parameters,
which, according to [ibid., Theorem 2.5.2], parameterize global Arthur packets
contributing to the discrete automorphic spectrum of UN (AF ). These parameters
depend on the choice of certain character of A×E , trivial on E×, that defines an
L-embedding of the L-group of UN into the L-group of G N (cf. [ibid., Section 2.1]).
Roughly speaking, this character determines whether we view parameters as the
stable or twisted base change of a representation in the discrete spectrum. Of course,
the decomposition of the discrete spectrum is independent of that choice, and we
take it in this paper to be the trivial character of A×E , and suppress it from notation
(see [ibid., Theorem 2.5.2]). The reason why Mok considers all possible characters
is that they are all required for the induction argument in the proof of endoscopic
classification.

Definition 3.3 (Arthur parameters). As before, let UN be the quasisplit unitary
group in N variables given by a quadratic extension E/F of number fields. The set
92(UN ) of square-integrable global Arthur parameters for UN is defined as the set
of all unordered formal sums of formal tensor products of the form

ψ = (µ1 � ν(n1))� · · ·� (µ`� ν(n`)),

such that

(i) µi is a Galois self-dual cuspidal automorphic representation of GLmi (AE),
that is, µi ∼= µ̃

θ
i ;

(ii) ni is a positive integer, and ν(ni ) is the unique ni -dimensional irreducible
algebraic representation of SL2(C);

(iii) m1n1+ · · ·+m`n` = N ;

(iv) for i 6= j , we have µi 6∼=µ j or ni 6= n j , that is, the formal sum ψ is multiplicity
free;

(v) representation µi is Galois orthogonal (resp. Galois symplectic) if and only if
integers ni and N are of the same parity (resp. different parity).

According to Theorem 3.2, condition (v) is equivalent to the condition
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(v′) representationµi is such that the Asai L-function L(s, µi , rA) (resp. the twisted
Asai L-function L(s, µi ⊗ δ̂, rA)) has a pole at s = 1 if and only if integers ni

and N are of the same parity (resp. different parity).

3.B. Arthur packets. We proceed, following [Mok 2015], to define the local and
global Arthur packet associated to a global Arthur parameter ψ ∈92(UN ). Every
global Arthur parameter ψ ∈92(UN ) gives rise, as in [ibid., Section 2.3], to a local
Arthur parameter ψv for every place v of F . The local Arthur packet 5ψv is a
finite multiset of unitary irreducible representations of UN (Fv) associated to ψv in
[ibid., Theorem 2.5.1] and the discussion following it. There is a canonical mapping
from 5ψv to the character group of a certain finite group Sψv attached to ψv (for
a definition see [ibid., Section 2.2]). For πv ∈5ψv , we denote the corresponding
character by ηπv . If UN (Fv) and πv are unramified, then ηπv is the trivial character.
We are skipping here the details, because our main interest is only in unramified
places.

The global Arthur packet 5ψ associated to ψ ∈92(UN ) is defined as

5ψ = {⊗
′

vπv : πv ∈5ψv and ηπv is trivial for almost all v}.

The global packets 5ψ for all ψ ∈ 92(UN ) contain all representations that can
possibly appear in the decomposition of the discrete spectrum on UN (AF ). There
is a subtle further condition identifying elements of 5ψ that indeed appear in the
discrete spectrum (for a precise formulation see [Mok 2015, Theorem 2.5.2]). We
do not recall this condition, because for our purposes it is sufficient to work with
the full packets 5ψ .

We now compare a representation in the discrete spectrum on UN (AF ) and
its Arthur parameter at unramified places. Through the application to residual
representations supported in the Siegel maximal parabolic subgroup, this turns out
to be crucial for the proof of holomorphy of the Asai L-function inside the critical
strip. Given

ψ = (µ1 � ν(n1))� · · ·� (µ`� ν(n`)) ∈92(UN ),

with notation as in Definition 3.3, let S be a finite set of places of F , containing all
archimedean places and all nonarchimedean places ramified in E , and such that for
all places w of E lying above some v 6∈ S all µi,w are unramified. Then, for v 6∈ S,
we attach to ψ a Frobenius–Hecke conjugacy class

cv(ψ)=


⊕`

i=1
(
c(µi,w)⊗ cw(ν(ni ))

)
if v is inert and v|w,(⊕`

i=1
(
c(µi,w1)⊗ cw1(ν(ni ))

)
,
⊕`

i=1
(
c(µi,w2)⊗ cw2(ν(ni ))

))
if v splits into w1, w2,
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viewed as a semisimple conjugacy class in the L-group of G N over Fv, where
c(µi,w) ∈ GLmi (C) is the Satake parameter, and

cw(ν(ni ))= diag
(
q(ni−1)/2
w , q(ni−3)/2

w , . . . , q−(ni−1)/2
w

)
,

with qw the cardinality of the residue field of Ew. Observe that qw = q2
v if v is inert

in E , and qw1 = qw2 = qv if v splits in E . The conjugacy classes cv(ψ) for v 6∈ S
may be viewed as the Satake parameters of the unramified constituents at places w
of E lying above v of the induced representation

IndGLN (AE )
R(AE )

(
µ1| det |(n1−1)/2

⊗µ1| det |(n1−3)/2
⊗ · · ·⊗µ1| det |−(n1−1)/2

⊗µ2| det |(n2−1)/2
⊗µ2| det |(n2−3)/2

⊗ · · ·⊗µ2| det |−(n2−1)/2
⊗ · · ·

⊗µ`| det |(n`−1)/2
⊗µ`| det |(n`−3)/2

⊗ · · ·⊗µ`| det |−(n`−1)/2
)
,

where R is the standard parabolic subgroup of GLN with the Levi factor GLm1 ×

· · · ×GLm1 ×GLm2 × · · · ×GLm2 × · · · ×GLm`
× · · · ×GLm`

with ni copies of
GLmi in the product, and µi are unramified at v.

On the other hand, let π ∼=⊗′vπv be an irreducible automorphic representation
appearing in the discrete spectrum on UN (AF ). Let S′ be a finite set of places
of F , containing all archimedean places, and such that for v 6∈ S′, we have that
UN (Fv) and πv are unramified. Then, for v 6∈ S′, the Satake isomorphism gives
a Frobenius–Hecke conjugacy class c(πv) in the local L-group of UN over Fv.
However, we may view c(πv) as a conjugacy class in the local L-group of G N

through the stable base change map of L-groups. This is consistent with our choice
of the trivial character in the definition of Arthur parameters.

According to the preliminary comparison of spectral sides of the trace formulas
for UN and the twisted trace formula for GLN , carried out in [Mok 2015, Sec-
tion 4.3] (see also [Arthur 2013, Section 3.4]), for every irreducible automorphic
representation π of UN (AF ) appearing in the discrete spectrum, there is a unique
corresponding parameter ψ ∈92(UN ) such that the Frobenius–Hecke conjugacy
classes cv(ψ) attached to ψ coincide at almost all places with the classes c(πv)
attached to π . This observation is the key to the following proposition.

Remark 3.4. Strictly speaking the preliminary comparison of trace formulas gives
unique ψ in a larger set of parameters 9(UN ) (see [Mok 2015] for a definition), but
the full proof of endoscopic classification shows that such ψ belongs to 92(UN ).

Proposition 3.5. Let P be the Siegel maximal proper parabolic F-subgroup of U2n .
Let σ be a cuspidal automorphic representation of its Levi factor

MP(AF )∼= GLn(AE).
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If the induced representation

IndU2n(AF )
P(AF )

(
σ ⊗ | det |sAE

)
has a constituent in the discrete spectrum of U2n(AF ) for some s> 0, then its Arthur
parameter is

ψ = σ � ν(2),

and in particular s = 1
2 and σ is Galois self-dual.

Proof. Since an automorphic representation is unramified at almost all places, the
local component of an irreducible constituent π of the induced representation

IndU2n(AF )
P(AF )

(
σ ⊗ | det |sAE

)
belonging to the discrete spectrum is the unramified representation with the Satake
parameter, viewed as a conjugacy class in the L-group of G2n as above,

c(πv)

=

{
c(σw)⊗ diag(qs

w, q−s
w ) if v is inert and v|w,(

c(σw1)⊗ diag(qs
w1
, q−s
w1
), c(σw2)⊗ diag(qs

w2
, q−s
w2
)
)

if v splits into w1, w2,

for almost all places v of F . Recall that qw = q2
v if v is inert, and qw1 = qw2 = qv

if v splits. We may also view c(πv) as the Satake parameter of the unramified
constituent of the local components at places w of E lying over v of the induced
representation

IndGL2n(AE )
Q(AE )

(
σ | det |sAE

⊗ σ | det |−s
AE

)
,

where Q is the standard parabolic subgroup of GL2n with the Levi factor GLn×GLn .
By the observation made just before the statement of the proposition, these

Frobenius–Hecke conjugacy classes c(πv), viewed as conjugacy classes in the L-
group of G2n , should match at almost all places the conjugacy classes cv(ψ) attached
to the Arthur parameter ψ ∈ 92(UN ) parameterizing π . As mentioned above,
these cv(ψ) may be viewed as Satake parameters of the unramified constituent at v
of certain induced representation of GL2n(AE). However, by the strong multiplicity
one for general linear groups [Jacquet and Shalika 1981, Theorem 4.4], matching
of Satake parameters at almost all places for induced representations of GLN (AE)

implies that the inducing data for these representations are associate. Since Q is
self associate, this means that the parabolic subgroup R determined by ψ as above
must be Q, and thus that ψ is of the form

ψ = σ � ν(k),

where k = 2s+ 1. Since k = 2 by condition (iii) in Definition 3.3, it follows that
s = 1

2 . As σ appears in ψ it is necessarily Galois self-dual. �
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4. Holomorphy and nonvanishing of Asai L-functions

In this section we prove the analytic properties of the Asai L-functions as a conse-
quence of Mok’s endoscopic classification [2015] of automorphic representations
of a quasisplit unitary group.

4.A. Analytic properties of Eisenstein series. The first task is to determine the
poles of Eisenstein series E( f, s) for Re(s) > 0. We now consider only the case of
even quasisplit unitary group U2n .

Recall that for a cuspidal automorphic representation σ of GLn(AE), we let σ θ

denote σ conjugated by the nontrivial Galois automorphism θ ∈Gal(E/F). We say
that σ is Galois self-dual if it is isomorphic to σ̃ θ , where σ̃ is the contragredient of σ .

Theorem 4.1. Let σ be a cuspidal automorphic representation of the Levi factor
MP(AF ) ∼= GLn(AE) in U2n . Then the Eisenstein series E( f, s) on U2n(AF ),
constructed as in Section 2.B from functions f in the representation space Wσ on
which induced representations I (s, σ ) are realized for all s, is

(1) holomorphic for Re(s)≥ 0, if σ is not Galois self-dual,

(2) holomorphic for Re(s)≥ 0, except for a possible simple pole at s = 1
2 , if σ is

Galois self-dual.

Proof. The Eisenstein series is holomorphic on the imaginary axis Re(s) = 0
(see [Mœglin and Waldspurger 1995, Section IV.1.11]). Hence, we may assume
Re(s) > 0. Suppose that the Eisenstein series E( f, s) on U2n(AF ) has a pole
at s = s0 > 0 for some f ∈ Wσ in the notation of Section 2. Since s0 > 0,
the residues at s = s0 of E( f, s) when f ∈ Wσ span a residual automorphic
representation of U2n(AF ). But this residual representation is a constituent of
the induced representation

IndU2n(AF )
P(AF )

(
σ ⊗ | det |s0

E

)
.

By Proposition 3.5, its Arthur parameter is

ψ = σ � ν(2),

where σ is Galois self-dual and s0 =
1
2 . Therefore, the Eisenstein series E( f, s) is

holomorphic for Re(s) > 0, except for a possible pole at s = 1
2 if σ is Galois self-

dual, as claimed. The possible pole is simple, by the general theory of Eisenstein
series [Mœglin and Waldspurger 1995, Section IV.1.11] �

Remark 4.2. A significant part of Theorem 4.1 can be proved in a different way,
without using Mok’s work on the Arthur classification for unitary groups [Mok
2015], which is based on the trace formula, and still depends on the stabilization of
the twisted trace formula for GLn .
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For instance, if σ is not Galois self-dual, the following general argument provides
holomorphy of the Eisenstein series for Re(s) > 0. By [Harish-Chandra 1968], see
also [Mœglin and Waldspurger 1995, Section IV.3.12], a necessary condition for
the Eisenstein series E( f, s) to have a pole for Re(s) > 0 and some f ∈Wσ is that
σw0 ∼= σ . But in our case, σw0 = σ̃ θ , so that E( f, s) is holomorphic for Re(s) > 0
and all f ∈Wσ if σ is not Galois self-dual.

If σ is Galois self-dual, there is a unitarity argument, which gives the analytic
behavior of the Eisenstein series for Re(s) ≥ 1

2 . However, the critical strip 0 <
Re(s) < 1

2 remains out of reach. For completeness, we include this argument in
Section 4.C below.

4.B. Analytic properties of Asai L-functions. The following theorem describes
completely the analytic properties of the Asai L-functions attached to a cuspidal
automorphic representation σ of GLn(AE). It is the main result of the paper.

Theorem 4.3. Let σ be a cuspidal automorphic representation of GLn(AE). Let
L(s, σ, rA) (respectively, L(s, σ ⊗ δ̂, rA)) be the Asai (respectively, twisted Asai)
L-function attached to σ , where δ̂ is any extension to A×E /E

× of the quadratic
character of A×F /F

× attached to the extension E/F by class field theory.

(1) If σ is not Galois self-dual, that is, σ 6∼= σ̃ θ , then L(s, σ, rA) is entire. It is
nonzero for Re(s)≥ 1 and Re(s)≤ 0.

(2) If σ is Galois self-dual, that is, σ ∼= σ̃ θ , then
(a) L(s, σ, rA) is entire, except for possible simple poles at s = 0 and s = 1,

and nonzero for Re(s)≥ 1 and Re(s)≤ 0;
(b) exactly one of the L-functions L(s, σ, rA) and L(s, σ ⊗ δ̂, rA) has simple

poles at s = 0 and s = 1, while the other is holomorphic at those points.

Proof. The idea of the proof goes back to [Shahidi 1981; 1988]. The proof of
holomorphy is based on Theorem 2.1, which relates the poles of Eisenstein series
to the Asai L-functions, and Theorem 4.1 providing the analytic behavior of the
Eisenstein series. The nonvanishing, on the other hand, follows from considering
the nonconstant term of the Eisenstein series as in [Shahidi 1981] (see also [Shahidi
2010, Section 7]), and using Theorem 4.1 again. It is sufficient to prove the claims
for Re(s)≥ 1

2 , due to the functional equation for Asai L-functions.
We begin with the proof of holomorphy. Consider first the case of σ not Galois

self-dual. According to Theorem 4.1, the Eisenstein series attached to σ is holo-
morphic for Re(s) > 0. Assume that L(s, σ, rA) has a pole for s = s0 > 0. Since
the poles of E( f, s) for Re(s) > 0 coincide, according to Theorem 2.1, with the
poles of the ratio

(∗)
L(2s, σ, rA)

L(1+ 2s, σ, rA)
,
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the pole of the numerator at 2s = s0 > 0 should be canceled by a pole in the
denominator. Thus, L(z, σ, rA) should have a pole at z = s0 + 1. Repeating this
argument, we obtain a sequence of poles of the Asai L-function of the form s0+M ,
where M is any nonnegative integer. This is a contradiction, because L(s, σ, rA) is
holomorphic in the right half-plane of absolute convergence of the defining product.
Thus, we proved that L(s, σ, rA) is entire.

Consider now the case of σ Galois self-dual. By Theorem 4.1, the Eisenstein
series E( f, s) attached to σ is holomorphic for Re(s) > 0, except for a possible
simple pole at s = 1

2 . The same argument as in the previous case implies that
L(z, σ, rA) is holomorphic for Re(z) > 0, except for z = 1 if the Eisenstein series
has a pole at s = 1

2 .
To prove that a possible pole of L(z, σ, rA) at z = 1 is at most simple, we again

apply a similar argument. Suppose E( f, s) has a pole at s = 1
2 . It is simple by

Theorem 4.1. If L(z, σ, rA) had a higher order pole at z = 2s = 1, then Theorem 2.1
would imply that there is a pole in the denominator of the ratio of Asai L-functions
in (∗). But this would mean that the Asai L-function has a pole at z+ 1= 2. The
Eisenstein series is holomorphic at s = 1, so that the same argument as before gives
a sequence of poles at all positive integers, which is a contradiction.

For nonvanishing, consider the nonconstant term E( f, s)ψ of the Eisenstein
series E( f, s) with respect to a fixed nontrivial additive character ψ of F\AF .
According to [Shahidi 2010, Theorem 7.1.2], we have

E( f, s)ψ(e)=
1

L S(1+ 2s, σ, rA)
·

∏
v∈S

Wv(ev),

where e and ev are the identity matrices, Wv is the ψv-Whittaker function attached
to f via a Jacquet integral, S is a finite set of places, containing all archimedean
places, outside which U2n(Fv), σv and ψv are all unramified, and L S(z, σ, rA) is
the partial Asai L-function attached to σ . As in [Shahidi 2010, Section 7.2], there
is a choice of f ∈ Wσ such that Wv(ev) 6= 0 for all v ∈ S. Thus, every zero of
L S(1+ 2s, σ, rA) for Re(s)≥ 0, equivalently Re(1+ 2s)≥ 1, would give a pole of
the nonconstant term E( f, s)ψ . However, by Theorem 4.1, the Eisenstein series
E( f, s), and thus E( f, s)ψ as well, is holomorphic for Re(s) ≥ 0, except for a
possible pole at s = 1

2 , which may occur only if σ is Galois self-dual. Hence,
L S(z, σ, rA) has no zeroes for Re(z)≥ 1, except possibly for z = 1. Since the local
L-functions are nonvanishing, the same holds for the complete Asai L-function
L(z, σ, rA).

For σ Galois self-dual, the nonvanishing of L(z, σ, rA) at the remaining point
z = 1 follows from the identity

(∗∗) L(s, σ × σ θ )= L(s, σ, rA)L(s, σ, rA⊗ δE/F ),
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where L(s, σ × σ θ ) is the Rankin–Selberg L-function, and recall that the twisted
Asai L-function equals

L(s, σ, rA⊗ δE/F )= L(s, σ ⊗ δ̂, rA).

See [Goldberg 1994] for these identities. The poles of the Rankin–Selberg L-
function L(s, σ × σ θ ) are known from [Jacquet and Shalika 1981]. For σ Galois
self-dual it has a simple pole at s = 1. Since σ ⊗ δ̂ is Galois self-dual as well, we
already proved that both Asai L-functions on the right-hand side of (∗∗) have at
most a simple pole at s = 1. Hence, they are both nonzero at s = 1, and exactly
one of them has a simple pole at s = 1, as claimed. �

Remark 4.4. Once the holomorphy of the Asai and twisted Asai L-function is
known at some s0 with Re(s0) > 0, the argument using the Rankin–Selberg L-
function at the end of this proof can be applied directly to obtain nonvanishing.
However, the result of Jacquet and Shalika [1981] providing analytic properties of
the Rankin–Selberg L-functions is very deep, and we preferred to give an argument
using nonconstant term of the Eisenstein series whenever possible.

4.C. Holomorphy of Eisenstein series using a unitarity argument. We now give
a different proof that the Eisenstein E( f, s), attached to a Galois self-dual cuspidal
automorphic representation σ of GLn(AF ) as above, is holomorphic for Re ≥ 1

2 ,
except for a possible simple pole at s = 1

2 .
It is sufficient to prove that E( f, s) is holomorphic for Re(s) > 1

2 . Indeed, since
we always normalize σ to be trivial on AP(F∞)◦, the poles of the Eisenstein series
are real. Hence, the only possible pole for Re(s)= 1

2 is at s = 1
2 . It is at most simple

pole, because all poles of Eisenstein series inside the closure of the positive Weyl
chamber are without multiplicity [Mœglin and Waldspurger 1995, Section IV.1.11].

Suppose that there is a simple pole of E( f, s) at s = s0 >
1
2 . We follow an idea

of Kim [2000] based on the fact that residual representations are unitary. The space
of residues of E( f, s) at s = s0 is a residual representation of U2n(AF ), which is a
constituent of the induced representation

I (s0, σ )= IndU2n(AF )
P(AF )

(
σ |det|s0

E

)
.

In particular, this residual representation is unitary, so that the induced representation
should have a unitary constituent. But then the local induced representation at every
place v should have a unitary subquotient. Let v be a split nonarchimedean place
of F such that σv is unramified. The local induced representation at v is isomorphic
to

I (s0, σv)∼= IndGL2n(Fv)
P(Fv)

(
σw1 |det|s0

Fv ⊗ σ̃w2 |det|−s0
Fv

)
,
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where w1 and w2 are the two places of E lying above v. Since σw1 and σw2 are
unramified unitary generic representations of GLn(Fv), according to [Tadić 1986],
they are fully induced representations of the form

σw1
∼=

IndGLn(Fv)
Bn(Fv)

(
µ1| |

α1 ⊗ · · ·⊗µk | |
αk ⊗χ1⊗ · · ·⊗χl ⊗µk | |

−αk ⊗ · · ·⊗µ1| |
−α1
)

and

σ̃w2
∼=

IndGLn(Fv)
Bn(Fv)

(
µ′1| |

β1 ⊗ · · ·⊗µ′k′ | |
βk′ ⊗χ ′1⊗ · · ·⊗χ

′

l ′ ⊗µ
′

k′ | |
−βk′ ⊗ · · ·⊗µ′1| |

−β1
)
,

where Bn is a Borel subgroup of GLn , the exponents satisfy 0< αk < · · ·< α1 <
1
2

and 0< βk′ < · · ·< β1 <
1
2 , and µi , µ′i , χ j , χ ′j are unramified unitary characters of

F×v . Hence,

I (s0, σv)∼= IndGL2n(Fv)
B2n(Fv)

(
µ1| |

s0+α1 ⊗ · · ·⊗µk | |
s0+αk ⊗χ1| |

s0 ⊗ · · ·⊗χl | |
s0

⊗µk | |
s0−αk ⊗ · · ·⊗µ1| |

s0−α1

⊗µ′1| |
−s0+β1 ⊗ · · ·⊗µ′k′ | |

−s0+βk′ ⊗χ ′1| |
−s0 ⊗ · · ·

⊗χ ′l ′ | |
−s0 ⊗µ′k′ | |

−s0−βk′ ⊗ · · ·⊗µ′1| |
−s0−β1

)
.

According to the description of the unitary dual of GL2n(Fv) [Tadić 1986], this
representation would have a unitary subquotient, only if all the exponents whose
absolute value is not smaller than 1

2 , induced with another character to a representa-
tion of GL2(Fv), give a reducible representation with a unitary quotient of Speh
type. However, this is possible only if for every such exponent that is not less than
1
2 in absolute value, there is another exponent such that their difference is exactly 1.

Having this in mind, consider the largest exponent in the above induced represen-
tation. We write this exponent as s0+α1, and allow the possibility α1 = 0, which
happens in the case k = 0 as there are no αi ’s. There should be another exponent of
the form −s0±β, where β = β j for some j or β = 0, such that

(s0+α1)− (−s0±β)= 1.

But this implies
2s0+α1∓β = 1,

which is possible for s0 >
1
2 only if the sign of β is minus and α1 < β. As β is

certainly not greater than the largest of β j ’s, it follows that necessarily α1 < β1.
However, considering the smallest exponent in the induced representation, that is,
−s0−β1, where again β1 is set to zero if l = 0, we obtain the opposite inequality,
β1<α1. This is a contradiction, proving that I (s0, σv) has not a unitary subquotient
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for s0 >
1
2 , and therefore, the Eisenstein series E( f, s) has no pole for Re(s) > 1

2 ,
as claimed.
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QUASICONFORMAL HARMONIC MAPPINGS BETWEEN
DINI-SMOOTH JORDAN DOMAINS

DAVID KALAJ

Let D and � be Jordan domains with Dini-smooth boundaries. We prove
that if f : D → � is a harmonic homeomorphism and f is quasiconfor-
mal, then f is Lipschitz. This extends some recent results, where stronger
assumptions on the boundary are imposed. Our result is optimal in that it
coincides with the best condition for Lipschitz behavior of conformal map-
pings in the plane and conformal parametrizations of minimal surfaces.

1. Introduction and statement of the main result

Quasiconformal mappings. By definition, K-quasiconformal mappings (or qc map-
pings for short) are orientation-preserving homeomorphisms f : D→� between
domains D, �⊂ C that are contained in the Sobolev class W 1,2

loc (D) and for which
the differential matrix and its determinant are coupled in the distortion inequality

(1-1) |Df (z)|2 ≤ K det Df (z) , where |Df (z)| = max
|ξ |=1
|Df (z)ξ |,

for some K ≥ 1. Here det Df (z) is the determinant of the formal derivative Df (z),
which will be denoted in the sequel by J f (z). Note that condition (1-1) can be
written in complex notation as

(1-2) (| fz| + | f z̄|)
2
≤ K (| fz|

2
− | f 2

z̄ |) a.e. on D,

or, what is the same,

| f z̄| ≤ k| fz| a.e. on D, where k = K−1
K+1

, i.e., K = 1+k
1−k

.

Harmonic mappings and the Hilbert transform. A mapping f is called harmonic
in a region D if it has the form f = u+ iv, where u and v are real-valued harmonic
functions in D. If D is simply connected, then there are two analytic functions h
and g defined on D such that f has the representation

f = h+ ḡ.

MSC2010: primary 30C55; secondary 31C05.
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If f is a harmonic univalent function, then by Lewy’s theorem [1936], f has a
nonvanishing Jacobian and therefore is a diffeomorphism by the inverse mapping
theorem.

Let

P(r, x −ϕ)=
1− r2

2π(1− 2r cos(x −ϕ)+ r2)

denote the Poisson kernel. If F ∈ L1(T), where T is the unit circle, we define the
Poisson integral P[F] of F by

(1-3) P[F](z)=
∫ 2π

0
P(r, x −ϕ)F(ei x) dx, |z|< 1, z = reiϕ.

The function f (z)=P[F](z) is a harmonic mapping in the unit disk U={z : |z|<1},
which belongs to the Hardy space h1(U). The mapping f is bounded in U if and
only if F ∈ L∞(T). Standard properties of the Poisson integral show that P[F]
extends by continuity to F on U, provided that F is continuous. For these facts
and standard properties of harmonic Hardy spaces, we refer to [Axler et al. 1992,
Chapter 6; Duren 1970]. With the additional assumption that F is an orientation-
preserving homeomorphism of this circle onto a convex Jordan curve γ , P[F] is
an orientation-preserving diffeomorphism of the open unit disk onto the region
bounded by γ . This is indeed the celebrated theorem of Choquet–Radó–Kneser
[Choquet 1945; Duren 2004]. This theorem is not true for nonconvex domains,
but does hold under some additional assumptions. It has been extended in various
directions (see for example [Jost 1981; Kalaj 2011b; Duren and Hengartner 1997]).

If f = u+ iv is a harmonic function defined in a Dini-smooth Jordan domain
D then a harmonic function f̃ = ũ+ i ṽ is called the harmonic conjugate of f if
u+ i ũ and v+ i ṽ are analytic functions. Notice that f̃ is uniquely determined up to
an additive constant. Let 8 : D→U be a conformal mapping, and let G ∈ L1(∂D).
Then the Poisson integral of G with respect to the domain D is defined by

PD[G](z)=
1

2π

∫
∂D

1− |8(z)|2

|8(z)−8(ζ)|2
G(ζ )|8′(ζ )| dζ.

Let χ be the boundary value of f and assume that χ̃ is the boundary value of f̃ .
Then χ̃ is called the Hilbert transform of χ and we also write it as H(χ). Assume
that χ̃ ∈ L1(∂D). In particular, the Hilbert transform of a function χ ∈ L1(T) is
defined by the formula

(1-4) χ̃(τ )= H(χ)(τ )=−
1
π

∫ π

0+

χ(τ + t)−χ(τ − t)
2 tan(t/2)

dt.

Here
∫ π

0+ 8(t) dt := limε→0+
∫ π
ε
8(t) dt . This integral is improper and converges

for a.e. τ ∈ [0, 2π ]. This and other facts concerning the operator H used in this
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paper can be found in [Zygmund 1959, Chapter VII]. Assume that χ, χ̃ are in
L1(T). Then

(1-5) P[χ̃ ] = (P[χ ])∼,

where (k)∼ is the harmonic conjugate of k (see for instance [Pavlović 2004, Theo-
rem 6.1.3]).

If f = h + ḡ : U→ � is a harmonic mapping then the radial and tangential
derivatives at z = rei t are defined by

∂r f (z)=
1
r
(h′+ ḡ′) and ∂t f (z)= i(h′− ḡ′).

So r∂r f is the harmonic conjugate of ∂t f . We generalize this definition for a
mapping f = h+ ḡ defined in a Jordan domain D. In order to do so, let 8= Rei2

be a conformal mapping of the domain D onto the unit disk. Then the radial
derivative and tangent derivative of f in a point w ∈ D are defined by

∂R f (w)=
1

|8(w)|
D f (w)

(
8(w)

8′(w)

)
and ∂2 f (w)= D f (w)

(
i
8(w)

8′(w)

)
.

Here 8(w)/8′(w) and i(8(w)/8′(w)) are treated as two vectors from R2 ∼= C.
Then it is easy to show that

R∂R f (w)=
h′(w)
8′(w)

+
g′(w)

8′(w)
and ∂2 f (w)= i

(
h′(w)
8′(w)

−
g′(w)

8′(w)

)
.

This implies that R∂R f (w) and ∂2 f (w) are harmonic functions in D and R∂R f (w)
is the harmonic conjugate of ∂2 f (w). Notice also that these derivatives are uniquely
determined up to a conformal mapping 8. Assume further that D and � have
Dini-smooth boundaries. If F : ∂D→ ∂� is the boundary function of f , and if
∂2 f (w) is a bounded harmonic function, then

lim
w→w0

∂2 f (w)= F ′(w0),

where the limit is nontangential. Here

F ′(w0) :=
∂(F ◦8−1)(ei t)

∂t
,

where 8(w0) = ei t . If F ′ ∈ L1(∂D), then the harmonic function R∂R f (w) has
nontangential limits in almost every point of ∂D and its boundary value is the
Hilbert transform of F ′, namely

H(F ′)(w0)= lim
w→w0

R∂R f (w).
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From now on the boundary value of f will be denoted by F . We will focus
on orientation-preserving harmonic quasiconformal mappings between smooth
domains and investigate their Lipschitz character up to the boundary. For future
reference, we will say that a qc mapping f :U→� of the unit disk onto the Jordan
domain � with rectifiable boundary is normalized if f (1) = w0, f (e2π i/3) = w1

and f (e4π i/3)= w2, where w0w1, w1w2 and w2w0 are arcs of γ = ∂� having the
same length |γ |/3.

Background. Let � be a Jordan domain with rectifiable boundary, and let γ be an
arc-length parametrization of ∂�. We say that ∂� is C1 if γ ∈ C1. Then arg γ ′ is
continuous and we let ω be its modulus of continuity. If ω satisfies

(1-6)
∫ δ

0

ω(t)
t

dt <∞, δ > 0,

we say that ∂� is Dini-smooth. Denote by C1,$ the class of all Dini-smooth
Jordan curves. The derivative of a conformal mapping f of the unit disk onto � is
continuous and nonvanishing in D [Pommerenke 1975, Theorem 10.2] (see also
[Warschawski 1961]). This implies that f is bi-Lipschitz continuous. For later
reference we refer to this result as Kellogg’s theorem, see [Kellogg 1912; Goluzin
1969, p. 374]. Kellogg was the first to consider this type of result for C1,α domains,
where 0 < α < 1. Warschawski [1970] proved the same result for a conformal
parametrization of a minimal surface.

If f is merely quasiconformal and maps the unit disk onto itself, then Mori’s
theorem implies that | f (z)− f (w)| ≤ M1(K )|z − w|1/K . The constant 1/K is
the best possible. If f is a conformal mapping of the unit disk onto a Jordan
domain with a C1 boundary, then the function f is not necessarily Lipschitz (see
for example [Lesley and Warschawski 1978, p. 277]). This is why we need to add
some assumption, other than quasiconformality, as well as some smoothness of the
image curve that is better than C1 in order to obtain that the resulting mapping is
Lipschitz or bi-Lipschitz.

Since every conformal mapping in the plane is harmonic and quasiconformal, it
is an interesting question to ask to what extent the smoothness of the boundary of a
Jordan domain � implies that a quasiconformal harmonic mapping of the unit disk
onto � is Lipschitz. The first study of harmonic quasiconformal mappings of the
unit disk onto itself was done by O. Martio [1968]. This paper has been generalized
in [Kalaj 2004] for qc mappings from the unit disk onto a convex Jordan domain.
Pavlović [2002] proved in a very interesting way that every qc harmonic mapping
of the unit disk onto itself is Lipschitz. Kalaj [2008] proved that every qc harmonic
mapping between two Jordan domains with C1,α boundary is Lipschitz. This result
has its counterpart for non-Euclidean metrics [Kalaj and Mateljević 2006]. For a
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generalization of the last result to the several-dimensional case we refer to [Kalaj
2013]. The problem of bi-Lipschitz continuity of a quasiconformal mapping of the
unit disk onto a Jordan domain with C2 boundary has been solved in [Kalaj 2011a].
The object of this paper is to extend some of these results.

New results. The following theorem is such an extension in which the Hölder
continuity is replaced by the more general Dini condition.

Theorem 1.1. Let f = P[F](z) be a harmonic normalized K-quasiconformal
mapping between the unit disk and the Jordan domain� with γ = ∂�∈C1,$ . Then
there exists a constant C ′ = C ′(γ, K ) such that

(1-7)
∣∣∣∂F(eiϕ)

∂ϕ

∣∣∣≤ C ′ for almost every ϕ ∈ [0, 2π ],

and

(1-8) | f (z1)− f (z2)| ≤ K C ′|z1− z2| for z1, z2 ∈ U.

By using Theorem 1.1, we obtain the following improvement of [Kalaj 2008,
Theorem 3.1].

Theorem 1.2. Let D and� be Jordan domains such that ∂D and ∂� are contained
in C1,$ and let f : D 7→ � be a harmonic homeomorphism. The following
statements hold true.

(a) If f is qc, then f is Lipschitz.

(b) If � is convex and f is qc, then f is bi-Lipschitz.

(c) If � is convex, then f is qc if and only log|F ′| and H(F ′) are in L∞(∂D).

Proof of Theorem 1.2. (a) Choose a conformal mapping 8 : U→ D so that the qc
mapping f1 = f ◦8 is normalized. Then f1 is a qc harmonic mapping of the unit
disk onto � that satisfies the conditions of Theorem 1.1. This implies in particular
that f1 is Lipschitz. In view of Kellogg’s theorem, the mapping 8 is bi-Lipschitz.
Thus f = f1 ◦8

−1 is Lipschitz.
(b) If � is a convex domain, and if D = U, then by [Kalaj 2003], we have that

|D f (z)| ≥ 1
4 dist( f (0), ∂�)

for z ∈ U. If D is not the unit disk, then we make use of the conformal mapping
8 : U→ D as in the proof of (a). Then we obtain

|D f (z)| = |D f1(z)|/|8′(z)| ≥ c.

Now by using the quasiconformality of f , we have that

|D f (z)|2 ≤ K J f (z).
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Therefore

J f −1( f (z)) =
1

J f (z)
≤

K
c2 .

Since f −1 is K-quasiconformal, we have further that

|D f −1(w)|2 ≤ K J f −1(w)≤
K 2

c2 .

This implies that f −1 is Lipschitz. This finishes the proof of (b).
(c) If f is harmonic and quasiconformal, then by (b) it is bi-Lipschitz, and so its

boundary function F is bi-Lipschitz. Furthermore, R∂R f is a bounded harmonic
function and this is equivalent with the fact that log |F ′| ∈ L∞(∂D). Since H(F ′)
is its boundary function, it is bounded, i.e., it belongs to L∞(∂D).

We now prove the opposite implication. Since

∂2 f = PD[F ′] and R∂R f = PD[H(F ′)],

it follows that ∂2 f and R∂R f are bounded harmonic functions. This means that
|D f | is bounded by a constant M . In order to show that f is quasiconformal, it is
enough to show that the Jacobian of f is bigger than a positive constant in D. Let
f1 = f ◦8−1, and let δ = dist( f1(0), ∂�) and κ =min |∂t f1(ei t)|. Then by [Kalaj
2004, Corollary 2.9], we have

J f (8(w))|8
′(w)|2 = J f1(w)≥

κδ

2
.

So
J f (z)≥ c > 0, z ∈ D.

We conclude that
|D f (z)|2

J f (z)
≤

M2

c
. �

2. Preliminary results

Definition 2.1. Let ξ : [a, b] → C be a continuous function. The modulus of
continuity of ξ is

ω(t)= ωξ (t)= sup
|x−y|≤t

|ξ(x)− ξ(y)|.

The function ξ is called Dini-continuous if

(2-1)
∫ b−a

0

ωξ (t)
t

dt <∞.

Let γ be a C1 Jordan curve γ with the length l=|γ | and assume that g : [0, l]→γ is
its arc-length parametrization . We say that γ is Dini-smooth if g′ is Dini-continuous
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on [0, l]. If ω(t) is the modulus of continuity of g′ for 0≤ t ≤ l, then we extend ω
by ω(t)= ω(l) for t ≥ l.

A function F : T→ γ is called Dini-smooth if the function 8(t) = F(ei t) is
Dini-smooth, i.e.,

|8′(t)−8′(s)| ≤ ω(|t − s|),

where ω is Dini-continuous. Observe that every smooth C1,α Jordan curve is
Dini-smooth.

Let

(2-2) K(s, t)= Re [(g(t)− g(s)) · ig′(s)]

be a function defined on [0, l]× [0, l]. By K(s± l, t ± l)= K(s, t) we extend it to
R×R. Suppose now that 9 : R 7→ γ is an arbitrary 2π -periodic Lipschitz function
such that 9|[0,2π) : [0, 2π) 7→ γ is an orientation-preserving bijective function.
Then there exists an increasing continuous function ψ : [0, 2π ] 7→ [0, l] such that

(2-3) 9(τ)= g(ψ(τ)).

We have for a.e. eiτ
∈ T that

9 ′(τ )= g′(ψ(τ)) ·ψ ′(τ ),

and therefore
|9 ′(τ )| = |g′(ψ(τ))| · |ψ ′(τ )| = ψ ′(τ ).

Along with the function K we will also consider the function KF defined by

KF (t, τ )= Re [(9(t)−9(τ)) · i9 ′(τ )].

Here F(ei t)=9(t). It is easy to see that

(2-4) KF (t, τ )= ψ ′(τ )K(ψ(t), ψ(τ)).

Lemma 2.2. Let γ be a Dini-smooth Jordan curve and let g : [0, l] 7→ γ be a
natural parametrization of a Jordan curve with g′ having modulus of continuity ω.
Assume further that 9 : [0, 2π ] 7→ γ is an arbitrary parametrization of γ and let
F(ei t)=9(t). Then

(2-5) |K(s, t)| ≤
∫ min{|s−t |,l−|s−t |}

0
ω(τ) dτ

and

(2-6) |KF (ϕ, x)| ≤ |ψ ′(ϕ)|
∫ dγ (9(ϕ),9(x))

0
ω(τ) dτ.

Here dγ (9(ϕ),9(x)) := min{|s(ϕ)− s(x)|, (l − |s(ϕ)− s(x)|)} is the (shortest)
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distance between 9(ϕ) and 9(x) along γ , and it satisfies

|9(ϕ)−9(x)| ≤ dγ (9(ϕ),9(x))≤ Bγ |9(ϕ)−9(x)|.

Proof. Note that the estimate (2-5) has been proved in [Kalaj 2011b, Lemma 2.3].
Now (2-6) follows from (2-5) and (2-4). �

A closed rectifiable Jordan curve γ satisfies a B-chord-arc condition for some
constant B > 1 if for all z1, z2 ∈ γ we have

(2-7) dγ (z1, z2)≤ B|z1− z2|.

Here dγ (z1, z2) is the length of the shorter arc of γ with endpoints z1 and z2. It is
clear that if γ ∈ C1, then γ satisfies a chord-arc condition for some Bγ > 1. The
following lemma is proved in [Kalaj 2012].

Lemma 2.3. Assume that γ satisfies a chord-arc condition for some B > 1. Then
for every normalized K-qc mapping f between the unit disk U and the Jordan
domain �= int γ we have

| f (z1)− f (z2)| ≤3γ (K )|z1− z2|
α, z1, z2 ∈ T,

where

α =
2

K (1+ 2B)2
, 3γ (K )= 4 · 2α(1+ 2B)

√
2πK |�|

log 2
.

Next we recall some estimates for the Jacobian of a harmonic univalent function.

Lemma 2.4 [Kalaj 2011b, Lemma 3.1]. Suppose f =P[F] is a harmonic mapping
such that F is a Lipschitz homeomorphism from the unit circle onto a Dini-smooth
Jordan curve γ . Let g be an arc-length parametrization of γ , letψ(t)=g−1(F(ei t)),
and define 9(t)= F(ei t)= g(ψ(t)). Then for almost every τ ∈ [0, 2π ], the limit

J f (eiτ ) := lim
r→1

J f (reiτ )

exists and we have

(2-8) J f (eiτ )= ψ ′(τ )

∫ 2π

0

Re
[
(g(ψ(t))− g(ψ(τ))) · ig′(ψ(τ))

]
2 sin2((t − τ)/2)

dt
2π
.

From Lemma 2.2 and Lemma 2.4 we obtain

Lemma 2.5. Under the conditions and notation of Lemma 2.4 we have

(2-9) J f (eiϕ)≤
π

4
|9 ′(ϕ)|

∫ π

−π

1
x2

∫ dγ (F(ei(ϕ+x)),F(eiϕ))

0
ω(τ) dτ dx

for a.e. eiϕ
∈ T. Here ω is the modulus of continuity of g′.
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Lemma 2.6. Let f = P[F](z) be a harmonic mapping between the unit disk U and
the Jordan domain �, with F ∈ C1,$ (T). Then the partial derivatives of f have a
continuous extension to the boundary of the unit disk.

Proof. In the proof of this lemma we denote ∂t9(ei t) by 9 ′(t). If F is Lipschitz-
continuous, then 8=9 ′ ∈ L∞(T), and by the famous Marcel Riesz theorem (see
for example [Garnett 1981, Theorem 2.3]) there is a constant Ap such that

‖H(9 ′)‖L p(T) ≤ Ap‖9
′
‖L p(T)

for 1 < p < ∞. It follows that 8̃ = H(9 ′) ∈ L1. Since r fr is the harmonic
conjugate of fτ , we have rwr = P[H(9 ′)] according to (1-5). By again using
Fatou’s theorem, we have

(2-10) lim
r→1−

fr (reiτ )= H(9 ′)(τ ) a.e.

By (1-4), and by following the proof of Privaloff’s theorem [Zygmund 1959], we
obtain that if |9 ′(x)−9 ′(y)| ≤ ω(|x − y|) for the Dini-continuous function, then

|H(9 ′)(x + h)− H(9 ′)(x)| ≤ A
∫ 2h

0

ω(t)
t

dt + Bh
∫ 2π

h

ω(t)
t2 dt +Cω(h),

for some absolute constants A, B and C . The detailed proof of the last fact can be
found in [Garnett 1981, Theorem III 1.3.]. This implies that rwr (rei t) and ft(rei t)

have continuous extensions to the boundary and this is what we needed to prove. �

We now prove the following lemma needed in the sequel.

Lemma 2.7. Let A be a positive integrable function in [0, B] and assume that
q, Q > 0. Then there exists a continuous increasing function χ of (0,+∞) into
itself , depending on A, B, q and Q, such that the following hold: limx→∞ χ(x)=
∞, the function g(x)= xχ(x) is convex, and∫ B

0
A(x)χ(Qx−q) dx ≤ 4

∫ B

0
A(x)dx .

Proof. First define inductively a sequence x0 = B, xk > 0 for k > 0, such that
xk+1 < xk/2, and∫ xk

0
A(x) dx ≤ M2−k where M =

∫ B

0
A(x)dx .

This is possible because A is integrable.
Then define a continuous function ξ in [0, B] by ξ(xk)= k, and by extending it

linearly on each interval [xk+1, xk], that is

ξ(x)= k+
xk − x

xk − xk+1
, x ∈ [xk+1, xk].



222 DAVID KALAJ

It is easy to see that this function is convex, decreasing and tends to +∞ as x→∞.
Moreover ∫ B

0
A(x)ξ(x) dx ≤ M

∞∑
k=0

(k+ 1)2−k
= 4M.

Now set χ(x)= ξ((Q/x)τ ) for τ = 1/q . It remains to verify that xχ(x) is convex.
This we do by differentiation:

(xχ(x))′ = ξ(Qτ x−τ )− Qτ τ x−τ ξ ′(Qτ x−τ ).

Since both summands are increasing, xχ(x) is convex. �

3. The proof of Theorem 1.1

By assumption of the theorem, the derivative of an arc-length parametrization g′

has a Dini-continuous modulus of continuity ω. We consider two cases.
(i) F(ei t)=9(t) ∈C1,$ (T). Then by Lemma 2.6 the mapping f (z)=P[F](z)

is C1 up to the boundary. First we notice that for L = sup |9 ′(t)|, it is clear that
L <∞. We will prove more. We will show that L is bounded by a constant not
depending a priori on F . According to Lemma 2.6 and to (1-1), we have

(3-1) |D f (eiϕ)|2 = (| fz(eiϕ)| + | f z̄(eiϕ)|)2

= lim
z→eiϕ

(| fz(z)| + | f z̄(z)|)2

≤ K lim
z→eiϕ

(| fz(z)|2− | f z̄(z)|2)

= K (| fz(eiϕ)|2− | f z̄(eiϕ)|2)= K J f (eiϕ).

Furthermore, we have

(3-2) |D f (reiϕ)| = sup
|ξ |=1
|D f (reiϕ)ξ | ≥ |D f (reiϕ)(ieiϕ)| = |∂ϕ f (reiϕ)|.

This implies that

(3-3) |D f (eiϕ)|2 ≥ |∂ϕ f (eiϕ)|2 = |9 ′(ϕ)|2.

From (2-9), (3-3) and (3-1), we obtain:

|9 ′(ϕ)|2 ≤ K C1|9
′(ϕ)|

∫ π

−π

1
x2

∫ ρ(x,ϕ)

0
ω(τ) dτ dx,

where

ρ(x, ϕ)= dγ
(
F(ei(ϕ+x)), F(eiϕ)

)
,
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which is the same as

|9 ′(ϕ)| ≤ K C1

∫ π

−π

ρ(ϕ, x)
x2

∫ 1

0
ω(τρ(ϕ, x)) dτ dx .

Thus

|9 ′(ϕ)| ≤ K C1

∫ π

−π

ρ(ϕ, x)
x2 ω(ρ(ϕ, x)) dx .

Let

(3-4) L := max
x∈[0,2π ]

|9 ′(x)| = max
x∈[0,2π ]

ψ ′(x)= ψ ′(ϕ).

Then

L ≤ K C1

∫ π

−π

ρ(ϕ, x)
x2 ω(ρ(ϕ, x)) dx .

Furthermore, we have

M :=
L

2πK C1
≤

∫ π

−π

M(x, ϕ)
dx
2π
,

where

M(x, ϕ)=
ρ(ϕ, x)

x2 ω(ρ(ϕ, x)).

The idea is to make use of Lemma 2.7 with a convex function depending only on
K to be found below.

Assume that χ : R+→ R+ is a continuous increasing function to be determined
in the sequel such that the function 8(t) = tχ(t) is convex. By using Jensen’s
inequality to the previous integral with respect to the convex function 8, we obtain

8(M)≤
∫ π

−π

8(M(x, ϕ))
dx
2π
,

or equivalently,

(3-5) Mχ(M)≤
∫ π

−π

M(x, ϕ)χ(M(x, ϕ))
dx
2π
.

From (2-7) and (3-4) we deduce that

(3-6) ρ(ϕ, x)≤ Bγ L|x |.

On the other hand, since f is a normalized qc mapping, we have by Lemma 2.3
that

(3-7) ρ(ϕ, x)≤ Bγ3γ (K )|x |α.
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Notice that this time we used the boundary normalization. This implies that

(3-8) M(x, ϕ)=
ρ(ϕ, x)

x2 ω(ρ(ϕ, x))≤
Bγ L

x
ω(Bγ3γ (K )|x |α),

and

(3-9) M(x, ϕ)=
ρ(ϕ, x)

x2 ω(ρ(ϕ, x))≤
Bγ3γ (K )

x2−α ω(Bγ3γ (K )|x |α).

So, in view of Definition 2.1 we have

(3-10) M(x, ϕ)≤
Bγ3γ (K )

x2−α ω(|γ |).

From (3-5) and (3-8), we obtain

(3-11) χ
(

L
2πK C1

)
≤

∫ π

−π

K C1 Bγ
x

ω(Bγ3γ (K )|x |α)χ
(

Bγ3γ (K )ω(|γ |)
|x |2−α

)
dx

= 2
∫ π

0

K C1 Bγ
x

ω(Bγ3γ (K )|x |α)χ
(

Bγ3γ (K )ω(|γ |)
|x |2−α

)
dx

=
2K C1 Bγ

Bγ3γ (K )α

∫ B

0

ω(y)
y
χ(Qy1−2/α) dy,

where
B = Bγ3γ (K )πα and Q = ω(|γ |)(Bγ3γ (K ))2−2/α.

In view of the last term of (3-11), now is the time to determine the function χ .
Lemma 2.7 with q = 2/α− 1 and A(y)= ω(y)/y, provides us with a function χ
such that 8 is convex and such that the estimate∫ B

0

ω(y)
y
χ(Qy1−2/α)dy ≤ 4

∫ B

0

ω(y)
y

dy

holds. From (3-11), we have

χ
( L

2πK C1

)
≤

8K C1 Bγ
Bγ3γ (K )α

∫ B

0

ω(y)
y

dy =: ϒ(K , �).

Since χ is increasing, we infer finally that

(3-12) L ≤ 2πK C1 ·χ
−1(ϒ(K , �))=

π2

2
K ·χ−1(ϒ(K , �)).

By the maximum principle, for z = reiϕ , we further have

|∂ϕ f (z)| ≤ L .

Since f is K-quasiconformal, we have

|Dw(z)| ≤ K |∂ϕ f (z)|.
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This and the mean value inequality imply that

(3-13) | f (z)− f (z′)| ≤ K L|z− z′|, |z|< 1, |z′|< 1.

(ii) F /∈ C1,$ (T). In order to deal with nonsmooth F , we make use of an
approximation argument. We begin by this definition.

Definition 3.1. Let G be a domain in C and let a ∈ ∂G. We will say that Ga ⊂ G
is a neighborhood of a if there exists a disk D(a, r) := {z : |z− a|< r} such that
(D(a, r)∩G)⊂ Ga .

Let t = ei x
∈T. Then F(t)=9(x)∈ ∂�. Let g be an arc-length parametrization

of ∂� with g(ψ(x))= F(ei x), where ψ : [0, 2π ]→ [0, |γ |] is as in the first part of
the proof. Put s =ψ(x). Since the modulus of continuity of g′ is a Dini-continuous
function ω, there exists a neighborhood �t of 9(t) such that the derivative of its
arc-length parametrization g′t has modulus of continuity Ct ·ω. Moreover, there
exist positive numbers rt and Rt such that

�τt :=�t + ig′(s) · τ ⊂�, τ ∈ (0, Rt),(3-14)

∂�τt ⊂�, τ ∈ (0, Rt),(3-15)

g[s− rt , s+ rt ] ⊂ ∂�t .(3-16)

An example of a family �τt such that ∂�τt ∈C1,α for 0<α< 1 with property (3-14)
has been given in [Kalaj 2008]. The same construction yields the family ∂�τt with
the above mentioned properties.

Take Uτ = f −1(�τt ). Let ητt be a conformal mapping of the unit disk onto Uτ

with normalized boundary condition: ητt (e
i2kπ/3)= f −1(ζk) for k = 0, 1, 2, where

ζ0, ζ1, ζ2 are three points of ∂�τt of equal distance. Then the mapping

f τt (z) := f (ητt (z))− ig′(s) · τ

is a harmonic K-quasiconformal mapping of the unit disk onto �t satisfying the
boundary normalization. Moreover,

f τt = P[Fτt ] ∈ C1(U)

for some function Fτt ∈ C1(T).
Since [0, l] is compact, there exists a finite family of Jordan arcs

γ j = g(s j − rs j /2, s j + rs j /2), j = 1, . . . , n,

covering γ . Assume that F(t j )= s j . Let

F j,τ := Fτt j
, a j,τ := η

τ
t j

and f j,τ := f τt j
.
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Using the case F ∈ C1,$ , it follows that there exists a constant C ′j = C ′(K , γ j )

such that
|∂ϕF ′j,τ (e

iϕ)| ≤ C ′j
and

(3-17) | f j,τ (z1)− f j,τ (z2)| ≤ K C ′j |z1− z2|.

Since a j,τ (z) converges uniformly on compact subsets of U to the function a j,0(z)
when τ → 0, and since f j,τ = f ◦ a j,τ , inequality (3-17) implies

(3-18) | f j (z1)− f j (z2)| ≤ K C ′j |z1− z2| for z1, z2 ∈ U,

where f j = f ◦ a j,0 = P[F j ]. For z1 = ei t and z2 = eiϕ for t→ ϕ, we obtain that
|∂ϕF j (eiϕ)| ≤ K C ′j a.e. Since the mapping b j = a−1

0, j can be extended conformally
across the arc S j = f −1(λ j ), where λ j = g(s j− ts j , s j+ ts j ), there exists a constant
L j such that |b j (z)|≤ L j on S′j =T∩ f −1(γ j ) for j=1, . . . , n. Hence |∂ϕF(eiϕ)|≤

K C ′j · L j on S′j . Let C ′ = max{K C ′j · L j : j = 1, . . . , n}. Inequalities (1-7) and
(1-8) easily follow from T =

⋃n
j=1 S′j .

Notice that we can now repeat the first part of the proof for a Lipschitz f =P[F]
in order to obtain a more concrete Lipschitz constant, i.e., the constant L satisfying
(3-12). The proof is complete.
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SEMISIMPLE SUPER TANNAKIAN CATEGORIES
WITH A SMALL TENSOR GENERATOR

THOMAS KRÄMER AND RAINER WEISSAUER

We consider semisimple super Tannakian categories generated by an object
whose symmetric or alternating tensor square is simple up to trivial sum-
mands. Using representation theory, we provide a criterion to identify the
corresponding Tannaka super groups that applies in many situations. As
an example we discuss the tensor category generated by the convolution
powers of an algebraic curve inside its Jacobian variety.

1. Introduction

The goal of this paper is to classify reductive super groups with a representation
which is small in the sense that its symmetric or alternating square is irreducible or
splits into an irreducible plus a trivial representation. This discussion fits into the
general framework of small objects in tensor categories over an algebraically closed
field k of characteristic zero, where by definition a tensor category over k is a rigid
symmetric monoidal k-linear abelian category C whose unit object 1 ∈ C satisfies
End(1)= k. Recall that the structure of a monoidal category is given by a k-linear
exact bifunctor −⊗− : C×C→ C together with a unit object and associativity
constraints aU,V,W : U ⊗ (V ⊗W ) −→∼ (U ⊗ V )⊗W for U, V,W ∈ C such that
the usual compatibilities hold. A monoidal category is called symmetric if it is
equipped with symmetry constraints sU,V :U⊗V −→∼ V ⊗U which are compatible
with the previous structure and satisfy sV,U ◦ sU,V = id. It is called rigid if to every
V ∈ C one may functorially attach an object V∨ ∈ C with natural isomorphisms

Hom(U ⊗ V,W )−→∼ Hom(U, V∨⊗W ).

Tensor categories are ubiquitous in many areas of mathematics like representation
theory, topology and algebraic geometry [Deligne et al. 1982; Gabber and Loeser
1996; Krämer and Weissauer 2015; Krämer 2014]. The typical example is the
category C= Repk(G) of finite-dimensional algebraic super representations of an
affine super group scheme G over k. Here the representation spaces are super vector
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Keywords: Tannakian category, tensor generator, symmetric square, alternating square, irreducible

representation, reductive super group.
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spaces, i.e., Z/2Z-graded vector spaces V = V0⊕V1 of finite dimension over k, and
the symmetry constraints are defined by the sign rule sU,V (u⊗ v)= (−1)αβ v⊗ u
for u ∈Uα, v ∈ Vβ and α, β ∈ Z/2Z.

We say that a tensor category C over k is algebraic if any object V ∈C is of finite
length `(V ) and if the length `(V⊗n) of tensor powers grows at most polynomially
in n. Over an algebraically closed field k of characteristic zero, Deligne has shown
[2002] that every algebraic tensor category is equivalent as a tensor category over k
to the category Repk(G, ε) of finite-dimensional algebraic super representations V
of an affine super group scheme G over k with the property that a certain element
ε ∈ G(k) acts via the parity automorphism on V . Here the parity automorphism
of a super vector space V = V0⊕ V1 is given by (−1)α on Vα for α ∈ Z/2Z. Note
that the above framework includes the usual representation categories of algebraic
groups G by taking ε = 1. Since by definition Repk(G, ε) is a full subcategory of
the algebraic tensor category Repk(G) of all algebraic super representations, for
the study of small objects it suffices to consider the latter.

If such an algebraic tensor category C = Repk(G) has a tensor generator X
in the sense that any object is a subquotient of a tensor power (X ⊕ X∨)⊗r for
some r ∈ N, then the super group scheme G is of finite type over k and will be
called the Tannaka super group of the category. We then have a faithful algebraic
super representation G ↪→ GL(V ) on the finite-dimensional super vector space V
associated to X . In what follows, by an algebraic super group over k we mean an
affine super group scheme of finite type over k. Coming back to the general case,
any algebraic tensor category C is the direct limit of tensor subcategories with a
tensor generator, so the corresponding affine super group scheme G is an inverse
limit of algebraic super groups over k, and for the study of small objects it suffices
to consider algebraic super groups. Unfortunately, in contrast to the situation for
ordinary algebraic groups, the representation theory of algebraic super groups is
hardly understood. Even for the general linear super groups G = GLm|n(k) over k
the categories Repk(G) are not semisimple, and their tensor structure seems to
be rather complicated. For example, in general the tensor product of irreducible
objects is not a direct sum of irreducible objects. This often makes it desirable to
replace C by some quotient category with simpler properties.

For any algebraic tensor category C over k, a general construction due to André
and Kahn [2002, Section 8] together with the above result by Deligne implies
that there is a universal k-linear (though in general not exact) quotient functor
π : C → Cred of algebraic tensor categories such that Cred is semisimple. An
indecomposable object V ∈ C becomes isomorphic to zero in the quotient category
Cred if and only if its super dimension dim(V0)− dim(V1) is zero. Furthermore the
functor π maps indecomposable objects to irreducible or zero objects, so it maps
small objects to small objects. Bearing this in mind, we say an affine super group
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scheme G over k is reductive if the category Repk(G) is semisimple. The reductive
algebraic super groups over an algebraically closed field k of characteristic zero
have been classified in [Weissauer 2009]. In particular, they are all isogenous to
products of ordinary reductive groups and orthosymplectic super groups OSp1|2m(k),
and their representation theory may be understood in terms of the representation
theory of ordinary connected reductive groups and finite groups. In general, an
affine super group scheme over k is reductive if and only if it is an inverse limit of
reductive algebraic super groups. The above construction then associates to any
affine super group scheme G over k a reductive super group scheme Gred over k,
where Cred

= Repk(G
red) for the category C= Repk(G).

While from a theoretical point of view this seems to give a rather satisfying
picture, in concrete applications the algebraic tensor categories arising from the
construction of André and Kahn are often hard to approach. The case of a classical
algebraic group G over k, where Gred

= G/U for the unipotent radical U EG0

of the connected component, is not typical. In general there may be no simple
relation between Gred and G. For the general linear super groups G = GLm|n(k)
with m, n > 1 the associated reductive super group schemes Gred are not even of
finite type over k. One of the motivations for studying small objects in algebraic
tensor categories is to get a better understanding of the construction of André and
Kahn in such situations.

Apart from examples in representation theory, this is useful also in algebraic
geometry, especially in the context of Brill–Noether sheaves [Krämer and Weissauer
2013; Weissauer 2007; Weissauer 2008]. For a smooth complex projective variety X ,
the image of X in its Albanese variety defines a distinguished object V of a semisim-
ple algebraic tensor category C= C(X) which is constructed via convolutions of
perverse sheaves, see [Krämer and Weissauer 2015]. The corresponding Tannaka
super group G = G X is a classical reductive complex algebraic group which is an
intrinsic invariant of the variety X . If the object V ∈ C is small, our main result
(Theorem 1.1) gives a criterion to determine this group. In Section 6 we illustrate
this for a smooth curve X of genus g ≥ 1. It has been shown in [Weissauer 2007]
that in this case

G X =

{
Sp2g−2(C) if X is hyperelliptic,
SL2g−2(C) otherwise;

our criterion leads to a very short and much simpler proof of this result.
Returning to representation theory, let k again be an algebraically closed field of

characteristic zero. The main goal of this paper is to classify all reductive super
groups G over k that arise as the Tannaka super group of a semisimple tensor
category with a small tensor generator; see Theorem 1.1. For simplicity, in what
follows the term representation refers to a representation on a super vector space in
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the case of true super groups, but to an ordinary representation otherwise. For V
in Repk(G) we denote by

Tε(V )=
{

S2(V ) for ε =+1,
32(V ) for ε =−1,

the symmetric and the alternating squares with respect to the symmetry constraint
for super vector spaces. If Tε(V ) is irreducible or a direct sum of an irreducible
and a one-dimensional trivial representation 1, we say V is ε-small (or just small).
Small representations are irreducible. If the trivial direct summand 1 occurs in
Tε(V ), then V is isomorphic to its dual V∨ and hence carries a nondegenerate
symmetric or alternating bilinear form. We say that V is very small if both S2(V )
and 32(V ) are irreducible. Since dimk(EndG(V ⊗ V )) = dimk(EndG(V ⊗ V∨)),
this is the case if and only if V ⊗ V∨ ∼=W ⊕ 1 for some irreducible representation
W ∈ Repk(G).

By definition a super group is quasisimple if it is a perfect central extension
of a (nonabelian) simple super group. For the finite quasisimple groups G very
small and self-dual small faithful representations have been classified by Magaard,
Malle and Tiep [2002, Theorem 7.14], using earlier results of Magaard and Malle
[1998]. In a more general setup the list of very small representations has been
extended by Guralnick and Tiep [2005, Theorem 1.5] to arbitrary reductive groups.
In particular, except for the standard representation of the special linear group, very
small representations of G only exist if the quotient G/Z(G) by the center Z(G) is
finite. The class of small representations is much richer and contains several cases
with dim(G/Z(G)) > 0.

To state our main result we use the following notation. For super groups Gi and
representations Vi ∈ Repk(Gi ), define G1⊗G2 ⊂ GL(V1� V2) to be the image of
the exterior tensor product representation. If a group of automorphisms of G1⊗G2

contains elements that interchange the two subgroups G1⊗{1} and {1}⊗G2, we say
that it flips the two factors. If a group acts transitively on a set X and if the action
on the set of 2-element subsets of X is still transitive, we say that the group acts
2-homogeneously on X . If for V ∈ Repk(G) the restriction V |K to some normal
abelian subgroup K EG splits into a direct sum of pairwise distinct characters that
are permuted 2-homogeneously and faithfully by the adjoint action of G/K , we say
that the representation V is 2-homogeneous monomial. Finally, a finite p-group E
is called extraspecial if E/Z(E) is elementary abelian and Z(E)= [E, E] is cyclic
of order p. Then |E | = p1+2n for some n ∈N, and for any nontrivial character ω
of Z(E)∼= Z/pZ there is a unique irreducible representation Vω ∈ Repk(E) with
dimension pn on which Z(E) acts via ω [Dornhoff 1971, Theorem 31.5].

Theorem 1.1. Let G be a reductive super group and V ∈ Repk(G) an ε-small
faithful representation of super dimension d > 0. Then one of the following holds:
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(a) The connected component G0
⊆ G is quasisimple and the restriction V |G0

remains ε-small. In this case the possible Dynkin types of G0 and the highest
weights of V |G0 are given in Theorem 4.1.

(b) (G0, V |G0)∼= (G1⊗G1,W�W ) where G1 ∈ {SLm(k),GLm(k)} and where W
is the m-dimensional standard representation or its dual. Here G flips the two
factors so that G ∼= G0 oZ/2Z and ε =−1.

(c) There exists an embedding G ↪→ GO4(k) such that V is the restriction of the
four-dimensional orthogonal standard representation, and ε =+1.

(d) The representation V is 2-homogeneous monomial; then ε =−1 unless V has
(nonsuper) dimension dimk(V )≤ 2.

(e) The group G = Z(G) · S is a (not necessarily direct, but commuting) product
of its center and some finite subgroup S ⊆ G. Furthermore we have an exact
sequence 0→ H → S→ Out(H) where

(e1) either H is quasisimple,
(e2) or (H, V |H )∼= (G1⊗G1,W �W ) for some very small W ∈ Repk(G1),

in which case S flips the two factors and ε =−1,
(e3) or H is a finite p-group for some prime p and contains a G-stable

extraspecial subgroup E of order p2n+1 for some n ∈N. In this case V |E
is irreducible with dimension pn .

By definition of the symmetry constraint, the parity flip W =5V with W0 = V1

and W1 = V0 satisfies S2(W ) = 32(V ) and 32(W ) = S2(V ). This parity flip
changes the sign of the super dimension; since the super dimension of an irreducible
representation of a reductive super group is always nonzero [Weissauer 2009,
Lemma 15], this explains why we assumed d > 0 in Theorem 1.1.

Note that for any faithful irreducible V ∈ Repk(G), Schur’s lemma implies that
the center Z(G) acts on V via scalar matrices. So either Z(G)= Gm or Z(G) is
a finite cyclic group. If the restriction V |G0 to the connected component remains
irreducible, then the conclusion of Schur’s lemma also holds with the center of G
replaced by the centralizer ZG(G0)⊆G. Thus in the situation of case (a) the group
of connected components is easily controlled since G/(G0

· ZG(G0)) ↪→ Out(G0)

must be a subgroup of outer automorphisms fixing the isomorphism type of the
representation V |G0 in the table of Theorem 4.1.

For the converse of Theorem 1.1 one readily checks that all representations V
in case (a), (b), (e2) are small. Concerning (c), recall that the group of orthogonal
similitudes GO4(k) is the product of its center with GSO4(k)∼= GL2(k)⊗GL2(k),
and that for the latter any small representation must be a product of two very small
ones. As a typical example of (d), for any 2-homogeneous subgroup F of the
symmetric group Sd we have the 2-homogeneous monomial small representation
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of G = (Gm)
d o F on V = kd with the natural action. Apart from a single extra

case, the 2-homogeneous permutation groups on d ≥ 4 letters are precisely the
doubly transitive ones [Kantor 1969, Proposition 3.1; 1972], and the finite doubly
transitive groups have been classified by Huppert, Hering and others [Dixon and
Mortimer 1996, Section 7.7]. In the extraspecial case (e3) the analysis of the
smallness condition is more subtle and we postpone it to the remarks after the proof
of Proposition 3.1. Thus altogether Theorem 1.1 gives an essentially complete
picture except for the case (e1) of finite quasisimple groups, which would require a
close analysis of the representations of finite groups of Lie type generalizing the
methods of Guralnick, Magaard, Malle and Tiep.

For the sake of brevity, in what follows the term group will always be taken to
include super groups. However, until Section 4 the term dimension will still refer
to the ordinary dimension (as opposed to the super dimension).

2. Clifford–Mackey theory

Let us say that V ∈ Repk(G) is strongly irreducible if for any noncentral normal
subgroup H EG of finite index the restriction V |H is irreducible.

Proposition 2.1. For any faithful ε-small representation V ∈ Repk(G) one of the
following cases occurs:

(a) The representation V is strongly irreducible.

(b) V is a 2-homogeneous monomial representation. In this case ε =−1 or V has
dimension dimk(V )≤ 2.

(c) There exists an embedding G ↪→ GO4(k) such that V is the restriction of the
four-dimensional orthogonal standard representation.

Proof. Let H E G be a normal subgroup. If the restriction V |H is not isotypic,
let V |H = W1⊕ · · ·⊕Wn be its isotypic decomposition. Then V ∼= IndG

H1
(W1) is

induced from a representation of the stabilizer H1 ≤G of W1, and we get a splitting
into two G-stable summands

Tε(V )∼= IndG
H1
(Tε(W1))⊕

[⊕
i 6= j

Wi ⊗W j

]
ε

,

where the subscript ε in the second summand indicates the ε-eigenspace of the
symmetry constraint which flips the two factors of the tensor product. Since in the
nonisotypic case we have n> 1, ε-smallness implies that dimk(W1)= 1, and ε=−1
or dimk(V )= n= 2. All Wi have dimension one, so V |H splits as a sum of pairwise
distinct characters. Now G acts by conjugation on the set X of these characters, and
the kernel K of this permutation representation of G is a normal subgroup which is
abelian since V is faithful. So (b) holds.
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Now suppose that V |H is isotypic. Then, as in [Dornhoff 1971, Theorem 25.9],
there are projective representations U1, U2 of G such that V ∼=U1⊗U2, where the
restriction U1|H is irreducible and where every h ∈ H acts as the identity on U2.
Then

T±(V )∼= (T+(U1)⊗ T±(U2))⊕ (T−(U1)⊗ T∓(U2)),

and since V is small, one of the summands Tε1(U1)⊗Tε2(U2) must have dimension
at most one. By direct inspection this can happen only if either di = dimk(Ui )= 1
for some i ∈ {1, 2}, or d1 = d2 = 2. Now V |H ∼=U1⊕· · ·⊕U1 = d2 ·U1 so that for
d1 = 1 the group H is contained in the center Z(G), which acts on V via scalar
matrices. For d2 = 1 the restriction V |H remains irreducible. For d1 = d2 = 2
case (c) occurs since U1,U2 ∈ Repk(H) extend to projective representations of the
whole group G whose image then is contained in the product of its center with the
special orthogonal similitude group GL2(k)⊗GL2(k)∼= GSO4(k). �

3. Reduction to the quasisimple case

Next we study strongly irreducible V ∈ Repk(G). To treat the case of finite groups
simultaneously with the case of positive-dimensional reductive groups, recall from
[Aschbacher 2000, Section 31] that for finite groups S the generalized Fitting
subgroup F∗(S) plays a role very similar to the one which for a reductive algebraic
group is played by the derived group of the connected component. By definition
F∗(S)≤ S is the subgroup of S generated by the largest nilpotent normal subgroup
together with the subnormal quasisimple subgroups. Here a subgroup N ≤ S is
called subnormal if there is a chain N = N1E N2E · · ·E Nm = S of subgroups
where each member of the chain is a normal subgroup of the next member. To
make the role of the generalized Fitting subgroup more precise, let us temporarily
call a group basic if it is either quasisimple or a finite p-group for some prime p.
For a given group G we define H EG as follows:

• If G0
⊆ Z(G), then G = Z(G) · S for some finite normal subgroup SEG, and

fixing such a subgroup we take H = F∗(S).

• Otherwise we take H = [G0,G0
] to be the derived group of the connected

component. The theory of reductive groups then implies G0
= Z(G0) · H .

In both cases we can find a central isogeny H̃ = H1× · · ·× Hn � H such that the
image of each Hi is normal in G. Choosing the labeling in a suitable way, we may
furthermore assume that for each i we have a central isogeny H̃i = (Gi )

si � Hi

for si copies of a suitable basic group Gi and that the images of these si copies are
permuted transitively by the adjoint action of G.

Proposition 3.1. For any faithful ε-small strongly irreducible V ∈ Repk(G) with
dimension dimk(V ) > 1 one of the following cases occurs:
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(a) The group H is quasisimple.

(b) (H, V |H )∼= (G1⊗G1,W �W ) for some very small W ∈ Repk(G1), H flips
the two factors, and we have ε =−1.

(c) H contains an extraspecial G-stable subgroup E of order p2n+1 for some
prime p such that V |E is irreducible of dimension pn .

(d) We have an embedding G ↪→ GO4(k) such that V is the restriction of the
four-dimensional standard representation.

Proof. We first claim that H 6⊆ Z(G). Indeed, for the finite group case recall that
the generalized Fitting subgroup contains its own centralizer [Aschbacher 2000],
so H ⊆ Z(G) would imply S = H and then G = Z(G) would be abelian. In the
infinite case where G0 is not central, the strong irreducibility implies that V |G0 is
irreducible so that the connected reductive group G0 cannot be a torus. Thus indeed
H 6⊆ Z(G).

Hence we can assume that the image of each Hi in G is a noncentral subgroup by
discarding any occurring central components and saturating the other components
with the center. Since V |H̃ ∼= U1� · · ·�Un with irreducible Ui ∈ Repk(Hi ), we
get n = 1 by strong irreducibility. Hence H̃ ∼= (G1)

s for s = s1 and again we get
a decomposition V |H̃ ∼=W1� · · ·�Ws with irreducible Wi ∈ Repk(G1), but now
the adjoint action of G permutes the s factors G1 transitively so that all Wi are
isomorphic to a single W ∈ Repk(G1). In the decomposition

Tε(V )|H ∼=
s⊕

r=0

Tr,ε with Tr,ε =
⊕

ε1···εs=ε
#{i |εi=+1}=r

Tε1(W )� · · ·� Tεs (W )

each summand Tr,ε is stable under the action of G. By smallness it then follows
that s ≤ 2, and for s = 2 the conclusions of (b) or (d) hold.

So we may assume s = 1 and H = G1 is a basic group. If case (a) does not
occur, then H is a finite p-group for some prime p. Consider then a minimal
G-stable noncentral subgroup M E H . By minimality the subgroup [M,M] is
contained in A := M ∩ Z(H) so that the quotient U := M/A is abelian. Looking
at the p-torsion part of this quotient one obtains, again by minimality, that U is
elementary abelian. The commutator induces a bilinear map [·, ·] : U ×U → A,
and if we identify A with a subgroup of Gm via Schur’s lemma, p ·U = 0 implies
that [M,M] is contained in the subgroup µp ⊆ A of p-th roots of unity. So M/µp

is abelian and in fact elementary abelian: Otherwise by minimality its p-torsion
subgroup would lie in the cyclic group A/µp so that the abelian p-group M/µp

would be cyclic as well. But then M would be abelian, and this is impossible since
it admits the faithful irreducible representation V |M of dimension d > 1.
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Thus M/µp is elementary abelian, and we claim that the extraspecial case (c)
occurs. Indeed, either A = µp or A = µp2 . For A = µp the subgroup E = M
satisfies our requirements, so suppose that A = µp2 . Since M/µp is elementary
abelian, the Frattini subgroup is 8(M)= µp by [Aschbacher 2000, (23.2)]. The
Frattini subgroup is the intersection of all maximal subgroups, so it follows that
there exists a maximal subgroup E ≤ M which contains µp but not µp2 . Then
M = µp2 · E , and E ≤ M is an extraspecial subgroup. We will be done if we can
show this subgroup is stable under the group AutA(M) of automorphisms of M that
are trivial on A. But this follows from the observation that every automorphism of
E which is trivial on µp extends uniquely to an element of AutA(M), which gives
a natural identification AutA(M) ∼= Autµp(E) compatible with the actions on M
and E . �

We remark that the only instance of case (b) in Proposition 3.1 with dim(H) > 0
is G1 ∼= SLm(k), acting on W ∼= km either via the standard representation or via its
dual. Indeed this will follow from Theorem 4.1 below, applied to the very small
representation W of the Lie algebra of G1. Alternatively one could use [Guralnick
and Tiep 2005].

In case (c) where H contains a G-stable extraspecial p-group E , put |E | = p1+2n

with n ∈ N. For any nontrivial character ω : Z(E) ∼= Z/pZ→ Gm there exists a
unique irreducible representation Vω ∈ Repk(E) of dimension pn on which Z(E)
acts via the character ω, and these are already all the irreducible representations
of dimension > 1 by [Dornhoff 1971, Theorem 31.5]. Hence in case (c) we have
V |E ∼= Vω for a uniquely determined character ω. To decide which of the occurring
representations are small, note that for the finite group S such that H = F∗(S),
we have a natural homomorphism S→ Out(E). We now distinguish two cases
depending on p.

For p > 2 we have ω2
6= 1, so Tε(V )|E is an isotypic multiple of Vω2 . Then

Mackey theory [Dornhoff 1971, Theorem 25.9] gives a tensor product decompo-
sition Tε(V ) ∼= U ⊗ Wε where U and Wε are projective representations of the
group S such that U |E ∼= Vω2 and such that every element of E acts trivially on Wε .
Via the nondegenerate alternating bilinear form defined by the commutator on
E/Z(E)∼= (Fp)

2n we can identify the image of S in Out(E) with a subgroup of the
symplectic group Sp2n(Fp). Looking at dimensions one then obtains from [Tiep and
Zalesskii 1996, Theorem 5.2] that Wε must be one of the two Weil representations
of dimension (pn

+ ε)/2. Hence V is ε-small if and only if the image of S inside
Sp2n(Fp) acts irreducibly on this Weil representation.

For p = 2 on the other hand, ω2
= 1, so that the restriction Tε(V )|E is a

sum of characters. By [Winter 1972] we can identify Out(E) with an orthogonal
group O±2n(F2) where the type ± of the quadratic form depends on E . Recall
that a nondegenerate quadratic form on (F2)

2n has type ± if and only if there
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are precisely 2n−1(2n
± 1) isotropic vectors for this form. One then obtains the

following identifications:

• If the quadratic form has + type, the isotropic vectors in (F2)
2n correspond

precisely to the characters in T+(V )|E .

• If the quadratic form has − type, the isotropic vectors in (F2)
2n correspond

precisely to the characters in T−(V )|E .

A similar interpretation holds for the anisotropic vectors. Hence it follows that V is
small if and only if the image of S inside O±2n(F2) acts transitively on the nonzero
isotropic resp. anisotropic vectors. Note that the set of isotropic vectors always
includes the zero vector as a single orbit, corresponding to the trivial summand
1 ↪→ Tε(V ).

4. Lie super algebras

It remains to determine all small V ∈ Repk(G) when H = [G0,G0
] is quasisimple

and V |H is irreducible. By the classification of reductive super groups in [Weissauer
2009], the Lie super algebra g of H must then either be an ordinary simple Lie
algebra or an orthosymplectic Lie super algebra osp1|2m(k) with m ∈ N. Note that
Repk(H) is a full subcategory of Repk(g), where the latter denotes the category
of all Lie algebra representations of the Lie super algebra g on finite-dimensional
super vector spaces over k. In particular V |H defines an irreducible representation
of g.

The passage to representations of Lie algebras leads to a seemingly weaker notion
of smallness. By the comments after Theorem 1.1 we know that G/(G0

· ZG(G0))

is a subgroup of Out(G0) such that conjugation by any element ϕ of this subgroup
fixes the isomorphism type of V |H . For an irreducible summand W ↪→ Tε(V )
in Repk(G) it may happen that the restriction W |H splits into several irreducible
summands, but all these summands must be conjugate via automorphisms ϕ as
above. Abstracting from this situation, let us now denote by g any ordinary simple
Lie algebra or osp1|2m(k) with m ∈ N. We say that a representation V ∈ Repk(g)

is ε-small if either Tε(V )∼=W or Tε(V )∼=W ⊕1, where W is a sum of irreducible
representations which are all conjugate to each other via automorphisms ϕ ∈Aut(g)
fixing the isomorphism type of V . To finish the proof of Theorem 1.1 we classify
all irreducible small representations in this sense. For a uniform treatment the terms
dimension, vector space, trace and Lie algebra will from now on be taken in the
super sense for osp1|2m(k) but in the ordinary sense otherwise.

We denote by $1, . . . ,$m the fundamental dominant weights of g with respect
to some fixed system of simple positive roots; see [Rittenberg and Scheunert 1982,
Section 2.1] for the orthosymplectic Lie algebra g= osp1|2m(k) whose Dynkin type
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we abbreviate by BCm . Put

βi =

{
2$m if g= osp1|2m(k) and i = m,
$i otherwise.

The irreducible finite-dimensional representations of g are parametrized by highest
weights λ=

∑m
i=1 aiβi with ai ∈N0, see [Djoković 1976b, Theorem 6]. For any such

λ we denote by Vλ the associated positive-dimensional irreducible representation.
Note that, in the super case, negative-dimensional irreducible representations are
obtained by the parity flip Wλ =5Vλ with dim(Wλ)=− dim(Vλ) and S2(Wλ)∼=

32(Vλ).

Theorem 4.1. A positive-dimensional irreducible representation Vλ ∈ Repk(g) is
ε-small if and only if its highest weight λ appears in the following table:

λ ε =+1 ε =−1
Am m ≥ 1 β1, βm ? ?

m = 1 2β1 ◦ ?

3β1 − ◦

m ≥ 2 2β1, 2βm − ?

m = 3 β2 ◦ ?

m ≥ 4 β2, βm−1 − ?

m = 5 β3 − ◦

Bm m ≥ 2 β1 ◦ ?

m = 2 β2 ? ◦

m = 3 β3 ◦ −

Cm m ≥ 3 β1 ? ◦

m = 3 β3 − ◦

Dm m ≥ 4 β1 ◦ ?

m = 4 β3, β4 ◦ ?

m = 5 β4, β5 − ?

m = 6 β5, β6 − ◦

BCm m ≥ 1 β1 ? ◦

E6 β1, β6 − ?

E7 β7 − ◦

G2 β1 ◦ −

Here the label ? means that Tε(Vλ) is irreducible, ◦ means that Tε(Vλ) = W ⊕ 1
with W irreducible, and − means that Vλ is not ε-small.

Note that for g= sl2(k) with its two-dimensional standard representation st , any
irreducible representation is a symmetric power Vλ = Sn(st) of weight λ = nβ1

for some n ∈ N. In this case Theorem 4.1 holds by direct inspection. A similar
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argument also works for g = osp1|2(k). Here we know from [Djoković 1976b,
Theorems 7 and 11] that for λ = nβ1 the even subalgebra g0 = sl2(k) ⊂ g acts
on Vλ = V0⊕ V1 via V0 = Sn(st) and V1 = Sn−1(st). A short computation yields
the action on the even and odd parts of the tensor square Tε(V ) and Theorem 4.1
also holds in this case. Note that dim(V )= 1 for all irreducible representations V
of osp1|2(k). For all other cases we have:

Lemma 4.2. For g 6= osp1|2(k) one has dim(Vλ)≤ dim(g) if and only if the highest
weight λ appears among those listed in Tables 1 or 2.

Proof. See [Andreev et al. 1967] for the ordinary case. For g=osp1|2m(k)with m≥2
we use the Kac–Weyl formula in [Tsohantjis and Cornwell 1990, Equation 11]. We
embed the root system BCm into a Euclidean space with standard basis ε1, . . . , εm

such that βi = ε1+ · · ·+ εi for all i . The irreducible representations of osp1|2m(k)
are parametrized by weights which in our basis are written λ= (λ1, . . . , λm) with
integers λ1 ≥ · · · ≥ λm ≥ 0. The Kac–Weyl formula gives

dim(Vλ) =
∏

1≤i< j≤m

(
λi − λ j

j − i
+ 1

)
·

∏
1≤i< j≤m

(
λi + λ j

2m+ 1− i − j
+ 1

)
.

For λ1 ≥ 2 the second product is ≥ 2. Then the classical Weyl formula for the
first product shows that dim(Vλ) is at least twice the dimension of the irreducible
representation of slm(k) with highest weight µ= (λ1−λm, . . . , λm−1−λm). Using
that dim(slm(k)) ≥ 2 dim(osp1|2m(k)), it follows that µ is in the list for Am−1 in
Table 1. Since λ = µ+ λm · βm and since increasing the weight by βm increases
the dimension, this leaves only finitely many cases. For λ1 = 1 we have λ = βr

λ S2(Vλ) 32(Vλ)
Am m = 1 β1 V2β1 1

m ≥ 2 β1 V2β1 Vβ2

βm V2βm Vβm−1

m ≥ 2 2β1 V4β1 ⊕ V2β2 V2β1+β2

2βm V4βm ⊕ V2βm−1 V2βm+βm−1

m ≥ 4 β2 V2β2 ⊕ Vβ4 Vβ1+β3

βm−1 V2βm−1 ⊕ Vβm−3 Vβm+βm−2

m = 3 β2 V2β2 ⊕ 1 Vβ1+β3

m = 5 β3 V2β3 ⊕ Vβ1+β5 Vβ2+β4 ⊕ 1
m = β3 V2β3 ⊕ Vβ1+β5 Vβ2+β4 ⊕ Vβ6

6, 7 βm−2 V2βm−2 ⊕ Vβm+βm−4 Vβm−1+βm−3 ⊕ Vβm−5

Table 1. All λ with 1 < dim(Vλ) < dim(g). For g = osp1|2m(k)
we denote by Wµ = 5Vµ the parity shifts of the highest weight
modules. (Continues on the next page.)
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Bm m ≥ 2 β1 V2β1 ⊕ 1 Vβ2

m = 2 β2 V2β2 Vβ1 ⊕ 1
m = 3 β3 V2β3 ⊕ 1 Vβ1 ⊕ Vβ2

m = 4 β4 V2β4 ⊕ Vβ1 ⊕ 1 Vβ2 ⊕ Vβ3

m = 5 β5 V2β5 ⊕ Vβ2 ⊕ Vβ1 Vβ3 ⊕ Vβ4 ⊕ 1
m = 6 β6 V2β6 ⊕ Vβ3 ⊕ Vβ2 Vβ1 ⊕ Vβ4 ⊕ Vβ5 ⊕ 1

Cm m ≥ 3 β1 V2β1 Vβ2 ⊕ 1
m ≥ 4 β2 Vβ4 ⊕ V2β2 ⊕ Vβ2 ⊕ 1 V2β1 ⊕ Vβ1+β3

m = 3 β2 V2β2 ⊕ Vβ2 ⊕ 1 V2β1 ⊕ Vβ1+β3

β3 V2β3 ⊕ V2β1 V2β2 ⊕ 1
Dm m ≥ 4 β1 V2β1 ⊕ 1 Vβ2

m = 4 β3 V2β3 ⊕ 1 Vβ2

β4 V2β4 ⊕ 1 Vβ2

m = 5 β4 V2β4 ⊕ Vβ1 Vβ3

β5 V2β5 ⊕ Vβ1 Vβ3

m = 6 β5 V2β5 ⊕ Vβ2 Vβ4 ⊕ 1
β6 V2β6 ⊕ Vβ2 Vβ4 ⊕ 1

m = 7 β6 V2β6 ⊕ Vβ3 Vβ1 ⊕ Vβ5

β7 V2β7 ⊕ Vβ3 Vβ1 ⊕ Vβ5

BCm m ≥ 2 β1 V2β1 Vβ2 ⊕ 1
m ≥ 4 β2 V2β2 ⊕ Vβ2 ⊕ Vβ4 ⊕ 1 V2β1 ⊕ Vβ1+β3

m = 2 β1+β2 V2β1+2β2 ⊕ 2V2β1+β2 ⊕ 2V2β1 V4β1 ⊕ V2β1+β2 ⊕ V3β2 ⊕ 2V2β2

⊕W3β1 ⊕Wβ1+2β2 ⊕2Vβ2 ⊕W3β1+β2 ⊕Wβ1+2β2

⊕2Wβ1+β2 ⊕Wβ1+β2 ⊕Wβ1 ⊕ 1
β2 V2β2 ⊕ Vβ2 ⊕Wβ1 V2β1 ⊕Wβ1+β2 ⊕ 1

m = 3 β2 V2β2 ⊕ Vβ2 ⊕Wβ3 V2β1 ⊕ Vβ1+β3 ⊕ 1
β3 V2β1 ⊕ Vβ1+β3 ⊕ V2β3 V2β2 ⊕ Vβ2

⊕Wβ1+β2 ⊕Wβ1 ⊕Wβ2+β3 ⊕Wβ3 ⊕ 1
m = 4 β4 V2β1 ⊕ Vβ2+β4 ⊕ Vβ2 ⊕ V2β4 V2β2 ⊕ Vβ1+β3 ⊕ V2β3

⊕Vβ4 ⊕Wβ1 ⊕Wβ2+β3 ⊕Wβ1+β2 ⊕Wβ1+β4

⊕Wβ3 ⊕ 1 ⊕Wβ3+β4

m = 5 β5 V2β1 ⊕ Vβ1+β3 ⊕ Vβ1+β5 V2β2 ⊕ Vβ2+β4 ⊕ Vβ2 ⊕ V2β4

⊕V2β3 ⊕ Vβ3+β5 ⊕ V2β5 ⊕Vβ4 ⊕Wβ1 ⊕Wβ2+β3

⊕Wβ1+β2 ⊕Wβ1+β4 ⊕Wβ2+β5 ⊕Wβ3

⊕Wβ3+β4 ⊕Wβ4+β5 ⊕Wβ5 ⊕ 1
E6 β1 V2β1 ⊕ Vβ6 Vβ3

β6 V2β6 ⊕ Vβ1 Vβ5

E7 β7 V2β7 ⊕ Vβ1 Vβ6 ⊕ 1
F4 β4 V2β4 ⊕ Vβ4 ⊕ 1 Vβ3 ⊕ Vβ1

G2 β1 V2β1 ⊕ 1 Vβ1 ⊕ Vβ2

Table 1 (continued).
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λ S2(Vλ) 32(Vλ)
Am m = 1 2β1 V4β1 ⊕ 1 V2β1

m = 2 β1+β2 V2β1+2β2 ⊕ Vβ1+β2 ⊕ 1 V3β1 ⊕ V3β2 ⊕ Vβ1+β2

m ≥ 2 β1+βm V2β1+2βm ⊕ Vβ2+βm−1 Vβ2+2βm ⊕ V2β1+βm−1

⊕Vβ1+βm ⊕ 1 ⊕Vβ1+βm

Bm m = 2 2β2 Vβ1 ⊕ V2β1 ⊕ V4β2 ⊕ 1 Vβ1+2β2 ⊕ V2β2

m = 3 β2 V2β1 ⊕ V2β2 ⊕ V2β3 ⊕ 1 Vβ1+2β3 ⊕ Vβ2

m = 4 β2 V2β1 ⊕ V2β2 ⊕ V2β4 ⊕ 1 Vβ1+β3 ⊕ Vβ2

m ≥ 5 β2 V2β1 ⊕ V2β2 ⊕ Vβ4 ⊕ 1 Vβ1+β3 ⊕ Vβ2

Cm m ≥ 3 2β1 V4β1 ⊕ V2β2 ⊕ Vβ2 ⊕ 1 V2β1 ⊕ V2β1+β2

Dm m = 4 β2 V2β1 ⊕ V2β2 ⊕ V2β3 ⊕ V2β4 ⊕ 1 Vβ2 ⊕ Vβ1+β3+β4

m = 5 β2 V2β1 ⊕ V2β2 ⊕ Vβ4+β5 ⊕ 1 Vβ2 ⊕ Vβ1+β3

m ≥ 6 β2 V2β1 ⊕ V2β2 ⊕ Vβ4 ⊕ 1 Vβ2 ⊕ Vβ1+β3

BCm m ≥ 2 2β1 V4β1 ⊕ V2β2 ⊕ Vβ2 ⊕ 1 V2β1+β2 ⊕ V2β1

m = 4 β3 V2β1 ⊕ Vβ1+β3 ⊕ V2β3 V2β2 ⊕ Vβ2 ⊕ Vβ2+β4

⊕Wβ1+β4 ⊕Vβ4 ⊕Wβ3 ⊕ 1
E6 β2 V2β2 ⊕ Vβ1+β6 ⊕ 1 Vβ2 ⊕ Vβ4

E7 β1 V2β1 ⊕ Vβ6 ⊕ 1 Vβ1 ⊕ Vβ3

E8 β8 Vβ1 ⊕ V2β8 ⊕ 1 Vβ7 ⊕ Vβ8

F4 β1 V2β1 ⊕ V2β4 ⊕ 1 Vβ1 ⊕ Vβ2

G2 β2 V2β1 ⊕ V2β2 ⊕ 1 V3β1 ⊕ Vβ2

Table 2. All λ with 1 < dim(Vλ) = dim(g). For the ordinary
simple Lie algebras precisely the adjoint representations occur by
the result of [Andreev et al. 1967].

with r ≤ m, and dim(Vλ) =
(2m

r

)
−
( 2m

r−1

)
by the description in [Djoković 1976b,

Section 5]. �

Corollary 4.3. For g 6= sl2(k), osp1|2(k) and all weights λ one has dim(Vλ) ≥ 2,
with equality holding only in the single case (g, λ)= (osp1|4(k), β2).

5. Proof of Theorem 4.1

Recall that g admits a unique invariant nondegenerate bilinear form (·, ·) up to
multiplication by a scalar [Scheunert 1979, p. 94]. Fixing any such form, we
associate to any root α a coroot α∨ = 2α/(α, α). Let α1, . . . , αm be a system of
simple positive roots so that the fundamental weights $i satisfy (α∨i ,$ j ) = δi j .
Then ρ = $1 + · · · + $m is half the sum of all positive roots, with the sign
convention of [Tsohantjis and Cornwell 1990]. For the proof of Theorem 4.1 we
consider the index of a representation ϕ : g→ gl(V ), i.e., the scalar l(V ) defined
by tr(ϕ(X) ◦ϕ(Y ))= l(V ) · (X, Y ).
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Lemma 5.1. The index has the following properties.

(a) For the symmetric or alternating square of a representation V it is given by
the formula l(Tε(V ))= (dim(V )+ 2ε) · l(V ).

(b) There exists a constant κ 6= 0 such that κ ·l(Vµ)= dim(Vµ) ·c(µ) for the scalar
c(µ)= (µ,µ)+ 2(µ, ρ) > 0 and for any highest weight µ 6= 0.

(c) The index satisfies l(1) = 0, and it is invariant under automorphisms and
additive for direct sums in the sense that l(V ⊕ V ′)= l(V )+ l(V ′).

Proof. For (a) note that upon applying any tensor construction to V the index is
multiplied by a constant depending only on n = dim(V ). To compute this constant
for Tε(V ), recall from [Scheunert 1979, p. 128] that sl(V ) is simple for n 6= 0. It
then only remains to check that tr((Tε(X))2)= (n+2ε) tr(X2) for a suitably chosen
elementary matrix X ∈ sl(V ). For (b) one checks, by looking at the action on a
highest weight vector, that the Casimir operator acts on Vµ by some fixed multiple
of c(µ). The setting for osp1|2m(k) is described in [Djoković 1976b, p. 28; 1976a,
p. 223]. One then has κ = dim(Ad) · c(Ad) for the adjoint representation Ad. Part
(c) is obvious. �

Via these index computations, we may now complete the classification of ε-small
representations for g 6= sl2(k), osp1|2(k) as follows.

Proof of Theorem 4.1. Suppose that Vλ is ε-small. By Corollary 4.3 we may
assume that n = dim(Vλ) > 2. Put Tε(Vλ)=W ⊕ 1δ where δ ∈ {0, 1} denotes the
multiplicity with which the trivial representation enters. Note that by smallness
all highest weights µ occurring in W are conjugate to each other. For any such µ
Lemma 5.1(b)–(c) hence imply that κ ·l(W )=dim(W )·c(µ)= (n(n+ε)/2−δ)·c(µ)
and κ · l(Vλ)= n · c(λ). So Lemma 5.1(a) shows

(?) (n+ 2ε) · n · c(λ)= 1
2

(
n(n+ ε)− 2δ

)
· c(µ).

Now we distinguish between the symmetric and the alternating square. For ε=+1
we may take µ = 2λ. Then c(µ) = 4|λ|2+ 4(λ, ρ). Since c(λ) = |λ|2+ 2(λ, ρ),
Equation (?) easily gives

(n− 2δ) · |λ|2 = 2(λ, ρ) and hence |λ| ≤
2|ρ|

n− 2δ

by the Cauchy–Schwartz inequality. Let 10 be the set of simple positive roots of
the even subalgebra g0. Then

|(λ, α∨)| ≤ |λ| · |α∨| ≤
2 |ρ||α∨|

n− 2δ
<

dim(g)− 1
n− 2δ

for any α ∈10,

where for the last inequality we have used the numerical values of |ρ|2 and R in
Table 3 and our assumption g 6= sl2(k), osp1|2(k). On the other hand (λ, α∨) ∈ Z
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|ρ|2 R dim(g) ri for i = 1, . . . ,m |Out(g)|

Am
m(m+1)(m+2)

12

√
2 m(m+ 2) 2(m+1)

i(m+1−i) 2

Bm
m(2m−1)(2m+1)

12 2 m(2m+ 1) 2
i (1+ δim) 1

Cm
m(m+1)(2m+1)

6

√
2 m(2m+ 1) 2

i (1+ δim) 1

Dm
m(m−1)(2m−1)

6

√
2 m(2m− 1) 2

i if i < m− 1 2 if m 6= 4
8
m if i ∈ {m− 1,m} 6 if m = 4

BCm
m(2m−1)(2m+1)

12

√
2 m(2m− 1) 2

i (1+ δim) 1

E6 78
√

2 78 3
2 , 1, 3

5 ,
1
3 ,

3
5 ,

3
2 2

E7
399
2

√
2 133 1, 4

7 ,
1
3 ,

1
6 ,

4
15 ,

1
2 ,

4
3 1

E8 620
√

2 248 1
2 ,

1
4 ,

1
7 ,

1
15 ,

1
10 ,

1
6 ,

1
3 , 1 1

F4 39 2 52 1, 1
3 ,

1
3 , 1 1

G2 14
√

2 14 1 1

Table 3. Some numerical values. We put ri = |αi |
2/|βi |

2 and
R =maxα∈10 |α

∨
| for the set 10 of simple positive roots of g0.

for all α ∈10, and for λ 6= 0 at least one of these scalar products is nonzero. Thus
we can find α ∈10 with |(λ, α∨)| ≥ 1. This implies n−2δ < dim(g)−1. Hence λ
is one of the highest weights in tables 1 and 2 by Lemma 4.2.

It remains to discuss the case ε=−1. By smallness all highest weights in32(Vλ)
are conjugate to each other via automorphisms fixing λ. Hence Remark 5.2 below
implies

(??) λ= r · (βi1 + · · ·+βis ) for some r ∈ N and i1 < i2 < · · ·< is,

and that for all i ∈ {i1, . . . , is} the weight µ= 2λ−αi occurs as a highest weight in
32(Vλ). In what follows we fix i ∈ {i1, . . . , is} with the smallest norm |βi |. Since
the norm of any simple positive root is given by the formula |αi |

2
= 2 (αi , ρ), we

have c(µ)/2= c(λ)+ |λ|2− 2(λ, αi ) so that (?) becomes

(n+ 2ε) · n · c(λ)=
(
n(n+ ε)− 2δ

)
·
(
c(λ)+ |λ|2− 2(λ, αi )

)
.

Now for ε =−1 the first of the two factors on the right is > (n+ 2ε) · n since by
assumption n > 2 and δ ∈ {0, 1}. Hence

c(λ)+ |λ|2− 2(λ, αi ) < c(λ)

and therefore 2 (λ, αi ) > |λ|
2
≥ r2
· |βi |

2
· s, where the second inequality comes

from (??) together with the fact that all scalar products between βi1, . . . , βis are
nonnegative and βi has the smallest norm among all these weights. On the other
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hand 2 (λ, αi )= r · 2 (βi , αi )= r · |αi |
2 by (??). Hence ri := |αi |

2/|βi |
2 > r · s ≥ 1,

which leaves only finitely many cases in view of Table 3. Note that for the Dynkin
type Am we may by duality assume i < (m+ 1)/2 so that ri ≤ 4/ i . �

For the convenience of the reader we include a proof of the following basic fact
used in the above argument; see also [Aslaksen 1994, Theorem 5].

Remark 5.2. Let λ =
∑m

i=1 aiβi with ai ∈ N0. If ai > 0, then the weight 2λ− αi

appears as a highest weight in the alternating tensor square 32(Vλ).

Proof. Let v be a highest weight vector of Vλ. For ai > 0 let X± ∈g±αi be generators
for the root spaces of the roots ±αi of g and put H = [X+, X−]. It then follows
from X+v= 0 that X+X−v= Hv= (αi , λ) ·v 6= 0. Since v and X−v have different
weights (λ and λ−αi respectively), this implies that v∧X−v ∈32(Vλ) is a nonzero
highest weight vector of weight 2λ−αi . �

6. An application to Brill–Noether sheaves

In this independent section we briefly discuss an application of Theorem 1.1 to
algebraic geometry. Let A be a complex abelian variety, and let D(A)= Db

c (A,C)

denote the derived category of bounded constructible sheaf complexes on A in
the sense of [Hotta et al. 1995]. For any sheaf complexes K , L ∈ D(A) we may
consider the exterior tensor product

K � L = p∗1(K )⊗C p∗2(L) ∈ D(A× A),

where p1, p2 : A× A→ A denote the projections onto the two factors and where
the tensor product on the right has to be taken in the derived sense. Passing to the
direct image under the group law a : A× A→ A we then define the convolution
product by

K ∗ L = Ra∗(K � L) ∈ D(A).

It has been shown in [Weissauer 2007; 2011] that with respect to this convolution
product the category D(A) is a rigid symmetric monoidal C-linear category, though
it is not abelian but only triangulated. Now for any perverse sheaf K ∈ D(A) in
the sense of [Hotta et al. 1995], the convolution powers of K generate an algebraic
tensor category inside a certain natural symmetric monoidal quotient category D(A)
of D(A); see [Krämer and Weissauer 2015] for details. The Tannaka super group
of this tensor category is an ordinary complex algebraic group G(K ) which is
reductive if the perverse sheaf K is semisimple.

Now consider the special case where A = Jac(X) is the Albanese variety of a
smooth complex projective curve X of genus g≥ 1. Fix an embedding X ↪→ A, and
denote by CX the constant sheaf with support on the image curve. It will be more
convenient to replace this constant sheaf by the sheaf complex K = CX [1] placed
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in degree −1 since the degree shift by one leads to a complex which is a perverse
sheaf. The group G(K ) depends on the chosen embedding X ↪→ A, though one may
show its commutator group does not. In what follows we choose the embedding so
that the highest alternating convolution power 3∗(2g−2)(K ) is represented in D(A)
by the skyscraper sheaf 1 of rank one supported in the origin. We can achieve this
via a suitable translation since by [loc. cit., Proposition 10.1] this alternating power
is given in D(A) by a skyscraper sheaf of rank one. With this normalization of the
embedding, the group G X = G(K ) becomes an intrinsic invariant of X , and for
g > 2 the classification in Theorem 1.1 leads to a very easy proof of the following
result from [Weissauer 2007].

Theorem 6.1. Let X be a smooth complex projective curve of genus g ≥ 1 which is
embedded into its Jacobian variety A = Jac(X) as above. Then

G X =

{
Sp2g−2(C) if X is hyperelliptic,
SL2g−2(C) otherwise.

Proof for g > 2. For hyperelliptic curves X the Abel–Jacobi map f : X2
→ A is

generically finite of degree two over its image, but blows down the hyperelliptic
linear series g1

2 to a point a ∈ A(C). By our choice of the embedding X ↪→ A
we can assume a = 0. Then one easily checks that the convolution square of the
constant perverse sheaf K = CX [1] has the form

K ∗ K = R f∗(CX×X [2])= δ+⊕ δ−⊕ 1

for certain simple perverse sheaves δ± and the rank one skyscraper sheaf 1 with
support in the origin. The definition of the symmetry constraint in [Weissauer 2007]
shows that 1 lies in the alternating convolution square of K . If G = G X denotes
our Tannaka group and if V ∈ Repk(G) denotes the representation corresponding
to the perverse sheaf K , it follows that the symmetric square T+(V ) is irreducible
and that T−(V ) decomposes into an irreducible plus a trivial representation.

The ε-smallness of V for ε =+1 rules out case (b) in Theorem 1.1. Case (d) is
ruled out for the same reason because, by [Krämer and Weissauer 2015], the dimen-
sion of any representation of G is the Euler characteristic of the underlying perverse
sheaf, which in our situation is d = dimC(V )= 2g−2> 2 for g > 2. Since T+(V )
is irreducible whereas the symmetric square of the standard representation of the
orthogonal group is not, case (c) is impossible. Case (e) is impossible since the
group of connected components of the Tannaka group of a perverse sheaf is abelian
[Weissauer 2012]. So case (a) occurs, and we look for entries in Theorem 4.1 with
a ? for ε = +1 and a ◦ for ε = −1. As we are dealing with ordinary groups, the
only case is the standard representation of Sp2m(C) where 2m = d = 2g− 2; for
g = 3 notice B2 ∼= C2. The nonhyperelliptic case is similar but here no summand 1
occurs. �
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ON MAXIMAL LINDENSTRAUSS SPACES

PETR PETRÁČEK AND JIŘÍ SPURNÝ

We solve a problem of Lacey (1973) by showing that there exist a metrizable
compact space K and a closed space H ⊂ C(K ) containing constants with
∂HK = K such that H is maximal with respect to ∂HK and H is not a
Lindenstrauss space.

1. Introduction

Let X be a compact convex subset of a real locally convex space and let Ac(X)
denote the space of all affine continuous functions on X . Denote by ext X the set
of all extreme points of X .

Let K be a compact Hausdorff topological space and H⊂C(K ) a closed subspace
of C(K ) containing constants and separating points of K . The space H can be
identified with Ac(X), where

X = {s∗ ∈H∗ : s∗(1)= ‖s∗‖ = 1}

with the weak* topology. Consider the set

∂HK = {x ∈ K : εx |H is an extreme point of the unit ball of H∗},

where εx denotes the Dirac measure at x ∈ K . Then ext X is homeomorphic to ∂HK
via the evaluation mapping (see Theorem 2.1 and [LMNS 2010, Proposition 4.26]).

The space H is called maximal with respect to ∂HK if for every closed space G
with H⊂ G ⊂ C(K ) we have H= G provided ∂HK = ∂GK .

(In [Lacey 1973], the property of separating points is not a part of the definition
of a function space. Nevertheless, in our opinion, this property is necessary for
∂HK to be homeomorphic to ext X . Indeed, consider H= span{1} on [0, 1]. Then
X is a singleton, and thus ∂H[0, 1] = [0, 1]. Obviously, [0, 1] is not homeomorphic
to ext X .)

It is shown in [Edwards and Vincent-Smith 1968] that H is maximal with respect
to ∂HK whenever H is a Lindenstrauss space; see Theorems 2.1 and 2.3 below.

The research was supported by grant GAČR P201/12/0290. Spurný was also supported by the Neuron
Fund for Support of Science.
MSC2010: 46B25.
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(A real Banach space X is called a Lindenstrauss space, or an L1-predual, if its dual
space X∗ is isometric to a space L1(X,S, µ) for some measure space (X,S, µ).)
This result serves as a motivation for the following problem, stated as Question 5
in [Lacey 1973, p. 144] (see also [Lacey 1974, p. 198]).

Question 1.1. Let K be a compact space and H⊂ C(K ) a closed subspace contain-
ing constants and separating points of K such that ∂HK = K . Let H be maximal
with respect to ∂HK . Is H then a Lindenstrauss space?

The aim of our paper is to show that the answer to Question 1.1 is in general
negative by proving the following theorem.

Theorem 1.2. There exist a metrizable compact space K and a closed space
H ⊂ C(K ) containing constants and separating points of K with ∂HK = K such
that H is maximal with respect to ∂HK and H is not a Lindenstrauss space.

2. Function spaces

Let K be a compact space (we consider all topological spaces as Hausdorff). We
identify the dual of C(K ) with the space M(K ) of all signed Radon measures
on K . By a positive Radon measure on K we mean a finite complete inner regular
measure defined at least on all Borel subsets of K . Let M1(K ) denote the set of all
probability Radon measures on K , M+(K ) the set of all positive Radon measures
on K , and εx the Dirac measure at x ∈ K .

By a function space H on K we mean a subspace H of C(K ) containing constants
and separating points of K . Assuming H is a function space on K we assign to
each x ∈ K the set

Mx(H)= {µ ∈M1(K ) : µ(h)= h(x), h ∈H}

of all H-representing measures. Clearly, εx ∈Mx(H) for each x ∈ K . We call

ChH K = {x ∈ K :Mx(H)= {εx}}

the Choquet boundary of H. If h ∈H attains its strict minimum at some x ∈ K , we
call h an H-exposing function and x an H-exposed point. It is easy to see that any
H-exposed point belongs to the Choquet boundary of H.

We define the space Ac(H) of all continuous H-affine functions to be the family
of all continuous functions f on K satisfying

f (x)=
∫

K
f dµ for each x ∈ K and µ ∈Mx(H).

Ac(H) is a closed function space containing H and satisfying Mx(H)=Mx(Ac(H))
for every x ∈ K . Thus ChH K = ChAc(H) K . We define the state space of H as

S(H)= {s∗ ∈H∗ : s(1)= ‖s‖ = 1}
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endowed with the weak* topology. The state space S(H) is a compact convex set
and K is homeomorphically embedded into S(H) via φ : K → S(H), where

φ(x) : h→ h(x), h ∈H, x ∈ K .

Let BH∗ stand for the unit ball of H∗. Following the notation in [Lacey 1973,
p. 143] mentioned in the introduction,

∂HK = {x ∈ K : φ(x) ∈ ext BH∗}.

The next assertion shows that our definition of the Choquet boundary coincides
with Lacey’s definition of ∂HK .

Theorem 2.1. If H is a function space on a compact space K , then ChH K = ∂HK .

Proof. By [LMNS 2010, Proposition 4.26(d)], φ(ChH K ) = ext S(H). Since
S(H) is a face of BH∗ (see [LMNS 2010, Section 2.3.A]), we have ext S(H) =
ext BH∗ ∩ S(H). Thus, given any x ∈ K , we have φ(x) ∈ ext S(H) if and only if
φ(x) ∈ ext BH∗ . �

The Choquet ordering on M+(K ) is given as follows: µ≺ ν if µ(k)≤ ν(k) for
each function k of the form k =max{h1, . . . , hn}, where n ∈N and h1, . . . , hn ∈H
(see [LMNS 2010, Definition 3.19 and Proposition 3.56]). A measure µ in M+(K )
is called H-maximal if it is ≺-maximal. By [LMNS 2010, Theorem 3.65], there
exists an H-maximal measure µ ∈Mx(H) for every x ∈ K . Furthermore, if K
is metrizable, the set ChH K is Gδ (see [LMNS 2010, Theorem 3.42 and Propo-
sition 3.43]) and H-maximal measures are precisely those measures carried by
ChH K (see [LMNS 2010, Corollary 3.62]).

If for each x ∈ K there exists only one H-maximal measure in Mx(H), the
function space H is called simplicial (see [LMNS 2010, Chapter 6]). A compact
convex set X is called a simplex if the function space Ac(X) is simplicial. The
relation between simplicial function spaces and Lindenstrauss spaces is given by
the following result.

Theorem 2.2. Let H be a function space on a compact space K . Then H is
simplicial if and only if the Banach space Ac(H) is a Lindenstrauss space.

Proof. Let Ac(H) be a Lindenstrauss space. Since Ac
(
S(Ac(H))

)
is isometric to

the space Ac(H) (see [LMNS 2010, Proposition 4.26]), it is a Lindenstrauss space
as well. By [Fonf et al. 2001, Proposition 3.23], S(Ac(H)) is a simplex. Thus it
follows from [LMNS 2010, Theorem 6.54] that H is simplicial.

Conversely, if H is simplicial, S(Ac(H)) is a simplex by [LMNS 2010, The-
orem 6.54]. Using [Fonf et al. 2001, Proposition 3.23] we conclude that Ac(H),
being isometric to Ac

(
S(Ac(H))

)
, is a Lindenstrauss space. �
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The next result asserts two important properties of closed function spaces that
are Lindenstrauss spaces. As mentioned above, it can be considered a motivation
for the question this paper aims to answer.

Theorem 2.3. Let H be a closed function space on a compact space K such that
H is a Lindenstrauss space. Then H = Ac(H) and H is maximal with respect to
ChH K .

Proof. To prove the first assertion notice that Ac(S(H)), being isometric to H (see
[LMNS 2010, Proposition 4.26]), is a Lindenstrauss space. By [Fonf et al. 2001,
Proposition 3.23], S(H) is a simplex. This implies that Ac(S(H)) is simplicial
and thus, by [LMNS 2010, Theorem 6.16(vi)], Ac(S(H)) has the so-called weak
Riesz interpolation property. This, however, implies that H has the weak Riesz
interpolation property according to [LMNS 2010, Proposition 4.26]. To finish the
proof it is enough to consult [LMNS 2010, Exercise 6.78].

To prove the second assertion, let G ⊃ H be a closed function space with
ChH K = ChG K . Since G ⊂ Ac(G) and ChG K = ChAc(G) K , we can assume
without loss of generality that Ac(G)= G. Using [LMNS 2010, Theorem 10.60]
we infer that G =Ac(H). Since H=Ac(H), we get G =H, finishing the proof. �

3. Proof of Theorem 1.2

We consider a compact subset of R2 defined as follows. Let {s, s1, s2, t1, t2
} be

distinct points in R2. Let (si
n) and (t i

n), i = 0, 1, 2, be sequences of points in R2

such that

• s0
n → s, t0

n → s,

• si
n→ si , t i

n→ t i , i = 1, 2,

• all the elements of these sequences are pairwise distinct and not contained in
{s, s1, s2, t1, t2

}.

Let B(x, r) denote the closed ball in R2 with center x ∈R2 and diameter r > 0. Let
further rn > 0, n ∈ N, be numbers such that

• rn→ 0,

• the family

K =
{
{s}, {s1

}, {s2
}, {t1
}, {t2
}
}
∪ {B(s0

n , rn) : n ∈ N} ∪ {B(t0
n , rn) : n ∈ N}

is disjoint.
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We define the compact space K as K =
⋃

K. Furthermore, we set H to be

H=
{
h ∈ C(K ) : h(s)= 1

2

(
h(s1)+ h(s2)

)
=

1
2

(
h(t1)+ h(t2)

)
,

h(s0
n)=

1
2

(
h(s1

n)+ h(s2
n)
)
, h(t0

n )=
1
2

(
h(t1

n )+ h(t2
n )
)
, n ∈ N

}
.

Lemma 3.1. The space H is a well defined function space with H = Ac(H). Let
L = {s} ∪ {s0

n : n ∈ N} ∪ {t0
n : n ∈ N}. Then ChH K = K \ L. In particular, ChH K

is dense in K .

Proof. Obviously, H contains constant functions. The fact that H=Ac(H) follows
immediately from the definition of H. To verify that H separates points of K it is
enough to consider elementary constructions of functions from H. Given n ∈ N

and z ∈ B(s0
n , rn) \ {s0

n}, we consider a continuous function g : B(s0
n , rn)→ [0, 1]

attaining 0 precisely at z and 1 at s0
n . Then the function

hz(x)=
{

g(x) if x ∈ B(s0
n , rn),

1 otherwise

separates z from the remaining points of K . It also H-exposes z, and thus z∈ChH K .
We can further construct functions hsn and hs in H as follows:

hsn (x)=


0 if x = s1

n ,

2 if x ∈ B(s0
n , rn),

4 if x = s2
n ,

1 otherwise,

hs(x)=



0 if x = s1,

2 if x = s2,
1

2n if x = s1
n ,

2− 1
2n if x = s2

n ,

1 otherwise.

The function hsn then separates the points s1
n , s2

n from any point in K and it separates
s0

n from any point in K \ B(s0
n , rn). Its construction also shows that the points s1

n , s2
n

are H-exposed and thus lie in ChH K . Similarly, the function hs separates points
s1, s, s2 from each other and it separates s from every point in {si

n : n ∈N, i ∈ {1, 2}}.
Furthermore, the construction of hs shows that the points s1, s2 are H-exposed and
thus belong to ChH K .

Analogously we can construct functions htn , h̃s and h y for any n ∈ N and y ∈
B(t0

n , rn) \ {t0
n } to show that H indeed separates points of K and that all points in

{t1, t2} ∪ {t i
n : n ∈ N, i ∈ {1, 2}} ∪

⋃
n∈N

(B(t0
n , rn) \ {t0

n })

lie in ChH K .
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Overall, we have

{s1, s2, t1, t2
} ∪ {si

n : n ∈ N, i ∈ {1, 2}} ∪ {t i
n : n ∈ N, i ∈ {1, 2}} ⊂ ChH K

and ⋃
n∈N

(B(s0
n , rn) \ {s0

n})∪
⋃
n∈N

(B(t0
n , rn) \ {t0

n })⊂ ChH K .

Clearly, any point in L has a nontrivial H-representing measure. This together
with the inclusions above yields ChH K = K \ L . �

Lemma 3.2. Let n ∈ N. Then

Ms0
n
(H)= conv

{
εs0

n
, 1

2(εs1
n
+ εs2

n
)
}

and
Mt0

n
(H)= conv

{
εt0

n
, 1

2(εt1
n
+ εt2

n
)
}
.

Proof. Let n ∈ N and µ ∈Ms0
n
(H) be fixed. Pick a continuous function

g : B(s0
n , rn)→ [0, 1]

such that g(s0
n)= 0 and g(x) > 0 otherwise. Using the function

h(x)=


0 if x ∈ {s1

n , s2
n},

g(x) if x ∈ B(s0
n , rn),

1 otherwise,

we infer that the support of µ is contained in {s0
n , s1

n , s2
n}.

Further, let a = µ({s0
n}). Assume first that a = 0, i.e., µ= bεs1

n
+ (1− b)εs2

n
for

some b ∈ [0, 1]. Then the function

h(x)=


0 if x = s1

n ,

1 if x = s0
n ,

2 if x = s2
n ,

1 otherwise

shows that
1= h(s0

n)= µ(h)= (1− b)h(s2
n)= (1− b)2.

In other words, b = 1
2 and µ= 1

2(εs1
n
+ εs2

n
).

If a ∈ (0, 1), then the measure ν = µ− aεs0
n

satisfies

h(s0
n)= µ(h)= ν(h)+ ah(s0

n), h ∈H.

Hence 1
1−a

ν is in Ms0
n
(H) and is carried by {s1

n , s2
n}. By the first part of the proof,

1
1−a

ν = 1
2(εs1

n
+ εs2

n
).
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Thus

µ= ν+ aεs0
n
= (1− a) 1

1−a
ν+ aεs0

n
= (1− a)1

2(εs1
n
+ εs2

n
)+ aεs0

n

is in conv
{
εs0

n
, 1

2(εs1
n
+ εs2

n
)
}
. If a = 1, obviously

µ= εs0
n
∈ conv

{
εs0

n
, 1

2(εs1
n
+ εs2

n
)
}
.

Thus
µ ∈ conv

{
εs0

n
, 1

2(εs1
n
+ εs2

n
)
}

holds in all cases.
The second part of the assertion can be proved analogously. �

Lemma 3.3. The space H is not simplicial.

Proof. The measures 1
2(εs1 + εs2), 1

2(εt1 + εt2) are different, they H-represent s
and, by Lemma 3.1, both are carried by ChH K . Hence there exist two H-maximal
measures representing s, which implies that H is not simplicial. �

Lemma 3.4. The space H is maximal with respect to ChH K . That is, G =H for
any closed function space H⊂ G such that ChG K = ChH K .

Proof. Fix an index m ∈ N. Let τ ∈Ms0
m
(G) be a measure carried by ChG K . We

aim to show that

(3-1) τ = 1
2(εs1

m
+ εs2

m
).

Since Ms0
m
(G)⊂Ms0

m
(H), we obtain by virtue of Lemma 3.2 that

τ ∈ conv
{
εs0

m
, 1

2(εs1
m
+ εs2

m
)
}
.

This and the fact that τ is carried by ChG K = ChH K ⊂ K \ {s0
m} imply (3-1).

Pick µn ∈Ms0
n
(G), n ∈ N, such that the measures µn are carried by ChG K for

all n ∈ N. The sequence (s0
n) converges to s, while the sequence (µn) converges to

µ= 1
2(εs1 + εs2). Thus µ ∈Ms(G). Analogously we infer that any measure νn in

Mt0
n
(G) carried by ChG K satisfies νn =

1
2(εt1

n
+ εt2

n
), and thus ν = 1

2(εt1 + εt2) is
in Ms(G).

We want to show that G ⊂H. To this end, let g ∈ G be given. We have to verify
the conditions defining the space H. Using the arguments above we get

g(s0
n)= µn(g)= 1

2(g(s
1
n)+ g(s2

n)) and g(s)= µ(g)= 1
2(g(s

1)+ g(s2)),

while simultaneously

g(t0
n )= νn(g)= 1

2(g(t
1
n )+ g(t2

n )) and g(s)= ν(g)= 1
2(g(t

1)+ g(t2)).

Hence g ∈H by definition. This concludes the proof. �
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Thus we have proved Theorem 1.2. Indeed, considering the compact space K
and the closed function space H ⊂ C(K ) defined above, we have by Lemma 3.1
that ChH K is dense in K . Furthermore, H is maximal with respect to ChH K
by Lemma 3.4. Since H is not simplicial according to Lemma 3.3, Theorem 2.2
asserts that Ac(H) is not a Lindenstrauss space. Since H=Ac(H) by Lemma 3.1,
it follows that H is not a Lindenstrauss space.
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