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SYSTEMS OF PARAMETERS AND HOLONOMICITY
OF A-HYPERGEOMETRIC SYSTEMS

CHRISTINE BERKESCH ZAMAERE, STEPHEN GRIFFETH AND EZRA MILLER

We give an elementary proof of holonomicity for A-hypergeometric systems,
with no requirements on the behavior of their singularities, a result orig-
inally due to Adolphson (1994) after the regular singular case by Gelfand
and Gelfand (1986). Our method yields a direct de novo proof that A-hyper-
geometric systems form holonomic families over their parameter spaces, as
shown by Matusevich, Miller, and Walther (2005).

Dedication. Every now and then Andrei Zelevinsky had occasion to write a short
and in many ways elementary paper with deep consequences. Particularly close
to our hearts are his paper on graded nilpotent classes [Zelevinsky 1985] and his
paper with Gelfand and Graev on hypergeometric systems [Gelfand et al. 1987];
both of these had enormous impact on our mathematical careers. It is in that spirit
that we dedicate to Andrei this elementary perspective on topics that he influenced
substantially for many years.

Introduction

An A-hypergeometric system is the D-module counterpart of a toric ideal. Solutions
to A-hypergeometric systems are functions, with a fixed infinitesimal homogeneity,
on an affine toric variety. The solution space of an A-hypergeometric system
behaves well in part because the system is holonomic, which in particular implies
that the vector space of germs of analytic solutions at any nonsingular point has
finite dimension.

This note provides an elementary proof of holonomicity for arbitrary A-hyper-
geometric systems, relying only on the statement that a module over the Weyl
algebra in n variables is holonomic precisely when its characteristic variety has
dimension at most n (see [Gabber 1981] or [Borel et al. 1987, Theorem 1.12]),
along with standard facts about transversality of subvarieties and about Krull
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dimension. In particular, our proof requires no assumption about the singularities
of the A-hypergeometric system; equivalently, the associated toric ideal need not
be standard graded. Holonomicity was proved in the regular singular case by
Gelfand and Gelfand [1986], and later by Adolphson [1994, §3] regardless of the
behavior of the singularities of the system. Adolphson’s proof relies on careful
algebraic analysis of the coordinate rings of a collection of varieties whose union
is the characteristic variety of the system. Another proof of the holonomicity
of an A-hypergeometric system, by Schulze and Walther [2008], yields a more
general result: for a weight vector L from a large family of possibilities, the L-
characteristic variety for the L-filtration is a union of conormal varieties and hence
has dimension n. Holonomicity follows when L = (0, . . . , 0, 1, . . . , 1) induces
the order filtration on the Weyl algebra. The L-filtration method uses an explicit
combinatorial interpretation of initial ideals of toric ideals, which requires a series
of technical lemmas.

Holonomicity of A-hypergeometric systems forms part of the statement and
proof, by Matusevich, Miller, and Walther [2005], that A-hypergeometric systems
determine holonomic families over their parameter spaces. The new proof of that
statement here serves as a model suitable for generalization to hypergeometric
systems for reductive groups, in the sense of Kapranov [1998].

The main step (Theorem 1.2) in our proof is an easy geometric argument showing
that the Euler operators corresponding to the rows of an integer matrix A form part
of a system of parameters on the product kn

× XA, where k is any algebraically
closed field and XA is the toric variety over k determined by A. This observation
leads quickly in Section 2 to the conclusion that the characteristic variety of the
associated A-hypergeometric system has dimension at most n, and hence that the
system is holonomic. Since the algebraic part of the proof holds when the entries of
the parameter β are considered as independent variables that commute with all other
variables, the desired stronger consequence is immediate: the A-hypergeometric
system forms a holonomic family over its parameter space (Theorem 2.1).

1. Systems of parameters via transversality

Fix a field k. Let x = x1, . . . , xn and ξ = ξ1, . . . , ξn be sets of coordinates on kn and
let xξ denote the column vector with entries x1ξ1, . . . , xnξn . Given a rectangular
matrix L with n columns, write Lxξ for the vector of bilinear forms given by
multiplying L times xξ .

Lemma 1.1. Let k2n
= kn

x × kn
ξ have coordinates (x, ξ) and let X ⊆ kn

ξ be a
subvariety. If L is an `× n matrix with entries in k, then the variety Var(Lxξ)
of Lxξ in k2n is transverse to kn

× X at any smooth point of kn
× X whose

ξ -coordinates are all nonzero.
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Proof. It suffices to prove the statement after passing to the algebraic closure of k,
so assume k is algebraically closed. Let (p, q) be a smooth point of kn

× X that
lies in Var(Lxξ) and has all coordinates of q nonzero. The tangent space to kn

× X
at (p, q) contains kn

×{0}. The tangent space T(p,q) to Var(Lxξ) is the kernel of the
`×2n matrix [L(q) L(p)], where L(p) (respectively, L(q)) is the `×n matrix that
results after multiplying each column of L by the corresponding coordinate of p
(respectively, q). Since the q coordinates are all nonzero, T(p,q) projects surjectively
onto the last n coordinates; indeed, if η ∈ kn

ξ is given, then taking yi =−piηi/qi

yields y ∈ kn
x with L(q)y+ L(p)η = 0. Thus the tangent spaces at (p, q) sum to

the ambient space, so the intersection is transverse. �

The next result applies the lemma to an affine toric variety X . A fixed d × n
integer matrix A = [a1 a2 · · · an−1 an] defines an action of the algebraic torus
T = (k∗)d on kn

ξ by
t · ξ = (ta1ξ1, . . . , tanξn).

The orbit Orb(A) of the point 1= (1, . . . , 1) ∈ kn is the image of an algebraic map
T → kn that sends t 7→ t · 1. The closure of Orb(A) in kn is the affine toric variety
XA = Var(IA) cut out by the toric ideal

IA = 〈ξ
u
− ξ v | Au = Av〉 ⊆ k[ξ ]

of A in the polynomial ring k[ξ ] = k[ξ1, . . . , ξn]. The T -action induces an A-
grading on k[ξ ] via deg(ξi )= ai , and the semigroup ring SA = k[ξ ]/IA is A-graded
[Miller and Sturmfels 2005, Chapters 7–8].

For any face τ of the real cone R≥0 A generated by the columns of A, write
τ � A and let 1τ ∈ {0, 1}n ⊂ kn be the vector with nonzero entry 1τi = 1 precisely
when A has a nonzero column ai ∈ τ . The variety XA decomposes as a finite
disjoint union XA =

⊔
τ�A Orb(τ ) of orbits, where Orb(τ )= T ·1τ . Each orbit has

dimension dim Orb(τ )= rank(Aτ ), where Aτ is the submatrix of A consisting of
those columns lying in τ , and dim XA = rank(A).

Theorem 1.2. The ring k[x, ξ ]/(IA+〈Axξ〉) has Krull dimension n. In particular,
if A has rank d then the forms Axξ are part of a system of parameters for k[x]⊗k SA.

Proof. Let kτ ⊆ kn be the subspace consisting of vectors with 0 in coordinate i if
ai /∈ τ , and let |τ | be its dimension. Since k[x, ξ ]/IA = k[x]⊗k SA has dimension
n + rank(A) and the number of k-linearly independent generators of 〈Axξ〉 is
rank(A), the Krull dimension in question is at least n. Hence it suffices to prove
that (kn

×Orb(τ ))∩Var(Axξ)⊆ kn
× kτ has dimension at most n. Let xτ and ξτ

denote the subsets corresponding to τ in the variable sets x and ξ , respectively. The
projection of the intersection onto the subspace kτ × kτ has image contained in

(kτ ×Orb(τ ))∩Var(Aτ xτ ξτ )⊆ kτ × kτ .
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It therefore suffices to show that the dimension of this latter intersection is at most |τ |.
By Lemma 1.1, the intersection is transverse in kτ × kτ . But the dimension of
Orb(τ ) is the codimension of Var(Aτ xτ ξτ ) in kτ × kτ , which completes the proof.

�

2. Hypergeometric holonomicity

In this section, the matrix A is a d × n integer matrix of full rank d . Let

D = C〈x, ∂ | [∂i , x j ] = δi j and [xi , x j ] = 0= [∂i , ∂ j ]〉

denote the Weyl algebra over the complex numbers C, where x = x1, . . . , xn and
∂i corresponds to ∂/∂xi . This is the ring of C-linear differential operators on C[x].

For β ∈Cd , the A-hypergeometric system with parameter β is the left D-module

MA(β)= D/D · (I ∂A, {Ei −βi }
d
i=1),

where I ∂A = 〈∂
u
− ∂v | Au = Av〉 ⊆ C[∂] is the toric ideal associated to A and

Ei −βi =

n∑
j=1

ai j x j∂ j −βi

are Euler operators associated to A.
The order filtration F filters D by order of differential operators. The symbol

of an operator P is its image in(P) ∈ grF D. Writing ξi = in(∂i ), this means grF D
is the commutative polynomial ring C[x, ξ ]. The characteristic variety of a left
D-module M is the variety in A2n of the associated graded ideal grF ann(M) of the
annihilator of M . A nonzero D-module is holonomic if its characteristic variety
has dimension n; this is equivalent to requiring that the dimension be at most n
(see [Gabber 1981] or [Borel et al. 1987, Theorem 1.12]). The rank of a holonomic
D-module M is the (always finite) dimension of C(x)⊗C[x] M as a vector space
over C(x); this number equals the dimension of the vector space of germs of analytic
solutions of M at any nonsingular point in Cn [Saito et al. 2000, Theorem 1.4.9].

Viewing the A-hypergeometric system MA(β) as having a varying parameter
β ∈Cd , the rank of MA(β) is upper semicontinuous as a function of β [Matusevich
et al. 2005, Theorem 2.6]. This follows by viewing MA(β) as a holonomic family
[ibid., Definition 2.1] parametrized by β ∈ Cd . By definition, this means not
only that MA(β) is holonomic for each β, but also that it satisfies a coherence
condition over Cd : after replacing β with variables b = b1, . . . , bd , the module
C(x)⊗C[x] MA(b) is finitely generated over C(x)[b]. (The definition of holonomic
family cited above allows sheaves of D-modules over arbitrary complex base
schemes, but that generality is not needed here.)
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The derivation of the holonomic family property for MA(b) from the holonomicity
of the A-hypergeometric system is more or less the same as [ibid., Theorem 7.5],
which was phrased in the generality of Euler–Koszul homology of toric modules.
The brief deduction here isolates the steps necessary for A-hypergeometric systems;
its brevity stems from the special status of affine semigroup rings among all toric
modules [ibid., Definition 4.5]. Note further that this proof does not require technical
combinatorial arguments using standard pairs, as in [Saito et al. 2000]; indeed,
in(IA) need not be a monomial ideal.

Theorem 2.1. The module MA(b) forms a holonomic family over Cd with coordi-
nates b. In more detail, as a D[b]-module the parametric A-hypergeometric system
MA(b) satisfies:

(1) the fiber MA(β)= MA(b)⊗C[b] C[b]/〈b−β〉 is holonomic for all β; and

(2) the module C(x)⊗C[x] MA(b) is finitely generated over C(x)[b].

Proof. Since R = C[x, ξ ]/〈in(IA), Axξ〉 surjects onto grF MA(β), it is enough to
show that the ring R has dimension n. If MA(β) is standard Z-graded (equivalently,
the rowspan of A over the rational numbers contains the row [1 1 · · · 1 1] of
length n), then in(IA)= IA ⊆ C[ξ ], and the result follows from Theorem 1.2.

When MA(β) is not standard Z-graded, let Â be the (d + 1)× (n + 1) matrix
obtained by adding a row of 1’s across the top of A and then adding as the leftmost
column (1, 0, . . . , 0). If ξ0 denotes a new variable corresponding to the leftmost
column of Â, and ξ̂ = {ξ0} ∪ ξ , then C[ξ ]/ in(IA)∼= C[ξ̂ ]/〈I Â, ξ0〉. In particular,

C[x̂, ξ ]
〈in(IA), Axξ〉

∼=
C[x̂, ξ̂ ]

〈I Â, ξ0, Âx̂ ξ̂〉
,

where x̂ = {x0} ∪ x . Since 〈I Â, ξ0〉 is Â-graded and Â has a row [1 1 · · · 1 1], we
have reduced to the case where MA(β) is Z-graded, completing part (1).

With R as in part (1), the ring R[b] surjects onto grF MA(b), so it suffices for
part (2) to show that R[b] becomes finitely generated over C(x)[b] upon inverting
all nonzero polynomials in x . Since the ideal 〈in(IA), Axξ〉 has no generators
involving b variables, it suffices to show that R(x) itself has finite dimension
over C(x). The desired result follows from the statement proved for part (1): any
scheme of dimension n has finite degree over Cn

x . �
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