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BING-LONG CHEN AND LE YIN

The Hilbert–Efimov theorem states that any complete surface with curva-
ture bounded above by a negative constant cannot be isometrically embed-
ded in R3. We demonstrate that any simply connected smooth complete sur-
face with curvature bounded above by a negative constant admits a smooth
isometric embedding into the Lorentz–Minkowski space R2,1.

1. Introduction

Weyl [1916] posed the problem whether every abstract compact smooth simply
connected 2-dimensional Riemannian manifold with positive curvature can be
isometrically embedded in R3. Weyl’s problem was investigated by Weyl, Lewy,
Alexandrov, and others, and finally resolved (in the smooth category) by Nirenberg
[1953] and Pogorelov [1952] independently. The generalization to the nonnegative
curvature case was done by Guan and Li [1994] and Hong and Zuily [1995], though
only C1,1 embedding was obtained.

For noncompact convex surfaces, the problem was solved by Olovjanisnikov in
the 1940s in the weak sense (see the survey article [Hong 2001]), and in smooth
category by Pogorelov [1973]. The result has been generalized to the nonnegatively
curved case in [Hong 1997]. For local isometric embeddings, there were important
breakthroughs by C.-S. Lin, Q. Han and J.-X. Hong [Lin 1985; 1986; Han et al.
2003; Han 2005; 2006] (see also the survey articles [Hong 2001; Yau 2000] and
the book [Han and Hong 2006]).

The story is completely different for surfaces with negative curvature. The famous
Hilbert–Efimov theorem [Hilbert 1901; Efimov 1964] asserts that any complete
surface with curvature bounded above by a negative constant cannot be realized
in R3. If the complete surface is negatively but not strongly negatively curved,
Hong [1993] found a sufficient and almost sharp condition for the existence of an
isometric embedding in R3.
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On the other hand, the hyperbolic plane H2 admits a canonical smooth isometric
embedding in the 3-dimensional Lorentz–Minkowski space R2,1 as a unit imagi-
nary sphere x2

3 − (x
2
1 + x2

2) = 1. Here R2,1 denotes R3 equipped with the metric
ds2
= dx2

1 + dx2
2 − dx2

3 . Instead of the Euclidean space R3, it is proved that the
Lorentz–Minkowski space R2,1 is the appropriate ambient space for the isometric
embedding of strongly negatively curved surfaces.

We remark that the problem of isometric embedding of Riemannian manifolds
into Lorentzian manifolds has been investigated by many authors. Schlenker [2001]
found a Hilbert–Efimov type theorem in the anti-de Sitter space. A celebrated
theorem of Schoen and Yau [1981] states that a 3-dimensional complete asymptotic
flat Riemannian manifold (M3, g, p) with dominant energy condition

(1-1) R− |pi j |
2
+ (trg p)2 ≥ 2|∇ j (pi j

− (trg p)gi j )|g

and zero ADM mass, where pi j is a symmetric 2-tensor, admits an isometric
embedding into R3,1 such that pi j is the second fundamental form. Delanoë [1988]
and Guan [2007] constructed smooth isometric embeddings of a negatively curved
compact 2-disc D with smooth boundary ∂D into Lorentz–Minkowski space R2,1.

The purpose of this paper is to find global isometric embeddings for complete
negatively curved surfaces into R2,1. The main result is the following:

Theorem 1.1. Let (M, g) be a smooth 2-dimensional simply connected complete
Riemannian manifold with curvature K satisfying

(1-2) K ≤−C1

for some positive constant C1 > 0. There exists a smooth isometric embedding
X : M→R2,1, and the spacelike submanifold X (M) is a graph over R2

⊂R2,1, say
(x1, x2, 0) 7→ (x1, x2, Z(x1, x2)), satisfying

(1-3)
√

x2
1 + x2

2 ≤ Z(x1, x2)≤

√
1

C1
+ x2

1 + x2
2 .

Remark 1.2. It is likely that the solution of the isometric embedding problem is
not unique (up to isometries of R2,1) if we drop the restriction (1-3). Actually, a
remarkable fact (see [Guan et al. 2006]) is that there are many distinct isometric em-
beddings for the hyperbolic plane H2 into R2,1; some even have unbounded second
fundamental forms and violate (1-3). In this sense, the natural isometric embedding
provided by Theorem 1.1 is rather special. The construction and classification of
all exotic embeddings deserve further study.

An interesting (but not direct) corollary of Theorem 1.1 is the following:

Theorem 1.3. Let (M2, g) be a compact 2-dimensional Riemannian manifold with
negative Gaussian curvature. Then there is a smooth symmetric positive definite
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(0, 2)-tensor hi j , which is invariant under the isometry group of (M2, g), such that

(1-4)
Ri jkl =−(hikh jl − hilh jk),

∇i h jk =∇ j hik,

where Ri jkl is the curvature tensor of the manifold.

The proof of Theorem 1.3 relies on a uniqueness theorem of isometric embed-
dings. Unfortunately, the uniqueness of the isometric embeddings in Theorem 1.1
has not been proven. Technically, the proof of the uniqueness theorem involves the
estimates of the second fundamental form. Note that by Remark 1.2, it is possible
that some exotic embeddings may violate these estimates. We remark that the
boundedness of the second fundamental form is not sufficient to guarantee the
uniqueness of the isometric embedding (see [Guan et al. 2006, Theorem 2.3]).

The proof of the main theorem is reduced to solving certain equations of Monge–
Ampère type

(1-5)
det(∇2u+ g)

det(g)
=−Kg(|∇u|2+ 2u)

on the whole manifold M . The corresponding Dirichlet problems may be solved on
a sequence of exhausting domains �l with some particular boundary values. The
problem amounts to deriving certain uniform a priori estimates for these solutions
ul . The bulk of the present paper is devoted to these estimates.

In Section 2, we sketch a proof of the main theorem and derive the zeroth- and
first-order estimates. In Section 3, we derive the second- and higher-order estimates
and prove Theorem 1.1. In Section 4, to prove Theorem 1.3, we derive some
estimates of the second fundamental form (Theorem 4.1) and obtain a uniqueness
theorem (Theorem 4.4) for isometric embeddings. Finally, in the appendix we
supply an alternative, straightforward argument for the second-order derivative
estimate.

2. Zeroth- and first-order estimates

Sketch of proof. Suppose X : M→ R2,1 is an isometric embedding. Then X (M)
is a spacelike submanifold and the Gauss–Codazzi–Weingarten equations read as
follows:

(2-1)

∇i∇ j X = hi j En,

∇i En = hi j g jk Xk,

Ri jkl =−(hikh jl − hilh jk),

∇i h jk =∇ j hik,
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where En is the normal vector, hi j the second fundamental form, and Ri jkl the
curvature tensor.

Let u =−1
2〈X, X〉, where 〈· , ·〉 is the Lorentz–Minkowski metric. By (2-1), we

have

(2-2)
∇i u =−〈X, X i 〉,

∇i∇ j u =−hi j 〈En, X〉− gi j .

Since

〈X, X〉 =
2∑

i, j=1

gi j
〈X, X i 〉〈X, X j 〉− 〈X, En〉2

=|∇u|2−〈X, En〉2,

it follows that

(2-3) 〈X, En〉2 = |∇u|2+ 2u.

Combining (2-1), (2-2), and (2-3), we get

(2-4)
det(∇2u+ g)

det(g)
=−Kg(|∇u|2+ 2u).

Note that the equation (2-4) satisfied by the function − 1
2〈X, X〉 is an intrinsic

equation on the manifold (M, g).
Conversely, if we can find a bounded positive solution u of (2-4) on M , we

will show that this yields an isometric embedding X : (M, g)→ R2,1 such that
−

1
2〈X, X〉 = u. To construct this isometric embedding, we need to introduce the

polar coordinates in the open future timelike cone

I+ =
{
(x1, x2, x3) ∈ R2,1 ∣∣ √x2

1 + x2
2 < x3

}
.

In this polar coordinate system, the Lorentz–Minkowski metric takes the form

(2-5) −dr2
+ r2ds2

H,

where r =
√

x2
3 − x2

1 − x2
2 and ds2

H is the hyperbolic metric (K =−1) of the unit
imaginary sphere r = 1.

Proposition 2.1. For a positive C2 function u on M , define a new metric

ḡ =
g+

(
d
√

2u
)2

2u
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on M. The Gaussian curvature K ḡ of ḡ is given by

(2-6) K ḡ =−1+

det(∇2u+g)
det(g)

+ Kg(|∇u|2+ 2u)(
1+ |∇u|2

2u

)2
.

Proof. The Gaussian curvature of the metric g1 , g+
(
d
√

2u
)2 can be computed

by the formula

Kg1 =
1

1+
∣∣∇√2u

∣∣2
(

Kg +
det
(
∇

2
√

2u
)

det(g)
(
1+

∣∣∇√2u
∣∣2)
)
.

(see [Guan 2007; Hong 2001]). From

gi j
1 = gi j

−
ui u j

2u+ |∇u|2
and 01

k
i j −0

k
i j =

uk

2u+ |∇u|2

(
∇

2
i j u−

ui u j

2u

)
we may calculate 1g1 log u by the formula

1g1 log u = gi j
1

(
∇

2
i j log u− (01

k
i j −0

k
i j )(log u)k

)
,

where ∇2
i j log u is the Hessian of log u with respect to the metric g. By the curva-

ture formula of conformal transformation ḡ = g1/2u, a long but straightforward
computation gives us

K ḡ

2u
= Kg1 +

1
2
1g1 log u =−

1
2u
+

1
2u

det (∇2u+g)
det(g)

+ Kg(|∇u|2+ 2u)(
1+ |∇u|2

2u

)2
. �

Remark 2.2. If u is a bounded positive smooth solution to (2-4), then the metric
ḡ in Proposition 2.1 is complete and has constant curvature −1. Hence there
exists an isometry i : (M, ḡ)→ H= {r = 1} and we can construct an embedding
I : (M, g)→ I+ ⊂ R2,1 as I (y),

(
i(y),
√

2u(y)
)

in the polar coordinate system
(2-5). It is clear that

(2-7) I ∗(−dr2
+ r2ds2

H)=−
(
d
√

2u
)2
+ 2ui∗ds2

H =−
(
d
√

2u
)2
+ 2uḡ = g,

which shows that the map I is the desired isometric embedding. The regularity of
the embedding I follows from the regularity of u.

Hence the proof of Theorem 1.1 may be reduced to solving equation (2-4). The
next theorem gives the required solution.

Theorem 2.3. Under the assumptions of Theorem 1.1, equation (2-4) has a smooth
bounded positive solution u such that 0< u ≤ 1/2C1.
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The following strategy will be adapted to solve (2-4). We first solve it on a
sequence of compact smooth exhausting domains �1 b �2 b · · · . Let ul be the
solution on �l . Fixing x0 ∈ M , we show that for any nonnegative integer k ≥ 0,
there exists a constant Dk > 0 such that

(2-8) sup
�l⊃B(x0,k+1)

|ul |Ck(B(x0,k)) ≤ Dk,

where the norm Ck(B(x0, k)) can be defined on some (indeed any) fixed finite
coordinate covering of B(x0, k). Once (2-8) has been obtained, we use the Arzelà–
Ascoli theorem to extract a subsequence of ul such that the limit is a smooth solution
of equation (2-4).

Indeed, we choose simply �l = B(x0, l) and consider the Dirichlet problem

(2-9)


det(∇2u+ g)

det(g)
=−Kg(|∇u|2+ 2u),

u|∂B(x0,l) =
1

2C2(l)
,

where C2(l)=maxx∈B(x0,l)(−Kg(x)).
Clearly, (2-9) has a subsolution u0 ≡ 1/2C2(l), i.e.,

det(∇2u0+ g)
det(g)

≥−Kg(|∇u0|
2
+ 2u0).

By continuity methods, this implies that (2-9) admits a smooth solution ul which
satisfies ul ≥ u0 and ∇2ul + g > 0 (see [Guan 1998]).

The main task of the subsequent sections is to derive a priori estimates for the
solutions ul so that (2-8) holds. For convenience, we drop the subscript l from ul

and �l in the process of the computations.

Zeroth- and first-order estimates.

Proposition 2.4. The solution u of the Dirichlet problem (2-9) satisfies

(2-10) 1
2C2(l)

≤ u ≤ 1
2C1

.

Proof. By applying the maximum principle to u, we have

1
2C2(l)

≤ u ≤max
{

sup�
(
−

1
2Kg

)
,

1
2C2(l)

}
≤

1
2C1

. �

Proposition 2.5 (first-order estimate). The gradient of the solution u of (2-9) satis-
fies

(2-11) |∇u| ≤ 2
√

C1
.
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Proof. We choose

ξ =
1

2C2(l)
+

2
√

C1
(l − d(x0, · ))

as a barrier function. Clearly ξ satisfies ξ |∂� = 1/2C2(l) and |∇ξ | ≤ 2/
√

C1. By
the standard Hessian comparison theorem

Hess(d)|
(∇d)⊥ ≥

√
C1 coth

(
d
√

C1
)
,

we have
1ξ =−

2
√

C1
1d ≤−2.

On the other hand, from ∇2u+ g > 0, we know that

1u+ 2> 0.

Hence 1(u− ξ) > 0 on �. The maximum principle implies that u ≤ ξ . Therefore
we have

(2-12) |∇u|
∣∣
∂�
≤ |∇ξ | ≤

2
√

C1
.

Now we consider the quantity |∇u|2 + 2u. The maximum maxS�(|∇u|2 + 2u) is
achieved either on the boundary or in the interior of the domain. In the former case,
the maximum is bounded by 4/C1+ 1/C2(l) by (2-12). In the latter case, suppose
the maximum is achieved at some point x̄ ∈�. Since

0=∇i (|∇u|2+ 2u)(x̄)= 2(ui j + gi j )u j (x̄)

and ui j + gi j > 0, it follows that |∇u|(x̄)= 0, and therefore

maxS�(|∇u|2+ 2u)≤maxS�(2u)≤ 1
C1
.

Combining both cases, we get

supS� |∇u| ≤max
{

2
√

C1
,

√
1

C1
−

1
C2(l)

}
=

2
√

C1
. �

Propositions 2.4 and 2.5 state that the function u and its gradient can be bounded
from above by a constant independent of the domain �l . Before estimating the
lower bound of u, we need to construct cutoff functions around points where the
values of u are not too large.

Lemma 2.6. Fix x̃ ∈M , and suppose there exist a real number r0> 0 and a solution
u of (2-9) defined on a domain �⊃ B(x̃, r0) satisfying

(2-13) u(x̃) <
r0

2
√

c2 coth(r0
√

c2 )
, where c2 = max

y∈B(x̃,r0)

(−Kg(y)).
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Let r2 , 2
√

c2 coth(r0
√

c2 ) be the denominator in (2-13). Then there are a domain
Q x̃ ⊂ B(x̃, r0) containing x̃ and a function ϕ x̃

∈ C2(Q̄ x̃) such that

(i) 0≤ ϕ x̃
≤

r0

r2
, ϕ x̃

∣∣
∂Q x̃
= 0, and

(2-14) ϕ x̃
≥

1
2

(r0

r2
− u(x̃)

)
on B

(
x̃,
√

C1

6

(r0

r2
− u(x̃)

))
;

(ii) |∇ϕ x̃
| ≤

3
√

C1
;

(iii) ∇2ϕ x̃
≥−(∇2u+ g).

Proof. Set

ξ = u+ d2(x̃, · )
r0r2

, Q x̃ =

{
ξ <

r0

r2

}
, ϕ x̃

=
r0

r2
− ξ.

Then ϕ x̃ satisfies (ii) by Proposition 2.5. By (ii) and assumption (2-13), we know
(i) holds. To check that ϕ x̃ satisfies (iii), we use the Hessian comparison theorem

∇
2d2(x̃, · )≤ 2d(x̃, · )

√
c2 coth

(
d(x̃, · )

√
c2
)
g

to conclude that

∇
2ξ ≤ ∇2u+ g. �

Proposition 2.7 (lower bound for u). For any x̃ ∈ M , r0 > 0, assume the solution
u of (2-9) is defined on a domain � ⊃ B(x̃, r0). Let c2 and r2 be defined as in
Lemma 2.6. Then

(2-15) u(x̃)≥min
{

r0

2r2
,

C1r2
0

9r2
2
,

1
32c2

}
.

Proof. Assume

(2-16) u(x̃) <
r0

2r2
.

Clearly the condition (2-13) holds for this r0. Consider the quantity u/ζ around x̃ ,
where ζ = ϕ x̃ is the cutoff function in Lemma 2.6. Suppose the minimum of u/ζ
is achieved at some point x̄ ∈ supp(ζ ). At the point x̄ , we have

(2-17) ∇u
u
=
∇ζ

ζ
and 0≤ ∇2 log u

ζ
=
∇

2u
u
−
∇

2ζ

ζ
.

Diagonalize ui j = λiδi j at x̄ with an orthonormal basis. It follows from (2-17) that
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(2-18)
∑ ∇i iζ

1+λi
≤
ζ

u

(
2−

2
√
(1+λ1)(1+λ2)

)
=

2ζ
u

(
1−

1
√

(−Kg)
(
|∇ζ |2u2/ζ 2

+2(u/ζ )ζ
)).

Combining (2-18) and Lemma 2.6, we have

−2≤
2ζ
u

(
1−

1√
(−Kg)

( 9
C1

u2

ζ 2 +
2r0
r2

u
ζ

)
)
.(2-19)

If the denominator in (2-19) is at most 1
2 , we get

(2-20) u
ζ
≥ 1.

On the other hand, if the denominator in (2-19) exceeds 1
2 , direct computation

shows that

(2-21)
u
ζ
≥min

{
2C1r0

9r2
,

r2

16r0c2

}
.

Combining (2-20) and (2-21), we have

u ≥ ζ min
{

1,
2C1r0

9r2
,

r2

16r0c2

}
.

Recalling (2-14) we immediately obtain (2-15). �

Corollary 2.8. For any r0 > 0, there is a constant C depending only on r0 and C1

such that

u(x̃)≥
C−1

maxB(x̃,r0)
(−Kg(x))

,(2-22)

for any solution u to (2-9) defined on �⊃ B(x̃, r0).

3. Second- and higher-order estimates

In this section, we give a purely local second-order derivative estimate. This estimate
could be done by Heinz–Lewy “characteristic” theory for Monge–Ampère equations
in dimension 2. The reader is referred to the lecture notes [Schulz 1990] for detailed
exposition. To state the result in [Schulz 1990], we consider the Monge–Ampère
equation for a function z = z(x, y) on a domain D ⊂ R2:

(3-1) (zxx +C)(zyy + A)− (zxy − B)2 = K (x, y, z)D(x, y, z, zx , zy) > 0,

where A, B,C, D are functions of x, y, z, p, q , and p = zx , q = zy .
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Assumption (i) z ∈ C1,1(D) and

(3-2) |zx | + |zy| ≤ K1.

Assumption (ii) A, B,C ∈ C1(D × R3), K ∈ Cµ(D × R) for some 0 < µ < 1,
D ∈ C1(D×R3), and

|A| + |B| + |C | + |D| ≤A1,(3-3)

K , D ≥ 1/A2,(3-4)

|∂D×R3 A| + · · · + |∂D×R3 D| ≤A3,(3-5)

|K |Cµ(D×R) ≤A4.(3-6)

Assumption (iii) The functions

(3-7)

φ1(x, y)= Ap,

φ2(x, y)= Aq + 2Bp,

φ3(x, y)= C p + 2Bq ,

φ4(x, y)= Cq

are Lipschitz continuous with

(3-8) [φ1]
D
0,1+ · · ·+ [φ4]

D
0,1 ≤A5.

Theorem 3.1 [Schulz 1990, Theorem 9.4.1]. Suppose z ∈ C1,1(D) is a solution
of (3-1) such that the above Assumptions (i), (ii), and (iii) hold with the constants
K1,A1, . . . ,A5. Then z ∈C2,µ

loc (D), and for any D′bD there is an interior estimate

(3-9) ‖∂2z‖Cµ(D′) ≤ C(µ,K1,A1 · · ·A5, dist(D′, ∂D)).

For any x̃ ∈ M , to invoke the result in [Schulz 1990], we fix a local coordinate
system (x, y) ∈D in M around x̃ . Take z(x, y) to be a solution u(x, y) of equation
(2-9) defined on �⊃ D. Then we find

(3-10)

A = g22−0
k
22 pk,

B =−g12+0
k
12 pk,

C = g11+0
k
11 pk,

D = gkl pk pl + 2z,

K (x, y, z)=−Kg(x, y) det(gi j ),

where p1 = p, p2 = q .
Note that by Propositions 2.4, 2.5, and 2.7, we have estimated the upper bound

of u, ∇u, and the lower bound of u in the coordinate system D. This gives rise to a
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control of the constants K1,A1, . . . ,A5 in terms of the geometry of (D, g). From
Theorem 3.1, we have immediately

Proposition 3.2. For any nonnegative integer k ≥ 0, there exists a constant Dk > 0
such that

(3-11) sup
�l⊃B(x0,k+1)

|ul |C2,µ(B(x0,k+ 1
2 ))
≤ Dk,

where the norm C2,µ(B(x0, k+ 1
2)) can be defined on some (and any) fixed finite

coordinate covering of B(x0, k+ 1
2).

We proceed to consider the third- and higher-order estimates (2-8). This may be
done by the standard Schauder estimate for elliptic equations.

Proposition 3.3. For any nonnegative integer k ≥ 0, there exists a constant Dk > 0
such that

(3-12) sup
�l⊃B(x0,k+1)

|ul |Ck(B(x0,k)) ≤ Dk,

where the norm Ck(B(x0, k)) can be defined on some (indeed any) fixed finite
coordinate covering of B(x0, k).

Proof. By (2-9), we see that ∇i u satisfies an equation of the type

(3-13) ĝ jmv jm = f (x, v,∇v),

where ĝ = ∇2u + g. By the previous second-order estimate, we know (3-13)
is uniformly elliptic on B(x0, k + 1

2) and the Cµ norm of ĝ and f are uniformly
bounded (independently of l). The result follows from the standard interior Schauder
estimate and a bootstrap argument. �

Proof of Theorem 2.3. By Proposition 3.3 and the Arzelà–Ascoli theorem, we may
extract a C∞loc convergent subsequence of ul . The limit is the desired solution. �

Theorem 1.1 follows from Theorem 2.3 (see Remark 2.2).

4. Estimating the second fundamental form

In this section, we refine the result in Theorem 1.1. We prove that under an additional
“smoothness” assumption on the Gaussian curvature, a particular embedding with
controlled second fundamental form will be obtained. More precisely, we have

Theorem 4.1. Let (M, g) be a smooth 2-dimensional simply connected complete
Riemannian manifold whose Gaussian curvature satisfies

(4-1) −C2 ≤ K ≤−C1
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and

(4-2) sup
d(x,y)≤1

|K (x)− K (y)|
d(x, y)µ

≤ Cµ

for some positive constants C2 ≥ C1 > 0, 1> µ> 0, Cµ > 0.
Then there exists a smooth isometric embedding X :M→R2,1 such that the space-

like submanifold X (M) is a graph over R2
⊂R2,1

: (x1, x2, 0)→ (x1, x2, Z(x1, x2))

satisfying these conditions:

(i)
√

1
C2
+ x2

1 + x2
2 ≤ Z(x1, x2)≤

√
1

C1
+ x2

1 + x2
2 .

(ii) |A| ≤ C , where A is the second fundamental form of the submanifold X (M),
and the constant C only depends on C1, C2, and Cµ.

The proof of Theorem 4.1 is based on Proposition 2.4 and Theorem 3.1 and the
following result.

Proposition 4.2. Under the assumptions (4-1) and (4-2) of Theorem 4.1, there
exists R > 0 such that M admits a covering of isothermal coordinate charts
{(Ui , (u1, u2))}, where with Ui = {(u1)2+ (u2)2 < R2

}, with these properties:

(i) For any y0 ∈ M , there is Ui0 with y0 ∈ {(u1)2+ (u2)2 < R2/4} ⊂Ui0 .

(ii) In each Ui , the metric g of M takes the form g = ψ
(
(du1)2+ (du2)2

)
, with

(4-3) c−1
≤ ψ ≤ c and |ψ |C2,µ(Ui )

≤ cµ,

for constants c and cµ independent of i . If additionally (4-6) is satisfied, we
have

(4-4) |ψ |C l+1,α(Ui ) ≤ cl,α for any α ∈ (0, 1),

where the cl,α are constants independent of i .

Proof of Theorem 4.1. By Proposition 2.4 and Theorem 1.1, we know there exists
a smooth isometric embedding X : M→ R2,1 such that u =− 1

2〈X, X〉 satisfying
1/2C2 ≤ u ≤ 1/2C1. Let R be the constant provided in Proposition 4.2. Let
the coordinates (x, y) in equation (3-1) be the isothermal coordinates (u1, u2) in
Proposition 4.2, z(x, y)= u(x, y), and D= {x2

+ y2 < R2/4}. In these coordinates,
(3-10) becomes

(4-5)

A = ψ −0k
22 pk,

B = 0k
12 pk,

C = ψ +0k
11 pk,

D = ψ−1(p2
1 + p2

2)+ 2z,

K (x, y, z)=−Kg(x, y)ψ2.
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Estimate (4-3) and Proposition 2.5 imply that there is a constant C depending
only on C1,C2,Cµ such that the constants in equations (3-2)–(3-8) can be bounded
by C ,

K1,A1, . . . ,A5 ≤ C.

Theorem 3.1 implies |∂i j u|Cµ(B(0,R/4)) ≤C . Combining this with (4-3) in particular
gives |hi j | ≤ C . This proves (ii) in Theorem 4.1. �

Remark 4.3. If the curvature covariant derivatives up to order l are assumed to be
bounded in Theorem 4.1, i.e.,

(4-6)
l∑

p=0

|∇
p K | ≤ C l

for some l ≥ 1, then the covariant derivatives of the second fundamental form of
X (M) up to order l − 1 are also bounded,

(4-7) sup
x∈X (M)

l−1∑
p=0

|∇
p A|(x)≤ C

for some C depending only on C l .

Actually, if (4-6) is assumed, notice that (4-4) holds. Then (4-7) follows by the
same argument as in Proposition 3.3.

An important application of Theorem 4.1 is to give a uniqueness theorem.

Theorem 4.4. Under the assumptions of Theorem 4.1, let X be the isometric
embedding constructed in Theorem 4.1.

(i) Let X̃ be another isometric embedding of (M, g) into R2,1 such that X̃(M) is
represented as a graph

(4-8)
√

y2
1 + y2

2 ≤ Z̃(y1, y2)≤

√
1
C
+ y2

1 + y2
2

in some Lorentz–Minkowski coordinate system {y1, y2, y3}. Then there is an
isometry ι ∈ Iso(R2,1) such that X̃ = ι ◦ X.

(ii) There is an injective homomorphism ρ : Iso(M, g)→ Iso(H)⊂ Iso(R2,1) such
that

(4-9) X ◦ γ = ρ(γ ) ◦ X

for any γ ∈ Iso(M, g), where Iso(M, g), Iso(H), and Iso(R2,1) are the groups
of isometries of M , the unit imaginary sphere in R2,1, and R2,1 respectively.
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Proof. After an isometry ι̃ of R2,1, ι̃ ◦ X̃(M) can be pinched between the light cone
and a hyperboloid associated to X , and we can define ũ =−1

2〈ι̃ ◦ X̃ , ι̃ ◦ X̃〉, which
satisfies 0< ũ ≤ C .

Using the polar coordinates in Remark 2.2, we know that ι̃ ◦ X̃ is determined by
ũ and an isometry

ĩ :
(

M,
g+

(
d
√

2ũ
)2

2ũ

)
→ H.

To show that ι̃ ◦ X̃ is congruent to X , it suffices to show that u = ũ. Indeed, once
we have u = ũ, it follows that ι̃ ◦ X̃ = σ ◦ X , where σ = ĩ i−1

∈ Iso(H)⊂ Iso(R2,1).
Then X̃ = ι ◦ X , where ι= ι̃−1

◦ σ .
We need some a priori estimates of ũ up to second order. To this end, we use

the powerful tool of the maximum principle in [Cheng and Yau 1980]. Since the
curvature is assumed to be bounded, for any C2 function F bounded from above,
there is a sequence of xk ∈ M and εk→ 0 such that

(4-10)

supM F − F(xk)≤ εk,

|∇F |(xk)≤ εk,

∇
2 F(xk)≤ εk g.

Note that ũ satisfies (2-4). Applying the above maximum principle to ũ and −ũ,
we immediately get

1
2C2
≤ ũ ≤ 1

2C1
.

We claim that the gradient of ũ is also bounded, and more precisely, it satisfies

|∇ũ| ≤ 1
√

C1
.

Indeed, for any x̃ ∈ M , let γ be a geodesic of unit speed such that γ (0)= x̃ . We
would like to control

∣∣ d
dt (ũ◦γ )(0)

∣∣. By the convexity of the function ũ+ 1
2 d2(x̃, . . .),

we know

t
∣∣∣ d
dt
(ũ ◦ γ )(0)

∣∣∣≤max{ũ(γ (t))− ũ(γ (0)), ũ(γ (−t))− ũ(γ (0))}+ t2

2
.

It follows that
∣∣ d

dt (ũ◦γ )(0)
∣∣≤1/

√
C1 by taking t=1/

√
C1. This implies |∇ũ|(x̃)≤

1/
√

C1, and the claim is proved.
Combining the gradient estimate of ũ with the proof of Proposition 3.2, we know

that |∇2ũ| is bounded.
Summarizing the above estimates, it follows that there is C > 0 such that

(4-11) 1/C ≤ ut ≤ C, |∇ut | ≤ C, ∇2ut + g ≥ C−1g,

where ut = u+ t (ũ− u), t ∈ [0, 1].
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Note that u and ũ satisfy the same equation (2-4). This implies

(4-12)
∫ 1

0
(g+∇2ut)

i j dt∇2
i j (ũ− u)=

∫ 1

0

2〈∇ut ,∇(ũ− u)〉+ 2(ũ− u)
|∇ut |

2+ 2ut
dt.

Let F = ũ− u in (4-10). Combining (4-10) with (4-11) and (4-12), we have

Cεk ≥ supM(ũ− u).

This gives u ≥ ũ. Similarly, we have u ≤ ũ. Hence u = ũ.
To prove (ii), one can show u ◦γ = u for any γ ∈ Iso(M, g) by Cheng and Yau’s

maximum principle (4-10). This implies Iso(M, g)⊂ Iso(M, ḡ), where

ḡ =
g+

(
d
√

2u
)2

2u
.

The desired injective homomorphism ρ : Iso(M, g)→ Iso(H) is given by

ρ(γ )= i ◦ γ ◦ i−1. �

Proof of Theorem 1.3. Let (M̃, g̃) be the universal cover of (M, g) with the induced
metric. Then the curvature of g̃ is pinched between two negative constants, and
all covariant derivatives of the curvature are bounded. By Theorem 4.4, there
is an isometric embedding X : (M̃, g̃)→ R2,1 and an injective homomorphism
ρ : Iso(M̃, g̃)→ Iso(R2,1) such that (4-9) holds. Let h̃i j be the second fundamental
form of X . Note that the deck transformation group 0 of M̃ over M is contained in
Iso(M̃, g̃). Combining (4-9), we know h̃i j is invariant under 0. This implies h̃i j

descends to a tensor hi j on M . This completes the proof of Theorem 1.3. �

5. Appendix

The purpose of this appendix is to give an alternative method for the second-order
estimate. The argument we present here is classical, straightforward, and may be
generalized to higher dimensions (see [Guan and Li 1996]). The price to be paid
is that this method requires some geometry of the background manifold. It works
well on those points where the values of a solution u of (2-9) are not too large in
comparison to the local geometry.

Proposition 5.1. There exists C > 0, depending only on C1, satisfying the following
property. Fixing x̃ ∈ M , suppose there exist a real number r0 > 0 and a solution u
of (2-9) defined on a domain �l ⊃ B(x̃, r0) such that

(5-1) u(x̃) <
r0

2
√

c2 coth(r0
√

c2)
, where c2 = max

y∈B(x̃,r0)

(−Kg(y)).
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Let r2 , 2
√

c2 coth(r0
√

c2 ). Then

(5-2) (g+∇2u)(x)≤
eCc′2

r0/r2− u(x̃)

(
1+
√

c4
r0
√

c2
+ c′2

(
1+

r0
√

c2
+ c3

r0
√

c2

))
on B

(
x̃, 1

6

√
C1
(
r0/r2− u(x̃)

))
, where

c′2 = max
x∈B(x̃,r0+1)

(−Kg(x)),

c3 = max
x∈B(x̃,r0)

|∇ log(−Kg(x))|,(5-3)

c4 = max
x∈B(x̃,r0)

|∇
2 log(−Kg(x))|.

Note that by Proposition 2.4, condition (5-1) can be justified at each x̃ (for
suitable r0) when the curvature K satisfies

(5-4) −C2
2(d(x, x0)+C3)

2
≤ K (x)≤−C1

for some x0 ∈ M and positive constants 0< C2 < C1 < C3.

Proof of Proposition 5.1. Consider an auxiliary function STM → R on the unit
tangent bundle of M , given by

(5-5) (x, γ ) 7→ η(x)(1+∇γ γ u)e
a
2 (|∇u|2+2u)(x),

where x ∈M, γ ∈ Tx M, |γ | = 1, η is a cutoff function on M , and a≥ 1 is a constant
to be specified later. Suppose the maximum

max
(x,γ )∈STM

η(1+∇γ γ u)e
a
2 (|∇u|2+2u)

is achieved at x̄ ∈ supp(η) for some γ ∈ Tx̄ M with |γ | = 1. Diagonalize ui j = λiδi j

at x̄ with the orthonormal eigenvectors ei . Let e1 = γ . By parallel transport of each
ei along radial geodesics, we obtain a field of orthonormal frame {ei } near x̄ . The
function

w = η(1+∇e1,e1u)e
a
2 (|∇u|2+2u)

defined near x̄ achieves its maximum at x̄ . In the following, we use C to denote
various big constants depending only on C1.

At the point x̄ , we have

(5-6) 0=∇i logw =
∇i11u
1+ λ1

+ a(1+ λi )ui +
∇iη

η
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and

(5-7) 0≥ ∇i j logw

=
∇i j11u
1+ λ1

−
∇i11u∇ j11u
(1+ λ1)2

+ a
(
uk∇i jku+ (λi+λ

2
i )δi j

)
+
∇i jη

η
−
∇iη∇ jη

η2 .

Let f = f (x, z, p) , log(−K ) + log(|∇u|2 + 2u)), where z = u, p = ∇u.
Differentiating equation (2-9), we get

(5-8) f11 =
∇11i i u
1+ λi

−
(∇1i j u)2

(1+ λi )(1+ λ j )
and ∇k f =

∇kii u
1+ λi

.

Combining (5-7), (5-8), and the Ricci formula, we have

(5-9) (1+ λ1)
(
−
∇i iη

(1+ λi )η
+
|∇iη|

2

(1+ λi )η2

)
+

1
1+ λi

((∇i11u)2

1+ λ1
− a(Ri j i pu pu j + λi + λ

2
i )(1+ λ1)

− (∇i Ri11p +∇1 Ri1i p)u p − 2R1i1i (λ1− λi )
)
−

(∇1i j u)2

(1+ λi )(1+ λ j )

≥ f11+ au j∇ j f (1+ λ1).

By direct computations, we have (at x̄)

(5-10) f11+ auk∇k f (1+ λ1)≥

2
|∇u|2+ 2u

〈
∇u,−a∇u− ∇η

η

〉
(1+ λ1)

+ log(−K )11+ a〈∇ log(−K ),∇u〉(1+ λ1)

+
a(1+ λ1)|∇u|2

|∇u|2+ 2u
−

8(|λ1| + 1)2

|∇u|2+ 2u
+ 2

R1 j1lu j ul

|∇u|2+ 2u
.

By (5-6), we have

(5-11)
∑

i

|∇iη|
2

(1+ λi )η2 (1+ λ1)

=
|∇1η|

2

η2 +

∑
i≥2

(
|∇i11u|2

(1+ λ1)(1+ λi )

− 2a(1+ λ1)∇i u
∇iη

η
− a2(1+ λ1)(1+ λi )u2

i

)
.
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Note that

(5-12)
∑
i, j

(∇1i j u)2

(1+ λi )(1+ λ j )
−

∑
i

(∇i11u)2

(1+ λ1)(1+ λi )
−

∑
i≥2

|∇i11u|2

(1+ λ1)(1+ λi )

≥−4
|∇u|

|∇u|2+ 2u
|∇η|

η
(1+ λ1),

(5-13)
∑

i

−
1

1+ λi
(Ri j i pu pu j + λi + λ

2
i )(1+ λ1)

≤−
2u

|∇u|2+ 2u
(1+ λ1)

2
+ 2(1+ λ1),

(5-14)
1

1+ λi

(
−(∇i Ri11p +∇1 Ri1i p)u p − 2R1i1i (λ1− λi )

)
≤

2|∇u|
|∇u|2+ 2u

|∇ log(−K )|(1+ λ1)+
2

|∇u|2+ 2u
(1+ λ1)

2
+ 2K .

Multiplying both sides of (5-9) by η2 and combining (5-10)–(5-14), we get

L1(1+ λ1)
2η2
− L2(1+ λ1)η− L3 ≤ η(1+ λ1)

∑
i≥1

−∇i iη

1+ λi
,(5-15)

where

(5-16)

L1 =a
2u

|∇u|2+ 2u
−

10
|∇u|2+ 2u

,

L2 =

(
6
|∇u|

|∇u|2+ 2u
+ 2a|∇u|

)
|∇η| + 2aη+

|∇u|2

|∇u|2+ 2u
aη

+ a|∇ log(−K )||∇u|η+
2|∇u|
|∇u|2+ 2u

|∇ log(−K )|η,

L3 =|∇η|
2
+ η2
|∇

2 log(−K )| + 2K
|∇1u|2+ 2u
|∇u|2+ 2u

η2.

Note that by (5-1), Lemma 2.6 is applicable. Choose the cutoff function η in
(5-5) to be ϕ x̃ in Lemma 2.6, and consider the maximum of the quantity w on Q x̃ .
From Lemma 2.6 (iii), we have

(5-17) η(1+ λ1)
∑
i≥1

−∇i iη

1+ λi
≤ 2(1+ λ1)η.

Since u(x̄) ≥ C−1c′2
−1 by Corollary 2.8, choosing a = 10Cc′2 in (5-16) and

applying Lemma 2.6, we have
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L1 ≥
10

|∇u|2+ 2u
≥ 2C1,

L2 ≤ c′2
(

1+
r0
√

c2
+ c3

r0
√

c2

)
,(5-18)

L3 ≤ C(1+ c4)
r2

0

c2
.

From (5-15), (5-18), and (5-17), we have

(5-19) (1+ λ1)η ≤max
{√

2L3

L1
,

2(L2+ 2)
L1

}
≤ C

(
1+
√

c4
r0
√

c2
+ c′2

(
1+

r0
√

c2
+ c3

r0
√

c2

))
.

Combining Lemma 2.6 (i) and (5-19), we have

(1+ λ1)(x)≤
eCc′2

r0/r2− u(x̃)

(
1+
√

c4
r0
√

c2
+ c′2

(
1+

r0
√

c2
+ c3

r0
√

c2

))
on B

(
x̃, 1

6

√
C1
(
r0/r2− u(x̃)

))
. The proof of Proposition 5.1 is completed. �

Remark 5.2. Most computations in this section are just modifications of those in
the classical theory of Monge–Ampère equations. A closer reference is [Guan and
Li 1996], in which the Dirichlet problem of real Monge–Ampère equations on
manifolds is systematically studied. The observation of this appendix is that these
estimates can be localized under certain geometric conditions.
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SAMANGI MUNASINGHE and YUNUS E. ZEYTUNCU

459Topology of complete Finsler manifolds admitting convex functions
SORIN V. SABAU and KATSUHIRO SHIOHAMA

483Variations of the telescope conjecture and Bousfield lattices for localized categories
of spectra

F. LUKE WOLCOTT

Pacific
JournalofM

athem
atics

2015
Vol.276,N

o.2


	1. Introduction
	2. Zeroth- and first-order estimates 
	Sketch of proof
	Zeroth- and first-order estimates

	3. Second- and higher-order estimates
	4. Estimating the second fundamental form
	5. Appendix
	Acknowledgements
	References
	
	

