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TOPOLOGICAL AND PHYSICAL LINK THEORY
ARE DISTINCT

ALEXANDER COWARD AND JOEL HASS

Physical knots and links are one-dimensional submanifolds of R3 with fixed
length and thickness. We show that isotopy classes in this category can
differ from those of classical knot and link theory. In particular we exhibit
a Gordian split link, a two-component link that is split in the classical theory
but cannot be split with a physical isotopy.

1. Introduction

The theory of knots and links studies one-dimensional submanifolds of R3. These
are often described as loops of string, or rope, with their ends glued together. Real
ropes however are not one-dimensional, but have a positive thickness and a finite
length. Indeed, most physical applications of knot theory are related more closely
to the theory of knots of fixed thickness and length than to classical knot theory. For
example, biologists are interested in knotted curves of fixed thickness and length
when studying properties of DNA [Cantarella et al. 1998] and protein molecules
[Liang and Mislow 1994]. In these applications the thickness of the curve modeling
the molecule plays an essential role in determining the possible configurations.

In this paper we show that the equivalence class of a link in R3 under an isotopy
that preserves thickness and length can be distinct from the classical equivalence
class under isotopy. We thus show for the first time that the theory of physically
realistic curves of fixed thickness and length in R3 is distinct from the classical
theory of knots and links.

The two most fundamental problems concerning physical knots and links are
to show the existence of a Gordian unknot and a Gordian split link. A Gordian
unknot is a loop of fixed thickness and length whose core is unknotted, but which
cannot be deformed to a round circle by an isotopy fixing its length and thickness.
A Gordian split link is a pair of loops of fixed thickness whose core curves can be
split, or isotoped so that its two components are separated by a plane, but cannot be
split by an isotopy fixing each component’s length and thickness. In this paper we
establish the existence of such a link.
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Figure 1. A Gordian split link.

Theorem 1.1. A Gordian split link exists.

The proof of Theorem 1.1 is by explicit construction of a link, illustrated in
Figure 1, that can be topologically but not physically split.

There has been extensive investigation into the properties of shortest representa-
tives of physical knots, called tight [Cantarella et al. 1998] or ideal knots [Katritch
et al. 1997], and into the possible existence of Gordian unknots [Buck and Simon
1997; Cantarella et al. 1998; Diao et al. 1999; Gonzalez and Maddocks 1999;
Katritch et al. 1997]. A candidate Gordian unknot was suggested by Freedman,
He and Wang [Freedman et al. 1994], who studied energies associated to curves
in R3 and associated gradient flows [He 2002]. This curve was studied numerically
by Pierański [1998], who developed a computer program called SONO (Shrink On
No Overlaps) to numerically shorten a curve of fixed thickness while avoiding over-
laps. The program unexpectedly succeeded in unraveling the Freedman–He–Wang
example. However there are more complicated examples that do fail to unravel under
SONO and hence give numerical evidence for the existence of Gordian unknots.
Extensive tables of physical knots of minimal length in various isotopy classes
have been experimentally derived [Ashton et al. 2011]. A proof of the existence
of Gordian unknots or Gordian split links based on a rigorous analysis of such
algorithms is plausible but has not yet been found. In related work, Nabutovsky
[1995] showed that n-dimensional spheres of fixed thickness in Rn+1 can be knotted
for dimensions n ≥ 5. Cantarella and Johnston [1998] showed that the theory of
polygonal knots of fixed edge lengths is distinct from classical knot theory.

We now give precise definitions. We say that a knot or link L in R3 is r-thick if it
is differentiable and its open radius-r normal disk bundle is embedded. This means
that the collection of flat, radius-r two-disks intersecting L perpendicularly at their
centers have mutually disjoint interiors. An isotopy of a knot or link maintaining
r -thickness throughout is called an r-thick isotopy. By rescaling we may take r = 1
and take thick to mean 1-thick. A physical isotopy is a thick isotopy of a knot
or link that preserves the length of each component. This reflects the real world
properties of links composed of nonstretchable rope of fixed radius.
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Theorem 1.1 is proved by an explicit construction of a two-component thick link L
that is split but admits no physical isotopy splitting its components. To construct
this link we begin by placing two points A and B at (1, 0, 0) and (−1, 0, 0). Let
AB denote the straight line between these two points. The first component L1 of L
is any thick curve encircling AB in the xz-plane, disjoint from the open, radius-2
neighborhood of AB. The length of L1 is at least 4π + 4≈ 16.566, and this length
can be realized by taking L1 to be the boundary of the radius-2 neighborhood of
AB in the xz-plane. To construct the other component, join the two points A and B
by an arc α satisfying the following three conditions:

(1) The union of α with AB forms a nontrivial knot contained in the half-space
y ≥ 0.

(2) The arc α meets the xz-plane only at its endpoints and is perpendicular to the
xz-plane at these points.

(3) The union of L1, α and the reflection of α across the xz-plane forms a thick
link.

The union of α and its reflection in the xz-plane is the second component L2 of the
thick link L . Figure 1 shows an example of such a link.

Theorem 1.1 follows immediately from the following result, which gives an
explicit lower bound on the length required for L1, the unknotted component of L ,
if L can be split by a physical isotopy.

Theorem 1.2. If there is a physical isotopy of L = L1 t L2 that splits its two
components, then the length of L1 must be at least 4π + 6≈ 18.566.

Since the link L can be constructed with the length of the unknotted component L1

equal to 4π + 4, this result implies Theorem 1.1.
The paper is arranged as follows. In Section 2 we give a lower bound on the

boundary length of a disk of nonpositive curvature containing three disjoint disks
of radius 1. In Section 3 we show that if a family of disks spanning L1 gives a
homotopy from a disk in the xz-plane to a disk disjoint from L2 and each disk in the
homotopy intersects a neighborhood of L2 in at most two components containing
points of L2, then L2 is unknotted. In Section 4 we bring these results together to
prove Theorem 1.2. We conclude with a short list of open problems.

2. An isoperimetric inequality

To prove Theorem 1.2, we show that if the unknotted component L1 has length
less than 4π + 6, then there are severe restrictions on how the other component can
pass through a natural spanning disc for L1. This spanning disc, to be defined in
Section 4, is a cone with cone angle at least 2π , and hence a CAT(0) space. We are
therefore led to finding a lower bound on the length of a curve in a CAT(0) surface
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Figure 2. The boundary of this disk has length at least 6+ 4π .

that bounds a disk enclosing three or more nonoverlapping subdisks of radius 1,
as in Figure 2. This next result is based on an argument for flat metrics given in
[Cantarella et al. 2002].

Proposition 2.1. Let P be a complete CAT(0) surface and let D1, D2, D3 be three
subdisks of P with disjoint interiors and radius 1. Let D ⊂ P be a disk containing
D1, D2, D3 such that ∂D has distance at least 1 to any of D1, D2, D3. Then the
length of ∂D is at least 4π + 6.

Proof. Let T be the triangle with vertices at the center points c1, c2, c3 of the
disks D1, D2, D3. Each edge of T has length at least 2. Let a, b, c, d, e, f denote
perpendicular rays from the sides of T at its vertices, as in Figure 2. The curve ∂D
intersects each of a, b, c, d, e, f in at least one point. We pick one such point for
each, ordered cyclically around ∂D, and refer to the intervening arcs of ∂D as the
parts of ∂D between them. Since the edge of T between c1 and c2 is perpendicular
to a and to b, it realizes the minimal distance of any path between them. Thus the
length of the part of ∂D between a and b is at least 2. We can argue similarly for
the length of ∂D between c and d , and between e and f . Thus these three parts of
∂D have total length at least 6.

The sum of the interior angles of T is at most π , so the sum of the three angles
between f and a, between b and c, and between d and e is at least 2π . Radial
projection projects the remaining parts of ∂D onto three circular arcs with total
angle at least 2π . In a CAT(0) space, radius-decreasing radial projection onto a
circle of constant radius is length-decreasing. Since a circle of radius 2 has length
at least 4π , it follows that the length of ∂D is at least 6+ 4π . �

Remark. A similar argument shows that a curve enclosing two disks has length at
least 4π +4 and that the length of a curve enclosing n > 3 disks is at least 4π +2n
if the centers of the disks form the vertices of a convex polygon.
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3. Sweepouts of solid tori

The following proposition gives a generalization of the fact that a 1-bridge knot is
unknotted. It considers a generic 1-parameter family of disks, possibly singular,
whose interiors sweep across a region containing a solid torus and concludes that if
each disk meets the solid torus in at most two components that cross its core, then
the solid torus is unknotted. To simplify the argument we restrict to a setting where
T and c have a reflectional symmetry. Roughly speaking, this allows us to argue
that if a family of arcs forms a partial spanning disk that fills in half of a curve,
then the entire curve bounds a disk formed from reflection of this partial spanning
disk and is thus unknotted.

Proposition 3.1. Let T be a solid torus in R3 with core c, such that both T and c
are symmetric under reflection r in the xz-plane. Suppose there is a homotopy of
the disc gt : D→ R3, t ∈ [−1, 1], with the following properties:

(1) The curve gt(∂D) is disjoint from T for all t ∈ [−1, 1].
(2) The family of disks gt(D) is symmetric under reflection r in the xz-plane; i.e.,

g0(D) is contained in the xz-plane and g−t = r ◦ gt .

(3) The preimage g−1
0 (T ) has two components, each containing a single point of

g−1
0 (c).

(4) The disk g1(D) is disjoint from c.

(5) For all t ∈ [−1, 1] the preimage g−1
t (T )⊂ D has at most two components that

contain a point of g−1
t (c).

(6) The map gt is generic with respect to the pair (T, c).

Then c is unknotted.

Assumption (6) means that gt is transverse to c with the exception of a finite
number of times t at which a birth or death of a pair of points of g−1

t (c) occurs
and that gt is transverse to ∂T at these times. Additionally, gt is transverse to ∂T
except for a finite number of times at which g−1

t (∂T ) consists of finitely many
simple closed curves and a single component that is either a bouquet of finitely
many circles (at a general saddle-type singularity) or a point (at a birth or death
singularity).

Proof of Proposition 3.1. To show that c is unknotted, we will form a spanning
disk E for c that is traced by a continuous family of arcs in R3, each arc having
endpoints on c and interior disjoint from c. These arcs are of two types. The first
type will lie on gt(D) and vary continuously with t except at finitely many times t
when it jumps from one arc on gt(D) to another; the second type will interpolate
continuously between the arcs just before and just after these jumps.
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Figure 3. A birth or death adds or removes two points of g−1
t (c)

from a component of g−1
t (T ).

For a map g : D→ R3 we call a point of g−1(c) ⊂ D a dot and a component
of g−1(T ) that contains at least one point of g−1(c) a dotted component. Thus
g−1

0 (T ) contains two dotted components, each with a single dot. A birth or death
changes the number of points of g−1

t (c) in a component of g−1
t (T ) by two, oppositely

oriented, as illustrated in Figure 3.
At time t = 0, the preimage g−1

0 (c)⊂ D consists of a pair of points, one in each
dotted component. Let α0 be an arc joining these two points in D, with interior
disjoint from g−1

0 (c)⊂ D. As t increases, we take αt to vary continuously through
arcs in D, joining dots in distinct dotted components with interiors disjoint from the
dots. There is no obstruction to this while the collection of dots in D is changing
by an isotopy. As long as the number of dotted components does not drop, there
are two possible obstructions to the extension of αt as t increases:

(1) Part of the arc αt may run between two dots that come together and disappear
in a death singularity.

(2) One of the endpoints of αt may disappear in a death singularity.

In contrast, birth singularities do not pose a problem for the extension of the
family of arcs past the time at which they occur.

Let t1 be the time of the first death singularity. To avoid the two problems above
we pick a small ε > 0 and at time t ′1 = t1− ε we jump from α−t ′1 := αt ′1 to a different
arc α+t ′1 that also joins points of g−1

t ′1
(c) in distinct dotted components but that avoids

a neighborhood of the death singularity. We will show how to construct α+t ′1 so that
this jump can be filled in appropriately for the construction of the disk E . We will
then extend the family of arcs αt for t > t ′1 by starting with α+t ′1 and continuing past t1
until just before the next death singularity occurs at some time t2 > t1. In the first
case we show that the arc αt can be replaced with one that avoids a neighborhood
of the death singularity. In the second case we show that αt can be replaced with
an arc having an endpoint that avoids the death singularity.

For a continuous map g : D→ R3, we say that two arcs in the disk D joining
points of g−1(c) in distinct dotted components of g−1(T ) are g-equivalent if their
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Figure 4. Removing intersections of α−t ′1 with secondary boundary
components of g−1

t ′1
(T ).

images under g are homotopic through arcs in R3 whose interiors are disjoint from c
and whose endpoints lie on c. Our goal is then to construct the arc α+t ′1 so that it is
gt ′1-equivalent to α−t ′1 .

When gt is transverse to ∂T the dotted components of g−1
t (T ) form planar

subsurfaces of D, each a disk with holes. A boundary curve of a dotted component
that has dots on both of its sides in D is called primary, and boundary components
with all dots on one side are called secondary.

If α−t ′1 leaves a dotted component X through a secondary boundary component b,
it must reenter X through b, since b is separating in D. Let β be a subarc of α−t ′1
running between two successive intersections of α−t ′1 with b and with interior outside
of X . Then β runs through either a dotless disc or a dotless annulus in D. We
can then homotope β into b rel endpoints without crossing any dots. Push β a
little further into the interior of X . Repeating this process we can homotope α−t ′1
rel endpoints without crossing dots and so that it crosses only primary boundary
components. See Figure 4. We abuse notation somewhat and continue to refer to
this arc as α−t ′1 .

Our next goal is to arrange for α−t ′1 to pass through each primary boundary
component exactly once. We will achieve this with the following lemma.

Lemma 3.2. Suppose T is an embedded solid torus in R3 with core c, and suppose
g : D→ R3 is a continuous map of a disc into R3 for which g−1(T ) has two dotted
components, each with image having algebraic intersection number ±1 with c. Let
α be an arc in D, joining dots in distinct dotted components of g−1(T ), and with
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Figure 5. Two ways to homotope g(β) onto ∂T .

interior disjoint from g−1(c). Let β ⊂ g−1(T ) be a subarc of α that starts and ends
on the same primary boundary component b of g−1(T ). Then there is an arc β ′ ⊂ b
with the same endpoints as β and with the property that replacing β with β ′ in α
yields an arc α′ that is g-equivalent to α.

Proof. There is a homotopy of β in D rel endpoints to an arc β̄ contained in b,
possibly crossing dots. So g(β) is homotopic rel endpoints in R3 to an arc g(β̄)
in ∂T ∩ g(D). This homotopy may pass outside T , as β slides over holes of the
dotted component. However the boundaries of these holes are secondary, since
there are precisely two dotted components, and therefore bound disks in R3 disjoint
from c. It follows that they have image under g that is homotopically trivial on ∂T
or they have images on ∂T that are nontrivial and bound disks in the exterior of T .
In the latter case T is unknotted, and we are done. Thus we can assume that g(β)
and g(β̄) are homotopic rel endpoints in T . The arc g(β) is also homotopic rel
endpoints in T − c, by radial projection away from c, to an arc ν on ∂T . See
Figure 5, which for clarity shows only part of g(D).

Now, g(β̄) and ν are homotopic rel endpoints in T and so in ∂T they differ by a
multiple of a meridian. Note that the curve g(b) is a meridian, since it bounds a
disk in T meeting c algebraically once. So g(β) can be homotoped rel endpoints in
the complement of c in T to ν, and then in turn to a curve formed by concatenating
g(β̄) with a multiple of g(b). Take β ′ to be β̄ followed by this multiple of b. �

Now suppose that β is a subarc of α−t ′1 that enters and leaves a dotted component.
Using Lemma 3.2 we can replace it with a gt ′1-equivalent arc β ′ that lies entirely
on g−1

t ′1
(∂T ), and then perturb β ′ slightly so that it is disjoint from g−1

t ′1
(T ), as

illustrated in Figure 6. In this way we replace α−t ′1 with a gt ′1-equivalent arc that has
fewer intersections with dotted components, and by repeating we may remove all
subarcs of α−t ′1 that enter and leave a dotted component. We continue to refer to the
resulting arc as α−t ′1 . Note that α−t ′1 may now intersect itself.

We have found an arc gt ′1-equivalent to the original arc α−t ′1 that starts at a dot
in one dotted component, exits that dotted component, then enters the second
dotted component and finally ends at a dot. The following lemma allows us to
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β

Figure 6. Removing an arc in D that starts and ends on the same
primary boundary component of g−1(T ).

find a gt ′1-equivalent arc that replaces a subarc running from a primary boundary
component to a dot, with any other arc running from the same point to a dot and
not leaving g−1

t ′1
(T ).

We define an arc in a solid torus T with core c to be core-to-boundary if it has
one endpoint on ∂T , the other endpoint on c, and interior disjoint from c.

Lemma 3.3. Let T be a solid torus with core c. Let γ and γ ′ be core-to-boundary
arcs in T with γ ∩ ∂T = γ ′ ∩ ∂T . Then γ and γ ′ can be joined by a homotopy of
core-to-boundary arcs, keeping the endpoint on ∂T fixed.

Proof. We can lift γ and γ ′ to the universal cover of T , which is homeomorphic to
(disk)×R, so that their common endpoint on ∂T lifts to the same point x while c
lifts to {0} ×R. Each lift can be homotoped, keeping x fixed and moving points
only along the R-factor, to the slice (disk)× {point} containing x . Further, the
resulting arcs are homotopic rel endpoints in (disk)× {point} via arcs that miss
{0}×{point} in their interior. Therefore the lifts of γ and γ ′ are homotopic through
arcs joining x to {0}×R and with interiors disjoint from {0}×R. The projection of
this homotopy to T gives a homotopy joining γ and γ ′ through core-to-boundary
arcs in T . �

Now suppose that a death singularity takes place in a dotted component containing
a segment of α−t ′1 . Let γ1 be the segment of α−t ′1 , running from a dot to the primary
boundary component. Choose an arc γ ′1 in the same dotted component that runs from
a dot to the point where γ1 exits the dotted component, so that γ ′1 is disjoint from a
neighborhood containing the two dying dots. This is possible because the number
of dots in each dotted component is odd. By Lemma 3.3, α−t ′1 is gt ′1-equivalent to the
arc formed by replacing γ1 by γ ′1. We take α+t ′1 to be the arc, gt ′1-equivalent to α−t ′1 ,
which is obtained from α−t ′1 after making all these changes. See Figure 7. See also
Figure 8 for an example, illustrated in R3, of how Lemma 3.3 may be applied.

We have constructed a family of arcs αt in D that varies continuously until time
t ′1 = t1− ε. It then jumps from α−t ′1 to the gt ′1-equivalent arc α+t ′1 . The arc α+t ′1 was
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Figure 7. Changing α−t ′1 so that it avoids a death singularity.
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Figure 8. Illustrating Lemma 3.3, where an arc can be homotoped
to a new arc through arcs in the complement of c.

chosen to avoid a neighborhood of the death singularity at time t1, so we can extend
the family of arcs αt past time t = t1 until just before the next death singularity at
time t = t2. We then repeat this process.

Eventually, at time t = tl ∈ (0, 1) the two dotted components must merge along
gtl
−1(∂T ). At this time gtl

−1(∂T ) consists of a collection of finitely many simple
closed curves and one bouquet of finitely many circles embedded in D. The arc αtl
begins and ends at a dot, and may run in and out of the single dotted component.

We now look at the complementary components in D of the single dotted
component of gtl

−1(T ). Each of these is either a disk or an annulus with ∂D as
one boundary component. Any subarc β of αtl that runs out of a dotted component
into a complementary component X eventually leaves X and reenters the dotted
component. Since X is either a disk or an annulus having ∂D as one of its boundary
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components, we can homotope β rel endpoints off X and into the dotted component
without passing through any dots, since all dots lie within the single dotted com-
ponent. In this way we can homotope αtl so that it lies entirely within the dotted
component of gtl

−1(T ). This means that gtl (αtl ) now lies entirely within T . It is
then straightforward to shrink gtl (αtl ) within T , keeping its interior disjoint from c
and its endpoints on c, until it collapses to a point on c.

We now form a spanning disk E for c. Let βt = gt ◦ αt , t ∈ [0, tl]. Then βt is
a family of arcs in R3 whose endpoints lie on c and whose interiors are disjoint
from c. These arcs vary continuously except at finitely many times t ′1, t ′2, . . . , t ′n
just before death singularities. At these times the limiting arcs α−t ′i and α+t ′i , as t
approaches t ′i from below and above, are gt ′i -equivalent. Finally, αtl is homotopic
to a point on c via arcs that start and end on c but have interiors disjoint from c.
Therefore there is a family of arcs, with endpoints on c sweeping out a disk with
interior in the complement of c, that represents a homotopy of β0 to a point in c.
Let E denote the union of these arcs in R3 and take E to be the disk obtained by
taking the union of E with its reflection in the xz-plane. Note that the interior of E
does not intersect c and that ∂E ⊆ c.

Let a be one of the two points of intersection of c with g0(D). Then ∂E intersects
a in an odd number of points, one coming from β0 and an additional even number
coming from equal numbers of intersections of a with ∂E and its reflection. So ∂E
is nontrivial in π1(c). By the Loop Theorem [Papakyriakopoulos 1957], c is the
boundary of an embedded disc and therefore unknotted. �

4. Proof of Theorem 1.2

We now prove Theorem 1.2, showing that if L can be split via a physical isotopy then
the length of L1 must be at least 4π + 6. Note that in this isotopy both components
may move.

Assume there is a physical isotopy Is , s ∈ [0, 1], of R3 with I0 the identity,
I1 taking L1 and L2 to opposite sides of a plane, and with the length of the
unknotted component L1 being less than 4π + 6. We will derive a contradiction.

During the course of the isotopy Is it is possible that the radius-one solid torus
neighborhoods of the two link components bump against themselves or each other.
We describe a slight modification of the isotopy that keeps the two components
embedded and disjoint. Throughout the isotopy, tubular neighborhoods of any
radius r < 1 give embedded disjoint solid torus neighborhoods of each of L1 and L2.
Take r = 1− ε′ to be slightly less than 1 and then rescale the entire isotopy Is

by 1/(1− ε′). This restores the radius to 1 at the cost of slightly lengthening L1

and L2. With ε′ small, the length of L1 remains below 4π+6. The rescaled physical
isotopy is then (1+ ε)-thick, with ε = ε′/(1− ε′).
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For a curve c in R3, let T (c) denote the radius-1 tubular neighborhood of c.
Without loss of generality we can assume that the isotopy Is preserves T (L1)

and T (L2), so that Is(T (L i )) = T (Is(L i )) for i = 1, 2. We then let Ts denote
the solid torus T (Is(L2)). For each s ∈ [0, 1], let xs be the center of mass of the
embedded curve Is(L1) and let fs : D→ R3 parametrize the disk forming the cone
over Is(L1) with cone point xs . Since the cone point is inside the convex hull, its
cone angle is always at least 2π [Cantarella et al. 2002; Gage 1980; Gromov 1983].
The maps fs : D→R3 induce a family of metrics on the disk D, parametrized by s,
in which each disc is flat except at the cone point and is therefore a subdisk of a
complete CAT(0) surface obtained by extending the rays from the cone point to
infinity.

Now perturb fs , s ∈ [0, 1], so that the family of maps fs is generic, but leaving
fs unchanged for s in a small neighborhood of 0 and unchanged on ∂D for all s.
By generic, we mean that

(1) fs is transverse to c except for a finite number of times s at which a birth or
death of a pair of points of f −1

s (c) occurs;

(2) fs is transverse to ∂T at these times; and

(3) fs is transverse to ∂T except for a finite number of times when f −1
s (∂T )

consists of finitely many simple closed curves and a single component that is
a bouquet of finitely many circles (in the case of a saddle-type singularity) or
a single point (in the case of a birth or death singularity).

Genericity can be achieved by approximating the appropriate parts of fs by PL
maps and using general position. The perturbation can be made arbitrarily C0-small,
and we let f ′s denote the result of perturbing fs in this manner.

Each component of f ′−1
s (Ts) in D that contains a point of f ′−1

s (Is(L2)) contains
a disc of radius 1 in D enclosing that point, measured in the induced metric. The
distance in D of ∂D from each of these components is at least 1. Suppose for a
contradiction that there are three components of f ′−1

s (Ts) containing a point of
f ′−1
s (Is(L2)) for some s and furthermore suppose that this is true no matter how

small we made the perturbation of fs that gave f ′s . Then f −1
s (Ts) contains three

disks of radius 1 with disjoint interiors, and with ∂D having distance at least 1
from each disk. This contradicts Proposition 2.1, since L1 has length less than
4π + 6. Hence, by taking the perturbation to obtain f ′s to be sufficiently small, we
can arrange that for all s there are at most two components of f ′−1

s (Ts) containing
a point of f ′−1

s (Is(L2)).
We now define a family of disks hs : D→R3, 0≤ s ≤ 1, by setting hs = I−1

s ◦ f ′s .
Extend hs to −1 ≤ s ≤ 0 by reflecting through the xz-plane, setting hs = r ◦ h−s

for s < 0. Each hs maps ∂D to L1 and for s ∈ [−1, 1] the preimage h−1
s (T (L2))

has at most two components containing a point of h−1
s (L2). Moreover h0(D) lies
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in the xz-plane, and h1(D) and h−1(D) are disjoint from L2. The disks hs(D) now
satisfy all the conditions of Proposition 3.1, implying that L2 is unknotted. This
contradiction proves Theorem 1.2. �

5. Some open problems

The following related problems remain open.

(1) Does there exist a Gordian unknot?

(2) Can the methods of Theorem 1.2 be extended to produce a Gordian split link
with two unknotted components?

(3) In Theorem 1.2 the length of each component is fixed. One can formulate a
problem where the sum of the component lengths is fixed but the individual
components are allowed to stretch. Is there a Gordian split link in that setting?
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