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THE RAMIFICATION GROUP FILTRATIONS OF CERTAIN
FUNCTION FIELD EXTENSIONS

JEFFREY A. CASTAÑEDA AND QINGQUAN WU

We investigate the ramification group filtration of a Galois extension of func-
tion fields, if the Galois group satisfies a certain intersection property. For
finite groups, this property is implied by having only elementary abelian
Sylow p-subgroups. Note that such groups could be nonabelian. We show
how the problem can be reduced to the totally wild ramified case on a p-
extension. Our methodology is based on an intimate relationship between
the ramification groups of the field extension and those of all degree- p subex-
tensions. Not only do we confirm that the Hasse–Arf property holds in this
setting, but we also prove that the Hasse–Arf divisibility result is the best
possible by explicit calculations of the quotients, which are expressed in
terms of the different exponents of all those degree- p subextensions.

1. Introduction

When investigating algebraic number fields and function fields, Hilbert ramification
theory is a convenient tool, especially in the study of wild ramifications. Fix a
function field K over a perfect constant field k with a place P , and let L be a Galois
extension of K with a place P lying over P . We investigate how the ramification
group filtration of P|P is related to the ramification group filtration of Pm|P , where
Pm is a place of some intermediate field K ⊆ M ⊆ L , so that P lies over Pm and
[M : K ] = p for some prime number p.

We first analyze how and why we can simplify the problem to the setting when
P|P is totally wildly ramified, i.e., [L : K ] = pn , where p > 0 is the characteristic
of k, n is some positive integer, and the ramification index e(P|P)= pn .

Next we study how the ramification group filtration of P|P is closely related to
the ramification group filtration of Pm|P for all those intermediate fields M such
that [M : K ] = p, for various degrees p. This relation is close if an intersection
property (2-5) is assumed about Gal(L/K ), which is satisfied by many abelian and
nonabelian groups.
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To prove such a relationship, we first prove a preliminary result, which states that
the number of jumps in the ramification group filtration is equal to the number of
pairwise distinct different exponents of the corresponding place extensions over all
possible degree-p intermediate extensions M/K . This equality is significant since
the degree-p intermediate extensions are considerably easier to investigate than the
whole extension L/K . Nonetheless, we will show that these different exponents
are closely related to those quotients given in the Hasse–Arf property, which we
will show to be true.

We also study the relationship by applying the equality given by the transitivity
of differents, where the different exponents are computed via Hilbert’s different
formulae applied to various field extension settings. These equalities lead to linear
equations on the indices where the jumps of the ramification group filtration on
L/K occur. With the intersection property assumption, we show that the number
of such linear equations is equal to the number of such indices as the variables of
these equations. Hence we can expect a unique solution. In fact, we can solve these
linear equations explicitly to give closed-form formulae for the indices since the
coefficient matrix of the linear equations is triangular.

The academic literature on ramification group filtration is extensive. A good
introduction is [Serre 1979], where Herbrand’s upper numbering is introduced. See
[Fesenko and Vostokov 2002] for an introduction without the use of cohomologies.
The ramification groups are studied in [Sen and Tate 1963] using class field theory.
For an approach using Herbrand functions and without using class field theory, see
[Wyman 1969]. Maus [1968] showed certain properties of a group filtration that are
sufficient to guarantee it to be the ramification group filtration of a certain extension
of complete discrete valuation fields. In [Maus 1972], the asymptotic behavior of
quotients given by the Hasse–Arf property is studied. The paper [Maus 1971] is a
collection of many results from Maus’s Ph.D. thesis, without proofs.

The ramification group filtration is known to satisfy the Hasse–Arf property
[Hasse 1930; 1934; Arf 1939] if the Galois group is abelian. However, the property
may fail if the Galois group is not abelian. One such example is the Galois closure
of a cyclotomic field over the rationals [Viviani 2004]. In [Doud 2003], it is
shown that the ramification group filtration of a wildly ramified prime p is uniquely
determined by the p-adic valuation of the discriminant of the field extension L/K ,
when both the field extension degree and the residue characteristic of p are equal to
a prime number. When the Galois group is elementary abelian, the Galois module
structure of certain ideals is related to the ramification group filtration, see [Byott
and Elder 2002; 2005; 2009]. Such a relation is investigated when the Galois group
is quaternion [Elder and Hooper 2007], and hence nonabelian.

For the function field extension setting, the wildly ramified case was studied
in Artin–Schreier–Witt extensions, see [Thomas 2005]. The elementary abelian
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extension of Galois group Zp×Zp is investigated in [Anbar et al. 2009] and [Wu
and Scheidler 2010]. It should be mentioned that the idea of utilizing transitivity of
differents and Hilbert’s different formula to investigate the ramification groups is
used in [Garcia and Stichtenoth 2008], where the Hasse–Arf property for elementary
abelian extensions of function fields is proved. In Roberts’ review [2009] of the
latter paper, it is shown that the proof can be very short if “some upper numbering
system and its basic formalism” is applied. We take an approach similar to Garcia
and Stichtenoth’s, but we further explore the arithmetic and linear algebra provided
by the application of transitivity of differents and Hilbert’s different formula. Our
objective in this paper is to generalize these results to function field extensions with
Galois groups satisfying a certain intersection property which is true for elementary
abelian groups.

2. Notation

A good introduction for the notation can be found in [Rosen 2002] or [Stichtenoth
2009]. Throughout this paper, we use the following notation:

• k is a perfect field of characteristic p > 0;

• K is a function field with constant field k;

• P is a place of K ;

• vP : K → Z∪ {∞} is the (surjective) discrete valuation corresponding to P;

• OP = {α ∈ K | vP(α)≥ 0} is the valuation ring corresponding to P .

For any extension L of K and any place P of L lying above P , we write P|P .
Let e(P|P) and d(P|P) be the ramification index and different exponent of P|P ,
respectively. If L/K is a Galois extension, the ramification groups of P|P are given
by

(2-1) Gi = Gi (P|P)= {σ ∈ Gal(L/K ) | vP(tσ − t)≥ i + 1 for all t ∈OP}

for i ≥ 0. The connection between these groups and the different exponent is
shown in Hilbert’s different formula (see for example Theorem 3.8.7, p. 136, of
[Stichtenoth 2009]):

(2-2) d(P|P)=
∞∑

i=0

(#Gi (P|P)− 1).

We also recall the transitivity of the ramification index and the different exponent.
If K ⊆ F ⊆ L are function fields, P a place of L , PF =P∩ F , and P =PF ∩ K ,
then

(2-3) e(P|P)= e(P|PF)e(PF|P),
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and we have transitivity of differents:

(2-4) d(P|P)= e(P|PF)d(PF|P)+ d(P|PF).

Henceforth, we assume that all nontrivial Sylow p-subgroups Hp of the Galois
group Gal(L/K ) satisfy the following intersection property.

Assume that #Hp = pn > 1. Then, for all proper subgroups F ( Hp, the
intersection of all order pn−1 subgroups of Hp containing F is simply F . That is
to say,

(2-5)
⋂

H⊇F
#H=pn−1

H = F.

It is easy to verify that all elementary abelian p-groups of order pn satisfy this
intersection property.

3. Reduction to the totally wildly ramified case

Let L be a Galois extension field of K , P a place of L , and P =P∩ K . Our goal
in this section is to reduce the ramification group Gi (P|P) calculation to the case
that P/P is totally wildly ramified and the Galois group Gal (L/K ) is a p-group
for a certain prime number p.

Lemma 3.1. Let L/K be a Galois extension of a function field, P a place of L,
P = P∩ K , and Pm = P∩ M , where M is the inertia field of P in L/K . Then,
Gi (P|P)= Gi (P|Pm) for every i ≥ 0.

Proof. Applying (2-4) to the field extension tower L/M/K , we have

(3-1) d(P|P)= e(P|Pm)d(Pm|P)+ d(P|Pm).

However, d(Pm|P) = 0 since P is unramified in M/K , so d(P|P) = d(P|Pm).
Now (2-2) yields

(3-2) d(P|P)=
∞∑

i=0

(#Gi (P|P)− 1)

and

(3-3) d(P|Pm)=

∞∑
i=0

(#Gi (P|Pm)− 1).

By definition (2-1), it is easy to check that Gi (P|Pm) is the intersection of Gi (P|P)
and the Galois group of L/M . In particular, we have #Gi (P|P)≥ #Gi (P|Pm) for
all i . Note that d(P|P)= d(P|Pm), which implies that #Gi (P|P)= #Gi (P|Pm)

for all i ≥ 0 by (3-2) and (3-3). Thus, Gi (P|P)= Gi (P|Pm) for all i ≥ 0. �
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Next, we want to reduce to the totally wildly ramified case, i.e., [L : K ] =
e(P|P)= pm , where p is the characteristic of K .

Proposition 3.2. Let p > 0 be the characteristic of the Galois extension of function
field L/K , P a place of L , P = P ∩ K , N the inertia field of P in L/K , Pn =

P∩ N , M the intermediate field of L/N corresponding to a Sylow p-subgroup of
Gal(L/N ) under Galois correspondence, and Pm = P∩ M. Then, Pm is totally
wildly ramified in the p-extension L/M , and Gi (P|P)=Gi (P|Pm) for every i ≥ 1.

Proof. By Lemma 3.1, we have Gi (P|P)=Gi (P|Pn) for every i ≥ 0. It suffices to
show that Gi (P|Pn)= Gi (P|Pm) for every i ≥ 1. Assume that [L : N ] = pmq and
gcd(p, q)= 1. We have d(Pm|Pn)= q−1 since Pm/Pn is totally tamely ramified,
and we also have e(P|Pm)= pm . By (3-1), we have

(3-4) d(P|Pn)= pm(q − 1)+ d(P|Pm).

Clearly #G0(P|Pn)= pmq and #G0(P|Pm)= pm . Hence,

d(P|Pn)= pmq − 1+
∞∑

i=1

(#Gi (P|Pn)− 1)

and

d(P|Pm)= pm
− 1+

∞∑
i=1

(#Gi (P|Pm)− 1)

by (3-2) and (3-3). Substituting these two equalities into (3-4), we have
∞∑

i=1

(#Gi (P|Pn)− 1)=
∞∑

i=1

(#Gi (P|Pm)− 1),

which implies Gi (P|Pn)= Gi (P|Pm) for i ≥ 1 since Gi (P|Pn)≥ Gi (P|Pm) for
all i . �

4. Main results

Henceforth, let L/K be a Galois extension whose Galois group is a p-group, where
p is the characteristic of K . Set t to be the number of distinct d(Pm|P), where M
runs through all degree-p intermediate fields M of L/K , and Pm = P∩M . We
assume that the ramification groups of P|P are

(4-1) G0 = · · · = Gm0 ) Gm0+1 = · · · = Gm1

) Gm1+1 = · · · = Gml−1 ) Gml−1+1 = {Id}.

We let #Gmi = pni for 0 ≤ i ≤ l − 1. Then pn0 = pn
= [L : K ]. In order to

investigate Gi , we need to know l, ni , and mi .
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First, we claim that the number of jumps in the ramification groups Gi is the
number of distinct different exponents d(Pm|P); this is, l = t . Note that a jump
means an index where a group in the ramification filtration contains the next one
properly. Before we prove the claim, we need a lemma.

Lemma 4.1. Let G be a p-group of order pn > 1, H < G a subgroup of order
pn−1, and H ′ < G a subgroup such that H + H ′. Then #(H ∩ H ′)= #H ′/p.

Proof. By Theorem 4.7, page 39 of [Hungerford 1974], we have #(H H ′) =
#H #H ′/#(H ∩ H ′). In particular, #(H H ′) is a power of p. Since H + H ′, we know
that pn−1< #(H H ′)≤ pn . Hence, #(H H ′)= pn . The result follows by substituting
#(H H ′)= pn and #H = pn−1 into the equality #(H H ′)= #H #H ′/#(H ∩ H ′). �

Furthermore, by (2-4) we know that d(P|P) = d(Pm|P)pn−1
+ d(P|Pm),

where t distinct d(Pm|P) values imply t distinct d(P|Pm). Let d(P|Pm) =∑
∞

i=0(#Gi (P|Pm)−1), where Gi (P|Pm)= Hm∩Gi (P|P) such that #Hm = pn−1.
Now, for every jump Gmi ) Gmi+1 for 0≤ i ≤ l − 1, we want to know if there

exists Hm < G such that #Hm = pn−1 and Hm ⊇ Gmi+1, but Hm + Gmi . In other
words, we want to know if there exists an order-pn−1 subgroup Hm which faithfully
reveals a jump wherever it occurs in the ramification group filtrations. This is not
a trivial question since a jump can be hidden if no such Hm can be found. The
question is clarified by the following lemma.

Lemma 4.2. Let G be a p-group satisfying property (2-5). Then for any two
subgroups F1 ) F2 of G, there exists a subgroup H of G such that #H = pn−1 and
H ⊇ F2, but H + F1.

Proof. By way of contradiction, assume that the result is false. Then we can find
subgroups F1 ) F2, and for all subgroups H of order pn−1, H ⊇ F2 implies H ⊇ F1.
Thus, the set {H < G | #H = pn−1, H ⊇ F1} = {H < G | #H = pn−1, H ⊇ F2}.
Hence,

F1 =
⋂

H⊇F1
#H=pn−1

H =
⋂

H⊇F2
#H=pn−1

H = F2,

a contradiction by (2-5). �

Now we are ready to prove the result l = t .

Proposition 4.3. Let L/K be a Galois extension of function fields whose Galois
group is a p-group satisfying (2-5), where p is the characteristic of K . Let P |Pm |P
be a tower of places, P ⊆ K , Pm ⊆ M , P ⊆ L , where M is an intermediate field
of degree p over K . Then the number of jumps in the ramification group filtration
Gi (P|P) is the number of distinct different exponents d(Pm|P), where M runs
through all intermediate fields of L/K of degree p over K .
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Proof. Fix P and P , and let M run through all possible degree-p intermediate fields
of L/K . By (3-1), t is equal to the number of distinct values of d(P|Pm) since
d(P|P) and e(P|Pm)= pn−1 are independent of the choice of M .

For 0 ≤ i ≤ l − 1, the i-th jump occurs at index mi ; that is, Gmi ! Gmi+1. By
Lemma 4.2, there exists an order pn−1 subgroup Hi of G0, so that Hi ⊇Gmi+1, but
Hi +Gmi . By Lemma 4.1, we have #(Hi∩Gmi )=#Gmi /p. Similarly, #(Hi∩G j )=

#G j/p for all j ≤ mi since G j is decreasing. Hence, #(Hi ∩ G j ) = #G j/p for
0≤ j ≤ mi , and #(Hi ∩G j )= #G j for j > mi .

Let Mi be the intermediate field of L/K corresponding to Hi under Galois
correspondence, and set Pi =P∩Mi . Since G j (P|Pi)= Hi ∩G j (P|P)= Hi ∩G j

for all j , we have

(4-2) d(P|Pi )=

∞∑
j=0

(#G j (P|Pi )− 1)=
∞∑
j=0

(#(Hi ∩G j )− 1)

=

mi∑
j=0

(#G j

p
− 1

)
+

∞∑
j=mi+1

(#G j − 1).

The right-hand side of (4-2) is strictly decreasing with i . Hence, we find l pairwise
distinct values of d(P|Pm). Note that any order pn−1 subgroup H of G0 contains
Gml+1 = {Id} but not Gm0 = G0. Hence, for any such H , there exists an i such
that H ⊇ Gmi+1, but H + Gmi . In other words, H is one of the Hi by the previous
analysis of the choice of Hi . Thus, there are exactly l pairwise distinct values
of d(P|Pm) when M runs over all possible degree-p intermediate fields of L/K .
Hence, there are exactly l pairwise distinct values of d(Pm|P), i.e., l = t . �

By Proposition 3.7.8, p. 127 of [Stichtenoth 2009], d(Pm|P) is a multiple of
p− 1 for any M . Hence,

(4-3) di =
d(Pi |P)

p− 1
− 1

is an integer for all 0≤ i ≤ l − 1. By (4-2), d(P|Pi ) is strictly decreasing with i .
Hence, di is strictly increasing with i by (4-3). Now we are ready for the main
result.

Theorem 4.4. Let L/K be a Galois extension of a function fields whose Galois
group is a p-group satisfying (2-5), where p is the characteristic of K . Let P|P be
places, P ⊆ K , P ⊆ L , mi as in (4-1) for 0 ≤ i , and d j as in (4-3) for j ≤ l − 1.
Then

mi = d0+

i∑
j=1

pn−n j (d j − d j−1) for 0≤ i ≤ l − 1.
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Proof. By applying (3-2) to L/K , we have

(4-4) d(P|P)=
l−1∑
j=0

(pn j − 1)(m j −m j−1),

where m−1 =−1.
For 0≤ i ≤ l − 1 and #G j = pni for mi−1 < j ≤ mi , then (4-2) yields

(4-5) d(P|Pi )=

i∑
j=0

(pn j−1
− 1)(m j −m j−1)+

l−1∑
j=i+1

(pn j − 1)(m j −m j−1).

Now substituting (4-4), (4-5), e(P|Pm)= pn−1, and (4-3) into (3-1) for the case
Pm =Pi , we have

l−1∑
j=0

(pn j − 1)(m j −m j−1)

= pn−1(di+1)(p−1)+
i∑

j=0

(pn j−1
−1)(m j−m j−1)+

l−1∑
j=i+1

(pn j−1)(m j−m j−1).

Hence, we have

i∑
j=0

(pn j − 1)(m j −m j−1)= (pn
− pn−1)(di + 1)+

i∑
j=0

(pn j−1
− 1)(m j −m j−1),

which implies

(4-6)
i∑

j=0

(pn j − pn j−1)(m j −m j−1)= (pn
− pn−1)(di + 1).

When i = 0, (4-6) yields

(pn
− pn−1)(m0+ 1)= (pn0 − pn0−1)(m0+ 1)= (pn

− pn−1)(d0+ 1),

which implies m0 = d0. Thus, the formula in Theorem 4.4 is true when i = 0. Now
we induct on i . By (4-6), we have

(pni − pni−1)mi − (pni − pni−1)mi−1+

i−1∑
j=0

(pn j − pn j−1)(m j −m j−1)

= (pn
− pn−1)(di + 1).

It follows that

(pni− pni−1)mi−(pni− pni−1)mi−1+(pn
− pn−1)(di−1+1)= (pn

− pn−1)(di+1)
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by applying (4-6) to the case i − 1, which implies

(pni − pni−1)mi = (pn
− pn−1)(di − di−1)+ (pni − pni−1)mi−1.

By the induction hypothesis, it follows that

(pni − pni−1)mi

= (pn
− pn−1)(di − di−1)+ (pni − pni−1)

(
d0+

i−1∑
j=1

pn−n j (d j − d j−1)

)
.

Dividing both sides by pni − pni−1, we obtain

mi = d0+ pn−ni (di − di−1)+

i−1∑
j=1

pn−n j (d j − d j−1)= d0+

i∑
j=1

pn−n j (d j − d j−1).

Our result follows by induction. �

The formula in Theorem 4.4 can be reformulated to be easily compared to the
Hasse–Arf property.

Corollary 4.5. With notation as in Theorem 4.4, and setting m−1 =−1, we have
mi −mi−1 = pn−ni (di − di−1) for 0≤ i ≤ l − 1.

Proof. This is immediate by applying the formula in Theorem 4.4 to the cases i
and i − 1. �

5. The Hasse–Arf property

The formula in Corollary 4.5 is expected due to the well-known Hasse–Arf property,
see [Arf 1939]. It claims that the distance between two consecutive jumps in a
ramification group filtration is divisible by the index of the group at the jump in the
first group of the filtration. The Hasse–Arf property is true when the Galois group
is abelian yet not always true otherwise.

In our setting, the Hasse–Arf property translates to pn−n j | m j − m j−1. So,
according to Corollary 4.5, not only do we verify that it is true, we also know the
quotient to be di − di−1. An advantage of knowing the quotient explicitly is that
we can discuss whether the Hasse–Arf property can be improved or not. In fact, we
can construct an example where the group index is a power of p, and no higher
power of p can divide m j −m j−1 than the power guaranteed by the Hasse–Arf
Property. Notice that the strictly increasing property and di 6≡ 0 (mod p) are the
only two restrictions on the sequence di of positive integers. See [Anbar et al. 2009]
or [Wu and Scheidler 2010] for a discussion of the type of the extension L/K .
Although an explicit construction is not given there, the extension L/K herein is of
the same type as described in those two papers. Actually, we can construct Artin–
Schreier extensions Mi over the same base field K with any prescribed different
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exponent (di + 1)(p− 1); then we can construct L to be the composite of those
Mi . That is to say, for any strictly increasing sequence of nonnegative integers
di of length l, we can construct a Galois extension L/K of function fields and
corresponding extension of places P lying over P , so that there are exactly l jumps
in the ramification group filtration of P|P and exactly l pairwise distinct values of
the different exponents (d0+1)(p−1) < (d1+1)(p−1) < · · ·< (dl−1+1)(p−1)
for d(Pm|P) when M ranges over all degree-p intermediate fields of L/K . In
particular, we can require that di = di−1+1 for all 1≤ i ≤ l−1. With this example,
we know that there is no way to improve the Hasse–Arf divisibility result. On the
other hand, di − di−1 can be any prescribed positive integer, so it is possible to
strengthen the Hasse–Arf divisibility result arbitrarily under certain circumstances.

Now we want to analyze the Hasse–Arf property under a more general assump-
tion; that is to say, to remove the totally wildly ramified assumption. First, we
consider the not totally ramified case. With notation as in Theorem 4.4 and M as
the inertia field of the place extension P|P , we know that Gi (P|P)= Gi (P|Pm)

for all i ≥ 0 by Lemma 3.1. Hence, the Hasse–Arf property is true for the partially
ramified case with identical parameters and formulae to those in the totally ramified
case.

However, the situation changes when we move to the tamely ramified case. For
that purpose, let [L : K ] = pmq such that p - q, M the intermediate field of L/K
corresponding to a Sylow p-subgroup of Gal(L/K ) under Galois correspondence,
and Pm = P∩ M . By Corollary 4.5, we have mi −mi−1 = pn−ni (di − di−1) for
0≤ i ≤ l−1, where mi and di are defined for the ramification filtrations Gi (P|Pm).
By Proposition 3.2, we know Gi (P|P)= Gi (P|Pm) for all i ≥ 1. Hence, the i-th
jump in the ramification filtrations of Gi (P|P) is equal to pn−ni (di − di−1) for
1≤ i ≤ l − 1. Therefore, the tamely ramified case does not satisfy the Hasse–Arf
property in general since the distance needs to be divisible by pn−ni q, not pn−ni .
Noticeably, it violates the Hasse–Arf property simply because it has an unexpected
leading element G0 in the ramification filtration. Hence, this is a removable violation.
An easy way to address this is to manually modify the group index assumption
from G0 to a Sylow p-subgroup of Gal(L/K ) under Galois correspondence. As a
consequence, the Hasse–Arf property is true in the case that L/K is not necessarily
assumed to be totally wildly ramified.

6. Conclusion

We analyzed the ramification group filtrations of a Galois function field extension,
and reduced the investigation to the totally wildly ramified case. It turns out that
the result is explicit. An explanation of why we can obtain such an explicit formula
as in Theorem 4.4 is as follows. From (4-6), we have exactly l linear equations for
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the l variables mi for 0 ≤ l ≤ l − 1. Since the coefficient matrix is triangular in
addition to being nonsingular, we can expect that the solution not only exists and is
unique but also could be expressed explicitly.

Due to the explicit nature of Corollary 4.5, we can discuss the Hasse–Arf property
of such extensions and explore whether it can be strengthened or not. The general
answer is no, and there exist examples to show that Hasse–Arf is the best possible
divisibility result. Although we can discuss the ramification groups under the totally
wild ramified assumption without loss of generality, we discussed whether or not
the Hasse–Arf property is true under the general assumptions. The answer is yes,
but we have to slightly modify the formulation of the Hasse–Arf property to apply
it to the tamely ramified case.
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